الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne démocratique et populaire

وزارة التعليم السعاليو البحث العلمي

Ministère de l'enseignement supérieur et de la recherche scientifique

جامعةسعددطبالبليدة Université SAAD DAHLAB de BLIDA

> كلية(لتكنولوجيا Faculté de Technologie

قسمالإلكترونيك Département d'Électronique

Mémoire de Master

Mention Automatique
Automatique et informatique industrielle

présenté par

DOUMI Kamel

&

MAHDI Mohamed Achraf

Etude et réalisation de la migration et la supervision du Gratteur d'ajouts de S5-115U vers S7-300

Proposé par : Mr. BENSELAMAZoubirAbdeslem& Mme LAHCINE Samira

Année Universitaire 2017-2018

Nous tenons tout d'abord à remercier ALLAHle tout puissant et miséricordieux, qui nous a donné la force et la patience d'accomplir ce Modeste travail.

En second lieu, nous tenons à remercier notre encadreur Mr: Benselamade l'université de Blida, notre Co-promotrice Mme: LahcineIngénieure dans la S.C.MI, Le chef service Mr: Tebbalet toute l'équipe du système pour ses précieux conseils et ses aides durant toute la période du travail.

Nos vifs remerciements vont également aux membres du jury pour l'intérêt qu'ils ont porté à notre recherche en acceptant d'examiner notre travail et de l'enrichir par leurs propositions.

Nous présentons enfin, notre profonde gratitude à nos familles, ainsi qu'à tous ceux qui nous ont aidés de loin ou de près à réaliser ce travail.

Kamel & Achraf

A mes chers parents, pour tous leurs sacrifices, leur amour, leur tendresse, leur soutien et leurs prières tout au long de mes études,

A ma grande mère que Allah la garde toujours à mes côtés.

A mon cher frère et sa femme, pour leur appui et leur encouragement,

A mes chères sœurs et leurs hommes pour leurs encouragements permanents, et leur soutien moral,

A mes chères nièces Maria, Lyna et Ryma,

A toute ma famille et tous mes amis pour leur soutien tout au long de mon parcours universitaire,

A mon binôme Achraf pour sa gentillesse et son travail dur durant ce projet,

Que ce travail soit l'accomplissement de vos vœux tant allégués, et le fuit de votre soutien infaillible,

Merci d'être toujours là pour moi.

Kamel

A mes chers parents, pour tous leurs sacrifices, leur amour, leur tendresse, leur soutien et leurs prières tout au long de mes études,

A mes grandes mères que Allah les garde à mes côtés.

A mes chers frères, pour leur appui et leur encouragement,

A mes chères sœurs et leurs hommes pour leurs encouragements permanents, et leur soutien moral,

A mes chères nièces et mes chers neveux que Allah les protège.

A toute ma famille et tous mes amis pour leur soutien tout au long de mon parcours universitaire,

A mon binôme Kamel pour sa patience et sa gentillesse.

Que ce travail soit l'accomplissement de vos vœux tant allégués, et le fuit de votre soutien infaillible,

Merci d'être toujours là pour moi.

Achraf

ملخص:

في هذا العمل قمنا بدراسة للتجديد و المراقبة لمكشطة شبه مبوبة المتواجدة في ورشة التحضير للتجانس

في المنطقة الخام و التي تلعب دوراً رئيسيا في عملية إنتاج الإسمنت داخل مجمع الاسمنت لمفتاح.

من هذا المنطلق قمنا أولا بتحليل عمل المكشطة، ثم قمنا باقتراح حلول بهدف التخلص من المشاكل

الموجودة نذكر منها استعمال ألى جديد S7-300 عوضا عن الألى القديم S5-115U، تشغيل المكشطة في الوضع

الآلى بالموازاة مع الوضع اليدوي و الوضع المحلى.

أخيرا تثبيت واجهة تواصل بين الإنسان والآلة مقترحة للسماح لنا بمراقبة المكشطة و التحكم في عملها

بهدف تحسين سير و صيانة النظام

كلمات المفاتيح: المكشطة، 300-57، S5-115U

Résumé:

Dans ce travail nous avons fait une étude du migration et de supervision du

gratteur d'ajouts situé dans l'atelier de pré-homogénéisation dans la zone cru qui joue

un rôle principal dans le procédé de fabrication du ciment à l'intérieur de la SCMI.

Pour ce faire nous avons fait une analyse fonctionnelle du gratteur, ensuite

nous avons proposé des solutions dans le but d'éliminer les problèmes nous citons:

l'utilisation d'un nouveau automate S7-300 au lieu du l'ancien automate S5-115U.

Enfin, l'installation d'une interface homme machine est aussi proposée pour

nous permettre de superviser et commander le fonctionnement du gratteur dans le

but d'améliorer la conduite et la maintenance du système.

Mots clés: Gratteur; S7-300; S5-115U.

Abstract:

In this work we did a study of migration and supervision of the semi-portal

scraper located in the raw zone which plays a key role in the process of the

manufacture of cement in the interior of the MEFTAH cement plant.

To do this work we first made a functional analysis of the scraper. Then we

suggest: the utilization of a new S7-300 PLC instead of the old S5-115U PLC.

Finally, the installation of a human machine interface is also proposed to allow us

to supervise and control the operation of the scraper in order to improve the

operation and maintenance of the system.

Keywords: Scraper, S7-300, S5-115U

Listes des acronymes et abréviations

SCMI : Société des Ciments de la Mitidja.

GICA: Groupe Industriel des Ciments d'Algérie.

API: Automate Programmable Industriel.

IHM: Interface Homme Machine.

TOR: Tout ou Rien.

E/S : Entrée / Sortie.

CPU : Unité central de l'automate (Centrale Processingunit).

OB: Bloc d'Organisation.

FC: Fonction.

FB: Bloc Fonctionnel.

DB: Bloc de Données.

DP: Périphérie Décentralisé (DecentralizedPeripheral).

PS : Gammes des alimentations stabilisées de siemens.

CP: Communication Profinet.

AI : Analogue Input (entré analogique).

AO: Analogue Output (sortie analogique).

DI : Digital Input (entré numérique).

DO: Digital Output (sortie numérique).

Table des matières

Introdu	ction	générale	1
Chapitr	e 1	Processus de fabrication du ciment	2
1.1	Env	rironnement de production du ciment	2
1.2	Les	constituants du ciment	4
1.3	Le	procédé de fabrication du ciment	5
1.3	3.1	Zone Carrière	5
1.3	3.2	Zone Cru	7
1.3	3.3	Zone Cuisson	10
1.3	3.4	Zone Ciment	12
1.3	3.5	Zone Expédition	13
1.4	Cor	nclusion	15
Chapitr	e 2	Analyse fonctionnelle du gratteur semi-portique et problématique	16
2.1	Intr	oduction	16
2.2	Des	scription du gratteur et ses principaux organes	16
2.2	2.1	Description du gratteur semi-portique	16
2.2	2.2	Principaux organes du gratteur	17
2.3	Ana	alyse fonctionnelle	20
2.3	3.1	Fonctionnement du gratteur	20
2.3	3.2	Listes des actionneurs et des capteurs	21
2.3	3.3	les procédures de démarrage et d'arrêt du gratteur	23
2.4	Inst	rumentation	28
2.4	l.1	Les capteurs	28
2.4	1.2	Les actionneurs	30
2.5	Pro	blématique	32
2.6	Cor	nclusion	32
Chapitr	e 3	L'automate S7-300 et les logiciels associés	33
3.1	Intr	oduction	33
3.2	Gér	néralité sur les automates programmables industriels	33
3.2	2.1	Définition d'un automate programmable industriel	33
3.2	2.2	Architecture interne d'un API	34
3.2	2.3	Critères du choix d'un automate programmable	35
3.3	Pré	sentation du l'automate S7-300	35
3.3	3.1	Caractéristiques techniques	36

	3.3.	2	Modularité	36
	3.3.3	3	Les avantages du l'automate S7-300	38
3	.4	Equi	ipement BAT-F	38
	3.4.	1	Critères du choix	38
	3.4.	2	Le montage	39
3	.5	SIM	ATIC STEP 7	40
	3.5.	1	Les applications du STEP 7	40
	3.5.2	2	Les langages de la programmation	41
	3.5.3	3	Les blocs utilisateur	42
	3.5.	4	Editeur mnémoniques	43
	3.5.	5	Configuration matérielle	43
	3.5.0	6	Diagnostic du matériel	44
	3.5.	7	NetPro	45
3	.6	S7-P	PLCSIM	46
	3.6.	1	Les états de fonctionnement de la CPU	46
	3.6.2	2	Les indicateurs de la CPU	47
3	.7	Gén	éralité sur la supervision	47
	3.7.	1	Définition de la supervision	47
	3.7.	2	Avantages de la supervision	47
	3.7.3	3	Interface homme/machine	47
3	.8	Win	CC flexible :	48
	3.8.	1	RUNTIME	49
3	.9	Con	clusion	49
Cha	pitre	4	Programmation et supervision	50
4	.1	Intro	oduction	50
4	.2	Part	ie programmation	50
	4.2.	1	Création du projet	50
	4.2.	2	Configuration du matériel	53
	4.2.	3	Configuration du réseau	54
	4.2.	4	Création de table des mnémoniques	54
	4.2.	5	Structure du programme élaboré	56
4	.3	Part	ie supervision	62
	4.3.	1	Création du projet	62
	4.3.	2	Intégrer le projet WinCC dans le projet STEP7	63

4.3.3	établir liaison entre WinCC et STEP7	63
4.3.4	Les variables	64
4.3.5	Création des alarmes	65
4.3.6	Les vues de supervision et de commande	66
4.3.7	Animation	69
4.4 Con	clusion	70
Conclusion ge	énérale	71
Annexes		72
Bibliographi e		84

Liste des figures

Chapitre 01	: Processus	de fabrication	du ciment
--------------------	-------------	----------------	-----------

Figure 1.1 : Vue générale de l'entreprise	2
Figure 1.2 :Localisation géométrique de la cimenterie de MEFTAH	3
Figure 1.3 :Les matières premières	4
Figure 1.4: broyage du clinker, gypse et tuf = ciment	4
Figure 1.5 :la ligne de production du ciment	5
Figure 1.6 : Transport et Concassage	6
Figure 1.7 :Zone Cru	7
Figure 1.8 : Hall de pré-homogénéisation	8
Figure 1.9 : Atelier d'homogénéisation	9
Figure 1.10 :Zone cuisson	10
Figure 1.11 :Schéma des étapes de cuisson	11
Figure 1.12 :Zone ciment	12
Figure 1.13 :silos de stockage du clinker, gypse et tuf.	12
Figure 1.14 :Broyeur du ciment	13
Figure 1.15 : Expédition en vrac	14
Figure 1.16 : Expédition en sac	14
Chapitre 02 : Analyse fonctionnelle du gratteur semi-portique et problématique	
Figure 2.1: le gratteur semi-portique	17
Figure 2.2 : vue sur le moteur rapide de translation	17
Figure 2.3 : vue sur la chaine du gratteur	18
Figure 2.4 : le moteur de la chaine	18
Figure 2.5 :L'enrouleur de câble	19
Figure 2.6 :vue sur la pompe de graissage	19
Figure2.7 :schéma du fonctionnement	20
Figure2.8 : Capteur à proximité inductif	29
Figure2.9 :Capteur à proximité capacitif	29
Figure 2.10: Inclinomètre	29
Figure2.11 : schéma du fonctionnement de lâche câble	30
Figure 2.12: Moteur asynchrone	31
Figure 2 13 : Convertisseur de fréquence	31

Chapitre 03 : L'automate S7-300 et les logiciels associés

Figure3.1 : Architecture interne d'un API	34
Figure 3.2: Vue sur l'automate S7-300	3 5
Figure 3.3 : Vue sur les modules de l'automate S7-300	36
Figure3.4 : Vue sur l'équipement Open BAT-F	39
Figure 3.5 : Création d'un processus avec STEP7	40
Figure 3.6: Vue sur PLCSIM	46
Figure 3.7: interface générale du WinCC	48
Chapitre 04 : Programmation et supervision	
Figure4.1: Les étapes de la création d'un nouveau projet sous STEP7	51
Figure 4.2: insertion d'une station SIMATIC 300	52
Figure4.3: Configuration du matériel	53
Figure4.4: Configuration du réseau de la communication	54
Figure4.5: exemple de table mnémonique	55
Figure4.6: Vue sur la structure du programme élaboré	56
Figure4.7: Exemple d'un réseau dans le bloc d'organisation	57
Figure 4.8: Memento d'activation la translation direction gauche en mode automatique	58
Figure4.9: mise en marche l'enrouleur	58
Figure4.10: Memento de levage principale montée	59
Figure4.11: commande de marche de graissage	60
Figure4.12: mettre la chaine en marche	61
Figure4.13: Impulsion mis en marche automatique	61
Figure4.14: création d'un projet sous WinCC	62
Figure4.15: Intégration du projet WinCC dans le projet STEP7	63
Figure4.16: Etablir la liaison entre WinCC et STEP7	64
Figure 4.17: Exemple de la liste des variables dans le projet WinCC	64
Figure4.18: Exemple de la liste des alarmes	65
Figure4.19: Vue du mode manuel	66
Figure4.20: Vue du mode local	67
Figure4.21: Vue du mode automatique	68

Liste des tableaux

Chapitre 02 : Analyse fonctionnelle du gratteur semi-portique et problématique	
Tableau 2.1: liste des actionneurs	20
Tableau 2.2: liste des capteurs	21
Chapitre 04 : Programmation et supervision	
Tableau4.1: animation d'objets	69
Tableau4.2: animation des alarmes	70

Introduction générale

Le développement rapide des techniques d'automatisation et de supervision a contourné la plupart de problèmes rencontrés dans l'industrie. Il a offert plusieurs solutions pour améliorer la productivité et la maintenance ainsi que la sécurité des systèmes industriels dans le but de minimiser les couts et maximiser les profits.

Le but principal de ce projet est de développer le mode de marche du gratteur semiportique situé dans l'atelier de pré-homogénéisation (hall ajouts) dans la zone crue au sein de la SCMI en utilisant un nouvel automate S7-300 et le programmer avec STEP 7 au lieu de l'automate S5-115U qui a été installé et qui est devenu un problème à résoudre surtout après la décision du Siemens d'arrêter de fabriquer ce modèle. Et pour assurer la sécurité de la marche du gratteur il est impératif d'installer une interface homme machine pour le superviser et le commander en temps réel.

Pour présenter ce projet nous avons tracé le plan du travail en 4 chapitres comme suit :

Dans le 1^{er} chapitre nous avons décrit le processus de fabrication du ciment.

Dans le 2eme chapitre nous avons fait une analyse fonctionnelle du gratteur et ses instruments.

Dans le 3eme chapitre nous avons présenté l'automate S7-300 et les logiciels utilisés dans ce travail.

Dans le 4eme chapitre nous avons montré le programme élaboré avec STEP 7 et la supervision avec WinCC flexible.

Enfin, Nous avons terminés par une conclusion générale comporte que ce que nous avons appris durant la réalisation du ce travail.

Chapitre 1 Processus de fabrication du ciment

1.1 Environnement de production du ciment

La Société des Ciments de la Mitidja (S.C.MI.) est une filiale du Groupe Industriel des Ciments de l'Algérie (G.I.C.A.) .Elle est en partenariat avec le Groupe Lafarge Holcim depuis Septembre 2008.

Figure 1.1 Vue générale de l'entreprise

La Société des Ciments de la Mitidja comprend une seul unité, la Cimenterie de Meftah. Dont la principale activité étant La production et commercialisation des ciments.

Superficie de l'usine : 429601 m2 = 43 hect. , dont :

- Chaîne de fabrication: 40327 m2

- Bâtiment administratif: 620 m2

- Magasin: 1450 m2

- Bâtiments sociaux : 1400 m2. [1]

Principaux constructeurs:

KAWASAKI HEAVY INDUSTRIES LTD (KHI).

FIVES CAIL BABCOCK (F.C.B).[1]

Localisation:

La Cimenterie de Meftah est localisée à proximité de la route nationale n°29, Reliant la commune de Meftah à celle de Khemis-El-Khechna.

Elle est implantée dans la commune de Meftah, Daira de Meftah, Wilaya de Blida.

Figure 1.2 : Localisation géométrique de la cimenterie de MEFTAH

1.2 Les constituants du ciment

La fabrication du ciment exige la combinaison entre les matières premières nécessaires : le calcaire, l'argile, le sable, le minerai de fer..

Ces différentes matières premières (calcaire, l'argile, le sable et le minerai de fer) sont broyées à l'aide d'un concasseur et sont transportées vers la cimenterie.

L'homogénéisation de ce premier mélange se fait dans un broyeur à boulet pour être broyées et séchées. Il est ensuite envoyé vers un four rotatif où il est chauffé (1450 c°) à fin d'obtenir le clinker.[1]

Figure 1.3: Les matières premières

Les granulés de clinker sont introduits dans broyeur à boulet avec des ajouts (gypse, tuf) ou ils sont broyés finement pour donner le produit final qui est le ciment.[1]

Figure 1.4: broyage du clinker, gypse et tuf = ciment

1.3 Le procédé de fabrication du ciment

L'usine possède une seule ligne de production, le procédé de fabrication est la voie sèche. Cette ligne de production est composée de cinq zones:

Zone 01 : Carrière.

Zone 02 : Cru.

Zone 03 : Cuisson.

