REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE. MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE SAAD DAHLAB - BLIDA 1 -

FACULTE DE MEDECINE. DEPARTEMENT DE PHARMACIE.

VALIDATION D'UNE METHODE ANALYTIQUE DE DOSAGE DE PINAVERIUM BROMURE DANS LE PRODUIT FINI PAR HPLC UV-VIS

Mémoire de fin d'étucles

Présenté en vue de l'obtention du diplôme de docteur en pharmacie

Session: Juin 2014.

Présenté par :

- ATTOUI Omar
- MENOUER Nassima
- ZENATI Maroua

Devant le jury :

Présidente: Dr. MEZAOUR Yacine, maitre-- assistante en

biophysique pharmaceutique, Faculté de Médecine, ALGER. **Examinatrices**: Dr. **REGGABI Feriel**, maitre- assistante en biophysique pharmaceutique, Faculté de Médecine, BLIDA

Dr. KHADER Nadia, maitre- assistante en biophysique pharmaceutique, Faculté de médecine, BLIDA Promoteur: Dr. BENGHEZAL Islem, Maitre- assistant en

biophysique pharmaceutique.

TABLE DES MATIERES

REMERCIEMENTS	IV
LISTE DES TABLEAUX	VIII
LISTE DES FIGURES	X
LISTE DES ABREVIATIONS ET DES SIMBOLES	XI
INTRODUCTION	1
PARTIE BIBLIOGRAPHIQUE	
I- I. Généralités sur le pinavérium bromure :	4
I-1.Définition / Généralité sur le médicament	4
I-2.Dénomination et formule chimique	4
I-3. Propriétés physico-chimiques du pinavérium bromure	
II. La méthode chromatographique	
II-1.Définition	8
II-2.la classification des méthodes chromatographiques	
III. Chromatographie liquide à haute performance (HPLC)	
III-1. Définition et principe	
III-2. Les grandeurs fondamentales de la chromatographie	
III-3. Les Modes de séparation	
III-3-1. Chromatographie d'exclusion stérique	
III-3-2. Chromatographie d'adsorption	17
III-3-3.chromatographie de partage	
III-3-3- a. sur phases stationnaires polaires	17
III-3-3-b. sur phases stationnaires apolaires	
III-3-4. Chromatographie par échange d'ions	
III-3-5. Chromatographie de paires d'ions	18
III-3-5-a.principe	
III-3-5-b. mécanisme	18
III-3-5-c. Paramètres influençant la rétention	19
III-3-6. Chromatographie d'échange de ligands	21
III-3-7. Chromatographie par transfert de charges	21
III-4-Appareillages	21
a. Réservoir de la phase mobile	
b. Pompe	
c. Injecteur	
d. colonne	
e. Détecteurs	
g. La phase stationnaire	23

h. La phase mobile	23
IV- I. Validation analytique	
IV-1.Definition	
IV-2.Objectifs	26
IV-3. Types de procédés analytiques à valider	26
IV-4.Référentiels réglementaires sur la validation et champs d'application	28
IV-4-1. Les référence réglementaires en vigueur de la validation	
IV- 4-2. Champs d'application de la validation analytique	29
IV- 5.Critères prérequis	30
IV-5-1.robusstesse	30
IV-5-2.stabilité des solutions	30
V-6.Critères de validation	30
V- 6-1.Spécificité /Sélectivité	30
V-6-2.Linéarité	
V- 6-3.Fidélité	31
V- 6-3-1.Répétabilité	31
V- 6-3-2Reproductibilité	
V- 6-3-3.Fidélité intermédiaire	31
V- 6-4.Exactitude	31
V- 6-5.Limite de détection	31
V- 6-6.Limite de quantification	31
V- 6-7.Intervalle de validité	32
IV-7. Étude statistique	32
PARTIE PRATIQUE	
I.Validation analytique	
I-1.Problematique	
I-2.O BJECTIFS	
I-3.materiels et méthode	
I-3-1. Standard	
I-3-2. Formule de produit fini	
I-3-3. Équipements	
I-3-4. Réactif	
I-3-5. Description de la méthode analytique	
I-3-6. Réalisation des réactifs utilisés	
I-3-7. Réalisation des solution pour la validation	
I-4.protocole expérimentale de de la robustesse et de la stabilité des solution	
I-4-1. Robustesses	
I-4-1. Stabilité des solution	41

I-5- protocole expérimentale des Paramètres de validation de la	procédure
analytique	41
I-5-1.Spécificité	41
I-5-2.Linéarité	41
I-5-3.Exactitude	42
I-5-4.Fidélité	42
II-rapport des criteres prérequis	43
II-1.robusstesse	43
II-1.stabilité des solution	48
III-rapport de validation	49
III-1. Spécificité	49
III-2. Linéarité	55
III-3.Exactitude	70
III-4.Fidélité	74
III-5.Seuil de détection et seuil de quantification	78
III-6.Sensibilité	78
III-7.résumé du rapport de validation	78
CONCLUSION GENERALE	80
REFERENCES BIBLIOGRAPHIQUES	
ANNEXES	

Remerciements

Nous tenons avant tout à remercier DIEU de nous avoir donné la force et la puissance à accomplir ce modeste travail.

Notre profonde et durable gratitude et nos vifs remerciements vont tout particulièrement à notre promoteur **Dr. BENGHEZAL.I**, maitre-assistant en biophysique pharmaceutique à la faculté de médecine, BLIDA, qui a suivi ce travail avec un grand intérêt.

Nos vifs remerciements vont également aux membres du jury :

- A **Dr. MEZAOUR Yacine**: Maître-assistant en biophysique pharmaceutique à la faculté de médecine, ALGER de nous avoir fait l'honneur de présider le jury de notre mémoire.
- A Dr. REGGABI Feriel: Maître-assistante en biophysique pharmaceutique à la faculté de médecine, BLIDA.
- A **Dr. KHADER Nadia**: Maître-assistante en biophysique pharmaceutique à la faculté de médecine, BLIDA.
 - pour avoir participé, avec intérêt, à nos jurys de mémoire en qualité d'examinatrices.

 Nous exprimons nos profondes et respectueuses gratitudes.

Nos remerciements tendent également à tous nos enseignants durant toutes nos années d'études pour la richesse et la qualité de leur enseignement, ainsi qu'à **Pr. BELOUNI.R.** chef de département de pharmacie et à **Dr. MAHFOD.M**, l'adjoint de chef de département.

Nous tenons à remercier Mrs. YAHIAOUI Amar, BENAOUICHA Tahar et Mmes SLIMANI Cherifa et REGUIEG Hinda de l'unité de développement à GenericLab pour leur accueil, leur aide, leur attention et leur gentillesse tout au long de la durée du stage.

Nous remercions aussi l'ensemble du personnel de GenericLab, pour leurs conseils avisés, leur sympathie et la bonne humeur partagée.

Et c'est avec reconnaissance que nous remercions tous ceux qui ont contribué et nous ont aidé de près ou de loin à la réalisation de ce mémoire, particulièrement **Dr. BOUCHACHIA.H**, résident en chimie analytique, pour son aide, ses orientations et ses précieux conseils tout au long de l'élaboration de ce modeste travail.

À MES CHERS PARENTS

Aucune dédicace ne saurait exprimer mon respect, mon amour éternel et ma considération pour les sacrifices que vous avez consenti pour mon instruction et mon bien être.

Je vous remercie pour tout le soutien et l'amour que vous me portez depuis mon enfance et j'espère que votre bénédiction m'accompagne toujours.

Que ce modeste travail soit l'exaucement de vos vœux tant formulés, le fruit de vos innombrables sacrifices, bien que je ne vous en acquitterai jamais assez.

Puisse ALLAH, vous accorder santé, bonheur et longue vie et faire en sorte que jamais je ne vous déçoive.

A mes chers frères

Kamel, Oussama, Ryma, Salsabile ma petite sœur que j'aime profondément. En témoignage de mon affection fraternelle, de ma profonde tendresse et reconnaissance, je vous souhaite une vie pleine de bonheur et de succès et qu'ALLAH, le tout puissant, vous protège et vous garde.

A notre chère et dynamique frère et ami Hamza BOUCHACHIA

Un remerciement particulier et sincère pour tous vos efforts fournis. Vous avez toujours été présent. Que ce travail soit un témoignage de ma gratitude et mon profond respect.

A tous mes collègues de mon cursus d'étude depuis primaire jusqu'à ce jour.

A mes chers collègues

Rahmani, Sofiane, khaled, Mouloud, Abdellah, Noureddine, Wassim, Rafik, Abdelhak, Raouf, Tarik, Ibrahim, Akram, Fouad, Sallah, Sid Ahmed, Rydha, Mohammed, Nassima, Maroua, Maroua, Asma, Nour El Houda, Faiza....

Je ne peux trouver les mots justes et sincères pour vous exprimer mon affection et mes pensées, vous êtes pour moi des frères, sœurs et des amis sur qui je peux compter. En témoignage de l'amitié qui nous uni et des souvenirs de tous les moments que nous avons passé ensemble, je vous dédie ce travail et je vous souhaite une vie pleine de santé et de bonheur.

Omar

Dédicace

Avec un énorme plaisir, un cœur ouvert et une immense joie,
que je dédie ce mémoire à mes chers, respectueux et magnifiques parents
qui m'ont soutenus tout au long de ma vie
ainsi à ma sœur et sa petite famille, mes frères,
mes cousins et mes cousines,
et en particulier à mes trinômes Maroua et Omar
et mes amis Nardjes, Hiba, Billel, Moussa... et à tous mes collègues de
cursus d'étude depuis le primaire jusqu'à ce jour.

A toute personne qui m'a encouragé ou aidé au long de mes études.

Nassima

* Je dédie ce mémoire à ... &

A ma très chère mère

Tu représentes pour moi ma mère, ma sœur et mon amie, et la source de tendresse et l'exemple du dévouement qui n'a pas cessé de m'encourager et de prier pour moi.

Aucune dédicace ne saurait être assez éloquente pour exprimer ce que tu mérites pour tous les sacrifices que tu n'as cessé de me donner depuis ma naissance, durant mon enfance et même à l'âge adulte.

A mon très cher Père

Aucune dédicace ne saurait exprimer l'amour, l'estime, le dévouement et le respect que j'ai toujours eu pour vous.

Rien au monde ne vaut les efforts fournis jour et nuit pour mon éducation et mon bien être. Ce travail est le fruit de tes sacrifices que tu as consentis pour mon éducation et ma formation.

A mon très cher frère Lotfi

Tu m as toujours soutenu dans les moments difficiles, ton affection n a d'eagle que ta gentillesse.

Avec mon grand amour.je te dédie ce travail en te souhaitant beaucoup de Bonheur et un avenir plein de joie.

A mon très cher frère Amine, sa femme Naima,

Votre encouragement, affection et votre spontanéité de Cœur me sont très chers. Que dieu vous protégé et vous offert un avenir plein de sucée, de Bonheur santé.

A tous les membres de ma famille, petits et grands

Je vous dédie ce travail en vous souhaitant tout le bonheur du monde

A mes chers amies qui ont été des sœur youssra, ichrak et sabrine

j n'ai jamais connu des amies comme vous

A mes cher(e)s ami (e)s

Maroua "Hiba ,Nardjes ,Khadidja ,billel ,amine ,moussa ,Aissa ,Mohamed badi

Je ne peux trouver les mots justes et sincères pour vous exprimer mon affection et mes pensées, vous êtes pour moi des frères, sœurs et des amis sur qui je peux compter.

En témoignage de l'amitié qui nous uni et des souvenirs de tous les moments que nous avons passé ensemble, je vous dédie ce travail et je vous souhaite une vie pleine de santé et de bonheur.

A mes chers collègues de soutenance Nassima et Omar

Je vous dédie ce travail avec mes sentiments les plus sincères, en mémoire de tous les moments agréables vécus ensemble.

Maroua

LISTE DES TABLEAUX

PA	RTIE	BIBLI	OGRA	PHI	QUE	:
----	------	-------	-------------	-----	-----	---

Tableau Nº 01: Chromatographie en phase gazeuse.	8
Tableau N° 02: Chromatographie en phase liquide	9
Tableau N° 03: Techniques chromatographiques en fonction de support de la phase	
stationnaire.	10
Tableau Nº 04: Principaux contre-ions utilisés en chromatographie de paires d'ions	20
Tableau Nº 05: propriétés des principaux solvants utilisés en chromatographie en phas	se
liquide	24
Tableau N° 06 : Critères de validation en fonction de type de procédure à valider	27
PARTIE PRATIQUE :	
Tableau N°01: formule de produit fini	35
Tableau N°02: plan factoriel de robustesse	40
Tableau N°03: robustesse modification des paramètres opératoires	40
Tableau N°04: Matrice de calcul des effets des facteurs et leur interaction sur l'Aire de	u pic
	43
Tableau N°05: Calcul des effets sur l'aire du pic	43
Tableau N°06: Matrice de calcul des effets des effets des facteurs et leur interaction su	ır le
temps de rétention	44
Tableau N°07: Calcul des effets sur le temps de rétention	44
Tableau N°08: Matrice de calcul des effets des facteurs et leur interaction sur le nomb	re de
plateaux théoriques	45
Tableau N° 09: Calcul des effets sur le nombre de plateaux théoriques	45
Tableua N°10: Matrice de calcul des effets des facteurs et leur interaction sur le Facter	ur de
symétrie	46
Tableau N°11: Calcul des effets sur le Facteur de symétrie	
Tableau N°12 : résultats de stabilité des solutions	49
Tableau N°13 :spécificité: temps de rétention de blanc, placebo et de pinavérium brom	ure 51
Tableau N°14 : linéarité : données brutes du principe actif seul	55
Tableau N°15 : linéarité : données brutes de forme pharmaceutique reconstitué	56
Tableau N°16: linéarité: calcul les variance de principe actif seul	59
Tableau N°17 : linéarité : calcul les variances de forme pharmaceutique reconstituée .	60
Tableau N°18: linéarité: Test de comparaison des pentes des droites D1 et D2	63
Tableau N°19 : linéarité :Test de comparaison des ordonnées à l'origine des droites D1	
Tableau N°20 : linéarité :Test d'Homogénéité des Variance (test de cochran) de Princip	
seul et forme pharmaceutique reconstituée	
Tableau N°21: linéarité : test de l'existence d'une pente significative	
Tableau N°22 : linéarité : test de l'existence d'une pente significative principe actif se	
forme pharmaceutique reconstitué	
Tableau N°23 : linéarité : Test de validité de la droite de régression	

Tableau N°24 : linéarité :Tableau récapitulatif de l'étude statistique de la linéarité	69
Tableau N°25: exactitude: les valeurs journalières de b2	70
Tableau N°26: exactitude: résultats de la forme pharmaceutique reconstitué	71
Tableau N°27 : exactitude : Test d'Homogénéité des Variances	72
Tableau N°28 : exactitude : test de validité des moyennes	72
Tableau N°29 : exactitude : résultat test de validité des moyennes	73
Tableau N°30 : fidélité : les valeurs journalières de b_2	74
Tableau N°31 : fidélité résultats de forme pharmaceutique reconstitué	75
Tableau N°32 : fidélité : test d'homogénéité des variances (test de cochran)	76
Tableau N°33 : seuil de détection et seuil de quantification	78
Tableau N°34 : sensibilité	78
Tableau N°35 : Tableau récapitulatif des résultats de l'étude statistique de la valida	tion79

LINE DESERVED S

PARTIE BIBLIOGRAPHIQUE :

Figure N° 01: Principe de fonctionnement de l'HPLC	12
Figure N° 02 : Caractéristiques d'un pic chromatographique	13
Figure N° 03: Domaines d'application de la chromatographie liquide	16
Figure N° 04: recouvrement des chaines alkyle par le contre-ion	18
Figure N° 05 : représentation des mécanismes de la chromatographie de paire d'ions .	19
PARTIE PRATIQUE :	
Figure N°01: chromatogramme de principe actif a t_0	48
Figure N°02: chromatogramme de principe actif a t_{12}	
Figure $ m N^o03$: Spécificité : Chromatogrammes de (a) blanc, (b) FR, (c) PA, (d) principe	
et forme reconstitué	
-	51
et forme reconstitué	51 52
Figure N°04 : Spécificité: Dégradation alcaline de (a) PA, (b) PA+FR, (c) FR	51 52 53
Figure N°04 : Spécificité: Dégradation alcaline de (a) PA, (b) PA+FR, (c) FR	51 52 53
Figure N°04 : Spécificité: Dégradation alcaline de (a) PA, (b) PA+FR, (c) FR	51 52 53 54
Figure N°04 : Spécificité: Dégradation alcaline de (a) PA, (b) PA+FR, (c) FR	51 52 53 54 57

Liste des symboles

A_{ECH} : Aire du pic du pinavérium du chromatogramme de la solution essai

A_{STD}: Aire du pic du pinavérium du chromatogramme de la solution standard

a₁: Pente de droite de régression du PA

a₂: Pente de droite de régression du FR

α : Risque égal à 0.05 bilatéral

α : Facteur de sélectivité

b₁: Ordonnées à l'origine de droite de régression du PA

b₂ : Ordonnées à l'origine de droite de régression du FR

β: Risque égal à 0.05 unilatéral

C⁻: Contre-ion

C_m : Concentration à l'équilibre du soluté dans la phase mobile

C_s: Concentration à l'équilibre du soluté dans la phase stationnaire

C_{STD}: Concentration du standard en mg

E+: Éluant

E : Erreur expérimentale

H: Hauteur du pic

IR: Recouvrement

N: Nombre total des essais

N : Nombre de plateaux théoriques

k: Nombre total des groupes ou des niveaux de concentration

K : Coefficient de distribution

k : Facteur de capacité

L : Erreur de la régression

L : Longueur de la colonne

1 : Volume prélevé

PE_{ech}: Prise d'essai de l'échantillon

PM: Masse moyenne des comprimés

Qi : Quantité retrouvée

R_S: Résolution

r : Limite de répétabilité

r : Coefficient de corrélation

r²: Coefficient détermination

S_a²: Variance de la pente a

S_b²: Variance de l'ordonnée à l'origine b

S+: Soluté

S_C²: Erreur intergroupe

S_E : Racine carrée de la variance expérimentale

S_E²: Erreur intra-groupe

S_I: Variation due à la régression

 S_R : Variation résiduelle

S_e² : Variance résiduelle

 S_j^2 : Variance de chaque niveau de concentration

S_{max}: Variance la plus élevée

 S_{R}^{2} : Variance de répétabilité intermédiaire

 S_g^2 : Variance intergroupe

S_r²: Variance de la répétabilité

SE: Sensibilité

V_M: Volume mort

V_R : Volume de rétention

X_{ij} : Pesée de principe actif

 $\overline{X_{ij}}$: Moyenne des pesées de chaque groupe

 Y_{ij} : Réponse instrumentale mesurée

 $\overline{Y_{ij}}$: Moyenne des réponses

T: Titre de pinavérium WS utilisé exprimé en fraction décimale

 t_{M} : Temps mort

 t_R : Temps de rétention

 δ : Largeur du pic à mi-hauteur

 $\boldsymbol{\omega}$: Largeur du pic à la base

Liste des abréviations

AM M: Autorisation de Mise sur le Marché

BPF: Bonnes Pratiques de Fabrication

CEE : Certificat d'Exigence Européenne

CES: Chromatographie d'exclusion stérique

CF: Cochran Calculé

CCM: Chromatographie sur Couche Mince

CL: Chromatographie Liquide

Cp: Comprimé

CPG: Chromatographie en Phase Gazeuse

CPL: Chromatographie en Phase Liquide

CV_r: Coefficient de variation de la répétabilité

DAE: Complexes Donneur-accepteur d'électrons

DDL: Degré De Liberté

DI: Diamètre Interne

FDA: Food and Drug Administration

FO: Fraction Organique

FR: Forme Reconstituée

HEPT: Hauteur Equivalente à un Plateau Théorique

HPLC ou CLHP: Chromatographie Liquide à Haute Performance

ICH: International Conference on Harmonization

IR: Infra-Rouge

Moy: Moyenne

NF: National Formulary

NS: Non Significatif

PA: Principe Actif

Pop: Population

RRT: Relative Retention Time

RSD: Relative Standard Deviation

SFSTP : Société Française des Sciences et Techniques Pharmaceutiques

SCE : Somme des Carrés des Écarts

SPE : Somme des produits des Écarts

test Q: Test de Dixon

test-t : Test de Student

USP: United States Pharmacopeia

UV: Ultra-Violet

WS: Working Standard

Introduction:

Avoir les résultats attendus d'un médicament (atténuer un symptôme, soulager un mal, guérir une maladie...) est fonction de ses spécifications, de même que son inefficacité et sa toxicité, d'où l'intérêt d'effectuer une série d'analyses sur ce même médicament pour s'en assurer. Mais qui apporte-t-il la preuve sur la reproductibilité de ces méthodes d'analyses et la fiabilité de leurs résultats ?

