

UNIVERSITE BLIDA1

Faculté des Sciences

Département d’Informatique

THESE DE DOCTORAT

Systèmes Informatiques

Architectures Logicielles/Matérielles embarquées pour le

chiffrement/déchiffrement hybride ECC-AES

Par

Bellemou Ahmed Mohamed

Devant le jury composé de :

Abderrezak GUESSOUM Professeur U. Blida 1 Président

Mohamed OULD KHAOUA Professeur U. Blida 1 Examinateur

Djamel BENNOUAR Professeur U. Bouira Examinateur

Nadjia BENBLIDIA Professeur U. Blida 1 Directrice de thèse

Mohamed ANANE MCB ESI Co Directeur de thèse

Yacine CHALLAL Professeur ESI Invité

Blida, 2021

BLIDA1 University

SCIENCES FACULTY

Department of Computer Science

DOCTORAL THESIS

Computer systems

Embedded Software/Hardware architectures for hybrid

encryption/decryption based on ECC-AES

By

Bellemou Ahmed Mohamed

Doctoral Committee:

Abderrezak GUESSOUM Professor U. Blida 1 Chair

Mohamed OULD KHAOUA Professor U. Blida 1 Examinator

Djamel BENNOUAR Professor U. Bouira Examinator

Nadjia BENBLIDIA Professor U. Blida 1 Thesis supervisor

Mohamed ANANE MCB ESI Co Thesis supervisor

Yacine CHALLAL Professor ESI Guest

Blida, 2021

ABSTRACT

Security management for embedded systems is a critical research field, especially when

taking into account the performance variation over different embedded devices. In this thesis,

we present efficient SW/HW architectures of hybrid ECC-AES encryption/decryption for

FPGA-based embedded cryptosystem. Indeed, the main aim is to achieve the best tradeoff

between flexibility, security level, timing execution and area consumption.

In the first contribution, we present MicroBlaze-based parallel architectures of Elliptic

Curve Scalar Multiplication (ECSM) computation for Elliptic Curve Cryptosystems (ECC) on

Xilinx Virtex-5 FPGA. ECSM is performed by Montgomery Power Ladder (MPL) algorithm in

Chudnovsky projective system, which allows the parallelism exploitation with several degrees.

At low abstraction level, the critical operation Montgomery Modular Multiplication (MMM) is

implemented within a hardware Accelerator MMM (AccMMM) core based on the modified

high radix r(r=232) MMM algorithm. The efficiency of our parallel implementations is achieved

by combining both mixed SW/HW approach and Multi Processor System on Programmable

Chip (MPSoPC) design. The Virtex-5 parallel implementations of 256-bit and 521-bit ECSM

computations run at 100MHZ frequency to perform single ECSM are between 204.5 ms and

14.72 ms. The proposed architectures consume between 2739 and 6533 slices, 22 and 72 RAMs

and between 16 and 48 DSP48E cores.

The second contribution consists of the proposition of high-performance client/server

coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured

by using the Transport Layer Security (TLS) protocol based on ECC/AES schemes. The

hardware architecture of the proposed coordinators is based on SW/HW co-design approach,

implementing ECSM within hardware accelerator core. Meanwhile, the control of the overall

TLS handshake is performed by ARM Cortex-A9 microprocessor. The integration of ARM

processor enables to exploit embedded Linux features for high system flexibility. The proposed

ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device and performs

high-speed 233-bit ECSM in 413 µs, with a 50 MHz clock. The generation of a 384-bit TLS

handshake secret key between client and server coordinators requires 67.5 ms on a low cost

Zynq 7Z007S device.

RESUME

La gestion de la sécurité pour les systèmes embarqués est un domaine de recherche

critique avec la variation des performances des différents dispositifs embarqués. Dans cette

thèse, nous présentons des architectures logicielles/matérielles embarquées sur circuit FPGA

pour le chiffrement/déchiffrement hybride ECC-AES. Notre objectif est d'obtenir le meilleur

compromis entre flexibilité, niveau de sécurité, temps d’exécution et surface occupée.

Dans la première contribution, nous présentons des architectures parallèles de type

MPSoC sur circuit FPGA de Xilinx basées sur l’intégration de plusieurs processeurs embarqués

MicroBlaze pour le chiffrement asymétrique ECC. L’exécution de l’opération de base de l’ECC,

en l’occurrence, la multiplication scalaire est basée sur la combinaison de l’algorithme

Montgomery Power Ladder (MPL) et le système de représentation de points projectif de

Chudnovesky. Cette combinaison permet l'exploitation du parallélisme à plusieurs degrés. Au

niveau bas d’abstraction, la Multiplication Modulaire de Montgomery (MMM) est considérée

comme l'opération critique. Elle est implémentée en matérielle (AccMMM) autour d’un ou

plusieurs processeurs Microblaze en se basant sur l’exécution de l’algorithme MMM dans une

base élevée, (r=232). Les implémentations proposées consomment entre 2739 et 6533 slices,

entre 22 et 72 RAMs et entre 16 et 48 DSP48E. Nos implémentations opèrent avec une fréquence

de 100 MHZ et exécute la multiplication scalaire avec des délais qui vont de 204 ms à 14,72 ms.

La deuxième contribution consiste en la proposition d’une implémentation efficace du

protocole TLSv1.2 à base du processeur ARM sur des circuits FPGA récent de type Zynq à

faible coût, dédiée aux applications IoT. Parmi les suites de chiffrement prises en charge par le

protocole TLS, nous avons sélectionné la suite ECC_AES_HMAC pour la génération des clés

secrètes de 384 bits. L'idée principale est d’implémenter la multiplication scalaire dans un

accélérateur matérielle évolutif autour d'un microprocesseur ARM Cortex-A9, tandis que le

contrôle de toutes les négociations de prise de contact TLSv1.2 est assuré par le processeur. Ce

dernier s'exécute dans un système d'exploitation Linux embarqué avec une fréquence de 50MHZ

pour effectuer une négociation TLS complète en 67,5 ms. L'accélérateur ECC proposé ne

nécessite que 3395 LUTs tandis que l'architecture proposée occupe 8503 LUT.

 ملخص

يتمثل في زرع الهدف من هذه الأطروحة، .مهمًا مع تفاوت أداء الأجهزة المدمجةتعد إدارة أمن الأنظمة المضمنة مجال بحث

مفاضلة بين المرونة الهدف الرئيسي هو تحقيق FPGA. في شريحة مكونه من مبرمج ECC/AES نظام تشفير هجين

على مساهمتين تستند روحةث التي أنجزت في إطار هذه الأطلمنطقة. أعمال البحالتنفيذ واستهلاك ا ومستوى الأمان و توقيت

 :رئيسيتين

 FPGA على (ECSM) و المتمثلة في ضرب عدد في نقطه ECC المساهمة الأولى تتمثل في زرع العملية الأساسية لنظام

تهدفة. لتحسين زمان توازي للعملية المسمن أجل التنفيذ الم Xilinx ل MicroBlaze و ذلك بإستعمال معالجات للمعلومات

هو حساب عملية الضرب الترديدي. نتائج التشفير بمفتاح IP بجوار المعالجات. دور IP هاته العملية، استعملنا كتلةحساب

و تحوز على مساحة ms 14.72و ms 115تتراوح بين ECSM ، بينت ان زمن حسابbits521-و bits256-ذو مقاس

 slices. 2739و 6533راوح بين تت FPGA داخل

بشكل آمن. يتم IoT منخفضة التكلفة لتجميع بيانات FPGA لثانية تتمثل في اقتراح منسق عالي الأداء على أجهزةالمساهمة ا

 ARM CortexA9.تحتوي على معالج للمعلومات Zynq وذلك بإستعمال شريحة TLS ضمان الأمان باستخدام بروتوكول

 TLS يتطلب إنشاء مفتاح سر مصافحة ECC. المعالج دورها تشفيربجوار IP ، استعملنا كتلة TLS حةافمصلتحسين زمان

 8503مقدرة ب FPGA منخفض التكلفة. المساحة داخل Zynq-7Z007S على جهاز 67.5ms ب bits384-بمقاس

.LUTs

ACKNOWLEDGEMENTS

Foremost, I would like to thank God Almighty for giving me the strength, ability and

opportunity to undertake this research study and to complete it satisfactorily.

The research work for this thesis was carried out in the LRDSI Laboratory, Department

of computer science, Blida 1 university. First, I would like to express my sincere gratitude to my

supervisor Prof. Benblidia Nadjia, who shared a lot of her experience with me. I appreciate her

patience, motivation, enthusiasm, immense knowledge and the freedom she gave me in pursuing

various ideas.

Besides, I wish to express my deepest gratitude to my co-supervisor Dr Anane Mohamed

for his invaluable guidance, proposed ideas, valuable discussions and constructive suggestions

without which it could not have been possible to succeed in my research. His vision and

motivation have deeply inspired me to carry out the research and to present the thesis as clearly

as possible. It was great privilege and honor to work under his guidance.

I would like to thank the Prof. Guessoum Abderrezak, Prof. Ould Khaoua Mohamed,

Prof. Bennouar Djamel and Prof. Challal Yacine for their time spent on reading my thesis and

their valuable comments.

I am grateful to Dr. Issad Mohamed for his friendship, encouragement, advice, and help

whenever needed. I am indebted to the AC2 team members and the Center for Development of

Advanced Technologies for offering me a fabulous environment to work.

The Ministry of Higher Education and Scientific Research offered me an opportunity to

visit the University of Granada, Spain, for one-year scholarship. It is hard to exaggerate the

importance of the visit for my thesis work, and I am therefore most grateful for this wonderful

opportunity that I had. Especially, I would like to thank Prof. Luis Parrilla and Prof. Antonio

García with whom I had the pleasure of working during my stay in Granada.

I would like to thank my parents, my wife, and my sister for the love and encouragement

I received. Without their heartfelt support this thesis would not have been possible. I would like

to dedicate this thesis to them.

LIST OF FIGURES

Figure 1. 1 Private-key Cryptosystem .. 21

Figure 1. 2 Asymmetric Encryption/Decryption global scheme .. 22

Figure 1. 3 Digital Signature process ... 23

Figure 1. 4 Points Addition of Point Doubling .. 26

Figure 2. 1 Xilinx’s published scaling process of the development of FPGA technology………………………40
Figure 2. 2 Basic structure of FPGA ... 41

Figure 2. 3 CLB internal architecture .. 42

Figure 2. 4 The contemporary FPGA internal Architecture .. 43

Figure 2. 5 FPGA design Flow .. 44

Figure 2. 6 Internal architecture of Xilinx MicroBlaze softcore processor ... 47

Figure 2. 7 Internal architecture of ARM Cortex-A9 hardcore processor .. 48

Figure 3. 1 ECSM implementation abstraction levels………………………………………………………………………….53
Figure 3. 2 ECSM hierarchy modeling for the proposed architectures ... 69

Figure 3. 3 Internal hardware architecture of MMMu .. 70

Figure 3. 4 Hardware architecture of 1MbSW/HW approach... 72

Figure 3. 5 Hardware architecture of our AccMMM core ... 73

Figure 3. 6 Hardware architecture of 2MbSW/HW approach... 74

Figure 3. 7 Sequence diagram for parallel ECSM implementation with two processors 75

Figure 3. 8 Hardware architecture of 3MbSW/HW approach... 76

Figure 3. 9 Hardware architecture of 4MbSW/HW approach... 77

Figure 3. 10 Sequence diagram for parallel ECSM implementation with four processors 78

Figure 3. 11 Hardware architecture of 6MbSW/HW approach... 80

Figure 3. 12 Sequence diagram for parallel ECSM implementation with six processors 81

Figure 4. 1 Global Scheme of the targeted IoT application…………………………………………………………………92
Figure 4. 2 Transport Layer Security (TLS) Handshake demonstration ... 93

Figure 4. 3 Hardware architecture of ECC (Elliptic Curve Cryptosystems) accelerator 95

Figure 4. 4 Internal architecture of RNOKOA11C field multiplier unit .. 96

Figure 4. 5 Hardware architecture of IoTS and IoTC designs .. 99

Figure 4. 6 Integration of ECC accelerator with AXI bus ... 100

Figure 4. 7 TLS software functions .. 101

Figure 4. 8 Screenshot of TLS1.2() execution time in the (a) server side, and the (b) client side. 104

Figure 4. 9 Experimental setup for TLS handshaking. ... 105

LIST OF TABLES

Table 1. 1 Recommended key-sizes for RSA and ECC ... 24

Table 3. 1 Summary of projective coordinate systems complexities…………………………………………………..55

Table 3. 2 ECPD partitioning into two tasks .. 63

Table 3. 3 ECPA partitioning into two tasks .. 63

Table 3. 4 ECPD partitioning into three tasks .. 65

Table 3. 5 ECPA partitioning into three tasks .. 66

Table 3. 6 ECPD and ECPA interlacing ... 68

Table 3. 7 Selection of operands at the inputs of Mul2 .. 71

Table 3. 8 Instructions Codes .. 74

Table 3. 9 Hardware resources requirements of our implementations ... 83

Table 3. 10 Hardware resources requirements AccMMM core .. 83

Table 3. 11 Temporal performances of AccMMM core .. 83

Table 3. 12 Temporal performances of the proposed implementations .. 84

Table 3. 13 256-bit ECSM Performance comparisons with recent works ... 86

Table 3. 14 521-bit ECSM Performance comparisons with recent works ... 88

Table 4. 1 Synthesis results for NOKOA9C and RNOKOA11C over GF(2233) on Virtex- 5 devices………….97

Table 4. 2 MP_ECC_B-233_RNOKOA11C implementation results and comparison to other

implementations. .. 98

Table 4. 3 Hardware resources requirements of the proposed architectures 101

Table 4. 4 Execution time of the involved crypto functions for TLS execution 103

Table 4. 5 TLSv1.2 implementation performance comparisons to recent works 105

LIST OF ALGORITHMS

Algorithm 1. 1 Elliptic Curve Digital Signature Generation .. 29

Algorithm 1. 2 Elliptic Curve Digital Signature Verification ... 29

Algorithm 3. 1 Montgomery power ladder for ECSM …………………………………………………………………………54

Algorithm 3. 2 Radix-232 Modular Addition ... 57

Algorithm 3. 3 Radix-232 Modular Subtraction .. 57

Algorithm 3. 4 Radix-232 Montgomery Modular Multiplication [36] .. 59

Algorithm 4. 1 Montgomery ladder over projective coordinates, making field operations explicit…….94

LIST OF ABBREVIATIONS

IoT

LAN

WAN

SSL

TLS

IoTS

IoTC

FPGA

ASIC

GPP

MPSoC

AES

DES

PKC

NIST

RSA

ECC

DHKE

DSA

ECDLP

ECDHE

ECDSA

HMAC

ECSM

ECPA

ECPD

MM

MA

MI

Mexp

MMM

AccMMM

NSP

DSP

CLB

LUT

Internet of Things

Local Area Networks

Wide Area Networks

Secure Sockets Layer

Transport Layer Security

Internet of Things Server coordinator

Internet of Things Client coordinator

Field Programmable Gate Array

Specific Integrated Circuits

General Purpose Processors

Multi-Processor System on Programmable Circuits

Advanced Encryption Standard

Data Encryption Standard

Public-Key Cryptosystems

National Institute of Standards and Technology

Rivest, Shamir and Adleman

Elliptic Curve Cryptosystems

Diffie-Hellman Key Exchange

Digital Signature Algorithm

Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Diffie-Hellman Ephemeral

Elliptic Curve Digital Signature Algorithm

Keyed-hash message authentication

Elliptic Curve Scalar Multiplication

Elliptic Curve Point Addition

Elliptic Curve Point Doubling

Montgomery Power Ladder

Modular Multiplication

Modular Inversion

Modular Exponentiation

Montgomery Modular Multiplication

Montgomery Modular Multiplication accelerator core

Network Security Processors

Digital Signal Processor

Configurable Logic Blocks

Look-Up-Table

CONTENTS

ABSTRACT .. 3

ACKNOWLEDGEMENTS .. 6

LIST OF FIGURES ... 7

LIST OF TABLES .. 8

LIST OF ABBREVIATIONS ... 10

INTRODUCTION ... 13

CRYPTOGRAPHY FOR EMBEDDED SYSTEMS .. 20

1.1 Introduction ... 20

1.2 Symmetric cryptography ... 21

1.3 Public-Key Cryptography.. 22

1.4 Elliptic Curve Cryptography ... 24

1.4.1 Elliptic Curve over a prime finite field ... 24

1.4.2 Elliptic Curve Scalar Multiplication ... 25

1.4.3 Elliptic Curve Cryptosystems ... 27

1.5 Challenges of embedded cryptography ... 30

1.6 Efficient ECC implementation techniques .. 31

1.6.1 ECC system parameters and algorithms ... 31

1.6.2 ECC implementation approaches ... 33

1.6.3 Related works ... 34

1.7 Conclusion ... 37

FPGA PLATFORMS FOR EMBEDDED SYSTEMS ... 38

2.1 Introduction ... 38

2.2 Embedded systems platforms .. 38

2.3 Field Programmable Gate Array (FPGA) circuits ... 40

2.3.1 FPGA internal architecture ... 41

2.3.2 FPGA Design Flow .. 43

2.3.3 FPGA-based MPSoC .. 44

2.4 Conclusion ... 49

MICROBLAZE-BASED MULTIPROCESSOR EMBEDDED CRYPTOSYSTEM ON XILINX

VIRTEX-5 FPGA FOR ELLIPTIC CURVE SCALAR MULTIPLICATION OVER Fp 50

3.1 Introduction ... 50

3.2 Design methodology.. 50

3.3 Adopted ECSM algorithms ... 53

3.3.1 Montgomery Power Ladder Algorithm .. 53

3.3.2 Projective coordinates system .. 55

3.3.3 Finite field operations ... 56

3.4 Parallelism exploration in ECSM hierarchy .. 60

3.4.1 Parallelism exploration with two degrees ... 62

3.4.2 Parallelism exploration with four degrees .. 62

3.4.3 Parallelism exploration with six degrees .. 64

3.4.4 Parallelism exploration with three degrees ... 66

3.5 FPGA implementations ... 68

3.5.1 Montgomery Modular Multiplier unit .. 70

3.5.2 ECSM implementations ... 72

3.6 Implementations results and discussion .. 82

3.6.1 Occupied area ... 82

3.6.2 Timing execution .. 83

3.6.3 Performance comparisons with some recent works ... 85

3.7 Conclusion ... 89

ZYNQ-BASED IMPLEMENTATION OF TLS ... 91

4.1 Introduction ... 91

4.2 Global Scheme of the targeted IoT application ... 92

4.3 ECC Accelerator Design ... 94

4.3.1 Field Multiplier Unit .. 96

4.3.2 Implementation of MP ECC_B-233_RNOKOA11C ... 97

4.4 FPGA Implementation of TLS Cryptosystem ... 98

4.4.1 ECC Accelerator Integration around ARM Processor ... 99

4.4.2 Software Development ... 101

4.4.3 Comparison with Some Recent Works ... 104

4.5 Conclusion ... 106

CONCLUSION ... 108

REFERENCE .. 110

13

INTRODUCTION

Thesis motivation

The increase deployment of large embedded and smart devices in our daily life, be it in

fields such as internet communication, e-commerce, internet banking, storage and retrieval of

sensitive data from cloud servers, mobile commerce, wireless sensors networks and many others,

open the subject of intensive research for the information security concerns. In fact, large

amounts of information are transferred through heterogeneous networks, ranging from Local

Area Networks (LAN) to Wide Area Networks (WAN). Fortunately, cryptography [1, 2] plays

a vital role to guaranty only authenticated access to information. It provides network secure

information transfer over insecure channels by combining heterogeneous cryptographic

protocols like public-key protocols (e.g., RSA, ECDH, ECDSA) [3-7], private-key schemes

(e.g., 3DES, AES) [8, 9] and secure hash functions (e.g., SHA-1, SHA-2, SHA-3) [10-12].

Moreover, in the case of end-to-end network secure systems that require transferring data

through internet, Secure Sockets Layer (SSL) [13] or Transport Layer Security (TLS) [14] are

the preferred hybrid cryptographic solutions.

Several interesting alternative platforms for embedded cryptosystems such as Field

Programmable Gate Array (FPGA), Application-Specific Integrated Circuits (ASIC) and

Multicore microcontroller platforms are reported in the literature. The selection between these

platforms depends on the targeted applications as well as the considered performances.

Microcontrollers are the best platforms when high-efficiency in terms of power/energy

consumption and execution time is promoted since these are made in ASIC. With the integration

of panoply of components on a single programmable chip such as processor cores and

programmable logic devices, FPGA provides lesser design time, re-configurability and high-

performance to implement Programmable Systems on Chip (PSoC). It allows exploring new

architectures and flexible designs. Therefore, FPGAs are considered as suitable solutions for

applications that promote the compromise between performance, flexibility and re-

configurability. Hence, we decided to go forward for FPGA platform.

Various FPGA-based cryptosystem implementations have been proposed in the literature

[15]. The key issues of such works are defined by the security level, execution time, occupied

14

area and flexibility. The flexibility constraint provides the possibility of an easier design

modification due to system update functionality, while leaving the hardware architecture fixed.

Another major factor that should be considered when designing a cryptosystem is the security

of the hardware platform. The security analysis shows that the embedded cryptosystems can leak

sensitive information during the execution of a computation, no matter how cryptographic

patterns are mathematically hard and proven secure. Hence, efficient implementation of

embedded cryptosystems needs the study of the vulnerability from various attacks on hardware

platforms such as side channel attack [3].

Depending on the considered goals, three categories of implementation approaches are

reported: Hardware implementation (HW), Software implementation (SW) and Co-design

implementation (SW/HW). The first approach is used for high speed execution. The second

approach is the best option when flexibility is strongly desired. It is based generally on

embedded processors. The third approach offers the trade-off between flexibility, area and

speed. Furthermore, some researchers propose to exploit Multi-Processor System on

Programmable Chips (MPSoPC) approach [16, 17] for parallel execution in order to enhance

the timing execution. In fact, MPSoPC is suitable solution for parallel implementations of

applications that require intensive and critical computations. The performance of the overall

system depends on the tasks partitioning of the targeted operation between the integrated

processors.

Thesis aim and contribution

The main objective of this thesis is to propose novel architectures for efficient

implementation of hybrid ECC-AES embedded cryptosystems on FPGA circuits. The major aim

is to achieve the best trade-off between flexibility, security, area consumption and timing

execution. Thus, the contributions of this thesis are mainly comprised of:

1. The design of new parallel implementations of efficient Elliptic Curve Cryptosystems

(ECC) for embedded applications.

2. The implementation of TLSv1.2 protocol for efficient Client/Server IoT applications.

15

Efficient implementations of Elliptic Curve Scalar Multiplication

Public-Key Cryptosystems (PKC) are computationally intensive, due to the complex

operations required by its algorithms, and may not be of generalized use for embedded devices

due to hardware limitations. The implementation of PKC as embedded cryptosystems should

guaranty high security and throughput with minimum hardware resources utilization. Therefore,

suitable PKC associated protocols are essential to design efficient embedded cryptosystems. In

the mid-1980s, Miller and Koblitz found the ability to use Elliptic Curves (EC) in PKC by

building a cryptosystem based on Elliptic Curve Discrete Logarithm Problem (ECDLP) [1].

ECC provides better security with smaller key size compared to Rivest, Shamir and Adleman

(RSA) cryptosystem [18]. This property changed ECC to a preferable choice for embedded

cryptosystems due to the limit of resources and strict power requirements. ECC schemes have

shown that their complexities are reduced to the computations of Elliptic Curve Scalar

Multiplication (ECSM) [3]. This latter is considered as the most expensive operation in ECC

protocols.

Efficient implementation of ECSM has received recently special attention. Good surveys

in this area are described in Refs [19-22]. For fast prototyping, the purely-SW [21, 23]

implementation is suitable approach by offering lowest cost and high degree of flexibility. This

approach can effectively adapt to the modifications and updates in ECC standards which are

related to the EC forms, the finite field and the security-level size. However, these

implementations are usually impractical for applications that require fast-timing responsiveness

and processing. Under these restrictions, HW and SW/HW implementations are the more suited

approaches [24-30]. The high-speed could be achieved by using dedicated hardware as

coprocessor or accelerator blocks to perform the hall ECSM computation or certain finite field

operations. These approaches provide high-performance and offers high reliability. However,

they come with higher cost and area consumption due to the required additional hardware blocks.

In this work, we present parallel architectures of ECSM computation for embedded ECC

on FPGA circuit. ECSM is performed using Montgomery Power Ladder (MPL) algorithm [31]

in projective coordinates systems. MPL algorithm is often suggested to withstand side channel

attacks. The projective system allows the performance enhancement of ECSM execution not

only by avoiding the execution of the complex finite field inversion operation but also by

exploring the inherent parallelism within ECSM computations. In order to achieve the best trade-

off between flexibility, timing execution and area occupation, the main idea is to employ

SW/HW approach in MPSoPC. The performance of the overall system depends on SW/HW

16

partitioning as well as the tasks partitioning of the targeted operation between the integrated

processors.

Our strategy in this work is based on two folds. The first is the analysis of the operations

within ECSM computations that could be executed in parallel. The second consists of the design

and the implementation of the critical finite field operation which is Modular Multiplication

(MM) within a scalable HW accelerator core based on Montgomery Modular Multiplication

(MMM) algorithm [32, 33]. Thus, five SW/HW ECSM implementations based on MicroBlaze

processor [34] are proposed. MicroBlaze processor is reconfigurable soft-core processor which

could be integrated independently of the FPGA circuit family. Then all proposed designs can be

implemented as MPSoC in all FPGA circuit families [35].

The objective behind the first fold is to reduce the critical path of ECSM execution. A

lot of implementations show that the parallelization within ECSM computation provides a

significant speed up of the ECSM performance [24-26, 29, 30]. Our study shows that the

parallelism within the ECSM computation process could be explored in several degrees of

parallelization. This parameter corresponds to the number of the combined Micoblaze

processors in a single architecture. Our challenge is to investigate the optimum number of

processors that allows achieving the best trade-off between area and speed. As well as the

workload spreading of the targeted operation over the integrated processors, with keeping the

difference in idle time of each MicroBlaze as low as possible. As a result, we proposed to exploit

the parallelism with two, three, four and six degrees. Thus, our first contribution is the proposed

tasks partitioning of ECSM process on the integrated MicroBlaze processors.

The second contribution is the implementation of MMM algorithm within a scalable HW

accelerator core (AccMMM). The objective behind this fold is the design of dedicated HW

accelerator, where its data path is independent of the input data length. The adopted SW/HW

co-design leads to enhance the overall cryptosystem performance. To adapt the execution of

MMM to the data bus of the integrated MicroBlaze processors, we proposed to use the modified

high radix r(r=232) MMM algorithm [36]. In fact, when long modulus is considered, the original

MMM algorithm requires not only a long carry propagation paths and multipliers but also long

registers to store the operands and the intermediate results. Therefore, we exploit SelectRAM

blocks in the internal architecture of our AccMMM core to store the data instead of long

registers. Moreover, Xilinx’s DSP48E [37] cores are exploited to accelerate the execution of the

required 32×32-bits multiplications. The scalability of AccMMM core is represented by the

17

independency of its hardware architecture with the FPGA circuit as well as the security-level

size.

Efficient implementation of TLS protocol

The growth in the penetration of the Internet of Things (IoT) [38] in our daily life such

as smart homes, smart enterprises, smart hospitals or smart cities, increases the concerns about

the security management for large number of interconnected IoT devices. In fact, IoT paradigm

implies different agents, such as sensors, cameras, actuators or microchips, which collect and

transfer information through the Internet. As it is difficult to regulate the performance of all IoT

devices, the security management becomes much more difficult than for a single device [39].

Due to the low performance hardware resources of a large number of IoT agents [13], the

targeted cryptographic algorithms are not suitable to be implemented on every IoT device [40].

Hence, we propose to design high-performance client/server coordinators on low-cost SoC-

FPGA devices for secure IoT data collection. We focus on securing data transferred from/to IoT

coordinators by means of the TLS protocol, since SSL is considered insecure [41]. Efficient

implementations of SSL/TLS protocols as embedded cryptosystems can be problematic, since

the target devices are usually very limited in terms of power, resources and timing. Several

TLS/SSL embedded cryptosystem implementations have been proposed in the literature [42-

47]. OpenSSL [48, 49] is the most deployed library for TLS/SSL applications through software

implementations of basic cryptographic functions. For only-software TLS/SSL implementations

[47, 50], servers can be overloaded with heavy cryptographic operations, which results in long

response times. To alleviate this bottleneck, dedicated hardware coprocessors [42-47, 51] have

been proposed, as Network Security Processors (NSP), as a solution to free these severs from

cryptographic operations for flexible management. Nevertheless, although effective efforts have

been made [40] for the acceleration of encryption methods, NSPs can provoke an overhead of

hardware resources utilization [42, 46] to achieve high-performance, due to the required

intensive computations within cryptographic algorithms. This constraint paves the way for a

HW/SW co-design implementation approach to provide a trade-off between security, area and

speed. This approach is based on implementing the computing-intensive cryptosystems in

hardware [52, 53], while the control of TLS/SSL protocols is performed in software using

microprocessors. In this context, FPGA devices are suitable platforms, as they provide

reconfigurability, flexibility and high performance. This is of special interest for the new FPGA

generations; such as Zynq from Xilinx or Stratix 10 SoC from Intel, which are equipped with

18

advanced components in a single chip including ARM microprocessors [54], Advanced

eXtensible Interface (AXI) [55] buses, embedded memory or DSPs, and completely match the

System on Chip paradigm.