> Zone 04 : Ciment.

> Zone 05 : Expédition.

Figure 1.5: la ligne de production du ciment

1.3.1 Zone Carrière

Nous trouvons dans cette zone:

a L'extraction des matières premières :

L'extraction des matières premières se fait généralement à l'air libre dans les zones carrières. Elles sont stockées après l'acheminement et le concassage.[1]

b transport:

Les matières premières sont transférées dans un dumper afin de les transporter vers les concasseurs. Pour les décharger dans la chambre de concassage.[1]

c concassage:

Le concassage est l'action de concasser c'est-à-dire réduire en petites parties les blocs qui sont obtenus pendant l'extraction.

Il y a deux types de concasseur : le FCB 450 T/h et le KHD 1000 T/h.[1]

Figure 1.6: Transport et Concassage

1.3.2 Zone Cru

Figure 1.7: Zone Cru

a La pré-homogénéisation :

En général, deux constituants sont utilisés pour la préparation du cru : le calcaire et l'argile. Apres le concassage de ces deux constituants de base on obtient une granulométrie de « 0 à 25mm ». Les deux composants sont acheminés vers l'usine par des transporteurs couverts, puis les matières premières sont stockées dans deux halls de pré homogénéisation.[1]

Hall calcaire :

Le gratteur portique (à palettes) sert à gratter le calcaire en se déplaçant en translation de tas en tas et jette la matière sur le tapis pour la transporter à la trémie calcaire. [1]

• Hall ajouts :

Il existe deux gratteurs semi portiques (à palettes) qui servent à gratter les ajouts (argile, sable, fer), il déverse les produits sur les bandes transporteuses jusqu'aux trémies (les tapis T6, T7, T8, T9 et T11).[1]

Il existe 4 trémies (calcaire, fer, argile, sable). Le dosage de ces différents constituants du ciment est comme suit :

- Calcaire 80%
- Argile 20%
- Sable 2%
- Fer 1%

Le produit est acheminé par le transporteur (tapis T13) vers le broyeur à marteau qui sert à concasser la matière.[1]

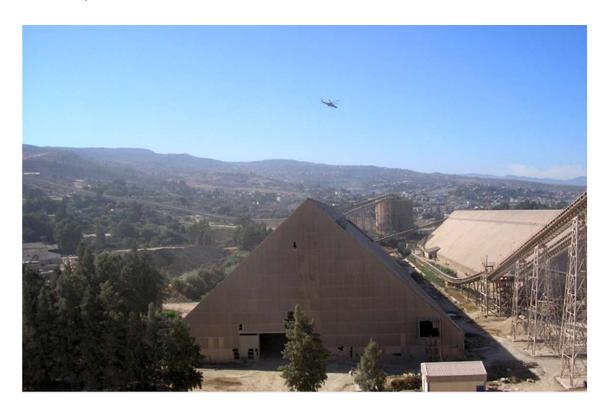


Figure 1.8 : Hall de pré-homogénéisation

b Le broyeur à marteau :

Il sert à concasser la matière, ensuite le début de séchage se fait dans le four.

■ L'aspiration :

Aspiration de la matière + les gaz chauds par le ventilateur de tirage 1600 KW.[1]

Séparateur statique :

Le séparateur statique sépare la granulométrie (grosses particules et fines particules)

- Les Grosses particules passent par vers les broyeurs à boulets.
- Les fines particules partent vers le stockage (silos d'homogénéisation).[1]

■ Le broyeur à boulets :

Tous les rejets du séparateur vont passer pour être broyés dans les deux compartiments du broyeur.[1]

c **Homogénéisation**:

Le produit sera mélangé dans les silos H1, H2 pour être prêt au stockage. La capacité de stockage de chaque silo est de 10 000T. Chaque silo est équipé de deux sorties latérales pouvant assurer la totalité du débit farines vers le four.[1]

Figure 1.9: Atelier d'homogénéisation

1.3.3 Zone Cuisson

Au cours du cycle de fabrication du ciment, la zone cuisson reçoit la farine en amont pour la transformer en clinker en aval, cela ne se fait qu'en passant par plusieurs étapes.[1]

Figure 1.10: Zone cuisson

a **Préchauffage :**

La matière crue est introduite dans une tour de préchauffage à 800 °C avant de rejoindre le four rotatif vertical ou elle est portée à une température de 1450 °C.

Le préchauffage se fait dans une série de cyclones, disposés verticalement sur plusieurs étages, appelée « préchauffeur ». La matière froide, introduite dans la partie supérieure, se réchauffe au contact des gaz. D'étage en étage, elle arrive partiellement décarbonatée, jusqu'à l'étage inférieur, à la température d'environ 800°C.[1]

b Le four rotatif:

La cuisson se produit dans le four, ce dernier est constitué de la zone de décarbonatation (900°C), la zone de transition (1050°C) et la zone de cuisson (1450°C) à cette température appelée température de clientélisation, des réactions physicochimiques se produisent et donnent lieu à la formation d'un produit qu'on appelle le clinker.[1]

c Le refroidissement :

A le sortie du four, il y a le refroidisseur à grilles, et chaque grille est constituée de deux (2) chambres une fixe et l'autre mobile, les grilles dont inclinées à 3 degrés et sont animées d'un mouvement de va et vient à l'aide d'un vérin à double effet.[1]

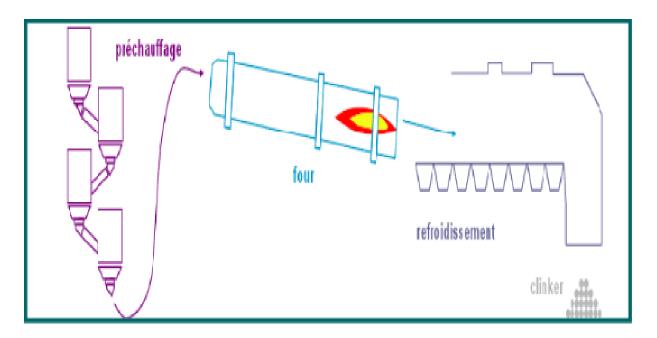


Figure 1.11: Schéma des étapes de cuisson

1.3.4 Zone Ciment

Cet atelier est composé de deux lignes identiques avec un débit de 90 t/h chacune de production du ciment.

Figure 1.12: Zone ciment

a Remplissage en trémies :

Figure 1.13: silos de stockage du clinker, gypse et tuf.

Le clinker, gypse et le tuf sont acheminées vers leurs trémies correspondantes, le remplissage de la trémie clinker se fait à travers le tapis T16 qui vient s'approvisionner de Clinker stocké dans les silos de stockage, puis vient l'élévateur à godets qui achemine le clinker pour remplir la trémie.[1]

b Broyage du ciment :

Les matières citées antérieurement sont transportées sur un tapis vers le broyeur ciment, la matière broyée sera transportée par un élévateur à godets, ensuite elle sera déversée dans le séparateur dynamique. Le séparateur sépare les éléments suffisamment fins des autres qui sont renvoyés au broyeur. Enfin le ciment est transporté vers les silos de stockage. [1]

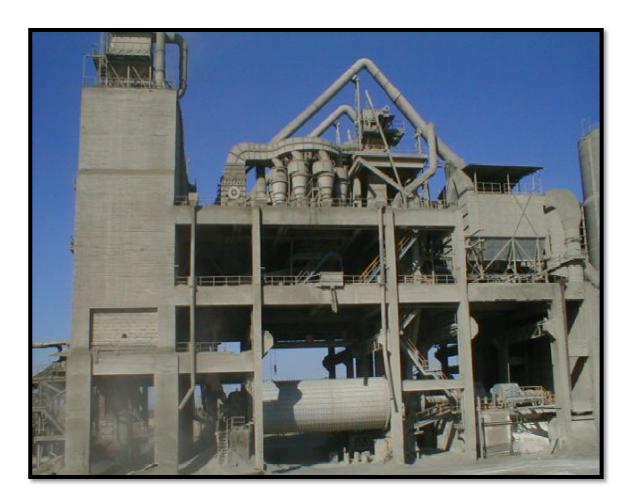


Figure 1.14: Broyeur du ciment

1.3.5 Zone Expédition

Le ciment est stocké dans les silos (08 silos de 5 000 tonnes chacun) avant d'être livré en vrac dans des citernes ou d'être conditionné en sac de 50 kg.

a **Expédition en vrac** :

Elle est réalisée par 02 postes vrac de 200 t/h chacun.

Le remplissage se fait par un flexible (oscilloscope) branché au fond d'une trémie et qui est dirigé par l'opérateur pour le mettre à l'intérieur de la bouche de la cocotte des camions pour les remplir.

Figure 1.15 : Expédition en vrac

b Expédition en sac :

Elle est réalisée par 04 Ensacheuses de 120 t/h chacune.

Les sacs de 50 kg sont chargés sur des camions à bennes.

Figure 1.16 : Expédition en sac

1.4 Conclusion

Dans ce chapitre nous avons présenté l'environnement de production du ciment au sein de la société du ciment de la Mitidja (S.C.MI) ainsi que le procédé utilisé pour sa fabrication.

La fabrication du ciment passe par des différentes zones de l'extraction de la matière première jusqu'à l'expédition de la matière finale (le ciment).

Dans le cadre de notre travail nous allons intervenir dans la zone crue de l'atelier de pré-homogénéisation (hall ajouts) ou se trouve deux gratteurs, un, semi-portique nord et un second, sud qui sera l'objet de notre intérêt. Le premier fonctionnant d'une manière pratique et convivial avec son superviseur par contre le second fonctionnant avec quelques lacunes pratique où nous allons l'améliorer en proposant à le faire fonctionner en mode automatique avec l'API S7-300 avec une interface homme-machine IHM pour le commander et le superviser.

Le prochain chapitre nous allons décrire et faire une analyse fonctionnelle du gratteur semi-portique sud.

Chapitre 2 Analyse fonctionnelle du gratteur semi-portique et problématique

2.1 Introduction

Après avoir présenté le processus de production du ciment au sein de la S.C.MI, et pour aborder notre travail, il est impératif de connaître les différents constituants du notre système et son principe de fonctionnement.

Dans ce chapitre nous allons faire une analyse fonctionnelle du gratteur semiportique et poser la problématique que nous devrons solutionner.

2.2 Description du gratteur et ses principaux organes

Pour aborder notre travail nous devrons en premier lieu inventorier les constituons du gratteur semi-portique

2.2.1 Description du gratteur semi-portique

Le gratteur semi-portique est une machine électromécanique, composée d'un bras supportant une chaine qui racle la matière. Son rôle principal est le déstockage de la matière du hall vers le convoyeur de reprise pour alimenter des trémies.

Figure 2.1: le gratteur semi-portique

2.2.2 Principaux organes du gratteur

Les principaux constituants du gratteur sont :

a Ensemble de translation :

La translation du gratteur s'effectue grâce à deux moteurs asynchrones à deux sens (rapide et lent), reliés avec un convertisseur de fréquence pour varier leurs vitesses. La vitesse de translation lente est appliquée quand la chaine est en train de gratter, et la vitesse de translation rapide est appliquée dans le cas de changement de position de tas à l'autre.

Figure 2.2 : vue sur le moteur rapide de translation

b Bras du gratteur :

Un ensemble mécanique qui permet de gratter le produit vers le convoyeur, il est constitué de :

Une glissière qui supporte une chaîne et des palettes.

- La chaîne : ensemble des galets en acier dure et trempé.
- Les palettes : de forme incurvée sont munies de plats d'usure interchangeable sur lesquels sont soudées les dents. [2]

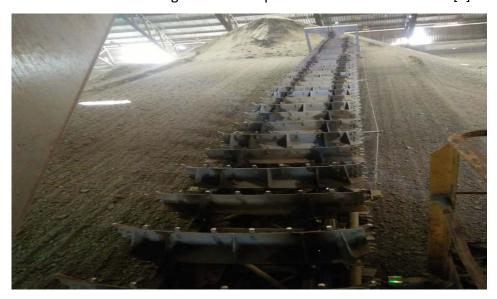


Figure 2.3: vue sur la chaine du gratteur

La chaîne est entraînée en rotation par un moteur asynchrone triphasé à cage d'écureuil et un coupleur hydraulique pour augmenter le couple moteur, et un réducteur à arbre creux.[2]

Figure 2.4 : le moteur de la chaine

c L'enrouleur de câble :

L'enrouleur de câble est une roue tournante, avec un axe relié avec le support du chariot principal du gratteur. En général l'enrouleur de câble assure la protection du câble qui alimente le gratteur, le câble du gratteur est spécial car il contient tous les conducteurs de puissance, car le gratteur est une machine qui se déplace, ce qui fait que s'il n'y avait plus d'enrouleur le câble peut s'endommager.[2]

Figure 2.5 :L'enrouleur de câble

d L'ensemble de graissage:

La chaîne est équipée d'un ensemble de graissage comportant un moteur électrique à faible puissance et une pompe immergé dans un réservoir d'huile. Le graissage de chaîne se fait par injection de l'huile par goutte sur les chaînes.[2]

Figure 2.6 : vue sur la pompe de graissage

e L'ensemble de levage:

La montée et la descente de la chaine est effectué par un système commandé par un moteur à deux sens de rotation (haut : pour le levage et bas : pour la descente.) avec un transmetteur d'angle pour enregistrer la position de la flèche.

2.3 Analyse fonctionnelle

Après la description du gratteur nous allons détailler son fonctionnement en mettant en valeur les actionneurs et les capteurs utilisés ainsi que ses procédures de mise en marche et d'arrêt

2.3.1 Fonctionnement du gratteur

Le gratteur se déplace dans les deux sens gauche et droite avec deux types vitesses rapide et lente. Pendant son mouvement lent de va-et-vient, il racle la matière avec ses palettes vers le convoyeur de reprise pour alimenter la trémie, quand la trémie est pleine le gratteur passe à sa vitesse rapide pour changer sa position vers le tas suivant.

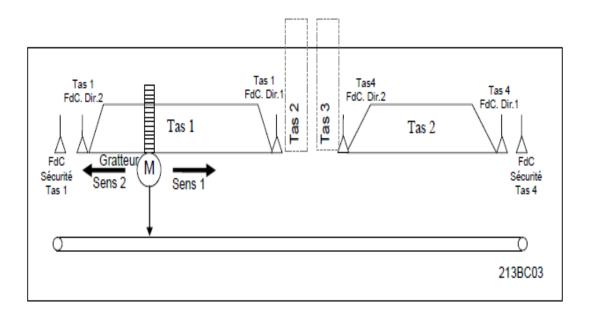


Figure 2.7 : schéma du fonctionnement

2.3.2 Listes des actionneurs et des capteurs

Dans notre système nous avons utilisé les actionneurs et les capteurs suivants :

a Liste des actionneurs :

Actionneur	Localisation	Fonctionnement
Moteur 1.5 kW	Enrouleur	Assure la protection du
		câble qui alimente le
		gratteur
Moteur rapide	Levage	Levage/descente principale
		de flèche
Moteur lent	Levage	Levage/descente de
		précision de flèche
Moteur 37Kw 1500u/mn	Chaine	Entrainement chaine
380v/50hz		
Moteur 0.25 KW	Sur le gratteur	Graissage
1000u/mn 380v/50hz		
02 moteurs 3.67/1.03 KW	TRANSLATION	Positionnement du gratteur
Rapide (3.67KW) + Lent		
(1.03 KW)		
Convoyeur	Près du tas	Déplacer la matière

Tableau 2.1 : liste des actionneurs

b Liste des capteurs :

Type de capteur	Localisation	Son fonctionnement
Détecteur à proximité	A l'intérieur du système	Arrêt d'urgence flèche en haut
inductif	de levage	
Détecteur à proximité	A l'intérieur du système	Arrêt d'urgence flèche en bas
inductif	de levage	
Détecteur à proximité	Partie droite de la	Protection de collision du tas
inductif	chaine	avec la partie droite de la chaine

Détecteur à proximité	Partie gauche de la	Protection de collision du tas
inductif	chaine	avec
		La partie gauche de la chaine
Détecteur à proximité	près du système	Arrêt d'urgence à l'extrémité du
inductif	translation	rail côté gauche
Détecteur à proximité	près du système	Arrêt d'urgence à l'extrémité du
inductif	translation	rail coté droite
FDC avec levier a galet	près du système	Détection du cote gauche de la
	translation	cloison du dépôt de "sable"
FDC avec levier a galet	près du système	Détection de la cloison Entre
	translation	"sable" et "fer"
FDC avec levier a galet	près du système	Détection de la cote droite de la
	translation	cloison du dépôt de "fer'
FDC avec levier a galet	près du système	Détection du la fin d'opération
	translation	gauche
FDC avec levier a galet	près du système	Détection du la fin d'opération
	translation	droite
Détecteur à proximité	Galet portique a la	Protection de la collision avec
inductif	poutre de la combe	l'autre gratteur
Inclinomètre	Sur la chaine	Positionner la chaine sur la
		matière
Détecteur à proximité	Sur la trémie argile	Détection de niveau haut de la
capacitif		matière
Détecteur à proximité	Sur la trémie sable	Détection de niveau haut de la
capacitif		matière
Détecteur à proximité	Sur la trémie fer	Détection de niveau haut de la
capacitif		matière

Tableau 2.2: liste des capteurs

2.3.3 les procédures de démarrage et d'arrêt du gratteur

Pour mettre le gratteur en service, il est nécessaire de choisir le mode de marche convenable au mouvement à exécuter, à la position du gratteur ainsi aux ordres reçus de la salle de contrôle.

