
BIODIVERSITÉ

La morphogenèse

Développement et diversité des formes vivantes

Table des matières

(see contents p. IX)

NTRODUCTION	1
I. LE DÉVELOPPEMENT DE L'ŒUF	5
1. CLASSIFICATION DES ŒUFS EN FONCTION DE LA QUANTITÉ DE RÉSERVES	6
2. CLASSIFICATION DES ŒUFS	8
EUFS À RÉGULATION ET ŒUFS EN MOSAÏQUE	
3. DÉVELOPPEMENT D'UN ŒUF À RÉGULATION : L'ŒUF D'OURSIN Études expérimentales (J. Runnström, S. Hörstadius et l'École suédoise)	9
Gradients morphogénétiques et notion de positionnement (Child, Runnström et Wolpert)	10
4. DES ŒUFS EN SPIRALE AUX DIVERSES «TOUPIES»: DÉVELOPPEMENT DES ŒUFS EN MOSAÏQUE	11
5. EXPÉRIENCE D'HÖRSTADIUS SUR L'OURSIN PSAMMECHINUS SP. ET LE VER CEREBRATULUS SP.	13
6. MISE EN ÉVIDENCE DES RELATIONS CYTOPLASME-NOYAU DANS LE DÉVELOPPEMENT DE L'ŒUF D'ASCARIS	17
II. LA GASTRULATION	19
1. CAS DES ÉCHINODERMES	21
2. CAS DES AMPHIBIENS	25
3. CAS DES POISSONS	27
4. CAS DES OISEAUX	29
5. CAS DES MAMMIFÈRES	32
6. DIVERSITÉ ET UNITÉ DE LA DISTRIBUTION DES AIRES PRÉSOMPTIVES AU DÉBUT DE LA GASTRULA	33
III. LA NEURULATION ET LA FORMATION DE L'ŒIL	37
1. LA NEURULATION DES TRITONS	37
2 L'ŒIL DE VERTÉBRÉ	40

© MASSON. La photocopie non autorisée est un délit.

3. L'ŒIL DES CÉPHALOPODES : UN EXEMPLE DE CONVERGENCE	42
ET DE RÉCAPITULATION	42
Convergence	44
Récapitulation	77
IV. LA MÉTAMORPHOSE	47
1. LA MÉTAMORPHOSE CHEZ LES INSECTES	49
2. LA MÉTAMORPHOSE CHEZ LES CRUSTACÉS	53
3. LA MÉTAMORPHOSE CHEZ LES ASCIDIES	56
4. LA MÉTAMORPHOSE CHEZ LES AMPHIBIENS	59
Cas des urodèles	60
Cas des anoures	65
V. DIVERSITÉ LARVAIRE CHEZ LES INVERTÉBRÉS	68
1. LES LARVES DE SPONGIAIRES ET DE CNIDAIRES	69
2. LES LARVES DES VERS ET DES BRYOZOAIRES	71
3. LES LARVES DES MOLLUSQUES ET DES ARTHROPODES	75
4. LES LARVES DES ÉCHINODERMES	78
4. LES LARVES DES ECTITIVODERIVIES	70
VI. LA RÉGÉNÉRATION	81
1. LA RÉGÉNÉRATION ET LE DÉVELOPPEMENT SOMATIQUE CHEZ LES PLANTES ET LES INVERTÉBRÉS	85
2. LA RÉGÉNÉRATION	0.5
DE L'ALGUE UNICELLULAIRE ACÉTABULAIRE	91
3. LA RÉGÉNÉRATION CHEZ LES AMPHIBIENS	91
4. LA RÉGÉNÉRATION DES NERFS CHEZ LES VERTÉBRÉS	93
5. CAS DE RÉGÉNÉRATIONS PATHOLOGIQUES	
CHEZ LES INSECTES	97
VII. DES GÈNES À L'ORGANISATION DES EMBRYONS	99
1. HISTORIQUE : LE CONCEPT D'HARMONIE	99
2. L'EXEMPLE DE LA DROSOPHILE	100
3. LES GÈNES SÉLECTEURS	104
VIII. DIVERSITÉ DES CYCLES DE VIE CHEZ LES VÉGÉTAUX	110
1. CYCLES DE VIE DES ALGUES	111
Ulothrix zonata	111
Fucus vesiculosus	111
Coleochaete pulvinata	112
2. PASSAGE À LA VIE TERRESTRE	112
Cas des bryophytes (hépatiques et mousses)	113
Cas des ptéridophytes (fougères et sélaginelles)	115
Cas des gymnospermes (conifères)	116

BIODIVERSITE

ette collection présente la biodiversité animale et végétale tant dans la morphologie, la répartition, l'adaptation et la variation des espèces, que dans leurs fonctions physiologiques et les mécanismes qui en assurent la régulation.

Deux séries complémentaires, *Biologie* expérimentale et *Sciences naturelles*, y réunissent des ouvrages qui privilégient, respectivement, la physiologie des mécanismes cellulaires et moléculaires, et la description morphologique et fonctionnelle des structures vivantes.

a diversité remarquable des formes vivantes, végétales et animales, aquatiques, terrestres et aériennes, répond à des contraintes génétiques universelles. C'est dans la morphogenèse que réside le lien paradoxal entre la variabilité morphologique et l'universalité des mécanismes génétiques : le développement des structures vivantes, tant à l'échelle moléculaire qu'aux niveaux de l'organisme et de l'écosystème, permet de comprendre à la fois leur extrême diversité et leur unité profonde.

Cet ouvrage propose une étude comparative des différentes formes de développement et de processus morphogénétiques : embryogenèse, métamorphose, régénération, cycles de vie, modes de dissémination, développement de formes symétriques, spiralées... En outre, il inscrit ces processus dans une perspective évolutive : au cours de la mise en place des formes embryonnaires successives, l'individu récapitule des structures ancestrales apparues durant l'histoire de l'espèce.

La relation étroite entre biodiversité et unité du vivant est ainsi attestée à la lumière des contributions les plus récentes de l'embryologie descriptive et de la génétique moléculaire. Considérée il y a peu de temps encore comme un avatar désuet des sciences naturelles, l'embryologie revient en effet au premier plan de la recherche sur la morphogenèse.

Abondamment illustré et rédigé de manière aussi accessible que possible, cet ouvrage de synthèse sur l'une des sources de la biodiversité intéressera tant l'étudiant en sciences de la vie que l'amateur passionné de biologie.

Dominique Doumenc est professeur au Muséum national d'histoire naturelle, où il dirige le laboratoire de biologie des invertébrés marins et malacologie (URA-CNRS 699).

Pierre-Marie Lenicque est ancien directeur de recherche au CNRS.

ISBN : 2-225-84808-4