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 ملخص

موضوع هذا الماجستير هو نظام أمان بيومتري يمكن استخدامه للتحكم في حضور الطلاب أو دخول الأشخاص إلى أي بيئة )المنزل  

 أو الجامعة أو المصانع(. 

نستخدم خوارزميات الذكاء الاصطناعي ورؤية الكمبيوتر لإنشاء التعرف على الوجه كنظام أمان بيومتري ، ونقارن    المشروع،في هذا  

بالتعرف على    HOGوخوارزمية    SSDو    YOLOv5بين نماذج التعلم العميق   قمنا بمقارنة    الوجوه،لاكتشاف الوجه. فيما يتعلق 

ب    FaceNetبنموذج   Siamese نموذج شبكة     ،SSDيتمتع بدقة أفضل من طراز    YOLOv5مسبقاً. أظهرت النتائج أن نموذج  مُدرَّ

نفس   الوجه    السرعة،لهما  جهاز كشف  التعرف على    HOGولكن  نماذج  مقبولة. حول  دقة  مع  بكثير  نموذج    الوجوه،أسرع  يعد 

FaceNet  المدرّب مسبقاً أفضل من نموذج شبكةSiamese  .من حيث الدقة والسرعة 

 للتعرف على الوجوه.  FaceNetلاكتشاف الوجه ونموذج   HOGا بتصميم نظام الحضور باستخدام كل من خوارزمية قمن  أخيرًا،

 

 

Abstract 

This master’s subject is a biometric security system that can be used to control the student 

attendance or the entrance of individuals to any environment (home, university or factories). 

In this project we use artificial intelligence and computer vision algorithms to create a face 

identification as a biometric security system, we compare the deep learning models YOLOv5, 

SSD and the HOG algorithm for face detection. Regarding face recognition, we compare the 

Siamese network model with a Pre-trained FaceNet model. The results show that YOLOv5 

model has better accuracy then the SSD model, having both the same speed, but the HOG 

face detector is way faster with acceptable accuracy. About the face recognition models, the 

FaceNet pre-trained model is better than the Siamese network model in both accuracy and 

speed. 

Finally, we design the attendance system using both the HOG algorithm for face detection 

and the FaceNet model for face recognition. 
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Résumé 

Ce sujet de master porte sur un système de sécurité biométrique qui peut être utilisé pour 

contrôler la présence des étudiants ou l'entrée des individus dans n'importe quel 

environnement (maison, université ou usines). 

Dans ce projet, nous utilisons des algorithmes d'intelligence artificielle et de vision par 

ordinateur pour créer une identification de visage comme système de sécurité biométrique, 

nous comparons les modèles d'apprentissage profond YOLOv5, SSD et l'algorithme HOG pour 

la détection de visage. En ce qui concerne la reconnaissance des visages, nous comparons le 

modèle de réseau siamese avec un modèle FaceNet pré-entraîné. Les résultats montrent que 

le modèle YOLOv5 a une meilleure précision que le modèle SSD, tout en ayant la même 

vitesse, mais le détecteur de visage HOG est beaucoup plus rapide avec une précision 

acceptable. En ce qui concerne les modèles de reconnaissance des visages, le modèle FaceNet 

pré-entraîné est meilleur que le modèle du réseau siamese en termes de précision et de 

vitesse . 

Enfin, nous concevons le système de présence en utilisant à la fois l'algorithme HOG pour la 

détection des visages et le modèle FaceNet pour la reconnaissance des visages . 
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General introduction 

Students’ attendance can take a long time especially with a big number of students, calling 

for 100 names may take 15 minutes or more, for this problem we need to work on an 

automatic system to do the job, there are many biometric identification systems for 

recognizing people and labelling them like fingerprints, face-id, voice-id, hand 

geometry, retinal scan and many other systems. 

In this paper, we’re going to create a face identification-based attendance system. Face-id is 

easy to use and it takes no time to detect and recognize faces, the face-id can recognize many 

people in few seconds.  

This system can be helpful in controlled environments or workspaces, it can be used in 

factories or connected environments like smart homes, all you need is to update the 

database. 

This document contains three chapters, the first chapter is an overview about the classical 

face-id algorithms like Eigenfaces and LBP and also modern algorithms using a deep learning 

model for face detection as YOLO and FaceNet for face recognition with a brief introduction 

to artificial intelligence. 

The second chapter is experimental research containing all the work we’ve done and 

comparing the results of many models that we trained to create the final application. 

Finally, in the last chapter we’re going to describe the steps to build the application and the 

graphical user interface to make it easier for non-programmer.           
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I. Chapter 1: Overview 
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I.1 introduction 

Many people are familiar with the face detections and recognitions technologies which are 

used in social media applications like Facebook or Snapchat face changing filters. 

Starting, the face detection and recognition are two different tasks (Figure l-1), the face 

detection algorithm’s main function is finding faces in pictures or live videos.  

Facial recognition is a technology of recognizing or verifying a person's identification by their 

face. People may be identified in pictures, videos, or in real time using facial recognition. 

The first face recognition algorithm was created by Woody Bledsoe, Helen Chan Wolf and 

Charles Bisson in 1964.  

 

Figure I-1 face detection and recognition 

Biometric security includes facial recognition, Voice recognition, fingerprint recognition, and 

ocular retina identification, those technologies are mostly utilized for security and law 

enforcement and many other applications. 

There are multiple methods for face-id (classical and modern) which pass through different 

phases as we see on (Figure I-2). 

 

 

Figure I-2 face recognition steps 
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I.2 Classical face-id algorithms 

I.2.1 Histogram of Oriented Gradients (HOG) 

HOG or Histogram of Oriented Gradients is a feature descriptor that allows to extract 

important information and discard unnecessary information from an image by turning the 

pixels into a feature vector and it’s used for object detection in computer vision tasks. 

I.2.1.1 The HOG follows many steps: 

▪ Preprocessing: resize the image and divide it into blocks. 

▪ Calculating the gradients: calculating the magnitude and the direction of the 

gradients by converting from cartesian to Polar coordinates: 

 

𝑔 = √𝑔𝑥
2 + 𝑔𝑦

2                                                        Equation I-1 polar coordinates: the length 

𝜃 = 𝑎𝑟𝑐 𝑡𝑎𝑛
𝑔𝑦

𝑔𝑥
                                                        Equation I-2 polar coordinates: the angle 

 

▪ Make a histogram from these gradients: after calculating gradient direction and 

magnitude like the (Figure I-3) shows, we need to create a histogram for each 

block. 

 

Figure I-3 gradient direction and magnitude 

▪ The final step is visualizing the HOG picture. 
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Figure I-4 HOG face 

I.2.2 Local Binary Pattern (LBP) 

Local Binary Pattern (LBP) is a simple but very efficient texture operator that labels the pixels 

of an image by evaluating each pixel's neighborhood using a threshold and treating the result 

as a binary number.  

It was first described in 1994 (LBP) and has since proven to be a powerful feature of texture 

classification. It was also found that when LBP was combined with histograms of oriented 

gradient (HOG) descriptors, the recognition performance on some datasets improved 

significantly. 

Using LBP with a histogram, we can represent a face image with a simple data vector.  

Since LBP is a visual descriptor, it can also be used for face recognition tasks, next we see an 

LBP example.[1] 
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Figure I-5 Local Binary Pattern 

I.2.3 Eigenfaces 

Eigenfaces are the basic components of a set of feature vectors that are used in face 

recognition. They were first proposed by Sirovich and Kirby in 1987 and were then used by 

Matthew Turk and Alex Pentland in their face recognition project. An image batch is 

converted into eigenfaces, which are feature vectors, before the actual training set is made. 

During face recognition, the system projects the new image to the eigenface subspace and 

determines its identity by examining the position of the projection points in the subspace as 

well as the length of the lines projecting out them. 

Eigenfaces method of spatial transformation uses Principal Component Analysis (PCA), which 

takes the covariance matrix of every face in the training set and breaks it down to find the 

eigenvectors (also known as eigenfaces). This method takes images that are in the same 

category and clusters them together, and separates images that are in different categories 

further away. While it is difficult to cut images that are in the original pixel space with simple 

lines or edges, this method of spatial transformation can separate the images well.[2] 
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Figure I-6 Eigenfaces 

 

 

I.2.4 Fisherface algorithm 

The PCA method takes the data and projects it in the direction that has the biggest variation. 