Grâce au commutateur « mode marche », l'opérateur peut sélectionner le mode de marche parmi les modes suivants :

- Mode manuel
- Mode local
- Mode automatique

a Mode manuel:

L'opérateur commande tous les procédures de démarrage et d'arrêt du gratteur d'une manière manuelle à partir du pupitre de commande.

1) la chaine :

Démarre si :

- Tapis T7 en marche.

ΕT

- La sélection de mode manuel est activée.

ΕT

- L'opérateur démarre la chaine.
- > S'arrête si :
- Tapis T7 en arrêt.

OU

- L'opérateur arrête la chaine.

OU

- L'opérateur change le mode.

2) la translation :

Elle marche en deux sens avec deux vitesses (lente et rapide) :

ne marche en deux sens avec deux vitesses (iente et rapidi			
	a)	vitesse lente :	
	>	Démarre si :	
	-	Tapis T7 en marche.	
	ET		
	-	La chaine en marche.	
	ET		
	-	La sélection de vitesse lente est activée	
	ET		
	-	L'opérateur démarre la translation.	
	>	S'arrête si :	
	-	Tapis T7 en arrêt.	
	ΟL	J	
	-	La chaine en arrêt.	
	OL	J	
	-	La sélection de vitesse lente est désactivée	
	OL	J	
	-	L'opérateur arrête la translation.	

vitesse rapide:
Démarre si :
La chaine en haut.
Tapis T7 en marche.
La sélection de vitesse rapide est activée
L'opérateur démarre la translation
S'arrête si:
La chaine en bas.
Tapis T7 en arrêt.
La sélection de vitesse rapide est désactivée.

- L'opérateur démarre la translation

3) L'enrouleur de câble :

Démarre si :

OU

- La tension de commande est activée.
- > S'arrête si :
 - La tension de commande est désactivée.

4) Le levage et la descente :

- a) Le levage:
- > Démarre si :
 - L'opérateur démarre le levage.
- > S'arrête si :
 - L'opérateur arrête le levage.
 - b) La descente :
- > Démarre si :
 - L'opérateur démarre la descente.
- > S'arrête si :
 - L'opérateur arrête la descente.
- 5) le graissage:
 - > Démarre si :
 - la chaine en marche.

ET

- L'opérateur démarre le graissage.
- > S'arrête si :
 - la chaine en arrêt.

OU

- L'opérateur arrête le graissage.

b Mode local:

Le mode de service local est prévu pour permettre l'achèvement de travaux d'entretien et de réparation, piloté à partir des stations de commande locales.

La translation n'est possible qu'en petite vitesse.

1) La chaine :

Pour pouvoir commander La mise en marche et la mise à l'arrêt de la chaine il est obligatoire d'utiliser les boutons marche et arrêt de la chaine qui sont situés sur la station de commande locale après atteindre les conditions qui permettent de débloquer la chaine.

2) Levage et descente :

La mise en marche et la mise à l'arrêt de l'unité de levage sont commandées par les boutons « montée », « descente» prévus sur la station de commande locale.

3) La translation:

En mode local la translation n'est possible qu'en petite vitesse, et pour pouvoir débloquer la translation il faututiliser les commandes locales situés sur la stationqui permettent la mise en marche et la mise à l'arrêt de l'unité de translation.

c Mode automatique : [3]

Grace à ce mode le gratteur peut marcher automatiquement. Aucune intervention de l'opérateur n'est nécessaire.

1) Positionnement d'un tas à l'autre :

Le déplacement du gratteur d'un tas à l'autre se fait uniquement en manuel. De ce fait le control de collision avec le chariot verseur se fait visuellement par l'opérateur responsable du déplacement.

2) Mise en tas:

Une fois le gratteur en position sur le tas voulu le "cycle de mise en tas" peut être effectué.

Si le mode distant est activé ce cycle est géré par l'automate de la façon suivante :

3) Démarrage du cycle :

Le démarrage se fait toujours par un déplacement du Gratteur Sens 1

4) Direction:

Le sens 1 déplace le gratteur vers le fin de course "Dir.1"

Le sens 2 déplace le gratteur vers le fin de course "Dir.2"

5) Plage de déplacement :

Le gratteur se déplace entre le fin de course "Dir.1" et le fin de course "Dir.2".

Lorsqu'un fin de course est activé le gratteur change de direction afin d'atteindre le fin de course opposé.

6) Changement de mode:

Lors d'un basculement du mode local au mode automatique par l'opérateur du gratteur, un redémarrage de la séquence est nécessaire afin que le cycle de "mise en tas" reprenne.

7) Au cas où il y a discordance de position nous arrêtons le gratteur.

2.4 Instrumentation

Cette partie comporte les différents types des capteurs et des actionneurs utilisés dans notre système :

2.4.1 Les capteurs

Un capteur est un dispositif transformant l'état d'une grandeur physique observée en une grandeur utilisable, telle qu'une tension électrique, une hauteur de mercure, une intensité ou la déviation d'une aiguille. Les capteurs sont les éléments de base des systèmes d'acquisition de données. Leur mise en œuvre est du domaine de l'instrumentation.

a Détecteur de proximité inductif :

Ce type de capteur est réservé à la détection sans contact d'objets métalliques.

Figure 2.8 : Capteur à proximité inductif

b **Détecteur de proximité capacitif:**

Les capteurs capacitifs sont des capteurs de proximité qui permettent de détecter des objets métalliques ou isolants. Lorsqu'un objet entre dans le champ de détection des électrodes sensibles du capteur, il provoque des oscillations en modifiant la capacité de couplage du condensateur.[4]

Figure 2.9 : Capteur à proximité capacitif

c Inclinomètre:

Pour pouvoir positionner la chaine sur la matière, L'inclinomètre est une solution fiable, il détecte l'angle de la matière et quand la chaine et en descente, il la positionne sur la matière en utilisant l'angle enregistré précédemment.

Figure 2.10 : Inclinomètre

d Lâche câble :

Pour les machines telles que les convoyeurs, il est souvent plus pratique et plus efficace d'utiliser une commande par câble le long de la source du danger (comme illustré sur la figure ci-dessous) comme dispositif d'arrêt d'urgence.

Ces dispositifs utilisent un câble en acier raccordé à des interrupteurs à verrouillage par traction, de sorte que lorsque l'opérateur tire sur le câble dans une direction quelconque et en n'importe quel point du câble, cela déclenche l'interrupteur qui interrompt l'alimentation de la machine.[5]

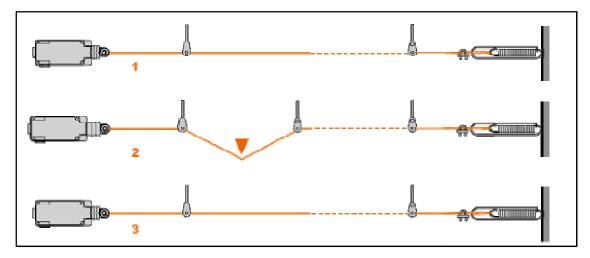


Figure 2.11 : schéma du fonctionnement de lâche câble

2.4.2 Les actionneurs

a Moteur asynchrone:

Le moteur asynchrone comprend deux parties distinctes.[6]

> Stator

C'est la partie fixe du moteur, il est constitué d'une carcasse sur laquelle est fixée une couronne de tôle d'acier, de qualité spéciale, munies d'encoches et de bobines de section appropriées. Les bobines sont reparties dans ces derniers et forment un ensemble d'enroulement, qui comportent autant de circuits qu'ils y de phases d'alimentation.[6]

> Rotor

C'est la partie mobile du moteur, il est placé à l'intérieur du stator, et constitue d'empilage de tôles d'acier qui forment un cylindre claveté sur l'arbre de moteur.

Le rotor à cage d'écureuil est un système de conductrice intégrée aux tôles ferromagnétique.[6]

Figure 2.12: Moteur asynchrone

b Convertisseur de fréquence

C'est un dispositif électronique utilisé pour contrôler les moteurs asynchrones triphasés à induction. Il permet à varier la vitesse des moteurs en jouant sur la fréquence et cela permet d'augmenter ou de diminuer la vitesse selon notre choix.

Figure 2.13 : Convertisseur de fréquence

2.5 Problématique

Lors de la réalisation notre travail nous avons rencontrés plusieurs problèmes au niveau de notre système et parmi les principaux problèmes nous citons :

- le système est basé sur un modèle obsolète, l'automate S5-115U inclut à la gamme SIMATIC S5 que siemens a arrêté de la fabriquer donc il y'aura pas des modules et des pièces de rechanges en cas de défaut et même s'ils sont disponibles ils vont être trop chères.
- Manque d'une interface homme-machine IHM qui permettra à l'opérateur de superviser, de visualiser le fonctionnement sur site et de commander le système
- L'enrouleur du câble de commande des actionneurs ce dernier résulte du déplacement fréquent nécessaire du moteur

2.6 Conclusion

Dans ce présent chapitre nous avons décrit le fonctionnement du gratteur semi-portique, en mettant en valeur ses différents instruments et ses modes de marche, ce qui nous a permis de recenser les différents problèmes à résoudre pour répondre à notre cahier de charge.

Dans le prochaine chapitre nous allons présenter l'automate S7-300 et les logiciels STEP 7 et WinCC flexible qui seront une solution fiable pour développer le système et contourner les problèmes trouvés.

Chapitre 3 L'automate S7-300 et les logiciels

associés

3.1 Introduction

Parce que l'objet principal du notre travail est la migration d'un système automatisé et la supervision, il est impératif de donner des descriptions et des explications sur l'automate programmable industriel en général et l'automate utilisé S7-300 en particulier ainsi que ses logiciels associés de programmation STEP 7 et de supervision WinCC flexible.

Dans ce présent chapitre nous allons parler sur l'automate S7-300 et les logiciels utilisés dans notre travail.

3.2 Généralité sur les automates programmables industriels

Les automates programmables industriels sont la base du notre étude pour cela nous allons définir que ce que ça veut dire un automate programmable industriel, son architecture interne et les critères du choix d'un automate.

3.2.1 Définition d'un automate programmable industriel

Un automate programmable industriel, ou API, est une forme particulière d'automate à base de micro-processeurs qui se fonde sur une mémoire programmable pour enregistrer les instructions et mettre en œuvre des fonctions, qu'elles soient logiques, de séquencement, de temporisation, de comptage ou arithmétiques pour contrôler des machines et des processus.

3.2.2 Architecture interne d'un API

De manière générale un API est structuré autour de plusieurs éléments de base :

- Unité de traitement.
- Mémoire.
- Unité d'alimentation.
- Les interfaces d'entrées/sorties.
- L'interface de communication.
- Le périphérique de programmation.

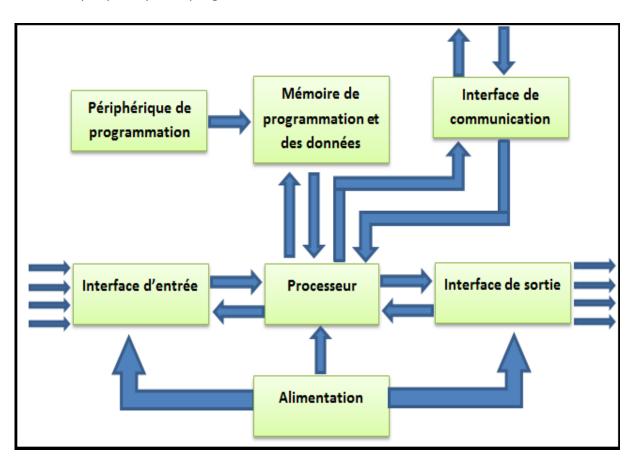


Figure 3.1: Architecture interne d'un API

3.2.3 Critères du choix d'un automate programmable

Avant de choisir un API il est impératif de connaître ses constitutions, ses capacités et s'il est convenable à notre travail, donc il faut prendre en considération plusieurs critères nous citons :

- Le nombre des entrées/sorties intégrés.
- La capacité de la mémoire.
- Temps du traitement.
- Les bus industriels et interfaces de communication disponibles en natif sur l'API.
- La disponibilité de pièces de rechange.

3.3 Présentation du l'automate S7-300

SIMATIC S7-300 est un automate programmable industriel fabriqué par SIEMENS destiné à des taches d'automatisation du milieu de gamme.

Le S7-300 est de conception modulaire constitué d'une alimentation PS, un CPU, un coupleur IM, module de signaux SM, module de fonction FM et un module de communication CP.

Figure 3.2: Vue sur l'automate S7-300

3.3.1 Caractéristiques techniques

Le S7-300 offre une gamme échelonnée de 24 CPU; des CPUs standard parmi lesquelles la première CPU avec interface Ethernet/PROFInet intégrée, des CPUS de sécurité, des CPU compactes avec fonctions technologiques et périphérie intégrées et CPU technologiques pour la gestion des fonctions motion control.

Le S7-300 offre également une très large palette de modules d'E/S TOR et analogiques pour la quasi-totalité des signaux avec possibilité de traitement des interruptions et du diagnostic.

A disposition également des modules pour emploi dans des zones à atmosphère explosive, des modules de fonction technologique comme par ex. régulation et came électronique et des modules de communication point à point ou par bus ASi, Profibus ou Industrial Ethernet.

Sa simplicité de montage et sa grande densité d'implantation avec des modules au modulo 32 permettent un gain de place appréciable dans les armoires électriques.[7]

3.3.2 Modularité

Les modules sont fixés dans l'ordre et leurs nombres sont limités c'est-à-dire que le profilé support dans le S7–300 contient au maximum 11 emplacements.

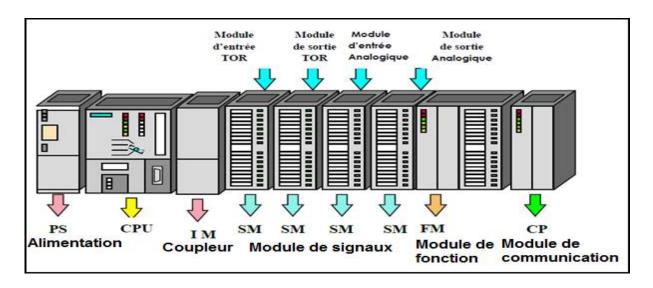


Figure 3.3 : Vue sur les modules de l'automate S7-300

a Module d'alimentation PS:

Le module d'alimentation PS assure la conversion de la tension du réseau (AC 120/230V) en tension de service pour alimenter l'automate, les capteurs, les actionneurs et les circuits de charge 24V.

b La CPU:

La CPU est le cerveau de l'automate, elle permet de lire les états des signaux, exécuter le programme utilisateur et commander les sorties ainsi que alimenter le bus de fond de panier du s7-300 en 5V.

Chaque CPU contient un commutateur de modes permet de basculer entre les modes de fonctionnement.

- **RUN-P**: L'exécution du programme (mode simulation).
- **RUN**: l'exécution du programme.
- **STOP**: Le programme n'est pas exécuté.
- MRES: Effectuer un effacement général.

c Le coupleur IM:

Le coupleur IM a comme rôle de coupler les différentes rangées d'un s7-300 entre elles par un câble de raccordement.

d Modules de signaux SM:

Les modules de signaux SM comportent les différents niveaux de signaux pour les utiliser comme des entrées et des sorties (TOR ou bien analogiques).

e Module de fonction FM:

Le module de fonction FM est destiné aux lourdes taches de calcul ainsi que la réalisation du traitement des signaux de processus critiques au niveau du temps comme le positionnement ou le réglage. (Il réduit la charge sur le CPU.)

f Modules de communication CP:

Les modules de communication CP permettent de faire une communication par transmission en série et établir une liaison point à point avec des automates, des commandes robots et des communications avec les pupitres d'opérateurs.

3.3.3 Les avantages du l'automate \$7-300

Une riche gamme de modules adaptés à tous les besoins du marché est utilisable en architecture centralisée ou décentralisée, qui réduit grandement le stock de pièces de rechange.

Une large gamme de CPU adaptée à toutes les demandes de performances pour pouvoir d'obtenir des temps de cycle machines courts, certaines étant dotées de fonctions technologiques intégrées comme par ex. le comptage, la régulation ou le positionnement. Une construction compacte et modulaire, libre de contraintes de configuration.[7]

3.4 Equipement BAT-F

Les équipements permettent la création de réseaux sans-fil dans un réseau local. Contrairement aux liaisons réseau traditionnelles via câble de cuivre et fibre optique, une partie de la communication s'effectue par liaison radio.

Les équipements BAT-F sont spécialement conçus pour les applications d'automatisme industriel. Conformes aux normes industrielles applicables, ils offrent une très haute fiabilité d'exploitation, même dans des conditions extrêmes, et conservent une souplesse d'utilisation et une flexibilité durable.[8]

3.4.1 Critères du choix

Un grand nombre de variante vous est proposé. Vous avez la possibilité de composer votre propre équipement selon différents critères :

- Point d'accès ou accès client
- Nombre de modules WLAN
- Nombre de ports

- Zone d'installation
- Options logiciel. [8]

3.4.2 Le montage

Les possibilités de montage sont :

- Montage sur ou au niveau d'une surface verticale plane.
- Montage sur poteau.