La validation des méthodes analytiques est un concept fondamental au sein des laboratoires de contrôle qualité de l'industrie pharmaceutique. Cette étape est essentielle afin d'une part, de se conformer aux exigences réglementaires, et, d'autre part, dans une approche qualité, de développer la maîtrise des méthodes d'analyse, au quotidien.

<u>7</u>

Chapitre I MEDICAMENT

I. Généralités sur le pinavérium bromure :

I-1. Définition/Généralité sur le médicament :

Le pinavérium bromure est un spasmolytique, dont les effets s'exercent sélectivement au niveau du tube digestif. C'est un antagoniste calcique qui inhibe l'entrée du calcium au niveau de la cellule musculaire lisse intestinale. 26 Ce médicament s'utilise pour le traitement des symptômes associés au syndrome du côlon irritable. Il aide à soulager la douleur abdominale, les troubles intestinaux et la sensation d'inconfort intestinal.

I-2. Dénomination et formule chimique :

Structure chimique:

Dénomination commune : pinavérium bromure

Dénomination chimique : bromure de4-(6-bromovératryl)-4-[2-[2-(6,6-diméthyl-2-norpinyl)

éthoxy]éthyle]-morpholinium. [29] **Formule brute** : $C_{26}H_{14}Br_2NO_4$

I-3.propriétés physico-chimiques du pinavérium bromure:

Caractères organoleptiques: il se présente sous forme d'une fine poudre blanche, cristalline Polymorphisme: aucune forme polymorphe n'a été observée (calorimétrie différentielle à balayage)

Distribution de la taille des particules plus de 90% des particules < 50µm

Pouvoir rotatoire spécifique.....-7.5° à -6.0° [10]

Solubilité:

- Méthanol..... très soluble
- Chloroforme.....librement soluble
- Eau distillée..... peu soluble
- Cyclohexane...... pratiquement insoluble

Absorption dans l'ultra-violet (UV):Il possède un maximum d'absorption dans l'UV (méthanol) à 286 et 245 nm et minimum à 268 nm et 230 nm. [10]

Stabilité et réactivité :

- Stabilité: Stable dans les conditions de stockage recommandées (pas de condition particulières de conservation : 25°C ±2 et 60%±5 humidité relative).[10]
- Matières incompatibles: Incompatible avec les agents comburants.
- Conditions à éviter : Chaleur, flammes et étincelles, Variations extrêmes de température et lumière du jour directe.
- Produits dangereux résultant de la décomposition : Oxydes de carbone, Oxydes d'azote (NO_x) .
- Polymérisation dangereuse : Aucune polymérisation dangereuse ne se produit [12]

Impuretés: 10

• Impureté 1 :

Nom chimique: 2-bromo-4,5-diméthoxybenzyl alcool

Formule brute: C₉H₁₁Br O₃

Poids moléculaire: 247.08 g/mole

Déterminée par : HPLC

Origine : produit de dégradation principal

RRT: 0.15

• Impureté 2 :

Nom chimique: (2-bromo-4,5-diméthoxybenzyl)-(isopropyl)éther

Formule brute : C₁₂ H₁₇Br O₃ **Poids moléculaire :** 289 g/mole Origine: réaction secondaire

Déterminée par : HPLC

RRT: 0.41

• impureté 3 :

Nom chimique :(2-bromo-4,5-diméthoxybenzyl)-[2-[2-(2-bromo-4,5-diméthoxybenzyloxy)éthoxy]éthyl][2-[2-(6,6-diméthylbicyclo[3,1,1,]hept-2-yl)éthoxy]éthylamine]

Formule brute : C₃₅H₅₁Br₂NO₇

Poids moléculaire: 757 g/mole

Origine: réaction secondaire

Déterminée par :HPLC

RRT: 1.27

• impureté 4:

Nom chimique: N-(diméthyl-6,6-biciclo-[3,1,1]-heptan-2-éthoxyéthyl)morpholine

Formule brute: C₁₇H₃₁NO₂

Poids moléculaire: 281.43 g/mole

Déterminée par : CPG

Chapitre II METHODE CHROMATOGRAPHIQUE

II. La méthode chromatographique :

II-1.Définition:

Il est difficile de définir rigoureusement le terme « chromatographie » parce qu'il s'applique à une grande diversité de systèmes et de techniques. Cependant, toutes les méthodes ont en commun l'utilisation simultanée d'une phase stationnaire et d'une phase mobile. Les constituants de l'échantillon à analyser sont entrainés à travers la phase stationnaire par le flux d'une phase mobile gazeuse ou liquide, et les séparations résultent de la différence entre les vitesses de progression des diverses substances.

II-2. La classification des méthodes chromatographiques :

Les méthodes chromatographiques regroupent des techniques très variées qui peuvent être classées selon les modalités suivantes :

> Selon la nature des phases et les mécanismes de séparation :

On distingue:

Tableau 1: Chromatographie en phase gazeuse.

Chromatographie en phase gazeuse

Type		Phase stationnaire	
Gaz/Solide	Adsorption	Solide poreux.	
Gaz/Liquide		Dans les colonnes remplies, solide poreux inerte enrobé de liquide.	
	Partage (partition)	Dans les colonnes capillaires, paroi interne de la colonne qui sert de support.	

Tableau 2 : Chromatographie en phase liquide.[3][5][11]

Chromatographie en phase liquide

Type		Phase stationnaire	
	Adsorption	Solide poreux.	
Liquide/Solide	Echange d'ions	Solide à la surface duquel se trouvent des sites ioniques qui permettent à l'aide d'un solvant approprié l'échange d'ions présents dans la phase mobile.	
	Exclusion (filtration sur gel, perméation de gel)	Solide dont la dimension des pores permet la séparation des espèces selon leur taille.	
Liquide/Liquide	Partage Phase normale	Solide poreux inerte enrobé de liquide (de moins en moins utilisée).	
	Partage Phase inversée	Solide poreux sur lequel sont greffées des chaînes hydrocarbonées non-polaires.	

> Selon le support ou le conditionnement de la phase stationnaire :

Tableau 3 : Techniques chromatographiques en fonction de support de la phase stationnaire. |3||6||11|

Circulation de la phase mobile	Type de support	Dénomination de la chromatographie
	Chromatographie sur papier:	
Par capillarité	Papier en cellulose ou fluide supporté par le papier.	Sur papier
Par capillarité	Gel de silice ou cellulose étalé sur un support inerte.	CCM
	<u>Chromatographie sur</u> <u>colonne :</u>	
Par gravité	Phase stationnaire solide de granulométrie normale dans une colonne ouverte.	A pression ambiante
Sous pression	Phase stationnaire solides très fine dans une colonne fermée.	CLHP
Sous pression	Phase stationnaire solide de granulométrie normale dans une colonne fermée.	Flash

Chapitre III CHROMATOGRAPHIE LIQUIDE A HAUTE PERFORMENCE

III. Chromatographie liquide à haute performance (HPLC) :

III-1.Définition et principe :

La Chromatographie en phase liquide à haute performance (HPLC) est une forme de chromatographie en phase liquide pour séparer les composés qui sont dissous dans la solution.

Le principe de séparation repose sur l'interaction des solutés entre deux phases non miscibles : la phase stationnaire qui est fixe et la phase mobile. [7]

Les composés à séparer (solutés) sont mis en solution dans un solvant. Ce mélange est introduit dans la phase mobile liquide (éluant). Suivant la nature des molécules, elles interagissent plus ou moins avec la phase stationnaire dans un tube appelé colonne chromatographique.

La phase mobile poussée par une pompe sous haute pression, parcourt le système chromatographique. En sortie de colonne, grâce à un détecteur approprié, les différents solutés sont caractérisés par un pic. L'ensemble des pics enregistrés est appelé chromatogramme.

Figure 1 : Principe de fonctionnement de l'HPLC [30]

III-2.Les grandeurs fondamentales de la chromatographie :

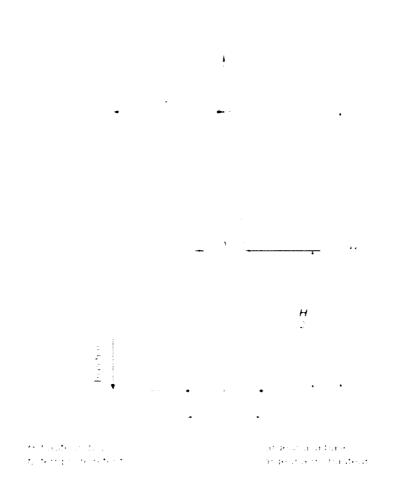


Figure 2 : Caractéristiques d'un pic chromatographique [7]

Chromatogramme: [09]

C'est un graphique représentant le signal du détecteur correspondant à la concentration en soluté en fonction du temps (ou du volume de la phase mobile écoulée), on obtient une série formée d'autant de pics symétriques qu'il y a de composés séparés et détectés en sortie de la colonne. Il est utilisé à la fois en analyse qualitative et quantitative. Les positions des pics sur l'axe du temps permettent d'identifier les constituants de l'échantillon tandis que les aires sous les pics mesurent leur quantité.

Coefficient de distribution : [09]

Les différences de répartition d'un soluté A entre la phase mobile et la phase stationnaire sont données par l'équation :

 $A_{mobile} \rightleftarrows A_{stationnaire}$

La constante d'équilibre de cette réaction est appelée coefficient de distribution, et est définie par la relation :

$$k = \frac{C_s}{C_m}$$

 $où C_s$ et C_m sont les concentrations respectives, à l'équilibre, du soluté dans la phase stationnaire et la phase mobile. Idéalement, il est indépendant de la concentration du soluté.

Temps de rétention : [09]

Le temps de rétention t_R est le temps qui s'écoule entre l'injection de l'échantillon et l'apparition d'un pic de soluté sur le détecteur. Lorsque le soluté n'est pas retenu, on parle de temps mort t_M , et c'est le temps nécessaire pour qu'un soluté non retenu traverse la colonne.

Volume de rétention : [7]

 V_R représente le volume de la phase mobile nécessaire pour éluer chaque composé. Les espèces non retenues apparaissent dans l'effluent après le temps mort correspondant à l'écoulement du volume de la phase mobile, dit volume mort V_M , contenu dans la colonne.

Le temps de rétention et le volume de rétention sont des grandeurs caractéristiques de chaque composé, dans des conditions et pour une colonne données.

Facteur de capacité : [99]

Le facteur de capacité k' est le rapport des quantités d'un soluté présentes à l'équilibre dans les deux volumes des phases stationnaire et mobile adjacentes. Idéalement, le facteur de capacité des analytes dans un échantillon doit être compris entre 1 et 5.

$$k' = \frac{C_s V_s}{C_m V_m} = \frac{t_R - t_M}{t_M}$$

Efficacité d'une colonne : [7]

L'efficacité d'une colonne chromatographique, dont dépend l'étalement des pics, est mesurée, pour chaque composé, par le nombre de plateaux théoriques N de la colonne.

En assimilant les pics d'élution à des courbes de Gauss, on établit que le nombre de plateaux théoriques d'une colonne s'exprime, pour un soluté donné, par les relations :

$$N = 16\frac{t_R^2}{\omega} = 5.54\frac{t_R^2}{\delta}$$

avec:

 ω : largeur du pic à la base, définie comme la distance entre les points d'intersection des tangentes d'inflexion avec la ligne de base,

 δ : largeur du pic à mi-hauteur.

Pour pouvoir comparer entre elles des colonnes de différentes longueurs, on définit la hauteur équivalente à un plateau théorique HEPT ou H:

$$H = \frac{L}{N}$$

Avec : L longueur de la colonne.

Le facteur de sélectivité : [09]

Le facteur de sélectivité α relatif à deux analytes, A et B, permet d'estimer jusqu'à quel point la colonne peut les séparer. Il est donné par la relation suivante :

$$\alpha = \frac{t_{R_B} - t_M}{t_{R_A} - t_M} = \frac{K_B'}{K_A'} = \frac{K_B}{K_A}$$

où l'indice B se rapportant au soluté le plus retenu et l'indice A au soluté le plus rapidement élué.

La résolution : [09]

La résolution R_S d'une colonne donne une mesure quantitative de son aptitude à séparer deux analytes. Elle est définie par :

$$R_{S} = 2\frac{t_{R_B} - t_{R_A}}{\omega_A + \omega_B}$$

Une résolution de 1,5 permet la séparation pratiquement complète de A et B, le chevauchement est d'environ 0,3 %.

La relation liant la résolution d'une colonne à la sélectivité, au facteur de capacité et au nombre de plateaux théoriques est la suivante :

$$R_S = \frac{1}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{K_B'}{1 + K_B'} \right) \sqrt{N}$$

où l'indice B se rapportant au soluté le plus retenu.

III-3.Les Modes de séparation :

Plusieurs modes d'HPLC ont été développées afin de couvrir un large domaine d'application :

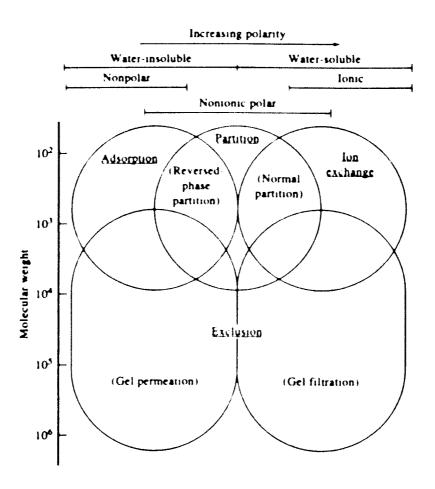


Figure 3. : Domaines d'application de la chromatographie liquide.

III-3-1.Chromatographie d'exclusion stérique : [4]

La chromatographie d'exclusion stérique (CES) permet de séparer les molécules suivant de leur taille, est basée sur la différence de pénétration des molécules de l'échantillon dans la phase stationnaire, la séparation résulte de l'existence de pores dans la phase stationnaire, dont le diamètre est comparable à celui des espèces présentes lorsqu'elles sont en solution dans la phase mobile. On désigne la CES par filtration sur gel quand la phase stationnaire est hydrophile (phase mobile aqueuse) et par perméation de gel quand elle est hydrophobe (la phase mobile est un solvant organique).

III-3-2.Chromatographie d'adsorption: [22]

La chromatographie d'adsorption est basée sur le partage des solutés entre l'adsorbant solide fixe et la phase mobile. Chacun des solutés est soumis à une force de rétention par adsorption et une force d'entraînement par la phase mobile. L'équilibre qui en résulte aboutit à une migration différentielle des solutés de l'échantillon à analyser, ce qui permet leur séparation. Les séparations sont basées sur le principe de polarité, c'est-à-dire l'existence de dipôles dans une structure moléculaire.

III-3-3.Chromatographie de partage :

III-3-3-a.Sur phases stationnaires polaires:

Le mécanisme de cette séparation fait intervenir une solvatation des greffons polaires par le solvant le plus polaire contenu en faible quantité dans la phase mobile. Les molécules de solutés vont soit interagir avec la phase liquide polaire stationnaire, soit déplacer des molécules de celle-ci et de façon d'autant plus intense que leur polarité est plus élevée. Du fait du déplacement de l'équilibre de distribution, la rétention des solutés diminue lorsque la teneur en solvant polaire dans la phase mobile augmente.

III-3-3-b. Sur phases stationnaires apolaires :

Deux mécanismes de rétention macroscopiques ont été proposés dans le cas des silices greffées alkyle :

- le solvant organique de la phase mobile (on utilise principalement des mélanges eauméthanol ou eau-acétonitrile) se fixe préférentiellement à la surface des greffons apolaires : il y a alors partage des solutés entre la phase mobile et la phase liquide adsorbée.
- une autre approche décrit la rétention comme une conséquence de l'effet hydrophobe.

La réalité est probablement intermédiaire entre ces deux mécanismes. Il y a effectivement solvatation des chaînes alkyle par le solvant organique de la phase mobile ; les chaînes solvatées ressemblent à un liquide, assez visqueux, dans lequel les solutés peuvent diffuser.

L'importance relative de ces deux mécanismes dépend de la nature des solutés et en particulier de leur caractère hydrophobe.

III-3-4.Chromatographie par échange d'ions :

Les séparations par échange d'ions s'adressent plus particulièrement aux espèces ionisées ou ionisables, encore que de nombreuses séparations de solutés non ioniques puissent également être obtenues par le partage entre les deux phases.

La phase stationnaire est un échangeur d'ions, c'est-à-dire un solide comportant des groupements fonctionnels ionisés, fixes, porteurs de charges positives ou négatives, et des ions mobiles de signe contraire assurant l'électro-neutralité. Les ions, retenus au voisinage des groupements fonctionnels par des forces d'attraction électrostatique, sont interchangeables, en nombre équivalent, avec ceux de la solution mise en contact avec l'échangeur.

Dans le même temps, les ions de même signe que les groupements fonctionnels ionisés, du fait du champ répulsif créé par la forte densité des groupements fonctionnels au sein des particules, se voient interdire l'accès à l'intérieur de celle-ci : c'est le phénomène d'exclusion d'ion.

Enfin, les molécules non soumises à des interactions électrostatiques peuvent pénétrer dans les pores des particules et donner lieu ainsi à un mécanisme de partage connu sous le nom d'équilibre de Donnan.

III-3-5.Chromatographie de paires d'ions : [7]

III-3-5-a.Principe:

La chromatographie de paires d'ions encore appelée chromatographie d'interactions d'ions met en œuvre une phase stationnaire apolaire, souvent une silice greffées alkyle (octyle ou octadécyle) et une phase mobile hydro-organique (souvent acétonitrile ou méthanol) contenant un contre-ion; ion de charge opposée à celle des solutés et comportant une partie hydrophobe. Ce contre-ion présent de façon permanente dans la phase éluante, se fixe sur les chaines alkyle de sorte que la phase stationnaire effective comporte des greffons recouverts par ce contre-ion.

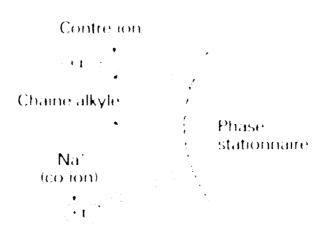


Figure 4: recouvrement des chaines alkyle par le contre-ion

Une « paire d'ions » est l'entité formée par l'association de deux ions de charge opposée. Cette association peut être due soit à des interactions électrostatiques, soit à des effets hydrophobes. La propriété fondamentale des paires d'ions est leur aptitude à passer des solutions aqueuses aux milieux de faible constante diélectrique [7]

III-3-5-b. Mécanisme:

Compte tenu de la structure de la phase stationnaire après équilibre avec la phase éluante, deux mécanismes de rétention coexistent :

— échange d'ions avec le co-ion assurant l'électro-neutralité vis-à-vis du contre-ion fixé par effet hydrophobe à la surface des chaînes alkyle ; on génère ainsi in situ un échangeur d'ions

dont la capacité dépend de la concentration du contre-ion dans la phase éluante (on parle « d'échangeur d'ions dynamique »);

— partage hydrophobe, à la surface des chaînes demeurées libres, de paires d'ions formées entre les solutés qui doivent être alors suffisamment hydrophobes et les contre-ions.

Figure 5 : représentation des mécanismes de la chromatographie de paire d'ions.

III-3-5-c.Paramètres influençant la rétention :

La rétention des solutés dépend de leur degré d'ionisation régit par le pH et de la capacité disponible de l'échangeur dynamique qui fait intervenir elle-même la teneur en solvant organique, la nature et la concentration du contre-ion dans la phase éluante.

• Capacité disponible de l'échangeur dynamique :

Pour une teneur fixe en solvant organique, la rétention de soluté croit avec la concentration du contre-ion dans la phase éluante : la capacité de l'échangeur d'ions dynamique croit du fait de l'augmentation du nombre de chaines recouvertes par le contre-ion.

Pour une concentration fixe du contre-ion, la rétention diminue lorsque la teneur en solvant organique dans la phase éluante augmente : la concentration du contre-ion en phase stationnaire diminue et partant le nombre de sites échangeurs d'ions et les effets hydrophobes du partage des paires d'ions solutés-contre-ions sont également diminués du fait de la diminution de la teneur en eau de la phase éluante.

De même, la rétention des solutés augmente avec la longueur de la chaine hydrocarbonée du contre-ion du fait de l'augmentation du caractère hydrophobe de ce dernier, ce qui est favorable à sa fixation par la phase stationnaire alkyle et à la formation de paires d'ions.

Tableau 4 : Principaux contre-ions utilisés en chromatographie de paires d'ions [7]

Anioniques
Alkyl- et arylsulfonates
pentanesulfonate
hexanesulfonate
octanesulfonate
dodécanesulfonate
camphosulfonate
naphtalènesulfonate

Cationiques

Ammonium quaternaires

tétraméthylammonium

tétraéthylammonium

tétrabutylammonium

tétraheptylammonium

cétyltriméthylammonium(cétrimide)

palmityltriméthylammonium

Alkylsulfates
hexylsulfate
octylsulfate
décylsulfate
dodécylsulfate
Anions inorganiques
trifluoroacétate
trichloroacétate
phosphate
perchlorate

Amines protonées octylammonium trioctylammonium

• pH:

L'influence du pH de la phase éluante est importante pour les acides et les bases faibles car il régit leur degré d'ionisation.