The method is not as good at separating the different classes, but it is good at projecting the 

data into a direction that has the largest variation. 

In 1991, Cheng et al. introduced Linear Discriminant Analysis (LDA) method for face 

recognition. 

This method tries to find a linear subspace that maximizes the separation of two pattern 

classes. 

In 1997, Belhumer applied the Fisher Discriminant Criterion to face classification and 

proposed the Fisherface method. The method was based on Linear Discriminant Analysis, LDA 
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attempts to find a line of separation that will best separate two groups, which can be applied 

to face recognition. [3] 

 

I.2.5 Viola-Jones 

Paul Viola and Michael Jones are the original names for the algorithm named after. In 2001, 

they wrote a paper proposing the method, titled “Rapid Object Detection using a Boosted 

Cascade of Simple Features.” Despite being an older method, Viola-Jones is powerful, and is 

used in real-time face detection. The algorithm is very slow to train, but can detect faces very 

quickly in real-time. 

This algorithm works by examining smaller sections of the original image and looking for 

specific face attributes in each section. The algorithm has to check many different sizes and 

positions on the image, because it could contain many different sized faces. Viola and Jones 

used Haar-like features in this algorithm. 

The four main steps of the Viola Jones algorithm are: 

1. Selecting Haar-like features. 

2. Creating an integral image. 

3. Running AdaBoost training. 

4. Creating classifier cascades. 

 

I.3 The artificial intelligence 

I.3.1 What is artificial intelligence 

Computers or robots that can perform tasks normally associated with intelligent beings have 

been around since the 1940s, when the first digital computer was created. These computers 

have been shown to be very proficient at carrying out very complicated tasks, such as playing 

chess or proving mathematical theorems. Despite the fact that computer memory and 

processing speed have improved significantly since their creation, there are still no programs 

that can match a human's ability to perform general knowledge tasks or be flexible across a 

wider range of domains.  
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Some programs have been able to perform the same tasks that professionals and experts can 

do, using artificial intelligence. These applications include recognizing handwriting, voice and 

medical diagnosis. 

 

 

Figure I-7 AI-ML-DL 

 

I.3.2 The evolution of Artificial intelligence 

In 1950, Alan Turing suggested that computers could simulate intelligent behaviour and 

critical thinking. His idea became known as the Turing Test, which John McCarthy later 

referred to as artificial intelligence. AI is the science and engineering of creating intelligent 

machines, and has grown over the years to include more complex codes that function similar 

to a human brain. There are many branches of AI similar to there being different specialties 

in medicine, including machine learning (ML), deep learning (DL), and computer vision. 

In the 1980s computers were able to learn and use their knowledge thanks to two sources: 

more algorithms, and more funding.  
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John Hopfield and David Rumelhart made a deep learning technique popular, which allowed 

computers to learn through experience. Edward Feigenbaum used expert systems to make 

computers mimic the decision and making process of a human expert. 

Expert systems were used in many industries, and could give advice to non-experts based on 

what they had learned about every possible situation. The program would ask an expert how 

to respond to a situation, and then once the expert had learned the responses for all 

situations, the program could give advice to non-experts. 

In the 1990s and 2000s, many of the seminal goals of artificial intelligence were achieved. In 

1997, chess world champion and grandmaster Gary Kasparov was defeated by IBM's chess 

computer program Deep Blue. 

 

I.3.3 Machine learning and deep learning  

ML is a subset of artificial intelligence that focuses on enabling computers to perform tasks 

without explicit programming, on the other hand the DL is a subset of machine learning based 

on artificial neutral networks, the machine learning can’t solve very complex problems as 

computer vision tasks. Also, Deep Learning supports scalability, supervised and unsupervised 

learning, More differences in the (Table l-1) 

 

Deep learning Machine learning 

Require big data train on lesser data 

Provide high accuracy Provide lesser accuracy 

Take long time Take lesser time 

The output can be text, sound … The output is always a numerical value 

Table I-1 ML vs DL 
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Machine Learning is a method of statistical learning where each instance in a dataset is 

described by a set of features or attributes. In contrast, the term “Deep Learning” is a method 

of statistical learning that extracts features or attributes from raw data. So, in deep learning 

before getting to the classification the data has to go through extraction features (hidden 

layers) (Figure I-8). [4] 

 

 

Figure I-8 ML and DL neural networks [4] 

I.3.4 The Deep Neural Network 

Deep neural nets are neural networks that have multiple hidden layers. There are many types 

of deep neural net like (CNN, RNN).  

A Convolutional Neural Network, or CNN, is a type of deep neural network that is utilized for 

image and object recognition and classification. CNNs are being used for many different tasks, 

including video analysis, localizing and separating sections of images, and image processing, 

there are a very large number of CNN model architectures of different types.  

• AlexNet 

• ResNet 
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• GoogleNet 

• MobileNetV1 

• Wide ResNet 

• VGG 

• PolyNet 

I.4 Modern Face-Id algorithms 

I.4.1 YOLO 

The object detection networks like YOLO and SSD have become popular and very useful for 

face detection and many other applications, because they have good performance, and 

doesn’t have a long waiting time or slow speed. Two-stage object detection systems are 

excellent, but take a while to load, and are not very fast. 

YOLO uses a single neural network to detect an object, and does all the necessary steps to 

detect the object, rather than just classification. YOLO can do real-time detection, and has 

excellent performance. 

The YOLO algorithm was first created by the original author, and then improved by three more 

versions: YOLOv1, YOLOv2, and YOLOv3. The version YOLOv3 is a big improvement from its 

previous versions, having both speed and performance increases by utilizing multi-scale 

features (FPN), a better neural network backbone (Darknet53), and replacing the SoftMax loss 

with the binary cross-entropy loss in the classification loss. The YOLO algorithm will be further 

improved over the next five years, developing into 5 more versions with many more 

improvements from the object detection community. 

In 2020, after the original YOLO authors withdrawn from the research field, YOLOv4 was 

released by a different research team. The team explored a lot of options in almost all aspects 

of the YOLOv3 algorithm. 

Another research team came out with the YOLOv5 one month after YOLOv4. This version of 

the algorithm does not have many new innovations, and the team who created it didn’t write 

a paper about it. YOLOv5 is a version of the YOLO model that is significantly smaller in size, 

faster, and performs similar to YOLOv4. There have been some controversies around calling 
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it version 5, but it is welcome in the object detection community due to being completely 

implemented in Python (Pytorch). [5] 

In 2022 two other versions were released, v6 and v7 by another research groups. 

 

I.4.2 MTCNN 

Multi-Task Cascaded Convolutional Neural Networks In 2016, Zhang et al published a neural 

network that detects faces and facial landmarks on images. 

MTCNN is a Cascaded Network of three CNNs: 

The first stage takes as input an image pyramid made up of differently scaled copies of the 

input image. 

 

Figure I-9 stage 1 in MTCNN 

 

The second stage is a CNN Refine Network (R-Net). This network takes the boxes that were 

separated in the first stage and combines candidates that were overlapping, using non-

maximum suppression. 
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Figure I-10 stage 2 in MTCNN 

 

In the third stage, the Output Network does the same things as R-Net, and adds a 5-point 

landmark of eyes, nose, and mouth in the final box containing the detected face.[6] 

 

 

 

Figure I-11 stage 3 in MTCNN 

I.4.3 FaceNet 

In 2015, Google researchers Schroff et al used a deep neural network called FaceNet that 

takes a picture of peoples’ faces and extract features from them. 

FaceNet takes an image of a face as input and outputs a vector of 128 numbers representing 

key features of the face. In machine learning, this vector is called an embedding. The key 

information from the image is contained in this vector. The faces of people that have similar 

pictures are also assumed to be similar themselves. 



Chapter I: Overview 

15 

Mapping high-dimensional data (like images) into low-dimensional representations 

(embeddings). 

To determine if a face is on an unseen image, one possibility would be to calculate the images 

embedding, and then compare it to the embeddings of known people. If the images face is 

close enough to the face of person A, we would say that the image is of person A. [7] 

 

Figure I-12 FaceNet 

I.5 Conclusion 

In this chapter we had an overview about Face detection and recognition technologies and 

their improvement in the last 50 years, from classical algorithms like LBP and Eigenfaces to 

complicated deep learning models as YOLO, MTCNN and FaceNet. 