Vous avez le choix entre différents médias pour connecter des équipements terminaux et d'autres composants de réseau :

- Câble paire torsadée.
- Câble fibre optique multimode.
- Câble fibre optique monomode.[8]

Figure 3.4 : Vue sur l'équipement Open BAT-F

3.5 SIMATIC STEP 7

STEP 7 est un progiciel de base pour la configuration, la vérification, le diagnostic et la programmation de systèmes automatisés, il fait partie de l'industrie logicielle SIMATIC.

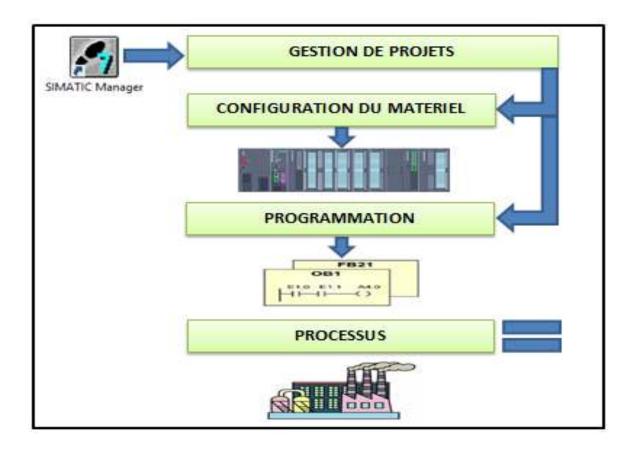


Figure 3.5: Création d'un processus avec STEP7

3.5.1 Les applications du STEP 7

STEP 7 offre à son utilisateur des différentes applications pour faciliter et organiser son travail nous citons :

- Création et gestion des projets.
- La configuration du matériel.
- Le diagnostic du matériel.
- La configuration de la communication NETPRO.
- Editeur de mnémoniques.
- Différents langages de programmation : LIST, CONT, LOG.

3.5.2 Les langages de la programmation

STEP 7 met à notre disposition trois langages de programmation:

a LIST:

La liste d'instructions (LIST) est un langage de programmation textuel proche de la machine. Dans un programme LIST, les différentes instructions correspondent, dans une large mesure, aux étapes par lesquelles la CPU traite le programme. Pour faciliter la programmation, LIST a été complété par quelques structures de langage évolué (comme, par exemple, des paramètres de blocs et accès structurés aux données). [9]

b LOG:

Le logigramme (LOG) est un langage de programmation graphique qui utilise les boîtes de l'algèbre de Boole pour représenter les opérations logiques. Les fonctions complexes, comme par exemple les fonctions mathématiques, peuvent être représentées directement combinées avec les boîtes logiques. [9]

c **CONT**:

Le schéma à contacts (CONT) est un langage de programmation graphique. La syntaxe des instructions fait penser aux schémas de circuits. CONT permet de suivre facilement le trajet du courant entre les barres d'alimentation en passant par les contacts, les éléments complexes et les bobines.[9]

3.5.3 Les blocs utilisateur

Step7 offre pour la programmation structurée les blocs utilisateur suivants :

a **OB (Blocs Organisation)**:

Les blocs d'organisation (OB) constituent l'interface entre le système d'exploitation et le programme utilisateur. Ils sont appelés par le système d'exploitation et gèrent le traitement de programme cyclique, ainsi que le comportement à la mise en route de l'automate programmable et le traitement des erreurs. L'exécution d'un OB peut être interrompue par l'appel d'un autre OB. Cette interruption se fait selon la priorité : les OB de priorité plus élevée interrompent les OB de priorité plus faible.[10]

b FB (bloc de fonction):

Le FB est à disposition via un espace mémoire correspondant. Si un FB est appelé, il lui est attribué un bloc de données (DB). On peut accéder aux données de cette instance DB par des appels depuis le FB. Un FB peut être attribué à différents DB. D'autres FB et d'autres FC peuvent être appelés dans un bloc de fonction par des commandes d'appel de blocs.[10]

c **FC (Fonction)**:

FC ne possède pas un espace mémoire attribué. Les données locales d'une fonction sont perdues après le traitement de la fonction. D'autres FB et FC peuvent être appelés dans une fonction par des commandes d'appel de blocs.[10]

d DB (Bloc de données):

Les DB sont employés afin de tenir à disposition de l'espace mémoire pour les variables de données. Il y a deux catégories de blocs de données. Les DB globaux où tous les OB, FB et FC peuvent lire des données enregistrées et écrire eux-mêmes des données dans le DB. Les instances DB sont attribuées à un FB défini. [10]

3.5.4 Editeur mnémoniques

L'éditeur de mnémoniques nous permet de gérer toutes les variables globales. Nous disposons les fonctions suivantes :

- Définition de désignations symboliques et de commentaires pour les signaux du processus (entrées/sorties), mémentos et blocs.
- Fonctions de tri.
- Importation/exportation avec d'autres programmes Windows.

La table mnémonique qui en résulte est mise à disposition de toutes les applications.

La modification de l'un des paramètres d'une mnémonique est de ce fait reconnue automatiquement par toutes les applications.[11]

3.5.5 Configuration matérielle

Vous utilisez cette application pour configurer et paramétrer le matériel d'un projet d'automatisation. Vous disposez des fonctions suivantes :

- Pour configurer le système d'automatisation, vous sélectionnez des châssis (Racks) dans un catalogue électronique et affectez les modules sélectionnés aux emplacements souhaités dans les racks.
- La configuration de la périphérie décentralisée est identique à celle de la périphérie centralisée. La périphérie voie par voie est également possible.
- Pour le paramétrage de la CPU, des menus vous permettent de définir des caractéristiques telles que le comportement à la mise en route et la surveillance du temps de cycle. Le fonctionnement multiprocesseur est possible. Les données saisies sont enregistrées dans des blocs de données système.
- Pour le paramétrage des modules, des boites de dialogue vous permettent de définir tous les paramètres modifiables. Les réglages à l'aide de commutateurs DIP s'avèrent inutiles.
 - Le paramétrage des modules est réalisé automatiquement au démarrage de la CPU.

- L'avantage suivant en résulte. Le remplacement d'un module est ainsi possible sans nouveau paramétrage.
- Le paramétrage de modules fonctionnels (FM) et de processeurs de communication (CP) s'effectue de manière identique à celui des autres modules dans la configuration matérielle. A cet effet, des boites de dialogues ainsi que des règles spécifiques aux modules sont ainsi mises à disposition pour chaque FM et CP (fournies dans le logiciel fonctionnel du FM/CP). Dans les boites de dialogue, le système ne propose que des saisies possibles, ce qui empêche les entrées erronées. [11]

3.5.6 Diagnostic du matériel

Le diagnostic du matériel fournit un aperçu de l'état du système d'automatisation. Dans une représentation d'ensemble, un symbole permet de préciser pour chaque module, s'il est défaillant ou pas. Un double clic sur le module défaillant permet d'afficher des informations détaillées sur le défaut. Les informations disponibles dépendent des différents modules :

- Affichage d'informations générales sur le module (p. ex. numéro de commande, version, désignation) et son état (p. ex. défaillant).
- Affichage d'erreurs sur les modules (p. ex. erreur de voie) de la périphérie centrale et des esclaves DP.
- Affichage des messages de la mémoire tampon de diagnostic.

Pour les CPU, des informations supplémentaires s'affichent :

- Causes de défaillance dans le déroulement d'un programme utilisateur.
- Durée de cycle (le plus long, le plus court et dernier).
- Possibilités et charge de la communication MPI.
- Performances (nombre d'entrées/sorties de mémentos, de compteurs, de temporisateurs et de blocs possibles).[11]

3.5.7 NetPro

NetPro permet un transfert de données cyclique déclenché par temporisation via MPI avec :

- Choix des participants à la communication.
- Saisie de la source et de la destination des données dans un tableau; la génération de tous les blocs à charger (SDB) et leur transfert complet dans toutes les CPU d'effectuent automatiquement.

En outre, un transfert de données déclenché par évènement est possible avec :

- La définition des liaisons de communication.
- Le choix des blocs de communication blocs fonctionnels dans la bibliothèque des blocs intégrée.
- le paramétrage des blocs de communication/ blocs fonctionnels sélectionnés dans le langage de programmation habituel.[11]

3.6 **S7-PLCSIM**

Le simulateur S7-PLCSIM est une application qui nous permet d'exécuter, simuler et tester le programme sur ordinateur avec ses fonctions qui nous aident à forcer et ensuite visualiser l'état d'entrées et de sorties pour voir l'évolution du programme.

La fenêtre principale du simulateur S7-PLCSIM est présentée comme suit :

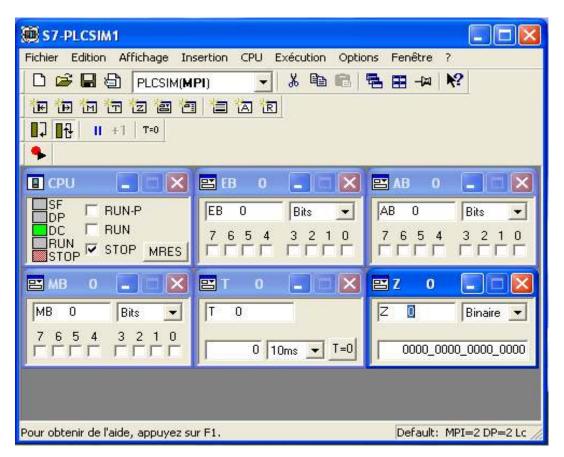


Figure 3.6: Vue sur PLCSIM

3.6.1 Les états de fonctionnement de la CPU

- Etat de marche (RUN-P): l'exécution du programme en mode simulation, il nous permet de faire des changements même si le programme est en marche.
- Etat de marche (RUN): l'exécution du programme.
- **Etat d'arrêt (STOP) :** l'arrêt d'exécution du programme.

3.6.2 Les indicateurs de la CPU

- SF (erreur système): en cas d'erreur ou un défaut il nous avertit.
- DP (périphérie décentralisé ou E/S éloignes): il nous permet de voir l'état de communication avec les interfaces d'entrées/sorties.
- **DC (alimentation):** indique si la CPU est sous tension ou hors tension.
- **RUN:** c'est le mode marche de la CPU.
- **STOP:** c'est le mode d'arrêt de la CPU.

3.7 Généralité sur la supervision

3.7.1 Définition de la supervision

La supervision est une technique industrielle permettant de suivi, contrôler et visualiser le bon fonctionnement des systèmes automatisés.

Elle facilite aussi le travail en donnant à l'opérateur la possibilité d'observer et analyser le système en temps réel et cela permet une intervention rapide au cas d'une panne ou un défaut au niveau du système.

3.7.2 Avantages de la supervision

Un système de supervision donne de l'aide à l'opérateur dans la conduite du procès, son but est de présenter à l'opérateur des résultats expliqués et interprétés et son avantage principal est :

- Surveiller le procès à distance.
- La détection des défauts.
- Le diagnostic et le traitement des alarmes.

3.7.3 Interface homme/machine

Les interfaces homme/machine sont des logiciels spécifiques au controlcommande dans SIMATIC.

 Le système de visualisation du processus SIMATIC WinCC est un système de base indépendant des branches et technologies d'utilisation qui comporte toutes les fonctions indispensables au contrôle-commande.[11]

3.8 WinCC flexible:

WINCC (Windows Control Center) est un logiciel de supervision développé par Siemens.

Il est caractérisé par sa flexibilité, c'est-à-dire qu'il peut être utilisé par un automate hors Siemens.

Ce logiciel permet de créer une Interface Homme Machine (IHM) graphique, qui assure la visualisation et le diagnostic du procédé. Il permet la saisie, l'affichage et l'archivage des données, tout en facilitant les tâches de conduite et de surveillance aux exploitants. Il offre une bonne solution de supervision, car il met à la disposition de l'opérateur des fonctionnalités adaptées aux exigences d'une installation industrielle.[12]

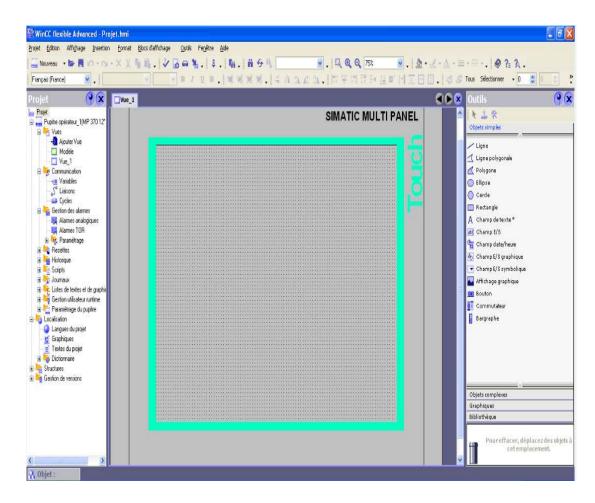


Figure 3.7: interface générale du WinCC

3.8.1 RUNTIME

L'application RUNTIME dans le logiciel WinCC flexible nous permet de compiler le projet construit et simuler son fonctionnement et cela nous aide à voir les erreurs faites et les fixer avant de mettre le projet en marche.

Pour démarrer le RUNTIME, nous cliquons sur

3.9 Conclusion

Dans ce chapitre nous avons décrit et présenté l'automate programmable S7-300 que nous avons utilisé ainsi que les logiciels, step7 pour la programmation et WinCC flexible pour la supervision.

Dans le chapitre suivant nous allons entamer la programmation avec STEP7 et la supervision avec WinCC flexible dans le but d'aborder notre réalisation.

Chapitre 4 Programmation et supervision

4.1 Introduction

Après la présentation de l'automate programmable S7-300 ainsi que les logiciels utilisés pour élaborer le programme, il est nécessaire d'entamer la programmation et la supervision du notre projet.

Dans ce chapitre nous allons montrer les étapes de la programmation avec STEP 7 et la supervision avec WinCC flexible.

4.2 Partie programmation

Dans cette partie nous allons explorer les procédures que nous avons suivi pour achever la programmation du notre système en commençant par la création du projet et en terminant par élaborer le programme.

4.2.1 Création du projet

Pour commencer la programmation nous étions obligé de créer un nouveau projet comporte un nom, un type et un chemin d'emplacement.

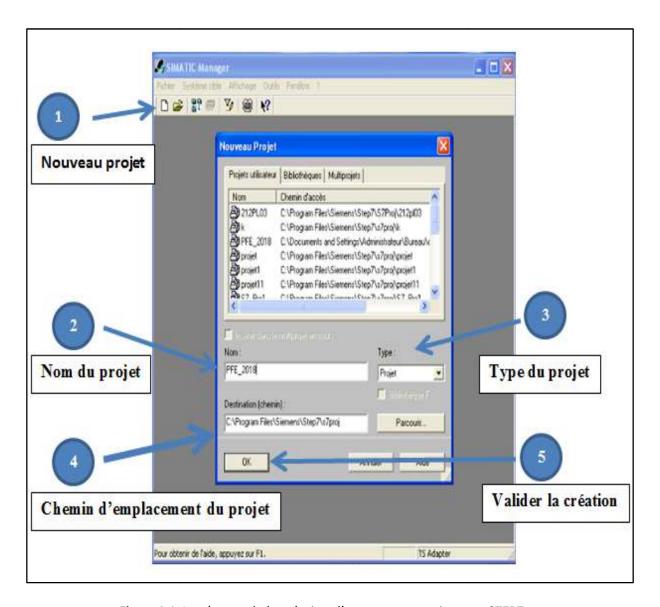


Figure 4.1: Les étapes de la création d'un nouveau projet sous STEP7

Après avoir créé notre projet en suivant les étapes montrées sur la figure audessus, nous avons inséré une station SIMATIC 300 qui nous permet de travailler avec notre automate choisi S7-300.

Pour insérer la station nous devons cliquer avec le bouton droit dans le vide sous le projet crée et choisir insérer un nouvel objet ensuite choisir l'objet qui nous voulons travailler avec parmi les choix apparus.

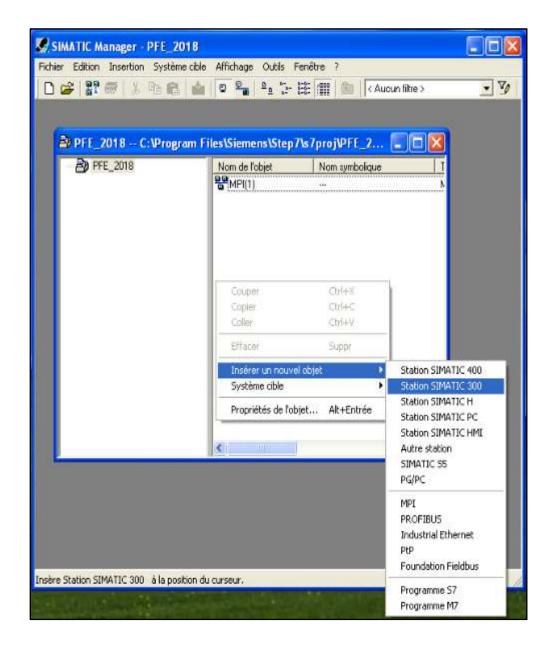


Figure 4.2: insertion d'une station SIMATIC 300

Ensuite nous devons configurer notre matériel en prenant en considération le nombre des entrées/sorties utilisés dans notre programme.

4.2.2 Configuration du matériel

La configuration du matériel est une étape importante lors d'une élaboration d'un nouveau projet, elle est nécessaire pour les paramètres préréglés d'un module, et pour configurer les liaisons de la communication.

Dans notreprogramme nous avons utilisés 83 entrées et 17 sorties.