Pour un couple HA^+/A , la forme ionique prédomine pour des valeurs de pH inférieures au pk_a du couple, on a en effet :

$$pH = pk_a + log \frac{[A]}{[HA^+]}$$

Si
$$pH = pk_a - 2$$
, alors $[HA^+] = 100[A]$

Ainsi, la rétention augmente avec le degré d'ionisation.

III-3-5-d. Application:

La chromatographie de paires d'ions est consacrée aux séparations des solutés ionisés et ionisables seuls ou en présence de solutés moléculaires dans des mélanges complexes.

III-3-6. Chromatographie d'échange de ligands :

Le mécanisme de la séparation est fondé sur la réaction de formation de complexes entre un soluté donneur de doublets électroniques et un cation métallique présentant des orbitales vacantes facilement accessibles du point de vue énergétique.

Les cations métalliques utilisés sont principalement ceux des métaux de transition : Cu^{2+} , Zn^{2+} , Cd^{2+} , Ni^{2+} qui donnent des complexes stables avec des ligands très variés.

On distingue, en chromatographie d'échange de ligands, les modes :

- —statique : le cation métallique est fixé dans la phase stationnaire par des liaisons ioniques et (ou) covalentes ; les réactions de formation de complexes ont lieu dans la phase stationnaire ;
- —dynamique : les réactions de formation de complexes ont lieu dans la phase mobile et la séparation est fondée sur les différences de distribution de ces complexes entre les phases mobile et stationnaire.

III-3-7. Chromatographie par transfert de charges : [7]

Certains composés sont capables de transférer un électron à une autre entité moléculaire : on les appelle donneurs d'électrons D, les composés auxquels il est possible de transférer un électron sont dits accepteurs d'électrons A. On parle de complexes donneur-accepteur d'électrons (DAE) dont la formation peut être représentée par l'équilibre :

$$A + D \rightleftharpoons AD$$

La formation de complexes DAE peut être utilisée pour exercer une rétention en chromatographie en phase liquide. On parle de chromatographie donneur-accepteur d'électrons, Les complexes DAE peuvent être formés soit dans la phase mobile, soit dans la phase stationnaire, la formation de complexes DAE dans la phase stationnaire est la méthode la plus utilisée,

La rétention dépend de la stabilité du complexe DAE formé entre la phase stationnaire et le soluté.

III-4. Appareillages:

III-4-1. Réservoir de la phase mobile : [09]

Les appareilles modernes sont équipés d'un ou plusieurs réservoirs en verre ou en acier inoxydable, contenant chacune au moins 500ml de solvant, on y adjoint souvent des dispositifs qui permettent d'en élimine les poussières et les gaz dissous

Elle existe deux modes de travail isocratique et gradient :

- Mode isocratique : s'effectue avec un solvant de composition constante
- Mode gradient : s'effectue en modifiant la composition de solvant au cours de l'élution.

III-4-2. Pompe:

Toute installation de CLHP comporte au moins une pompe pour forcer le passage de la phase mobile à travers la colonne dont le remplissage est très compact.

Les pompes requises doivent répondre à des exigences rigoureuses :

- Obtention des pressions allant jusqu'à 420 bars
- Absence de pulsation
- Débit compris entre 0,1 et 10 ml/min
- Contrôle de débit meilleur que 0,5%
- Résistance à la corrosion quel que soit le solvant [09]

III-4-3. Injecteur: [09]

• Injecteur manuel:

On injecte souvent l'échantillon à l'aide d'une seringue à travers un septum en élastomère ; toutefois cette procédure n'est pas reproductible et reste limitée aux pressions inferieures à environ 420 bars.

• Injecteur automatique:

Ces dispositifs font généralement partie intégrante de l'appareillage de HPLC moderne qui possède des boucles interchangeables permettant de choisir des volumes d'échantillon compris entre 5 et 500µl.

III-4-4. Colonne:

La colonne se présente comme un tube, le plus souvent en acier, dont la longueur et le diamètre présentent des différences selon les modèles. Les colonnes « standard » dont le diamètre interne (DI) est d'environ 4,5 mm et la longueur de 10 cm.

La colonne est souvent précédée d'une précolonne, dite *colonne de garde*, courte (0,4 à 1 cm), remplie de la même phase stationnaire, ce qui sert à retenir certaines impuretés. On augmente ainsi la durée de vie de la colonne principale en préservant ses performances.

III-4-5. Détecteurs :

Le détecteur convertit un changement dans l'effluent de la colonne en un signal électrique qui est enregistré par le système de données. Les détecteurs sont classés comme sélective ou universelle en fonction de la propriété mesurée [4]

IL existe plusieurs détecteurs :

- Détecteur UV -Visible
- Détecteur à indice de réfraction
- Détecteur stéréochimique.
- Détecteur de radioactivité.

Le détecteur le plus utilisé en HPLC, est le spectromètre d'absorption UV-visible (190-600nm) relié à la sortie de colonne.

III-4-6. La phase stationnaire : [21]

En chromatographie analytique, la taille des particules constituant la phase stationnaire les plus souvent utilisées est comprise entre 3µm et 10µm, les particules peuvent être de forme sphérique ou irrégulière, et de porosité et surface spécifique variables, ces paramètres ont une influence sur le comportement chromatographique de la phase stationnaire.

De nombreux types de phases stationnaires sont utilisés en CL, notamment :

- de la silice, de l'alumine ou du graphite poreux, utilisés en chromatographie à polarité de phase normale
- des résines ou de polymères à groupement acides ou basiques, utilisés en chromatographie à échange d'ions
- de la silice ou de polymères poreux, utilisés en chromatographie d'exclusion stérique
- divers supports chimiquement modifiés, préparés à partir de polymères, de silice ou de graphite poreux, utilisés en CL à polarité de phase inversée
- phases stationnaires spéciales chimiquement modifiées, par exemple dérivés de cellulose ou d'amylose, protéines ou peptides, cyclodextrines, etc., pour la séparation des énantiomères (chromatographie chirale).

III-4-7. La phase mobile :

Le tableau N°5 rassemble les propriétés des solvants les plus fréquemment utilisés en CPL. Pourtant en pratique, la plupart des séparations effectuées en chromatographie d'adsorption et de partage sont réalisées avec une dizaine de solvants.

Tableau 5: Propriétés des principaux solvants utilisés en chromatographie en phase liquide [7]

Solvant	Longueur d'ende minimale	indice de refraction a 25° C	Temperatura d soullition	Viscosite a 25° C +cP+		Conscente dielectrique a 20° C	n° 1 Pelante du solvant P	n° 2 Peuveir accepteur de pratons Ro	n1 3 Pauvair denneur de protans Kd	n ¹ 4 Interactions dipôle dipôle	n² 5 Graupe de sèlectivité	n° § t sur slumine	n ^o ? t sur salica	of \$
* 40 % *	212	1 257	5:	0.4		. 69	e - 2	•	٠			9.25		
FQ. 16	210	1.278	102	0.8		- 86	< - 2					~ 0.25		
FQ-43	210	1.291	124	2.6		. 8	c - 2					- 0 25		
2 socotene	147	1 383	99	9,47	0.011	· <u>\$4</u>	3.					0.01	3.02	
3 r-madrane	135	1 385	96	3.45	0.513	· 3 7	5.2					0.01	7	7,4
4 "exalle	30	1 372	£5	3.35	5,519	. 69	9.1					9.51	2	7.3
SPartare	· 2 5	1 355	35	9.77	9,019	1.84	0.0					9.50	3	7.0
B Zyzomexane	200	1 423	٤٠	0.90	0.012	2.02	2.2					9.04		8.2
1 Dyblogentane	210	1 494	49	9.42	0.514	1.27	2.2					3.04		
 1 On productana 	220	1 434	36	0.42		2.4	. 5				Ψ.	0.25		
 Tarrach prure de carbone. 	285	1.457	3.2	3.90	0.008	2.24	· 6					0.8	2,11	6.6
10 Smer Houry oca	720	1 397	143	9 54	g 19	3.5	2.	2 44	0.19	0.36	ì	0.25		
"" "reth, am me		1 398	53	0.38		7.4	. 5	: 5ê	£ 12	0.32	1	Ş <u>5</u> 4		
12 Brompethane		1.421	36	3.26		54	3.0				7	0.35		5.6
13 élher sograp, que	220	1 366	6ª	0.36	9.52	3 5	2.4	1.48	2,14	0.38	ł	0.24	2,32	
14. Methy tert abuty ether	315	1 352	55	3.27							i		2,47	
16 in Optens	205	1.422	195	7.3	3 3	.03	3.4	1.56	0.18	0.25	ii	2.5		19,3
16 Fourtuberzeira		1 -50	85	355		5.4	31	0.24	0.32	0.45	¥0			
 In unare de metro e re 	233	1.421	40	9 41	9:7	8.5	31	0.29	0.18	0.53	¥	0 42		9.1
18 I-Pentano		1 -05	130	3.5	3.2	14.7	3.7	1.53	£ . 3	0.26	Ħ	0.61		
19 - 12-3, th cycermana	128	1 447	83	3.75	9.6	10.4	13	0.30	0.21	£ 49	7	0.44		9,6
20 item Butano		1 385	63	3 €	7.503.6	13.5	4.1	1.58	D 20	0.24	11	2.7	2,51	
21 1-8 (N.T.)	310	1.397	1 €	. €	30.5	17.5	3.3	0.53	5.19	6,25	0	2.7		11,4
22 - Priza i	240	1 385	5.	5	" ≥0.2 €	20.3	4.3	0.64	5,3	C 27	11	0.62		11,9
33 Fernanyzhoruranne	212	1 ~35	68	3.45	" 5% D #	7.5	4.3	0.38	0.20	C 42	14-	0.57	2,53	9.
j⊷ Prijs am ne		1 395	46	9.35	13056	5.1	- 2				ı			
25. Avétate d'étrice	255	1370	27	9.43	÷ 5	£C	4.4	134	0.23	0.43	¥	0.59	0.48	ê.
36 (2 Prizen)	205	1.384	82		75 ST 75 #	20.3	33	7 65	\$ 13	0.27	11	0 €2	3.60	11,5
\$₹ Chivaran#	749	1 443	۴.	353	0.072	4.6	4.1	0.75	\$41	0.35	Ψ.	0.40	2.76	9,3
26 Metri, emilioatoria	324	1.376	80	9.38	73.4	18 5	4.7	0.35	5.72	0,43	21	0.51		9,3
De Coleman	215	1.435	10.	. :	7 \$1 3 ₩	11	4.3	0.33	€ 74	0.40	41	9.58		10,0
32 Metruxyetrans	21-3	1 430	125	2.	. 20 2 6	.6.4	2.2	1.38	0.24	0.38	11			
31 Carturiste de prusy en e		1.42	240				äl	2.31	C 23	€ 42	71			13,3
32 Efrans	.10	1 359	/ 5	. ≎€	" 50 D #	24.6	4.3	1.52	0'9	0.29	11	0.69		12.7
33 A. Sela Micca		1,370	1.5		THEFR	6.2	5.2	2.39	0.31	0.30	12			10,1
34 Anatherin &	140	1.341	87	0.34	7.57.51	37 €	5.8	1.31	0.27	€ 42	7	0.65	2.52	11.9
35. Dimatry suffrey te	755	1.477	187	7.90	7 10 7 8	4.7	1.2	0.39	0.73	0.35	11-	0.75		12,0
35 Methers	275	1,326	۴٤	3.24	73178	32.7	5.1	0.48	0.22	0.31	(1	0.95	0,70	14,5
31 14		1.335	100	1.35		78 €	10.2	237	0.37	0.25	V-1	0.95	0.70	23.4
F.T. a. at and the ore														

Fill visitatie filmte. Dit modelle militation genoment, it issee merkommende en en obengenst vit traffic en fin vij 1976. MPM (F

Chapitre IV VALIDATION ANALYTIQUE

IV-Validation analytique:

IV-1.Definition

La validation d'une méthode d'analyse est une procédure permettant d'établir, par des études expérimentales, que les critères de performance de la méthode satisfont aux exigences prévues par les applications analytiques de la méthode. [25]

Autrement dit : La validation d'une méthode est la procédure par laquelle on prouve que le protocole est suffisamment exact et fiable pour avoir confiance dans les résultats fournis et ceci pour un usage déterminé.

IV-2.Objectifs

La validation des méthodes analytiques a pour principal objectif de s'assurer qu'une méthode analytique donnée donnera des résultats suffisamment fiables et reproductibles, compte tenu du but de l'analyse.

Il faut donc définir correctement à la fois les conditions dans lesquelles la méthode sera utilisée et le but dans lequel elle sera employée. Ces principes s'appliquent à toutes les méthodes utilisées par un fabricant de produits pharmaceutiques, qu'elles soient ou non décrites dans une pharmacopée

IV-3. Types de procédures analytiques à valider :

La discussion sur la validation des méthodes d'analyse est dirigée vers les trois types les plus communs des procédures analytiques :

❖ Les identifications

Ont pour objet de confirmer l'identité d'une substance à analyser contenue dans un échantillon.

Les essais de pureté

Peuvent être, soit des essais quantitatifs, soit des essais limites portant sur les impuretés contenues dans un échantillon.

Les dosages

Ont pour objet de mesurer la quantité de substance à analyser contenue dans un échantillon donné.

Tableau 6 : Critères de validation en fonction de type de procédure à valider. [14]

		Type de pro	océdure analyti	que à valider	
Critères		Test d'ir	npuretés	Dosage	Dosage
	Identification	Dosage	Test limite	Analytique(4)	Bio
		D'impuretés	D'impuretés	(activité/	analytique
				teneur)	
Exactitude	-	+	-	+	+
Fidélité :					
Répétabilité	-	+	-	+	+
Fidélité intermédiaire	-	+(1)	-	+(1)	+
Spécificité et/ou Sélectivité	+	+	+	+	+
Limite de Détection	-	- (3)	+	-	+
Limite de Quantification	-	+	-	-	+
Linéarité	-	+	-	+	fonction de réponse
Intervalle de validité	-	+	-	+	+
Robustesse	- (3)	- (3)	- (3)	+	+
Système de Pertinence	-	+	-	+	-

- (-)Signifie que le critère n'est normalement pas évalué,
- (+) Signifie que le critère est normalement évalué,
- (1) Dans les cas où la reproductibilité (analyse inter-laboratoires) a été évaluée, la fidélité intermédiaire n'est pas nécessaire,
- (2) Le manque de spécificité d'une procédure d'analyse pourrait être compensé par l'utilisation d'autres procédures d'analyse,
- (3) Peut être nécessaire dans certains cas.
- (4) Les mêmes critères sont étudiés en cas de test de dissolution.
- **Dans la pratique l'ordre des critères est très important.

IV-4. Référentiels réglementaires sur la validation et champs d'application.

IV-4-1. Les Références réglementaires en vigueur de la validation :

❖ 2 "guidelines" ICH dédiés

Q2: «Analytical Validation»

➤ Q2A: «Text on Validation of Analytical Procedures»

Présente une discussion sur les caractéristiques qui doivent être prises en compte au cours de la validation des méthodes analytiques

Q2B: «Methodology»

Son but est de fournir des conseils et recommandations sur la manière d'appréhender les différentes caractéristiques de la validation pour chaque méthode analytique. En outre, le document fournit une indication sur les données qui devraient être présentées dans un dossier d'enregistrement.

Autres guidelines ICH:

Q1: «Stability»

- ➤ Q1A (in revision): «Stability Testing of New Drugs and Products»
- Q1B: «PhotostabilityTesting»
- ➤ Q1C: «Stability Testing for New Dosage Forms»

Q3: «Impurities»

- ➤ Q3A (in revision): «Impurities in New Drug Substances»
- ➤ Q3B (in revision): «Impurities in New Drug Products»
- > Q3C: «Impurities: ResidualSolvents»

Q6: «Specifications»

- ➤ Q6A: «Chemical Substances with its Decision Trees»
- ➤ Q6B: «Biotechnological Substances»
- FDA «Guidance for Industry --Analytical Procedures and Methods Validation --Chemistry, Manufacturing, and Controls Documentation» (Draft, August 2000) (2000)
- Guides Eurachem
- ❖ Normes (ISO 5725, V03 (V03--110, ...)

IV-4.2-Champs d'application de la validation analytique :

IV-4.2.1-Au niveau Européen:

La validation analytique constitue un support permanant, son exigence est avant tout une pratique réglementaire, surtout pour :

❖ Le dossier d'autorisation de mise sur le marché (AMM):

La note explicative III/844/87 définit le champ d'application de la validation analytique à toute procédure d'analyse utilisée dans les chapitres suivants de la documentation chimique, Pharmaceutique et biologique définis par la directive 75/318/CEE modifié, en vue de l'octroi de l'AMM d'un médicament :

- > Développement galénique ;
- > Contrôles en cours de fabrication ;
- > Contrôle de la matière première (active ou non);
- > Contrôle sur les produits intermédiaires de la fabrication ;
- > Contrôle du produit fini ;
- Essais de la stabilité.
- Les monographies de la pharmacopée Européenne:

Elles doivent être considérées comme validées. Leurs conditions d'application peuvent faire l'objet d'une étude de validation si nécessaire.

IV-4.2.2-Au niveau Américain:

Les procédures analytiques et les normes des monographies de l'USP (United states pharmacopée) et du NF (National Formulary) constituent des références légales. Les BPF (bonnes pratiques de fabrication) (21 CFR (Federal Code of Regulations) 211.1945 (a)) recommandent que les procédures analytiques utilisées pour vérifier que les produits pharmaceutiques sont conformes aux normes établies soient suffisamment exactes et fiables.

Les utilisateurs de procédures analytiques décrites dans l'USP et le NF ne sont pas tenus de vérifier la justesse et la fiabilité de ces méthodes mais, en revanche, doivent, vérifier leur adéquation dans les conditions d'utilisation proposées.

S'il s'agit de soumettre à L'USP de nouvelles procédures d'analyse, ou des révisions de procédures déjà existantes, les dossiers de soumissions devront comporter suffisamment d'informations:

- Pour permettre au comité de révisions de l'USP d'évaluer les mérites relatifs des différentes procédures;
- > Pour permettre à tout analyste de reproduire la méthode;
- Et pour permettre, dans le cas de révision de procédure, de comparer les limites de la procédure de la pharmacopée par rapport aux avantages offerts par la méthode proposée.

IV-5. Critères prérequis :

IV-5-1 . Robustesse:

IV-5-1-a.Définition:

La robustesse est une mesure de la capacité de la méthode à rendre des résultats exacts et de rester non affectée par de faibles variations, délibérément introduites dans les paramètres de la méthode. Elle donne une indication de la fiabilité de la méthode dans les conditions normales d'utilisation. [14]

L'ICH recommande que l'étude de la robustesse soit réalisée pendant la phase de développement. [14]

IV-5-1-b.Intérêts de l'étude de la robustesse :

- La mise en évidence des qualités de stabilité d'une procédure d'analyse en présence des changements de la matière à doser ou de faibles changements des conditions opératoires.
- -La robustesse donne une aide procurée à l'analyste pour affiner un mode opératoire au niveau de certains paramètres opératoires déterminants ou pour optimiser une procédure d'analyse au cours de son développement.
- -Les résultats d'exploration de la robustesse d'une procédure d'analyse, lorsqu'ils figurent dans un rapport de validation apportent une aide à l'analyste qui cherchera à valider un résultat obtenu par l'application de cette procédure ayant incidemment présenté une variation sur un paramètre opératoire.

IV-5-2. Stabilité des solutions : [24]

Stabilité de la solution du principe actif après préparation selon le protocole de la méthode, doit être évaluer suivant la méthode de dosage .la pluparts des laboratoires utilisent leurs HPLC en mode nuit et les échantillons seront en solution pendant des heures dans les conditions ambiantes de laboratoire avant que l'analyse soit terminée, d' où l'importance d'étudier la stabilité des solutions.

IV-6. Critères de validation :

IV-6-1. Spécificité / Sélectivité :

La spécificité d'une procédure analytique est sa capacité à établir de manière univoque l'existence de la substance à analyser en présence d'autres composants potentiellement présents.

IV-6-2.Linéarité

C'est la capacité d'une méthode d'analyse, à l'intérieur d'un certain intervalle (domaine d'utilisation), d'obtenir des résultats directement proportionnels à la quantité ou à la concentration de substance à doser.

IV-6-3.Exactitude

L'exactitude exprime l'étroitesse de l'accord entre le résultat d'essai et la valeur de référence acceptée, aussi appelée « valeur conventionnellement vraie ». L'étroitesse de l'accord ainsi observée est la résultante de la somme des erreurs systématique et aléatoire, en d'autres termes l'erreur totale liée au résultat. Par conséquent, l'exactitude est l'expression de la somme de la justesse et de la fidélité.