These applications are in a remarkable development due to the revolution of artificial 

intelligence these days, especially in the domain of computer vision, in the next chapter we’re 

going to expose our steps and methods of creating deep learning models for face 

identification, and implement it to serve our main case which is the face recognition based 

attendance system. 
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II.1 Introduction 

In this chapter we’re going to present step by step the experimentations we’ve done which 

are the face detection and recognition models, we’re going to show the training and the 

testing of all the models we did create and choose the best methods for our final application.  

we have seen many algorithms used for face detection and recognition in the previous 

chapter, in this chapter we’re exposing the models we trained and compare them with each 

other.  

about the algorithms proposed in this chapter are: 

• SSD and YOLOv5 for face detection. 

• Siamese network and FaceNet models for face recognition. 

 

II.2 Work environment 

II.2.1 Setup configuration 

• Laptop DELL Latitude E5440. 

• Processor Intel Core i7 4600U @ 2.60 GHZ. 

• Graphical Card GT-720M. 

• Installed memory (RAM) 6.00 GB. 

• Windows 10 pro 64 bit. 

•  Jupyter Notebook. 

• Python 3.7.4. 

 

II.2.2 Python 

II.2.2.1  What is python 

Python is an interpreted, object-oriented, high-level programming language with dynamic 

semantics. Its built-in high-level data structures combined with dynamic typing and dynamic 

binding make it very attractive for rapid application development and for use as a scripting or 

glue language to bring together existing components. Python's easy-to-learn syntax 

emphasizes readability, thus reducing program maintenance costs. Python supports modules 
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and packages, which promote modularity of programs and code reuse. The Python interpreter 

and extensive standard library are freely available on all major platforms in source or binary 

format and can be redistributed free of charge. 

 

II.2.2.2  Why python 

AI projects are different from basic software projects, the skills required for AI-based projects, 

to achieve your AI ambitions, we must use a programming language that is stable, flexible, 

and provides tools. with an enormous number of libraries Python provides all of this, which is 

why we can find too many AI-Based project using Python today. 

The advantages that make Python the best choice for machine learning and AI it's the access 

to great AI and machine learning (ML) libraries and frameworks as TensorFlow, Keras, NumPy 

and OpenCV.  

II.2.3 Google Colab 

Colaboratory, or “Colab” for short, is a product from Google Research. Colab allows anybody 

to write and execute arbitrary python code through the browser, and is especially well 

suited to machine learning, data analysis and education. More technically, Colab is a hosted 

Jupyter notebook service that requires no setup to use, while providing access free of 

charge to computing resources including GPUs.[8] 

• GPU Tesla T4. 

• RAM 13.6 GB. 

• Python 3.7.13. 

II.2.4 Jupyter notebook 

The Jupyter Notebook is the original web application for creating and sharing computational 

documents. It offers a simple, streamlined, document-centric experience. 

Jupyter supports over 40 programming languages, including Python, R, Julia, and Scala. 

Notebooks can be shared with others using email, Dropbox, GitHub and the Jupyter 

Notebook Viewer. 
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Your code can produce rich, interactive output: HTML, images, videos, LaTeX, and custom 

MIME types.[9] 

II.3 The libraries used 

II.3.1 TensorFlow 

Google's open-source TensorFlow framework is used to build and run various kinds of 

machine learning and deep learning applications. 

TensorFlow provides a collection of workflows to develop and train models using Python or 

JavaScript, and to easily deploy in the cloud, on-prem, in the browser, or on-device no matter 

what language you use. 

TensorFlow offers multiple levels of abstraction so we can choose the right one for our needs. 

Build and train models by using the high-level Keras API, which makes getting started with 

TensorFlow and machine learning easy. 

Since we need more flexibility, eager execution allows for immediate iteration and intuitive 

debugging. For large ML training tasks, use the Distribution Strategy API for distributed 

training on different hardware configurations without changing the model definition. [10] 

 

II.3.2 OpenCV (cv2) 

OpenCV (Open-Source Computer Vision Library) is an open-source computer vision and 

machine learning software library. OpenCV was built to provide a common infrastructure for 

computer vision applications and to accelerate the use of machine perception in the 

commercial products. Being a BSD-licensed product, OpenCV makes it easy for businesses to 

utilize and modify the code. 

The library has more than 2500 optimized algorithms, which includes a comprehensive set of 

both classic and state-of-the-art computer vision and machine learning algorithms. [11] 

 

II.3.3 Matplotlib 

Matplotlib is a comprehensive library for creating static, animated, and interactive 

visualizations in Python. Matplotlib makes easy things easier and hard things possible. 
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II.3.4 OS 

This module provides a portable way of using operating system dependent functionality, as 

creating folders, files, opening, copying, cutting, pasting … 

II.3.5 LabelMe 

LabelMe is an open-source annotation. It was written in Python to support manual image 

polygonal annotation for object detection, classification, and segmentation. LabelMe lets you 

create various shapes, including polygons, circles, rectangles, lines, line strips, and points. You 

can save your labels as JSON files directly from the app. The LabelMe repository offers a 

Python script to help you convert annotations to PASCAL VOL. Other formats, such as YOLO 

and COCO, are not supported.[12] 

 

II.3.6 NumPy 

NumPy is the basic scientific computing package in Python. It is a Python library that provides 

multidimensional array objects, various derived objects such as masked arrays and matrices, 

and a set of routines for performing quick operations on arrays, including math, logic, shape 

manipulation, sorting, selection, I /O, discrete Fourier transform, basic linear algebra, basic 

statistical operations, stochastic simulation, and more.[13]        

 

II.3.7 Albumentations 

Albumentations is a fast and flexible image extension library. This library is widely used in the 

industry, deep learning research, machine learning competitions, and open-source projects. 

Albumentations is written in Python and licensed under the MIT license.[14] 

 

II.4 Face Detection 

in this segment we’re showing the training steps and the testing of the SSD (Single shot 

detector) model and the YOLOv5(You Only Look Once) model. 
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II.4.1 SSD for face detection 

The creation of the custom SSD model goes through many steps (Flowchart 1). 

 

Figure II-1 Steps to create the SSD model 

 

II.4.1.1 Creating the SSD-Dataset 

II.4.1.1.1 Collecting images 

Collecting data is the first step of our actual work, we can get a very large dataset from the 

internet, or we can just take pictures using a smart phone camera or computer webcam. 

To collect data, we’re going to take many pictures using a simple code with the help of the 

OpenCV library and name those pictures and save them. 

if we had to collect images data from different sources it’s very important that we have the 

same images size so we need to resize them. 
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II.4.1.1.2 Images collector program 

 

Figure II-2 images collector flowchart 

 

After using the program (Figure II-1) we’ll get 100 pictures of ours. We can add more random 

human images from other sources, but as we said the images need to have the same size, so 

using OpenCV or TensorFlow we can resize the images and resave them with the others 

(Figure ll-3). 

 

Open the camera  

Take a picture 

Name the picture 

Save the picture 

Close the camera 

Loop = 100 
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Figure II-3 collected images 

II.4.1.1.3 The annotation 

The annotation is a programming way to define the location of the face in the image for the 

program by selecting the face within a geometric shape (a rectangle) and save its coordinates, 

to do that we use LabelMe application. 

II.4.1.1.4 The annotation steps 

After installing LabelMe and running it from the python editor or CMD, following the steps 

below to create a label file for every image with the same image name and that will happen 

automatically by LabelMe. 

1. Create a folder to save the labels inside it. 

2. Open LabelMe by calling it. 

3. Click to Open Dir. 

4. Select the images folder. 

5. After the image displayed on the screen click on File. 

6. Then click to change Output Dir and select the labels folder. 

7. Then save automatically. 

8. Click right in the mouse and choose square. 

9. Finally, select the face and click D to move to the next picture (Figure II-4). 
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Figure II-4 the annotation process 

II.4.1.1.5 The annotation results 

After annotating all the pictures, we can see that the labels files (Figure ll-5) saved at the 

extension (json) so we need to call the (json) library to open those files in the python 

notebook. 
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Figure II-5 labels files 

The label file defines the label name (face), its location in the picture and the image data as 

we have in the example (Figure ll-6), but we don’t need all of those data in the label file, so 

we’re going to remove all unnecessary information (Figure ll-7). 

 

Figure II-6 the annotation result 
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II.4.1.1.6 Data augmentation 

From the collecting program we got 100 pictures and for training data it not enough to get 

good results, in addition to that, annotating thousands of images will take a really long time, 

for that problem Albumentations library offer a solution to augment our dataset. 