Après l'identification générale des entrées/sorties, nous avons choisi les modules qui peuvent contenir le nombre d'entrées/sorties utilisés :

- > Emplacement 1 : Alimentation PS 307 5A.
- > Emplacement 2 : CPU 315-2DN/DP.
- **Emplacement 4, 5,6**: 3 modules d'entrées logiques DI32 x DC24V.
- Emplacement 7: 1 module de sorties logique DO32 x DC24V / 0, 5A.
- Emplacement 8 : 1 module des entrées/sorties analogique AI4/AO2.

La figure suivante montre les modules d'automate utilisés :

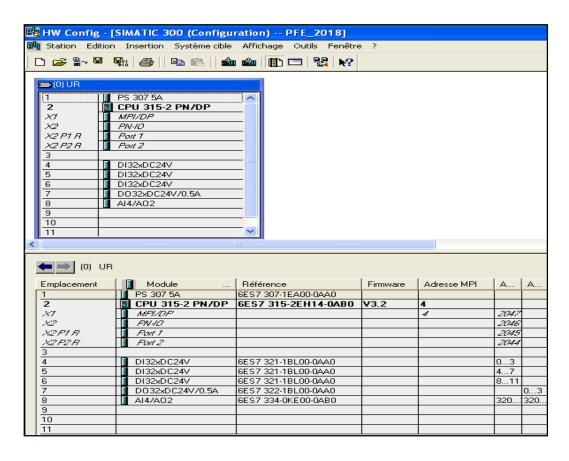


Figure 4.3: Configuration du matériel

4.2.3 Configuration du réseau

Pour faire la communication entre les différents constituants du notre système il faut faire une configuration du réseau. La figure ci-dessous montre la liaison que nous avons faite à l'aide de l'application NETPRO.

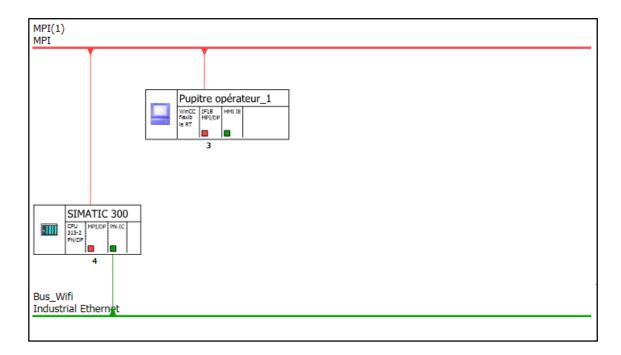


Figure4.4: Configuration du réseau de la communication

4.2.4 Création de table des mnémoniques

Dans chaque programme il faut définir une table des mnémoniques comporte toutes les variables utilisés en donnant une description et un type de données à chaque variable.

Les variables peuvent être de type :

> Entrées :

Pour savoir l'état et le déroulement de procès l'automate récolte des informations venantes de l'installation et cela via des entrées automate qui sont connecté aux déférents capteurs et boutons de l'installation pour ensuit les traiter et générer la commande.[13]

> Sorties:

Apres traitement des données d'entrées et pour commander l'installation, l'automate doit générer et envoyer des signaux par ces sorties.

Les sorties automates sont connecté aux différents actionneurs de l'installation.[13]

Mémentos :

Zone de mémoire dans la mémoire système d'une CPU. Il est possible d'y accéder en écriture et en lecture (par bit, octet, mot et double mot). La zone des mémentos permet à l'utilisateur d'enregistrer des résultats intermédiaires.[13]

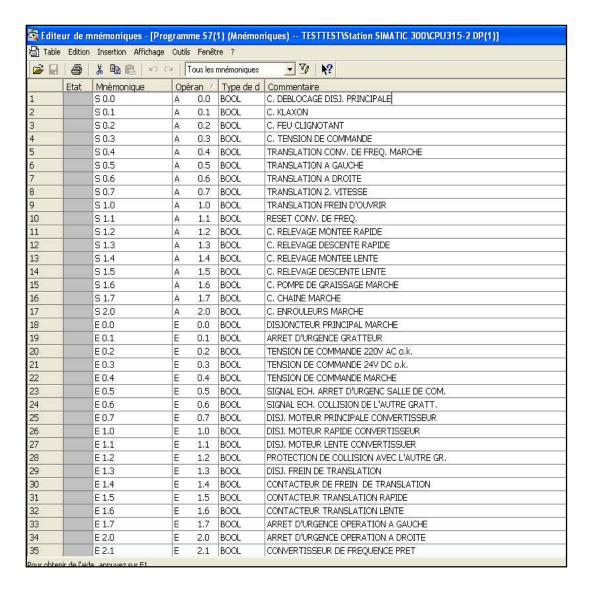


Figure 4.5: exemple de table mnémonique

4.2.5 Structure du programme élaboré

Notre programme comporte un bloc d'organisation (OB), un bloc fonctionnel (FB), un bloc de données (DB) et 11 fonctions (FC) ainsi que les blocs générés par le système (SFC et SFB).

La figure ci-dessous montre les blocs utilisés

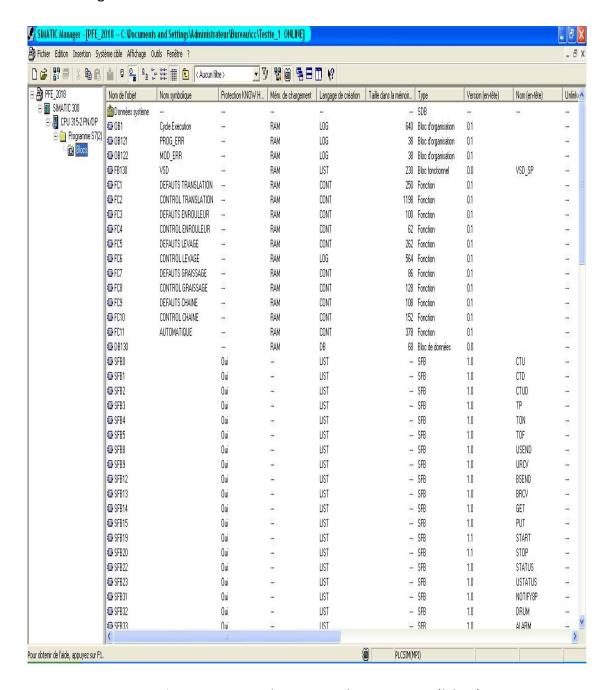


Figure 4.6: Vue sur la structure du programme élaboré

a Bloc d'organisation (OB1) :

Automatiquement généré lors de la création du projet, il sert à représenter le programme principale, il contient les appels de tous les fonctions (FC) que nous avons créés ainsi que les instructions d'avertissement et les instructions des modes de marche du notre système.

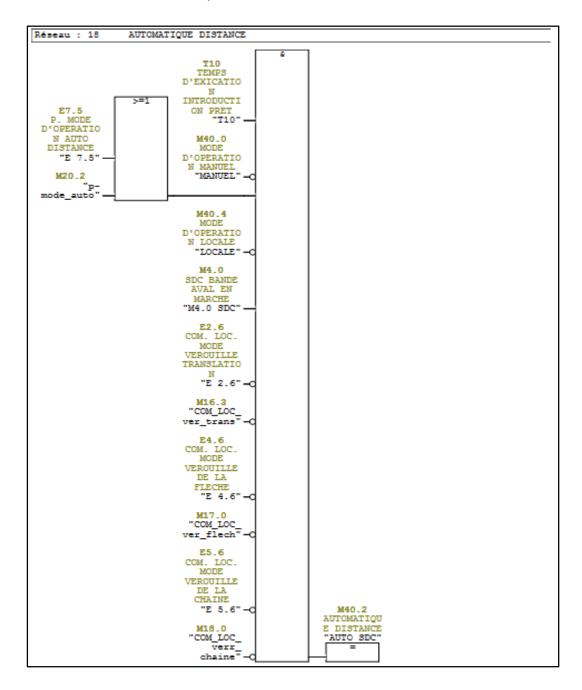


Figure 4.7: Exemple d'un réseau dans le bloc d'organisation

b Les fonctions:

- > **FC 1 :** comporte le programme de défauts de la translation.
- > FC 2 : comporte le programme de commande de la translation.

```
Réseau : 4
                   TRANSLATION DIRECTION GAUCHE
                                                                 M71.7
                                                                ECHANGE
                                                                                          M71.0
                                                                                        TRANSLATIO
                                                      T67
                                                   TEMPS DE
                                                               DIRECTION
                                                                              M3.2
                                                                                            N
   M40.2
                                                    RETARDE
                                                                  DE
                                                                             NIVEAU
                                                                                        DIRECTION
AUTOMATIQU
                M3.1
                            M3.0
                                                   CHANGE LA
                                                               TRANSLATIO
                                                                              TAS
                                                                                         GAUCHE
             "fin opr
droite"
                         "fin opr
E DISTANCE
                                        M2.0
                                                                             ATTEINT
                                                                                         "M71.0"
                                                   DIRECTION
                                                                   Ν
                          gauche"
                                                     "T67"
                                                                "M71.7"
"AUTO SDC"
                                       "fdc_g"
                                                                             "M3.2"
                                                                                           SR
                                                                              M40.2
   M3.0
             AUTOMATIQU
"fin opr
             E DISTANCE
 gauche"
             "AUTO SDC"
   M3.2
  NIVEAU
    TAS
  ATTEINT
   "M3.2"
```

Figure 4.8: Memento d'activation la translation direction gauche en mode automatique

- > FC 3 : le programme de défauts d'enrouleur.
- > FC 4: le programme de commande d'enrouleur.

```
C. ENROULEURS MARCHE
Réseau : 2
    T11
                 T10
                TEMPS
   RETARD
  TENSION
             D'EXICATIO
                                          A2.0
                            M90.0
     DE
                  N
                            DEFAUT
                                          С.
  COMMANDE
             INTRODUCTI
                          COLLECTIV
                                       ENROULEURS
   MARCHE
               ON PRET
                          ENROULEUR
                                         MARCHE
   "T11"
                "T10"
                           "M90.0"
                                        "S 2.0"
```

Figure 4.9: mise en marche l'enrouleur

- > FC 5 : contient les défauts de levage.
- > FC 6 : contient le programme qui commande le levage.

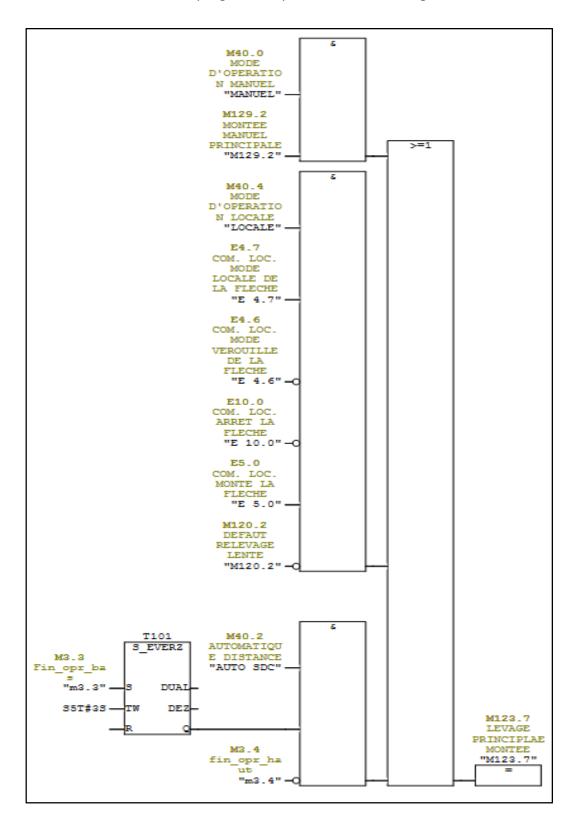


Figure 4.10: Memento de levage principale montée

- > FC 7: Les défauts de la pompe de graissage.
- > FC 8 : commande la marche de graissage.

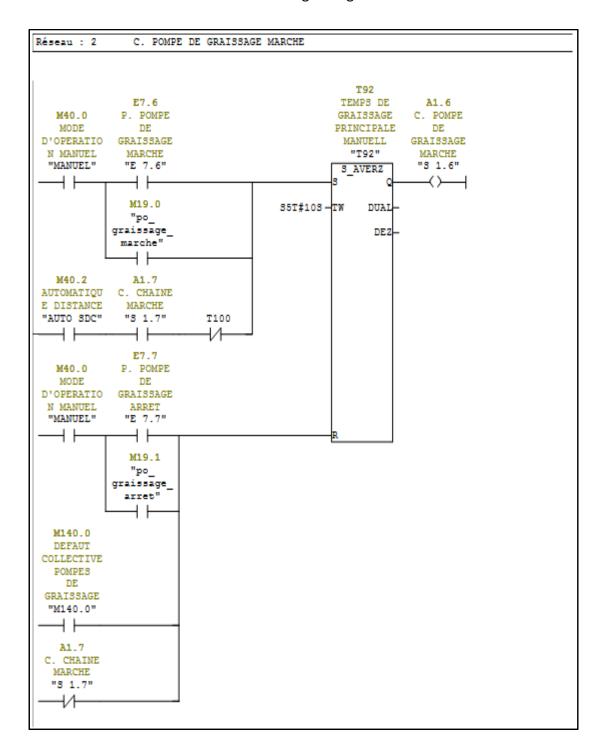


Figure 4.11: commande de marche de graissage

- > FC 9 : les défauts de la chaine.
- **FC 10 :** le programme qui commande la marche de chaine.

```
Réseau : 5
                 C. CHAINE MARCHE
   M191.1
   METTRE
   CHAINE
   PRINC.
                                           A1.7
  LOCAL EN
                                         C. CHAINE
  MARCHE
                                          MARCHE
  "M191.1"
                                          "S 1.7"
                                           \leftarrow
    +
   M191.2
   METTRE
   CHAINE
 MANUEL EN
  MARCHE
  "M191.2"
    +
                M42.0
              DEBLOCAGE
                CHAINE
   M40.2
AUTOMATIQU AUTOMATIQU
 E DISTANCE
                  E
               "M42.0"
 "AUTO SDC"
                 <del>|</del> | |
    4 +
```

Figure 4.12: mettre la chaine en marche

FC 11 : contient les instructions liées au mode automatique.

```
IMP MIS EN MARCHE AUTO DISTANCE
Réseau : 1
   E10.1
              E10.2
                          M41.4
                                      M41.3
                       P.MIS EN
  P.MIS EN
            P.MIS EN
                                     IMP MIS
              ARRET
                                   EN MARCHE
                         ARRET
  MARCHE
   AUTO
               AUTO
                           AUTO
                                       AUTO
  DISTANCE
             DISTANCE
                                     DISTANCE
                         DISTANCE
  "E10.1"
              "E10.2"
                          "M41.4"
                                      "M41.3"
   +\vdash
                1/1-
                           -1/1-
                                       \prec\vdash\vdash
   M41.2
  P.MIS EN
   MARCHE
   AUTO
  DISTANCE
  "M41.2"
```

Figure 4.13: Impulsion mis en marche automatique

4.3 Partie supervision

4.3.1 Création du projet

Pour commencer la supervision il est nécessaire de créer un projet sous WinCC flexible en suivant les étapes montrées dans la figure ci-dessous.

Nous commençons par choisir de créer un projet vide ensuite nous devons choisir le pupitre qui nous voulons travailler avec parmi les différents pupitres proposés et nous validons.

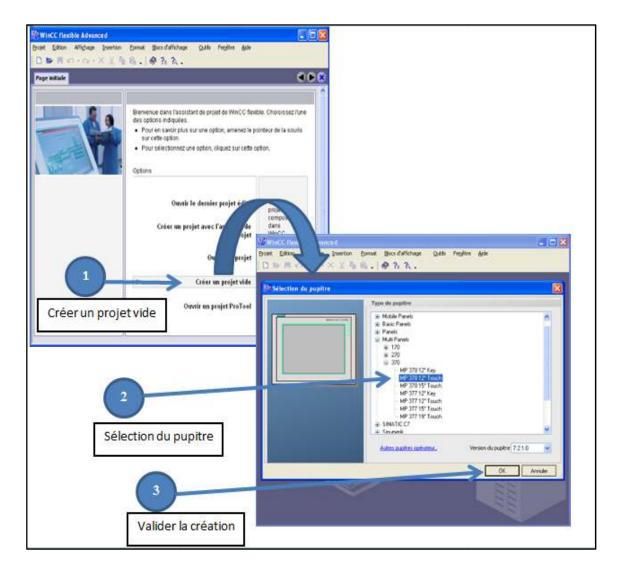


Figure 4.14: création d'un projet sous WinCC

4.3.2 Intégrer le projet WinCC dans le projet STEP7

Après avoir créé le projet nous devons l'intégrer dans notre projet STEP 7 et cela en cliquant à « intégrer dans le projet STEP 7 » dans la fenêtre projet, et ensuite nous choisissons notre projet STEP 7 et nous validons.