IV-6-4.Fidélité

La fidélité exprime l'étroitesse de l'accord entre une série de mesures provenant de multiples prises d'un même échantillon homogène dans des conditions prescrites. Elle fournit une indication sur les erreurs liées au hasard.

La fidélité peut être évaluée à trois niveaux : la répétabilité, la fidélité intermédiaire (intralaboratoire) et la reproductibilité (interlaboratoire).

IV-6-4-1. Répétabilité :

Conditions où les résultats d'essai indépendants sont obtenus par la même méthode sur des échantillons d'essai identiques dans le même laboratoire, par le même opérateur, utilisant le même équipement et pendant un court intervalle de temps.

IV-6-4-2. Fidélité intermédiaire :

Conditions où les résultats d'essai indépendants sont obtenus par la même méthode sur des échantillons d'essai identiques dans le même laboratoire, avec différents opérateurs et utilisant des équipements différents et pendant un intervalle de temps donné.

IV-6-4-3. Reproductibilité

Toutes les opérations sont refaites dans des conditions maximales de variabilité, c'est la précision de la méthode lorsqu'elle est appliquée dans des conditions différentes - généralement dans des laboratoires différents - à des échantillons distincts, théoriquement identiques, prélevés sur le même lot homogène de produit à analyser.

IV-6-5.Limite de détection

Elle correspond à la plus petite quantité d'une substance à analyser dans un échantillon pouvant être détectée, mais non quantifiée comme une valeur exacte.

IV-6-6.Limite de quantification

C'est la plus petite quantité de l'analyse dans un échantillon pouvant être dosée dans les conditions expérimentales décrites avec une exactitude définie. [23]

IV-6-7.Intervalle de validité : [15]

Intervalle compris entre la concentration (quantité) la plus élevée et la plus faible de l'échantillon dans lequel il a été démontré que la méthode d'analyse présente une fidélité, une exactitude et une linéarité satisfaisante.

IV-7. Etude statistique:

a. Test de DIXON ou test Q:

Est un test utilisé pour éliminer des valeurs aberrantes d'une série de données.

b. Test de COCHRAN:

Est l'un des tests développés pour permettre d'identifier et d'étudier l'homogénéité d'une série de variances.

c. Test de FISHER;

utilisé pour tester l'égalité de deux variances, il est très sensible à la non-normalité des échantillons.

d. Test de STUDENT ou test t : [32]

Est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.

La partie pratique porte sur la validation d'une méthode analytique de dosage de pinavérium bromure dans le produit fini (comprimé de 100 mg) par HPLC UV-VIS. Le stage pratique, réalisé à GenericLab®, entreprise de production de produits pharmaceutiques située à la zone industrielle de Rouiba, dans le laboratoire de Développement pharmaceutique, unité de développement analytique.

1. Validation analytique:

Valider une méthode analytique de dosage de pinavérium bromure dans le produit fini, comprimé de 100 mg, par HPLC UV-VIS.

- ✓ Démontrer la robustesse, la stabilité des solutions standards de la méthode analytique développée afin de doser le pinavérium bromure dans le produit fini ;
- ✓ Valider la méthode analytique de dosage de pinavérium bromure dans le produit fini : Démontrer la spécificité, la linéarité, l'exactitude et la fidélité de la méthode, fixer ses limites de détection, limite de quantification et l'intervalle de mesure ;
- ✓ Etablir la sensibilité de la méthode.

1-3-1.Standards:

Working standard (WS): pinavérium bromure

Formule générale : $C_{26}H_{41}Br_2NO_4$

Poids moléculaire: 591.42 g/mol

Pureté minimale: 99,68%

Aspect: poudre blanche cristalline

Solubilité : soluble en acétonitrile

Date de production: Novembre 2015

Date de péremption : Novembre 2016

Numéro de lot: PNB/RS/00415

Conditions de stockage : température inférieur à 25°C

1-3-2.Formule de produit fini:

Tableau 1 : composition unitaire de produit fini

Nom des composants	Formule unitaire
	(mg/cp)
Principe actif : bromure de pinavérium	100
Excipients:	
-Cellulose microcristalline type 101	110.03
-Cellulose microcristalline type 12	111.87
- Amidon de maïs pré-gélatinisé	37.00
-Stéarate de magnésium (végétal)	3.70
- Talc	7.40
- Eau purifiée	q.s
-Agent de pelliculage	11.44
Masse théorique du comprimé pelliculé (mg)	381.44

I-3-3. Equipements:

- Fioles jaugées de 2000 ml (classe A), de 1000 ml (classe A), de 100 ml (classe A), 50ml (classe A)
- Eprouvette graduée de 1000 ml (classe A)
- Pipette jaugée de 1 ml (classe A)
- Filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 μm
- Filtre membrane nylon de diamètre 47 mm et de porosité 0.2 μm (phase mobile)
- Dispositif de filtration
- Balance analytique
- pH mètre
- Appareil de Sonication
- Purificateur d'Eau.
- Appareil HPLC : Alliance Waters e2695, détecteur UV-VIS 2489
- Outils statistique : Excel

I-3-4.Réactifs:

Acétonitrile: Date de péremption: 30/08/2018, Qualité: UV, IR, HPLC, ACS, Fournisseur: ApplichemPaneac ITW companies, Lot: 0000514642

Sodium dodécyl sulfate : Date d'ouverture : 07/10/2015, Date de péremption : 31/07/2020, Fournisseur :**Sigma-Aldrich**, N° lot : BCBL8758V

Tétrabutyl ammonium hydrogénosulfate: Date de péremption: 04/11/2018, N° lot: BCBJ4810V

Acide sulfurique 95%: Date de péremption : 16/07/2016, Fournisseur :VWR prolabo Chemical

Hydroxyde de sodium : Date d'ouverture : 14/06/2014, Date de péremption : 26/05/2017, Fournisseur :**Sigma-Aldrich**, N° lot : S7BC1660V

Acide chlorhydrique 37%: Date de péremption: 06/2018, Fournisseur: VWR prolabo

chemical, N° lot : 135240516

Eau distillée.

1-3-5. Description de la méthode analytique :

Dosage de pinavérium bromure dans le produit fini :

Matériel:

- Fioles jaugées 50ml, 100 ml
- Pipettes jaugées 1ml
- Filtre seringue en nylon0.45μm

Réactif:

- Sodium dodécyl sulfate R
- Tétrabutylammoniumhydrogenosulfate R
- H₂SO₄
- NaOH
- Acétonitrile qualité HPLC
- Eau R

Equipement:

- Balance analytique
- Appareil de Sonication
- Alliance waters e 2695, détecteur UV-VIS 2489 ou équivalent

Préparation de la solution standard :

Dans une fiole jaugée de 50 ml, dissoudre 25mg de pinavérium bromure exactement pesés dans la phase mobile et compléter au trait de jauge à l'aide du même solvant. Prélever 1ml de la solution obtenue, l'introduire dans une fiole de 100ml et compléter au trait de jauge avec la phase mobile. La solution diluée est filtrésur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 µm.

Préparation de l'échantillon :

Prélever 10unités, peser, déterminer la masse moyenne, broyer, et transférer l'équivalent de la moitié de la masse moyenne dans une fiole de 100ml, dissoudre et compléter avec la phase mobile. Prélever 1ml de la solution obtenue, l'introduire dans une fiole jaugée de 100ml puis compléter au trait de jauge avec la phase mobile. La solution diluée est filtré sur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 µm.

Conditions chromatographiques:

Colonne: C18, 150 x 4.6, 5µm

Débit: 1ml/min

Longueur d'onde : 210 nm

Volume d'injection : 20 µl

Phase mobile: Tampon pH 3,3/Acétonitrile (380/620)

Tampon pH 3.3:

•	Sodium dodécyl sulfate R	2.88g
•	Tétrabutylammoniumhydrogenosulfate R	.0.68g
•	Eau R	9 <mark>00</mark> ml
•	H ₂ SO ₄ 10% (v/v)	20ml

- Ajuster le pH à 3.3 avec NaOH
- Eau distillée......gsp 1000ml

Système suitability:

Le RSD de cinq injections consécutives de la solution standard est inférieur à 2 %

Formule de calcul:

$$\frac{A_{ECH} \times C_{STD} \times T \times 100 \times 100 \times PM}{A_{STD} \times l \times PE_{ech}}$$

- C_{STD}: concentration du standard en mg
- A_{ECH} : aire du pic du pinavérium du chromatogramme de la solution essai
- A_{STD} : aire du pic du pinavérium du chromatogramme de la solution standard
- PE_{ech} : prise d'essai de l'échantillon
- 100 : volume de dilution
- 100:volume de dilution
- T: titre de pinavérium WS utilisé exprimé en fraction décimale
- 1 : volume prélevé
- PM : masse moyenne des comprimés

Critères d'acceptation:

L'essai est satisfaisant si le dosage du principe actif est entre 95.0mg et 105.0mg par comprimé

Le temps de rétention de la solution essai est semblable à celui du standard.

I-3-6. Réalisations des réactifs utilisés :

- Préparation de la solution de l'acide sulfurique à 10%:

Prélever 10 ml de l'acide sulfurique pur, les mettre dans une fiole jaugée de 100 ml contenant un peu d'eau purifiée, laissé refroidir et compléter par le même solvant au trait de jauge.

- Préparation de la solution de l'hydroxyde de sodium 1N:

Dans une fiole jaugée de 1000 ml, dissoudre 42 g d'hydroxyde de sodium dans l'eau exempte de dioxyde de carbone, laisser refroidir et compléter à 1000 ml avec le même solvant.

- Préparation de la solution de l'acide chlorhydrique 1N:

Prélever 8,5 ml de l'acide chlorhydrique, les mettre dans une fiole jaugée de 100 ml contenant un peu d'eau purifiée et compléter par le même solvant au trait de jauge.

- Préparation de la phase mobile :

Acétonitrile	. 620 ml
Tampon pH 3.3	.380 ml

Tampon pH 3.3:

•	Sodium dodécyl sulfate R	2.88g
•	Tétrabutyl ammonium hydrogénosulfate R	0.68 g
•	Eau distillée	900 ml
•	H ₂ SO ₄ à 10 % (v/v)	20 ml
•	Ajuster le pH à 3.3 avec NaOH	
•	Eau distillée	qsp 1000 ml

Filtrer la phase mobile sur filtre membrane nylon de diamètre 47 mm et de porosité 0.2 µm.

1-3-7. Réalisations des solutions pour la validation

- Préparation de la solution standard :

Dans une fiole jaugée de 50 ml (classe A), dissoudre une masse de 25 mg de pinavérium bromure exactement pesée dans la phase mobile, soniqueret compléter au trait de jauge à l'aide du même solvant.

Prélever 1.0 ml de la solution obtenue, l'introduire dans une fiole jaugée de 100 ml (classe A) et compléter au trait de jauge avec la phase mobile.

La solution diluée est filtrée sur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 µm.

- Préparation de la solution de la forme reconstituée :

Peser exactement 1100.3 mg de cellulose microcristalline type 101, 1118.7 mg de cellulose microcristalline type 12, 370.0 mg d'amidon pré-gélatinisé, 37.0 mg de stéarate de magnésium (végétal) ,74.0 mg de talc, 114.4 mg de l'agent de pelliculage utilisé. Les transférer dans une fiole jaugée de 2000 ml, les dissoudre avec la phase mobile et compléter au trait de jauge avec le même solvant.

Prélever 1.0 ml de la solution ainsi préparée, l'introduire dans une fiole jaugée de 100 ml et compléter avec la phase mobile au trait de jauge.

Filtrer sur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 μm.

- Préparation de la solution contenant la forme reconstituée et le pinavérium bromure :

Prélever 1.0 ml de la solution qui a servi à la préparation de la solution standard (avant dilution) et 1.0 ml de la solution qui a servi à la préparation de la solution placébo. Les introduire dans une fiole jaugéede 100 ml et compléter au trait de jauge avec la phase mobile.

Filtrer sur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 µm.

- Préparation des solutions des produits de dégradation (dégradation forcée):

Préparer des solutions dans trois milieux de dégradation :

- Alcalin : NaOH 1N pendant 6h à température ambiante

Acide: HCl 1N pendant 6h à température ambiante

- Oxydant : H₂O₂ pendant 6h à température ambiante

Préparation des solutions :

- Solution essai de pinavérium bromure :

Dans une fiolejaugée de 25 ml (classe A), dissoudre 25 mg de pinavérium bromure exactement pesés dans 5 ml de milieu de dégradation. Laisser la solution au repos suivant les conditions et le temps de dégradation décrits, et compléter au trait de jauge avec la phase mobile.

La solution est filtrée sur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 μm.

- Solution essai de la forme reconstituée :

Dans une fiole jaugée de 25 ml (classe A), dissoudre 70.36 mg (l'équivalent d'un quart d'un comprimé de 100 mg de pinavérium bromure) de la forme reconstituée exactement pesés dans 5 ml de milieu de dégradation. Laisser la solution au repos suivant les conditions et le temps de dégradation décrits, et compléter au trait de jauge avec la phase mobile.

La solution est filtrée sur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 μm.

- Solution essai de la forme reconstituée et le pinavérium bromure :

Dans une fiolejaugée de 25 ml (classe A), dissoudre 25 mg de pinavérium bromure et 70.36 mg de la forme reconstituée exactement pesés dans 5 ml de milieu de dégradation. Laisser la solution au repos suivant les conditions et le temps de dégradation décrits, et compléter au trait de jauge avec la phase mobile.

La solution est filtrée sur filtre seringue en Nylon de diamètre 25 mm et de porosité 0,45 µm.

1-4. Protocole expérimentale de la robustesse et de la stabilité des solutions :

I-4-1.Robustesse:

Les paramètres opératoires à étudier et leurs niveaux

Facteur A : la teneur en pinavérium bromure : 25 mg $\pm 1,25$ mg ($\pm 5\%$)

Facteur B : le pH : 3.3 ± 0.1

Facteur C: la fraction organique de la phase mobile 620ml ±20ml (±2%)

Les tests sont effectués selon le plan factoriel complet 2³ suivant le tableau suivant :

Tableau 2 : plan factoriel de robustesse

Essai	La teneur	pН	La	Interact	Interact	Interact	Interact	La
	en PA		fraction					moyenne
	A	В	Organique	AB	AC	BC	ABC	
			C					
1	-1(23 ,75)	-1(3,2)	-1(600)	+1	+1	+1	-1	+1
2	+1(26,25)	-1(3,2)	-1(600)	-1	-1	+1	+1	+1
3	-1(23,75)	+1(3,2)	-1(600)	-1	+1	-1	+1	+1
4	+1(26,25)	+1(3,2)	-1(600)	+1	-1	-1	-1	+1
5	-1(23 ,75)	-1(3,4)	+1(640)	+1	-1	-1	+1	+1
6	+1(26,25)	-1(3,4)	+1(640)	-1	+1	-1	-1	+1
7	-1(23 ,75)	+1(3,4)	+1(640)	-1	-1	+1	-1	+1
8	+1(26,25)	+1(3,4)	+1(640)	+1	+1	+1	+1	+1

⁻¹ et +1 représentent le niveau bas et le niveau haut de chaque facteur par rapport à sa valeur nominale.

Tableau 3: robustesse : modification des paramètres opératoires

	Teneur	pН	Fraction
	en PA		organique
Niveau	23,75	3,2	600ml
bas -1			
Niveau	26,25	3,4	640 ml
haut +1			

Préparation des solutions standards :

La préparation des solutions est décrite dans 'Matériel et Méthode, Réalisation des solutions pour la validation'. Préparation de la solution standard à 23.75 mg de bromure de pinavérium représentant le niveau bas, et à 26.25mg représentant le niveau haut.

Préparation de tampon :

La préparation de tampon est décrite dans'Matériel et Méthode, Réalisation des réactifs utilisés, Préparation de la phase mobile'. Une aliquote ajustée à pH= 3.2 et l'autre à pH= 3.4

1-4-2. Stabilité des solutions

Préparer une solution standard à 100%, la préparation est décrite dans 'Matériel et Méthode, Réalisation des solutions pour la validation'. L'étudier, dans les conditions ambiantes, sur deux aliquotes, sur un intervalle de 12 heures $(t_0 \text{ et } t_{12})$.

I-5-1.Spécificité :

Préparer les solutions suivantes (cf. Matériel et Méthode, Réalisation des solutions pour la validation) :

- Préparation de la solution standard (principe actif seul)
- Préparation de la solution de la forme reconstituée seule FR
- Préparation de la solution contenant la forme reconstituée et le pinavérium bromure
- Préparation des solutions contenant les produits de dégradation (obtenus lors de ladégradation forcée)
- Préparation de phase mobile(le blanc)

I-5-2.Linéarité :

La linéarité est étudiée sur un intervalle de mesure couvert par une série de cinq concentrations régulièrement espacées, allant de 80 % à 120 % de la concentration théorique (0.005mg/ml).

L'étude de la linéarité est réalisée : sur le Principe Actif seul : PA et sur la Forme Reconstituée : FR.

Préparer pour le PA et la FR, cinq échantillons de concentration x_i contenant respectivement environ 20, 22.5, 25, 27.5, 30 mg du pinavérium bromure et les analyser suivant la méthode analytique de dosage. Cette opération est répétée deux autre fois à raison d'une fois par jour.

a. Principe actif seul:

Les pesées sont 20, 22.5, 25, 27.5, 30 mg depinavérium bromure, Les transférer dans une fiole jaugée de 50 ml, les solubiliser avec la phase mobile, soniqueret compléter au trait de jauge avec le même solvant.

Prélever 1.0 ml de la solution ainsi préparée, l'introduire dans une fiole jaugée de 100 ml et

compléter avec la phase mobile au trait de jauge.

Filtrer sur filtre seringue cellulose régénérée de porosité 0.45 µm.

b. Forme reconstitue + Principe actif

Peser exactement 1100.3 mg de cellulose microcristalline type 101, 1118.7 mg de cellulose microcristalline type 12, 370.0 mg d'amidon pré-gélatinisé, 37.0 mg de stéarate de magnésium (végétal) ,74.0 mg de talc, 114.4 mg de l'agent de pelliculage utilisé.

Les transférer dans une fiole jaugée de 2000 ml, les dissoudre avec la phase mobile et compléter au trait de jauge avec le même solvant.

Prélever 1.0 ml de la solution ainsi préparée et 1.0 ml de la solution du principe actif seul, les introduire dans une fiole jaugée de 100 ml compléter avec la phase mobile au trait de jauge.

Filtrer sur filtre seringue en nylon de diamètre 25 mm et de porosité 0,45 μm.

1-5-3.Exactitude:

L'étude de l'exactitude est réalisée sur la FR en se servant comme système de référence l'étalon à 100%. Le même protocole expérimental réalisé pour l'étude de la linéarité pour la FR est utilisé pour l'étude de l'exactitude: Cinq échantillons de la FR contenant respectivement environ 20, 22.5, 25, 27.5, 30 mg depinavérium bromure, cette opération est répétée deux autre fois à raison d'une fois par jour.

1-5-4.Fidélité:

Effectuer le dosage de 6 échantillons /jours pendant 3 jours de la forme reconstitué à 100% depinavérium bromure (cf. préparation des solutions) répondant aux conditions de répétabilité (même laboratoire, même opérateur, même équipement et même jour) et de répétabilité intermédiaire (jour différent), on aura donc 3 groupe de 7 essais (on ajoute la valeur 100 % obtenue lors de l'étude de linéarité).