Image augmentation is the process of creating new training samples from existing training 

samples. To create a new pattern, slightly modify the original image. For example, we can 

make the new image a little brighter; we can cut out a piece of the original image; we can 

create a new image by mirroring the original image… etc. and finally we got a dataset 50 times 

larger (5000 image).    

 And for labels we create a tuple for every label with just few important data 

[“image name”,” box localization”, “the class (face or no face)”]  

 

Figure II-7 the final labels files 

II.4.1.1.7 Dividing data 

The last step of dataset creation is division of the data and its moving to these new folders 

(Figure ll-8) 

▪ Moving the largest part of the data to the train data folder (65% to 70%). 

▪ Then moving (15% or 25%) to the testing data folder. 

▪ Finally putting the rest in the validation data folder. 

 



Chapter II: Experimentations  

27 

 

Figure II-8 the data folders 01 

 

II.4.1.2 Creating the SSD-model 

II.4.1.2.1 Single shot Detector (SSD) 

SSD is designed for real-time object detection. the SSD model detects objects in a single shot, 

which means works faster and saves a lot of time, SSDs speed up the process by eliminating 

the need for zone-advised networks. To compensate for the drop in accuracy, SSD has some 

improvements which make the SSD model have a high accuracy in its detection even on input 

images of low resolutions. 

The SSD model is made up of 2 parts (Backbone and head), The Backbone model is the feature 

map extractor of the input image. The head is a couple of convolution layers that detect the 

object and give us the bounding box (Figure II-9). 
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Figure II-9 SSD Architecture 

 

Localization: localization is four outputs for the bounding box. 

Regression: regression is one output for classifying (face, no-face). 

 

Figure II-10 SSD multi box architecture 

II.4.1.2.2 The VGG16 

VGG16 is the CNN (Convolutional Neural Network) architecture that won the 2014 ILSVR 

(ImageNet) competition. It is still considered one of the preeminent Vision model 

architectures today. The most unique thing about VGG16 is that instead of using a lot of 

hyperparameters, they focus on convolutional layers of 3x3 filters in step 1, and always use 

the same padding and Maxpool layers of 2x2 filters in step 2. It follows this order of 

convolution and max pooling layers throughout the architecture. Finally, it has 2 FCs (fully 

connected layers) followed by a soft max of the output. The 16 in VGG16 means that it has 16 
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layers of weights. This network is a fairly large network with about 138 million (approximately) 

parameters (Figure ll-11). [15] 

 

Figure II-11 The VGG16 architecture 

 

II.4.1.2.3 Loading data to TensorFlow dataset 

In this step we’re going to preprocess the images and load the dataset using some functions 
below: 

1. to load the data to a TensorFlow dataset with the function   

tf.data.dataset(“data_path”). 

2. than we need to map the data by map(). 

3. resize all the images with tf.image.resize(). 

4. scale them by dividing all images to 255. 

5. Finally, we need to create the training and testing batches batch(“length of the 

batch”).  

II.4.1.2.4 Building the SSD model using TensorFlow.Keras 

we need to import the VGG16 and other functions from TensorFlow.Keras, we import the 
module Model from tensorflow.keras.models, CNN layers from tensorflow.keras.layers and 
the VGG16 from tensorflow.keras.applications. 
this VGG16 is pretrained network, we use it to get a better result. It is important that we 
remove the head top of the VGG16 network to put our classification layers as we see in the 
image (Figure II-12): 
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Figure II-12 the final model architecture 

II.4.1.3 Training the SSD model 

II.4.1.3.1 Training the model  

For training we need to set the Loss function and the optimizer  

II.4.1.3.1.1 Loss functions 

The loss function in a neural network quantifies the difference between the expected 

outcome and the outcome produced by the machine learning model. From the loss function, 

we can derive the gradients which are used to update the weights. The average over all losses 

constitutes the cost. 

A deep learning model such as a neural network attempts to learn the probability distribution 

underlying the given data observations. In machine learning, we commonly use the statistical 

framework of maximum likelihood estimation as a basis for model construction. This basically 

means we try to find a set of parameters and a prior probability distribution such as the 

normal distribution to construct the model that represents the distribution over our data. 
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II.4.1.3.1.2 Cross entropy 

In classification scenarios, loss functions that measure cross entropy are commonly used. 

Cross entropy is a metric that indicates the difference between two likelihood distributions. 

In machine learning, we use maximum likelihood estimation to determine the difference 

between the expected outcome distribution (data generating process) and the distribution 

produced by our model of the process. 

The difference between the prediction and reality is called the loss. As the prediction gets 

farther from the truth, the loss gets bigger faster. 

To minimize loss, the model should produce a probability estimate that is as close to 1 as 

possible if the actual outcome was 1. 

If the actual outcome is 0, the model should produce a probability estimate that is as close as 

possible to 0 (Figure ll-13). 

 

Figure II-13 loss function 
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II.4.1.3.1.3 Binary Cross-Entropy 

The binary cross-entropy loss is used in binary classification settings when there are two 

possible outcomes. The formula for calculating the loss is as follows: Y_actual is the expected 

outcome, Y_pred the output of the model (Equation II-1). 

𝐿𝑜𝑠𝑠 = 𝐴𝑏𝑠(𝑌_𝑝𝑟𝑒𝑑 − 𝑌_𝑎𝑐𝑡𝑢𝑎𝑙)                             Equation II-1 the loss calculation 

After calculating the correct probabilities (Loss), we need to calculate the logloss (the 

logarithmic loss L) (Equation II-2). 

𝐿 = − (𝑦𝑖𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖))                                           Equation II-2 the binary cross-entropy loss equation 

Actually, we won’t see any of this happening all we do is calling the binary cross entropy 

function from the TensorFlow libraries to calculate the loss. 

II.4.1.3.1.4 The optimizer  

A neural network can have millions of parameters, so selecting the right weights for the model 

is a big job. An optimizer is a function or algorithm that changes the weights and learning rate 

of the neural network, helping to lower the loss and improve the accuracy of the model. While 

training the model, we have to modify each epochs weights, using an optimizer, along with 

minimizing the loss function. 

we can use different optimizers to make changes in the weights and learning rate and for that 

we’re using Adam optimizer. 

 

II.4.1.3.1.5 Adam Optimizer 

Adam is named after the adaptive moment estimation algorithm, which is a variation of 

stochastic gradient descent optimization used to change neural network weights during 

learning. The Adam algorithm updates the learning rate for each individual weight in the 

network, rather than maintaining a single learning rate throughout the entire learning 

process. Adam was created by people who were familiar with the AdaGrad and RMSProp 

algorithms, which are also variations of stochastic gradient descent. Adam optimizers 

combine the features of both Adagrad and RMS Prop algorithms. Unlike RMS Prop, which 
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uses the first moment (mean) of the gradients to calculate learning rates, Adam also 

considers the second moment of the gradients, the uncentred variance. 

Adam is a deep learning algorithm that is used widely, because of its many benefits. It is 

considered a good benchmark for papers on deep learning, used as the default optimization 

method, and easy to implement. Adam also requires less tuning than other optimization 

algorithms, and runs faster and uses less memory. 

𝑚𝑡 = 𝛽
1

𝑚𝑡−𝛬 + (1 − 𝛽
1
) [

𝛿𝐿

𝛿𝜔𝑡

] 𝑣𝑡 = 𝛽
2

𝑣𝑡−1 + (1 − 𝛽
2
) [

𝛿𝐿

𝛿𝜔𝑡

]
2

                  Equation II-3 the Adam optimizer equation 

The formula (Equation ll-3) represents the working of Adam optimizer. Here β 1 and β 2 

represent the decay rate of the average of the gradients, again all we do is call it from 

TensorFlow library. 

II.4.1.3.1.6 Training 

Training a deep learning model need a high-performance computer, and for that we’re using 

Google Colab. 

to train the model we need to create a class model and define the classification loss, 

regression loss (Binary Cross Entropy) and the optimizer (Adam Optimizer). 

Next phase is printing the losses (Figure II-14) to get the curves after the training is finished 

(Figure II-15, Figure II-16). 

 

Figure II-14 the training for 20 epochs 
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II.4.1.4 Testing and results 

II.4.1.4.1 Results 

lastly, after waiting for training process for a long time (2h 30min) we got the learning rate 

and classification and regression loss and plot them to confirm the training results. 