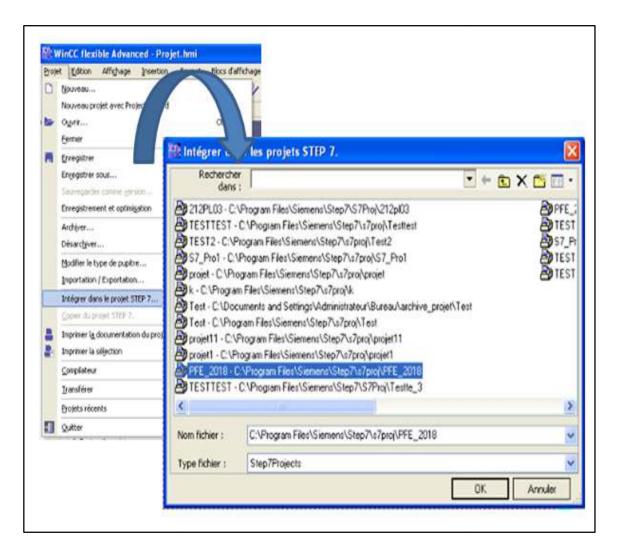


Figure 4.15: Intégration du projet WinCC dans le projet STEP7

4.3.3 établir liaison entre WinCC et STEP7

Pour pouvoir communiquer entre WinCC et STEP7 nous devons établir une liaison entre eux, pour cela nous allons à la fenêtre liaison situé dans le dossier communication du notre projet, nous choisissons la station du notre projet STEP7 et la faire connecter avec WinCC et tout ça en vérifiant l'état du pilote de communication, la station, le partenaire, le nœud et s'il est en ligne.

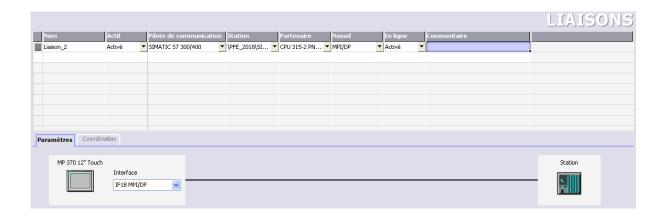


Figure 4.16: Etablir la liaison entre WinCC et STEP7

4.3.4 Les variables

Introduire les variables dans notre projet WinCC est une étape très importante parce qu'elle nous permet d'utiliser les entrées/sorties du projet STEP7 pour pouvoir animer les objets crées dans nos vues, et pour faire introduire les variables nous choisissons la fenêtre liaison dans notre projet, et nous commençons à ajouter les variables un par un en respectant l'adresse, le mnémonique et le type de donnée de chaque variable en le donnant un cycle d'acquisition.

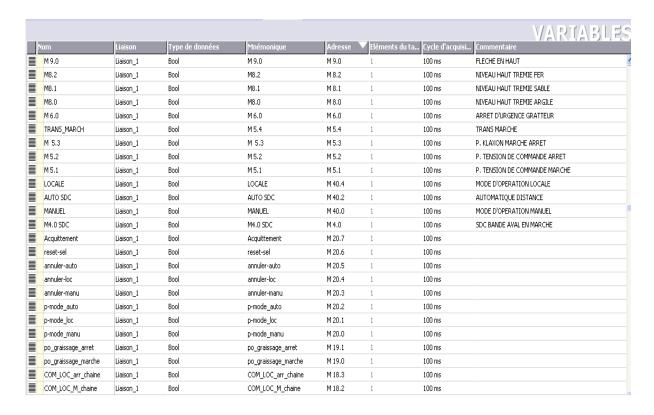
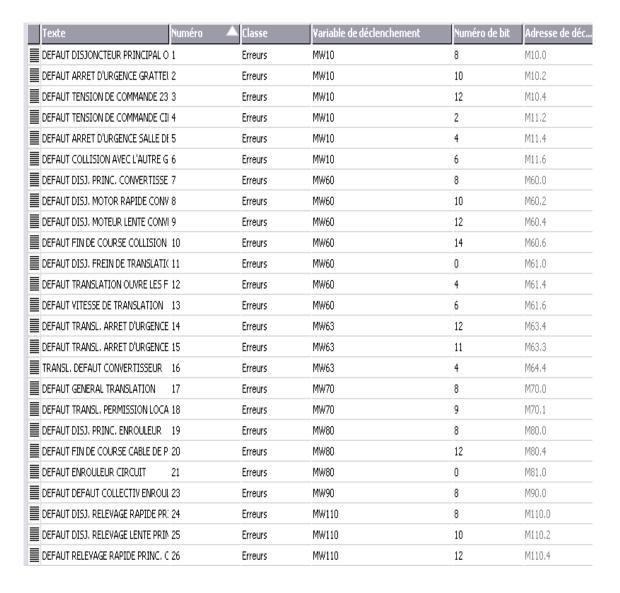


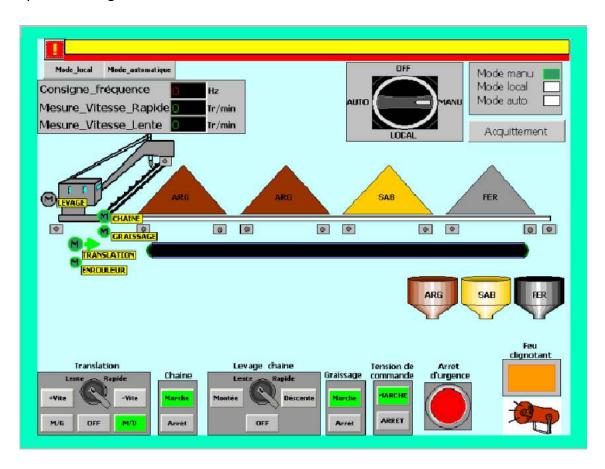
Figure 4.17: Exemple de la liste des variables dans le projet WinCC

4.3.5 Création des alarmes

La gestion des alarmes nous permet de visualiser les pannes et les défauts du notre système en temps réel pour pouvoir intervenir en effectuant une maintenance corrective.

Pour créer des alarmes nous allons vers le dossier alarmes dans notre projet IHM et nous commençons à définir les textes des alarmes en donnant le variable qui déclenche l'alarme ainsi que sa classe et son adresse.




Figure 4.18: Exemple de la liste des alarmes

4.3.6 Les vues de supervision et de commande

Les vuesde supervision qui nous avons créés nous permettra de visualiser et commander la marche du gratteur en trois modes, manuel, local et automatique.

a Vue du mode manuel :

La vue du mode manuel du notre projet comporte tous les boutons et les sélecteurs que nous devons utiliser pour commander le démarrage et l'arrêt du notre système ainsi que l'animation qui nous permet de visualiser fonctionnement du système. La figure ci-dessous montre la vue du mode manuel.

Figure4.19: Vue du mode manuel

b Vue du mode local :

La vue du mode local comporte tous les boutons et les sélecteurs de démarrage et d'arrêt en mode local ainsi que l'animation des états de fonctionnement des objets qui constituent notre système.

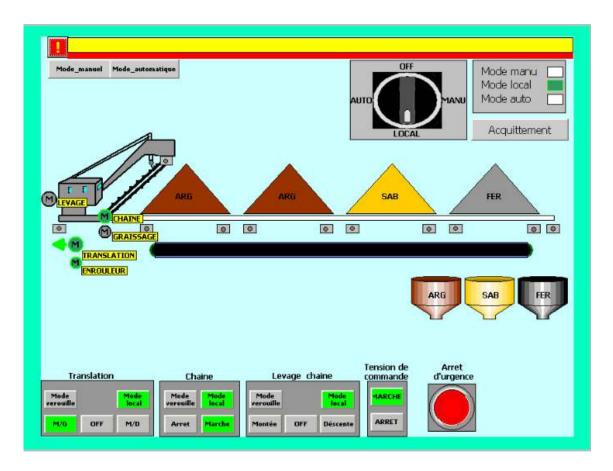


Figure4.20: Vue du mode local

c Vue du mode automatique :

La vue du mode automatique est très simple, elle comporte moins de boutons, elle nous permet de visualiser le fonctionnement du système après avoir mis en marche le mode automatique.

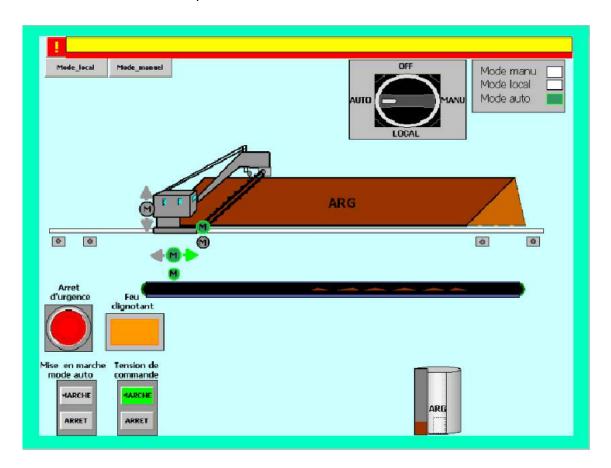


Figure 4.21: Vue du mode automatique

4.3.7 Animation

a Animation des objets

Pour chaque objet créé dans le projet, nous avons fait une animation convenable à son état en repos ainsi que son état en travail.

L'objet	Dessin	Etat en repos	Etat en travail
Moteurs	M	M	M
Boutons de marche	MARCHE	MARCHE	MARCHE
Boutons d'arrêt	ARRET	ARRET	ARRET
Bouton d'arrêt d'urgence			
Feu clignotant			
Capteurs			•

Tableau4.1: animation d'objets

b Animation des alarmes

Les alarmes sont très importantes dans chaque système. Ils nous avertissent en cas de défauts ou des pannes, et cela nous permet d'intervenir en temps réelpour faire la maintenance corrective.

La figure ci-dessous montre les états des alarmes en repos et en travail.

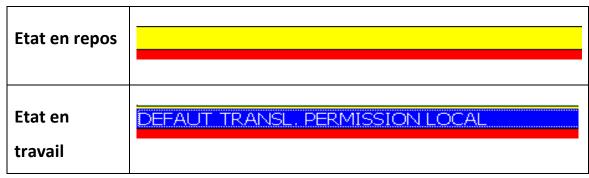


Tableau4.2: animation des alarmes

4.4 Conclusion

Dans ce dernier chapitre nous avons présenté les principaux étapes pour l'élaboration de notre programme sous STEP7 ainsi que les procédures pour établir la liaison entre STEP7 et WinCC flexible et en insistant sur la création du projet et l'installation des vues de la supervision sous WinCC flexible.

Le travail que nous avons fait au sein de la cimenterie de meftah a enrichi notre connaissance sur l'automatisation, la supervision, les réseaux et beaucoup secrets de l'industrie.

A cette fin, nous avons commencé par prendre connaissance sur l'installation des différentes zones de ligne de production de la cimenterie, puis l'exploration précisée de l'atelier pré-homogénéisation dans la zone cru ou se trouve le gratteur semi-portique sud qu'a été l'objet du notre travail, pour cela nous avons fait une visite pour analyser son fonctionnement et ses principaux capteurs et actionneurs pour pouvoir commencer le travail.

Ce projet nous a permet d'approfondir notre connaissance sur les automates programmables industriels de la gamme SIEMENS, leurs caractéristiques, critères de choix, avantages, ainsi que les différentes langages de programmation avec le progiciel SIMATIC STEP7, et la supervision avec WinCC flexible.

Pour la réalisation du ce projet nous avons utilisé le progiciel STEP7, qui comporte la création du projet, configuration matérielle, le programme que nous avons élaboré, ainsi que la station IHM après l'avoir intégré dans le projet principal du STEP7.

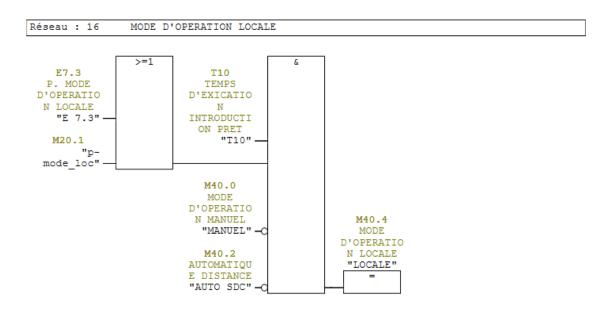
WinCC flexible nous a donné la possibilité de faire une présentation graphique du notre système pour pouvoir le commander et superviser, ainsi que la localisation de la panne ou de défaut possible en temps réel.

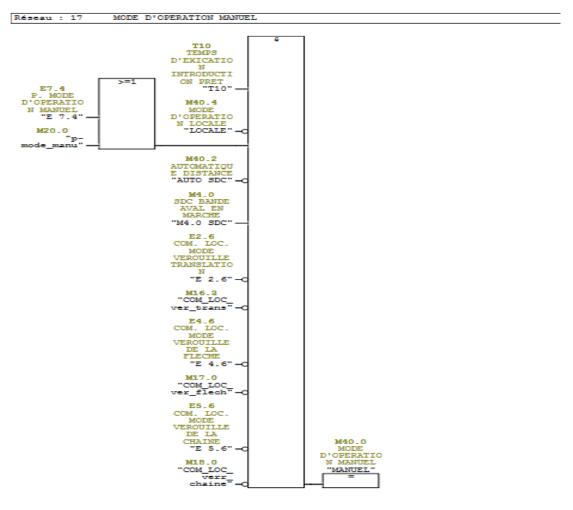
Table des mnémoniques :

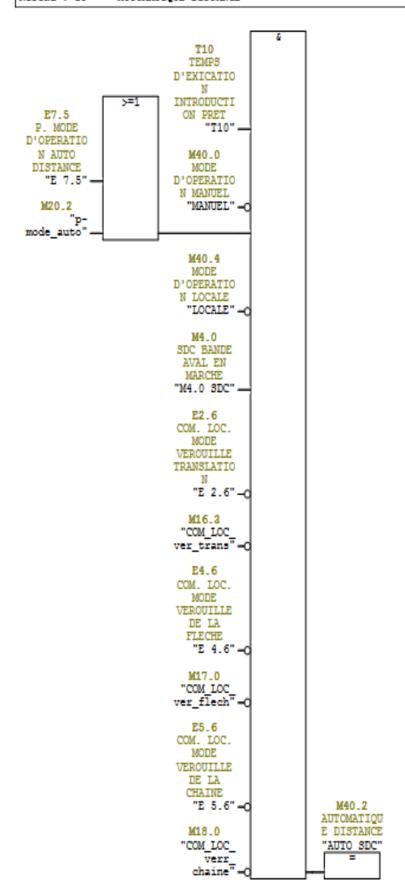
Etat	Mnémonique	Opérano	le Type de données	Commentaire
	5 0.0	A 0.0		C. DEBLOCAGE DISJ. PRINCIPALE
	5 0.1	A 0.1		C. KLAXON
	5 0.2	A 0.2		C. FEU CLIGNOTANT
	5 0.3	A 0.3	BOOL	C. TENSION DE COMMANDE
	5 0.4	A 0.4		TRANSLATION CONV. DE FREQ. MARCHE
	5 0.5	A 0.5	BOOL	TRANSLATION A GAUCHE
	5 0.6	A 0.6		TRANSLATION A DROITE
	5 0.7	A 0.7		TRANSLATION 2, VITESSE
	5 1.0	A 1.0		TRANSLATION FREIN D'OUVRIR
	5 1.1	A 1.1		RESET CONV. DE FREO.
	5 1.2	A 1.2		C. RELEVAGE MONTEE RAPIDE
	5 1.3	A 1.		C. RELEVAGE DESCENTE RAPIDE
	5 1.4	A 1.4		C. RELEVAGE MONTEE LENTE
	51,5	A 1.5		C. RELEVAGE DESCENTE LENTE
	5 1,6	A 1.6		C. POMPE DE GRAISSAGE MARCHE
	51.7	A 1.7		C. CHAINE MARCHE
	5 2,0	A 2.0		C. ENROULEURS MARCHE
	Comm R G	DB 300		CI ENTOGEEOIG PIANGIE
	E 0.0	E 0.0		DISJONCTEUR PRINCIPAL MARCHE
	E 0.1	E 0.1		ARRET D'URGENCE GRATTEUR
	E 0.2	E 0.2		TENSION DE COMMANDE 220V AC o.k.
	E 0.3	E 0.3		TENSION DE COMMANDE 24V DC o.k.
	E 0.4	E 0.4		TENSION DE COMMANDE MARCHE
				SIGNAL ECH, ARRET D'URGENC SALLE DE
	E 0.5	E 0.5	BOOL	COM.
	E 0.6	E 0.6	BOOL	SIGNAL ECH. COLLISION DE L'AUTRE GRATT.
	E 0.7	E 0.7	BOOL	DIS), MOTEUR PRINCIPALE CONVERTISSEUR
	E 1.0	E 1.0	BOOL	DISJ. MOTEUR RAPIDE CONVERTISSEUR
	E 1.1	E 1.1	BOOL	DISJ. MOTEUR LENTE CONVERTISSUER
	E 1.2	E 1.2	BOOL	PROTECTION DE COLLISION AVEC L'AUTRE GR.
	E 1.3	E 1.3	BOOL	DISJ. FREIN DE TRANSLATION
	E 1.4	E 1.4	BOOL	CONTACTEUR DE FREIN DE TRANSLATION
	E 1.5	E 1.5	BOOL	CONTACTEUR TRANSLATION RAPIDE
	E 1.6	E 1.6	BOOL	CONTACTEUR TRANSLATION LENTE
	E 1.7	E 1.7	BOOL	ARRET D'URGENCE OPERATION A GAUCHE
	E 2.0	E 2.0	BOOL	ARRET D'URGENCE OPERATION A DROITE
	E 2.1	E 2.1	BOOL	CONVERTISSEUR DE FREQUENCE PRET
	E 2.2	E 2.2	BOOL	CONVERTISEUR DE FREQUENCE MARCHE
	E 2.3	E 2.3	BOOL	CONVERTISEUR DE FREQUENCE DEFAUT
	E 2.4	E 2.4	BOOL	DETECTION FIN D'OPERATION A GAUCHE
	E 2.5	E 2.5	BOOL	DETECTION FIN D'OPERATION A DROITE
	E 2.6	E 2.6		COM, LOC, MODE VEROUILLE TRANSLATION
	E 2.7	E 2.7		COM, LOC, MODE LOCALE TRANSLATION
	E 3.0	E 3.0		COM, LOC, TRANS, MARCHE A GAUCHE