II. Rapport:

II-1 .Robustesse:

Tableau 4 : Matrice de calcul des effets des facteurs et leurs interactions sur l'Aire du pic

		FA	CTEUR		INTE	RACTION		
		Teneur	pН	FO	Teneur /	Teneur /	pH /	Teneur /
		(-1) =>	(-1) =>	(-1) =>	pН	FO	FO	pH/
		23,75	3,2	600				FO
		(+1) =>	(+1) =>	(+1) =>				
		26,25	3,4	640				
N°	Réponse :	A	В	С	AB	AC	BC	ABC
essai	Aire du							
	pic							
1	324736	-1	-1	-1	1	1	1	-1
2	394715	1	-1	-1	-1	-1	1	1
3	328934	-1	1	-1	-1	1	-1	-1
4	386789	1	1	-1	1	-1	-1	1
5	346556	-1	-1	1	1	-1	-1	1
6	434999	1	-1	1	-1	1	-1	-1
7	336325	-1	1	1	-1	-1	1	-1
8	411941	1	1	1	1	1	1	1
Me	oyenne	36486,62	-4627,5	11830,85	-3118,5	4528,15	-3695,5	-87,875
	Effet		NS	NS	NS	NS	NS	NS

Tableau 5 : Calcul des effets sur l'aire du pic

Avec:

Ecart type pop	41905,28996
Ecart type moy	14815,75735
t° (0,05, 7)	2,365

Avec:

$$\sigma(E) = \frac{1}{\sqrt{n}}\sigma(y)$$

 $\sigma(y)$: L'écart type de la population

A	36486,625	± 14815,757
В	-4627,125	± 14815,757
C	11830,875	± 14815,757
AB	-3118,875	± 14815,757
AC	4528,125	± 14815,757
ВС	-3695,125	± 14815,757
ABC	-87,875	± 14815,757

Tableau 6: Matrice de calcul des effets des facteurs et leurs interactions sur le temps de rétention

		FA	CTEUR		INTERACTION			
		Teneur	рН	FO	Teneur	Teneur	pH /	Teneur
		(-1) =>	(-1) =>	(-1) =>	/ pH	/FO	FO	/ pH /
		23,75	3,2	600				FO
		(+1) =>	(+1) =>	(+1) =>				
		26,25	3,4	640				
	T							
N°	Réponse :	A	В	C	AB	AC	BC	ABC
essai	temps de							
	rétention							
1	17.266	-1	-1	-1	1	1	1	-1
2	17.239	1	-1	-1	-1	-1	1	1
3	17.021	-1	1	-1	-1	1	-1	-1
4	17.015	1	1	-1	1	-1	-1	1
5	11.363	-1	-1	1	l	-1	-1	1
6	11.331	1	-1	1	-1	1	-1	-1
7	11.231	-1	1	1	-1	-1	1	-1
8	11.216	1	1	1	1	1	1	1
M	loyenne	-0,028625	-0,06085	-2,943625	-0,0235	0,01685	-0,00085	0,0285
	Effet	NS	NS		NS	NS	NS	NS

Tableau 7 : Calcul des effets sur le temps de rétention

Avec:

Ecart type pop	3,147987994
Ecart type	1,11298182
moy t°(0,05,7)	2,365

A	-0,028625 ±1,11298182
В	-0,060875 ±1,11298182
С	-2,943625 ±1,11298182
AB	-0,023875 ±1,11298182
AC	0,016875 ±1,11298182
ВС	-0,000875 ±1,11298182
ABC	0,028125 ±1,11298182

Tableau 8: Matrice de calcul des effets des facteurs et leurs interactions sur le nombre de plateaux théoriques

			FACTEU	R	INTE	RACTION	····	
		Teneur	pН	FO	Teneur /	Teneur /	pH/	Teneur /
		(-1) =>	(-1) =>	(-1) =>	pН	FO	FO	pH /
		23,75	3,2	600				FO
			(+1) =>	(+1) =>				
		26,25	3,4	640				
N°	Réponse:	A	В	C	AB	AC	BC	ABC
essai	N							
1	7852319	-1	-1	-1	1	1	1	-1
2	6768147	11	-1	-1	-1	-1	1	1
3	6348587	-1	1	-1	-1	1	-1	-1
4	6509281	1	1	-1	1	-1	-1	1
5	5089454	-1	-1	1	1	-1	-1	1
6	3682522	1	-1	1	-1	1	-1	-1
7	6149098	-1	1	1	-1	-1	1	-1
8	5730238	1	1	1	1	1	1	1
Mo	yenne	-0,3436	0,1080	-0,85337	0,279118	-0,11278	0,608743 8	-0,032098
I	Effet	NS	NS		NS	NS		NS

Avec:

Tableau 9 : Calcul des effets sur le nombre de plateaux théoriques

Ecart type	1,236048583
pop	
Ecart type	0,437009167
moy	
t°(0,05,7)	2,365

A	-0,343657873	±0,437009167
В	0,108094373	±0,437009167
С	-0,853378628	±0,437009167
AB	0,279118128	±0,437009167
AC	-0,11278373	±0,437009167
ВС	0,608743873	±0,437009167
ABC	-0,032098372	±0,437009167

Tableau 10: Matrice de calcul des effets des facteurs et leurs interactions sur le facteur de symétrie

		F.	ACTEUR		INTE	RACTION		
		Teneur	pН	FO	Teneur /	Teneur /	pH /	Teneur
	:	(-1) =>	(-1) =>	(-1) =>	pН	FO	FO	/ pH /
		23,75	3,2	600				FO
		(+1) =>	(+1) =>	(+1) =>				
		26,25	3,4	640				
N°	Dánonas :	A	В	C	AB	AC	BC	ADC
l .	Réponse : Facteur de	A	В	C	AB	AC	ВС	ABC
essai	symétrie							
1	 	-1	-1	-1	1	1	1	1
	1,217870				<u> </u>	•	1	-1
2	1,211156	1	-1	-1	-1	-1	1	1
3	1,245796	-1	1	-1	-1	1	-1	-1
4	1,209492	1	1	-1	1	-1	-1	1
5	1,266577	-1	-1	1	1	-1	-1	11
6	1,370517	11	-1	1	-1	1	-1	-1
7	1,190588	-1	1	1	-1	-1	1	-1
8	1,254712	1	1	1	1	1	1	1
Mo	oyenne	0,015680	-0,02064	0,02471	-0,0087	0,02643	-0,0272	-0,0013
	Effet	NS			NS			NS

Avec:

Tableau 11 : Calcul des effets sur le facteur de symétrie

Ecart type	0,056563368
pop	
Ecart type	0,019998171
moy	
$t^{\circ}(0.05, 7)$	2,365

A	$0,01568075 \pm 0,019998171$
В	-0,0206415 ±0,019998171
C	0,02471 ±0,019998171
AB	-0,00872575 ±0,019998171
AC	0,02643525 ±0,019998171
ВС	-0,027207 ±0,019998171
ABC	-0,00132825 ±0,019998171

Interprétation:

D'après les tableaux ci-dessus :

• La surface de pic :

Les facteurs influençant:

- Une modification de ±5% de la teneur en pinavérium bromure influence significativement les valeurs de surface de pic de principe actif.

Les facteurs non influençant :

- Les effets d'une modification de ± 0,1 et de ±2% de pH est de la fraction organique respectivement et les interactions entre les trois facteurs sont inférieures à l'erreur expérimentale donc n'ont aucune influence sur la surface des pics
 - Le temps de rétention :

Les facteurs influençant:

- Une modification de ±2% de la fraction organique entraine une modification importante des valeurs de temps de rétention de principe actif.

Les facteurs non influençant :

- Les effets d'une modification de ± 0,1 et de ±5% de pH et de la teneur en pinavérium bromure respectivement et les interactions entre les trois facteurs sont inférieures à l'erreur expérimentale donc n'ont aucune influence sur le temps de rétention de PA.
 - Le nombre de plateaux théoriques :

Les facteurs influençant :

- Une modification de ±2% de la fraction organique et l'interaction entre le pH et la fraction organique influencent significativement les valeurs de nombre de plateaux théoriques de principe actif.

Les facteurs non influençant :

- Les effets d'une modification de ± 0,1 et de ±5% de pH et de la teneur en pinavérium bromure respectivement et les interactions entre les trois facteurs sauf l'interaction entre le pH et la fraction organique, sont inférieures à l'erreur expérimentale, donc n'ont aucune influence sur le nombre de plateaux théoriques de principe actif.
 - Le Facteur de symétrie :

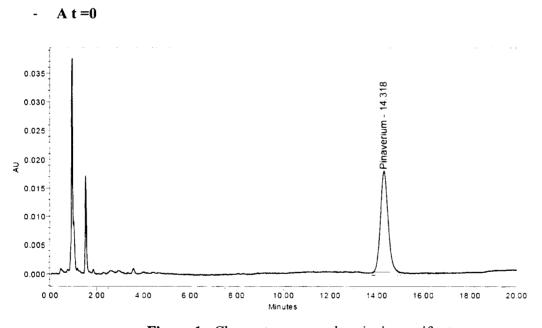
Les facteurs influençant :

 Une modification de ± 0,1 et de ± 2% de pH et de la fraction organique respectivement, influence significativement les valeurs du facteur de symétrie de principe actif. - les interactions entre la teneur en PA et la fraction organique, et entre le pH et la fraction organique influencent significativement les valeurs du facteur de symétrie de principe actif.

Les facteurs non influençant :

- Une modification de ±5% de la teneur en pinavérium bromure et les interactions entre la teneur en PA et le pH et les interactions entre les trois facteurs au même temps n'ont aucune influence sur le facteur de symétrie de PA.

Conclusion:


Les surfaces des courbes sont influencées par la teneur en PA, ce qui est normal, vu que les surfaces des courbes reflètent les teneurs.

La modification de la fraction organique, entraı̂ne des variations significatives du temps de rétention, donc il faut préparer la phase mobile avec soin.

Les variations, entraînées par les facteurs et les interactions des facteurs mentionnés ci-dessus, du nombre de plateaux théoriques et du facteur de symétrie, restent toujours dans les normes.

II-2. Stabilité des solutions :

Sur une solution de principe actif seul on a effectué 2 injections à 2 temps différents : t = 0 et t = 12h

Figure 1 : Chromatogramme de principe actif a t_0

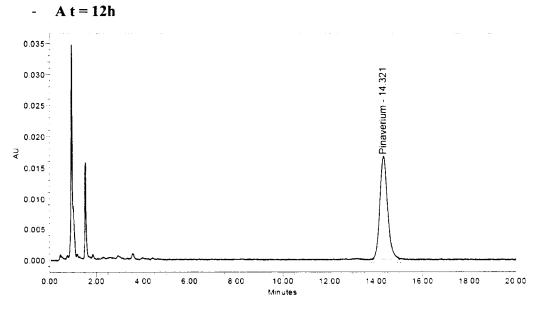


Figure 2 : Chromatogramme de principe actif a t_{12}

Résultats:

Tableau 12 : Résultats de stabilité des solutions

Temps	AUC
0h	395863
12h	389538

Calcule de pourcentage de dégradation :

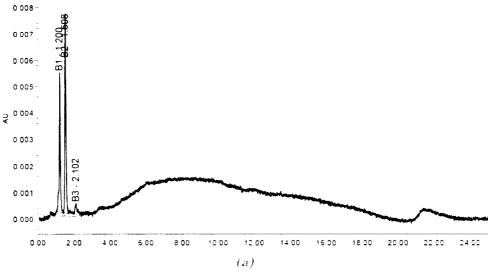
$$X = 100 - (389538 * 100/395863) = 1.59\%$$

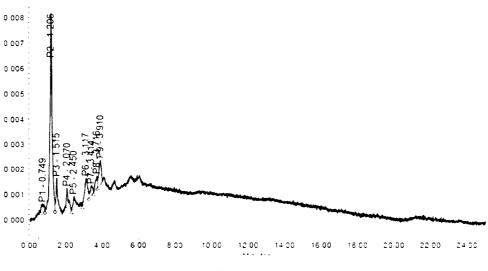
Conclusion:

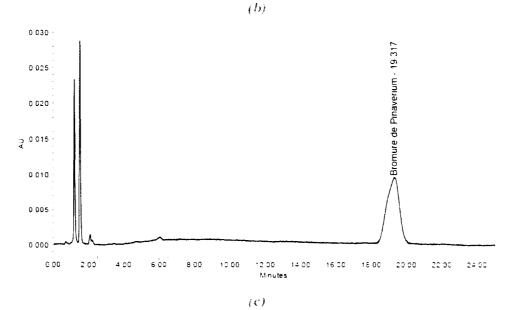
Le pourcentage de dégradation est négligeable, donc la solution est stable dans les conditions ambiantes durant cet intervalle de temps.

III. Rapport de Validation

III-1.Spécificité:


Exploitation des résultats :


Evaluer le temps de rétention de chaque pic, de chaque chromatogramme, de chaque solution, et vérifier la non-interférence des excipients, des produits de dégradation et de blanc avec le principe actif dosé.


Critères d'acceptation:

Le temps de rétention du pinavérium bromure doit être significativement différent de blanc, des excipients et des produits de dégradation.

Résultats:

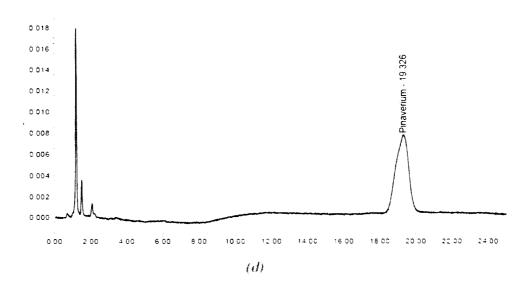
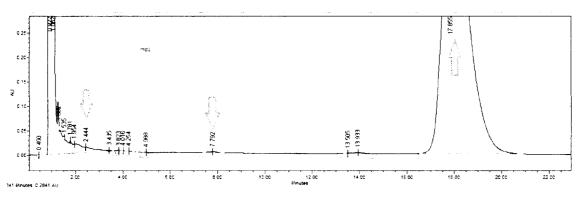



Figure 3 : Chromatogrammes de (a) blanc, (b) FR, (c) PA, (d) principe actif et forme reconstituée

Tableau 13: Temps de rétention de blanc, placebo et de pinavérium bromure

Nom		Nombre d'injection	Volume injecté	Temps de rétention (minute)	
Blanc	Bl			1.2	
	B2	01	20	1.508	
	B3			2.102	
Pla	cebo	01	20	3.910	
Pinaverium		01	20	19.317	

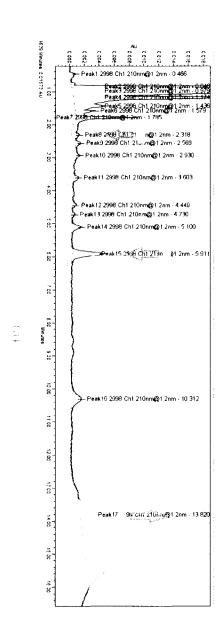
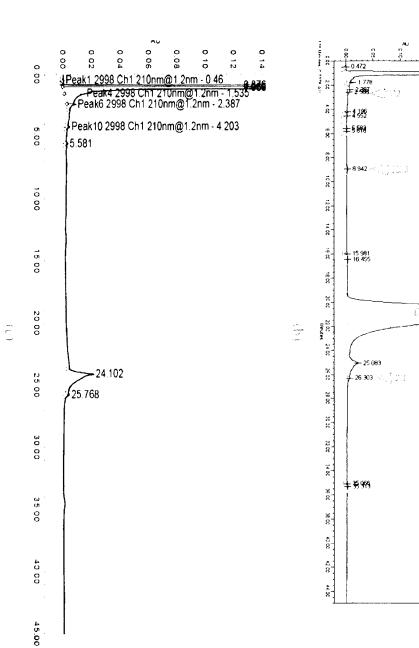
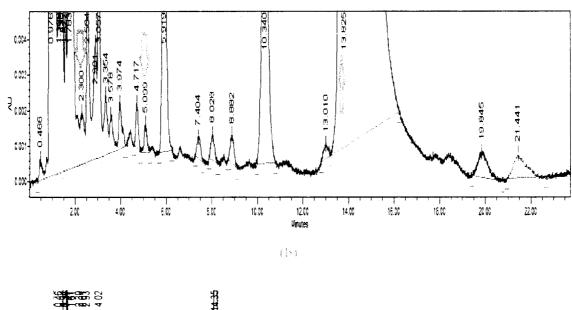




Figure 4: Dégradation alcaline de (a) PA, (b) PA+FR, (c) FR

20 669

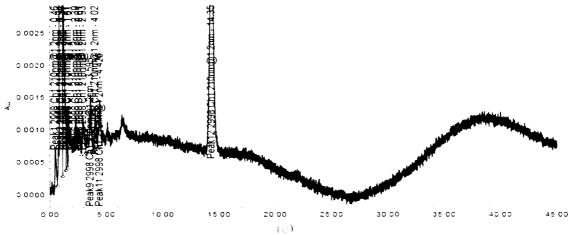
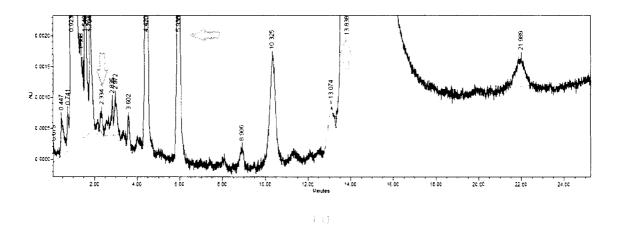



Figure 5 : Dégradation acide de (a) PA, (b) PA+FR, (c) FR

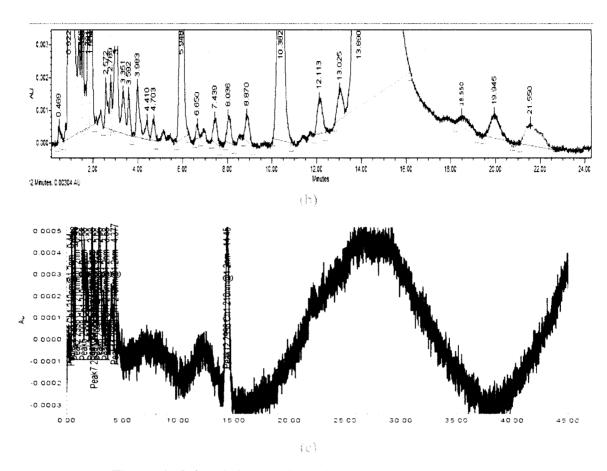


Figure 6: Dégradation oxydante de (a) PA, (b) PA+FR, (c) FR

Interprétation des résultats :

- 1. La figure 3 et le tableau 13, montre qu'il n'y a aucune interférence entre la phase mobile et les excipients, et le pinavérium bromure.
- 2. Les figures 4, 5, 6 de la dégradation forcée montrent que les impuretés 1 et 2 n'interfèrent pas avec le pinavérium bromure. L'impureté 3 est éluée au trainé du pic principal, du fait de vieillissement de la colonne affectant leur séparation et dont la séparation est améliorée avec une colonne neuve (justifié et démontré par le fournisseur).

Conclusion:

La méthode de dosage proposée est spécifique et permet le dosage du PA dans le produit final.

III-2.Linéarité:

a-1. Données Brutes :

a-Principe actif:

Tableau 14 : Linéarité : données brutes de principe actif seul

Niveau de Concentration %	Série	Pesée (mg) X _{ij}	Réponse Y _{ij} (Surface)
	1	20,10	288047,577
80%	2	20,10	280548,710
	3	20,10	301986,580
	1	22,40	318881,890
90%	2	22,40	324228,631
	3	22,50	338152,470
	1	25,00	376865,301
100%	2	25,00	400292,791
	3	24,90	370402,101
	1	27,50	408477,591
110%	2	27,50	415456,601
	3	27,60	403996,721
	1	30,00	451811,679
120%	2	30,00	447358,152
	3	30,00	446384,331

b- Forme pharmaceutique reconstitué :

Tableau 15 : Linéarité : données brutes de la forme pharmaceutique reconstitué

Niveau de Concentration %	Série	Pesée (mg) x_{ij}	Réponse y _{ij} (Surface)
	1	20,10	287557,511
80%	2	20,10	294475,031
	3	20,10	301493,920
	1	22,40	322270,047
90%	2	22,40	338092,531
	3	22,50	332614,141
	1	25,00	379320.151
100%	2	25,00	365964,691
	3	24,90	373664,505
	1	27,50	413098,340
110%	2	27,50	415012.461
	3	27,60	407027.076
	1	30,00	438394,001
120%	2	30,00	444291,572
	3	30,00	448431,271

A.2- Tracer les courbes de linéarité :

On aura 2 courbes:

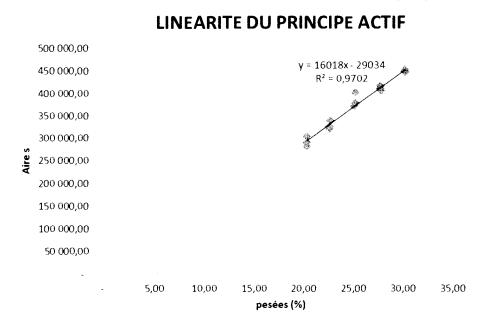


Figure 7 : Linéarité de principe actif seul

LINEARITE DE LA FORME PHARMACETIQUE

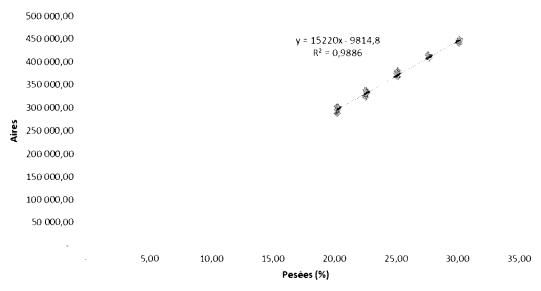


Figure 8 : Linéarité de la forme pharmaceutique reconstituée

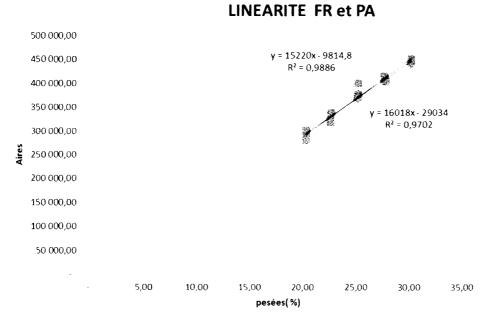


Figure 9 : Linéarité de la forme pharmaceutique reconstituée et de principe actif seul

A.3-changement de variable :

a-Principe actif:

Tableau 16 : Linéarité : Calcul des variances de principe actif seul

Niveau de Concentration %	Série	X_{ij} (mg)	$ar{X_j}$	Surfaces Y _{ij}	\overline{Y}_{j}	Variances S_j^2	
	1	20,10		288047.577			
80%	2	20,10	20,10	280548,710	290194,289	118351847	
	3	20,10		301986.580			
	1	22,40		318881,890	"		
90%	2	22,40	22,43	324228.631	327087,664	98969364	
	3	22,50		338152,470			
	1	25,00		376865,301			
100%	2	25,00	24,97	400292,791	382520,064	247345598	
	3	24,90		370402,101			
	1	27,50		408477,591			
110%	2	27,50	27,53	415456,601	409310,304	33352271	
	3	27,60		403996,721	,		
	1	30,00		451811.679			
120%	2	30,00	30	447358,152	448518,054	8373056	
	3	30,00		446384,331			

b- Forme pharmaceutique reconstituée :

Tableau 17 : Linéarité : Calcul des variances de la forme pharmaceutique reconstituée

Niveau de Concentration %	Série	X_{ij} (mg)	$ar{X_j}$	Surfaces Y _{ij}	$\overline{Y}_{\!J}$	Variances S_j^2
	1	20,10		287557,511	294508,821	
80%	2	20,10	20,10	294475,031	274300,021	48556730
	3	20,10	-	301493,920		
	1	22,40		322270,047	330992,240	
90%	2	22,40	22,43	338092,531	330992,240	64560673
	3	22,50	i	332614,141		
	1	25,00		379320,151	372983,116	
100%	2	25,00	24,97	365964,691	3/2903,110	44940297
	3	24,90		373664,505		
	1	27,50		413098,340	411712,626	
110%	2	27,50	27,53	415012,461	711712,020	17381747
1	3	27,60		407027,076		
	1	30,00		438394,001		
120%	2	30,00	30.00	444291,572	443705,615	25444207
	3	30,00		448431,271		

Avec:

 X_{ij} : Pesées (mg).