 

Figure II-15 10 epochs training curves 

 

Figure II-16 30 epochs training curves 

From the (Figure ll-15) the training and regression loss stabilizes at 10 epochs but the training 

loss of (Figure ll-16) get higher at 10 epochs than stabilizes at 15 these fluctuations happen 

because of the dataset augmentation, some pictures in the dataset are lower quality than 

others, that’s the point of the training. To get a good model you have to train on a diverse 

dataset (different brightness, different positions …). 

II.4.1.4.2 Test 

Now we use the batch test to make predictions and test the model before saving it, all we 

have to do is calling the test batch and make the predictions using the function predict(), then 

plot the result (Figure ll-17). 
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Figure II-17 test batch results 

II.4.2 YOLOv5 for face detection  

To create the custom YOLOv5 model we follow multiple steps (Figure ll-18). 

 

Figure II-18 Steps to create the YOLOv5 model 

 

II.4.2.1  The YOLOv5-model 

II.4.2.1.1 You Only Look Once (YOLO) 

YOLO (You Only Look Once) models are used for Object detection with high performance. 

YOLO divides an image into a grid system, and each grid detects objects within itself. They can 
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be used for real-time object detection based on the data streams. They require very few 

computational resources. 

To understand how Yolov5 improved the performance and its architecture, let us go through 

the following high-level Object detection architecture (Figure II-19): 

 

Figure II-19 high-level Object detection architecture  

General Object Detector will have a backbone for pre-training it and a head to predict classes 

and bounding boxes. The Backbones can be running on GPU or CPU platforms. The Head can 

be either one-stage (e.g., YOLO, SSD, RetinaNet) for Dense prediction or two-stage (e.g., 

Faster R-CNN) for the Sparse prediction object detector. Recent Object detectors have some 

layers (Neck) to collect feature maps, and it is between the backbone and the Head. 

The network architecture of Yolov5. It consists of three parts, first CSPDarknet is used as a 

backbone and SPP block for increasing the receptive field, which separates the significant 

features, and there is no reduction of the network operation speed. Second part is the 

neck: PANnet is used for parameter aggregation from different backbone levels. And third we 

have the YOLO layer which is the head, The data are first input to CSPDarknet for feature 

extraction, and then fed to PANet for feature fusion. Finally, Yolo Layer outputs detection 

results (class, score, location, size).[21] 
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Figure II-20 YOLOv5 architecture  

II.4.2.1.2 Working of the YOLO algorithm: 

YOLO algorithm works using the following three techniques: 

• Residual blocks 

• Bounding box regression 

• Intersection Over Union (IOU) 

Residual blocks 

First, the image is divided into various grids. Each grid has a dimension of S x S. The 

following image shows how an input image is divided into grids. (Figure ll-21) [24] 
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In the image above, there are many grid cells of equal dimension. Every grid cell will detect 

objects that appear within them. For example, if an object center appears within a certain 

grid cell, then this cell will be responsible for detecting it.[24] 

Bounding box regression 

A bounding box is an outline that highlights an object in an image. 

Every bounding box in the image consists of the following attributes: 

 

• Width (bw) 

• Height (bh) 

• Class (for example, person, car, traffic light, etc.)- This is represented by the letter c. 

• Bounding box center (bx,by) 

The following image shows an example of a bounding box. The bounding box has been 

represented by a yellow outline. (Figure ll-22) [24] 

Figure II-21 Residual blocks [24] 
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YOLO uses a single bounding box regression to predict the height, width, center, and class of 

objects. In the image above, represents the probability of an object appearing in the 

bounding box.  

Intersection over union (IOU) 

Intersection over union (IOU) is a phenomenon in object detection that describes how boxes 

overlap. YOLO uses IOU to provide an output box that surrounds the objects perfectly. 

 

Each grid cell is responsible for predicting the bounding boxes and their confidence scores. 

The IOU is equal to 1 if the predicted bounding box is the same as the real box. This 

mechanism eliminates bounding boxes that are not equal to the real box. [24] 

Figure II-22 bounding box[24] 
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The following image provides a simple example of how IOU works. (Figure ll-23) [24] 

 

In the image above, there are two bounding boxes, one in green and the other one in blue. 

The blue box is the predicted box while the green box is the real box. YOLO ensures that the 

two bounding boxes are equal. [24] 

Combination of the three techniques 

The following image shows how the three techniques are applied to produce the final 

detection results. (Figure II-24) 

Figure II-23 Intersection over union 
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II.4.2.1.3 Choosing the Yolov5 model  

When choosing the model, we take in consideration the accuracy and speed and image size, 

because our image size is 416*416, the P5 models are suitable for training, the P5 models are: 

YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), YOLOv5x (extra-

large), we chose the YOLOv5s which is the small version, it’s great for real-time usage with 

very small lose in accuracy compared to the bigger models. 

Figure II-24 Combination of the three techniques 
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Figure II-25  yolov5 models [22] 

 

II.4.2.2  Creating the YOLOv5-Dataset 

II.4.2.2.1 Collecting the images 

The dataset used in the yolov5 model for face detection is obtained from the internet, a 

popular website used for sharing datasets and pre-trained models. [16] 

The images in this dataset have different configurations that we’ll explain below. 

II.4.2.2.2 Dataset configuration 

 to achieve better training results different configurations are applied, shown down below: 

II.4.2.2.2.1 Pre-processing  

Decrease training time and increase performance by applying image transformations to all 

images in this dataset. 

- Auto-Orient: Discard EXIF rotations and standardize pixel ordering. 

- Resize: Downsize images for smaller file sizes and faster training. 
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II.4.2.2.2.2 Augmentation 

Create new training examples for your model to learn from by generating augmented 

versions of each image in your training set (Figure II-26). 

• Flip: Add horizontal or vertical flips to help your model be insensitive to subject 

orientation. 

• 90° Rotate: Add 90-degree rotations to help your model be insensitive to camera 

orientation: clockwise, counter-clockwise, upside down. 

• Saturation: Randomly adjust the vibrancy of the colors in the images. Between -10% 

and +10% 

• Brightness: Add variability to image brightness to help your model be more resilient 

to lighting and camera setting changes. Between -10% and +10% 

• Exposure: Add variability to image brightness to help your model be more resilient 

to lighting and camera setting changes. Between -10% and +10% 

• Blur: Add random Gaussian blur to help your model be more resilient to camera 

focus. Up to 1px. 

After augmenting the images in the training set, we have three times (x3) the amount of the 

original number, going from 737 images to 2211 images in the training set. 
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Figure II-26 augmentation examples 

 

II.4.2.2.2.3 Training/validation split 

The dataset is split into two categories: training and validation.  

The dataset contains 2420 images in total, 2211 training images and 209 validation images 

(88% in training / 8% in validation). Both training and validation images are annotated 

(labeled). We only have 1 class for the annotations which is: face. 

 

II.4.2.2.2.4 YOLOv5 labelling format 

The roboflow platform support export to YOLOv5 labeling format, providing one annotations 

text file per image. Each text file contains one bounding-box (BBox) annotation for each of 

the faces in the image, the name of the text file is the same as the image. The annotations 
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are normalized to the image size, and lie within the range of 0 to 1. They are represented in 

the following format: 

< object-class-ID> <X center> <Y center> <Box width> <Box height> 

If there are 6 faces in the image, the content of the YOLO annotations text file will look like 

the (Figure II-27) 

 

II.4.2.2.2.5 Data directories structure 

This is the data structure we followed (Figure ll-28) 

 

Figure II-28 YOLOv5 Data directories structures 

the images include faces with and without masks, we gave the class ‘face’ to images showing 

faces and faces with masks, doing so will increase the accuracy of detecting faces even with 

something blocking the face in the image like with a mask on. Some images have multiple 

faces in a single image and some images have just 1 face in a single image and also, we 

included 150 images marked as Null, those are images with no faces, this helps with feature 

extraction and reducing false detections. 

Figure II-27 YOLOv5 label file 
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The annotation ‘face’ contains the image name, its path, and the size of the image (Figure ll-

30). Notably, this annotation does not contain any bounding box information. It is a null 

annotation (Figure ll-31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-30 label file for face annotation 

 

 

Figure II-31 label file for Null image not containing a face 

Figure II-29 example of images from the dataset 
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II.4.2.2.3 Configuration files 

The configuration files for the training are divided to three YAML files, which are provided 

with the GitHub repository itself. We will customize these files depending on the task, to fit 

our desired needs. We will only be changing the data configurations file, using the default 

parameters for the other 2 configurations files is recommended. 