Etat	Mnémonique	Opérande	Type de données	Commentaire
	E 3.1	E 3.1	BOOL	COM. LOC. TRANS. MARCHE A DROITE
	E 3.2	E 3.2	BOOL	COM. LOC. TRANSLATION ARRET
	E 3.3	E 3.3	BOOL	DISJ. POMPE DE GRAISSAGE
	E 3.4	E 3.4	BOOL	CONTACTEUR POMPE DE GRAISSAGE
	E 3.5	E 3.5	BOOL	DISJ. RELEVAGE RAPIDE
	E 3.6	E 3.6	800L	DISJ. RELEVAGE LENTE
	E 3.7	E 3.7	BOOL	INTERRUPTEUR MAGNETIQUE CABLE LACHE
	E 4.0	E 4.0	BOOL	FLECHE EN HAUT
	E 4.1	E 4.1	BOOL	FLECHE EN BAS
	E 4.2	E 4.2	BOOL	CONT. RELEVAGE MONTEE RAPIDE
	E 4.3	E 4.3	BOOL	CONT. RELEVAGE DESCENTE RAPIDE
	E 4.4	E 4.4	BOOL	CONT. RELEVAGE MONTEE LENTE
	E 4.5	E 4.5	BOOL	CONT. RELEVAGE DESCENTE LENTE
	E 4.6	E 4.6	BOOL	COM. LOC. MODE VEROUILLE DE LA FLECHE
	E 4.7	E 4.7	BOOL	COM. LOC. MODE LOCALE DE LA FLECHE
	E 5.0	E 5.0	BOOL	COM. LOC. MONTE LA FLECHE
	E 5.1	E 5.1	BOOL	COM, LOC, DESCENTE LA FLECHE
	E 5.2	E 5.2	BOOL	
				DISJ. MOTEUR CHAINE
	E 5.3	E 5.3	BOOL	PROTECTION COLLISION A DROITE
	E 5.4	E 5.4		PROTECTION COLLISION A GAUCHE
	E 5.5	E 5.5	BOOL	DETECTION DE LA VITESSE DE LA CHAINE
	E 5.6	E 5.6	BOOL	COM. LOC. MODE VEROUILLE DE LA CHAINE
	E 5.7	E 5.7	BOOL	COM. LOC. MODE LOCALE DE LA CHAINE
	E 6.0	E 6.0	BOOL	COM. LOC. MIS EN MARCHE LA CHAINE
	E 6.1	E 6.1	BOOL	COM. LOC. ARRET LA CHAINE
	E 6.2	E 6.2	BOOL	CONT. CHAINE MARCHE
	E 6.3	E 6.3	800L	PROTECTION DE THERMISTOR CHAINE
	E 6.4	E 6.4	BOOL	DISJ. MOTEUR ENROULEUR
	E 6.5	E 6.5	BOOL	FIN DE LA COURSE CABLE DE PUISSANCE
	E 6.6	E 6.6	BOOL	CONT. ENROULEUR MARCHE
	E 6.7	E 6.7	BOOL	P. KLAXON MARCHE ARRET
	E 7.0	E 7.0	800L	P. REAJUSTER ALARME
	E 7.1	E 7.1	BOOL	P. TENSION DE COMMANDE MARCHE
	E 7.2	E 7.2	BOOL	P. TENSION DE COMMANDE ARRET
	E 7.3	E 7.3	BOOL	P. MODE D'OPERATION LOCALE
	E 7.4	E 7.4	BOOL	P. MODE D'OPERATION MANUEL
	E 7.5	E 7.5	BOOL	P. MODE D'OPERATION AUTO DISTANCE
	E 7.6	E 7.6	BOOL	P. POMPE DE GRAISSAGE MARCHE
	E 7.7	E 7.7	BOOL	P. POMPE DE GRAISSAGE ARRET
	E 8.0	E 8.0	BOOL	P. CHAINE MARCHE
	E 8.1	E 8.1	BOOL	P. CHAINE ARRET
	E 8.2	E 8.2	BOOL	
	E 8.3	E 8.3	BOOL	P. TRANSLATION VITESSE RAPIDE
	E 8.4	E 8.4	BOOL	P. TRANSLATION VITESSE RAPIDE
	E 8.5	E 8.5	BOOL	P. TRANSLATION VITESSE LENTE P. TRANSLATION VITESSE PLUS VITE
	E 8.6	E 8.6	BOOL	P. TRANSLATION VITESSE PLUS LENTE
	E 8.7	E 8.7	BOOL	P. TRANSLATION VITESSE PLUS CENTE
	E 9.0	E 9.0	800L	P. TRANSLATION MARCHE A DROITE
	E 9.1	E 9.1	BOOL	P. TRANSLATION ARRET
	E 9.2	E 9.2	BOOL	S I PUACE SE CULTURA MESONA SE CONTRA
	E 9.3	E 9.3	BOOL	P. LEVAGE DE CHAINE VITESSE RAPIDE
	E 9.4	E 9.4	BOOL	P. LEVAGE DE CHAINE VITESSE LENTE
	E 9.5	E 9.5	BOOL	P. LEVAGE DE CHAINE MONTEE
	E 9.6	E 9.6	BOOL	P. LEVAGE DE CHAINE DESCENTE
	E 9.7	E 9.7	BOOL	P. LEVAGE DE CHAINE ARRET

Etat	Mnémonique	Opérande	Type de données	Commentaire
	E 10.0	E 10.0	BOOL	COM. LOC. ARRET LA FLECHE
	E10.1	E 10.1	BOOL	P.MIS EN MARCHE AUTO DISTANCE
	E10.2	E 10.2	BOOL	P.MIS EN ARRET AUTO DISTANCE
	VSD	FB 130	FB 130	Consigne variateur
	DEFAUTS TRANSLATION	FC 1	FC 1	
	CONTROL TRANSLATION	FC 2	FC 2	
	DEFAUTS ENROULEUR	FC 3	FC 3	
	CONTROL ENROULEUR	FC 4	FC 4	
	DEFAUTS LEVAGE	FC S	FC S	
	CONTROL LEVAGE	FC 6	FC 6	
	DEFAUTS GRAISSAGE	FC 7	FC 7	
	CONTROL GRAISSAGE	FC 8	FC 8	
	DEFAUTS CHAINE	FC 9	FC 9	
	CONTROL CHAINE	PC 10	FC 10	
	AUTOMATIQUE	FC 11	FC 11	
	UNSCALE	PC 106	FC 106	Unscaling Values
	SCALE	PC 107	FC 107	Scaling Values
	TOUJOURS 1	M 0.5	BOOL	
	fdc_g	M 2.0	BOOL	
	fdc_d	M 2.1	BOOL	
	fin opr gauche	M 3.0	BOOL	
	fin opr droite	M 3.1	BOOL	
	M3.2	M 3.2	BOOL	NIVEAU TAS ATTEINT
	m3.3	M 3.3	BOOL	Fin_opr_bas
	m3.4	M 3.4	BOOL	fin_opr_haut
	M4.0 SDC	M 4.0	BOOL	SDC BANDE AVAL EN MARCHE
	M4.1	M 4.1	BOOL	SDC METTRE GRATTEUR EN MARCHE
	M4.4 SDC	M 4.4	BOOL	SDC TREMIE HAUT ARRET AU FIN DU TAS
	M4.5 SDC	M 4.5	BOOL	SDC TREMIE TRES HAUT ARRET DIRECT
	ARRET D'URGENCE GRATTEUR	M 5.0	BOOL	
	M 5.1	M 5.1	BOOL	P. TENSION DE COMMANDE MARCHE
	M 5.2	M 5.2	BOOL	P. TENSION DE COMMANDE ARRET
	M 5.3	M 5.3	BOOL	P. KLAXON MARCHE ARRET
	M 5.4	M 5.4	BOOL	TRANS MARCHE
	M 6.0	M 6.0	BOOL	ARRET D'URGENCE GRATTEUR
	MB.0	M 8.0	BOOL	NIVEAU HAUT TREMIE ARGILE
	MB.1	M 8.1	BOOL	NIVEAU HAUT TREMIE SABLE
	MB.2	M 8.2	BOOL	NIVEAU HAUT TREMIE FER
	haut	M 8.5	BOOL	
	tapi	M 8.7	BOOL	
	M 9.0	M 9.0	BOOL	FLECHE EN HAUT
	M9.1	M 9.1	BOOL	FLECHE EN BAS
	M10.0	M 10.0	BOOL	F.DISJONCTEUR PRINCIPAL OUVERT
	M10.2	M 10.2	BOOL	F.ARRET D'URGENCE GRATTEUR ACTIVEE
				F.TENSION DE COMMANDE 230VAC
	M10.4	M 10.4	BOOL	DECLENCHE
	M10.6	M 10.6	BOOL	F.TENSION DE COMMANDE 24VDC DECLENCHE
	M11.2	M 11.2	BOOL	F.TENSION DE COMMANDE CIRCUIT
	M11.4	M 11.4	BOOL	F.ARRET D'URGENCE SALLE DE C. ACTIVEE
	M11.6	M 11.6	BOOL	F.COLLISION AVEC L'AUTRE GRATTEUR
	Levage	M 12.0	BOOL	
	Déscente	M 12.1	BOOL	
	Marche_Levage	M 12.2	BOOL	
	BP_Marche_Trans_G	M 12.3	BOOL	
			BOOL	


Etat	Mnémonique	Opérande	Type de données	Commentaire
	+VIte	M 12.5	BOOL	
	-Vite	M 12.6	BOOL	
	Arrêt_trans	M 12.7	BOOL	
	M13.0	M 13.0	BOOL	AVERTISSEMENT MANUEL ACTIVEE
	Sel_Vitesse	M 13.1	BOOL	
	P.Marche_chaine	M 14.0	BOOL	
	P.Arret_chaine	M 14.1	BOOL	
	P.sel_levage	M 15.0	BOOL	
	P.Montée_lev	M 15.1	BOOL	
	P.Déscente_lev	M 15.2	BOOL	
	P.Arret_lev	M 15.3	BOOL	
	COM_LOC_MODE_LCL	M 16.0	BOOL	
	COM_LOC_TRANS_G	M 16.1	BOOL	
	COM_LOC_TRANS_D	M 16.2	BOOL	
	COM_LOC_ver_trans	M 16.3	BOOL	
	COM_LOC_arr_trans	M 16.4	BOOL	
	COM_LOC_ver_flech	M 17.0	BOOL	
	COM_LOC_ver_nech COM_LOC_mode_id_fleche	M 17.1	BOOL	
			BOOL	
	COM_LOC_flech_montee COM_LOC_flech_descente	M 17.2	BOOL	
	COM_LOC_RECN_descente	M 17.4	BOOL	
	COM_LOC_verr_chaine	M 18.0	800L	
	COM_LOC_mode_id_chaine	M 18.1	800L	
	COM_LOC_M_chaine	M 18.2	800L	
	COM_LOC_arr_chaine	M 18.3	BOOL	
	po_graissage_marche	M 19.0	BOOL	
	po_graissage_arret	M 19.1	BOOL	
	p-mode_manu	M 20.0	BOOL	
	p-mode_loc	M 20.1	BOOL	
	p-mode_auto	M 20.2	BOOL	
	annuler-manu	M 20.3	BOOL	
	annuler-loc	M 20.4	BOOL	
	annuler-auto	M 20.5	BOOL	
	reset-sel	M 20.6	BOOL	
	Acquittement	M 20.7	BOOL	
	MANUEL	M 40.0	BOOL	MODE D'OPERATION MANUEL
	AUTO SDC	M 40.2	BOOL	AUTOMATIQUE DISTANCE
	LOCALE	M 40.4	BOOL	MODE D'OPERATION LOCALE
	M41.1	M 41.1	BOOL	AUTOMATIQUE DISTANCE MARCHE
	M41.2	M 41.2	BOOL	P.MIS EN MARCHE AUTO DISTANCE
	M41.3	M 41.3	BOOL	IMP MIS EN MARCHE AUTO DISTANCE
	M41.4	M 41.4	BOOL	P.MIS EN ARRET AUTO DISTANCE
	M42.0	M 42.0	BOOL	DEBLOCAGE CHAINE AUTOMATIQUE
	M42.1	M 42.1	BOOL	DEBLOCAGE AUTO RELEVAGE
	M42.2	M 42.2	BOOL	DEBLOCAGE AUTO TRANSLATION
	M43.0	M 43.0	BOOL	COMMENCE TRANSLATION A DROITE AUTO
	M43.1	M 43.1	BOOL	COMMENCE TRANSLATION A GAUCHE AUTO
	M43.5	M 43.5	BOOL	MEMENTO FIN DE TRANSLATION A GAUCHE
	M43.6	M 43.6	BOOL	MEMENTO FIN DE TRANSLATION A DROITE
	M43.7	M 43.7	BOOL	LA PLAINE EST PASSE
	11121		BOOL	AUTOMATIQUE FIN TRANSLATION A
	M44.0	M 44.0	BOOL	GALICHE
	M44.0 M44.1	M 44.0	BOOL	GAUCHE AUTOMATIQUE FIN DE TRANSLATION A


Etat	Mnémonique	Opérande	Type de données	Commentaire
	M44.4	M 44.4	BOOL	AUTOMATIQUE TRANSLATION A GAUCHE
	M44.5	M 44.5	BOOL	AUTOMATIQUE RELEVAGE EN BAS
	MS8.0	M 58.0	BOOL	DEBLOCAGE MANUEL MARCHE
	M58.1	M 58.1	BOOL	AVERTISSEMENT MANUEL MARCHE
	M58.2	M 58.2	BOOL	DEBLOCAGE AUTOMATIQUE MARCHE
	MS8.3	M 58.3	BOOL	AVERTISSEMENT AUTOMATIQUE MARCHE
	M60.0	M 60.0	BOOL	F.DISJ. PRINC. CONVERTISSEUR
	M60.2	M 60.2	BOOL	F.DISJ. MOTOR RAPIDE CONVERTISSEUR
	M60.4	M 60.4	BOOL	F.DISJ. MOTEUR LENTE CONVERT.
	M60.6	M 60.6	BOOL	F.FIN DE COURSE COLLISION GRATTEUR
	M61.0	M 61.0	BOOL	F.DISJ. FREIN DE TRANSLATION
	M51.4	M 61.4	BOOL	F.TRANSLATION OUVRE LES FREINS CIRCUIT
	M61.6	M 61.6	BOOL	F.VITESSE DE TRANSLATION
	M63.4	M 63.4	BOOL	F.TRANSL. ARRET D'URGENCE COTE GAUCHE
	M63.6	M 63.6	BOOL	F.TRANSL. ARRET D'URGENCE COTE DROIT
	M64.4	M 64.4	BOOL	TRANSL. DEFAUT CONVERTISSEUR
	M 66.0	M 66.0	BOOL	capteur_matiere
	m 66.1	M 66.1	BOOL	comparaison
	M70.0	M 70.0	BOOL	DEFAUT GENERAL TRANSLATION
	M70.1	M 70.1	BOOL	DEFAUT TRANSL. PERMISSION LOCAL
	M70.2	M 70.2	BOOL	DEFAUT TRANSL. PAS DE PERMISSION
	M71.0	M 71.0	BOOL	TRANSLATION DIRECTION GAUCHE
	M71.1	M 71.1	BOOL	TRANSLATION DIRECTION DROITE
	M71.7	M 71.7	BOOL	ECHANGE LA DIRECTION DE TRANSLATION
	M72.0	M 72.0	BOOL	AUTOM, TRANSLATION A GAUCHE
	M72.1	M 72.1	BOOL	AUTOMATIQUE TRANSLATION A DROITE
	M72.2	M 72.2	BOOL	MEMENTO TRANSLATION A GAUCHE
	M72.3	M 72.3	BOOL	MEMENTO TRANSLATION A DROLTE
	M73.0	M 73.0	BOOL	FIN TRANSLATION RAPIDE A GAUCHE
	M73.1	M 73.1	BOOL	FIN TRANSLATION RAPIDE A DROITE
	M74.0	M 74.0	BOOL	TRANSLATION SELECTION LENTE
	M74.1	M 74.1	BOOL	TRANSLATION SELECTION RAPIDE
	M79.0	м 79.0	BOOL	METTRE TRANSLATION PLUS RAPIDE
	M79.1	M 79.1	BOOL	METTRE TRANSLATION PLUS LENTE
	M80.0	M 80.0	BOOL	F.DISJ. PRINC. ENROULEUR
	MB0.4	M 80.4	BOOL	F.FIN DE COURSE CABLE DE PUISSANCE
	M81.0	M 81.0	BOOL	F.ENROULEUR CIRCUIT
	M90.0	м 90.0	BOOL	DEFAUT COLLECTIV ENROULEUR
	M110.0	M 110.0	BOOL	F.DISJ. RELEVAGE RAPIDE PRINCIPALE
	M110.2	M 110.2	BOOL	F.DISJ. RELEVAGE LENTE PRINCIPALE
	M110.4	M 110.4	BOOL	F.RELEVAGE RAPIDE PRINC. CIRCUIT
	M110.6	M 110.6	BOOL	F.RELEVAGE LENTE PRINC. CIRCUIT
	M111.0	M 111.0	BOOL	F.INTERRUPTEUR FLASQUE CABLE PRINCIPALE
	M111.2	м 111.2	BOOL	F.FLECHE EN HAUT CHAINE PRINCIPALE
	M111.4	M 111.4	BOOL	F.FLECHE EN BAS CHAINE PRINCIPALE
	M112.0	M 112.0	BOOL	F.COLLISION FLECHE PRINC. COM. AVEC LI
	M112.2	M 112.2	BOOL	F.COLLISION FLECHE PRINC. FIN AVEC LE TAS
	M112.4	M 112.4	BOOL	F.COMPTEUR DU TRANSMETTEUR RELEVAGE PRINC.
	M120.0	M 120.0	BOOL	DEFAUT COLLECTIVE RELEVAGE
	M120.1	M 120.1	BOOL	DEFAUT RELEVAGE RAPIDE
	M120.2	M 120.2	BOOL	DEFAUT RELEVAGE LENTE