 \bar{X}_j : Moyenne des pesées de chaque groupe.

 Y_{ij} : Réponses.

 $\overline{Y_j}$: Moyenne des réponses de chaque groupe.

 S_j^2 : Variance des réponses de chaque groupe.

B-Exploitation statistique des résultats :

1-Estimation d'une droite de régression linéaire :

La gamme de pinavérium bromure seul, soit D_1 , d'équation :

$$y = a_1 x + b_1$$

La gamme avec la forme reconstituée, soit D_2 , d'équation :

$$y = a_2 x + b_2$$

2- Calculer les pentes a_1 et a_2 et les ordonnées à l'origine b_1 et b_2 respectives des droites de régression du PA seul et de la FR :

L'équation de la droite de régression est de la forme

$$y = a x + b$$

Méthode des moindres carrés :

• La pente a

$$a = SPE_{xy}/SCE_x$$

$$a_1 = 16018,12$$

$$a_2 = 15219,75$$

Avec:

N: nombre total des essais dans l'ensemble des k groupes

$$SPE_{xy} = \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

$$SCE_x = \sum_{i=1}^{N} (x_i - \bar{x})^2$$

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

$$N_{i}$$

• L'ordonnée à l'origine b :

$$b = y - a\,\bar{x}$$

$$b_1 = -29033,64$$

$$b_2 = -9814,82$$

On aura: PA
$$y = 16018.12 x + -29033,64$$

FR $y = 15219.75 x + -9814.82$

B.3- Calculer la variance résiduelle notée S_e^2 , la variance de la pente a et l'ordonnée à l'origine b notée respectivement S_a^2 et S_b^2 des droites de régression du PA seul et de la FR :

• La variance résiduelle S_e^2 :

$$S_e^2 = \frac{SCE_y - a.SPE_{xy}}{N - 2}$$

Avec:

$$SCE_{y} = \sum_{i=1}^{N} (y_i - \bar{y})^2$$

• La variance de la pente a et l'ordonnée à l'origine b notée respectivement S_a^2 et S_b^2

$$S_a^2 = \frac{S_e^2}{SCE_x}$$

$$S_b^2 = S_e^2 \cdot \left(\frac{1}{N} + \frac{\bar{x}^2}{SCE_x}\right)$$

PA:

$$S_e^2 = 112987540,29528$$

$$S_{\alpha_1}^2 = 607233,54177$$

$$S_{\beta_1}^2 = 387255904,46303$$

FR:

$$S_e^2 = 38231704,91720$$

$$S_{\alpha_2}^2 = 205470.20958$$

$$S_{\beta_2}^2 = 131036160,5198$$

B.6- Calculer le coefficient de corrélation noté r pour le PA seul et FR :

Bien que les informations fournies par le coefficient de corrélation soient limitées, sa détermination est aisée.

$$r^2 = \frac{SPE_{xy}^2}{SCE_x.SCE_y}$$

$$r = \sqrt{r^2}$$

Soient r_1 et r_2 les coefficients de corrélation respectifs des droites D_1 et D_2 .

$$r_1 = 0.985$$

$$r_2 = 0.994$$

 $r \approx 1$: bonne corrélation

B.7-Test de comparaison des ordonnées à l'origine de PA seul et de la FR avec 0 :

On vérifié l'inégalité:

$$\frac{|b|}{S_b} < t_{(1-\alpha;N-2)}$$

$$t_{(0.05;13)} = 2.16$$

PA: 1.47 < 2.16**FR**: 0.85 < 2.16

Les ordonnées à l'origine ne sont pas significativement différente de zéro.

B.8- comparaison des pentes des droites D_1 et D_2 :

Soient $S_{a_1}^2$ et $S_{a_2}^2$ les variances respectives des pentes a_1 et a_2 des droites D_1 et D_2 . La comparaison s'effectue avec le test :

$$t = |a_2 - a_1| / \sqrt{S_{a_2}^2 + S_{a_1}^2}$$

Tableau 18 : Test de comparaison des pentes des droites D_1 et D_2

	Test de comparaison des pentes				
Cobs (pente)	0,84419				
Student théorique au risque (5%, 26)	Cobs (pente) < 2,16 => pas d'erreur systématique				

On peut conclure que les pentes des droites D_1 et D_2 ne sont pas significativement différentes au risque α =0.05. Donc il n'y a pas d'erreur systématique.

B.9-Comparaison des ordonnées à l'origine des droites D₁ et D₂ :

La comparaison des ordonnées à l'origine b_1 et b_2 s'effectue avec le test :

$$t = |b_2 - b_1| / \sqrt{S_{b_2}^2 + S_{b_1}^2}$$

Tableau 19 : Test de comparaison des ordonnées à l'origine des droites D_1 et D_2

Test de comparaison des ordonnées à l'origine				
Cobs (ordonnée)	0,88559			
Student théorique au risque (5%, 26)	Cobs (ordonnée) < 2,16 => pas d'effet matrice			

On peut conclure que les ordonnées à l'origine des droites D_1 et D_2 ne sont pas significativement différentes au risque $\alpha = 0.05$. Donc il n'y a pas d'effet matrice.

B.10-test d'homogénéité des variances :

Pour le PA seul et la FR:

• Calculer la variance S_j^2 de chaque niveau de concentration :

$$S_j^2 = \frac{SCE_y}{n-1}$$

Avec:

$$SCE_y = \sum_{i=1}^n (y_i - \bar{y})^2$$

n: le nombre total des observations par niveau de concentration.

 \bar{y} : est la moyenne de réponses de chaque niveau de concentration.

• Calculer la somme des variances calculées pour chaque niveau de concentration S

$$S = \sum S_j^2$$

- Trier les valeurs de variances calculées S_j^2 par ordre croissant et trouver la variance la plus élevée S_{max}^2 .
- Calculer le rapport :

$$C = S_{max}^2 / \sum_{j=1}^k S_j^2$$

Avec:

K: le nombre total des groupes ou des niveaux de concentration

Tableau 20: Test d'homogénéité des variances (test de COCHRAN) de Principe actif seul et de la forme pharmaceutique reconstituée

	Test d'Homo	généité des Variances
Principe actif seul	Somme des variances PA	506392137
	Variance max	247345598
	CF= COCHRAN calculé	0,4884
forme pharmaceutique reconstituée	Somme des variances	200883653
	Variance max	64560673
	CF= COCHRAN calculé	0,3214
Critères d'acceptation	COCHRAN théorique au risque (1%, 5, 3)	CF > 0,788 =>la variance max est considéré comme aberrante
	COCHRAN théorique au risque (5%, 5, 3)	CF < 0,684 =>le test n'est pas significatif et l'ensemble des variances sont considérées comme homogène

PA: 0,4884 < 0.684

FR: 0,3214 < 0.684

Résultat:

Le tableau de COCHRAN présenté ci-dessus, montre que les variances pour l'ensemble des points de gamme de l'intervalle étudié sont homogènes.

B.11- Test de l'existence d'une pente significative :

Ce test est effectué pour le PA seul et la FR. Il consiste à comparer les variations dues à la régression et aux erreurs (expérimentales et d'ajustement) :

$$F_1 = S_I^2/S_R^2 > F_{(\alpha; 1; N-2)}$$

Si F_1 est significatif, on conclut à l'existence d'une pente, donc à une dépendance linéaire au seuil de de probabilité considéré.

Tableau 21 : Test de l'existence d'une pente significative

variations	DDL	Somme des carrées	Variances	F calculée
Variation Totale T	N 1	$\sum T^2 = \sum_{j=1}^k \sum_{i=1}^n (Y_{ij} - \bar{\bar{Y}})^2$		
Variation due à la régression I	1	$\sum I^{2} = a^{2} \sum_{j=1}^{k} n_{j} (\bar{X}_{j} - \bar{\bar{X}})^{2}$	$S_I^2 = \sum I^2$	$F_1 = S_L^2/S_R^2$
Variation résiduelle R	N - 2	$\sum R^2 = \sum T^2 - \sum I^2$	$S_R^2 = \sum R^2/(N-2)$	1 -1/-1

Tableau 22 : Linéarité : Test de l'existence d'une pente significative pour les droites de principe actif seul et de la forme pharmaceutique reconstituée

	sources de variat	son	nmes des carrées des éca	degrés de liberté	variances
PA seul	linéarité		47741683551,03	1	47741683551,0
	non-linéarité		456053750,65	3	152017916,882
	erreur pure		1012784273,19	10	101278427,319
	total		49210521574,8666	14	
	F de Fishe	er	critères d'acceptatio	n	
	471.3905	,	> 10,04		
	1,5010		< 6,55		
	sources de variat	son	nmes des carrées des éca	degrés de liberté	variances
	linéarité		43101267657,72	1,0000	43101267657,72
	non-linéarité		95244857,85	3,0000	31748285,9513
	erreur pure		401767306,07	10,0000	40176730,6070
	total		43598279821,6452	14,0000	
L	F de Fishe	er	critères d'acceptatio	n	
	1072.791	8	> 10,04		
	0,7902		< 6,55		
			도는 회사에게 대답하는 것 같아요? 나가지		

$$F_1 = 471,3905 > 10.04$$

FR

$$F_1 = 1072,7918 > 10.04$$

Résultat:

 F_1 est significatif: on conclut à l'existence d'une pente, donc à une dépendance linéaire au seuil de de probabilité considéré.

B.12- Test de validité de la droite de régression :

Il est aussi effectué pour le PA seul et la FR. Ce test permet de comparer les erreurs d'ajustement S_L^2 et expérimentales S_E^2 :

$$F_2 = S_L^2/S_E^2 < F_{(\alpha; k-2; N-k)}$$
 avec F (1%, 3, 10) < 6.55

Tableau 23 : Linéarité : Test de validité de la droite de régression

variations	DDL	Somme des carrées	Variances	F calculé
Erreur Expérimentale E	N-k	$\sum E^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (Y_{ij} - \bar{Y}_{j})^{2}$	$S_E^2 = \sum E^2 / (N - k)$	$F_2 = S_L^2/S_E^2$
Erreur de la Régression L (erreur du model)	k – 2	$\sum L^2 = \sum R^2 - \sum E^2$	$S_L^2 = \sum L^2 / (k-2)$	LITE

PA

$$F_2 = 1.5010 < 6.55$$

FR

$$F_2 = 0.7902 < 6.55$$

Résultat:

 F_2 N'est pas significatif : l'ajustement est considéré comme valide au seuil de probabilité considéré.

B.13- Calculer l'intervalle de confiance du blanc pour le PA seul et FR :

Pour cela il faut intervenir une variable de Student à N-2 degrés de liberté pour un niveau de confiance réparti de chaque côté de l'intervalle $1-\alpha/2$, notée $t_{(1-\alpha/2; N-2)}$. Si on appelle A et B les valeurs vrais de la pente et de l'ordonnée à l'origine :

$$b - t_{(1-\alpha/2;N-2)}.S_b \le B \le b + t_{(1-\alpha/2;N-2)}.S_b$$

Pour N = 15 et $\alpha = 5\%$: $t_{(1-\alpha/2; N-2)} = 2.160$

PA

$$-71539,88809 \le 13472,60859$$

FR

$$-34540,56312 \le -0.04$$
 $\le 14910,92060$

Résultats :

Ces valeurs se trouvent dans cet intervalle, on dira que l'étalonnage réalisé est correcte.

La valeur zéro est comprise dans l'intervalle de confiance des ordonnées à l'origine des deux droites, donc les deux droites passent effectivement par le blanc.

Tableau 24 : Tableau récapitulatif de l'étude statistique de la linéarité

	Linéarité de la FR	Linéarité du PA	Valeurs statistiques théoriques au risque α et conclusion
Pente α	15219,75	16018,12	
Ordonnée à l'origine β	-9814,82	-29033,64	NA
Coefficient de Corrélation (r)	0,994	0,985	
Homogénéité des variances	0,3214	0,4884	COCHRAN (1%, 5, 3): CF > 0,788 aberrante COCHRAN (5%, 5, 3): CF = 0.684 Homogène
Existence d'une pente	1072,7918	471,3905	FISHER (1%, 1,10), F> 10.04
Validité de la droite	0,7902	1,5010	FISHER (1%, 3, 10), F<6.55
Comparaison de pentes	0	,08219	STUDENT (5%, 13) Cobs (ordonnée) < 2,16
Comparaison des ordonnées à l'origine	0),13994	STUDENT (5%, 13) Cobs (pente) < 2,16

Conclusion:

Toutes ces conditions ont été vérifiées, on peut conclure que la méthode est :

- Linéaire.
- > Il n'y a pas d'effet matrice et d'erreur systématique.
- Le système de référence considéré est l'étalon 100%.

III-3.Exactitude:

Exploitations statistiques des résultats :

Cette étude statistique s'effectue sur les recouvrements entre les pesées retrouvées et les pesées introduites. Les pesées retrouvées ont été estimées selon le système de référence considéré : étalon 100%

Soient x_{100} et y_{100} respectivement, la pesée et l'observation correspondant à l'étalon 100%, calculer la quantité retrouvée et le recouvrement (Y_{ij}) .

Calcul de la quantité retrouvée Q_i :

$$Q_i = y_i/b_2$$

Avec: $b_2 = \frac{y_{100}}{x_{100}}$ pour chacun des jours.

Tableau 25: Exactitude : Les valeurs journalières de b_2

	Jour 1	Jour 2	Jour 3
b ₂	13754,564	16011,712	14875,586

Calcul du recouvrement Y_{ij} :

Recouvrement = Quantité retrouvée / Quantité introduite

$$Y_{ij} = Q_{ij}/x_{ij}$$

$$Y_{ij} = y_{ij}.x_{100}/x_{ij}.y_{100}$$

Les résultats obtenus figurent dans le tableau suivant :

Tableau 26 : Exactitude : Résultats de la forme pharmaceutique reconstitué

Teneur en PA par rapport à la quantité théorique	Essais	Pesées (mg) X _{ij}	Réponses Y _{ij}	Quantités retrouvées y _i (mg)	Recouvrement IR (%)	S^2	Pente à 100%
80,00	ler jour	20,10	265968,88	19,337	96,203		
	2e jour	20,10	294475,03	18,391	91,499	21,7892	
	3e jour	20,10	301493,92	20,268	100,834		
90,00	1er jour	22,40	307243,04	22,338	99,721		
	2e jour	22,40	338092,53	21,115	94,265	9,3366	
	3e jour	22,50	332614,14	22,360	99,377		
100,00	1er jour	25,00	346009,98	25,156	100,624		13754,564
	2e jour	25,00	365964,69	22,856	91,424	29,0213	16011,712
	3e jour	24,90	373664,51	25,119	100,881		14875,586
110,00	1er jour	27,50	380675,78	27,676	100,641		
	2e jour	27,50	415012,46	25,919	94,252	11,1589	
	3e jour	27,60	407027,08	27,362	99,138		
120,00	1er jour	30,00	440409,91	32,019	106,731		
	2e jour	30,00	444291,57	27,748	92,493	50,9311	
	3e jour	30,00	448431,27	30,145	100,485		

Vérification de l'homogénéité des variances liées :

On effectue le test de COCHRAN, en considérant les valeurs Y_{ij} pour vérifier l'homogénéité des variances des différents groupes j. Le critère à utiliser est :

$$C = S^2_{max} / \sum_{j=1}^k S_j^2$$

 S_j^2 : Variance de groupe j

 $S_j^2 = \sum_{i=1}^n (Y_{ij} - \bar{Y}_{ij})^2 / (n-1)$ avec : $\bar{Y}_{ij} = \frac{1}{n} \sum_{i=1}^n Y_{ij}$ la moyenne des recouvrements pour chaque groupe.

 S_{max}^2 : La variance la plus élevée des k groupes j

Tableau 27 : Exactitude : Test d'homogénéité des variances

Test d'Homogénéité des Variances				
$\sum S^2$	122,2371			
S² max	50,9311			
CF=COCHRAN calculé	0,4167			
COCHRAN théorique au risque (1%, 5, 3)	CF > 0,788 => la variance max est considéré comme aberrante			
COCHRAN théorique au risque (5%, 5, 3)	CF < 0,684 => le test n'est pas significatif et l'ensemble des variances sont considéré homogène			

Résultat:

C est inférieur à la valeur lue dans la table de COCHRAN pour 3 répétitions pour 5 niveaux de concentration au risque d'erreur α , l'ensemble des variances est considéré comme homogène.

1-1 Test de validité des moyennes :

Ce test consiste à comparer les erreurs intergroupes et intra-groupes :

$$F_3 = \frac{S_C^2}{S_E^2} < F_{(\alpha; k-1; N-k)}$$

Tableau 28 : Exactitude : Test de validité des moyennes

Variation	DDL	Somme Des Carrés	Variances	F calculé
Variation totale T	N - 1	$\sum T^2 = \sum_{j=1}^k \sum_{i=1}^n (Y_{ij} - \bar{\bar{Y}})^2$	$S_T^2 = \frac{\sum T^2}{N-1}$	
Variation intra- groupe E	N-k	$\sum E^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (Y_{ij} - \bar{Y}_{j})^{2}$	$S_E^2 = \frac{\sum E^2}{N - k}$	$F_3 = \frac{S_C^2}{S_E^2}$
Variation intergroupe C	k – 1	$\sum C^2 = \sum T^2 - \sum E^2$	$S_C^2 = \frac{\sum C^2}{k-1}$	_

Avec:

N : nombre total d'observations Y_{ij} dans l'ensemble des k groupe.

k: nombre total des groupes.

j: indice du groupe.

i : indice de répétition.

 $\overline{\bar{Y}}$: moyenne sur j et i des Y_{ij} et est égale à $\overline{\bar{Y}} = \sum_{j=1}^5 \frac{1}{k \cdot n} \sum_{i=1}^3 Y_{ij}$

n : nombre de répétition.

 \bar{Y}_i : moyenne sur i des Y_{ij} .

Si F_3 n'est pas significatif, on peut dire au risque considéré ($\alpha = 0.05$) que les variances des observations entre les différents groupes sont dues aux erreurs expérimentales

Tableau 29 : Exactitude : Résultat test de validité des moyennes

Teste de val	idité des moyennes	Critères d'acceptation
F3	0,2167	< 3,48

< 3.48

Donc il est possible de conclure que les variations des observations, entre les différents groupes, peuvent être considérées comme homogènes, au risque considéré. Et l'intervalle de confiance du recouvrement moyen peut donc être valablement calculé.

1-2 Estimation du recouvrement moyen :

Calculer la valeur du recouvrement moyen et son intervalle de confiance :

$$\overline{\overline{Y}} = \sum_{j=1}^k \frac{1}{k \cdot n} \sum_{i=1}^n Y_{ij}$$

$$I_{Rm} = \overline{\overline{Y}} \pm \frac{t_{(\alpha; N-1)}. S_T}{\sqrt{N}}$$

Avec: $t_{(0.05; 15-1)} = 2.145$

Résultat

La valeur 100% est incluse dans l'intervalle de confiance du recouvrement moyen, ce qui permet de conclure à l'exactitude de la méthode.