In this work, we present a carefully designed SW/HW implementation of the

client/server TLSv1.2 protocol, which is implemented on low-cost FPGAs/SoCs suitable for IoT

applications. The use of modern FPGA-based SoCs enables the achievement of an optimal trade-

off between security, flexibility, area, and speed. The third contribution of this thesis is the

proposed SW/HW partitioning for efficient TLSv1.2 negotiations. Among the supported TLS

cipher-suites, we have selected Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) [5], Elliptic

Curve Digital Signature Algorithm (ECDSA) [6], Advanced Encryption Standard (AES-128),

Secure Keyed-hash message authentication (HMAC) [12] and Secure Hash Algorithm

(SHA256) for our implementation. These algorithms are all combined to generate 384-bit TLS

secret shared keys. Thus, the main idea is to implement ECSM within a scalable hardware

coprocessor accelerator and to integrate it around an ARM microprocessor. Meanwhile, the

control of ECDHE and ECDSA protocols, the execution of AES-128 algorithm, HMAC and

SHA256 functions are ensured by the ARM microprocessor. The internal architecture of ECC

accelerator is based on time-area optimized finite field units and the use of dual-port block

RAMs as registers. In addition, the I/Os of this ECC accelerator are 32-bit wide, which allow an

easier integration with 32-bit microprocessors (e.g., ARM, PowerPC and MicroBlaze) via 32-

bit buses (e.g., AXI and PLB). As results, ECC accelerator provides low area requirements while

maintaining high performance.

Thesis organization

The rest of this thesis is organized as follows:

Chapter 2 summarizes the state-of-the-art related to the modern cryptography. It

investigates about the theoretical background and the most popular security protocols. It

illustrates also the mathematical background of finite fields and ECC.

Chapter 3 starts by presenting the challenges of secure embedded systems. Then,

discussing the selection criteria between the hardware embedded platforms. Finally, the chapter

gives an overview of FPGA internal architecture, the design flow and discusses the FPGA-based

MPSoC solutions.

19

Chapter 4 presents the description of the proposed MicroBlaze-based parallel

architectures for ECSM computation on FPGA circuit. The basic operation of ECC and the

considered algorithmic optimizations for ECSM execution are shown first. Then, the proposed

parallelism analysis within ECSM computation is illustrated. Next, it describes the FPGA

implementation of MMM algorithm and the proposed ECSM embedded systems. Finally, the

experimental results are discussed and compared with some recent works.

Chapter 5 presents the description of the proposed Zynq-based implementation of TLS

negotiations for IoT Client/Server applications. Thus, it begins by presenting TLSv1.2

handshake protocol and the considered ECC cryptosystems. Then, the description of the internal

architecture of our ECC accelerator and the hall embedded system are presented. Finally, the

performance evaluation on a Xilinx Zynq device and comparisons with other works in the

literature are illustrated.

Chapter 6 is devoted for the overall conclusion of this thesis and the possible future

research directions.

20

CHAPTER 1

CRYPTOGRAPHY FOR EMBEDDED SYSTEMS

1.1 Introduction

Cryptography [1, 2] is the science of mathematics used to secure information

transmission by encrypting data. Encryption of data is to transform a plaintext to an unreadable

form that can be transmitted over an insecure channel. Decryption of data is transforming back

the resulting ciphertext to intelligible form. Data encryption and decryption processes always

include a key which is only known by the communicating parties. Thus, only the persons who

have the key could decrypt the message. However, cryptanalysis is the art of revealing messages

hidden by means of cryptography. It means that incorrect application of cryptography can result

in disclosure of information to third-party users. In fact, cryptography ensures not only the

confidentiality of information but also it provides other services such as authentication, integrity

and non-repudiation. Authentication allows the recipient to confirm the sender’s identity.

Integrity ensures that the message was not modified during the transmission. Non-repudiation

prevents the sender to deny not sending the message.

Cryptography consists of two main categories, namely, symmetric systems and Public

Key Crypto-systems (PKC). Each system has its strengths and weaknesses. The main advantage

of PKC systems is that they do not require any secret key exchange between the users at the

contrary of private-key cryptography that requires the secret key to be transmitted from the

sender to the receiver, either manually or through some communication channel. PKC also offers

techniques for digital signature which provide authentication and non-repudiation services.

However, symmetric systems are more efficient and faster encryption than PKC since public-

key algorithms involve complex mathematics and are relatively slower. Therefore, we focus in

the chapter on PKC to understand their complexity.

This chapter presents the state of the art of the presented work in this thesis. First, basic

concepts of modern cryptography are introduced. Then, the background and mathematical tools

of Elliptic Curve cryptosystems as PKC are reported to understand the underlying of the thesis

research field. Finally, design methodologies and implementation strategies for efficient ECC

cryptosystem designs on FPGA circuits are discussed.

21

1.2 Symmetric cryptography

Symmetric or private-key cryptosystem [2] is a class of algorithms that use a single secret

key (𝑘) for encryption and decryption functions as it is shown in Figure 1.1.

Encrypt Decrypt

PlainText

(M)

CipherText

(C)

PlainText

(M)

Secret key (k) Secret key (k)

Third-party

User

Unsecure channel

Figure 1. 1 Private-key Cryptosystem

This type of systems is used to provide confidentiality. It could be defined by the tuple

(𝑀,𝐶, 𝐾, 𝐸𝑘, 𝐷𝑘), where:

- M represents the finite set of possible plaintexts.

- C represents the finite set of possible ciphertexts.

- K represents the finite set of possible keys.

- For each 𝑘 ∈ 𝐾 there is an encryption rule 𝐸𝑘: M → C and a corresponding

decryption rule 𝐷𝑘: C → M, where 𝐸𝑘 and 𝐷𝑘 are functions such that 𝐷𝑘(𝐸𝑘(𝑚)) =

𝑚/𝑚 ∈ P.

Symmetric cryptosystems are categorized into stream ciphers and block ciphers

algorithms based on how data is manipulated. Stream cipher algorithms handle serially with

very small chunks of input data, typically a byte, and produce the corresponding small chunks

of output data. While block cipher algorithms operate on fixed-length blocks of input data and

produce the corresponding output blocks. Practically, most block ciphers have a block length of

128 bits like Advanced Encryption Standard (AES) [9], or 64 bits like Data Encryption Standard

(DES) and Triple DES (3DES) algorithms [8]. In the literature, AES is considered as the most

popular and secure symmetric system used currently.

M

22

All Private-key Encryption/Decryption algorithms are characterized by its high-

performance implementation as embedded cryptosystems due to a relative mathematic

simplicity. However, this kind of systems suffers from key distribution and key management

problems. The first problem is due to use of the same secret key that has to be securely shared

among all the communicant parties. It means that there has to be an exchange of key information

over secure channels for the first time. The second problem reveals because a communication in

a group of n parties would require 𝑛(𝑛 − 1)/2 keys.

1.3 Public-Key Cryptography

Asymmetric or Public-Key Cryptosystem (PKC) [3, 5, 6] is a class of algorithms in

which encryption and decryption are performed using two different keys (𝑘𝑒 , 𝑘𝑑) as it is shown

in Figure 1.2. The encryption key (𝑘𝑒) is distributed in public while the decryption key (𝑘𝑑) is

kept private and secret.

Encrypt Decrypt

PlainText

(M)

CipherText

(C)

PlainText

(M)

ke1 key kd1 key

Third-party

User

Unsecure channel

(ke0 key, kd0 key) (ke1 key, kd1 key)

Figure 1. 2 Asymmetric Encryption/Decryption global scheme

This type of systems is introduced initially in 1970 by Whitfield Diffie and Martin

Hellman in order to solve the key distribution problem of symmetric-key cryptography. Diffie-

Hellman Key Exchange (DHKE) algorithm was the first PKC implementation [1]. It is mostly

used to establish a secure communication channel for secret key exchange. They suggested

generating public key 𝐾𝑒 and private key 𝐾𝑑 using hard computationally one-way mathematical

problem like modular exponentiation. In such way, it is easy to derive 𝐾𝑒 from 𝐾𝑑 but it would

be infeasible to find 𝐾𝑑 from 𝐾𝑒. The private key is used to do symmetric encryption between

the two systems.

23

In 1978, Ronald L. Rivest, Adi Shamir, and Leonard Adleman inspired from DHKE and

published a new PKC in their paper “A method for obtaining digital signatures and public-key

cryptosystems” [7]. RSA is the name of their proposal which is composed from the first letter

of the inventor’s names. Since that time, RSA has been widely used in many applications and

communication networks. It can be used for encryption as well as authentication. In RSA, the

key pair is generated according to the security parameter which refers to the bit length of the

keys. RSA-512, RSA-1024 and RSA-2048 refer to RSA algorithm with 512-bit, 1028-bit and

2048-bit key sizes, respectively.

After that, many interesting PKC protocols and schemes are constructed not only for

secret key exchange and encryption/decryption but also for digital signature. In digital world,

the property of proving the identity of the message sender is very important to withstand some

attacks. The general idea is that the sender generates a digital signature for the message using

his own private key. The receiver could validate the signature using the sender’s public key. In

this way, the authenticity of the message could be checked. RSA and Digital Signature

Algorithm (DSA) are widely used for a digital signature generation [7]. Figure 1.3 demonstrates

the general idea of the digital signature process.

Encrypt

PlainText

(M)

ke1 key

(ke0 key, kd0 key)

Hash

CipherText (C)

Encrypt

kd0 key

Decrypt

PlainText

(M)

kd1 key

(ke1 key, kd1 key)

S
ig

n
a

tu
re

CipherText

(C)

S
ig

n
a

tu
re

Decrypt

ke0 key
D

ig
es

t
Digest

Hash
Digest

Figure 1. 3 Digital Signature process

In practice, the signature is not applied on the message itself but rather on its digest using

hash functions. These functions generate a unique digest for a given message, which is short and

a fixed-length string. In this way, the integrity, as well as the authenticity of the message could

be validated. The hash functions are one-way functions that it is almost impossible to retrieve

the input message from the output digest. SHA-1, SHA-2, and SHA-3 are popular algorithms of

hash functions.

Although PKC provides high-security based on the hardness of DLP which is considered

impossible to solve, several attacks have been proposed for breaking PKC [15]. These attacks

24

target the mathematical system, weaknesses in PKC parameters and the hardware

implementation platforms. In 1991, the RSA factoring challenge was launched by RSA

Laboratories to motivate researches for successful factorizations of products of two primes [56].

The challenge was solved in 2005 for 640-bit length. Then, RSA-768 was factored in using the

General NFS algorithm. Nowadays, the smallest key length recommended for RSA-keys is 1024

bits. The exponential increase of RSA key-sizes could be a bottleneck for embedded systems

due to the limit of resources and strict power requirements.

In the mid-1980s, Miller and Koblitz found the ability to use Elliptic Curves in public-

key Cryptography (ECC) by building a cryptosystem based on the Elliptic Curve Discrete

Logarithm Problem (ECDLP) [3]. ECC provides better security with a smaller key size

compared to RSA cryptosystem. This property changed ECC to a preferable choice for

embedded cryptosystems. Table 1.1 presents a comparative analysis between RSA and ECC.

Table 1. 1 Recommended key-sizes for RSA and ECC [3]

Key sizes (bits)

RSA ECC

1024 160 – 223

2048 224 – 255

3072 256 – 383

7680 384 – 511

15360 521

Through this comparison, we observe that the minimum key size required for a secured

cryptosystem of ECC is 160 bits. This latter has equivalent security level with 1024-bit RSA.

Until today, the maximum ECC bit-length is 521 which is equivalent to 15360 RSA key-size.

The advantage of ECC over RSA is obvious since with a shorter length for key it can provide

the same level of security. When it comes to embedded systems, the use of small key-size

presents high-performances with low-area consumption for PKC systems.

1.4 Elliptic Curve Cryptography

1.4.1 Elliptic Curve over a prime finite field

Finite field is the fundamental of cryptography, coding theory, and many other areas of

mathematics and computer science [16]. Finite field also called a Galois field is a field that has

a finite number of elements. The number of elements in the field is called the order of the field.

25

The order of a finite field is always the power of a prime p i.e. q = pm, where m is any positive

integer and q is the order of field. The prime p is called the characteristic of a field. If the order

q of the field is equal to p then the field is called a prime field. However, if it is power of two (q

= 2m) then the field is named binary field.

In ECC, most curves are defined over prime fields (Fp) [4] and binary fields (GF(2m))

[57]. The prime fields are more preferable for software implementations while binary fields are

suitable for hardware implementations [53]. Hence, elliptic curves defined over prime field Fp

are considered in this work.

Let Ep an EC defined over prime field Fp, where p is a large prime integer of w-bit.

Ep(Fp) is a set of points on Ep represented by the affine coordinates (x,y), solving the simplified

Weierstrass equation shown by expression (1.1).

𝐸𝑝(𝐹𝑝) = {(𝑥, 𝑦) ∶ 𝑦2 = 𝑥3 + 𝑎 𝑥 + 𝑏/ (𝑎, 𝑏) ∈ 𝐹𝑝 } 𝑈 O (1.1)

Where a, b, x and y ∈ [0, 𝑝 − 1] and 4𝑎3 + 27𝑏2 ≠ 0. O is the infinity point on Ep. The prime

field Fp consists of all integers {0, 1, 2,....., p-1}, where arithmetic operations are performed on

integers modulo p.

1.4.2 Elliptic Curve Scalar Multiplication

ECSM is the fundamental and the main operation of most ECC schemes. Is also known

as point multiplication is given as follows:

𝑄 = 𝑔 × 𝑃 (1.2)

ECSM is defined as the multiplication of a scalar g by a point P defined on E. The scalar

g is called the discrete logarithm of the point Q to the base P, denoted 𝑔 = 𝑙𝑜𝑔𝑃𝑄. It is almost

impossible to find the scalar g from the points P and Q. ECSM is computed by a series of EC

Point Addition (ECPA) and EC Point Doubling (ECPD) operations as is shown by expression

1.3. ECPA is the addition of two distinct points 𝑃 and 𝑄 represented by the affine coordinates

(𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively. While ECPD is the addition of a point P with itself.

𝑔 × 𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃 (g times ECPA) (1.3)

26

The geometric interpretations of the ECPA operation and ECPD are shown in Figure

(1.4.a) and (1.4.b), respectively. For ECPA, First, draw a line through P and Q; this line intersects

the elliptic curve at a third point R’. Then, the reflection of this point about the x-axis is the

resulting point 𝑅(𝑥3, 𝑦3) of ECPA. For ECPD, first, draw the tangent line to the elliptic curve

at P. This line intersects the elliptic curve at a second point. Then R is the reflection of this point

about the x-axis, which is the resulting point of ECPD.

Figure 1. 4 Points Addition of Point Doubling [58]

The mathematical interpretation of ECPA and ECPD resulting point coordinates are

given by the expressions 1.4 and 1.5, respectively.

𝑅 = 𝑃 + 𝑄 = {

𝑥3 = 𝜆
2 − (𝑥1 + 𝑥2)

𝑦3 = 𝜆 × (𝑥1−𝑏 − 𝑥1−𝑏(𝑖)) − 𝑦1−𝑏(𝑖)
𝜆 = (𝑦2 − 𝑦2) /(𝑥2 − 𝑥1)

 (1.4)

𝑅 = 2 × 𝑃 = {

𝑥3 = 𝜆
2 − 2𝑥1

𝑦3 = 𝜆 × (𝑥1 − 𝑥3) − 𝑦1
𝜆 = (3𝑥1

2 + 𝑎)/2𝑦1

 (1.5)

27

1.4.3 Elliptic Curve Cryptosystems

The design of secure ECC schemes consists of three parts, namely, the curve parameters

domain, the key generation, and the EC-based cryptographic protocols. In the following, each

part is developed.

1.4.3.1 Elliptic Curve domain parameter

The domain parameter 𝐷 = (𝑝, 𝐿, 𝑎, 𝑏, 𝑃, 𝑛, ℎ) describes an elliptic curve defined over

prime finite field Fp [3]. It is composed by:

- The finite field order p.

- The security level L which represents the bit-length of Fp elements.

- Two coefficients 𝑎, 𝑏 ∈ 𝐹𝑝 that define the equation of the elliptic curve E over Fp.

- A point generator P defied with two field coordinates 𝑥𝑃 and 𝑦𝑃 in Fp.

- The order n of the curve E.

- The cofactor ℎ = #𝐸(𝐹𝑞)/𝑛.

The security of ECC schemes is based on the hardness of ECDLP [18]. In fact, there is

no mathematical proof that the ECDLP is unbreakable. The most naïve algorithm for solving

the ECDLP is the exhaustive search whereby one computes the sequence of ECPA such 2P, 3P,

4P,... until Q is founded. However, several mathematical attacks are proposed in the literature

such as: Pohlig-Hellman, Pollard’s rho, isomorphism algorithms, and prime-field-anomalous

curves. These are the best general-purpose attacks known on the ECDLP [3]. The domain

parameter D should be carefully chosen for maximum ECDLP resistance for all knows attacks

such:

- Select the scalar g sufficiently large g ≥ 280.

- Choose curve so that its order is sufficiently large (n > 2160) or divisible by a large

prime number.

- It is recommended that the cofactor ℎ ∈ {1,2,3,4}.

In the literature, secure domain parameters generation and verification algorithms are

proposed so that all ECDLP security constraints are considered. On the other hand, several

standard curve domains over prime and binary fields are recommended with different key-length

28

by many accredited standards bodies as National Institute for Standards and Technology (NIST)

[59]. For prime field Fp, the recommended lengths of p are in the set {112, 128, 160, 192, 224,

256, 384, 521}.

1.4.3.2 Elliptic Curve Key generation

The EC-based key generation algorithm results in the (d,Q) key pair, where the private

key d is an integer of L-bits and the public key Q is a point on E. The key pair (d,Q) is calculated

as follows [3]:

1. Choose an integer d from [1, n − 1].

2. Calculate Q = d  G, where P is the generator point defined on E.

In the literature, several schemes are reported to apply the ECs for information security.

They are often used for key agreement, encryption/decryption and digital signature. In the

following, we present the ECDHE and ECDSA algorithms.

1.4.3.3 Elliptic Curve Diffie Hellman

ECDH stands for EC-based Diffie-Hellman key agreement protocol [5]. It ensures the

establishment of a secret shared key between two parties A and B through an insecure channel.

This key could be used by symmetric cryptosystem for data encryption. In the literature, two

versions of ECDH are reported, namely, ECDH static and ECDH Ephemeral (ECDHE) [5]. The

difference is that the first version always uses the same key pair, while the second generates new

key pair for each connection. The shared secret key is obtained by applying the following steps:

1. A chooses integer n1 from [1, n − 1] and computes Q1 = n1  G.

2. In parallel, B chooses integer n2 from [1, n − 1] and computes Q2 = n2  G.

3. A and B exchange Q1 and Q2. Then compute Q = n1  Q2 and Q = n2  Q1,

respectively.

4. A and B could extract the shared secret key from the coordinates of the shared point

Q.

We note that ECDHE requires the execution of four ECSMs. However, the computation

of Q1 and Q2 are performed in parallel, as well as the computation of Q = n1  Q2 and Q = n2

 Q1.

29

1.4.3.4 Elliptic Curve Digital Signature Algorithm

ECDSA is an EC-based DSA algorithm proposed in 1992 by Scott Vanstone et al [6]. It

is used for data integrity to avoid message tampering during transfer between server and client

by signing the message. This protocol consists of two algorithms, namely signature generation

and signature verification. In our work, the signature generation procedure is performed by the

server to sign a message using his private key. Meanwhile, the verification is executed by the

client to check if the received message is appropriate to the server or a third party using the

public key of the client. Pseudocode descriptions of the two algorithms are presented in

Algorithm 1.1 and Algorithm 1.2, respectively, while their detailed justification and description

can be found in [60] . The resulting signature of the message m is represented by (r, s).

Algorithm 1. 1 Elliptic Curve Digital Signature Generation [3]

Inputs: private key d, message m, 𝐷 = (𝑞, 𝐿, 𝑎, 𝑏, 𝑃, 𝑛, ℎ)

Outputs: Signature (r, s)

1. Generate random integer k ∈ [1, n − 1]

2. Compute e = Hash(m)

3. Compute R = k  G

4. Set r = xR mod n. If r = 0 return to step1

5. Compute s = (k−1  (e + d  r)) mod n

6. The signature for m is then (r, s)

The complexity of algorithm 1.1 is linked to the execution of: secure random generation

of k, secure hash function for e computation and single ECSM for computing the coordinates of

the point R, Modular Inversion, two Modular Multiplications and Modular Addition to obtain s.

Algorithm 1. 2 Elliptic Curve Digital Signature Verification [3]

Inputs: message m, signature (r, s), 𝐷 = (𝑞, 𝐿, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), public key Q

Outputs: accept or reject signature

1. verify r, s ∈ [1, n − 1]

2. compute e = Hash(m)

3. compute v = s−1 mod n

4. compute u1 = e  v mod n

5. compute u2 = r  v mod n

6. compute X = u1  G + u2  Q

7. if X = O → reject signature

8. else if Xx mod n = r → accept signature

30

According to Algorithm 1.2, the verification of the signature requires the execution of

the secure hash function, the computation of a MI and two MMs for v, u1 and u2 calculations.

To compute the coordinates of the point X, two ECSMs and a single ECPA are required.

1.5 Challenges of embedded cryptography

Designing efficient cryptographic implementations as embedded cryptosystems requires

maintaining the following objectives [15]:

- High-Speed: An implementation should be fast enough to ensure that executing

cryptographic algorithms does not slow down all the system significantly. Achieving

high-speed is often a difficult task due to the intensive computations. Thus, algorithmic

and architectural optimizations have attained a considerable amount of interest.

- Low-Resources: Many environments set tight constraints to resources available for the

implementations of cryptographic algorithms. If resources are generally low, only a

small portion of those few resources is devoted to cryptography which complicates

implementing high-security cryptographic algorithms. The resources may include power

consumption and available logics and memories, etc. The importance of this requirement

is increasing because of the emerging use of cryptographic algorithms in various low-

cost applications, such as smart cards or mobile hand-held devices.

- Security: The security analysis shows that the embedded cryptosystems can leak

sensitive information during the execution of computation, no matter how cryptographic

schemes are mathematically hard and proven secure. Hence, efficient implementation of

embedded cryptosystems needs the study of the vulnerability from various attacks on

hardware platforms such as side-channel attacks. These attacks are based on the

interpretation of behavioral observation of the physical platforms such as power

consumption and electromagnetic emanation.

- Flexibility: The flexibility of the embedded system is required, due to the rapid changes

in cryptographic algorithms and standards. This constraint provides the possibility of an

easier system functionality modification and updating, while leaving the hardware

architecture fixed.

31

- Cost: The implementation of cryptographic algorithms for embedded systems should not

affecting on the total cost of a product significantly as well as the performance of the

application. Hence, the compromise between high-performance and low-cost embedded

cryptosystem sets strict constraints for designers to provide efficient low-price consumer

products.

1.6 Efficient embedded ECC implementation

As ECC is a multi-layer system, its overall performance could be significantly improved

by optimization at different abstraction levels. The literature review shows that the design

methodology for efficient implementation of ECC consists of two main procedural steps [19].

The first step in the process consists of selecting the most suitable ECC system parameters and

algorithms. The second step represents the adoption of the best implementation approach that

matches with the considered parameters and algorithms to respond to the aims of the targeted

system.

1.6.1 ECC system parameters and algorithms

ESCM is the most time-consuming operation in ECC protocols. Thus, the performance

enhancement of this operation will have a significant impact on the overall performance of ECC

system. The optimization techniques for efficient ECSM execution are based on the choice of

ECSM algorithms, coordinate systems, finite field arithmetic operation methods and parallelism

exploration.

The scalar multiplication is performed by repeated ECPA and ECPD operations. The

fundamental optimization technique for the performance improvement of ECSM execution is

by reducing the number of iterations of ECPA and ECPD. Hence, various algorithms for point

multiplication (g× 𝑃) computation are proposed in the literature [61]. The most popular point

multiplication methods are Double-and-Add binary algorithm, Non-Adjacent Form (NAF)

algorithm, Windowing methods and Montgomery Power Ladder binary algorithm. The Double-

and-Add binary method with its two variants algorithms; left-to-right and right-to-left; is the

simplest for ECSM computation. It represents the scalar g in binary format and always performs

ECPD operation, whereas the ECPA operation is executed only for non-zero scalar bit value gi.

The security analysis shows that the implementation of this method on embedded systems

suffers from various side channel attacks in the context where the scalar 𝑔 is secret [25]. The

value of the bits of the scalar g could be easily revealed by tracing the timing and power

32

consumption of the device. Montgomery Power Ladder algorithm (MPL) is reported in the

literature as one of the binary methods that ensure the resistance against these kinds of attacks

[28, 29] by performing ECPD and ECPA in parallel independently of the current scalar bit value

𝑔i. This algorithm is considered in our proposed implementations.

While designing high-speed ECC architecture, one of the main concerns is the choice of

appropriate point coordinates representation system. ECPA and ECPD could be performed using

affine and projective systems. In affine system, both ECPA and ECPD operations involve

modular inversion which is the most expensive operation in terms of execution time and

hardware resource requirements [24]. Usually, modular inversion is performed by hardware

dedicated inverters based on the extended Euclidean algorithm and Fermat’s little theorem [62].

However, this approach could be an inefficient choice for low area implementations. The best

solution is to free ECPA and ECPD operations from modular inversion at the cost of an

increasing number of modular multiplications by using the projective system [63, 64]. In fact,

most efficient ECC designs promote the use of a projective system since the complexity of a

high-speed modular inverter is much higher than a fast multiplier.

Although powerful computational resources are available on FPGA, the implementation

of the critical finite field Modular Multiplication operation required in projective system still

costly and complex for hardware implementation. The complexity of this operation comes from

the need to perform reduction over large prime modulo [19]. In fact, an optimized modular

multiplier leads to improve the overall performance of ECC. Thus, different reduction

techniques are reported. One of these techniques is by choosing the order p of the curve of a

special structure called pseudo-Mersenne primes [27]. This kind of structure could provide

higher speed reduction. Therefore, NIST recommended five specialized curves (p192, p224, p256,

p384, p512) for different levels of security [59] based on pseudo-Mersenne primes. Consequently,

a large number of high-performance hardware modular multipliers for ECC over NIST curves

are proposed in the literature [27, 29, 30]. The major lack in this approach is that these

implementations are not able to provide the flexibility for performing ECC over general primes.

However, the high-performance reduction over general primes could be achieved by introducing

low complexity modular multiplication algorithms. Barrett and Montgomery [65] modular

reductions are the most methods used for high performance modular multipliers. The two

methods are simple and suitable for hardware implementations. Montgomery Modular

Multiplication (MMM) [32, 66], which is considered in this thesis, improves the reduction over

33

general prime modulo by replacing the required division operation with cheaper shift and

addition operations.

To obtain maximum performance, parallelization is an optimization technique used to

speed up the ECSM execution by reducing the critical path delay. This technique requires

investigation about operations independence within ECSM computations for parallel execution.

The parallelization possibilities for the computation of ECSM depends on the adopted ECC

parameters and algorithms. It could be exploited in ECSM algorithm, between the required finite

field arithmetic operations and within modular multiplication algorithms. This approach requires

the integration of multiple processing elements such as embedded processors and hardware

accelerators. Thus, the second challenge is to investigate also about the optimum number of

processing elements that allows improving the execution time and throughput of the ECC

system, while keeping an eye on the resource requirements.

The adopted ECC system parameters and algorithms will have an impact on the selection

of the implementation approach design. In the following, some of the related works in the field

are reported to understand the efficient ECC design issues, the adopted optimization techniques

and the metrics used to evaluate the efficiency of ECC designed systems.

1.6.2 ECC implementation approaches

FPGAs have been a popular hardware embedded platform for efficient implementation

of cryptographic systems. Various high-performance ECC systems on FPGA circuits are

proposed in the literature [19-30]. The general architecture of an ECC processor is governed by

the considered ECC parameters and algorithms as well as by the targeted circuit and the

objectives of the targeted application. These objectives include security, flexibility, computation

time, resource requirements, power consumption, throughput, etc. Depending on the considered

goals, ECC designs could be classified into three main categories: Software ECC cryptosystem,

Hardware ECC cryptosystem and Hardware/Software co-design ECC cryptosystem. Each

approach is proposed for a particular use, having its advantages and limitations.

The implementation of ECC computations completely in software using an embedded

processor offers the lowest cost and a high degree of flexibility [21, 23]. This approach is suitable

for fast prototyping because it is easy to adapt to the changes in ECC parameters and algorithms.

However, it provides usually low computation time and high-power consumption solutions since

embedded processors are not specialized to perform finite field arithmetic operations over large

prime numbers. To execute operations on operands of large sizes, the processor will have to

34

decompose the operands until they are sufficiently small so that the processor’s ALU can operate

on them. This technique increases the number of clock cycles required to process the data, which

thus increases the overall computation time.

A high-speed constraint is extremely required for real-time embedded information

security systems that need fast responsiveness and processing. The implementation of the entire

ECC scheme on dedicated hardware cores is a technique that provides extraordinary high-speed

performance and low power consumption results [24-30]. These performances are achieved by

increasing significantly the hardware resources which is not suitable for resource-constrained

small FPGA devices. Moreover, these hardware processors lack the flexibility of software.

Therefore, the design of area-time optimized flexible ECC hardware crypto processors is a

challenging research field.

FPGA offers the possibility to implement both embedded processors and hardware

accelerator blocks in the same chip in order to balance between the speed performance and the

flexibility. Hardware/Software ECC implementation approach [24-30] benefits from this option

by integrating dedicated hardware acceleration blocks as coprocessors around embedded

processors such that the hardware module is controlled by the host processor. The hardware

accelerators are used to increase the performance of a specific computations in ECC system. The

main idea is to free the embedded processor from the intensive computations in ECC. In such a

way, the crypto-design can achieve high performance but with an extra area requirement due to

the need for additional hardware resources. The challenge of this approach is to investigate the

best partitioning between the software and the hardware to provide the best performance trade-

off in terms of timing computation and area consumption.