1-The data-configurations file: describes the dataset parameters. Since we are training on 

our custom face-detection dataset, we will edit this file and provide: the paths to the train, 

validation and test datasets (the test dataset path is optional when training the model); the 

number of classes (nc); and the names of the classes in the same order as their index. we only 

have one class, named ‘face’. We named our custom data configurations file as ‘data.yaml’ 

and placed it under the ‘data’ directory. The content of this YAML file is as follow (Figure ll-

32). 

 

 

 

 

 

 

 

 

 

2. The model-configurations file: dictates the model architecture. Ultralytics (the company 

who released YOLOv5) supports several YOLOv5 architectures, named P5 models, which 

varies mainly by their parameters size: YOLOv5n (nano), YOLOv5s (small), YOLOv5m 

(medium), YOLOv5l (large), YOLOv5x (extra-large). These architectures are suitable for 

training with image size of 640*640 pixels, image size of 416*416 also works great. Additional 

series, that is optimized for training with larger image size of 1280*1280, called P6 

(YOLOv5n6, YOLOv5s6, YOLOv5m6, YOLOv5l6, YOLOv5x6). P6 models include an extra output 

Figure II-32 Data configurations file 
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layer for detection of larger objects. They benefit the most from training at higher resolution, 

and produce better results. 

Ultralytics provides built-in, model-configuration files for each of the above architectures, 

placed under the ‘models’ directory. If we were to train from scratch, we would choose the 

model-configurations YAML file with the desired architecture, and just edit the number of 

classes (nc) parameter to the correct number of classes in our custom data. 

But since our training is initialized from pre-trained weights, no need to edit the model-

configurations file since the model will be extracted with the pretrained weights. 

 

3. The hyperparameters-configurations files: defines the hyperparameters for the 

training, including the learning rate, momentum, losses, augmentations etc. Ultralytics 

provides a default hyperparameters files under the ‘data/hyps/’ directory. We will be using the 

default hyperparameters to establish a performance baseline.  

II.4.2.3  Training the YOLOv5 model 

II.4.2.3.1 Precision and Recall metrics: 

Many object detection algorithms, such as Faster R-CNN, MobileNet, SSD, and YOLO, use mAP 

to evaluate their models. We need to calculate Recall and Precision metrics first. 

Precision measures the percentage of the correct predictions, It measures how many of the 

predictions that our model made were actually correct.[23] 

the calculation of the precision is as follow (Equation II-4): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                    Equation II-4  Precision Formula 

 

TP = True Positives (The model predicted a label and matches correctly as per ground truth.) 

FP = False Positives (The model predicted a label, but it is not a part of the ground truth) 

Object detection systems make predictions in terms of a bounding box and a class label. For 

each bounding box, we measure an overlap between the predicted bounding box and the 

ground truth bounding box. This is measured by IoU (intersection over union)[23].  
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Figure II-33 Intersection over Union 

For object detection tasks, we calculate Precision and Recall using IoU value for a given IoU 

threshold. 

For example, if IoU threshold is 0.5, and the IoU value for a prediction is 0.7, then we 

classify the prediction as True Positive (TP). On the other hand, if IoU is 0.3, we classify it as 

False Positive (FP) (Figure ll-34). 

 

Figure II-34 TP and FP example 
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That also means that for a prediction, we may get different binary TRUE or FALSE positives, 

by changing the IoU threshold. 

Recall measures how well we find all the positives, the calculation of the precision is as 

follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   Equation II-5 the Recall formula 

 

 FN = False Negatives (The model does not predict a label, but it is part of the ground truth) 

The general definition for the Average Precision (AP) is finding the area under the precision-

recall curve. 

After we calculate the precision and recall metrics, we plot the precision-Recall graph and 

calculate the area under the precision-recall curve. (Figure ll-35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-35 Precession-recall graph example 
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The mAP is calculated by finding Average Precision (AP) for each class and then average over 

a number of classes. 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖       𝑁

𝑖=1 Equation II-6 Mean Average Precision Formula 

 

Because we only have 1 class, the mAP would be equal to Face AP. 

II.4.2.3.2 Training 

When it comes to training with YOLOv5, two different training approaches are to be 

considered: 

1-Training from scratch: 

This approach is good when having a large dataset, the model will benefit most by training 

from scratch but it takes a lot of time to train. 

2- Transfer learning: 

Transfer learning speeds up the learning process and reduces the training time, Ultralytic’s 

default model was pre-trained over the COCO dataset, COCO is an object detection dataset 

with images from everyday scenes containing 80 classes, our model will be initialized with 

weights from a pre-trained COCO model, this will produce better and faster results than 

training from scratch. 

Now that we decided which approach to take, we can start the training. We will be using 

Google colaboratory to speed up the training process. After uploading all the necessary files 

including our dataset, the yolov5 repository, we import the required libraries and set our 

training, validation and testing path, and change directory to the yolov5 path. The training is 

induced by the following command (Figure ll-36): 

 

Figure II-36 training command 
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• batch — batch size (-1 for auto batch size). Use the largest batch size that your 

hardware allows for. 

• epochs — number of epochs. 

• data — path to the data-configurations file. 

• cfg — path to the model-configurations file. 

• weights — path to initial weights. 

• cache — cache images for faster training. 

• img — image size in pixels (default — 640). 

 

Figure II-37 Model training in google colab 

After the training is finished the results are automatically saved under ‘runs/train’ in the 

YOLOv5 directory (Figure ll-35), the training took a total of 2hours and 48 minutes. 
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To get a better understanding, we need to take a look at the losses and metrics of our Yolov5 

model.(Figure ll-38) 

 

From the Figure we see that the precision and recall metrics converge at around 250 epochs 

with an average value of 0.87 for the precision and 0.81 for the recall.   

The mAP is the “mean average precision”, it’s the most important metric to evaluate the 

model, for the mAP_0.5 we get an average value of 0.87 and for the mAP_0.5:0.95 we 

average a value of 0.52 which is pretty good for 300 epochs. 

The mAP metric value is still increasing at 300 epochs, the value would increase more if 

trained for more epochs which leads to more precision at detecting the face. 

The box_loss is the bounding box regression loss (using Mean Squared Error loss function). 

Obj_loss is the confidence of object presence (using Binary Cross Entropy loss function). They 

both decrease over the number of epochs at a steady rate. 

cls_loss is the classification loss (using Cross Entropy function), because we have only 1 class 

the classification error is constantly zero 

Figure II-38 Losses and Metrics 
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II.4.2.4 Testing and results: 

After training our YOLOv5 model for face detection, it’s finally time to test it, we will be using 

the Ultralytics detection command, The input data for testing can be an image, a video, a 

directory, a webcam, a stream or even a YouTube link.  

• source — input path (file, folder path or camera id to use the webcam) 

• weights — our trained weights path 

• conf — confidence threshold (‘—conf ‘, we are using the default value) 

We can see that our model detects faces at pretty high accuracy, drawing bounding boxes 

around the detected faces, showing a confidence score of about 0.93+ when facing the 

camera. We can see the different test images at Figure (ll-40). 

The model is insensitive to camera and subject orientation, more resilient to lighting, doing 

surprisingly well at very low light situations. 

 

The model is detecting the face when rotated horizontally at 90 degrees and also detecting 

when the top and bottom of the face is covered.  

Figure II-39 Detection command 
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The YOLOv5 model is running on CPU, the inference speed on webcam is about 350ms or about 3 

frames per second. The speed increases about x10 if used on a powerful GPU. 

 

 

 

 

Figure II-40 YOLOv5 face detection Batch test 
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II.4.3 Face detection models comparison  

We’re comparing between the SSD, YOLOv5 face detection models with a HOG-Based 

algorithm for face detection (Figure ll-41). 

 

Figure II-41 real-time test 

One can clearly see the differences between the models in the picture above (Figure ll-39), 

there are a little bit of differences in the BBox shapes and also the HOG-Based algorithm is 

way faster than the others.  

II.5 Face recognition 

II.5.1 One-shot learning 

One-shot learning is a classification activity in which one or a few instances are used to classify 

a large number of future examples. 

This describes tasks in the domain of face recognition, such as face identification and face 

verification, in which persons must be correctly identified using various facial expressions, 

lighting circumstances, accessories, and haircuts based on one or a few template 

photographs. 