III-4.Fidélité:

Cette étude statistique s'effectue sur les recouvrements entre les pesées retrouvées et les pesées introduites. Les pesées retrouvées ont été estimées selon le système de référence considéré : étalon 100%

Soient x_{100} et y_{100} , la pesée et l'observation correspondant à l'étalon 100%, calculer la quantité retrouvée et le recouvrement (Y_{ij}) .

a. Recouvrement

- Calcul de la quantité retrouvée Q_i :

$$Q_i = y_i/b_2$$

Avec: $b_2 = \frac{y_{100}}{x_{100}}$ pour chacun des jours.

Tableau 30 : Fidélité : Les valeurs journalières de b2

	Jour 1	Jour 2	Jour 3
b ₂	14227,50	14785,12	15616,83

a- Calculer le recouvrement, noté Y_{ij} , entre la valeur introduite x_{ij} et la valeur estimée X_{ij} à partir de l'étalon de référence 100%:

$$Y_{ij} = \frac{X_{ij}}{\chi_{ij}} \times 100$$

Tableau 31 : Fidélité : Résultats de la forme pharmaceutique reconstituée

Série	Essai	Quantité introduite (mg)	Réponse Y _{ij} (Surface)	Pente	Quantité retrouvée (mg)	Recouvrement R_{ij}
	1	25,00	357898		25,16	100,62144676
	2	25,00	360102		25,31	101,24109165
	3	25,00	366092		25,73	102,92515378
1	4	25,00	356772	14227,50	25,08	100,30487682
	5	25,00	357631		25,14	100,54638088
	6	25,00	357722		25,14	100,57196513
	7	25,00	357615		25,14	100,54188255
	1	25,00	375818		25,42	101,67463963
	2	25,00	379829		25,69	102,75978451
	3	25,00	373549		25,27	101,06077931
2	4	25,00	369298	14785,12	24,98	99,91070429
	5	25,00	372326		25,18	100,72990616
	6	25,00	375097		25,37	101,47957868
	7	25,00	397877		25,48	101,90976988
	1	25,00	399425		25,58	102,30626509
	2	25,00	398122		25,49	101,97252268
	3	25,00	398230		25,50	102,00018513
3	4	25,00	398473	15616,83	25,52	102,06242566
	5	25,00	398473		25,52	102,06242566
	6	25,00	397578		25,46	101,83318586
	7	25,00	399283		25,57	102,26989408

b-Test d'homogénéité de variance (test de COCHRAN):

-Calculer la variance de recouvrement pour chaque jour de mesure (intra journalier) notée $s_{Y_{ij}}^2$:

$$s_{Y_{ij}}^2 = SCE_R/7-1$$
 , avec $SCE_R = \sum_{i=1}^7 (Y_{ij} - \overline{Y}_j)^2$

- $-\overline{Y}_j$ est la moyenne de recouvrement pour chaque jour de mesure : $\overline{Y}_j = 1/7\sum_{i=1}^7 Y_{ij}$
- Calculer la somme des variances calculées pour chaque niveau de concentration notée S, $S=\sum S_{Y_{ij}}^2$
- -Trier les valeurs par ordre croissant et trouver la valeur $S_{Y_{ij}}^2 max$

Tableau 32 : Fidélité : Test d'homogénéité des variances (test de COCHRAN)

Série j	nj	Variances (S ² _j)	SCE (M _j)	Somme des variances	Variance max	C_f calculé
1	7	0,830161	4,9810			
2	7	0,922054	4,6103	1,77928	0,922054	0,5182
3	7	0,03	0,1895			

-Calculer le rapport C_f :

$$C_f = S_{Y_{ij}}^2 Max / S$$
, avec $C_f < 0.561$

Critères d'acceptation:

COCHRAN théorique au risque (1%, 7, 3)

Si $C_f > 0.788 =$ la variance max est considéré comme aberrante.

COCHRAN théorique au risque (5%, 7, 3)

Si $C_f < 0.684 =>$ le test n'est pas significatif et l'ensemble des variances sont considérées comme homogènes.

<0.684

Résultat:

Le tableau représentant le test de COCHRAN montre que les variances pour l'ensemble des 3 séries sont homogènes.

C- Calculer la variance de la répétabilité notée S²r:

$$S_r^2 = \frac{\sum_{j=1}^3 S_j^2}{3}$$

d- Calculer la limite de répétabilité notée r :

$$r = 2.83 \times S_r$$

e- Calculer le coefficient de variation de la répétabilité notée CV_r :

$$CV_r = \frac{S_r}{\bar{m}} \times 100CV_r$$

f- Calculer la variance intergroupe notée S_g^2 :

On peut calculer une variance inter-groupe Sg^2 qui traduit la dispersion existant entre les moyennes m_i des groupes.

$$S_g^2 = \frac{\sum_{j=1}^3 (m_j - \bar{m})^2}{3-1} - \frac{S_r^2}{n}$$
 avec $\bar{m} = \sum_{j=1}^3 m_j / 3$

g- Calculer la variance de répétabilité intermédiaire notée S_R^2 :

$$S_R^2 = S_r^2 + S_g^2$$

h- Calculer la limite de la répétabilité intermédiaire notée R :

$$R = 2.83 \times S_R$$

i- Calculer le coefficient de variation de la répétabilité intermédiaire notée CV_R :

$$CV_R = S_R / \overline{m} \times 100$$

Avec Moyenne des recouvrements $\overline{m} = 101,4659459$

Critère d'acceptation:

Les coefficients de variation CV_r et CV_R doivent être respectivement inférieur à 1% et 2%.

Résultat:

Les coefficients de variation de la répétabilité et de reproductibilité sont respectivement inférieurs à 1%, et 2%, ce qui démontre la fidélité de la méthode analytique pour la détermination de la teneur en pinavérium bromure dans le produit fini.

II-7. Seuil de détection et seuil de quantification :

Tableau 33 : Seuil de détection et seuil de quantification

SD (µg/ml)	0,4512
SQ (µg/ml)	1,5042

II-8. Sensibilité:

$$x_1 - x_2 = \frac{\left[t_{\left(1 - \frac{\alpha}{2}\right)} + t_{\left(1 - \beta\right)}\right] S_E.\sqrt{2}}{a}$$

 S_E : La racine carrée de la variance expérimentale calculée lors de l'étude de la linéarité.

a : Risque égal à 0.05 bilatéral

 β : Risque égal à 0.05 unilatéral

Tableau 34 : Sensibilité

III-7. Résumé du rapport de validation :

Par rapport à l'ensemble des traitements statistiques, notre conclusion est la suivante :

Tableau 35 : Tableau récapitulatif des résultats de l'étude statistique de la validation

Critère	Conclusion				
Spécificité	Les donnes expérimentales recueillies ont				
	permis de prouver la spécificité de la				
	méthode pour le principe actif pinavérium				
	bromure.				
Linéarité	Le traitement statistique des données brutes a				
	permis de démontrer statistiquement la				
	linéarité de la méthode sur l'intervalle étudié.				
Exactitude	Le traitement des données brutes a permis d				
	démontrer statistiquement l'exactitude sur				
	l'intervalle étudié.				
Fidélité	Le traitement statistique des données brutes a				
	permis de démontrer statistiquement la				
	fidélité de la méthode.				
Intervalle de mesure	80%-120%				
Seuil de détection	0,451273μg/ml				
Seuil de quantification	1,5042 μg/ml				
Sensibilité	1,1179µg/ml				

Conclusion générale

En guise de conclusion, la technique d'analyse par chromatographie liquide à haute Performance présentée dans ce modeste mémoire est convenable pour le dosage de pinavéruim bromure dans le produit fini.

En effet les conditions chromatographiques permettent une bonne séparation de médicament.

Par ailleurs, les résultats de la validation montrent que la méthode est spécificifique, linéaire, exact et fidèle, présentent une sensibilité de $1.1179~\mu g/ml$, un seuil de détection et un seuil de quantification de $0.451273~\mu g/ml$ et de $1.5042~\mu g/ml$ respectivement .

REFERENCES BIBLIOGRAPHIQUES:

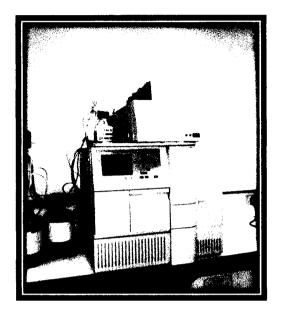
► Livres:

- 1. A. Skoog, F.James Holler, Tiothy A. Nieman-, Principes d'analyse instrumentale Douglas. 5éme edition. Amerique: de boeck, 2003, p 702.
- 2. Andrea Weston, Phyllis R. Brown, HPLC and CE Principales and Practice, chapitre 3 pages 90,108
- 3. BURGOT, G et BURGOT, Méthodes instrumentales d'analyse chimique et applications : Méthodes chromatographiques, électrophorèses, méthodes spectrales et méthodes thermiques, édition : Tec et Doc / Lavoisier (Paris), J.L. 2011 (3ème édition).
- 4. Francis Rouessac, Annick Rouessac avec collaboration de Daniel Cruché, ANALYSE CHIMIQUE Méthodes et techniques instrumentales modernes 6 éme édition, partie 1 : méthodes séparatives, page : 38,41., chapitre 2, pages 42,44,49,50. Chapitre 7 p 114.
- 5. GEORGE, L. 2005, HPLC Methods for Recently Approved Pharmaceuticals, edition: Wiley-Interscience.
- 6. KAMOUN, P ,Appareils et méthodes en biochimie et biologie moléculaire, édition : Flammarion ,1997.
- 7. Marcel CAUDE .Alain JARDY, Chromatographie en phase liquide, Théorie et méthodes de séparation, Techniques de l'Ingénieur, traité Analyse et Caractérisation PE 1456-1,3,4,6, 17, 20, 25, 30,31,32, 32, 33, 35.
- 8. Robert MARCHAL, chromatographie Edith ANTONOT, 1998 p 01
- 9. SKOOG, WEST, Holler, , Traduction et révision de la 7eme édition américaine par Claudine Buess-Herman , CHIMIE ANALYTIQUE , chapitre 28, page 660,661,663,664,665,676.chapitre 30 p 702,704.

► Articles d'une revue :

- 10. DMF pinavérium bromure 100 mg comprimé pelliculé, partie 3.2.S.
- 11. ETTRE, L.S, Le siècle de l'invention de la chromatographie, 2003, paru dans le journal de chromatographie et science-Vol 41.
- 12. FICHE DE DONNÉES DE SÉCURITÉ Santa Cruz Biotechnology, Inc. Date de révision 26-sept.-2014 Version 1.1.
- 13. Guide de validation analytique : Rapport d'une commission SFSTP : I. Méthodologie 1992.
- 14. ICH, Q2(R1) page 3, 2005.
- 15. Journées Qualité et Chimie 2010Une démarche qualité au service de la chimieAutrans -14 octobre 2010Marie-Dominique Blanchin Laboratoire de Chimie Analytique p26.

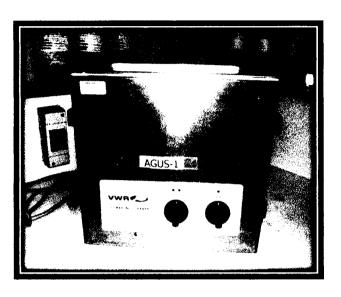
- 16. margriet M.W.B Hendriks, jan H. de boer, age K.smilde, robustness of analytical chemical methods and pharmaceutical technological products Data handling in science and technology volume 19:, édition: Elsevier 1996
- 17. Max FEINBERG, validation interne des méthodes d'analyses, traité Analyse et Caractérisation, page 224.
- 18. Michèle Désenfant Marc Priel Cédric Rivier,LA VALIDATION DES **METHODES** D'ANALYSE A L'EVALUATION DE L'INCERTITUDE **DES** RESULTATS DE **MESURE** Laboratoire National d'Essais **BNM-LNE** 1. rue Gaston Boissier 75724 Paris Cedex 15.
- 19. OMS, Série de Rapports techniques, N° 823,1992.
- 20. Pharmacopée européenne 7.0 tome 1, chapitre : Réactifs .
- 21. pharmacopée européenne 8ème édition, vol1, chapitre n°2 : méthodes d'analyses, page 45, juillet 2013.
- 22. Principes de la chromatographie université de SHERBROOK, cours : Techniques), 2014.
- 23. Validation des procédures analytiques quantitatives Harmonisation des démarches STP PHARMA -VAL ANA-2003 PART I final STP PHARMA PRATIQUES volume 13 N° 3 mai/juin 2003 pages 117.118.119.
- 24. validation of chromathographique methodes ,Reviewer guidance ,novembre 1994
- 25. validation of compendial procedures United States Pharmacopeia 39, chapitre 1225, page 1641. Année 2006

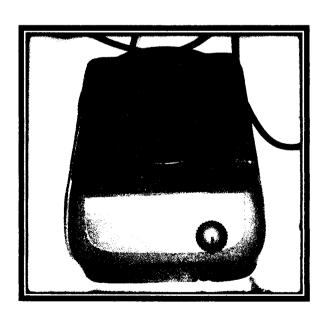

➤ Sites d'internet :

- 26. https://www.vidal.fr/Medicament/dicetel-5140.htm
- 27. http://sante.canoe.ca/drug info details.asp?brand name id=766
- 28. http://www.drugfuture.com/chemdata/pinaverium-bromide.html/
- **29.** http://www.mylan.ea/media/mylanca/documents/french/product%20pdf/pdfs%20ff%620dec%202015/dicetel-pmf-2016.01.08.pdf
- **30.** www4.acmetz.fr/physique CHIM-Jumber HPLC Chromatographie en phase liquide.htm 50
- 31. http://calamar.univ-ag.fr/uag/staps/cours/stat/stat.htm
- **32.** http://www.adneurope.com/index.php?id=241

LISTE DES ANNEXES

- ✓ ANNEXE I: Matériels et verreries.
- ✓ **ANNEXE II** : *Les* Chromatogrammes.
- ✓ ANNEXE III : tableaux statistiques.


ANNEXE I: Matériels et verreries :


Alliance Water HPLC e2695

Serial number: G12SM4972A

Détecteur PDA Waters 2998

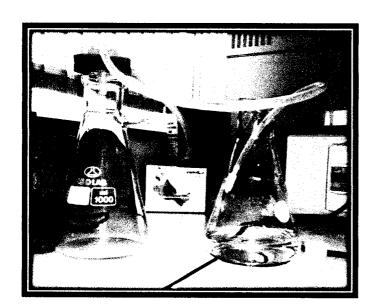
Sonicateur



Agitateur magnétique

Purificateur Millipore Elix

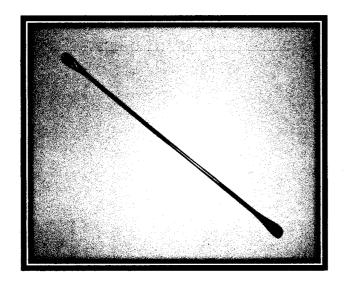
Serial number:F111413376A



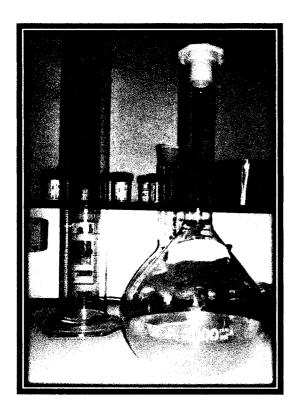
PH-mètre HANNA Instrument

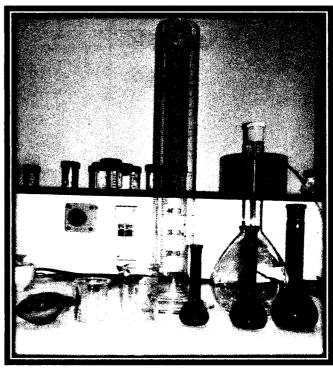
N° de série : 950870

Thermomètre

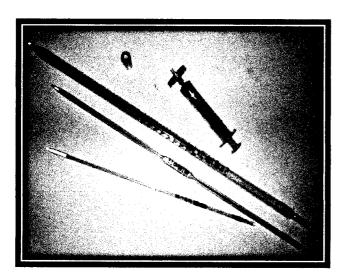


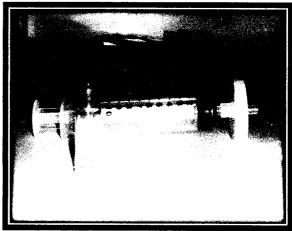
- Dispositif de filtration

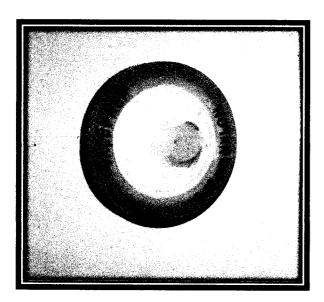



- Balance analytique Unibloc

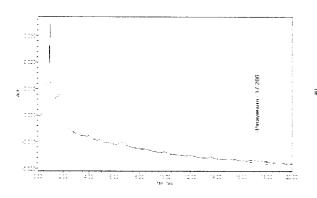
Max 220 g, min 10mg, e =1mg,d=0,1mg

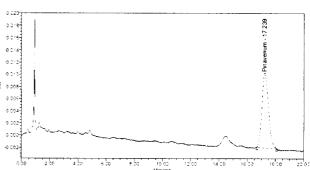



Spatule


Les verreries utilisées

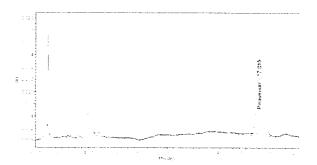
Les pipettes utilisées

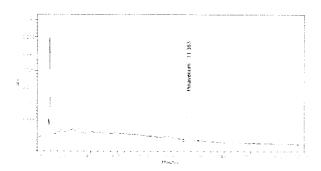

- Le vial et filtre seringue

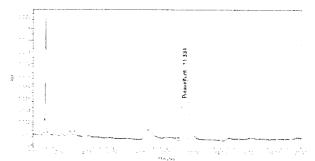


Filtre

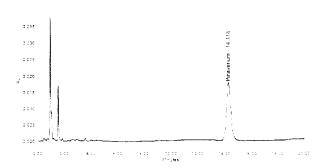

ANNEXE II : Les Chromatogrammes

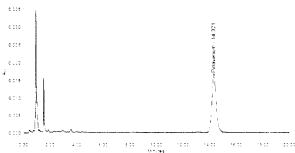

Les Chromatogrammes de la robustesse :




- Chromatogramme d'essai N°1 -
- Chromatogramme d'essai N°2 -

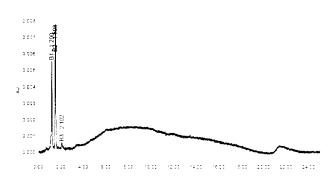
- Chromatogramme d'essai N°3 -
- Chromatogramme d'essai N°4 -


- Chromatogramme d'essai N°5 -
- Chromatogramme d'essai N°6 -

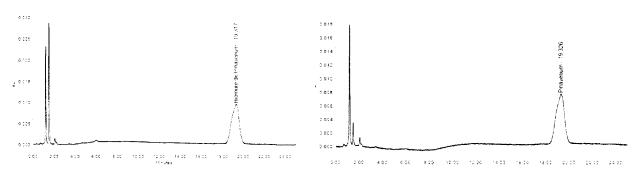


- Chromatogramme d'essai N°7 -
- Chromatogramme d'essai N°8 -

Les Chromatogrammes de la stabilité des solutions :

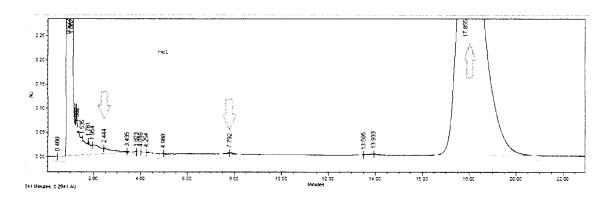


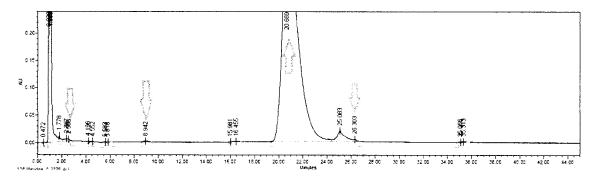
Chromatogramme de principe actif à t_0


Chromatogramme de principe actif à t_{12}

> Les chromatogrammes spécificité :