1.6.3 Related works

This section reviews the literature of available efficient ECC cryptosystems. It outlines

some related works in the field to present the state-of-the art of design methodology and the

techniques for efficient ECSM implementation.

K.C.C. Loi and S. Ko [13] present the implementation of a high-performance scalable

elliptic curve cryptography processor (ECP) that supports all five NIST prime field curves. The

block diagram of the proposed ECP consists of two parallel prime field arithmetic blocks. One

computes integer multiplication based on Comba algorithm, and the other computes

addition/subtraction/reduction. The point multiplication was performed using the double-and-

add algorithm and projective system. The proposed ECP is also able to implement the prime

35

field inversion algorithm efficiently using the same arithmetic units. The main contribution of

this work was the novel hardware architecture of the finite field arithmetic units that take

advantage of the DSP48E available on Xilinx FPGAs to improve the efficiency of the ECSM

operation. The proposed design has been implemented on Xilinx Virtex-5 and Virtex-4 FPGA

circuits. The performance evaluation of the proposed ECP and the comparison with some works

was done using the efficiency metric (1/ latency × number of slices). Thus, the authors believe

that their processor is the fastest and smallest ECP that supports all prime fields, being able to

compute ECSM between 1,709 and 28,04 ms using only 7 DSP and 1980 slices on a Virtex5

XC5LX101T FPGA. It completes single ECSM computation between 3,361 and 38,73 ms while

only 8 DSP and 7020 slices on a Virtex4 XC4VFX100 FPGA. However, their ECP is not generic

but specific to only NIST curves.

B. Baldwin et al. [26] reports a survey of various ECSM algorithms based on efficient

co-Z arithmetic for general prime curves. These algorithms were implemented in HW, SW and

SW/HW architectures for three field sizes, namely, 192, 256 and 521 bits. The main aim of this

work was the performance evaluation and comparison of the studied algorithms on FPGA circuit

in terms of security, speed, memory, power and energy consumption. The point multiplication

was performed using Montgomery ladder and Joye’s double-add algorithms, while, point

addition and point doubling were performed by various projective systems. First, all the

considered algorithms were implemented completely in software using Xilinx MicroBlaze

softcore embedded processor. This approach leads to a very slow computation time for ECSM

since that Microblaze is not optimized to perform large finite field multiplication. For 521-bit

case, ECSM computation times are as long as 22 seconds. Therefore, the authors propose to

implement a dedicated Montgomery multiplier around Microblaze through a Fast Simplex Link

(FSL) to increase performance on any ECC algorithm that uses 192-bit, 256-bit or 521-bit

Montgomery multiplications. The multiplier runs at 100 MHz in the case of the 192-bit

implementation and 75 MHz for both the 256-bit and 521-bit implementations. The authors

concluded that the hardware multiplier reduces the computation time by on average 89–94 %

for the algorithms by using 334-904 extra area slices required for the multipliers. This type of

design is suitable when flexibility and low area are more promoted than high-speed performance.

To obtain high-speed, the authors propose to implement ECSM algorithms in a dedicated

hardware croptoprocessor. The proposed ECP consists of control circuitry, BlockRAM for

storage of results and some parallel finite field arithmetic units, namely field multipliers, adders

and subtractors. The adder/subtracter unit is generated using single clock carry propagate adders.

36

It performs an addition or subtraction in four clock cycles, comprising two clocks for the

additions and two clocks for move operations from and to the RAM. The modular multiplier

performs modular multiplication based on Montgomery multiplication algorithm. It is designed

using carry propagate adders. The major contribution of the proposed ECP is the possibility to

perform ECSM for any particular algorithm, with only minor changes in the control unit.

Moreover, it can be configured to run one to four parallel multipliers depending on the operation

dependency of the considered algorithms. Therefore, a list-based scheduling (LBS) technique

was adopted to maintain the list of operations whose predecessors have already been scheduled.

In this way, they can optimize the area-speed tradeoff and pick the best fit amount for each

particular algorithm. The evaluation of the proposed ECP shows the speed difference is roughly

a factor of ×450 compared to the software approach but with scarifying the area requirement

constraint. The overall performance metrics used to differentiate the studied algorithms are:

area-time (AT) and area-energy (AR) products. AT product was calculated to get a

representation of any speed decrease against an increase in size, while, AR product was

calculated to give a representation of the power increase against the increase in area

requirements. Finally, the authors claim that each algorithm performs differently depending on

how the targeted platform handles the modular multiplication and the parallelism scheduling.

They concluded that no one of the studied algorithm performs best on every platform. To achieve

the best performance from each algorithm, the platform must be optimized to suit that algorithm.

H.Marzouqi et al. [27, 30] propose a programmable and configurable application-

specific-instruction-set ECC processor (ASIP) that supports the recommended NIST curve P256.

The proposed ASIP performs ECSM based on the left-to-right binary method in affine

coordinates system. Thus, the processor consists of three Redundant Signed Digits (RSD)-based

high-throughput arithmetic units: modular adder/subtracter, modular multiplier and modular

inverter. RSD representation is a carry free arithmetic where integers are represented by the

difference of two other integers. The divider is designed through a new efficient binary GCD

architecture based on simple logical operations using the extended Euclidean algorithm. The

multiplier is implemented based on pipelining Karatsuba–Ofman architecture. Karatsuba and

Ofman method allows reducing the complexity of regular multiplication by dividing the

operands into smaller and equal segments. The proposed processor was implemented in Xilinx

Virtex-5 XC5VLX110T FPGA. It operates at 160 MHZ to perform a single point multiplication

for P256 in 2.26 ms. Their processor requires 34612 LUTs. The authors believe that their

processor is the first FPGA implementation of RSD-based ECC processor and that the proposed

37

divider is the fastest to be performed on FPGA device. They claim that the exportability feature

of the processor in different FPGA devices from different vendors, is ensured since none of the

macros or embedded blocks within the FPGA fabric is utilized in the internal architecture.

1.7 Conclusion

In this chapter, the basic cryptographic systems are introduced first. The implementation

of PKC as an embedded cryptosystem is more complex than symmetric systems. Therefore, we

focused next on the efficient implementation of PKC schemes, especially ECC. Thus, we

presented the mathematical tools required to understand the underlying ECC systems. It has

been shown that the performance of ECC depends on the performance of the point

multiplication, which is the fundamental operation is most ECC schemes. The performance of

ECSM as embedded cryptosystem can be evaluated by flexibility, area, speed and power.

Depending on the considered performance, various optimization techniques and implementation

approaches are developed in the literature. To demonstrate the design methodology efficient

ECC implementation, some related works are presented in this chapter. The first step in the

design methodology process is the choice of the most suitable parameters and algorithms at

different levels in ECSM hierarchy. This latter consists of three main layers that are ECSM

algorithms, point coordinates system representation and finite field arithmetic operations. The

adopted algorithms determine the implementation approach and the general architecture of the

targeted ECC design. The literature review presents three implementation approaches. For low-

cost and fast prototyping application, the implementation of ECSM completely in software using

an embedded general-purpose processor is the preferable solution. However, it provides low

computation time and high-power consumption. For some high-timing constrained applications,

the implementation of ECSM in ECC hardware processor provides high-speed designs. In this

case, the speed is achieved by using large area. FPGA offers the possibility to implement both

embedded processors and hardware accelerator blocks in the same chip to balance between the

speed performance and the flexibility. This option changed FPGA to most common suitable

platform for embedded cryptography. The main aim of this thesis is to design an efficient ECC

architecture that provides the best trade-off between software flexibility and hardware speed

with keeping an eye on the area consumption. Thus, we decided to go forward for FPGA

platform. In the next chapter, an overview of FPGA internal architecture, the design flow cycle

and FPGA-based MPSoC solutions, are discussed.

38

CHAPTER 2
FPGA PLATFORMS FOR EMBEDDED SYSTEMS

2.1 Introduction

An embedded system is defined as a computing platform that performs a limited set of

functions using a combination of hardware and software under real-time constraints [67].

Development of embedded systems and their employment in large applications has transformed

the computing paradigm from high-performance desktop machines to small embedded devices.

These devices are characterized by the limited resources in terms of processing capability,

energy supply and limited area and memory. As mentioned in the previous chapter, PKC

protocols are computationally intensive, and deploying them on resource-constrained embedded

platforms without degrading their performance is a challenging task. In the last decades, efficient

PKC implementations over reconfigurable FPGA devices have been explored to provide the

flexibility of general-purpose processors and the high-performance of dedicated hardware.

In this chapter, we demonstrate the advantages of FPGA circuits and their suitability for

cryptography as an embedded cryptosystem. Thus, we present first the main objectives of the

most efficient cryptographic implementations as embedded cryptosystems. Then, a performance

comparison between the most common hardware platforms for cryptography are illustrated.

Next, the structure of FPGAs and FPGA-based design flow cycle are presented. Finally, the

difficulties and the techniques of writing parallel programs on FPGA circuit are reported. This

last section is required since we are targeting MPSoC approach on the first contribution of this

thesis.

2.2 Embedded systems platforms

Several interesting alternatives for embedded cryptosystems such as General Purpose

Processors (GPP), Application-Specific Integrated Circuits (ASIC) and Field Programmable

Gate Array (FPGA) circuits are presented in the literature [15]. The selection between these

hardware platforms depends on the targeted applications as well as the considered performances.

39

GPP is the best solution when high flexibility is promoted. It executes a program that

contains a specific set of instructions in serial mode. This program is developed in software

using high-level language such as C or assembly. This kind of implementations is referred as

the Software implementation approach (SW). This approach offers the portability of the

application on large GPP devices since the same code is usually easy to use in different

processors. The performance of a program depends on programmer's skill, the instruction set

provided by the processor, and the efficiency of the processor. Traditionally, the implementation

of public-key algorithms presents low-performance and high-power consumption since that GPP

are not designed to perform large finite field arithmetic operations.

As the name implies, ASICs are integrated circuits designed for specific applications.

The logic function of ASICs is specified based on the Hardware implementation approach (HW)

using hardware description languages such as Verilog or VHDL. Its digital circuitry is made up

of permanently connected gates and flip-flops in silicon. Thus, the resulted design c-an be highly

optimized in terms of speed, area, and power consumption. However, once the application is

taped-out into silicon, it performs the same function all its operating life and could not be

changed to anything else. Moreover, the development of ASIC designs is very expensive and

large time consuming, thus, they are not recommended for designs prototyping when a small

quantity of production is targeted. But in large production, the cost per volume becomes very

less.

With the integration of a panoply of components on a single Programmable System on

Chip (PSoC) such as multi-processor cores and programmable logic devices, FPGAs as suitable

platforms for cryptographic modules, secure network routers, military devices and other systems

requiring high security, software flexibility, hardware speed and re-configurability. FPGAs fill

the gap and combine the advantages of GPP and ASICs by exploring new parallel architectures

based on SW/HW co-design and Multi-Processor System-on-Chip (MPSoC) approaches. In

other words, FPGAs are suitable for cryptography not only for their high level of parallelism

and flexibility but also for the ability to accelerate the computation of any operation using

dedicated embedded hardwired units. FPGA provides significant cost advantages compared to

ASIC by offering the same level of performance in most cases. Another advantage of the FPGA

is its ability to be dynamically reconfigured.

In our work, our main aim is to achieve the best trade-off between flexibility, security,

area consumption and timing execution. Hence, we decided to go forward for FPGA platform.

40

2.3 Field Programmable Gate Array (FPGA) circuits

In 1984, Xilinx introduced the first FPGA, and then Actel popularized the term in 1988

[68]. In fact, FPGA innovation was the elimination of the AND-array that provided the

programmability in the previous programmable Chips such as EPROM-programmed

Programmable Array Logic (PAL) and Complex Programmable Logic Device (CPLD). Instead,

configuration memory cells were distributed around the array to control functionality and wiring.

Since that time, FPGA have progressed through several distinct phases of development

following quantitative effects of Moore’s Law. Figure 2.1 shows the Xilinx’s published scaling

process of the development of FPGA technology in terms of capacity, performance, cost and

energy. FPGAs has grown in capacity by more than a factor of 10000 and in performance by a

factor of 100. Cost and energy per operation have both decreased by more than a factor of 1000.

Figure 2. 1 Xilinx’s published scaling process of the development of FPGA technology in
terms of capacity, performance, cost and energy [68]

With the elimination of the AND-array, FPGA architects had the freedom to build any

logic block and any interconnect pattern. The architecture of the FPGA consists of an array of

programmable logic blocks interconnects with field-programmable switches. The performance

of the FPGA depends on where the logic is placed and how it is routed in the FPGA. The FPGA

vendors concluded that increasing the number of logics was insufficient to compete against

ASIC technology. Therefore, they focused on FPGA efficiency and produced families of lower-

capacity, lower-performance and low-cost FPGAs (Virtex and Spartan from Xilinx, Cyclone

from Altera and EC/ECP from Lattice). Furthermore, they produced soft logic libraries (IP) for

important functions such as softcore microprocessors (Xilinx MicroBlaze and Altera Nios),

41

memory controllers and communications protocol stacks. Moreover, they proposed to add

dedicated logic blocks within the FPGAs like memories, DSP multipliers, flexible I/O and

source-synchronous transceivers. As result, FPGA was not simply a collection of Look-Up-

Tables (LUTs), flip-flops, I/O and programmable routing but it included multipliers, RAM

blocks, multiple hardware microprocessors, interconnect buses (PLB and AXI), clock

management and gigahertz-rate source-synchronous transceivers. To ease the burden of

designing FPGA architectures, tools have been provided also such as Embedded Design Kit

(EDK) and Vivado by Xilinx and Embedded System Design Kit (ESDK) by Altera.

2.3.1 FPGA internal architecture

An FPGA is a type of programmable integrated Chips [69]. Modern FPGA devices

consist of up to two million logic cells that can be configured to implement a variety of

applications. Figure 2.2 illustrates the basic structure of an FPGA. It consists of three major

components, namely, Configurable Logic Blocks (CLB), Programmable switches and Input

Output Block (IOB) pads. CLB is the basic logic element that provides basic computation and

storage elements used in digital systems. Programmable switches a establish connection between

CLBs. physically available IOB ports get data in and out of the FPGA.

Figure 2. 2 Basic structure of FPGA

CLBs are the main logic resources for implementing sequential as well as combinatorial

circuits. Its internal architecture is given in figure 2.3. Each CLB element contains a pair of

slices and it is connected to a switch matrix for access to the general routing matrix. Slice

42

consists of four 6-input Look-Up-Tables (LUTs) which perform logic operations, eight Flip-

Flop (FF) registers to store the result of the LUT, Wide multiplexers and arithmetic carry logic.

The LUT is the basic block of FPGA and is capable of implementing any logic function

of N-Boolean variables. Essentially, this element is a truth table in which different combinations

of the inputs implement different functions to yield output values. The limit on the size of the

truth table is N, where N represents the number of inputs to the LUT.

The flip-flop is the basic storage unit within the FPGA fabric. This element is always

paired with a LUT to assist in logic pipelining and data storage. The basic structure of a flip-

flop includes a data input, clock input, clock enable, reset, and data output. During normal

operation, any value at the data input port is latched and passed to the output on every pulse of

the clock. The purpose of the clock enable pin is to allow the flip-flop to hold a specific value

for more than one clock pulse. New data inputs are only latched and passed to the data output

port when both clock and clock enable are equal to one.

Figure 2. 3 CLB internal architecture [70]

As illustrated by Figure 2.4, FPGA basic architecture is incorporated with dedicated

hardware elements and data storage blocks to increase the computational density and efficiency

of the device. The contemporary FPGA Architecture is composed by: Embedded memories for

distributed data storage, Phase-locked loops (PLLs) for driving the FPGA fabric at different

clock rates, High-speed serial transceivers, Off-chip memory controllers and Multiply-

accumulate blocks.

43

Figure 2. 4 The contemporary FPGA internal Architecture [69]

2.3.2 FPGA Design Flow

The FPGA designers must go through a series of steps from initial ideas to the final

hardware circuit. Figure 2.5 demonstrates the design flow of FPGA-based implementations. The

most common FPGA-based design flow used nowadays is based on the following phases [72]:

1. Formal Specification: The desired system functionalities and requirements are

expressed in a formal model and then the description is validated by simulation or

verification techniques. The result is a functional specification, without any

implementation details.

2. Exploration: The resulting formal model is used to analyze the best SW/HW

partitioning which depends on the goals of the targeted application. The result of this

phase is the definition of functions that will be implemented in software and which

ones will be performed by dedicated hardware components.

3. Hardware and software synthesis: An implementation is created on FPGA for each

component of the system architecture defined in the previous step. The result is the

44

software code for the software components and the RT-level implementation for the

hardware parts. An interface between the HW and the SW must be established.

4. Verification and Evaluation: In this step, verification of the correct behavior of

software and hardware components as well as the targeted system is performed. Then

evaluation of the final embedded system performance is performed in terms of speed,

area, costs, real-time constraints, power consumption, reliability, availability and

safety. This phase allows validating the proposal that should satisfy the requirements.

Figure 2. 5 FPGA design Flow [71]

2.3.3 FPGA-based MPSoC

For decades, MPSoC approach was adopted by FPGA platforms as a suitable solution

for providing a high level of parallelism [67]. MPSoC is an embedded system that integrates

multiple embedded processors to run multitasking software programs in parallel mode. It refers

to the hardware components and the software programs. The MPSoC approach is a promising

trend in embedded applications for responding the requirements of recent embedded systems:

real-time, flexibility, speed, area and low-power. MPSoC performance is determined by the

45

capacity of the used hardware components and the partitioning of the targeted software program

into tasks for parallel execution.

2.3.3.1 Hardware architecture for MPSoC

MPSoC hardware architecture is composed mainly of three elements: the embedded

processors, the interconnect network that connects the processors and the memory hierarchy. It

could be categorized according to the following [73]:

1. The kind of integrated processors: MPSoCs are classified by two approaches,

namely, homogeneous and heterogeneous. The homogeneous approach consists of

using identical processors while the heterogeneous approach consists of combining

softcore and hardcore processors in the same architecture.

2. The behavior of the integrated processors: MPSoC could be also categorized into

three implementation approaches: Master/Slave system, Net architecture system and

Pipelined system. In the Master/slave approach, one or more processors act as the

master processor, controlling the behavior of the other slave processors. These latter

have the ability to communicate only with their masters, contrary to Net approach

where there is no hierarchical organization between the processors, thus, each

processor can communicate with other processors and exchange data with them. In

Pipeline architecture, each processor acts as a pipeline stage for the other processors

to execute a function in pipeline mode.

3. The topology of physical communication between the integrated processors: the

communication can be done within 3 physical topologies: point-to-point, shared bus

and net-on-chip. In the first topology, each processor is connected directly to another

processor through point to point fast link bus. This approach is not efficient when the

MPSoC system is large. The second approach is based on a shared communication

bus used by all the processors. The third approach ensures the communication

between the processors by installing small routers to manage the communication

between a set of processors. The weakness of the shared bus and net-on-chip schemes

is lies in performance.

46

Depending on the considered FPGA-based MPSoC architecture, two data/instruction

exchanging techniques are proposed: shared memory and distributed memory. In the first

technique, the communication between the processors is done by writing to and reading from a

shared memory so that any changes happened will be visible to the other processors. While, the

second technique is based on separated memories where each processor manages its own local

memory. The instruction/data exchanging in distributed memory is ensured directly between

two point-to-point interconnected processors or explicitly via a shared bus or interconnection

network.

The shared memory system is commonly used in FPGAs because of memory limitation

constraints. The shared memory system is classified to uniform memory access (UMA), non-

uniform memory access (NUMA) and Cache-Only Memory Architecture (COMA). In the UMA

system, all the processors have equal access permission to read from and write from any location

of a memory location. In the NUMA system, each processor has a portion of the shared memory.

However, it is almost impossible to prevent any processor from any memory location since that

the shared memory has a single address space. The Cash-Only Memory Architecture (COMA)

has the same NUMA architecture, except that here the shared memory contains only cashes and

no memory hierarchy is included. Instead, a memory directory is involved to help in remote

cache access. The main problem of the shared memory technique is the control of the shared

memory access and the synchronization of data when multiple processors try to manipulate the

shared data at the same time. Therefore, shared memory is used with synchronization

mechanisms such as semaphores, barriers and locks to avoid the overlap between processors.

These mechanisms provide an easy access management to the shared memory by determining if

the memory resource is available. Thus, the processor must wait for other processors to unlock

the critical section. The most important advantage of distributed memory systems is abandoning

the need for large global memory as well as the elimination of the need for synchronization.

Thus, distributed memory systems lead to higher performance and also the flexibility to integrate

a large number of processors and in addition to being easily scalable.

2.3.3.2 Embedded processors

In FPGA-based MPSoC systems, the most used embedded processors are either softcore

such as Xilinx Microbaze and Alter Nios processors or hardcore like Xilinx PowerPc and ARM-

based processors. A soft-core processor is a microprocessor described in an HDL language,

which can be synthesized in programmable hardware, such as FPGAs. These processors

47

implemented in FPGAs can be easily configured to the needs of the target application. A

hardcore processor is a processor that's physically implemented as a structure in the silicon. It is

highly optimized to provide high-performance. In the following MicroBlaze softcore and ARM

Cortex-9 hardcore processors, used in our work are presented.

A. MicroBlaze:

MicroBlaze is Xilinx 32-bit soft-core processor based on Reduced Instruction Set

Computer (RISC) architecture [34]. Its internal architecture is highly configurable as shown in

figure 2.6. The configurable components include cache size, pipeline depth (3-stage on 5-stage),

Memory Management Unit (MMU), bus interfaces and arithmetic units. MicroBlaze supports

different interconnect systems. The primary used system is the PLB bus, which is a traditional

system-memory mapped transaction bus with master/slave capability. MicroBlaze uses a

dedicated LMB interconnect for communicating to local memory. It contains 16 FSL (Fast

Simplex Link) bus which is a dedicated point-to-point unidirectional FIFO connection.

Figure 2. 6 Internal architecture of Xilinx MicroBlaze softcore processor [34]

B. ARM Cortex-A9

ARM Cortex-A9 [54] is a 32-bit hardcore processor licensed by ARM Holdings

implementing the ARMv7-A architecture. Figure 2.7 presents the internal architecture of ARM

Cortex-A9.

48

Figure 2. 7 Internal architecture of ARM Cortex-A9 hardcore processor [54]

The Cortex-A9 processor is a multicore processor providing from one to four cache-

coherent cores. It is a popular choice for high-performance, low-power cost-sensitive

applications. Cortex-A9 processors are proven to offer highly effective outcomes in embedded

systems. Additionally, they are able to implement multi-core designs that further scale the

performance increase. As Cortex-A9 is based on ARMv7-A architecture, the following benefits

can be obtained [54]:

1. Dynamic length pipeline (8-11 stages).

2. Highly configurable Level-1 (L1) caches.

3. NEON technology can be implemented.

4. Scalable multi-core configuration with up to 4 coherent cores.

2.3.3.3 Difficulties of Writing Parallel Programs for MPSoC

The development of parallel programs on MPSoC architectures is not an easy task and

is more difficult than sequential programs. The challenge consists not only of an efficient

partitioning of a program over multiple processors, where each processor executes a set of tasks,

and taking into account the coordination between them. The difficulties of writing parallel

programs for MPSoC are summarized as follows [74]:

- Finding the best level of parallelism: The number of processing units is limited not only

by the limited area but also by the level of parallelism of the application. Thus, the first

49

problem to which the developer is confronted to identify the parallel code sections in the

application.

- Debugging and Profiling issues: For a sequential application, the developer has only one

application to debug / profile, but for a parallel application running on multiple

processors, the developer faces several threads. Analyzing the complex interactions, the

concurrent processes, and the relationships between program processes is a challenging

task.

- Characteristics of MPSoC architecture: Embedded software development is challenging

because of the hardware complexity of MPSoC. It requires parallel programming for

homogeneous or heterogeneous multiprocessors. It also must take into account diverse

communication architectures and design constraints, such as hardware cost, power, and

timeliness. Therefore, the developer must understand the various complete

characteristics of MPSoC hardware.

2.4 Conclusion

As presented in the previous chapter, cryptography could be embedded on several

interesting hardware platforms. In this chapter, a comparison between these platforms is done

first in order to understand the underlying of selection criteria between them. FPGAs are the

best reconfigurable platforms that fill the gap and balance between the GPP flexibility and

ASICs high-speed performance. The structure of FPGA and the design flow cycle for FPGA-

based embedded systems are presented. The FPGA structure allows providing high level of

parallelism by the integration possibility of multiple embedded processors and hardware

accelerators in a single chip based on MPSoC approach. The development of MPSoC-based

ECC parallel architecture depends not only on the efficient ECSM partitioning over multiple

tasks but also on the kind of the integrated processors, the behavior of the integrated processors

and the topology of physical communication between the integrated processors. Thus, the

techniques used for designing efficient MPSoC-based parallel architectures on FPGA circuits

are illustrated at the end of this chapter. The reported techniques are considered in our first

contribution in this thesis which consists of the proposition of MPSoC-based parallel

architectures for efficient ECSM computation on FPGA circuits. The proposed architectures are

described in the next chapter.

50

CHAPTER 3
MICROBLAZE-BASED MULTIPROCESSOR EMBEDDED CRYPTOSYSTEM

ON XILINX VIRTEX-5 FPGA FOR ELLIPTIC CURVE SCALAR
MULTIPLICATION OVER Fp

3.1 Introduction

Elliptic curve point multiplication is the most time-consuming operation in ECC

schemes. The performance improvement of this operation will have a significant impact on the

overall performance of the ECC system. The performance is usually analyzed in terms of

flexibility, security, execution time, and area consumption. However, it is difficult to provide all

these constraints at the same time. Thus, we present several architectures of ECSM computation

for efficient ECC designs on FPGA circuits. Our main aim is to investigate the best trade-off

between flexibility, security, execution time, and occupied area.

This chapter presents novel SW/HW parallel architectures of ECSM computation for

efficient ECC cryptosystems on FPGA circuits. It begins by reporting the considered design

methodology in our proposals. Next, the adopted algorithms of ECSM computation in our

designs that provide high security, low computation complexity, and high parallelism possibility

are presented. Then, the parallelism investigation for the independent operations within ECSM

computations and its impact on ECSM critical path delay is illustrated. Finally, the proposed

architectures with the experimental results and the performance comparison with some recent

works are discussed.

3.2 Design methodology

Depending on the considered goals, the proposed designs involves several algorithmic

and architectural optimizations:

1. To yield high-security, we propose to perform ECSM in our designs based on MPL

algorithm. In fact, the security of embedded applications relies not only on the

hardness of ECC mathematical systems but also on their secure implementation on

the hardware platforms. These platforms can leak sensitive information during the

computation execution, by observing their behavior, such as power consumption and

51

electromagnetic emanation. Hence, efficient implementation of embedded

cryptosystems needs the study of the vulnerability from various physical attacks on

hardware platforms. As it is not possible to fully protect a device from all attacks,

side-channel attack resistance is considered in all the proposed designs at the

algorithmic level. Using point multiplication algorithms that employ a regular

sequence of ECPA and ECPD, independently of the scalar is a method of protecting

against SPA attacks. Therefore, we propose to implement ECSM based on the binary

regular MPL algorithm. Each iteration of the MPL algorithm performs ECPA

followed by ECPD, so that the side-channel information is viewed as a regular

alternating series of points doublings and additions.

2. To yield high-flexibility, we propose to implement ECSM in software by using

Xilinx’s MicroBlaze softcore processor. Implementing ECSM in software offers

flexible and easy design adaptation to the changes in curve parameters, field sizes,

and ECSM algorithms. Moreover, the use of MicroBlaze processors increases the

integration possibility of our designs on large FPGA circuits since MicroBlaze can

be implemented on any of the Xilinx FPGA families. In such a way, all the proposed

designs support any arbitrary prime curves and offer an easier design modification

capability. These features are desired due to the rapid changes in cryptographic

algorithms and standards.

3. To yield time-area balance, various optimization techniques are adopted in our

designs at algorithmic and architectural levels. In fact, the implementation of ECSM

completely in software using MicroBlaze processor offers a high degree of flexibility

with less area consumption. However, it provides a very slow execution time due to

the computation complexity of ECSM operation. To improve the performance of

ECSM execution in our designs, we propose to:

• Reduce the computation complexity of ECPA and ECPD by using the projective

system. Projective coordinate system is a better choice than affine coordinates to

provide the best trade-off between speed and area. It reduces the computation

complexity of ECSM by avoiding the execution of modular inversion in return

using extra modular multiplications. The modular inversion is very costly

52

operation in terms of hardware resources. Thus, the projective system is used in

the proposed architectures to achieve high-speed ECSM computation with low-

area requirements for efficient ECC designs.

• Speed-up the execution time of ECSM by implementing MM within a scalable

HW accelerator hardware accelerator coprocessor around MicroBlaze processor.

The computations of ECSM in the projective systems are based on large operand

finite field operations of which modular multiplication is the most critical

operation. Thus, a high-speed MM hardware accelerator coprocessor leads to the

execution time improvement of the overall ECSM system. Therefore, we propose

to implement MM within an area-optimized HW accelerator core based on

Montgomery Modular Multiplication (MMM) algorithm. MMM is an efficient

method to perform fast MM reduction when an arbitrary large prime modulo is

targeted, which is the case in our work. The proposed hardware accelerator is

integrated around MicroBlaze processor as a coprocessor. MicroBlaze is based

on 32-bit RISC architecture. To adapt the execution of MMM to the data bus of

the MicroBlaze processor and to benefit from the DSP48E hardware 32-bit

multipliers available on FPGAs, we proposed to use the modified high radix

r(r=232) MMM algorithm. High-radix based multipliers are faster than the bit-

level implementations because of their lower iteration. The major advantage of

our SW/HW partitioning is the enhancement of ECSM computation time by

using few extra resources with maintaining high-flexibility in all the proposed

designs since the point operations are managed in software by MicroBlaze.