Modern face recognition systems solve the difficulty of one-shot learning by learning a rich 

low-dimensional feature representation as a face embedding, which can be quickly calculated 

and compared for verification and identification tasks. 
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Originally, embeddings were learned using a Siamese network for one-shot learning 

problems. Siamese networks that were trained with comparative loss functions performed 

better. 

 

II.5.2 Siamese Network 

The Siamese network is a network that has been popularized as a result of its usage in one-

shot learning. 

A Siamese network is a network architecture that combines the outputs of two concurrent 

neural networks, each of which takes a different input (Figure ll-42). 

Input image: the image from the camera. 

Validation image: image from the database. 

 

Figure II-42 the Siamese model 

II.5.3 Distance calculation 

The images go through the Siamese network then a flatten function to get a vector for each 

image.  

Once we have our vectorized data, we can compare the two vectors using a distance function, 

depending on the input data, setting this threshold might be complex or time consuming. 

𝐷 = 𝑣𝑒𝑐𝑡𝑜𝑟1 − 𝑣𝑒𝑐𝑡𝑜𝑟2                                     Equation II-7 distance calculation 
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II.5.4 Creating Dataset 

To create a dataset, we need to get faces images we can use the program in the (Figure II-1) 

and get some random faces pictures, the most important is dividing the data to three folders: 

• Anchor: images for our face.  

• Positive: images for our face. 

• Negative: random faces. 

The point is training the model to recognize the similarity between the anchor and the 

positive images (Figure II-43). 

 

Figure II-43 training the Siamese Network 

 

II.5.5 Building the model 

For building this model we use TensorFlow Keras-layers  

First thing we create the Siamese network (Figure II-44) and the similarity function then 

combine them together (Figure II-45). 
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Figure II-44 creating the Siamese Network 

 

Figure II-45 creating the whole model 
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II.5.6 Training the model  

For the training we’re doing the same work as the SSD detection model. We have to create 

the training function and define the loss and the optimizer functions. 

We choose the binary cross entropy for a loss function, and Adam optimizer as an optimizer 

function. 

Finally, we upload the dataset to Google Colaboratory and train the models, the training 

takes 1h:30min. 

We can read the precision and the loss when the model is training (Figure II-46) 

 

Figure II-46 Siamese model training 

    

II.5.7  The recall and the precision 

For testing we use those two functions to observe the progress of the training process. 

II.5.7.1 The recall 

This metric creates two local variables, true positives and false negatives, that are used to 

compute the recall. This value is ultimately returned as recall, an idempotent operation that 

simply divides true positives by the sum of true positives and false negatives. 

If sample weight is None, weights default to 1. Use sample weight of 0 to mask values. 

If top_k is set, recall will be computed as how often on average a class among the labels of a 

batch entry is in the top-k predictions. 
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II.5.7.2 The precision 

The metric creates two local variables, true_positives and false_positives that are used to 

compute the precision. This value is ultimately returned as precision, an idempotent 

operation that simply divides true_positives by the sum of true_positives and false_positives. 

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values. 

 top_k is set, we'll calculate precision as how often on average a class among the top-k classes 

with the highest predicted values of a batch entry is correct and can be found in the label for 

that entry. [17] 

 

II.5.8 Test the model. 

For testing the model in real time, we must create small program using Open-CV to open 

camera and take a picture to verify if the model is working. 

Before that we create a folder for validation images (images of ourselves) and input images 

(images from the camera). 

Every time we launch the program it takes a picture using CV2 and save it in the input images 

path, then load the images to the model. 

The model compares the image in the input folder with every image in the validation folder, 

when the similarity is higher than the verification threshold the output is true otherwise is 

false.       

We divide the validation data to many folders (folder for each person), and the model loop 

through them all, to apply the model for many people (Figure ll-47).  
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Figure II-47 dividing Siamese application data 

 

II.5.9 FaceNet for face recognition: 

FaceNet provides a unified embedding for face recognition, verification and clustering tasks. 

It maps each face image into a euclidean space such that the distances in that space 

correspond to face similarity, i.e. an image of person A will be placed closer to all the other 

images of person A as compared to images of any other person present in the dataset. 

 

Figure II-48 model structure of facenet 

 

 (Figure ll-46) shows the structural model used in FaceNet. Facenet Model structure consists 

of a batch input layer and a deep CNN followed by L2 normalization, which results in the face 

embedding. This is followed by the triplet loss during training. In the training process the 

triplet loss minimizes the distance between an anchor and a positive, both of which have the 

same identity, and maximizes the distance between the anchor and a negative of a different 

identity. (Figure ll-49) 
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Figure II-49 Triplet Loss 

 

We will use a pre-trained FaceNet model, It was trained on MS-Celeb-1M dataset, the dataset 

contains 1 million images of celebrities.  

then use the Euclidean distance and a predefined threshold to determine the difference 

between the target face and that of a person in the database.  

The face whose difference is minimal is considered to be the person belonging to the face 

database. The minimum difference must be smaller than that of the threshold to consider 

him as a similar person. When the difference is greater, the person is considered unknown. 

(Figure ll-50) 

 

II.5.9.1 Testing: 

We’re going to use the one shot-learning approach, where we’ll be using just 1 picture to 

recognize a face, the test image is named after the name of the person, the image could have 

a random shape, size, lighting and background.  

Figure II-50 Classification process with FaceNet and HOG. 
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To generate the face embeddings, we need to obtain the face only and pass it as input threw 

the FaceNet model, to do that we need a face detection algorithm, we used Dlib’s HOG face 

detector which is pretty accurate and computationally efficient which works great for real 

time usage. 

 To classify non-registered faces we have two methods, we can use a predefined threshold to 

classify them as unknown, the face is considered as unknown if the distance is greater than 

the threshold. (Figure ll-51) 

The second method is adding an image that does not contain a face and name it “unknown”. 

after we add that image to the database, the distance of non-registered faces would be closer 

to the vector of the unknown image, it’s for classifying unknown faces. 

Our database consists of 2 images so far, my image and a non-face image for unknown faces. 

(Figure ll-52) 

Figure II-51 Classifying with threshold 
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After adding images to database, we will create the face embeddings or also called face 

signatures. First, we detect the face only using HOG face detector, resize it to 160 by 160, in 

the case of the car there is no face, so we resize the whole image to 160 by 160. After doing 

so we pass the resized images to FaceNet which will give us a vector of 128 numbers for 

each image (embeddings). (Figure ll-53) 

Figure II-52 Database 



Chapter II: Experimentations  

66 

 

Figure II-53 Unknown embedding 

 

 

Figure II-54 known face embedding 



Chapter II: Experimentations  

67 

Now that we have our Embeddings, we can start recognizing, to do that we get a test image 

(Figure ll-55) and extract the face embedding the same way we did to our database, by using 

HOG face detector, resizing to 160 by 160 and passing it threw FaceNet. 

 

Figure II-55 Test image 

 

Now we calculate the distances of the embeddings in our database with the embedding of 

the test image, the closest embedding distance in the database will be identified as similar 

with the test image. (Figure ll-56) 

 

 Figure II-56 calculating embedding distances. 
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Now let’s see the output on our python code when we compare the two images, the python 

code draws a bounding box around the face and the name of the closest embedding distance. 

(Figure II-57) 

 

Figure II-57 similar face 

Now let’s do the same for another test image, which doesn’t have a similar image in the 

dataset (Figure ll-58). 

 

Figure II-58 Unknown face 

 



Chapter II: Experimentations  

69 

In the case of my partners test image (Fig ll-58), the closest embedding distance was the 

embedding of the unknown image. Now to test the accuracy of the model even more, we’re 

going to add more images to the database of random celebrities (Figure ll-59), and do the 

test in different type of lighting.  

 

Figure II-59 New Database 

 

Now let’s see the output when I compare myself to the database. (Figure ll-60) 

 

Figure II-60 Testing in low light 

Even in low light situation with a heavy database, the model recognizes me correctly. 
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II.6 Face recognition models comparison  

  

Figure II-61 Facenet model vs Siamese model 

As we see in the (Figure ll-61) the FaceNet model is faster than the Siamese network model. 

The Siamese network spent 1 sec with a single image and to get a good accuracy u need more 

than a picture for one person (many pictures with different face positions), unlike the FaceNet 

one picture is enough and it is way faster.  

 

II.7 Conclusion 

the SSD model is able to detect faces correctly with acceptable accuracy, but it is taking a long 

time, up to 500ms per step. the same thing for the YOLOv5 and that will be a big problem 

when we combine it with the recognition model. 