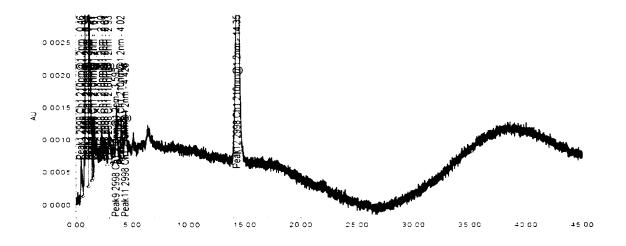
Chromatogramme du blanc


Chromatogramme de la FR

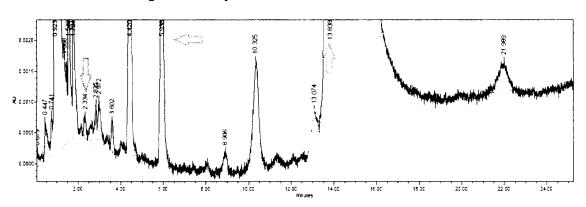

Chromatogramme de PA

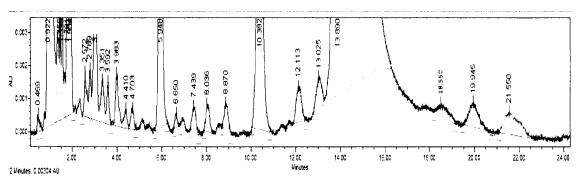
Chromatogramme de PA et FR


- Les chromatogrammes de la dégradation forcée :
 - Dégradation Alcaline :

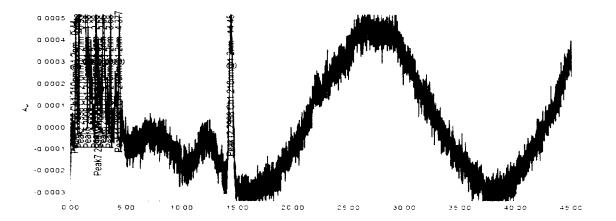


Chromatogramme du principe actif

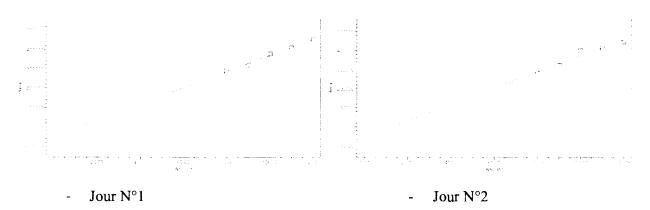

Chromatogramme de FR et PA

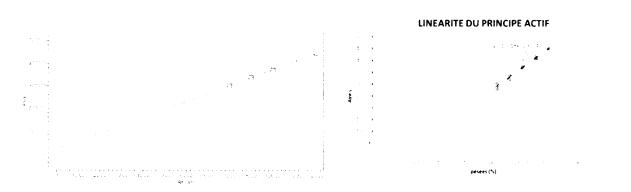


Chromatogramme de la FR


• Dégradation Oxydante :

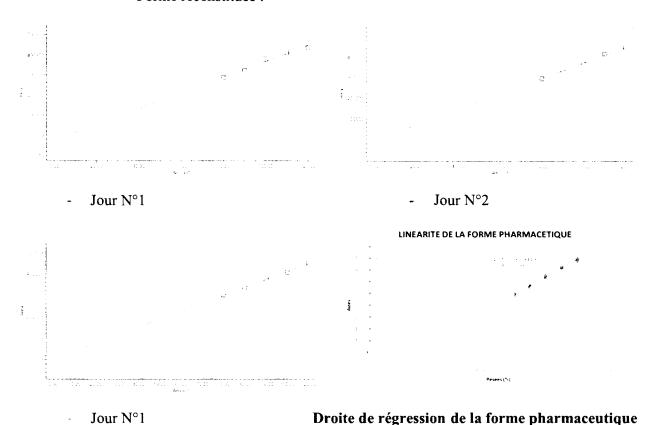
Chromatogramme du principe actif

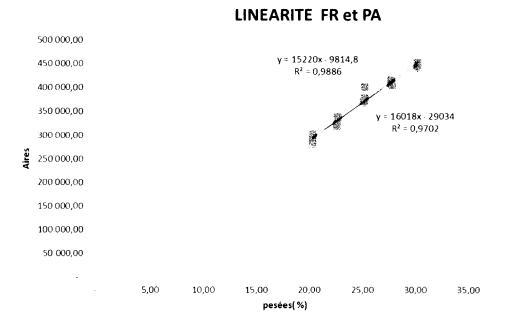



Chromatogramme de PA et FR

Chromatogramme de la FR

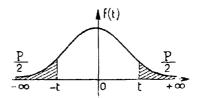
- > Les droites de régression de linéarité :
 - Principe actif:




- JOUR N°3 seul

Droite de régression de principe actif

• Forme reconstituée :


• Principe actif et Forme reconstituée :

Droite de régression forme pharmaceutique reconstitué et principe actif seul

ANNEXE III: tableaux statistiques

Table de Student

?	0,90	0,80	0,70	0,60	0,50	0,40	0.39	0,20	0, 13	0.05	0.02	0,01	C.001
1	0,158	0.325	0.510	0.727	1,000	1,376	1,963	3,078	6,314	12,706	31,621	63,657	636,619
2	0,142	0.289	0,445	0,617	0.616	1,061	1,386	1,886	2,920	4,303	5,965	9,925	31,598
3	0,137	0,277	0,424	0,584	0,755	0,978	1,250	1,638	2,353	3,182	4,541	5, 841	12,929
4	0,134	0,271	0,414	0.569	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	8,611
5	0,132	0.267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	6,869
6	0,131	0.265	0,404	0,553	0,718	0,906	1, 134	1,440	1,943	2,447	3, 143	3,707	5,959
7	0,130	0, 263	0,402	0.549	0,711	0,896	1, 119	1,415	1,895	2, 365	2,998	3,499	5,408
8	0,130	0,262	0,399	0,546	0.706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129	0,261	0,396	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0.129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2, 764	3, 169	4,587
11	0,129	0,260	0,396	0,540	0,597	0.876	1,088	1,363	1,795	2,201	2,718	3, 106	4,437
12	0,128	0,259	0,395	0,539	0,695	0.873	1,083	1,356	1,782	2,179	2,681	3,055	4.318
13	0, 128	0,259	0,394	0,538	0,694	0, 870	1,079	1,350	1,771	2, 160	2,650	3,012	4,221
14	0,128	0,258	0,393	0.537	0.692	0,868	1,076	1,345	1,751	2,145	2,624	2,977	4,140
15	0.128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,128	0, 258	0,392	0,535	0.690	0,865	1,071	1.337	1,745	2,120	2,583	2,921	4,015
17	0,128	0,257	0,392	0.534	0,689	0.863	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0.127	3, 257	0.392	0.534	0,688	0,862	1.087	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127	0,257	0,391	0,533	0,588	0,861	1,056	1,328	1,729	2,093	2,539	2,861	3,883
20	0, 127	0,257	0, 391	0, 533	0,587	0,860	1,064	1,325	1. 725	2,086	2,528	2, 845	3, 850
21	0, 127	0.257	0,391	0.532	0,586	0,859	1,063	1,323	1,721	2.080	2,518	2,831	3, 819
22	0.127	0,256	0.390	0,532	0,586	0,858	1,061	1,32:	1,717	2,074	2,508	2,819	3.792
23	0.127	0. 256	0.390	0,532	0,685	0.858	1,060	1,319	1,714	2,069	2,500	2, B07	3, 767
24	0.127	0,256	0,390	0,531	0,585	0.857	1,059	1.318	1.711	2,064	2,492	2,797	3,745
25	0,127	0, 256	0,390	0.531	0,584	6,856	1,058	1,316	1,708	2,060	2,485	2,787	3,725
26	0.127	0, 256	0, 390	0, 531	0,584	0,856	1.058	1, 315	1,705	2,056	2, 479	2, 779	3, 707
27	0, 127	0, 256	0,389	0,531	0,584	0.855	1,057	1.314	1,703	2,052	2,473	2,771	3,690
28	0, 127	0,256	0,389	0.530	0.583	0,855	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0.127	0,256	0,389	0,530	0.683	0,854	1,055	1,311	1,699	2,045	2,462	2,756	3,659
30	0,127	0,256	0,389	0,530	0.583	0.854	1,055	1,310	1,697	2,042	2,457	2,750	3,646
40	0.126	0,255	0,388	0.529	0.681	0.651	1.050	1,303	1,584	2.021	2,423	2,704	3,551
BO	0,126	0,254	0.387	0,527	0,679	0,848	1,046	1,296	1,671	2,000	2,390	2,660	3.460
120	0,126	0,254	0,386	0,526	0,577	0,845	1.041	1,269	1,558	1,980	2,358	2,617	3,373
30	0,126	0,253	0,385	0,524	0,574	0,842	1,036	1.282	1,545	1,960	2,326	2, 576	3,291

Table de Fisher

٠, ٠										
4.	1	.2	•	-5	•	3	*	12		
•										
·							manuscript of the			
1	. 15. 1	از بدن	213,1	1716	244.2	234.0	233/5	2450	البيئ	114
	10,21	(314)	191	100	. 3.1	1973	112-	:4 :1		10.5
	10,13		Y. 🗝		,	7 -44	5 F (5 1	5 Time 5 Time 1 Time	٠.
:		4	4.09		23	. 1	(C-4	2.21		303 436 347 347 347
	10 (M)		5.41 4.7	4 3	- 18	1 -5	1.87	1.4.5	• • •	1.74
3		5-14 4,74	4 5	4.2	. 39	: 2- 3,3 ⁻	3 1 3	4 68 3,57	\$. s .	
	4.73	1. 7	4,07			1.3	1.41	345 25		
4	1,15	1 4	1.50		1.10		1.73	2,07	*, :	1-1
10	4.18+	4.107	3.71	1,41	, 4.3		31, 1	- 1		I
1.1	.,81	2.17	3,59	3.36	,26	4, 30	1,146		٠,	2.45
1 '	4, 18	3,5%	0.00	4 /r	1	. 31	3,725	_ /ac.	<u>.</u> , , ,	7 TE
1.5	9 OT	5,53	3:	3 4	+07	1.97		194		2.1
1.	- (1)	1, 1		3,00	40	2.5%	2,735	3,53 2,5 <u>2</u>		2,17
• ` `		\$ 114	7.71			1.77	200	3.15		2.0
š. 2™	4,41	Agreed Agreed	8 1 3 20	3.17 2.97	.5.1	1.74	1 50 1 10 10	2 12 2 38		23.4
रू इस	-, 11	19.41	3 14	7.72		1,73 1,53	2.71	2.0	-	1! 1.:- <u>1</u>
1.1		130	111	· k			2.0	* 3	<u> </u>	1,55
.***	35	4.4	- [63	. N	1.4 1.4 1.4 1.4	200	- 14	• 13		1 - 7
21	4, 77		: (. 3	1.08	1,41 1,44	2.12	1 14	54.5	131
9.1		1.41	7.65	3.87	156	2.53	2,12	3.23	3 h : 3.52	1.79
7:	- 74	4,47	÷ (-)	1.39	15-			7.73	2.7%	1 :
3		1.40	1.1		34.3	112	1.30	2.55	1.1	1 1 *
	1.71	3.35	<u>2,50</u> 543	., .	2.70	117		2.13		171
2.	4,2	3,33	289	1		1 47 1 48	13.5 139	3.15	1,51 [1 -
	4,20	2.32	21.5	2.71 2.71) 30 2,77 2,78 2,78	- 1		214 217		111
		8, 33	ŭ.;	5.5		2.13	3.27 3.27	210	1.1 i 1,1 c	177
41.4	.,1	, , ,	٠،	7,1	٠.	41		1/167		1 -
4 .3	4,0	1,25	7.4	2.60	1	*, \$ _	2.15	2.00		1 ::
	. je 103	3.15	2.70		- 1	1.15	2.10	1.93		1.7%
1 * 1	217	5 E	7.6%		1.7		2.00	1 > 3	1, 1	1,75
*4	4	2,09	3.69	2.37	· -	12.3	. * -	1.75	1 -	1 1

Test de Dixon

	Level of Significance &						
27	0.10	0.05	0.03				
-;	0.886	(), ≥44	51983				
-\$	0.679	11.765	0.889				
	0.357	07/42	5-784				
6	6.487	0.560	0,698				
:	6.4%	0.507	E 637				
3	0.479	.± % % 4	15 68				
9	0,443	3.5.1.2	ひょかふき				
10	6.400	n 477	45 54 57				
11	0.517	9.5.76	0.675				
12	্ৰণণ	U.5-46	0.442				
1.3	0.463	0.51:	€t til 5				
1.4	0.402	1 = 46	· · red :				
1.5	4.470	.) 5 7 5	0.617				
1.6	7.45	0.07	0.50				
1.7	6,438	9 490	. 577				
£ 8	0.424	0.475	5				
1.9	(4,441.2)	0.462	ULS#7				
2.6	6.461	0.450	ন্ ক্তাক				
¥ 1	71.394	0.440	3 53.4				
. •	0.385	11.43(1	7 31 3				
2.3	0.374	0.471	5. ₹(#₹				
** . \$	0.36-	0.413	A. 497				
2.5	0.360	(1.4.26)	7. 480				

Table de Cochran

1		. i				j		Ì		
£	1.	•			1	• •	1 * -	• 0	1 **	•
2			31.41.55		1		40.57.7	1 1.	10.71	11 - 7.
1.	[p.s.s]	1967		0.871		*.*.	0.2.3	18 404	44 - 25	B 734,
	1 65.4	9.79,9	8 1	1 24 4	• :	5 5 1	1000	11.5		11 51
	10.503	1841	7.3			4-7-4	€1 € TN	0 × 1 4 4	1 544	12 5.7
6	[np-+]	1 201		1			11 4	:	0 123	(1.134
-	1.8 8	• 21	71	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,*	0.0×1	• 4 + 1	0.4	11 112,
Я		4.80	0.1	14 % [1	;		40.4.3	 12 (47.3	O eres
1 9	1 6 24	4 44 4 5		· · · · · · ·	:-	:	10.4	\$ 15 mg		62 ()
10] សក <u>ា</u> ន[1 1 4 1		0.345	1.		er : .	* ×1	10.40	15 - 33
11	0.5%	3 2 4		11.	113	1.	40 (10)	1 25	4, , ,	14.781
12	4+4 1 1	154		1. 21.21			40 3	1.48		44 , 64 3
13	100.4	\$ %g	., -	F 17.1	,	, .	40 0.2	r . ** t	1. 30.	61.733
1.	1 4 1	3 4 9 1	1	*			10.7%		. • • •	44.23.25
1.		.5 4 1	1	1.			16	4 4 1		1, 3.

Dégradation forcée :

• 1-milieu alcalin : NaOH 1N

- Tableaux de résultats :

PA +	RT	RRT
NAOH		
1N		
1	0.460	0.025
2	0.922	0.051
3	1.062	0.059
4	1.302	0.072
5	1.535	0.085
6	1.781	0.09
7	1.954	0.10
8	2.444	0.136
9	3.435	0.192
10	3.832	0.214
11	4.016	0.224
12	4.254	0.238
13	4.988	0.279
14	7.792	0.436
15	13.505	0.756
16	13.933	0.780
17	17.855	1

PA+FR	TR	RRT
+		
NAOH		
1N		
1	0.472	0.022
2	0.920	0.044
3	1.058	0.051
4	1.778	0.086
5	2.387	0.115
6	2.568	0.124
7	4.196	0.202
8	4.552	0.220
9	5.583	0.270
10	5.818	0.281
11	8.942	0.432
12	15.981	0.773
13	16.455	0.796
14	20.669	1
15	25.083	1.213
16	26.303	1.272
17	35.066	1.696
18	35.313	1.70

FR + NAOH	RT
1N	
1	0.466
2	0.876
3	1.060
4	1.535
5	2.387
6	4.203
7	5.581
8	24.102
9	25.768

• milieu acide: HCL 1N

- Tableaux de résultats :

PA+HCL	RT	RRT
1N		
1	0.466	0.033
2	0.846	0.061
3	0.979	0.070
4	1.174	0.08
5	1.436	0.103
6	1.579	0.114
7	1.785	0.129
8	2.318	0.167
9	2.569	0.185
10	2.930	0.212
11	3.603	0.260
12	4.449	0.321
13	4.730	0.342
14	5.100	0.369
15	5.911	0.427
16	10.312	0.746
17	13.820	1

PA+FR+	TR	RRT
HCL 1N		
1	0.466	0.033
2	0.976	0.070
3	1.306	0.094
4	1.430	0.103
5	1.577	0.114
6	1.783	0.128
7	2.300	0.166
8	2.564	0.185
9	2.901	0.209
10	3.057	0.221
11	3.354	0.242
12	3.578	0.258
13	3.974	0.287
14	4.717	0.341
15	5.099	0.368
16	5.919	0.428
17	7.404	0.535
18	8.028	0.580
19	8.882	0.642
20	10.340	0.747
21	13.010	0.941
22	13.825	1

FR + hcl	RT
1N	
1	0.464
2	0.946
3	1.172
4	1.473
5	1.613
6	2.307
7	2.631
8	2.935
9	3.595
10	4.029
11	4.426
12	14.350

• milieu oxydant H_2O_2 : Tableaux de résultats

$PA+H_2O_2$	RT	RTT
1	0.079	0.0057
2	0.447	0.032
3	0.741	0.053
4	0.923	0.066
5	1.368	0.098
6	1.540	0.111
7	1.784	0.128
8	2.334	0.168
9	2.835	0.204
10	2.972	0.214
11	3.602	0.260
12	4.420	0.319
13	5.938	0.429
14	10.325	0.746
15	13.830	1

PA+FR	TR	RRT
+ h2o2		
1	0.469	0.033
2	0.922	0.066
3	1.456	0.104
4	1.538	0.110
5	1.781	0.128
6	1.904	0.137
7	2.572	0.185
8	2.789	0.200
9	3.024	0.217
10	3.351	0.241
11	3.592	0.258
12	3.983	0.286
13	4.410	0.317
14	4.703	0.338
15	5.948	0.428
16	6.650	0.478
17	7.439	0.535
18	8.036	0.578
19	8.870	0.638
20	10.382	0.747
21	12.113	0.872
22	13.025	0.937
23	13.890	1
24	19.945	1.43
25	18.550	1,33

FR+H2O2	0.446
1	0.748
2	0.931
3	1.580
4	2.289
5	2.519
6	2.960
7	3.581
9	4.377
10	14.452

Résumé:

La qualité constitue la priorité de l'industrie pharmaceutique. Des méthodes d'analyses validées vont permettre de limiter les risques non-qualité. Le présent document est consacré à la validation d'une méthode analytique de dosage, ne figurant dans aucune pharmacopée jusqu'à ce jour, développée et optimisée afin de doser, par chromatographie liquide de paires d'ions (HPLC UV-VIS) dans le produit fini, un médicament spasmolytique inhibant l'entrée du calcium au niveau de la cellule musculaire lisse intestinale dont la DCI : pinavérium bromure.

Les résultats de la validation de la présente méthode analytique apportent la preuve qu'elle est adaptée aux objectifs que l'on s'est fixé.

Mots clés :

Validation, Dosage, Pinavérium bromure, HPLC UV-VIS, Chromatographie de paires d'ion

Abstract:

Quality constitute the priority of pharmaceutical industry. Validated analytical methods allow limiting no-quality risks. The present document is devoted to validation of an analytical assay method, which does not figure in any pharmacopeia until this day. The developed and optimized method intends to measure, by ion-pair liquid chromatography (HPLC UV-VIS) in drug product, a spasmolytic drug, which inhibit the entrance of calcium in intestinal smooth muscle cell, named Pinaverium bromide.

Validation results of the present method demonstrate that it is suitable for its intended purposes.

Keywords:

Validation, Assay, Pinaverium bromide, HPLC UV-VIS, Ion-pair chromatography

- ATTOUI Omar.
- attouioar@gmail.com.
- MENOUER Nassima.
- ph.menouer@gmail.com.
- ZENATI Maroua.
- phzenati@gmail.com.

Résumé:

La qualité constitue la priorité de l'industrie pharmaceutique. Des méthodes d'analyses validées vont permettre de limiter les risques non-qualité. Le présent document est consacré à la validation d'une méthode analytique de dosage, ne figurant dans aucune pharmacopée jusqu'à ce jour, développée et optimisée afin de doser, par chromatographie liquide de paires d'ions (HPLC UV-VIS) dans le produit fini, un médicament spasmolytique inhibant l'entrée du calcium au niveau de la cellule musculaire lisse intestinale dont la DCI: pinavérium bromure.

Les résultats de la validation de la présente méthode analytique apportent la preuve qu'elle est adaptée aux objectifs que l'on s'est fixé.

Mots clés :

Validation, Dosage, Pinavérium bromure, HPLC UV-VIS, Chromatographie de paires d'ion

Abstract:

Quality constitute the priority of pharmaceutical industry. Validated analytical methods allow limiting no-quality risks. The present document is devoted to validation of an analytical assay method, which does not figure in any pharmacopeia until this day. The developed and optimized method intends to measure, by ion-pair liquid chromatography (HPLC UV-VIS) in drug product, a spasmolytic drug, which inhibit the entrance of calcium in intestinal smooth muscle cell, named Pinaverium bromide.

Validation results of the present method demonstrate that it is suitable for its intended purposes.

Keywords:

Validation, Assay, Pinaverium bromide, HPLC UV-VIS, Ion-pair chromatography