• Reduce the critical path delay by performing ECSM in a parallel way. To obtain

maximum performance, we investigate the independent operations in ECSM

computation that could be executed in parallel. Our investigation demonstrates

that the combination of MPL algorithm and the projective system shows a good

scope of parallelism in ECSM hierarchy level with several parallelization

degrees. To exploit the inherent parallelism in ECSM computations, we propose

to integrate multiple MicroBlaze processors with multiple MMM accelerator

cores in a single architecture.

53

Based on the adopted optimization techniques, five SW/HW architectures are proposed

in this work. All the proposed architectures perform ECSM based on MPL algorithm and

projective. Their internal architectures consist of the integration of MicroBlaze processor to

maintain high-flexibility. The first architecture is a single MicroBlaze-based SW/HW

implementation of sequential ECSM computation. It is proposed mainly as a comparison model

that achieves good execution time with minimum hardware resources. The four other

architectures are multiple MicroBlaze-based SW/HW implementation of parallel ECSM

computation. Each of the proposed parallel designs integrates more processors than the previous

one. The idea behind the four architectures is to investigate the optimum number of MicrBlaze

processors to achieve the best trade-off between execution time and area consumption.

3.3 Adopted ECSM algorithms

Figure 3.1 represents a typical ECSM implementation hierarchy. The first level

corresponds to the adopted algorithm for ECSM (𝑔 × 𝑃), which is Montgomery Power Ladder.

The second level corresponds to the point representation system used to perform ECPA and

ECPD operations. In this work, projective coordinate system is used. The third level is composed

of the required finite field arithmetic operations. In the following, the adopted algorithms in the

three levels are detailed.

Modular

Subtraction

(MS)

Modular

Inversion

(MI)

Modular

Multiplication

(MM)

Modular

Addition

(MA)

Elliptic Curve Scalar

Multiplication on Fp

g x P

Elliptic Curve

Point Addition

Rb+R1-b

Finite Filed arithmetic operations in Fp

Level 1

Level 2

Level 3

Elliptic Curve

Point Doubling

2xRb

Figure 3. 1 ECSM implementation abstraction levels

3.3.1 Montgomery Power Ladder Algorithm

ECSM is the main operation of most ECC schemes. It is of the form 𝐶 = 𝑔 × 𝑃 where

(𝐶,𝑃) are two points and g is an integer of w-bit. From the literature, ECSM can be performed

54

by a variety of algorithms according to the representation of the scalar g [75]. MPL binary

method [31] for ECSM is simple and efficient method. It is based on the binary representation

of the scalar 𝑔 = ∑ 𝑔𝑖
𝑤−1
𝑖=0 × 2𝑖, such that:

 𝐶 = [2 × (… (2 × (2 × 𝑔𝑤−1 + 𝑔𝑤−2) + 𝑔𝑤−3) + ⋯) + 𝑔0] × 𝑃 (3.1)

The security analysis shows that the implementation of MPL algorithm on embedded

systems ensures the resistance against various side-channel attacks [25] by performing ECPD

and ECPA in parallel independently of the current scalar bit value 𝑔i [28, 29]. However, if the

hardware resources are limited, this algorithm can be executed in sequential mode. The MPL

binary method is given in algorithm 3.1. In this algorithm, two intermediate points 𝑅0 and 𝑅1

are required for the computation of 𝐶 = 𝑔 × 𝑃. When the current scalar bit value 𝑏 = 1, 𝑅0(𝑖) =

2 × 𝑅0(𝑖+1) and 𝑅1(𝑖) = 𝑅0(𝑖+1) + 𝑅1(𝑖+1) are performed. On the other hand, 𝑅1(𝑖) = 2 × 𝑅1(𝑖+1)

and 𝑅0(𝑖) = 𝑅0(𝑖+1) + 𝑅1(𝑖+1) are carried out when 𝑏 = 0. The performance execution of ECSM

depends on ECPA and ECPD computations. Thus, an efficient implementation of ECSM

requires the optimization of both ECPA and ECPD execution performances

Algorithm 3. 1 Montgomery power ladder for ECSM [31]

Inputs : 𝑔 = ∑ 𝑔𝑖
𝑤−1
𝑖=0 × 2𝑖 , 𝑃(𝑥𝑃, 𝑦𝑃)

Variables : 𝑅0(𝑤−1)(𝑥𝑅0, 𝑦𝑅0) ∈ 𝐸𝑝, 𝑅1(𝑤−1)(𝑥𝑅1, 𝑦𝑅1) ∈ 𝐸𝑝.

Output : 𝐶 = 𝑔 × 𝑃

Begin

1. 𝑅0(𝑤−1) = 𝑃

2. 𝑅1(𝑤−1) = 2 × 𝑃 //ECPD

3. For i from w-2 down to 0 do

4. 𝑏 = 𝑔𝑖

5. 𝑅𝑏(𝑖) = 2 × 𝑅𝑏(𝑖+1) // ECPD

6. 𝑅1−𝑏(𝑖) = 𝑅𝑏(𝑖+1) + 𝑅1−𝑏(𝑖+1) // ECPA

End For

7. C = 𝑅0(0)

8. Return 𝐶

End

55

3.3.2 Projective coordinates system

ECPA and ECPD operations could be carried out in an affine coordinates system. This

system suffers from the latency of the Modular Inversion (MI) problem. This operation is the

most costly and complex operation for hardware implement [24]. Hence, the affine coordinate

system is an inefficient choice for low area implementations. The best method to avoid MI

operation consists of using a projective coordinates system [63, 64]. In such system, the

execution of ECPA and ECPD requires the computation of Modular Addition (MA), Modular

Subtraction (MS) and Modular Multiplication (MM).

In the projective coordinates system, a point is defined by (𝑋, 𝑌, 𝑍) instead of (𝑥, 𝑦). The

computation of 𝐶 = 𝑔 × 𝑃 needs to convert first the coordinates (𝑥𝑃, 𝑦𝑃) of the point 𝑃 to

(𝑋𝑃, 𝑌𝑃, 𝑍𝑃) as follows:

 (𝑋𝑃, 𝑌𝑃, 𝑍𝑃) = (𝑥𝑃, 𝑦𝑃, 1) (3.2)

Then performing MPL algorithm with the new coordinates of 𝑃, where ECPA and ECPD

are performed in projective coordinates. The last step applies MI operation to convert back the

coordinates of the resulting point 𝐶(𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶), to affine coordinates 𝐶(𝑥𝐶 , 𝑦𝐶), such that:

 (𝑥𝐶 , 𝑦𝐶) = (𝑋𝐶 × 𝑍𝐶
−𝑐, 𝑌𝐶 × 𝑍𝐶

−𝑑) (3.3)

𝑐 and 𝑑 represent the parameters of the projective coordinates system. In the literature,

according to 𝑐 and 𝑑, three variants are proposed as forms of projective system, namely, standard

projective system, Jacobian projective system and Chudnovsky projective system. The

comparison between these forms is given in Table 3.1. Since the complexities of MA/S are low

compared to the MM complexity, the comparison is reported in terms of number of MM.

Table 3. 1 Summary of projective coordinate systems complexities

Systems (c,d) ECPA ECPD ECPA+ECPD

Standard (1,1)

Jacobian (2,3)

Chudnovsky(2,3)

14 × MM

16 × MM

14 ×MM

12 × MM

10 × MM

11 × MM

26 × MM

26 × MM

 25 × MM

56

Through Table 3.1, we note that the Chudnovsky system requires 25 × 𝑀𝑀 at each

iteration, whereas, the other systems require 26 × 𝑀𝑀. Hence, the Chudnovsky system has the

best performance for sequential ECSM execution. Furthermore, if the parallel execution of

ECPA and ECPD is targeted, Chunovsky and Standard systems offer the same performance.

The complexity in terms of the MMs number is about 14 ×𝑀𝑀. This latter is required by ECPA

computation. From these comparisons, the Chudnovsky system is our choice for the

implementation of ECSM as an MPSoPC cryptosystem.

3.3.3 Finite field operations

The study of the required arithmetic operations is crucial, before the implementation of

ECSM. In the required finite field arithmetic operations for ECSM computation, the data are

unsigned integers of w-bit, defined in the set {0,1, … , 𝑝 − 1}. However, MicroBlaze is not

designed to perform large finite field arithmetic operations. In order to adapt the execution of

these operations to internal resources of the integrated processors, the effective approach is to

use radix-r (𝑟 = 2𝑘) sequential version algorithms. The value of the parameter 𝑟 is chosen

according to the data path size of MicroBlaze which is about 32-bit [34]. Hence, the value of 𝑘

is of 32. In our work, the inputs, outputs and intermediate variables of all the arithmetic

operations are decomposed first on e digits of 32-bit size. In other words, the data 𝑋 is coded in

radix-232 and stored in an array of size 𝑒 = 𝑤/32, using expression (3.4). Then the

computations are performed digit-by-digit in a serial mode.

𝑋 =∑ 𝑋[𝑖] × 2𝑖×32
𝑒−1

𝑖=0
 with: 𝑋[𝑖] =∑ 𝑋𝑗 × 2

𝑗
31

𝑗=0
 (3.4)

3.3.3.1 Modular Addition and Subtraction

The modular addition adds two operands 𝐴 and 𝐵, then reduces the sum (𝐴 + 𝐵) over

modulo p. Its expression is given by : 𝑍 = (𝐴 + 𝐵) 𝑚𝑜𝑑 𝑝. To obtain 𝑍, MA requires first the

computation of two intermediate variables 𝑍1 and 𝑍2, such that, 𝑍1 = 𝐴 + 𝐵 and 𝑍2 = 𝑍1 − 𝑝.

𝑍 is selected between 𝑍1 and 𝑍2 according to the sign of 𝑍2. Algorithm 3.2 presents radix-232

Modular Addition. In this algorithm, the computations of 𝑍1 and 𝑍2 are carried out digit-by-

digit in the main loop (i). The sign of 𝑍2 is obtained from the last value of 𝐶2𝑒.

57

Algorithm 3. 2 Radix-232 Modular Addition

Inputs :𝐴 = ∑ 𝐴[𝑖] × 2𝑖×32,
𝑒

𝑖=0
𝐵 =∑ 𝐵[𝑖] × 2𝑖×32,

𝑒

𝑖=0

 𝑝 = ∑ 𝑝[𝑖] × 2𝑖×32,
𝑒

𝑖=0
 𝐴[𝑒] = 𝐵[𝑒] = 𝑝[𝑒] = 0,

Output : 𝑍 = ∑ 𝑍[𝑖] × 2𝑖×32
𝑒

𝑖=0

Begin

1. 𝐶1−1 = 0; 𝐶2−1 = 1;

2. 𝑭𝒐𝒓 𝑖 𝒇𝒓𝒐𝒎 0 𝒕𝒐 𝑒

3. (𝐶1𝑖, 𝑍1[𝑖]) = 𝐴[𝑖] + 𝐵[𝑖] + 𝐶1𝑖−1

4. (𝐶2𝑖, 𝑍2[𝑖]) = 𝑍1[𝑖] + 𝑝[𝑖]̅̅ ̅̅ ̅ + 𝐶2𝑖−1

 𝑬𝒏𝒅 𝑭𝒐𝒓

5. If (𝐶2𝑒 = 0) then 𝑍 = 𝑍2

6. Else 𝑍 = 𝑍1

7. Return 𝑍;

End.

The modular subtraction is defined as: 𝑍 = (𝐴 − 𝐵) 𝑚𝑜𝑑 𝑝. It subtracts 𝐵 from 𝐴, and

reduces the result (𝐴 − 𝐵) over modulo p. Algorithm 3. 3 shows radix-232 Modular Subtraction.

In this algorithm, two intermediates variables 𝑍1 and 𝑍2 are used, where 𝑍1 = 𝐴 − 𝐵 and 𝑍2 =

𝑍1 + 𝑝. The result 𝑍 is selected between 𝑍1 and 𝑍2 based on the sign of 𝑍1, obtained according

to the last value of 𝐶1𝑒

Algorithm 3. 3 Radix-232 Modular Subtraction

Inputs :𝐴 = ∑ 𝐴[𝑖] × 2𝑖×32,
𝑒

𝑖=0
𝐵 =∑ 𝐵[𝑖] × 2𝑖×32,

𝑒

𝑖=0

 𝑝 = ∑ 𝑝[𝑖] × 2𝑖×32,
𝑒

𝑖=0
 𝐴[𝑒] = 𝐵[𝑒] = 𝑝[𝑒] = 0,

Output : 𝑍 = ∑ 𝑍[𝑖] × 2𝑖×32
𝑒

𝑖=0

Begin

1. 𝐶1−1 = 0; 𝐶2−1 = 1;

2. 𝑭𝒐𝒓 𝑖 𝒇𝒓𝒐𝒎 0 𝒕𝒐 𝑒

3. (𝐶1𝑖, 𝑍1[𝑖]) = 𝐴[𝑖] + 𝐵[𝑖]̅̅ ̅̅ ̅ + 𝐶1𝑖−1

4. (𝐶2𝑖, 𝑍2[𝑖]) = 𝑍1[𝑖] + 𝑝[𝑖] + 𝐶2𝑖−1

 𝑬𝒏𝒅 𝑭𝒐𝒓

5. If (𝐶1𝑒 = 0) then 𝑍 = 𝑍1

6. Else 𝑍 = 𝑍2

7. Return 𝑍;

End.

58

3.3.3.2 Montgomery Modular Multiplication

MM is the critical finite field in the projective system. It defined by 𝑆 = (𝐴 × 𝐵) 𝑚𝑜𝑑 𝑝.

The reduction of the result of the product 𝐴 × 𝐵 over the modulus 𝑝 requires the division by 𝑝.

Montgomery Modular Multiplication (MMM) [32, 66] is an efficient method to perform fast

MM reduction when arbitrary ECs over a large prime field (Fp) are targeted. It performs the

reduction by a series of additions and right shifts instead of using division. The MMM based on

High radix 𝑟(𝑟 = 2𝑘) is defined by expression (3.5). 𝑅 ≥ 2𝑤×𝑘 is the Montgomery constant,

where gcd(𝑟, 𝑝) = 1. This condition is often satisfied, since 𝑝 is prime integer.

 𝑆 = 𝑀𝑜𝑛𝑡(𝐴, 𝐵) = (𝐴 × 𝐵 × 𝑅−1) 𝑚𝑜𝑑 𝑝 (3.5)

Note that the result 𝑆 is obtained with an additional factor 𝑅−1. Hence, the computation

of ECSM based on the MMM algorithm requires to convert first the parameter 𝑎 and the

coordinates (XP, YP, ZP) of the point P in Montgomery domain, such that:

 𝑀𝑜𝑛𝑡(𝑎, 𝑅2) = 𝑎 × 𝑅 𝑚𝑜𝑑 𝑝 (3.6)

(𝑀𝑜𝑛𝑡(𝑋𝑃, 𝑅
2),𝑀𝑜𝑛𝑡(𝑌𝑃, 𝑅

2),𝑀𝑜𝑛𝑡(𝑍𝑃, 𝑅
2)) = (𝑋𝑃 × 𝑅, 𝑌𝑃 × 𝑅, 𝑍𝑃 × 𝑅) (3.7)

Then executing the MPL algorithm with the new parameters. The last step is to convert

back the coordinates of the resulting point (xc × 𝑅, yc × 𝑅) from Montgomery representation

to classical representation, as follows:

 (𝑀𝑜𝑛𝑡(𝑥𝑐 × 𝑅, 1), 𝑀𝑜𝑛𝑡(𝑦𝑐 × 𝑅, 1)) = (𝑥𝑐, 𝑦𝑐) (3.8)

Algorithm 3.4 represents the scalable version of the original MMM algorithm, where the

entire basics arithmetic operations are executed in radix-232 [33]. This algorithm is based on

iterative calculation of the intermediate results 𝑆𝑖+1 which are defined by expression (3.9). It

uses two intermediate variables 𝑀𝑖 and 𝐿𝑖 to obtain 𝑆𝑖+1.

𝑆𝑖+1 = (𝑆𝑖 + (𝐴[𝑖] × 𝐵) + (𝑞𝑖 × 𝑝))/2
32 (3.9)

Where: 𝑞𝑖 = (𝑆𝑖 + 𝐴[𝑖] × 𝐵[0]) × 𝑝’ 𝑚𝑜𝑑 2
32.

59

Algorithm 3. 4 Radix-232 Montgomery Modular Multiplication [36]

Inputs: 𝐴 = ∑ 𝐴[𝑖] × 2𝑖×32,
𝑒

𝑖=0
𝐵 = ∑ 𝐵[𝑖] × 2𝑖×32,

𝑒

𝑖=0
𝑝 = ∑ 𝑝[𝑖] × 2𝑖×32

𝑒

𝑖=0
.

Variables: 𝐻1𝑖 = ∑ 𝐻1[𝑗]𝑖 × 2
𝑗×32,

𝑒

𝑗=0
 𝐻2𝑖 =∑ 𝐻2[𝑗]𝑖 × 2

𝑗×32,
𝑒

𝑗=0

 𝑀𝑖 = ∑ 𝑀[𝑗]𝑖 × 2
𝑗×32,

𝑒

𝑗=0
 𝐿𝑖 = ∑ 𝐿[𝑗]𝑖 × 2

𝑗×32,
𝑒

𝑗=0

 𝐶1𝑖 = ∑ 𝐶1[𝑗]𝑖 × 2
𝑗×32,

𝑒

𝑗=0
 𝐶2𝑖 = ∑ 𝐶2[𝑗]𝑖 × 2

𝑗×32,
𝑒

𝑗=0

 𝑐1𝑗 = 𝑐2𝑗 = 𝑐3𝑗 = 𝑐4𝑗

Pre-computed: 𝑝’ = −𝑝[0]−1 𝑚𝑜𝑑 232.

Output: 𝑆𝑒+1 =∑ 𝑆[𝑗]𝑒+1 × 2
𝑗×32𝑒

𝑗=0
= (𝐴 × 𝐵 × 𝑅−1) 𝑚𝑜𝑑 𝑝.

Begin

1. 𝑆0 = ∑ 𝑆[𝑗]0 × 2
𝑗×32𝑒

𝑗=0
= 0

2. 𝑭𝒐𝒓 𝑖 𝒇𝒓𝒐𝒎 0 𝒕𝒐 𝑒

3. 𝐶1[−1]𝑖 = 0 𝐶2[−1]𝑖 = 0 ;
4. 𝑐1−1 = 𝑐2−1 = 𝑐3−1 = 𝑐4−1 = 0 ;
5. 𝐻𝑖 = 𝑆[0]𝑖 + 𝐴[𝑖] × 𝐵[0]
6. 𝑞𝑖 = 𝐻𝑖 × 𝑝’ 𝑚𝑜𝑑 2

32

7. 𝑭𝒐𝒓 𝑗 𝒇𝒓𝒐𝒎 0 𝒕𝒐 𝑒

8. (𝐶1[𝑗]𝑖, 𝐻1[𝑗]𝑖) = 𝐴[𝑖] × 𝐵[𝑗]

9. (𝑐2𝑗 , 𝑐1𝑗 , 𝑀[𝑗]𝑖) = 𝐻1[𝑗]𝑖 + 𝑆[𝑗]𝑖 + 𝐶1[𝑗 − 1]𝑖 + 𝑐1𝑗−1 + 𝑐2𝑗−1

10. (𝐶2[𝑗]𝑖, 𝐻2[𝑗]𝑖) = 𝑞𝑖 × 𝑝[𝑗]

11. (𝑐4𝑗 , 𝑐3𝑗 , 𝐿[𝑗]𝑖) = 𝑀[𝑗]𝑖 + 𝐻2[𝑗]𝑖 + 𝐶2[𝑗 − 1]𝑖 + 𝑐3𝑗−1 + 𝑐4𝑗−1

12. 𝑆[𝑗 − 1]𝑖+1=𝐿[𝑗]𝑖

 𝑬𝒏𝒅 𝑭𝒐𝒓

13. 𝑆[𝑒]𝑖+1 = 𝑐1𝑒 + 𝑐2𝑒 + 𝑐3𝑒 + 𝑐4𝑒 + 𝐶1[𝑒]𝑖 + 𝐶2[𝑒]𝑖
 𝑬𝒏𝒅 𝑭𝒐𝒓

11. Return 𝑆𝑒+1

End.

In this algorithm, two nested loops (i) and (j) are introduced. The outer loop (i) scans the

digits 𝐴[𝑖] and computes 𝑞𝑖 in line 6. The reduction (𝐻𝑖 × 𝑝’) 𝑚𝑜𝑑 2
32, for 𝑞𝑖 calculation,

requires to determinate the least significant digit of (𝐻𝑖 × 𝑝′) result. The inner loop (j) reads the

digits 𝐵[𝑗] and 𝑝[𝑗] to compute the digits of the variables 𝑀𝑖 and 𝐿𝑖. The computation of 𝑀𝑖

requires the multiplication 𝐴[𝑖] × 𝐵[𝑗] of line 8 and the additions of line 9. The most and the

least significant digits of the multiplication result are stored in the variables 𝐶1[𝑗]𝑖 and 𝐻1[𝑗]𝑖,

respectively. The computation of 𝐿𝑖 is carried out by performing first the multiplication 𝑞𝑖 × 𝑝[𝑗]

of line 10 then the additions of line 11. The most and the least significant digits of line 10 result

are stored in the variables 𝐶2[𝑗]𝑖 and 𝐻2[𝑗]𝑖, respectively. The carries c1j, c2j, c3j, c4j and the

digits 𝐶1[𝑗]𝑖, 𝐶2[𝑗]𝑖 are stored in order to be used in the computations of the next iteration (j+1).

60

Through expression (3.9), the computation of 𝑆𝑖+1 requires the division over 232. This operation

is performed in line 12 using the right shift operation. The final result 𝑆𝑒+1 is obtained for 𝑖 =

𝑗 = 𝑒.

3.3.3.3 Modular Inversion

In the combination of the MPL algorithm with the projective system, MI operation does

not affect the ECSM performance, since it is executed one time for converting back the resulting

point coordinates from Chudnovsky to the affine system. Hence, we propose to perform MI

using modular exponentiation (Mexp) according to Fermat’s little theorem as it is shown in

expression (3.10) [3]. The easiest way to perform Mexp is the left-to-right binary method [36].

𝐴−1 = 𝐴𝑝−2 𝑚𝑜𝑑 (𝑝) (3.10)

3.4 Parallelism exploration in ECSM hierarchy

In this section, the parallelization possibilities for the computation of ECSM using the

MPL algorithm in the Chudnovsky projective system are studied. The exploration of the

parallelism within ECSM abstractions levels leads to improve the performance of ECSM

execution. However, in the case of limited-resources FPGA circuits, ECSM could be carried out

sequentially using a single MicroBlaze processor and hardware accelerator multiplier. The

critical path delay ∆𝐸𝐶𝑆𝑀 of single ECSM in this approach can be evaluated by expression (3.11),

where ∆𝐸𝐶𝑃𝐴 and ∆𝐸𝐶𝑃𝐷 are respectively the execution delays of ECPA and ECPD executions

in the Chudnovsky system.

 ∆𝐸𝐶𝑆𝑀= (𝑤 − 1) × ∆𝐸𝐶𝑃𝐴 + 𝑤 × ∆𝐸𝐶𝑃𝐷 (3.11)

∆𝐸𝐶𝑃𝐷 and ∆𝐸𝐶𝑃𝐴 depend on the formulas of ECPD and ECPA coordinates computations,

respectively. In the Chudnovsky system, a point is represented by (𝑋, 𝑌, 𝑍, 𝑍2, 𝑍3). The

coordinates of ECPD resulting point are defined by the equation system (3.12).

61

𝑅𝑏(𝑖) = 2 × 𝑅𝑏(𝑖+1) =

{

𝑋𝑏(𝑖) = 𝑀2 − 2 × 𝑆

𝑌𝑏(𝑖) = 𝑀 × (𝑆 − 𝑋𝑏(𝑖)) − 𝑇

𝑍𝑏(𝑖) = 2 × 𝑌𝑏(𝑖+1) × 𝑍𝑏(𝑖+1)

𝑍𝑏(𝑖)
2 = 𝑍𝑏(𝑖) × 𝑍𝑏(𝑖)

𝑍𝑏(𝑖)
3 = 𝑍𝑏(𝑖)

2 × 𝑍𝑏(𝑖)

 (3.12)

Where: {

S = 4 × X𝑏(𝑖+1) × 𝑌𝑏(𝑖+1)
2

M = 3 × X𝑏(𝑖+1)
2 + a × (Z𝑏(𝑖+1)

2)2

𝑇 = 8 × Y𝑏(𝑖+1)
4

The coordinates of ECPA resulting point are defined by the equation system (3.13).

𝑅1−𝑏(𝑖) = 𝑅𝑏(𝑖+1) + 𝑅1−𝑏(𝑖+1) =

{

𝑋1−𝑏(𝑖) = 𝑆
2 − 𝑈3 − 2 × 𝑉

𝑌1−𝑏(𝑖) = 𝑆 × (𝑉 − 𝑋1−𝑏(𝑖)) − 𝐺

𝑍1−𝑏(𝑖) = 𝑈 × 𝑍𝑏(𝑖+1) × 𝑍1−𝑏(𝑖+1)

𝑍1−𝑏(𝑖)
2 = 𝑍1−𝑏(𝑖) × 𝑍1−𝑏(𝑖)

𝑍1−𝑏(𝑖)
3 = 𝑍1−𝑏(𝑖)

2 × 𝑍1−𝑏(𝑖)

 (3.13)

Where: {

𝑈 = 𝑈2 − 𝑈1, U1 = X𝑏(𝑖+1) × Z1−𝑏(𝑖+1)
2 , U2 = X1−𝑏(𝑖+1) × Z𝑏(𝑖+1)

2

𝑆 = 𝑆2 − 𝑆1, 𝑆1 = Y𝑏(𝑖+1) × Z1−𝑏(𝑖+1)
3 , 𝑆2 = Y1−𝑏(𝑖+1) × Zb(𝑖+1)

3

𝑉 = U1 × U2 , 𝐺 = S1 × U3

Through these formulas, ∆𝐸𝐶𝑃𝐷 and ∆𝐸𝐶𝑃𝐴 could be evaluated respectively by

expressions (3.14) and (3.15). Note that the multiplications by the constants 2, 3, 4 and 8 required

for the computation of variables 𝑋1−𝑏(𝑖), 𝑀, 𝑆, 𝑇 and 𝑍𝑏(𝑖) are performed by a sequence of MA.

∆𝐸𝐶𝑃𝐷= 11 ×𝑀𝑀 + 10 ×𝑀𝐴/𝑆. (3.14)

∆𝐸𝐶𝑃𝐴= 14 ×𝑀𝑀 + 7 ×𝑀𝐴/𝑆. (3.15)

By substituting the critical path delays ∆𝐸𝐶𝑃𝐷 and ∆𝐸𝐶𝑃𝐴 to the expression 3.11, the delay

∆𝐸𝐶𝑆𝑀 of ECSM computation in sequential mode could be evaluated by the following

expression:

∆𝐸𝐶𝑆𝑀= (𝑤 − 1) × (25 × 𝑀𝑀 + 17 ×𝑀𝐴/𝑆) + (11 × MM+ 10 ×𝑀𝐴/𝑆) (3.16)

62

Parallelization is an optimization technique used to speed up the computations of ECSM

by reducing its critical path delay ∆𝐸𝐶𝑆𝑀. In the following, the impact of the parallelization

possibilities on the critical path delay of ECSM is illustrated.

3.4.1 Parallelism exploration with two degrees

The intuitive choice to exploit the parallelism is to compute ECPA and ECPD

simultaneously at each iteration of the MPL algorithm, using two parallel embedded processors.

In other words, parallelism is introduced in the second level of the ECSM hierarchy (figure 3.1).

This approach corresponds to the ECSM execution with two degrees of parallelization. The

corresponding critical path delay ∆𝐸𝐶𝑆𝑀/2 of this approach is evaluated by expression (3.17).

 ∆𝐸𝐶𝑆𝑀/2= (𝑤 − 1) × MAX(∆𝐸𝐶𝑃𝐴, ∆𝐸𝐶𝑃𝐷) + ∆𝐸𝐶𝑃𝐷 (3.17)

By substituting the critical path delays ∆𝐸𝐶𝑃𝐷 and ∆𝐸𝐶𝑃𝐴 to the expression 4.19, the

critical path ∆𝐸𝐶𝑆𝑀/2 could be estimated by expression (3.18).

∆𝐸𝐶𝑆𝑀/2= (𝑤 − 1) × (14 × 𝑀𝑀 + 7 ×𝑀𝐴/𝑆) + (11 × MM+ 10 ×𝑀𝐴/𝑆) (3.18)

Compared to ∆𝐸𝐶𝑆𝑀, the execution of ECSM with two degrees of parallelization using

two parallel processors allows to reduce the ECSM critical path delay by two times and saves

11 × 𝑀𝑀+7 × 𝑀𝐴/𝑆 at each iteration of the MPL algorithm. In this approach, the processor

responsible for ECPD computation stays inactive for 3 × 𝑀𝑀 until the second processor

completes the ECPA computation, at each iteration. This idle time represents the difference

between ∆𝐸𝐶𝑃𝐴 and ∆𝐸𝐶𝑃𝐷. However, this idle time could be exploited by ECPD processor for

reading the scalar value bit 𝑔(𝑖+1) of the next iteration of MPL algorithm.