Extracting the bounding box coordinates using the face detection model to get the face image 

then load the face image to the Siamese network to recognize it will make the system really 

slow.    

those models are great but creating a face identification system from scratch can be hard a 

little bit because you need a massive dataset and high-performance setup to get a fast model 

with high accuracy, and that’s why we’re using a pretrained FaceNet model combined with 

the HOG algorithm for face detection and apply them for our attendance system. 
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III.1 Introduction 

In this chapter we expose the steps to create the attendance system using the Dlib's HOG and 

FaceNet model.   

From the results of the comparisons in the previous chapter, we observed that HOG algorithm 

is really fast in detecting faces than the other models and in the matter of the face recognition 

we’re choosing the FaceNet model for the same reasons. 

Finally, for the user application we’re creating a graphical user interface to simplify the access 

to the attendance lists and for adding new students in the database.  

III.2 work environment 

• Laptop DELL Latitude E5440. 

• Processor Intel Core i7 4600U @ 2.60 GHZ. 

• Graphical Card GT-720M. 

• Installed memory (RAM) 6.00 GB. 

• Windows 10 pro 64 bit. 

• Jupyter notebook 

• Python 3.7.4 

III.3 Libraries 

III.3.1 Face_Recognition 

Detect, recognize and manipulate faces from Python using dlib’s face detection algorithm 

HOG and state of the art face recognition models. 

III.3.2 Tkinter 

Tk is the only cross-platform (Windows, Mac, Unix) graphical user interface toolkit designed 

exclusively for high-level dynamic languages, like Python, Tcl, Ruby, Perl, and many others. 

Whatever language you use, this site brings you the current, high-quality essential 

information you need to get the most out of Tk. [18] 
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III.3.3 PIL 

The Python Imaging Library adds image processing capabilities to your Python interpreter. 

This library provides extensive file format support, an efficient internal representation, and 

fairly powerful image processing capabilities. 

The core image library is designed for fast access to data stored in a few basic pixel formats. 

It should provide a solid foundation for a general image processing tool. [19] 

 

III.3.4 pickle 

The pickle module implements binary protocols for serializing and de-serializing a Python 

object structure. “Pickling” is the process whereby a Python object hierarchy is converted into 

a byte stream, and “unpickling” is the inverse operation, whereby a byte stream (from a 

binary file or bytes-like object) is converted back into an object hierarchy.[20] 

 

III.3.5 datetime 

The datetime module supplies classes for manipulating dates and times, the most of the 

libraries are described in the second chapter. 

 

III.4 Collecting students’ images 

First of all, we need to create a database which contain images, each image is named after 

the name of the student. 

III.5 Collecting Face Signatures 

After creating the database, in the face signatures program we have to call some important 

libraries: OS, PIL, matplotlib, TensorFlow, tensorflow.keras.models, numpy, face_recognition, 

pickle and OpenCV (Figure III-1). 
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Figure III-1 import all the libraries 

The program loop through the database to detect and extract faces from those images using 

the HOG face detector, so we don’t have to get the picture of the face of every student, the 

face extraction for the data base happens automatically(Figure lll-2). 

 

Figure III-2 Face extraction 
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Then the face image went through a little bit of pre-processing steps like resize and type 

changing (Figure III-3): 

• Resize image to 160*160 pixel. 

• Normalize the face. 

• Convert image type to float32. 

• Convert the image from 3 dimensions shape (160 x 160 x 3) to 4 dimensions shape (1 

x 160 x 160 x 3), 160x160 for the height and width, 3 for RGB format and 1 for number 

of faces in the image could be 2, 3 or more. 

 

Figure III-3 images preprocessing 

The next step is loading the normalized face as input into the face recognition model (Facenet) 

and get the face embedding as output which is a vector of 128 number, these numbers 

represent the most important features in the face (Figure III-4). 

 

Figure III-4 signature extraction 

Finally, save the embedding of every face from the database attached with the student’s 

name in a pickle file (data.pkl) like the picture shows (Figure III-5). 

 

Figure III-5 creating the face embedding database  
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III.6 Face recognition 

Starting, we call some the libraries: PIL, keras.models, numpy, pickle, OpenCV, datetime and 

face_recognition, same as the face signatures collecting program (Figure III-1). 

We load the facenet model again, then open the face embeddings file (data.pkl) (Figure III-

6). 

 

Figure III-6 load the models and open the data files 

Next step is moving to the real-time face detection and recognition by opening the camera 

using OpenCV library(Figure lll-7). 

 

Figure III-7 open the camera 

The HOG face detector detects the faces frame by frame from the camera and load it to the 

FaceNet model, the FaceNet model creates the face embeddings after going through the 

same pre-processing steps and the conversions we did to the database of the faces images in 

the collecting signatures part (Figure ll-3). 

Finally, we compare the face embeddings from the database with the face embeddings taken 

from the real-time camera (Figure III-8) if the distance of the face embeddings is lower than 

the min_dist we assume the faces are similar. 

 

Figure III-8 similarity calculation 
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III.7 Creating bounding box 

After getting the face coordinates from the HOG face detection model, we use them to draw 

the bounding box and print the identity name above the BBox (Figure III-9). 

 

Figure III-9 create the BBox and print the id 

III.8 The attendance 

Every time the program recognizes someone it puts his name in Excel file (.CSV) with the 

date and time(Figure lll-10). 

 

Figure III-10 mark the attendance 

  The attendance function: (Figure III-11). 

 

Figure III-11 the attendance function 
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III.9 The graphical user interface (GUI) 

The graphical user interface is put together using Tkinter and CustomTkinter libraries for 

python, the application is composed of 3 interfaces, the first interface is the home page, this 

is the main interface in which you can see the main features available (Figure lll-12). 

 

Figure III-12 the graphical user interface home page 

1. Enrolment: add a student to the database 

2. Mark attendance: mark live attendance 

3. Exit: close the application 

4. Check attendance: check the attendance 

 

The second interface is the enrolment interface which is accessible by clicking on the 

Enrolment button (Figure lll-13), used to add new student into the database, map the face 

features and generate face embeddings. 
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1. Take a Picture: Takes a picture of the whole frame and saves it in the database 

folder. 

2. Update the Database: Updates the face embeddings into the pickle file (‘data.pkl’). 

3. User input: the full name of the student provided by the user. 

 

 

The third interface is used to mark the attendance (figure lll-14), a window will pop up 

and open the camera, detecting and recognizing faces in real time, also printing the 

identity above the detected face BBox, it also records the presence of recognized 

students. This interface is usable by clicking on the “Mark attendance” button on the 

home page (Figure lll-12). 

Figure III-13 enrolment interface 
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Figure III-14 Marking Attendance 

 

We can check the attendance sheet by clicking on Check attendance button on the 

home page. showing the identity, the date and time (Figure lll-15) 

 

Figure III-15 the students Attendance sheet 
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III.10  Conclusion 

In this chapter we’ve introduced the creation steps of the face recognition based attendance 

system with its different functionalities. 

The implementation of the HOG face detection algorithm improved the detection better than 

our custom models in terms of speed, and the accuracy of the FaceNet recognition model is 

pretty high. 

The graphical user interface simplifies the access to the attendance lists and using the system 

in general, all it takes is clicking some buttons.  
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General conclusion 

The objective of this master’s thesis is creating a real-time face detection and recognition 

system to do the attendance for the students, and can be used to control the access to any 

other environments. 

We trained many deep learning models as SSD and YOLOv5 for detection and compare them 

to other classical algorithms like HOG, FaceNet and Siamese network to recognize the faces. 

Finally, after a long discussion about the results we chose the HOG algorithm for face 

detection and the Facenet model for face recognition. 

We also created a graphical user interface for our application which contains many 

functionalities like marking the attendance, enrolling new members and checking the 

attendance lists.    

This master thesis has allowed us to discover a new world of knowledge, we’ve learned many 

things about the artificial intelligence and the deep learning, we’ve discovered more 

computer vision techniques for image processing and a many more.  

The time we spent in research and development we explored very powerful AI and computer 

vision tools. 

We can’t forget that if you want to achieve any goal you have to walk across many obstacles, 

and we had our share of difficulties: 

• For training a good deep learning model you need a powerful setup with high 

performance GPUs. 

• And about the dataset you need a large dataset to get a high accuracy model, like 

FaceNet which was trained on one million images. 
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