Etat	Mnémonique	Opérande	Type de données	Commentaire
	M121.0	M 121.0	BOOL	F.RELEVAGE EN HAUT
	M121.1	M 121.1	BOOL	RELEVAGE PRINCIPALE BAS
	M121.2	M 121.2	BOOL	LEVAGE FIN D'OPERATION EN BAS
	M121.3	M 121.3	BOOL	LEVAGE FIN D'OPERATION EN HAUT
	M122.0	M 122.0	BOOL	FLANC DETECTION COMMUTE LEVAGE RAPIDE
	M122.1	M 122.1	BOOL	IMPULSION COMMUTE LEVAGE RAPIDE PRINC.
	M122.2	M 122.2	BOOL	FLANC DETECTION COMMUTE LEVAGE LENTE
	M122.3	M 122.3	BOOL	IMPULSION COMMUTE LEVAGE LENTE PRINC.
	M122.4	M 122.4	BOOL	BLOCAGE DESCENTE PRINCIPALE
	M122.5	M 122.5	BOOL	BLOCAGE MONTEE RELEVAGE
	M122.6	M 122.6	BOOL	LEVAGE PRINC. DESCENTE
	M122.7	M 122.7	BOOL	LEVAGE PRINC. MONTEE
	M123.0	M 123.0	BOOL	CHAINE PRINCIPALE MONTEE/DESCENTE RAPIDE
	M123.2	M 123.2	BOOL	FLAG AUXILIAIRE DESCENTE PRINCIPALE
	M123.3	M 123.3	BOOL	FLAG AUXILIAIRE MONTEE PRINCIPALE
	M123.6	M 123.6	BOOL	LEVAGE DESCENTE
	M123.7	M 123.7	BOOL	LEVAGE PRINCIPLAE MONTEE
	M125.2	M 125.2	BOOL	LEVAGE ALXIL. FIN D'OPERATION EN BAS
	M125.3	M 125.3	BOOL	LEVAGE ALXIL. FIN D'OPERATION EN HAUT
	M129.2	M 129.2	BOOL	MONTEE MANUEL PRINCIPALE
	M129.3	M 129.3	BOOL	DESCENTE MANUEL RELEVAGE
	M130.0	M 130.0	BOOL	F.DISJ. POMPE DE GRAISSAGE CHAINE
	M130.4	M 130.4	BOOL	F.POMPE DE GRAISSAGE CIRCUIT
	M140.0	M 140.0	BOOL	DEFAUT COLLECTIVE POMPES DE GRAISSAGE
	M140.1	M 140.1	BOOL	DEFAUT POMPE DE GRAISSAGE PRINCIPALE
	M180.0	M 180.0	BOOL	F.DISJONCTEUR MOTEUR CHAINE
	M180.2	M 180.2	BOOL	F.SONDE CTP DE LA CHAINE
	M180.4	M 180.4	BOOL	F.CHAINE CIRCUIT
		M 181.0	BOOL	F.VITESSE DE LA CHAINE
	M181.0 M190.0	M 190.0	BOOL	DEFAUT COLLECTIVE CHAINE
	M191.0		BOOL	CHAINE PRET A MARCHER
	M191.1	M 191.1		METTRE CHAINE PRINC, LOCAL EN MARCHE
	M191.2	M 191.2	BOOL	METTRE CHAINE MANUEL EN MARCHE
	MEMONTO AUXILIAIRE	M 200.0	BOOL	
	visb_dpl	M 400.0	BOOL	
	niv	M 410.0	BOOL	
	consigne_valeur	MD 32	REAL	
	val_consigne	MD 36	REAL	
	MESURE_VITESSE_LENTE	MD 50	REAL	
	mesure_vitesse	MD 54	REAL	
	md75	MD 75	REAL	
	MW10	MW 10	WORD	
	MW60	MW 60	WORD	
	MW63	MW 63	WORD	
	MW70	MW 70	WORD	
	mw7S	MW 75	INT	
	MWBD	MW 80	WORD	
	MW90	MW 90	WORD	
	m91	MW 91	INT	
	MW110	MW 110	WORD	
	MW112	MW 112	WORD	
	MW112	PHW 112	WORD	

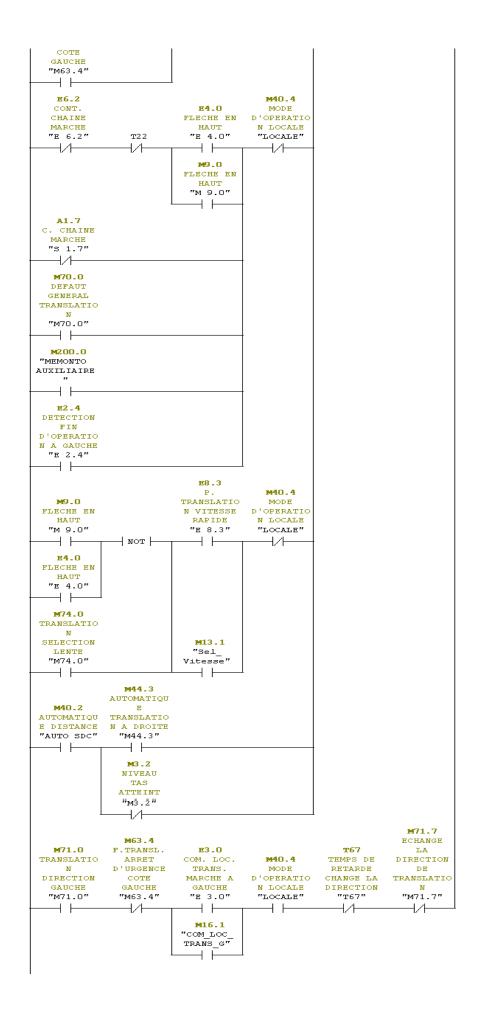
Etat	Mnémonique	Opérande	Type de données	Commentaire
	MW120	MW 120	WORD	
	MW130	MW 130	WORD	
	MW140	MW 140	WORD	
	MW180	MW 180	WORD	
	dep1	MW 186	WORD	
	MW190	MW 190	WORD	
	depl	MW 196	WORD	depl
	dpl3	MW 300	WORD	
	DEP4	MW 310	WORD	
	DEPS	MW 330	WORD	
	nivu	MW 370	WORD	
	ratteur_niv	MW 380	WORD	
	grat_nlv	MW 390	WORD	
	Cycle Execution	OB 1	OB 1	
	PROG_ERR	OB 121	OB 121	Programming Error
	MOD_ERR	OB 122	OB 122	Module Access Error
	Т3	т з	TIMER	TEMPS DE RETARD AUTO RELEVAGE &
		· -		TRANSL.
	T 1	T 4	TIMER	TEMPS DE RETARD ARRET LES CHAINES
	TS	T 5	TIMER	TEMPS D'ATTENTE AU FIN
	T6	Т 6	TIMER.	TEMPS D'ATTENTE RELEVAGE EN BAS
	T9	T 9	TIMER.	TEMPS DE RETARD APRES DEMARRAGE
	T10	T 10	TIMER	TEMPS D'EXICATION INTRODUCTION PRET
	T11	T 11	TIMER	RETARD TENSION DE COMMANDE MARCHE
	T12	T 12	TIMER	TEMPS D'AVERTISSEMENT MANUEL PRET MARCHE
	T 13	T 13	TIMER	TEMPS DE RETARD BLOCAGE MARCHE MANUEL
	T14	T 14	TIMER	TEMPS D'AVERT. AUTOMATIQUE MARCHE
	T 17	T 17	TIMER	
	T27	T 27	TIMER	TEMPS DE BLOCAGE LEVAGE PRINCIPALE
	T60	T 60	TIMER	TEMPS DE REACTION DU CONTACTEUR =D6-K3
	T 61	T 61	TIMER	TEMPS DE REACTION DU CONTACTEUR =D6-K1
	T66	T 66	TIMER.	
	T67	T 67	TIMER	TEMPS DE RETARDE CHANGE LA DIRECTION
	T69	T 69	TIMER.	TEMPS D'ATTENTE FERME LES FREINS
	T70	T 70	TIMER	DECLENCHE LE CONVERTISSEUR
	T79	T 79	TIMER	TEMPS DE REACTION CU CONTACTEUR =D24-K1
	TSD	T 80	TIMER	TEMPS DE REACTION DU CONTACTEUR =D18-K1
	T90	T 90	TIMER.	TEMPS DE REACTION DU CONTACTEUR =D13-K1
	T92	T 92	TIMER	TEMPS DE GRAISSAGE PRINCIPALE MANUELL
	T110	T 110	TIMER	TEMPS DE REACTION DU CONTACTEUR =D11-K1
	T111	T 111	TIMER.	TEMPS DE REACTION DU CONTACTEUR =D11-K3
	T112	T 112	TIMER	TEMPS DE RETARD INTER. FLASQUE CABLE PRI
	T113	T 113	TIMER	TEMPS DE RETARD COLLISION PRINC. TAS
	A	Z 4	COUNTER	
	A1	Z 5	COUNTER	

Instructions des modes de marche sous OB1

Translation direction gauche sous FC2

Réseau : 3 TRANSLATION DIRECTION GAUCHE

```
ECHANGE
                                                                                              M71.0
                                              T67
TEMPS DE
                  E8.7
                               LA
DIRECTION
                                                                                           TRANSLATIO
               P.
TRANSLATIO
  M40.0
                                                                                                N
                                               RETARDE
                                                                                            DIRECTION
   MODE
                                   DE
D'OPERATIO
                N MARCHE
                              TRANSLATIO
                                              CHANGE LA
                                                                                              GAUCHE
                                N
"M71.7"
                                              DIRECTION
"T67"
                                                                                             "M71.0"
 N MANUEL
                A GAUCHE
 "MANUEL"
                 "E 8.7"
                                                                                               SR
                                  1/1
                                                 1/1
   \dashv \vdash
                  \dashv \vdash
                  M12.3
                  "BP_
               Marche_
Trans_G"
                  \dashv \vdash
                                                               M71.7
                  E2.7
                                                              ECHANGE
               COM. LOC.
                               E3.0
COM. LOC.
                                              T67
TEMPS DE
                                                                 LA
                                                             DIRECTION
  M40.4
   MODE
                                TRANS.
                                               RETARDE
                                                                  DE
D'OPERATIO
               TRANSLATIO
                               MARCHE A
                                              CHANGE LA
                                                             TRANSLATIO
N LOCALE "LOCALE"
                 "E 2.7"
                                GAUCHE
"E 3.0"
                                              DIRECTION "T67"
                                                                 N
                                                              "M71.7"
   +
                 \dashv \vdash
                                 \dashv \vdash
                                                 1/1-
                                                                1/1
                 M16.0
                                 M16.1
              "COM_LOC_
MODE_LCL"
                              "COM_LOC
                              TRANS_G"
```


Réseau : 4 TRANSLATION DIRECTION GAUCHE

```
M71.7
                                                                                    ECHANGE
                                                                                                                       M71_0
                                                                                   LA
DIRECTION
                                                                                                                    TRANSLATIO
                                                                   TEMPS DE
                                                                                                       M3.2
                                                                                                                         N
                                                                                                     NIVEAU
TAS
ATTEINT
                                                                    RETARDE
                                                                                        DE
                                                                                                                    DIRECTION
AUTOMATIQU
E DISTANCE
"AUTO SDC"
                                                                                   TRANSLATIO
                    M3.1
                                    M3_0
                                                                  CHANGE LA DIRECTION
                                                                                                                      GAUCHE
"M71.0"
                "fin opr
droite"
                                "fin opr
gauche"
                                                     M2.0
                                                                                     N
"M71.7"
                                                    "fdc_g"
                                                                     "T67"
                                                                                                      "M3.2"
                                                                                                                        SR
 \dashv \vdash
                  \dashv \vdash
                                    -1/1
                                                                                      -1/1
                                                                                                       +
                   M40.2
                AUTOMATIQU
E DISTANCE
   M3.0
"fin opr
gauche"
                "AUTO SDC"
   +
   M3 2
  NIVEAU
    TAS
  ATTEINT
   "M3.2"
```

Réseau 7: MEMENTO TRANSLATION A GAUCHE

```
M71.0
                                                                                                         TRANSLATIO
                                                                                                          TRANSLATIO
N
DIRECTION
GAUCHE
"M71.0"
      E9.1
                                               M40.0
                                                                                                                                  M72.2
P.
TRANSLATIO
N ARRET
"E 9.1"
                                          MODE
D'OPERATIO
N MANUEL
"MANUEL"
                                                                                                                                MEMENTO
                                                                                                                              TRANSLATIO
N A GAUCHE
"M72.2"
                                                                                                               RS
    \dashv \vdash
                                                                                                                                  <del>( )—</del>
                                               \dashv \vdash
                                                                                                         R
     M12.7
  "Arrêt_
trans"
     \dashv \vdash
     E9.0
P.
TRANSLATIO
  N MARCHE
A DROITE
"E 9.0"
    \dashv \vdash
 M12.4

"BP_
Marche_
Trans_D"
     M74.0
 TRANSLATIO
       N
 SELECTION
   LENTE "M74.0"
    \dashv \vdash
                        | not |
     M74.1
TRANSLATIO
N
SELECTION
RAPIDE
"M74.1"
    \dashv \vdash
C.
ENROULEURS
   MARCHE
    E3.1
 COM. LOC.
TRANS.
MARCHE A
                                               M40.4
                                               MODE
                                          D'OPERATIO
   DROITE
"E 3.1"
                                            N LOCALE
    \dashv \vdash
                                               \dashv \vdash
    M16.2
 "COM_LOC_
TRANS_D"
   \dashv \bar{\vdash}
     E2.6
 COM. LOC.
VEROUILLE
TRANSLATIO
   N
"E 2.6"
    \dashv \vdash
    M16.3
"COM_LOC_
ver_trans"
     E3.2
COM. LOC.
TRANSLATIO
N ARRET
"E 3.2"
                    M16.4
"COM_LOC_
arr_trans"
    M70.1
    DEFAUT
   TRANSL.
PERMISSION
   LOCAL
"M70.1"
     \dashv \vdash
     м63.4
 F.TRANSL.
 ARRET
D'URGENCE
     COTE
```


- [1] 'processus de fabrication du ciment', document de l'usine.
- [2] NEDDAD Marouane, 'Etude du principe de fonctionnement du Gratteur', Licence génie électrique, Maroc, 45 page, 2015.
- [3] 'Reprise Analyse fonctionnelle', document de l'usine.
- [4] https://fr.scribd.com/document/341385414/Capteurs-a-effets-reactifs-pdf, dernier accès 13/06/2018 à 00:18.
- [5] Allen-Bradley, 'Dispositifs de sécurité de détection de présence', Publication S117-CA001A-FR-P.
- [6] https://www.astuces-pratiques.fr/electronique/le-moteur-asynchrone-principe-defonctionnement, dernier accès 13/06/2018 à 00:29.
- [7] http://www.univ-reims.fr/descriptif-des-logiciels/descriptif-des-logiciels,9486,27015.html ,dernier accès 13/06/2018 à 12:51.
- [8] HIRSCHMANN, 'OpenBAT-Gamme: BAT-F', Manuel d'utilisation.
- [9] http://lcautomatisme.fr/15.html,dernier accès 13/06/2018 à 16:55.
- [10] HASSAOUI Jugurtha et KHALES Karim, 'Migration d'un automate S5-95U vers S7-300 SIEMENS, d'une remplisseuse de bouteilles d'eau au sein de l'entreprise IFRI ', Master en Électrotechnique, Algérie, 60 pages, 2017.
- [11] SIEMENS, 'PROGRAMMER AVEC STEP7', Manuel.
- [12] BENRAGOUBA FOUAD et ALLOU SAMI: 'Automatisation et supervision d'une station d'ensachage de la cimenterie de Sour el Ghozlane par API s7-300', Master Automatique, Algérie, 70 page, 2016.
- [13] MELLALI Sofiane et YOUSFI Lounis : 'Etude de l'automatisation et de la supervision d'un procédé de lavage de filtres Niagara à CEVITAL- TIA PORTAL V12-', Master Automatique, Algérie, 75 pages, 2017.