3.4.2 Parallelism exploration with four degrees

The parallelism could be introduced not only in the second level but also in the third

level of the ECSM hierarchy (figure 3.1), between the required finite field operations of ECPD

and ECPA formulas. From expressions 3.12 and 3.13, we note that ECPD and ECPA could be

performed by two processors for each point operation. This approach requires the integration of

four embedded processors to compute ECSM with four degrees of parallelization. Our study is

based on partitioning the computation of ECPD and ECPA on two parallel tasks (Tsk𝑖) for each

point operation. A task regroups a set of finite field operations.

63

From equation system (3.12) of ECPD coordinates, we note that the computations of the

results (𝑋𝑏(𝑖), 𝑌𝑏(𝑖)) and the variable 𝑆 are independent of the results (𝑍𝑏(𝑖), 𝑍𝑏(𝑖)
2 , 𝑍𝑏(𝑖)

3) and the

variable 𝑀, respectively. Hence, we propose to split ECPD process into two tasks (𝑇𝑘𝑠0, 𝑇𝑘𝑠1)

as it is given in table 3.2.

Table 3. 2 ECPD partitioning into two tasks

Steps
ECPD tasks execution

𝑻𝒌𝒔𝟎 𝑻𝒌𝒔𝟏

1 (Z𝑏(𝑖+1)
2)2 3X𝑏(𝑖+1)

2

2 a × (Z𝑏(𝑖+1)
2)2 𝑌𝑏(𝑖+1)

2

3 𝑀 = 3𝑋𝑏(𝑖+1)
2 + 𝑎 × (𝑍𝑏(𝑖+1)

2)2 4 × 𝑌𝑏(𝑖+1)
2

4 𝑀2 S = X𝑏(𝑖+1) × (4 × 𝑌𝑏(𝑖+1)
2)

5 𝑇 = 2 × 4Y𝑏(𝑖+1)
2 × Y𝑏(𝑖+1)

2 𝑍𝑏(𝑖) = 2 × 𝑌𝑏(𝑖+1) × 𝑍𝑏(𝑖+1)

6 𝑋𝑏(𝑖) = 𝑀
2 − 2𝑆 𝑍𝑏(𝑖)

2 = 𝑍𝑏(𝑖) × 𝑍𝑏(𝑖)

7 𝑌𝑏(𝑖) = 𝑀 × (𝑆 − 𝑋𝑏(𝑖)) − 𝑇 𝑍𝑏(𝑖)
3 = 𝑍𝑏(𝑖)

2 × 𝑍𝑏(𝑖)

The execution of ECPD based on two processors allows reducing its critical path by

saving 5 ×𝑀𝑀 + 5 ×𝑀𝐴/𝑆 for single computation. The delay ∆𝐸𝐶𝑃𝐷/2 of ECPD using two

processors based on the proposed tasks partitioning could be evaluated as follows, where ∆𝑇𝑘𝑠𝑖

is the critical path delay of 𝑇𝑠𝑘𝑖.

∆𝐸𝐶𝑃𝐷/2= 𝑀𝐴𝑋(∆𝑇𝑘𝑠0 , ∆𝑇𝑘𝑠1) = 6 × ∆𝑀𝑀 + 5 × ∆𝑀𝐴/𝑆. (3.19)

On the other hand, from equation system (3.13) of ECPA coordinates, the computations

of 𝑆 and the results (𝑋1−𝑏(𝑖), 𝑌1−𝑏(𝑖)) are independent of the computations of the variable 𝑈 and

the results (𝑍1−𝑏(𝑖), 𝑍1−𝑏(𝑖)
2 , 𝑍1−𝑏(𝑖)

3), respectively. Also, the computations of the variables 𝑉 and

𝑈 are independent. Therefore, we propose to split ECPA process into two tasks (𝑇𝑘𝑠2, 𝑇𝑘𝑠3) as

it is shown in table 3.3

Table 3. 3 ECPA partitioning into two tasks

Steps
ECPA tasks execution

𝑇𝑠𝑘2 𝑇𝑠𝑘3

1 𝑆1 = Y𝑏(𝑖+1) × Z1−𝑏(𝑖+1)
3 U1 = X𝑏(𝑖+1) × Z1−𝑏(𝑖+1)

2

2 𝑆2 = Y1−𝑏(𝑖+1) × Z𝑏(𝑖+1)
3 U2 = X1−𝑏(𝑖+1) × Z𝑏(𝑖+1)

2

3 𝑆 = 𝑆2 − 𝑆1 𝑈 = 𝑈2 − 𝑈1

4 𝑆2 𝑈2

5 𝑉 = 𝑈1 × 𝑈2 𝑈3

6 2 × 𝑉 𝑆2 − 𝑈3

64

7 𝐺 = S1 × U3 𝑍𝑏(𝑖+1) × 𝑍1−𝑏(𝑖+1)

8
𝑋1−𝑏(𝑖) = (𝑆

2 − 𝑈3) − 2𝑉
𝑍1−𝑏(𝑖) = 𝑈 × (𝑍𝑏(𝑖+1)

× 𝑍1−𝑏(𝑖+1))

9 𝑌1−𝑏(𝑖) = 𝑆 × (𝑉 − 𝑋2)

− 𝐺
𝑍1−𝑏(𝑖)
2 = 𝑍1−𝑏(𝑖) × 𝑍1−𝑏(𝑖)

10 𝑍1−𝑏(𝑖)
3 = 𝑍1−𝑏(𝑖)

2 × 𝑍1−𝑏(𝑖)

The execution of ECPA using two processors allows reducing its critical path by saving

6 ×𝑀𝑀 + 5 ×𝑀𝐴/𝑆 for single computation. The critical path delay ∆𝐸𝐶𝑃𝐴/2 of ECPA based

on the proposed tasks partitioning could be evaluated by:

∆𝐸𝐶𝑃𝐴/2= 𝑀𝐴𝑋(∆𝑇𝑘𝑠2 , ∆𝑇𝑘𝑠3) = 8 × ∆𝑀𝑀 + 2 × ∆𝑀𝐴/𝑆. (3.20)

By substituting the critical path delays ∆𝐸𝐶𝑃𝐷/2 and ∆𝐸𝐶𝑃𝐴/2 to the expression 3.17, the

critical path delay ∆𝐸𝐶𝑆𝑀/4 of ECSM computation with four degrees of parallelization could be

estimated by expression (3.21).

 ∆𝐸𝐶𝑆𝑀/4= (𝑤 − 1) × (8 × ∆𝑀𝑀 + 2 × ∆𝑀𝐴/𝑆) + (6 × ∆𝑀𝑀 + 5 × ∆𝑀𝐴/𝑆). (3.21)

Compared to ∆𝐸𝐶𝑆𝑀, the execution of ECSM with four degrees of parallelization using

four parallel processors reduces the ECSM critical path by more than three times and saves

17 × 𝑀𝑀 + 15 ×𝑀𝐴/𝑆 at each iteration of MPL algorithm.

3.4.3 Parallelism exploration with six degrees

From tables 3.2 and 3.3, we can observe that there are independent operations in each

task that could be executed in parallel. Thus, we propose to add 𝑇𝑠𝑘4 to table 3.2 and 𝑇𝑠𝑘5 to

table 3.3 in order to perform the required finite field operations of ECPD and ECPA into three

tasks for each point operation, based on the following notes:

- The parallel computation of the multiplications 3𝑋𝑏(𝑖+1)
2 and

𝑌𝑏(𝑖+1)
2 saves one MM in 𝑇𝑠𝑘1. Hence, we propose to move the first multiplication to

𝑇𝑠𝑘4.

65

- The results (𝑍𝑏(𝑖), 𝑍𝑏(𝑖)
2 , 𝑍𝑏(𝑖)

3) obtained from the step 5 to 7 of 𝑇𝑠𝑘1, could be carried out

simultaneously with the other operations. Therefore, these results can be transferred to

𝑇𝑠𝑘4.

- The saved delay of step 4 in 𝑇𝑠𝑘1 could be used to compute the variable 𝑇, performed

initially at step 5 of 𝑇𝑠𝑘0.

- The parallel computation of the variables 𝑈1 and 𝑈2 saves one ∆𝑀𝑀 in 𝑇𝑠𝑘3. Hence, we

propose to move 𝑈1 computation to 𝑇𝑠𝑘5.

- The execution of the operations defined from steps 7 to 10 in 𝑇𝑠𝑘3 are performed

independently of the other operations. Thus, these operations could be transferred also

to 𝑇𝑠𝑘5.

- The saved step 6 in 𝑇𝑠𝑘3 could be exploited for computing the variable 𝐺, obtained

initially at step 7 in 𝑇𝑠𝑘2.

In this way, the parallelism is explored within ECPD and ECPA computations by using

three embedded processors for each operation. This approach requires the integration of six

embedded processors to compute ECSM with six degrees of parallelization. Tables 3.4 and 3.5

present the proposed partitioning of ECPD and ECPA into three tasks, respectively.

Table 3. 4 ECPD partitioning into three tasks

Steps
ECPD tasks execution

𝑇𝑠𝑘0 𝑇𝑠𝑘1 𝑇𝑠𝑘4

1 (Z𝑏(𝑖+1)
2)2 𝑌𝑏(𝑖+1)

2 3X𝑏(𝑖+1)
2

2
a × (Z𝑏(𝑖+1)

2)2
𝑆
= 4 × X𝑏(𝑖+1) × 𝑌𝑏(𝑖+1)

2)
𝑌𝑏(𝑖+1) × 𝑍𝑏(𝑖+1)

3 M = 3X𝑏(𝑖+1)
2 + a

× (Z𝑏(𝑖+1)
2)2

2 × 𝑆
𝑍𝑏(𝑖) = 2 × (𝑌𝑏(𝑖+1)

× 𝑍𝑏(𝑖+1))

4 𝑀2 𝑇 = 8 × Y𝑏(𝑖+1)
4 𝑍𝑏(𝑖)

2 = 𝑍𝑏(𝑖) × 𝑍𝑏(𝑖)

5 𝑋𝑏(𝑖) = 𝑀
2 − 2𝑆 𝑍𝑏(𝑖)

3 = 𝑍𝑏(𝑖)
2 × 𝑍𝑏(𝑖)

6 𝑌𝑏(𝑖) = 𝑀 × (𝑆 − 𝑋𝑏(𝑖))

− 𝑇

66

Table 3. 5 ECPA partitioning into three tasks

Steps
ECPA tasks execution

𝑇𝑠𝑘2 𝑇𝑠𝑘3 𝑇𝑠𝑘5

1 𝑆1
= Y𝑏(𝑖+1) × Z1−𝑏(𝑖+1)

3

U2
= X1−𝑏(𝑖+1) × Z𝑏(𝑖+1)

2
U1 = X𝑏(𝑖+1) × Z1−𝑏(𝑖+1)

2

2 𝑆2 = Y1 × Z𝑏(𝑖+1)
3 𝑈 = 𝑈2 − 𝑈1 𝑍𝑏(𝑖+1) × 𝑍1−𝑏(𝑖+1)

3
𝑆 = 𝑆2 − 𝑆1 𝑈2

𝑍1−𝑏(𝑖) = 𝑈 × (𝑍𝑏(𝑖+1)
× 𝑍1−𝑏(𝑖+1))

4 𝑆2 𝑈3 𝑍1−𝑏(𝑖)
2 = 𝑍1−𝑏(𝑖) × 𝑍1−𝑏(𝑖)

5 𝑉 = 𝑈1 × 𝑈2 𝐺 = S1 × U3 𝑍1−𝑏(𝑖)
3 = 𝑍1−𝑏(𝑖)

2 × 𝑍1−𝑏(𝑖)

6 2 × 𝑉 𝑆2 − 𝑈3

7 𝑋1−𝑏(𝑖) = (𝑆2 − 𝑈3)

− 2𝑉

8 𝑌1−𝑏(𝑖)
= 𝑆 × (𝑉 − 𝑋1−𝑏(𝑖)) − 𝐺

The critical paths ∆𝐸𝐶𝑃𝐷/3 and ∆𝐸𝐶𝑃𝐴/3 of ECPD and ECPA computations, respectively,

could be evaluated by the following expressions.

 ∆𝐸𝐶𝑃𝐷/3= 𝑀𝐴𝑋(∆𝑇𝑘𝑠0 , ∆𝑇𝑘𝑠1 , ∆𝑇𝑘𝑠4) = 4 × ∆𝑀𝑀 + 4 × ∆𝑀𝐴/𝑆. (3.22)

∆𝐸𝐶𝑃𝐴/3= 𝑀𝐴𝑋(∆𝑇𝑘𝑠2 , ∆𝑇𝑘𝑠3 , ∆𝑇𝑘𝑠5) = 5 × ∆𝑀𝑀 + 5 × ∆𝑀𝐴/𝑆. (3.23)

By substituting the critical path delays ∆𝐸𝐶𝑃𝐷/3 and ∆𝐸𝐶𝑃𝐴/3 in the expression 3.17, the

critical path delay ∆𝐸𝐶𝑆𝑀/6 of ECSM computation with six degrees of parallelization could be

estimated by expression (3.24).

∆𝐸𝐶𝑆𝑀/6= (𝑤 − 1) × (5 × ∆𝑀𝑀 + 5 × ∆𝑀𝐴/𝑆) + (4 × ∆𝑀𝑀 + 4 × ∆𝑀𝐴/𝑆) (3.24)

Compared to ∆𝐸𝐶𝑆𝑀, the execution of ECSM with six degrees of parallelization using six

parallel processors reduces the ECSM critical path by more than five times and saves

20 × 𝑀𝑀+12 ×𝑀𝐴/𝑆 at each iteration of the MPL algorithm.

3.4.4 Parallelism exploration with three degrees

The integration of four and six embedded processors in single architecture can provoke

an overhead of hardware resources utilization for low-cost FPGA circuits. Therefore, we

67

propose to perform ECSM with three degrees of parallelization using three processors. In the

proposed approach, the independent finite field operations required for ECPD and ECPA are

performed in parallel based on tables 3.4 and 3.5. While, the coordinates of ECPD and ECPA

resulting points of MPL algorithm are obtained sequentially. The critical path delay ∆𝐸𝐶𝑆𝑀/3 of

this approach could be estimated by substituting the critical path delays ∆𝐸𝐶𝑃𝐷/3 and ∆𝐸𝐶𝑃𝐴/3 to

the expression 3.11. This latter represents the critical path delay estimation of sequential MPL

algorithm execution. ∆𝐸𝐶𝑆𝑀/3 is given as follows:

∆𝐸𝐶𝑆𝑀/3= (𝑤 − 1) × (9 × ∆𝑀𝑀 + 9 × ∆𝑀𝐴/𝑆) + (4 × ∆𝑀𝑀 + 4 × ∆𝑀𝐴/𝑆) (3.25)

Compared to ∆𝐸𝐶𝑆𝑀, this approach allows to reduce the ECSM critical path by three

times and saves 14 ×𝑀𝑀 + 8 ×𝑀𝐴/𝑆 at each iteration of the MPL algorithm.

In this approach, ECPA is not performed until the computation of coordinate 𝑌𝑏(𝑖) of

ECPD is done. However, the processors responsible for performing Tsk(1) and Tsk(4) of table

3.4 are free in steps 5 and 6 . Thus, we propose to exploit these idle times for performing a set

of ECPA finite field operations, based on the following:

- The idle delay of Tsk(1) in table 3.4 could be used for the computation of the variables S1

and U2 obtained initially from step 1 of Tsk(2) and Tsk(3) in table 3.5, respectively.

- The variables U1 obtained initially from the step 1 of Tsk(5) in table 3.5 could be carried

out in the idle time of Tsk(4) in table 3.4.

- The computation of the variable V obtained initially from the step 5 of Tsk(2) in table 3.5.

could be moved to Tsk(4) in table 3.4 after computing Z1-b(i).

Table 3.6 presents the proposed interlacing approach for the execution of ECPD followed

by ECPA into three tasks.

68

Table 3. 6 ECPD and ECPA interlacing

Steps
ECPD followed by ECPA computations coordinates steps

Tsk(0) Tsk(1) Tsk(4)

1 (Z𝑏(𝑖+1)
2)2 𝑌𝑏(𝑖+1)

2 3X𝑏(𝑖+1)
2

2

a × (Z𝑏(𝑖+1)
2)2

𝑆
= 4 × X𝑏(𝑖+1)
× 𝑌𝑏(𝑖+1)

2)

𝑌𝑏(𝑖+1) × 𝑍𝑏(𝑖+1)

3 M
= 3X𝑏(𝑖+1)

2

+ a × (Z𝑏(𝑖+1)
2)2

2 × 𝑆
𝑍𝑏(𝑖) = 2 × (𝑌𝑏(𝑖+1)

× 𝑍𝑏(𝑖+1))

ECPD

4 𝑀2 𝑇 = 8 × Y𝑏(𝑖+1)
4 𝑍𝑏(𝑖)

2 = 𝑍𝑏(𝑖) × 𝑍𝑏(𝑖)

5
𝑋𝑏(𝑖) = 𝑀

2 − 2𝑆
𝑆1
= Y𝑏(𝑖+1) × Z1−𝑏(𝑖+1)

3
𝑍𝑏(𝑖)
3 = 𝑍𝑏(𝑖)

2 × 𝑍𝑏(𝑖)

6 𝑌𝑏(𝑖) = 𝑀 × (𝑆 − 𝑋𝑏(𝑖))

− 𝑇

U2
= X1−𝑏(𝑖+1) × Z𝑏(𝑖+1)

2
U1 = X𝑏(𝑖+1) × Z1−𝑏(𝑖+1)

2

7 𝑆2 = Y1 × Z𝑏(𝑖+1)
3 𝑈 = 𝑈2 − 𝑈1 𝑍𝑏(𝑖+1) × 𝑍1−𝑏(𝑖+1)

8
𝑆 = 𝑆2 − 𝑆1 𝑈2

𝑍1−𝑏(𝑖) = 𝑈 × (𝑍𝑏(𝑖+1)
× 𝑍1−𝑏(𝑖+1))

9 𝑆2 𝑈3 𝑉 = 𝑈1 × 𝑈2 ECPA

10 2 × 𝑉 𝑆2 − 𝑈3 𝑍1−𝑏(𝑖)
2 = 𝑍1−𝑏(𝑖) × 𝑍1−𝑏(𝑖)

11 𝑋1−𝑏(𝑖) = (𝑆2 − 𝑈3) − 2𝑉 𝐺 = S1 × U3 𝑍1−𝑏(𝑖)
3 = 𝑍1−𝑏(𝑖)

2 × 𝑍1−𝑏(𝑖)

12 𝑌1−𝑏(𝑖)
= 𝑆 × (𝑉 − 𝑋1−𝑏(𝑖)) − 𝐺

The critical path delay ∆𝐸𝐶𝑆𝑀/3𝑖 of ECSM based on table 3.6 could be estimated by the

expression (3.26).

 ∆𝐸𝐶𝑆𝑀/3𝑖 = 𝑀𝐴𝑋(∆𝑇𝑘𝑠0 , ∆𝑇𝑘𝑠1 , ∆𝑇𝑘𝑠4)

 = (𝑤 − 1) × (7 × ∆𝑀𝑀 + 9 × ∆𝑀𝐴/𝑆) + (4 × ∆𝑀𝑀 + 4 × ∆𝑀𝐴/𝑆) (3.26)

Compared to ∆𝐸𝐶𝑆𝑀/3, interlacing the computations of ECPA and ECPD allows saving

2 ×𝑀𝑀. Compared to ∆𝐸𝐶𝑆𝑀, this approach allows to reduce the ECSM critical path by 3.5

times and saves 14 ×𝑀𝑀 + 8 ×𝑀𝐴/𝑆 at each iteration of MPL algorithm.

3.5 FPGA implementations

In this section, we present the proposed parallel architectures of ECSM computation for

embedded ECC on an FPGA circuit. Our main aim is to achieve the best trade-off between

security, software flexibility, hardware high-speed and low area requirements. Figure 3.2 shows

the considered optimizations in the ECSM hierarchy for the proposed architectures.

69

ECSM

ECPA, ECPD

MA, MS

SW

MMMHW

ECSM

ECPA, ECPD

MA, MS

SW

MMMHW

3° Parallel

ECSM

ECPA, ECPD

MA, MS

SW

MMMHW

6° Parallel

(a) (b)

(c) (e)

ECSM

ECPA, ECPD

MA, MS

SW

MMMHW

2° Parallel

ECSM

ECPA, ECPD

MA, MS

SW

MMM
HW

4° Parallel

(d)

Figure 3. 2 ECSM hierarchy modeling for the proposed architectures

The Integration of Xilinx’s MicroBlaze processor on FPGA increases the flexibility of

our embedded cryptosystem. However, it does not provide high timing performance, because

ECSM requires intensive finite field arithmetic computations. Since MMM is the critical finite

field operation in ECSM execution, our SW/HW partitioning is based on the implementation of

this operation within a Montgomery Modular Multiplier unit (MMMu). This dedicated

Multiplier is integrated around each MicroBlaze processor to perform ECSM computation. The

proposed SW/HW partitioning allows not only the execution time improvement but also the

overall embedded system flexibility since ECPA, ACPD and ECSM are implemented in SW.

Thus, the first approach proposed in this work (figure.3.2(a)) is a Single MicroBlaze-based

SW/HW implementation (1MbSW/HW). It corresponds to the execution of ECSM in sequential

mode. It is proposed mainly as a comparison model that requires minimum hardware resources.

1MbSW/HW could be suitable for low-area FPGA circuits.

The previous section illustrates that the parallelization technique allows reducing the

critical path delay of ECSM computation. Therefore, we propose to exploit the inherent

parallelism by integrating multiple Microblaze processors and multipliers in the same

architecture. Thus, parallel SW/HW implementation approaches based on the MPSoC approach

are proposed [76, 77]. Each implementation supports more optimizations compared to the

previous one. They differ from the number of processors used.

The second approach (figure.3.2(b)) is Dual MicroBlaze-based SW/HW implementation

(2MbSW/HW). It is based on two parallel Micoblaze processors: MB0 and MB1. It corresponds

to the ECSM execution with two degrees of parallelism, where, the parallelism is introduced in

the computations of ECPA and ECPD.

70

The third approach (figure.3.2(c)) is triple MicroBlaze-based SW/HW implementation

(3MbSW/HW): MB0, MB1 and MB4. It presents the implementation of the ECSM algorithm

with three degrees of parallelism based on table 3.6. Each processor MBi ensures the control of

the tasks Tski reported in table 3.6.

The fourth approach (figure.3.2(c)) is Four MicroBlaze-based SW/HW implementation

(4MbSW/HW): MB0, MB1, MB2 and MB3. It presents the implementation of the ECSM

algorithm with four degrees of parallelization. Each processor MBi is responsible for the tasks

Tski reported in tables 3.2 and 3.3.

The fifth approach (figure.3.2(d)) is six MicroBlaze-based SW/HW implementation

(6MbSW/HW): MB0, MB1, MB2 MB3, MB4 and MB5. It corresponds to the implementation of

ECSM with six degrees of parallelization. Each processor MBi is dedicated to control the tasks

Tski reported in tables 3.4 and 3.5.

In the following, the internal hardware architectures of MMMu is presented first. Then

the proposed architectures for the FPGA implementation of ECSM are detailed.

3.5.1 Montgomery Modular Multiplier unit

The hardware architecture of our MMMu is shown in figure 3.3.

B[j]

A[i]

H1[j](i)

Ctr_c1_c2

S[j](i)

M[j](i)

q(i)

c1

C1[j](i)

c2

clk

H2[j](i)

Ctr_c3_c4

c3

C2[j](i)

c4

p[j]

B
lo

c
re

g
is

te
rs

Si computation

32

32

32

32

32 32

32

32

32

32

32

32

Mul
2

R
eg

1

R
eg

2

R
eg

4

D
D

D

Add
3

clk

Add
2Add

1
Mul

1

clk
clk

clk
clk

D
clkM

u
x2

M
u

x2

32

p’
32

R
eg

3

clk
Ctr_qi

D
D

clk

clk

Ctr_Mux

Out put

Add
4

Hi computation

L[j](i)

Figure 3. 3 Internal hardware architecture of MMMu

The internal architecture is designed in a single stage in order to minimize the hardware

resources utilization. It contains two 32 × 32 bits multipliers (Mul1 and Mul2), four Carry

71

Propagate Adder (Add1, Add2, Add3 and Add4), four registers (Reg1, Reg2, Reg3, Reg4), four

D Flip-flops, two multiplexers (Mux1, Mux2) and one block registers. The execution of the

proposed MMMu requires the storage of the operands 𝐴, 𝐵 and 𝑝 in memories. The intermediate

results digits 𝑆[𝑗]𝑖 of MMM algorithm are stored in the block register as a queue. MMMu

receives four control signals, namely, 𝐶𝑡𝑟_𝑀𝑢𝑥, 𝐶𝑡𝑟_𝑞𝑖 , 𝐶𝑡𝑟_𝑐1_2 and 𝐶𝑡𝑟_𝑐3_4.

MMMu performs each iteration (i) of the MMM algorithm in three steps. In the first step,

the process begins by the execution of lines 5 and 6 for computing the digit 𝑞𝑖. The obtained

value is stored in Reg3 which is controlled by 𝐶𝑡𝑟_𝑞𝑖. Reg3 holds the value of 𝑞𝑖 constant during

the execution of the iterations (j) of the MMM algorithm. The second and the third steps consist

of performing the operations of lines (8, 9) and (10, 11), respectively. They allow the

computations of the digits 𝐻[𝑗]𝑖 and 𝑆[𝑗]𝑖. In order to increase the timing performance of the

MMMu, we propose to compute 𝑀[𝑗]𝑖 and 𝐿[𝑗]𝑖 in pipeline processing. Indeed, the processes

for computing both digits are interleaved by one clock cycle. The digits 𝑀[𝑗]𝑖 are carried out by

the multiplier Mul1 and the adders add1 and add2. The digits 𝐿[𝑗]𝑖 are obtained by the multiplier

Mul2 and the adders Add3 and Add4. At each iteration (j), the generated carries (𝑐1, 𝑐2, 𝑐3, 𝑐4)

and the most significant digits (𝐶1[𝑗]𝑖 , 𝐶2[𝑗]𝑖) of the multiplications results are delayed by one

clock cycle and added at the next iteration (j+1). They are initialized at the beginning of each

iteration (i) by the signals 𝐶𝑡𝑟_𝑐1_2 and Ctr _𝑐3_4. The multiplier Mul2 is shared between the

execution of the multiplications of lines 6 and 10 of MMM algorithm. In other words, Mul2

allows the computation of 𝑞𝑖 and 𝐻2[𝑗]𝑖. The selection of the operands at its inputs is ensured

by the multiplexers Mux1 and Mux2 which is controlled by the signal 𝐶𝑡𝑟_𝑀𝑢𝑥 as is shown in

table 3.7

Table 3. 7 Selection of operands at the inputs of Mul2

Ctr_M

ux

Selected operands Executed operation

Mux1

output

Mux2

output

1 𝑝′ 𝐻[0]𝑖 𝑞𝑖 = (𝐻[0]𝑖 × 𝑝’) 𝑚𝑜𝑑 2
32

0 𝑝[𝑖] 𝑞𝑖 (𝐶2[𝑗]𝑖, 𝐻2[𝑗]𝑖) = 𝑞𝑖 × 𝑝[𝑗]

72

3.5.2 ECSM implementations

3.5.2.1 Single MicroBlaze-based SW/HW implementation (1MbSW/HW)

In this approach, the ECSM process is implemented without any parallelism. All ECSM

abstraction levels (figure.3.2(a)) are managed in a sequential scheme by a MicroBlaze processor.

Figure 3.4 presents the hardware architecture of the corresponding embedded system.

Microblaze

(MB)

UART Timer

DLMB

BRAM

ILMB

MB_PLB

AccMMM

Figure 3. 4 Hardware architecture of 1MbSW/HW approach

This architecture contains the following components: MicroBlaze processor (MB),

AccMMM core, BRAM memory, Local Memory Buses (ILMB, DLMB), Universal

Asynchronous Receiver Transmitter (UART) to exchange the inputs and the outputs data with

the serial port of the used development board. A timer to evaluate the temporal performances.

The internal architecture of the AccMMM core is shown in figure 3.5. It is composed of

Xilinx’s Intellectual Property InterFace (IPIF) and User_Logic blocks. IPIF ensures

data/instruction exchanging between MicroBlaze and the multiplier. User_Logic is the part that

describes the logic of the circuit. The communication between the two blocks is achieved by a

standard back-end interface IP InterConnect (IPIC) [78].

The IPIF is configured with three registers: Ins_reg, DataIn_reg and DataOut_reg.

MicroBlaze controls our AccMMM core using a set of instruction codes through Ins_reg

instruction register. DataIn_reg is used to transfer data from MicroBlaze to the internal

architecture of the AccMMM core. The digits of MMM result are transferred to MicroBlaze

through DataOut_reg.

73

The User_Logic is composed of three units, Memory Unit (MU), Control Unit (CU) and

our MMMU. MU is a local memory used to store the modulus p, the operands A and B and the

digits of the MMM result. CU retrieves the instructions from Ins_reg and manages MU and

MMMu.

The data/instruction exchanging between MicroBlaze and AccMMM core is carried out

through PLB bus. After system initialization, MicroBlaze sends the digits of the modulus p, the

size of operands w and Montgomery’s constants to AccMMM core. At each MMM execution,

MicroBlaze sends 2 × (e + 1) digits of the operands A and B. Then, the MMMu performs

MMM algorithm and sends (e + 1) digits of the result to the processor.

Slv Dbus

AccMMM Core

IPIF

MB_PLB

User_Logic

Memory
Unit
(MU)

MMMu

p’

Control Unit (CU)

p[j]

B[j]

A[i]

32

32

32

Control

Signal
Control

SignalAddr

BustoIP_clk

IPIC

Inst_regDataIn_regDataOut_reg

In_Slv_reg 32

Out_Slv_reg 32

Figure 3. 5 Hardware architecture of our AccMMM core

3.5.2.2 Dual MicroBlaze-based SW/HW implementation (2MbSW/HW)

In order to benefit from the inherent parallelism between ECPD and ECPA of MPL

algorithm, we proposed to integrate two MicroBlaze processors in single architecture as

MPSoPC. As result, MPL algorithm is executed in parallel mode with two degrees of

parallelism. Figure 3.6 shows the proposed Master-Slave architecture [79]. It is composed of

two MicroBlaze processors: 𝑀𝐵0 (Master) and 𝑀𝐵1 (slave), where the ECPD and the ECPA are

performed in parallel by MB0 and MB1, respectively. The processors are connected through FLS

Bus (FSL_0_1, FSL_1_0).

74

Microblaze

(MB0)

UART Timer

DLMB

BRAM 0

ILMB

MB_PLB_1

AccMMM 0

Microblaze

(MB1)

DLMB

BRAM 1

ILMB

MB_PLB_1

AccMMM 1

FSL_0_1

FSL_1_0

ECPA SubSystem (Slave)ECPD SubSystem (Master)

Figure 3. 6 Hardware architecture of 2MbSW/HW approach.

The control of the ECSM computations between both processors is ensured using some

instructions. Their codes and their descriptions are presented in table 3.8.

Table 3. 8 Instructions Codes

Code Instruction Description

0x00000001 Sync_Request Mb0 to Mb1 synchronization request

0x00000010 Sync_Response Mb1 to Mb0 synchronization response

0x00000011 End_Loop End of the loop execution of MPL algorithm

0x00000100 Chv_to_Aff Chudnovsky to Affine conversion

Four steps are required to perform ECSM algorithm in this approach, namely, processors

synchronization, affine to Chudnovsky conversion, loop execution and Chudnovsky to affine

conversion. Figure 3.7 presents the sequence diagram of tasks partitioning between the two

processors for performing ECSM with two degrees of parallelism.

Initially, the system needs to synchronize between the processors. For that, 𝑀𝐵0 sends

first Sync_Request instruction to 𝑀𝐵1 and waits the reply with the Sync_Response instruction.

Next, 𝑀𝐵0 executes:

- The conversion of the point 𝑃 from Affine to Chudnovsky coordinates system according to

expression (3.4).

- The initializations defined by the lines 1 and 2 of MPL algorithm.

75

MB0

(Master)

A2P_Conv()

ECPD()

Send(Sync_request)

Send(Sync_response)

Send(R0(w-1),R1(w-1))

Loop (i)

Send(gi)

Send(R1-b(i))

Send(Rb(i))

Send(end_loop)

P2A_conv()

Send(Chv_to_Aff)

MB1

(Slave)

Read (gi)

ECPD()
ECPA()

Figure 3. 7 Sequence diagram for parallel ECSM implementation with two processors

Then MB0 sends R0(w−1) and R1(w−1) to MB1. With a perfect coordination, the

processors share between them the resulting points R1−b(i) and Rb(i) of the performed operation

at each iteration (i). The process of the main loop (i) of MPL algorithm starts first by shifting

the scalar g and reading the gi value. This operation is executed by MB0. When gi is done, MB0

sends its values to MB1. The master processor executes ECPD() and sends the point Rb(i) to

MB1. In parallel, the slave processor executes ECPA() and sends the point R1−b(i) to MB0. Since

ECPA is more complex than ECPD, MB0waits until MB1 finishes its execution then launches

the next iteration execution (i − 1). When the loop (i) ends, MB0 sends to MB1 the End_Loop

instruction. Finally, MB0 controls the conversion of the resulting point R0(0) to affine

coordinates system according to the expressions (3.5). The required Mexp for the conversion is

executed in parallel mode by both processors using Chv_to_Aff instruction.

3.5.2.3 Triple MicroBlaze-based SW/HW implementation (3MbSW/HW)

This approach corresponds to the implementation of ECSM algorithm with three degrees

of parallelism, where the parallelism is introduced in the third abstraction level of ECSM

hierarchy (see figure 3.1). The hardware architecture of this approach is presented in figure 3.8.

76

DLMB

BRAM 1

ILMB

MB_PLB_1

AccMMM 1

UART Timer

DLMB

BRAM 0

ILMB

MB_PLB_0

AccMMM 0

F
S

L
_
0

_
1

F
S

L
_
1

_
0

(Master)

Microblaze

(MB0)

DLMB

Microblaze

(MB2)
BRAM 2

ILMB

MB_PLB_2

AccMMM 2

FSL_2_0
FSL_0_2
FSL_1_2
FSL_2_1

Microblaze

(MB1)

(Slave)

(Slave)

Figure 3. 8 Hardware architecture of 3MbSW/HW approach

 This design represents a full mesh network topology [79] with three MicroBlaze

processors: MB0, MB1, and MB2. In this kind of topologies, each processor is connected directly

to the other processors. The proposed tasks scheduling between the processors is based on our

study reported in table 3.6. Each processor MBi is dedicated to the execution of the Tsk(i). In

order to accelerate the MMM execution, single AccMMM core is integrated around each

processor (AccMMM0, AccMMM1, AccMMM2). This approach requires the same steps as the

previous approach for ECSM execution. The difference lies in the following points:

- The ECPD and ECPA resulting points of MPL algorithm are obtained sequentially, at each

iteration.

- The three integrated processors intervene for performing the required finite field operations

of ECPD and ECPA in parallel.

The synchronization between the processors is required at the system initialization.

Therefore, the master processor 𝑀𝐵0 sends Sync_Request instruction to the slaves (𝑀𝐵1,𝑀𝐵2)

and waits their replies with Sync_Response instruction. The conversion from affine to

Chudnovsky is ensured by 𝑀𝐵0. The required ECPD for initialization step of MPL algorithm is

carried out by the three processors. The process of the main loop (i) requires the synchronization

between the processors at the beginning of each iteration. After reading 𝑔𝑖 value by 𝑀𝐵0, the

77

three processors coordinate between them for performing ECPD followed by ECPA to obtain

the points 𝑅𝑏(𝑖) and 𝑅1−𝑏(𝑖). The conversion of the resulting point 𝑅0(0) to affine coordinates

system is performed by 𝑀𝐵0. The required Mexp for this conversion is executed in parallel mode

by 𝑀𝐵0 and 𝑀𝐵1.

3.5.2.4 Four MicroBlaze-based SW/HW implementation (4MbSW/HW)

This approach corresponds to the MPSoPC implementation of ECSM algorithm with

four degrees of parallelization. The hardware architecture of this approach is presented in figure

3.9. The proposed design is based on the integration of four MicroBlaze processors: MB0, MB1,

MB2 and MB3. The proposed tasks scheduling between the processors is based on our study

reported in tables 3.2 and 3.4. Each processor MBi is dedicated to the execution of the tasks

Tski. In order to accelerate the MMM execution, AccMMM core is integrated around each

processor. This architecture is composed by two Master/Slave SubSystems: ECPD and ECPA

SubSystems. The first is represented by the processors MB0 and MB1. It ensures the ECPD

coordinates computations based on table 3.2. The second regroups MB2 and MB3. It is dedicated

to ECPA coordinates computations using table 3.3. MB0 and MB2 are the master processors in

ECPD and ECPA SubSystems, respectively. In the entire system, ECPD SubSystem is

considered as the master.

Microblaze

(MB1)

DLMB

BRAM 1

ILMB

MB_PLB_1

AccMMM 1

Microblaze

(MB3)

DLMB

BRAM 3

ILMB

MB_PLB_3

AccMMM 3

F
S

L
_

2
_

3

F
S

L
_

3
_

2

Microblaze

(MB0)

UART Timer

DLMB

BRAM 0

ILMB

MB_PLB_0

AccMMM 0

Microblaze

(MB2)

DLMB

BRAM 2

ILMB

MB_PLB_2

AccMMM 2

FSL_0_2

FSL_2_0

F
S

L
_

0
_

1

F
S

L
_

1
_

0

ECPA SubSystem (Slave)ECPD SubSystem (Master)

Figure 3. 9 Hardware architecture of 4MbSW/HW approach

78

Figure 3.10 presents the sequence diagram of tasks partitioning between the four

processors for performing ECSM.

Send(ACK_Request)

Send(ACK_Response)

Send(R0(w-1),R1(w-1))
Loop

 (i)
Send(gi)

Send(R1-b(i))

Send(Rb(i))

Send(End_Loop)

P2A_conv()

Zb(i+1)^4

axZb(i+1)^4

M

M^2

Xb(i)

S-Xb(i)

Mx(S-Xb(i))

Yb(i)

2xS

4xYb(i+1)^4

T

Send(4xYb(i+1)^2,
Yb(i+1)^2,S)

Send(3xXb(i+1)^2)

Send(Zb(i), Zb(i)^2, Zb(i)^3)

Send(ACK_Request)

Send(ACK_Response)

S1

S2

S

S^2

V

2xV

X1-b(i)

V-X1-b(i)

Sx(V-X1-b(i))

Y1-b(i)

U1

U

U^2

U^3

G

S^2-U^3

U2

Send(U,U2)

Send(S^2-U^3)

Zb(i+1)xZ1-b(i+1)

Z1-b(i)

Z1-b(i)^2

Z1-b(i)^3

Send(Z1-b(i), Z1-b(i)^2,

 Z1-b(i)^3)

Send(U1,U^2)

Send(S1,S^2)

Send(ACK_Request)
Send(ACK_Response)
Send(Xb(i+1),Xb(i+1),Zb(i+1),

Z1-b(i+1),Zb(i+1)^2,Z1-b(i+1)^2)

Send(Mexp_exe)

ECPD SubSystem (Master) ECPA SubSystem (Slave)

Read(gi)

A2P_conv()

Yb(i+1)^2

4xYb(i+1)^2

S

Xb(i+1)^2

3xXb(i+1)^2

Yb(i+1)xZb(i+1)

Zb(i)

Zb(i)^2

Zb(i)^3

ECPD() ECPA()

Send(Xb(i+1),Yb(i+1),Zb(i+1))

Rb(i)(Xb(i),Yb(i),Zb(i),

Zb(i)^2, Zb(i)^3)
R1-b(i)(X1-b(i),Y1-b(i),

Z1-b(i), Z1-b(i)^2, Z1-b(i)^3)

ECPD()

MB 0
(Master)

MB 2
(Slave)

MB 3
(Slave)

MB 1
(Slave)

Figure 3. 10 Sequence diagram for parallel ECSM implementation with four processors

In this approach, the process of ECSM can be considered as identical to the second

approach. The functions executed by MB0 and MB1 of 2MbSW/HW are partitioned and

performed in the present approach by ECPD and ECPA SubSystems, respectively. The

synchronization between both Subsystems is based on using the instructions defined in table 3.8.

At the top level, the data and the instruction transfer is carried out between the masters of each

Subsystem. Initially, the system begins by the synchronization between ECPD and ECPA

Subsystems. Indeed, MB0 sends Syn_Request instruction to MB2 and waits the instruction

response Sync_response of MB2. The conversion from affine to Chudnovsky systems is carried

79

out by MB0. The ECPD of line 2 of MPL algorithm is performed by ECPD Subsystem. The

points R0(w−1) = P and R1(w−1) = 2 × P are transmitted to MB2. At each iteration (i), MB0

starts by shifting the scalar g, reading the gi value and sending its value to MB2 (Task 3). The

operations of lines 5 and 6 are executed in parallel by ECPD and ECPA Subsystems,

respectively. At the end of the loop (i), MB0 sends end_loop instruction to MB2. Finally, MB0

controls the conversion of the resulting point R0(0) to affine coordinates system. The required

Mexp execution is carried out in parallel scheme by MB0 and MB2 using the instruction

Chv_to_Aff.

The execution details of ECPD and ECPA points computations, according to the steps

of tables 3.2 and 3.3, respectively, are described as follows:

1. The system needs the synchronization between the processors of each Subsystem

before computing the coordinates of both points. Therefore, the masters 𝑀𝐵0 and

𝑀𝐵2 send the Sync_Request instruction to the slaves 𝑀𝐵1 and 𝑀𝐵3, respectively.

Then, they wait the instruction response Sync_Response.

2. In order to execute the ECPD, 𝑀𝐵0 sends first the coordinates (𝑋𝑏(𝑖+1) , 𝑌𝑏(𝑖+1) , 𝑍𝑏(𝑖+1))

of the point 𝑅𝑏(𝑖+1) to 𝑀𝐵1. 𝑀𝐵0 and 𝑀𝐵1 execute in parallel the steps 1 and 2 of

𝑇𝑠𝑘0 and 𝑇𝑠𝑘1, respectively. 𝑀𝐵1 sends the result of 3 × 𝑋𝑏(𝑖+1)
2 to 𝑀𝐵0. Then both

processors perform the steps 3 and 4 to get the values of 𝑀2 and 𝑆. 𝑀𝐵1 sends the

results of 𝑌𝑏(𝑖+1)
2 , 4 × 𝑌𝑏(𝑖+1)

2 and 𝑆 to 𝑀𝐵0. The next operations consist of the

execution of the steps 5, 6 and 7 of 𝑇𝑠𝑘0 and 𝑇𝑠𝑘1. The coordinates (𝑋𝑏(𝑖) , 𝑌𝑏(𝑖)) of

the resulting point 𝑅𝑏(𝑖) are computed by 𝑀𝐵0. While, the values of the cordinates

(𝑍𝑏(𝑖), 𝑍𝑏(𝑖)
2 ,𝑍𝑏(𝑖)

3) are obtained from 𝑀𝐵1.

3. For performing ECPA, 𝑀𝐵2 sends first to 𝑀𝐵3 the coordinates

(𝑋𝑏(𝑖+1) , 𝑍𝑏(𝑖+1) , 𝑍𝑏(𝑖+1)
2) and (𝑋1−𝑏(𝑖+1) , 𝑍1−𝑏(𝑖+1) , 𝑍1−𝑏(𝑖+1)

2) of the points 𝑅𝑏(𝑖+1) and

𝑅1−𝑏(𝑖+1), respectively. 𝑀𝐵2 executes the steps 1 to 4 of 𝑇𝑠𝑘2 and sends the results

of 𝑆1 and 𝑆2 to 𝑀𝐵3. In parallel, 𝑀𝐵3 performs the steps 1 to 4 of 𝑇𝑠𝑘3 and sends

the results of 𝑈1 and 𝑈2 to 𝑀𝐵2. Finally, 𝑀𝐵2 computes the coordinates

(𝑋1−𝑏(𝑖) , 𝑌1−𝑏(𝑖)) of the resulting point 𝑅1−𝑏(𝑖) by performing the steps 5 to 9 of 𝑇𝑠𝑘2.

80

Simultaneously, 𝑀𝐵3 executes the steps 5 to 10 of 𝑇𝑠𝑘3 to obtain the coordinates

(𝑍1−𝑏(𝑖), 𝑍1−𝑏(𝑖)
2 , 𝑍1−𝑏(𝑖)

3) of the resulting point 𝑅1−𝑏(𝑖).

3.5.3.5 Six MicroBlaze-based SW/HW implementation (6MbSW/HW)

This approach presents the MPSoPC implementation of ECSM algorithm with six

degrees of parallelism. It this approach, six processors 𝑀𝐵0, 𝑀𝐵1, 𝑀𝐵2, 𝑀𝐵3, 𝑀𝐵4and 𝑀𝐵5 are

integrated. The proposed tasks scheduling between the processors for computing ECPD and

ECPA is based on our study reported in tables 3.4 and 3.5, respectively. Each processor 𝑀𝐵𝑖

ensures the execution of the corresponding task 𝑇𝑠𝑘𝑖. The MMM computations are performed

using six AccMMM cores which are integrated around the processors. The hardware architecture

of this approach is shown in figure 3.11. This architecture is composed by two Master/Slave

Subsystems: ECPD and ECPA Subsystems. Each Subsystem consists of three MicroBlaze

processors. It uses a completely meshed network topology. 𝑀𝐵0 and 𝑀𝐵2 act as masters in

ECPD and ECPA SubSystems, respectively. At the system top level, ECPD Subsystem is

considered as the master Subsystem.

DLMB

BRAM 1

ILMB

MB_PLB_1

AccMMM 1

DLMB

Microblaze

(MB3)
BRAM 3

ILMB

MB_PLB_3

AccMMM 3

F
S

L
_
3

_
2

F
S

L
_

2
_

3

UART Timer

DLMB

BRAM 0

ILMB

MB_PLB_0

AccMMM 0

DLMB

BRAM 2

ILMB

MB_PLB_2

AccMMM 2

FSL_2_0

FSL_0_2

F
S

L
_
0

_
1

F
S

L
_
1

_
0

ECPA SubSystem

(Slave)

ECPD SubSystem

 (Master)

Microblaze

(MB0)

DLMB

Microblaze

(MB4)
BRAM 4

ILMB

MB_PLB_4

AccMMM 4

FSL_4_0
FSL_0_4
FSL_1_4
FSL_4_1

Microblaze

(MB1)

DLMB

Microblaze

(MB5)
BRAM 5

ILMB

MB_PLB_5

AccMMM 5

FSL_5_2

Microblaze

(MB2)

FSL_2_5
FSL_3_5
FSL_5_3

Figure 3. 11 Hardware architecture of 6MbSW/HW approach

In this approach, the steps for performing ECSM algorithm are the same as the previous

approach. The difference is in the execution process of each ECPD and ECPA. Since the

synchronization between the processors of each Subsystem is required for both points

coordinates computations, the masters 𝑀𝐵0 and 𝑀𝐵2 send the Sync_Request instruction to the

81

slaves (𝑀𝐵1,𝑀𝐵4) and (𝑀𝐵3, 𝑀𝐵5), respectively. Then, they wait the instruction response

Sync_Response of the slaves. Figure 3.12 presents the sequence diagram of tasks partitioning

between the six processors for performing ECSM algorithm.

 Send(ACK_Request)

Send(ACK_Response)

Send(R0(w-1),R1(w-1))
Loop

(i) Send(gi)

Send(R1-b(i))

 Send(Rb(i))

Send(End_Loop)

ECPD()

Read(gi)

Zb(i+1)^4

axZb(i+1)^4

M

M^2

Xb(i)

S-Xb(i)

Mx(S-Xb(i))

Yb(i+1)

Yb(i+1)^2

4xYb(i+1)^2

S

2xS

4xYb(i+1)^4

T

Send(T)

Send(2xS)

Xb(i+1)^2

3xXb(i+1)^2

Yb(i+1)xZb(i+1)

Send(3xXb(i+1)^2)

Zb(i)

Zb(i)^2

Zb(i)^3

 Send(ACK_Request)

Send(ACK_Request)
Send(ACK_Response)Send(ACK_Response)

S1

S2

S

S^2

X1-b(i)

V-X1-b(i)

Sx(V-X1-b(i))

Y1-b(i)

U2

U

U^2

U^3

U1
Send(U1)

Send(G, S^2-U^3)

Zb(i+1)xZ1-b(i+1)

Z1-b(i)

Z1-b(i)^2

Z1-b(i)^3

Send(U)

Send(U1,U^2)

Send(ACK_Request)
Send(ACK_Request)

 Send(ACK_Response)

Send(ACK_Response)

Send(Xb(i+1),Yb(i+1))

Send(Xb(i+1),Yb(i+1),Zb(i+1))

MB 4
(Slave)

MB 1
(Slave)

MB 0
(Master)

MB 2
(Slave)

MB 3
(Slave)

MB 5
(Slave)

ECPD SubSystem (Master) ECPA SubSystem (Slave)

P2A_conv()

A2P_conv()

Send(Zb(i), Zb(i)^2, Zb(i)^3)

Rb(i)(Xb(i),Yb(i),Zb(i),

Zb(i)^2,Zb(i)^3)

Send(Z1-b(i), Z1-b(i)^2,

 Z1-b(i)^3)

R1-b(i)(X1-b(i),Y1-b(i),

Z1-b(i), Z1-b(i)^2, Z1-b(i)^3)

Send(X1-b(i+1), Zb(i+1)^2)

Send(Xb(i+1), Z1-b(i+1)^2)

ECPD() ECPA()

Send(Mexp_exe)

V

2xV

G

S^2-U^3

Send(S1,S^2)

Figure 3. 12 Sequence diagram for parallel ECSM implementation with six processors

For the execution of ECPD, 𝑀𝐵0 sends first the coordinates (𝑋𝑏(𝑖+1) , 𝑌𝑏(𝑖+1)) and

(𝑋𝑏(𝑖+1) , 𝑌𝑏(𝑖+1) , 𝑍𝑏(𝑖+1)) of the point 𝑅𝑏(𝑖+1) to 𝑀𝐵1 and 𝑀𝐵4, respectively. The three processors

perform in parallel the steps 1 and 2 of ECPD coordinates computations. 𝑀𝐵4 sends the result

of 3 × 𝑋𝑏(𝑖+1)
2 to 𝑀𝐵0 and executes the steps 3 to 5 of 𝑇𝑠𝑘4. Simultaneously, 𝑀𝐵0 and 𝑀𝐵1

perform the steps 3 to 6 and 3 to 4 of ECPD coordinates computations, respectively. Once 𝑀𝐵0

82

computes the coordinates (𝑋𝑏(𝑖) , 𝑌𝑏(𝑖)) of the resulting point 𝑅𝑏(𝑖), it recovers the coordinates

(𝑍𝑏(𝑖), 𝑍𝑏(𝑖)
2 , 𝑍𝑏(𝑖)

3) of the resulting point 𝑅𝑏(𝑖) carried out by 𝑀𝐵4.

For performing ECPA, 𝑀𝐵2 sends the coordinates (𝑋0(𝑖+1) , 𝑍1(𝑖+1)
2) and (𝑋1(𝑖+1) , 𝑍0(𝑖+1)

2)

to 𝑀𝐵3 and 𝑀𝐵5, respectively. 𝑀𝐵2 and 𝑀𝐵3 performs the steps 1 to 4 of 𝑇𝑠𝑘2 and 𝑇𝑠𝑘3,

respectively. In parallel, 𝑀𝐵5 executes the step 1 of 𝑇𝑠𝑘5 to obtain 𝑈1 and sends the obtained

value to 𝑀𝐵3. Then it performs the steps 2 to 5 of 𝑇𝑠𝑘5. The next operations consist of the

execution of the steps 5 to 8 of 𝑇𝑠𝑘2 and the steps 5 to 6 of 𝑇𝑠𝑘3 by 𝑀𝐵2 and 𝑀𝐵3, respectively.

The master processor computes the coordinates (𝑋1−𝑏(𝑖) , 𝑌1−𝑏(𝑖)) of the resulting point 𝑅1−𝑏(𝑖).

Then it gets the coordinates (𝑍1−𝑏(𝑖), 𝑍1−𝑏(𝑖)
2, 𝑍1−𝑏(𝑖)

3) of the resulting point 𝑅1−𝑏(𝑖) from 𝑀𝐵5.

3.6 Implementations results and discussion

The hardware architectures of the proposed embedded systems for ECSM computation

were implemented in Xilinx Virtex-5 XC5VLX50T Genesys development board [80] using XPS

13.2 (Xilinx Platform Studio) environment. Our AccMMM core was coded in VHDL language,

using Xilinx ISE design suite 13.2. The DSP48E cores and the RAM blocks of AccMMM core

were generated by Core Generator tool of ISE. To guarantee the correct behavior of the

integration of our AccMMM core in the proposed embedded systems, functional simulations

and comparisons with mathematical models were made respectively using ModelSim SE 64

10.0c and Eclipse IDE for Java tools.

Our main goal is to propose an efficient implementation of ECSM computation that

achieves the best trade-off between flexibility, security, speed and area. In the following, we

present the performance of the proposed ECSM implementations in terms of area occupation

and timing execution. The results are given for two different security-levels with bit-lengths of

256-bit and 521-bit.

3.6.1 Occupied area

Table 3.9 shows the required hardware resources occupied by our embedded systems on

the targeted FPGA circuit. These results are reported in terms of occupied slices, of selected

block RAMs and of DSP48E cores [37]. The collected results show that each design requires

more hardware resources compared to the previous one. The growth in area was expected since

that this parameter depends on the number of the integrated MicroBlaze processors and

AccMMM cores. Compared to 1MbSW/HW, the occupied area increases approximately by two,

83

three, four and six times in 2MbSW/HW, 3MbSW/HW, 4MbSW/HW and 6MbSW/HW

approaches, respectively.

Table 3. 9 Hardware resources requirements of our implementations

Approach Security-levels

(bits)

Occupied

Slices

Block

RAMs

DSP48E

Cores

1MbSW/HW 256

521

1474

1548

11

12

8

8

2MbSW/HW 256

521

2739

2895

22

24

16

16

3MbSW/HW 256

521

3727

3949

33

36

24

24

4MbSW/HW 256

521

4737

4819

44

48

32

32

6MbSW/HW 256

521

6259

6533

66

72

48

48

We have implemented the basic system without AccMMM core in order to evaluate the

cost of the MMM accelerator. This latter is presented in table 3.10.

Table 3. 10 Hardware resources requirements AccMMM core

Data-path (bits) Occupied Slices Block RAMs DSP48E Cores

256

521

434

508

7

8

8

8

3.6.2 Timing execution

The temporal performances of the AccMMM core to perform 256-bit and 521-bit MMM

using are shown in table 3.11.

Table 3. 11 Temporal performances of AccMMM core

Data-path (bits) F (MHZ) ∆𝑀𝑀𝑀 (µs)

256

521

100

100

5.4

10.7

Table 3.12 presents the execution time (𝑡𝐸𝐶𝑆𝑀) to complete a single ECSM computation.

It includes:

84

- The conversion of the coordinates (xP, yP) of the point P to (XP, YP, ZP).

- The execution of ECSM using MPL algorithm in Chudnovsky system.

- The conversion of the coordinates (XC, YC, ZC) of the resulting point C to affine system

(xC, yC).

𝑡𝐸𝐶𝑆𝑀 is computed by the multiplication of the necessary Clock Cycles Count (CCC)

with the clock period 𝑡𝑐𝑙𝑘 = 1/𝑓𝑚𝑎𝑥. 𝑓𝑚𝑎𝑥 is the maximum frequency of our embedded systems.

CCC is collected by enabling and disabling the Timer at the beginning and at the end of ECSM

process, respectively. In the proposed SW/ HW implementation approaches, the timing report

showed that 𝑓𝑚𝑎𝑥 that can be achieved is about 100 Mhz. This frequency is determined by the

critical path of the MMMu integrated within the AccMMM core. In order to analyze the impact

of the parallelization on the performance of ECSM execution, a comparison between

1MbSW/HW and the parallel implementation approaches is performed using Speedup metric

[81]. This latter is calculated by expression (3.27). 𝑡𝐸𝐶𝑆𝑀_1𝑀𝑏𝑆𝑊/𝐻𝑊 is the execution time of

ECSM computation in 1MbSW/HW. 𝑡𝐸𝐶𝑆𝑀_𝑘𝑀𝑏𝑆𝑊/𝐻𝑊 represents the execution time of ECSM

computation in the proposed parallel approaches.

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 = 𝑡𝐸𝐶𝑆𝑀_𝑛𝑏_𝑀𝑏𝑆𝑊/𝐻𝑊/𝑡𝐸𝐶𝑆𝑀_1𝑀𝑏𝑆𝑊/𝐻𝑊 (3.27)

Table 3. 12 Temporal performances of the proposed implementations

Approach Security-

level (bits)

Frequency

(MHZ)

Execution Time

(ms)

SpeedUp

1MbSW/HW 256

521

100

100

48.72

204.50

-

-

2MbSW/HW 256

521

100

100

26.87

115.00
1.81

1.78

3MbSW/HW 256

521

100

100

19.98

81.42

2.43

2.51

4MbSW/HW 256

521

100

100

16.29

71.57

2.99

2.86

6MbSW/HW 256

521

100

100

14.72

65.11

3.30

3.14

Through these results, we note that the use of two parallel processors speedup the

execution time by 1.81 and 1.78 times for the security levels of 256-bit and 521-bit, respectively.

85

Moreover, in the second approach, the speedup metric increases to 2.43 and 2.51 for 256-bit and

521-bit ECSM computation, respectively. Furthermore, the integration of four parallel

MicroBlaze processors increases the speedup to 2.99 and 2.86 for 256-bit and 521-bit,

respectively. Finally, the speedup achieved by six parallel processors is about 3.3 and 3.14 for

the two security levels, respectively.

3.6.3 Performance comparisons with some recent works

To evaluate the merit of this work, we compare our designs with relevant works in the

field. For a fair comparison, we tried to collect the works that use the same FPGA family as the

one used in our work. Remind that our main aim is not the optimization of the execution time or

the occupied area, but to achieve the best tradeoff between flexibility, speed, area and security.

Tables 3.13 and 3.14 show the performance comparison of our implementations with

some recent FPGA-based ECSM designs for 256-bit and 521-bit, respectively. The comparisons

include the execution time, the required hardware resources and the design efficiency. This latter

is calculated by expression (3.28).

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐷𝑎𝑡𝑎𝑝𝑎𝑡ℎ

𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑎𝑟𝑒𝑎×𝑡𝐸𝐶𝑆𝑀
 (3.28)

Among the listed works, the implementations [27, 29, 30] target the recommended NIST

prime curves. The reason behind this recommendation is the capability of fast modular

reduction. These works provide high timing performance implementations. However, the

proposed designs support only NIST curves which are not suitable for ECC applications that do

not follow NIST recommendations. Compared to these works, the major advantage of our

designs is the flexibility of the cryptosystem which support any arbitrary prime curves.

The proposed ECPs in [25, 27, 29, 30] present the best execution time performance but

with high number of slices. In terms of efficiency, the ECPs from [29, 30] demonstrate the best

performance, where, single slice treats more than 13 bits per second for 256-bit NIST curve.

These results could be justified by the reason that ECSM is implemented completely in

hardware. In fact, these ECPs are suitable for embedded systems on high-cost FPGA circuits

that focus on the high speed without considering the area constraint, at the contrary of our

designs that promote the trade-off between flexibility, speed and area. Thus, it is clearly evident

that our implementations outperform all listed works for low area requirements systems. They

achieve a good timing performance with less slices.

86

Table 3. 13 256-bit ECSM Performance comparisons with recent works

Ref Approach Frq

(MHZ)

Area

(slices)

TECSM

(ms)

Efficiency

(bit/s/slice)

Devices

1MbSW/HW SW/HW 100 1474 48.72 3.56 Virtex-5

2MbSW/HW

3MbSW/HW

SW/HW

SW/HW

100

100

2739

3727

26.87

19.98

3.47

3.43

Virtex-5

Virtex-5

4MbSW/HW SW/HW 100 4737 16.30 3.31 Virtex-5

6MbSW/HW SW/HW 100 6259 14.72 2.77 Virtex-5

[26] SW/HW 75 1800 166 0.38 Virtex-5

[28] SW/HW 39.36 2237 200 0.57 Virtex-5

[25] HW 54 11953 6.26 3.41 Virtex-4

[27] HW 66.3 10200 6.67 3.76 Virtex-5

[30] HW 160 8653 2.26 13.1 Virtex-5

[29] HW 100 19540 0.98 13.36 Virtex-6

B. Baldwin, R. Goundar, R. Hamilton, M. Mark and P. William present Hw, SW and

SW/HW implementations of various co-Z algorithms for ECSM on Virtex-5 [26]. The point

multiplication was performed using Montgomery ladder and the Joye’s double-add algorithms,

while, point addition and point doubling was performed by various projective systems. The

studied algorithms are implemented for three general prime field sizes, namely, 192, 256 and

521 bits. Their SW/HW architecture is based on implementing single dedicated multiplier

around MicroBlaze processor through a Fast Simplex Link (FSL). The internal architecture of

this multiplier is designed using carry propagate adders and follows the process described in

Montgomery multiplication algorithm. The multiplier consumes between 334-904 slices. It runs

at 100 MHz in the case of the 192-bit implementation and 75 MHz for both the 256-bit and 521-

bit implementations. This architecture does not involve any parallelism in ECSM computation.

It is designed for low-cost FPGA circuits for the application that promote the flexibility and low-

area consumption. For equitable comparison, the performance of this approach was compared

with our first implementation. It is clearly evident that 1MbSW/HW achieves fast time execution

with less area consumption in both 256-bit and 521-bit field sizes.

J, Balasch, B. Gierlichs, K. Ja and I. Verbauwhede propose SW/HW implementations on

Xilinx Virtex-5 for prime 256-bit ECSM [28]. The main aim of this work is the comprehensive

analysis of many implementation options with respect to implementation cost and attack

resistance on a single common platform. Thus, four SW/HW implementation approaches based

87

on 8051 embedded microcontroller and hardware coprocessor accelerators are proposed. Each

design supports more functionalities in hardware than the previous one. The first coprocessor

supports only field multiplication, while the second supports all the required field arithmetic

(addition, subtraction and multiplication). The authors noted that the bottleneck of these

approaches was the amount of data/instruction exchanging between the processor and the

coprocessors. Therefore, the third approach was proposed to solve this limitation by computing

ECPA and ECPD on the coprocessor. they proposed to implement in the third approach the

point arithmetic. In the fourth approach, ECSM is performed completely in the coprocessor.

Moreover, they proposed in the fourth approach to implement all scalar multiplication

algorithms in hardware and remove the need for software control during scalar multiplication.

In their designs, the point multiplication is performed by three algorithms: left-to-right, Double-

and-add-always and Montgomery Power Ladder. The point arithmetic is executed in projective

coordinate system. The proposed designs consume between 2010 and 2525 slices. The first

approach takes about 400ms to complete ECSM computation, while the second approach the

operation requires about 120ms. The authors noted that the implementations three and four

require substantially less time to process point operations and a scalar multiplication. However,

they did not mention their execution times. It obviously clear that our implementations provide

better delays using fewer slices.

S. Ghosh, D. Mukhopadhya and D. Roychowdhury [25] present efficient ECC hardware

processor architecture. The proposed processor is composed by multiple hardware

programmable GF(p) arithmetic unit (PGAU) that perform high speed finite field addition,

subtraction, multiplication, inversion, and division operations. The PGAU is programmable in

the sense that it supports all primes smaller than the given lengths (192, 224, 256 bits). The

multiplication is based on interleaved multiplication algorithm, while the division is performed

using the binary inversion algorithm. ECSM is performed by MPL algorithm and affine

coordinates system. To exploit the inherent parallelism in MPL algorithm, the authors propose

to integrate two PGAU in the presented ECC processor as parallel accelerators. The first one is

used to compute ECPA and the second for ECPD. The proposed parallel architecture was

implemented on Virtex-2, Spartan-3 and Virtex-4. The performance of Virtex-4 implementation

complete parallel 256-bit ECSM execution in 6.26ms but with using 11953 slices. The required

number of slices is huge and only high-cost FPGA circuits can support it. Thus, the proposed

processor lacks the exportability on low-cost FPGA circuits at the contrary of our designs that

offers the flexibility and the exportability on large FPGA circuits. In terms of efficiency, our

88

designs provide the same performance but with more software coding to promote the flexibility.

Finally, our designs could perform ECSM over any field size which no the case in their design.

H.Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis and S. Stouraitis propose an

exportable application-specific-instruction-set ECC processors based on redundant signed digit

representation [27, 30]. The proposed ECC processors employ Karatsuba–Ofman method to

achieve high throughput multiplication. They employ also an efficient modular adders and high

throughput modular dividers. The proposed processors support the recommended P192 and

P256 NIST curves. In fact, the processor from [30] is an optimized version of the work [27],

where extensive pipelining techniques for Karatsuba–Ofman method is introduced to speed up

the multiplication. Both processors were implemented in Xilinx Virtex-5 FPGA. The main

advantage of these processors is their exportability on various FPGA devices from different

vendors since that none of the macros or embedded blocks of specific FPGAs fabric are utilized

in the internal architecture. The optimized version operates at 160 MHZ to perform a single

point multiplication for NIST P256 curve in 2.26 ms and requires 8653 slices. In terms of

efficiency and timing execution, the performance of this processor outperforms our designs but

with sacrificing the flexibility and the area. Moreover, the processor cannot be employed in

applications that targeted general prime curve because it supports only NIST curves. It lacks

also the flexibility constraint since ECSM in implemented completely in hardware.

Table 3. 14 521-bit ECSM Performance comparisons with recent works

Ref Approach F

(MHZ)

Area

(slices)

TECSM

(ms)

Efficiency

(bit/s/slice)

Devices

1MbSW/HW SW/HW 100 1548 204 1.64 Virtex-5

2MbSW/HW SW/HW 100 2895 115 1.56 Virtex-5

3MbSW/HW SW/HW 100 3949 81.4 1.85 Virtex-5

4MbSW/HW SW/HW 100 4819 71.6 1.51 Virtex-5

6MbSW/HW SW/HW 100 6553 65.1 1.22 Virtex-5

[26] SW/HW 75 2205 681 0.34 Virtex-5

[28] HW 100 19540 3.9 3.35 Virtex-6

Authors of the work [29] present high speed hardware ECC processor that supports five

NIST recommended curves. ECSM is performed by MPL algorithm and projective system. The

internal architecture of the proposed processor is based on novel arrangement of modular

arithmetic computations and associated data transfers into parallel atomic blocks to resist side-

channel attacks during scalar multiplications. The atomic blocs are designed to perform ECPA

89

and ECPD in parallel mode. A single atomic block consists of two modular multiplications and

four modular additions/subtractions. The implementation of the hardware processor on Virtex-

6 FPGA runs at 100 MHz and requires between 0.30 ms (192-bit ECC) and 3.91 ms (521-bit

ECC) to perform a typical scalar multiplication on NIST curves. It uses 11.2K slices (32.9K

LUTs), 289 DSP48E blocks, and 128 RAMB36 blocks. The proposed processor performs

ECSM significantly faster than our designs but with using huge number of RAMs and DSP48E

Cores. This constraint limits the integration possibility of the proposed processor only to the

boards with very high resources FPGAs, whereas our designs could be highly exploited in large

FPGA circuits.

3.7 Conclusion

In this chapter, efficient MicroBlaze-based parallel architectures of ECSM computation

for embedded Elliptic Curve Cryptosystem on Xilinx FPGA is presented. In the proposals,

ECSM is performed by using MPL algorithm and projective coordinates system. This

combination allows the performance improvement of ECSM execution not only by reducing the

computation complexity of ECPA and ECPD but also by offering high parallelization

possibilities in several hierarchy systems. First of all, we proposed to implement ECSM without

any parallelism in order to design minimum hardware resources ECC system dedicated for small

FPGAs. This approach corresponds to 1MbSW/HW approach, where the critical finite field

multiplication in hardware accelerator unit (MMMu) is based on a high-radix MMM algorithm

around a single MicroBlaze processor. The efficiency of the MMMu is the exploitation of the

DSP48E cores available on Xilinx FPGAs. To exploit the inherent parallelism in ECSM

computations, four parallel architectures based on the integration of multiple MicroBlaze

processor are proposed. Each design supports more optimizations compared to the previous one.

They differ from the number of processors used. The task partitioning between the integrated

processors is based on our study on the impact of parallelization on ECSM computation.

The proposed architectures were implemented on Virtex-5 FPGA circuit. The first

approach computes 256-bit sequential ECSM in 48.72 with only 1474 slices, 11 RAMs, and 8

DSP. While the parallel approaches perform 256-bit parallel ECSM between 26.87 and 14.72

ms but with extra area. They require between 2739 and 6533 slices, 22 and 72 RAMs, and

between 16 and 48 DSP48E cores. The efficiency of our designs is roughly convergent and

stable. Therefore, we believe that all the proposed implementations could be highly exploited as

efficient ECC designs for embedded secure systems that require the trade-off between flexibility,

90

execution time and area consumption. In the next chapter, we will investigate about the

possibility exploitation of the proposed architectures on secure IoT applications based on TLS

protocol.

91

CHAPTER 4
ZYNQ-BASED IMPLEMENTATION OF TLS

4.1 Introduction

Security management for IoT applications is a critical research field, with the

performance variation over the very different IoT devices. As it is difficult to regulate PKC

performance for all IoT devices, we propose to design low-cost IoT coordinators/gateways for

secure IoT data collection. The main role of the coordinators is to collect data from IoT agents

and send them to cloud servers. This information has to be securely sent through the internet.

Thus, we propose to secure the communication between the coordinators by using the TLS

handshake protocol. This latter is based on symmetric protocols, hash functions and PKC

schemes to maintain data protection and privacy. In the proposed designs, low-cost and high-

performance should be considered since the coordinators could be employed with a large number

of IoT systems that use many IoT agents.

Recent low-cost FPGA devices are becoming a very useful platform for implementing

efficient TLS protocols with the integration of ARM hardware processor. This later enables the

achievement of an optimal trade-off between flexibility, area, and speed. Thus, we propose a

carefully designed SW/HW implementation approach of high-performance TLS execution for

efficient IoT coordinators on low-cost recent FPGA circuits. The proposed SW/HW partitioning

is based on performing AES symmetric algorithm and SHA-2 hash function in SW by ARM

processor. While an area-optimized hardware ECC coprocessor is used to speed up the execution

of the required ECC schemes in TLS protocol. The used coprocessor allows alleviating the

processor from the heavy ECSM operation in ECC protocols.

In this chapter, we present the proposed high-performance coordinators/gateways on

low-cost SoC-FPGA devices for secure IoT data collection [82]. First, we present the global

scenario of the targeted IoT secure application with TLS protocol. Then, we describe the internal

architectures of the used ECC hardware accelerator core and the proposed Zynq-based IoT

coordinators. Finally, we demonstrate the experimental results and the performance comparison

with some recent works.

92

4.2 Global Scheme of the targeted IoT application

Figure 4.1 presents the Global Scheme of the targeted IoT application. The IoT Client

coordinators (IoTC1, IoTC2) collect data from IoT agents (A1, A2, A3, A4, A5, A6) and send

it to the server through the Internet. The IoT Server coordinator (IoTS) acts as an interface

between the IoTCs and the server’s memory, where these data will be stored. The secure data

transfer between IoTCs and the IoTS is ensured by the TLSv1.2 protocol, in order to protect the

information from unauthorized users. In fact, TLSv1.2 allows generating a shared secret key

between the IoTS and each IoTC (Key1, Key2) that could be used to encrypt/decrypt data based

on private-key algorithms.

Internet

A1

A2

A3

A6

A5

A4

Memory

IoTC 1 IoTC 2

IoTS

Key 1Key 2

Key 1Key 2

Figure 4. 1 Global Scheme of the targeted IoT application.

To achieve our main aim, we present a carefully designed SW/HW implementation of

the client/server TLSv1.2 protocol for IoTCs and IoTSs, which is implemented on low-cost

FPGAs/SoCs suitable for IoT applications. The main idea is to implement the core operation of

ECC, which is ECSM, within a scalable hardware coprocessor accelerator and to integrate it

around an ARM microprocessor. Meanwhile, the control of ECDHE and ECDSA protocols, the

execution of the AES-128 algorithm, HMAC and SHA256 functions are ensured by the ARM

microprocessor.

TLSv1.2 protocol allows generating a shared private key between server and client for

each session based on cipher suite agreed during the TLS handshake. A demonstration of the

TLS handshake between client and server is shown in Figure 1.7. The negotiations are based on

sending and receiving records, which are blocks of data. Initially, TLS1.2 begins with

ClientHello() (step 1), in which the client provides the cipher suite of the supported

cryptographic algorithms and compression methods. It also provides random client data

93

(Randclient) to be used later in the handshake. Then, the server replies with ServerHello() (step

2) by providing random server data (Randserver) and the list of the selected cryptographic and

compression methods to be used during the TLS process.

IoTC IoTS

ClientHello(RandIoTC)

ServerHello(RandIoTS)

(1)

(2)

(3)
(4)

Send(Ps, Sign(Ps))

(5)

Send(failed)

alt

[else]

[ECDSA_check == False]

Send(Pc)

(6)(6)

Send (AES(ping))

Send (AES(pong))

(7) (7)

Figure 4. 2 Transport Layer Security (TLS) Handshake demonstration

Once the Hello step is done, the server and the client calculate in parallel a pair of

private/public ephemeral keypairs (steps 3 and 4) using an EC-based keypair generation

algorithm and send to the other party the public key. The server uses ECDSA to sign its

ephemeral public key (Ps) in Step 4 and sends the signature to the client. On the other side, the

client verifies the received signature using the ECDSA verification algorithm (Step 5). If the

verification is successful, the client sends its public key (Pc). Then, a 384-bit shared secret key

will be generated (Step 6) by the combination of ECDHE and HMAC-SHA256. The first

algorithm provides a 256-bit PreMasterSecret key, while, the second generates a 384-bit

MasterSecret key. From the latter, two 128-bit (client_write_key, server_write_key) secret keys

are extracted. Finally, in order to check if the handshake was not tampered with (Step 7), the

client and server encrypt “ping” and “pong” using the AES algorithm by server write key and

client write key, respectively. Then, they exchange the encrypted messages, and each part

decrypts the received message using the appropriate key to retrieve “ping” and “pong” messages.

Otherwise, the TLS handshake process has been corrupted.

94

4.3 ECC Accelerator Design

As we saw previously, several fast and regular ECSM algorithms are reported in the

literature [61]. In this work, the ECSM is performed based on the MPL algorithm over the

projective coordinate system, making field operations explicit [4].

Algorithm 4. 1 Montgomery ladder over projective coordinates, making field operations
explicit.

Inputs: k=km-1km-2…k1k0, P(x,y), domain parameters (m, a, b, G, n, h)

Outputs: k  P = (x3, y3)

1. X1 = x, Z1 = 1, X2 = x4 + b, Z2 = x2

2. P1 = P, P2 = 2P \\ ECPD

3. for i = m − 2 downto 0 do

4. If (kI == 0) then

5. T = Z2 ; Z2 = (X1T + X2 Z1)
2 ; X2 = x Z2 + X1 X2 Z1 T \\ ECPA

6. T = X1 ; X1 = T4 + b Z1
4 ; Z1 = T2 Z1

2 \\ ECPD

7. else

8. T = Z1 ; Z1 =(X1Z2 + X2 T)2 ; X1 = xZ1 + X1X2Z2T \\ ECPA

9. T = X2 ; X2 = T4 + bZ2
4; Z2 = T2Z2

2 \\ ECPD

10. end if

11. end for

12. x3 = X1Z1
(−1)

13. y3 = (x + x3) [(X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)](xZ1Z2)
(−1) + y

This algorithm uses the binary representation of the scalar k as it is shown in Algorithm

4.1. The computation of ECSM based on this algorithm requires three steps: initialization (lines

1 and 2), main loop (lines 3 to 11) and calculation of the resulting point coordinates (lines 12

and 13). The first step performs two field squarings (line 1) and a single ECPD (line 2). The

second step performs, at each iteration, ECPA (lines 5 and 8) followed by ECPD (lines 6 and 9).

These operations are executed in the projective system by performing a set of field additions,

field multiplications and field squarings. In the final step, two field inversions are required (lines

12 and 13) to obtain the coordinates (𝑥3, 𝑦3) of the resulting point.

The internal architecture of the proposed ECC accelerator for ECSM computation based

on Algorithm 4.1 is presented in Figure 4.3.

95

Figure 4. 3 Hardware architecture of ECC (Elliptic Curve Cryptosystems) accelerator

The proposed architecture consists of three finite field arithmetic units over GF(2233) (an

adder, a squarer and a multiplier, called RNOKOA11C), dual-port RAM (dp_RAM), a 233-bit

register (reg_k), a control unit, and three multiplexers (mux). The field units ensure the

computations of field addition, field squaring and field multiplication, respectively. The

dp_RAM block is used for storing the coordinates (𝑥, 𝑦) of the point 𝑃, the intermediate results

of Algorithm 4.1 and the coordinates (𝑥3, 𝑦3) of the resulting point. Meanwhile, the reg_k

register is used to store the scalar value k to manage the main loop. It is also useful as temporary

storage of (x,y) values before transferring them to the RAM. The control unit is responsible for

the coordination between the integrated components of the internal architecture for performing

ECSM. The proposed architecture provides an excellent trade-off between area and

performance, based on the following aspects:

1. Exploiting the block RAMs available in FPGA devices within the internal

architecture of the ECC accelerator instead of using registers, thus saving Look-Up

Tables (LUT) resources at the expense of introducing some extra clock cycles.

2. Integrating the I/O interface into the ECC processing unit, taking advantage of the

displacement reg_k.

3. Avoiding the use of a dedicated field divider/inverter, by means of using the Itoh-

Tsujii algorithm (ITA) [3], thus requiring only the multiplier and the squaring units.

In this case, our ECC accelerator needs 353 clock cycles for performing 231

squarings and 10 multiplications required for GF(2233) field inversion execution. This

96

performance overhead is assumable, taking into account that only two field

inversions are required.

It is worth mentioning, that the input (i_port) and the output (o_port) ports of the

proposed ECC accelerator are 32-bit wide. It means that this ECC accelerator can be easily

integrated around various 32-bit microcontrollers through 32-bit buses.

4.3.1 Field Multiplier Unit

As shown in Algorithm 4.1, the field multiplier is the one having the most noticeable

effect on the performance of the scalar-point multiplying, thus requiring a careful design. The

RNOKOA11C multiplier unit is implemented based on an improvement of the Karatsuba–

Ofman Algorithm (KOA) [83], named Non-Overlapping KOA (NOKOA) multiplier [84]. The

NOKOA multiplier allows performing field multiplication in only one clock cycle, thus enabling

high-performance ECC accelerators. However, area requirements are excessive for its

implementation on low-cost devices [52]. Two modifications of NOKOA, requiring 3 and 9

clock cycles for completing a field multiplication, are presented in [52]. These modifications,

named NOKOA3C and NOKOA9C, respectively, require less area but are not suitable for use

in our ECC scalar-point multiplication unit, due to the lack of output registers. In fact, the use

of RAM blocks instead of registers makes it necessary to register the result provided by the

multiplier. Figure 4.4 shows the proposed architecture of the RNOKOA11C multiplier, which

meets the requirements imposed by the use of RAM as registers. It presents a recursive structure,

thus consisting of a lower-level NOKOA multiplier, a control unit, two multiplexers, two XOR

networks, and the RT, RE, RO and MO registers. This new multiplier requires 11 clock cycles

for performing a field multiplication.

Figure 4. 4 Internal architecture of RNOKOA11C field multiplier unit

97

Table 4.1 shows synthesis results comparing NOKOA9C [52] to RNOKOA11C

multipliers over GF(2233) finite field. These results have been obtained using Xilinx ISE 14.4

over Virtex-5 devices (xv5vlx110-3f1760). As it is shown, the number of LUTs is almost the

same, because the additional register required by RNOKOA11C is included in the LUTs

occupied by the XOR network. Small differences in the number of LUTs and delay are due to

optimizations performed by the software tool. Regarding the number of clock cycles,

RNOKOA11C requires 11 clock cycles instead of the 9 clock cycles required by NOKOA9C,

but it fits the requirements for being the multiplier unit of our ECC accelerator, which has been

named MP_ECC_B-233_RNOKOA11C.

Table 4. 1 Synthesis results for NOKOA9C and RNOKOA11C over GF(2233) on Virtex- 5
devices.

Design

LUTS

Max.

Freq.

(MHz)

Cycles

Total

Time

@50MHz

Total Time

@Max.

Freq.

NOKOA9C 2366 214 9 0.18 µs 42 ns

RNOKOA11C 2344 205 11 0.22 µs 54 ns

4.3.2 Implementation of MP ECC_B-233_RNOKOA11C

In order to check the suitability of MP_ECC_B-233_RNOKOA11C for medium-

performance applications, such as IoT coordinators/gateways, it has been implemented in a

MiniZed board [85] with a Zynq 7Z007S device from Xilinx. This low-cost device includes a

single-core ARM Cortex-A9 microprocessor and 14400 LUTs of programmable logic for

software/hardware co-design. The software tool used for this implementation has been Vivado

2018.2 from Xilinx. Also, for comparison purposes, it has been implemented on Virtex 5 devices

using Xilinx ISE 14.4. Implementation results are presented in Table 4.2, where MP_ECC_B-

233_NOKOA11C is compared to other ECC scalar-point multipliers with similar area. From

this table, it is evident that this new design requires less than half the area of other

implementations, while providing similar performance figures. Thus, it is perfectly suitable for

the target application. It should also be noted that our design includes a 32-bit I/O interface,

while the other alternatives do not include such feature.

98

Table 4. 2 MP_ECC_B-233_RNOKOA11C implementation results and comparison to other
implementations.

Design #LUTS #Cycles
Time

@50MHz
Device

RNOKOA11C 3203 20637 413 µs Virtex-5

RNOKOA11C 3395 20637 413 µs Zynq

[52](NOKOA9C) 6223 14013 315 µs Zynq

[86] 13396 5890 117 µs Virtex-4

[87] 7895 5924 118 µs Virtex-7

[88] 13244 8193 163 µs Virtex-5

4.4 FPGA Implementation of TLS Cryptosystem

Among the considered TLS cipher-suites, HMAC, SHA256 and AES are characterized

by their high-performance implementation due to relative mathematic simplicity. ECDHE and

ECDSA are characterized by their high security but are considered the most time/area

consuming as they involve complex operations over large prime numbers. To achieve the best

trade-off between flexibility, area and speed, a SW/HW co-design implementation approach is

presented in this work. The proposed partitioning is based on the implementation of ECSM

within a compact ECC hardware accelerator for faster execution. The dedicated core is

integrated around an embedded ARM microprocessor. The rest of the required operations for

TLS negotiation are managed in SW by the processor. Figure 4.5 presents the hardware

architecture of the proposed embedded system. The hardware architecture was implemented on

the Xilinx Zynq-7Z007S SoC device in the Avnet Minized Dev board [85] for both IoTS and

IoTC coordinators. As commented in the previous section, this low-cost device consists of a

single-core ARM Cortex-A9 microprocessor, able to run at up to 666.666 MHZ, along with 100

block RAMs and 14400 slice LUTs for software/hardware co-design. The MiniZed board also

includes a Murata “Type 1DX” LBEE5KL1DX wireless module for wireless communications.

The proposed architecture contains a single Cortex-A9 ARM microprocessor (PS), the

MP_ECC_B-233_RNOKOA11C accelerator, an AXI interconnect bus and a Wireless_mgr

controller. The latter is used for the WiFi connection of the IoTS and IoTC designs with

gateways that provide internet access. The AXI bus allows 32-bit data/instruction exchanges

99

between the ARM microprocessor and the ECC accelerator. It runs with a 50 MHz clock. The

ARM processor ensures not only the control of the ECC accelerator but also of all TLS

processes. The roles assigned to the processor are defined as follows:

- Generation of 256-bit random numbers.

- Execution of AES, HMAC and SHA256 functions.

- Computation of finite field inversions, multiplications and additions required for ECDSA.

- Control of the MP_ECC_B-233_RNOKOA11C accelerator.

- Control of ECDHE and ECDSA algorithms.

- Control of internet communication between the IoTS and the IoTCs.

Figure 4. 5 Hardware architecture of IoTS and IoTC designs

4.4.1 ECC Accelerator Integration around ARM Processor

For connecting the ECC accelerator with the ARM processor through the AXI bus, IPIF

is used for 32-bit data/instruction exchanging, as is shown in Figure 4.6. The IPIF is configured

with four 32-bit registers: InsIn, DataIn, InsOut and DataOut. The processor uses a set of

instruction codes through the InsIn register to manage the ECC core. The second register is used

to transfer the digits of the input point coordinates and the scalar from the ARM to the req_k

register. The control unit makes use of the third register to notify the processor that the

100

coordinates of the resulting point from the ECSM computations are ready. The last register

ensures the transfer of the resulting point coordinates to the processor.

Figure 4. 6 Integration of ECC accelerator with AXI bus

To perform ECSM, three steps are required for each execution, namely, ECC core reset,

the transmission of the inputs, and retrieving of the resulting point coordinates. Before starting

the ECSM computation, the ARM processor resets the ECC accelerator by sending the

0x000000001 instruction. After that, the control unit stores sixteen 8-bit digits of the ECSM

input point coordinates followed by eight 8-bit digits of the scalar transmitted from the processor

to the dp_RAM. It must be noted that the processor transmits the 0x000000002 instruction after

each digit to prepare the control unit to receive the next digit. Once twenty-four 8-bit digits of

the inputs are loaded, the control unit manages the field units to perform ECSM computations.

During this time, the InsOut register value is 0x000000000. When the ECC accelerator

completes the execution, the control unit changes the InsOut register value to 0x000000003 in

order to notify the processor that the ECSM execution is done, then sends sixteen 8-bit digits of

the resulting point coordinates. The processor uses the 0x000000004 instruction after receiving

each digit to order the control unit to send the next digit.

Table 4.3 summarizes the hardware resources occupied by the ECC accelerator and the

proposed architecture for IoTS and IoTC coordinators on the Zynq-7Z007S device. The results

are shown in terms of slice LUTs and selected RAM blocks.

101

Table 4. 3 Hardware resources requirements of the proposed architectures

Design # LUTS RAMs

ECC

accelerator
3395 7

IoTS 8503 9

IoTC 8503 9

From Table 4.3, it must be noted that the difference in hardware resources between IoT

designs and the ECC accelerator is 5108 LUTs and 2 RAMs. This is due to the AXI interconnect

bus and the wireless_mgr controller. The proposed ECC accelerator requires only 24% of the

total available LUTs in the targeted device. Meanwhile, the overall design occupies 60% of

them. Moreover, the proposed architecture requires only 9 block RAMs.

4.4.2 Software Development

The proposed IoTS and IoTC coordinators run on Embedded Linux by loading the Linux

boot image for Zynq (BOOT.bin) and the Linux system image (image.ub) files to the QSPI flash

and the eMMC memory, respectively, both available on the board. These files are generated by

means of Xilinx Petalinux 2018.2 tool based on the hardware description file (bitstream.bit) of

the proposed hardware architecture. The idea behind the use of embedded Linux is that the OS

allows flexible use of the WiFi module for internet communication between the IoTS and IoTCs

using TCP/IP client/server sockets. Figure 4.7 summarizes the software development required

to implement the TLS1.2 protocol.

Static Shared Library
(AES_ECC.so)

AES.cECC.c

Encryption()
Decryption()

Client/Server_TLS.py

socket.socket
()

random.rand
range()

hmac.new()
hashlib.sha256()

ECDHE()ECDSA()

ECSM_drivers.c
MI()

MM()
MA()

VR_adr_hw()
Reset_hw()

Send_Crd_sclr()
Get_result()

Figure 4. 7 TLS software functions

102

To implement TLS1.2 protocol between the IoTS and IoTC coordinators, Server_TLS.py

and Client_TLS.py python codes have been developed for each design, respectively. Python has

been used to exploit socket, random, hashlib and hmac libraries for TCP/IP socket

communication, random generation, SHA256 and HMAC executions, respectively. Since

Python is interpreted code, which makes its execution slower, we propose to implement the AES

and ECC algorithms in C for faster executions. Then, we generate the static shared library

(AES_ECC.so) from the resulting C code to be imported and used in Client/Server_TLS.py files.

The C code and the static shared library are generated using the Xilinx Software Development

Kit (XDSK) tool. The shared library consists of two C function files, namely AES.c and ECC.c.

The first file defines AES encryption() and decryption() functions. The second file describes

ECDSA() and ECDHE() functions for performing the considered ECC protocols. The two

functions are based on the ECC_driver.c file and finite field functions required in the ECDSA

algorithm. It must be noted that the inputs and the outputs of the AES and ECC functions are

based on radix-28 and radix-232 representations, respectively. Radix-28 is used since the AES

algorithm performs 8-bit operations, while, radix-232 is considered for ECC algorithms not only

because the ARM is a 32-bit microprocessor but also for the AXI 32-bit bus where

data/instruction are transferred digit-by-digit in serial mode. The representation of large numbers

in radix 28 and radix 232 is performed in Python based on the ctypes.c_int library. The ECDSA()

function requires the computation of MA, MM and MI. In the ECDSA protocol, MA, MM and

MI computations over 256-bit operands are required. These computations are ensured by the

MA(), MM() and MI() functions. In fact, MM is performed based on the Montgomery radix-232

Modular Multiplication algorithm. On the other hand, MI is executed by Mexp according to

Fermat’s little theorem.

The ECC_driver.c file contains C drivers to control the ECC accelerator. It is composed

of four functions: reset_hw(), send_crd_sclr(), Get_result() and VR_adr_hw(). The first three

functions allow to reset the ECC accelerator, send the inputs of Algorithm 5.1, and retrieve the

resulting point coordinates, respectively. As our designs run on embedded Linux, the ARM

processor needs at system initialization to generate a virtual address (ECC_vr_adr) for the ECC

accelerator and map it to its physical address (ECC_BASE_ADDR). This step is ensured by the

VR_adr_hw() function, where the following instructions are executed:

1. int fd = open("/dev/mem",O_RDWR);

2. int pg_size = sysconf(_SC_PAGESIZE);

103

3. int pg_adr_ECC = ECC_BASE_ADDR & (pg_size-1);

4. int pg_offset_ECC = ECC_BASE_ADDR - pg_adr_ECC;

5. ECC_vr_adr = mmap(NULL, pg_size, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, (ECC_BASE_ADDR & (pg_size-1)));

Once the virtual address is generated, the addresses of the four registers used for

data/instruction exchanging can be calculated as follows:

- InsIn_adr = *((unsigned *)(ECC_vr_adr+pg_offset_ECC))

- DataIn_adr = *((unsigned *)(ECC_vr_adr+pg_offset_ECC+4))

- InsOut_adr = *((unsigned *)(ECC_vr_adr+pg_offset_ECC+8))

- DataOut_adr = *((unsigned *)(ECC_vr_adr+pg_offset_ECC+12))

Table 4.4. presents the execution time of the developed crypto functions for the TLS1.2

protocol, as well as the time of all of the TLS1.2 process. The reported performances include

the following execution times:

- Random generation.

- SHA256 and HMAC functions.

- Data representation from large numbers to radix-r for AES and ECC computations.

- Client/Server data exchanging via sockets.

Table 4. 4 Execution time of the involved crypto functions for TLS execution

Protocol Bit-Length Function
Execution

Time

AES 128 bits
AES_encryption()

AES_decryption()

56 µs

101 µs

ECC
233 bits

ECSM()

ECDHE()

ECDSA_gen()

ECDSA_check()

413 µs

1.7 ms

3.5 ms

4.1 ms

TLS 384 bits TLS1.2() 67.5 ms

The proposed design performs a single 233-bit ECSM using the ECC accelerator in 400

µs. Moreover, the IoTS and IoTC perform the ECDHE procedure in 1.7 ms. This time depends

on the size of n1 and n2, which are required in the ECDHE procedure. In our case, the size of

both n1 and n2 is 233 bits. For the ECDSA protocol, the IoTS generates the signature in 3.5 ms,

104

while the IoTC checks the received signature in 4.1 ms. These two times are linked to the bit-

size of the k generated in line 1 of ECDS generation algorithm and the intermediate results (u1,

u2) of ECDS verification algorithm. Finally, the generation of the 384-bit secret key between

the IoTS and the IoTC based on the TLS1.2 protocol is achieved in 67.5 ms. Figure 4.8 shows a

screenshot of one measurement of TLS1.2() execution in the server side (Figure 4.8a), and the

client side (Figure 4.8b).

(a)

(b)

Figure 4. 8 Screenshot of TLS1.2() execution time in the (a) server side, and the (b) client side.

4.4.3 Comparison with Some Recent Works

In order to compare our proposal with other works, an ad hoc experimental setup has

been prepared, which consists of two Minized boards hosting Zynq devices and communicated

using WiFI. Both boards’ devices include the MP_ECC_B-233_RNOKOA11C accelerator for

cryptographic operations, while one of the Minized boards acts as a server and the other one acts

as a client for the TLS handshaking. Figure 4.9 shows a picture of this experimental setup.

105

Figure 4. 9 Experimental setup for TLS handshaking.

Table 4.5 shows the performance comparison of our design and some FPGA-based

TLS/SSL implementations. The comparisons are made in terms of occupied slice LUTs, selected

RAM blocks and execution time for single TLS/SSL handshake negotiations.

Table 4. 5 TLSv1.2 implementation performance comparisons to recent works

Design Approach Freq

MHz

LUTs

RAMs Execution

Time

Device

Our

Contribution

SW/HW 666 8503 9 67.5 ms Zynq-

7Z007S

[46] HW 150 90644 216 0.62 ms Spartan-3

[42] HW 75 39052 75 11.3 ms Virtex-5

[44] SW/HW 125 27559 - - Zynq-7z020

[47] SW/HW 2100 - - 59241 kB/s
(*)

Huawei-

Taushia

[51] HW - 52005 225 220 ms Virtex 7

(*) the authors report the performance only in terms of throughput.

Wang, H., G. Bai, and H. Chen present a Network Security Processor (NSP)

implementation on a Spartan-3 FPGA device of the IPSec/SSL protocols [46]. The results show

that their processor provides high timing performance by achieving 1600 full SSL handshakes

per second with a 150 MHz clock. However, it requires 10 times more slice LUTs and 24 times

more RAMs than our design.

An FPGA-based NSP of the TLSv1.2 protocol on a Virtex-5 device was proposed in

[42]. The NSP was implemented with a secure true random number generator and ECC

106

coprocessor. Compared to our design, the proposed processor is 6 times faster. However, it

requires 5 times more slice LUTs and 9 times more RAMs.

A pipelined architecture of an NSP for the SSL/TLS protocols is implemented on a Zynq-

7z020-clg484 device is presented in [44]. The proposed NSP presents high area requirements

with 3 times more slice LUTs than our design. The authors did not present the timing

performance of the TLS/SSL handshake.

We note that these implementations [42, 44, 46] present high-speed processors but with

high-area requirements. Hence, these designs are not recommended for low-area FPGA devices,

as opposed to the contrary of our design, which can be efficiently used on such devices.

A SW/HW implementation of an Energy-Efficient Crypto Accelerator (EECA) for an

HTTPS server on an 8-Core HUAWEI Taishan server and an ARM Cortex-A57 CPU was

proposed in [47]. The evaluation of the Web server was reported in terms of throughput and

energy consumption for different data sizes, ranging from 1 KB to 2 MB. The obtained

throughputs vary from 59241 KB/s to 1001 KB/s with a 2.1 GHz clock. The high-performance

of this HTTPS server is obtained by using very expensive hardware platforms, once more

opposed to our implementation targeting low-cost FPGA devices.

R.P. Genssler, O. Knodel, and R.G. Spallek present the implementation of the TLSv1.3

protocol for end-to-end secure connection between an Intel i5 client trusted workplace and a

Virtex-7 FPGA cloud node (SecFPGA) [51]. The proposed design takes about 220 ms to perform

the TLSv1.3 handshake and to deploy a 4 MB file. It requires 52005 LUTs and 225 RAMs.

Thus, our design shows better time execution while requiring less area.

4.5 Conclusion

In this chapter, high-performance client/server coordinators on low-cost SoC-FPGA

devices for secure IoT data collection are presented. For the purposed to secure the data transfer

between the IoT agents (sensors, cameras, actuators, microchips, etc…) and the central server,

we proposed to design low-cost embedded IoT clients (IoTCs) and IoT server (IoTS). The IoTCs

collect data from IoT agents and send it to the server through the Internet. The IoT server acts

as an interface between the IoTCs and the server’s memory, where these data will be stored. The

secure data transfer between IoTCs and the IoTS was ensured by the TLSv1.2 protocol based

on ECC schemes. The global scenario of the targeted IoT application and the TLS Handshake

protocol are presented first. From the literature, very few hardware implementations that fully

support the acceleration of the TLS protocols to avoid the overhead of hardware resources

107

utilization. The most related works focus on accelerating specific cryptography algorithms

supported by the TLS. To achieve the best trade-off between flexibility, area and speed, a

SW/HW co-design implementation approach is presented in this chapter, where ECSM is

implemented within a scalable hardware coprocessor accelerator around ARM microprocessor.

Meanwhile, the control of ECDHE and ECDSA protocols, the execution of the AES-128

algorithm, HMAC and SHA256 functions are ensured by the ARM microprocessor. The

proposed partitioning allows achieving the best trade-off between flexibility, area and speed.

The internal architecture of the proposed ECC accelerator and the coordinators are described

then. The proposed coordinators were implemented on Zynq-7Z007S circuit. They occupied

8503 LUTs and perform full handshake negotiations in 67.5 ms. From the performance

comparisons of our results and other works in the literature, it can be concluded that our designs

achieve the best trade-off between security, area and speed for the target application. They

require less area while providing reduced timing execution. Thus, we believe that the proposed

implementation approach is suitable for small IoT embedded Client/Server secure coordinators

implemented on low-cost devices.

108

CONCLUSION

This thesis presents novel architectures for efficient implementation of hybrid ECC-AES

embedded cryptosystems on FPGA circuits. Our main aim is to achieve the best trade-off

between flexibility, security, timing execution, and area consumption, with special attention to

area requirements for enabling low-cost implementations while maintaining good performance

figures.

The manuscript described the work progress during the thesis in chronological order.

The objective of chapter 2 and chapter 3 was to summarize the state-of-the-art related to the

modern cryptography and embedded systems which are essential for further understanding of

the thesis.

Chapter 4 was oriented to the investigation about efficient MicroBlaze-based parallel

architectures of ECSM computation for embedded Elliptic Curve Cryptosystem on Xilinx

FPGA. Thus, five flexible implementations based on the combination of projective coordinate

system with MPL algorithm have been proposed. To enhance the execution time, the proposed

implementations are based on SW/HW co-design approach, where the critical operation MMM

has been implemented in HW around MicroBlaze processors. The efficiency of the Accelerator

MMM core is the exploitation of the DSP48E cores available on Xilinx FPGAs. We have shown

that the parallelism could be exploited in ECSM abstraction levels with different degrees.

Therefore, the second, the third, the fourth and the fifth implementations represent parallel

architectures based on MPSoPC approach, where, two, three, four and six degrees of parallelism

are considered, respectively. The degree of parallelism corresponds to the number of the

integrated MicroBlaze processors in single architecture. Our parallel designs combine SW

flexibility, HW speed, system security and MPSoPC features. To the best of knowledge, our

parallel architectures are the first of its kind as embedded cryptosystem on FPGA. The Xilinx

virtex-5 implementations of the proposed parallel architectures consume between 2739 and 6533

slices, 22 and 72 RAMs and between 16 and 48 DSP48E cores. Note that our cryptosystem

supports arbitrary EC forms defined over large prime field (𝐹𝑝) with different security-level

sizes, without modifying the hardware. Depending on the considered security-level sizes,

namely, 256-bit and 521-bit, our parallel implementations run at 100 MHZ frequency and take

109

between 204 and 14.72 ms to perform single ECSM. From the performance comparisons of our

results with recent works, we believe that the proposed implementations could be highly

exploited for the implementation of different ECC protocols as FPGA embedded cryptosystems

independently of the FPGA circuit family. This feature is ensured by the fact that MicroBlaze

and our AccMMM core could be integrated in large Xilinx’s FPGA circuits.

In Chapter 5, FPGA-based Client/Server designs, implemented on a Zynq FPGA device,

of the TLSv1.2 protocol for IoT applications is presented. To improve the execution time, a

SW/HW co-design implementation approach is proposed. Thus, the critical ECSM is

implemented in HW around an ARM Cortex A9 microprocessor, while, the control of the

TLSv1.2 handshake negotiations is ensured by the processor, which runs on embedded Linux

OS for Zynq. The proposed 32-bit I/O ECC accelerator requires only 3395 slice LUTs, thus

allowing not only flexible integration around various 32-bit microprocessors but also an easier

implementation on low-cost FPGA devices. The proposed architecture occupies 8503 LUTs and

performs full handshake negotiations between IoTS and IoTC designs in 67.5 ms. From the

performance comparisons of our results and other works in the literature, it can be concluded

that our design achieves the best trade-off between security, area and speed for the target

application. It requires less area while providing reduced timing execution. Therefore, the

proposed implementation approach is suitable for small IoT embedded Client/Server secure

coordinators implemented on low-cost devices.

The focus of the first work was the efficient implementation of ECSM operation over the

prime field. To make this work usable in practice, the proposed architectures should be exploited

within heterogeneous MPSoC architectures for designing symmetric/asymmetric hybrid

embedded cryptosystems on FPGA circuits based on ECC protocols. The proposed designs

should be incorporated also with the second work to extend the supported TLS cipher-suites for

prime curves.

In other hand, several new forms of EC curves have been proposed such as Edwards,

twisted Edwards, Montgomery, etc. The computations of ECSM over these curves are faster and

more secure against side-channel attacks compared to the Weierstrass forms. Thus, a possible

future work could be an efficient implementation of ECSM over these new forms of EC curves

on FPGA circuits.

110

REFERENCE

1. C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and

practitioners. 2009: Springer Science & Business Media.

2. A.J. Menezes, P.C.V. Oorschot and S.A. Vanstone, Handbook of applied

cryptography. 1996: CRC press.

3. D. Hankerson, A.J. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography.

2003: Springer-Verlag. 332.

4. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren,

Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second Edition. 2012:

Chapman & Hall, CRC. 1024.

5. S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk and N.B.O Wheeler, Elliptic curve

cryptography (ECC) cipher suites for transport layer security (TLS). 2006, RFC

4492.

6. D. Johnson, A. Menezes, and S. Vanstone, The Elliptic Curve Digital Signature

Algorithm (ECDSA). International Journal of Information Security, 2001. 1(1): p.

36-63.

7. R.L Rivest., A. Shamir and L. Adleman, A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 1978. 21(2): p. 120-

126.

8. NIST, Data Encryption Standard (DES) (FIPS–46-3), National Institute of Stan-dards

and Technology. 1999.

9. NIST, Advanced Encryption Standard (AES) (FIPS–197), National Institute of

Standards and Technology. 2001.

10. NIST, Secure Hash Standard (SHS) (FIPS 180-4), National Institute of Standards and

Technology. 2015.

11. NIST, Secure Hash Standard (SHS) (FIPS 202), National Institute of Standards and

Technology. 2015.

12. H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message

Authentication. 1997: RFC Editor.

13. H. Tao, M.Z.A. Bhuiyan, A.N. Abdalla, M.M. Hassan, J.M. Zain and T. Hayajneh,

Secured Data Collection With Hardware-Based Ciphers for IoT-Based Healthcare.

IEEE Internet of Things Journal, 2019. 6(1): p. 410-420.

14. T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2.

2008, RFC 5246.

15. K. Järvinen, Studies on high-speed hardware implementation of cryptographic

algorithms. 2008, phd thesis, Helsinki University of Technology, Espoo, Finland.

111

16. A. Jerraya and W. Wolf, Chapter 1-The What, Why, and How of MPSoCs, in

Multiprocessor Systems-on-Chips. 2005, Morgan Kaufmann: San Francisco,

Elsevier.

17. L. Torres, P. Benoit, G. Sassatelli, M. Robert, F. Clermidy and D. Puschini, et al., An

introduction to multi-core system on chip–trends and challenges, in Multiprocessor

System-on-Chip. 2011, Springer. p. 1-21.

18. H. Kamarulhaili and L.K. Jie, Elliptic Curve Cryptography and Point Counting

Algorithms. Cryptography and Security in Computing, 2012: p. 91.

19. H. Marzouqi, M. Al-Qutayri and K. Salah, Review of elliptic curve cryptography

processor designs. Microprocessors and Microsystems, 2015. 39(2): p. 97-112.

20. B. Halak, S.S. Waizi and A. Islam, A survey of hardware implementations of elliptic

curve cryptographic systems. IACR Cryptol. ePrint Arch. 2016.

21. M. Rashid, M. Imran, and A.R. Jafri. Comparative analysis of flexible cryptographic

implementations. in 2016 11th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC). 2016. IEEE.

22. N. Alimi, Y. Lahbib, M.Machhout, T. Mohsen and T. Rached. On elliptic curve

cryptography implementations and evaluation. in 2016 2nd International Conference

on Advanced Technologies for Signal and Image Processing (ATSIP). 2016. IEEE.

23. S. Agarwal, S. Saha, R. Paul and A. Chakrabarti, Performance Evaluation of ECC in

Single and Multi Processor Architectures on FPGA Based Embedded System. arXiv

preprint arXiv:1401.3421, 2014.

24. K. Ananyi, H. Alrimeih and D. Rakhmatov, Flexible Hardware Processor for Elliptic

Curve Cryptography Over NIST Prime Fields. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 2009. 17(8): p. 1099-1112.

25. S.Ghosh, D. Mukhopadhyay, and D. Roychowdhury, Petrel: Power and Timing

Attack Resistant Elliptic Curve Scalar Multiplier Based on Programmable Arithmetic

Unit. IEEE Transactions on Circuits and Systems, 2011. 58(8): p. 1798-1812.

26. B. Baldwin, R.R. Goundar, M. Hamilton and W.P. Marnane, Co-Z ECC scalar

multiplications for hardware, software and hardware–software co-design on

embedded systems. Journal of Cryptographic Engineering, 2012. 2(4): p. 221-240.

27. H.Marzouqi, M. Al-Qutayri, and K. Salah. An FPGA implementation of NIST 256

prime field ECC processor. in 2013 IEEE 20th International Conference on

Electronics, Circuits, and Systems (ICECS). 2013.

28. J. Balasch, B. Gierlichs, K. Ja, and I. Verbauwhede,. Hardware/software co-design

flavors of elliptic curve scalar multiplication. in 2014 IEEE International Symposium

on Electromagnetic Compatibility (EMC). 2014.

29. H.Alrimeih and D. Rakhmatov, Fast and Flexible Hardware Support for ECC Over

Multiple Standard Prime Fields. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2014. 22(12): p. 2661-2674.

30. H. Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis and T. Stouraitis, A High-

Speed FPGA Implementation of an RSD-Based ECC Processor. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 2016. 24(1): p. 151-164.

112

31. M. Joye and S.M. Yen. The Montgomery powering ladder. in International workshop

on cryptographic hardware and embedded systems. 2002. Springer.

32. P.L Montgomery, Modular multiplication without trial division. Mathematics of

computation, 1985. 44(170): p. 519-521.

33. C.K.Koc, T. Acar and B.S. Kaliski, Analyzing and Comparing Montgomery

Multiplication Algorithms. IEEE Micro, 1996. vol 16(3): p. 26-33.

34. Xilinx, I., Microblaze processor reference guide. reference manual, 2006. 23.

35. B. Senouci, F. Rousseau and F. Petrot. Multi-CPU/FPGA platform based

heterogeneous multiprocessor prototyping: New challenges for embedded software

designers. in 2008 The 19th IEEE/IFIP International Symposium on Rapid System

Prototyping. 2008. IEEE.

36. M. Issad, B. Boudraa, M. Anane and N. Anane,, Software/Hardware Co-Design of

Modular Exponentiation for Efficient RSA Cryptosystem. Journal of Circuits,

Systems and Computers, 2014. vol 23(3).

37. UG193, X., Virtex-5 FPGA XtremeDSP Design Considerations User Guide. 2009,

Jan.

38. S. Wang, Y. Hou, F. Gao and X. Ji, et al. A novel IoT access architecture for vehicle

monitoring system. in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT).

2016.

39. J. Dofe, J. Frey, and Q. Yu. Hardware security assurance in emerging IoT

applications. in 2016 IEEE International Symposium on Circuits and Systems

(ISCAS). 2016.

40. A. Al-Omary, O. Ali, H. M. AlSabbagh and H. Al-Rizzo, Survey of Hardware-based

Security support for IoT/CPS Systems. KnE Engineering, 2018. 3(7).

41. B. Moeller, D. Duong and K.Ko towicz, This POODLE bites: exploiting the SSL 3.0

fallback. 2014, Security Advisory (Google).

42. M. Hamilton and W.P. Marnane, Implementation of a secure TLS coprocessor on an

FPGA. Microprocessors and Microsystems, 2016. 40: p. 167-180.

43. M. Khalil-Hani, V.P. Nambiar, and M.N. Marsono. Hardware Acceleration of

OpenSSL Cryptographic Functions for High-Performance Internet Security. in 2010

International Conference on Intelligent Systems, Modelling and Simulation. 2010.

44. R. Paul, A. Chakrabarti, and R. Ghosh, Multi core SSL/TLS security processor

architecture and its FPGA prototype design with automated preferential algorithm.

Microprocessors and Microsystems, 2016. 40: p. 124-136.

45. R. Paul, and S. Shukla, Partitioned security processor architecture on FPGA platform.

IET Computers & Digital Techniques, 2018. 12(5): p. 216-226.

46. H. Wang, G. Bai, and H. Chen, A Gbps IPSec SSL Security Processor Design and

Implementation in an FPGA Prototyping Platform. J. Signal Process. Syst., 2010.

58(3): p. 311-324.

47. C. Xiao, L. Zhang, W. Liu, N. Bergmann and Y. Xie, Energy-efficient crypto

acceleration with HW/SW co-design for HTTPS. Future Generation Computer

Systems, 2019. 96: p. 336-347.

113

48. D. B. Roy, S. Agrawal, C. Reberio and D. Mukhopadhyay. Accelerating OpenSSL's

ECC with low cost reconfigurable hardware. in 2016 International Symposium on

Integrated Circuits (ISIC). 2016.

49. J. Viega , P. Chandra, and M. Messier, Network Security with Openssl. 2002:

O'Reilly & Associates, Inc. 384.

50. L. Wu, C. Weaver, and T. Austin. CryptoManiac: a fast flexible architecture for

secure communication. in Proceedings 28th Annual International Symposium on

Computer Architecture. 2001.

51. Paul R. Genssler, Oliver Knodel, and R.G. Spallek, Securing Virtualized FPGAs for

an Untrusted Cloud, in ESCS'18. 2018: Las Vegas, Nevada, USA.

52. L. Parrilla, et al., Elliptic Curve Cryptography hardware accelerator for high-

performance secure servers. The Journal of Supercomputing, 2019. 75(3): p. 1107-

1122.

53. L. Parrilla, et al., Unified Compact ECC-AES Co-Processor with Group-Key Support

for IoT Devices in Wireless Sensor Networks. Sensors, 2018. 18(1): p. 251.

54. Cortex, A., A9 MPCore: Technical Reference Manual Revision: r4p1. ARM

information Center, 2012.

55. Xilinx, A., Reference Guide, UG761 (v13. 1). URL http://www. xilinx.

com/support/documentation/ip documentation/ug761 axi reference guide. pdf, 2011.

56. J. Nechvatal, et al., Report on the development of the Advanced Encryption Standard

(AES). Journal of Research of the National Institute of Standards and Technology,

2001. 106(3): p. 511.

57. W.E. Burr, Selecting the advanced encryption standard. IEEE Security & Privacy,

2003. 1(2): p. 43-52.

58. E.W Weisstein, RSA Number. 2003.

59. N. Koblitz, Elliptic curve cryptosystems, in Math Comput 48 (177). 1987. p. 109–

203.

60. C. Rebeiro, ARCHITECTURE EXPLORATIONS FOR ELLIPTIC CURVE

CRYPTOGRAPHY ON FPGAS. 2008.

61. Nist, Recommended Elliptic Curves for Federal Government Use. 1999.

62. A.Miyaji, T. Ono, and H. Cohen, Efficient elliptic curve exponentiation, in

Information and Communications Security: First International Conference, ICIS '97

Beijing, China, November 11–14, 1997 Proceedings, Y. Han, T. Okamoto, and S.

Qing, Editors. 1997, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 282-290.

63. IEEE, IEEE Standard Specifications for Public-Key Cryptography. IEEE Std 1363-

2000, 2000: p. 1-228.

64. B.D Masmoudi, Performance and complexity optimization in heterogeneous

multiprocessors system on chip. Thesis, 2015.

65. Trimberger, S.M.S., Three Ages of FPGAs: A Retrospective on the First Thirty Years

of FPGA Technology: This Paper Reflects on How Moore's Law Has Driven the

Design of FPGAs Through Three Epochs: the Age of Invention, the Age of

http://www/

114

Expansion, and the Age of Accumulation. IEEE Solid-State Circuits Magazine, 2018.

10(2): p. 16-29.

66. Xilinx, I., Introduction to fpga design with vivado high-level synthesis. 2013.

67. Zhang, J., et al., Techniques for Design and Implementation of an FPGA-Specific

Physical Unclonable Function. Journal of Computer Science and Technology, 2016.

31: p. 124-136.

68. F. Gioulekas, M. Birbas, N. Voros, G. Kouklaras and A. Birbas,, Heterogeneous

system level co-simulation for the design of telecommunication systems. Journal of

Systems Architecture, 2005. 51: p. 688-705.

69. Serrano, J., Introduction to FPGA design. 2008, CAS - CERN Accelerator School:

Digital Signal Processing, pp.231-247, DOI: 10.5170/CERN-2008-003.231.

70. Yousif, O.F., et al. FPGA based embedded homogenous and hetrogenous multi-

processor SoC design: A review. in 2014 IEEE Conference on Open Systems (ICOS).

2014. IEEE.

71. M.A. Cohen, Nouveaux outils de profilage de MP-SoC basés sur des techniques de

fouille de données. 2014, , theseUniversité Joseph Fourier.

72. M. Rivain, Fast and Regular Algorithms for Scalar Multiplication over Elliptic

Curves. IACR Cryptology ePrint Archive, 2011. 2011: p. 338.

73. H.Cohen, A. Miyaji, and T. Ono, Efficient Elliptic Curve Exponentiation Using

Mixed Coordinates, in Advances in Cryptology — ASIACRYPT’98: International

Conference on the Theory and Application of Cryptology and Information Security

Beijing, China, October 18–22, 1998 Proceedings, K. Ohta and D. Pei, Editors. 1998,

Springer Berlin Heidelberg: Berlin, Heidelberg. p. 51-65.

74. C.D. Walter, Precise bounds for Montgomery modular multiplication and some

potentially insecure RSA moduli. in Cryptographers’, RSA Conference. 2002.

Springer.

75. A.M. Bellemou, et al., MicroBlaze-Based Multiprocessor embedded cryptosystem

on FPGA for Elliptic Curve Scalar Multiplication over Fp. Journal of Circuits,

Systems, and Computers, 2018. 28(03).

76. A.M. Bellemou, et al., Microblaze-based parallel implementations of elliptic curve

scalar multiplication over Fp on FPGA. International Journal of Internet Technology

and Secured Transactions, 2020. 10(1-2): p. 171-195.

77. Xilinx, I., PLB IPIF. Xilinx Document DS448 (v2. 02a), Xilinx Inc, 2005.

78. M. Karim, A MicroBlaze-based Multiprocessor System on Chip for real-time cardiac

monitoring. in 2014 International Conference on Multimedia Computing and

Systems (ICMCS). 2014. IEEE.

79. Xilinx, Genesys Board, Reference Manual, Revision. 2012.

80. C.L. Sotiropoulou and S. Nikolaidis. Design space exploration for FPGA-based

multiprocessing systems. in 2010 17th IEEE International Conference on Electronics,

Circuits and Systems. 2010. IEEE.

81. A.M. Bellemou, et al., Efficient Implementation on Low-Cost SoC-FPGAs of

TLSv1. 2 Protocol with ECC_AES Support for Secure IoT Coordinators. Electronics,

2019. 8(11): p. 1238.

115

82. M.Rivain, Fast and Regular Algorithms for Scalar Multiplication over Elliptic

Curves. International Association for Cryptologic Research (IACR), 2011.

83. A. Karatsuba, MathThe complex ity of computations, Proc Steklov I nst. 1995. p.

169–183.

84. H. Fan, J. Sun, M. Gu and K. Lam , Overlap-free Karatsuba-Ofman polynomial

multiplication algorithms. IET Information Security, 2010. 4(1): p. 8-14.

85. Minized, Minized board datasheet.

86. B. Ansari and M.A. Hasan, High-Performance Architecture of Elliptic Curve Scalar

Multiplication. IEEE Transactions on Computers, 2008. 57(11): p. 1443-1453.

87. Z. Khan and M. Benaissa, Throughput/Area-efficient ECC Processor Using

Montgomery Point Multiplication on FPGA. IEEE Transactions on Circuits and

Systems II: Express Briefs, 2015. 62(11): p. 1078-1082.

88. G.D. Sutter, J. Deschamps, and J.L. Imana, Efficient Elliptic Curve Point

Multiplication Using Digit-Serial Binary Field Operations. IEEE Transactions on

Industrial Electronics, 2013. 60(1): p. 217-225.

