

 الشعبية لجـمهورية الجزائرية الديمقراطية ا

 Peoples Democratic Republic of Algeria

 العلمي والبحثوزارة التعليم العالي

 Ministry of Higher Education and Scientific Research

 البليدة جامعة سعد دحلب

 SAAD DAHLAB University of BLIDA

 كلية التكنولوجيا

 Faculty of Technology

قسم الاوتوماتيك والالكتروتقني

 Automatic and electrical engineering department

Master’s thesis

Specialty : Automatique et informatique industrielle

Presented by

Larachi Feriel

and

 Kessi Feriel

Designing a path planning system for an indoor mobile

robot operating in an environment with partial

knowledge

proposed by: Mr. Bennila Noureddin.

 Academic year 2023-2024

Acknowledgements

We thank God the Almighty for having given us the health and the
will to begin and

finish this memorial.

First of all, this work would not be as rich and could not have been
possible

without the help of the promoter Mr. Bennila Noureddin, we thank
him for the quality

of

his exceptional supervision, for his patience, his rigor and his
availability during our

preparation of this brief.

Our thanks also go to all our teachers for their generosity and the
great patience they

have shown despite their academic and professional responsibilities.

We also thank the jury members for their honor in judging our work.

We thank our parents for the motivation.

We thank our friends for all their sincere friendship over the last five
years of study.

Finally, we thank all those who have contributed directly or
indirectly to the

development of this work.

 Dedication

To our dear mothers:

You have carried for us the care and effort for our education. No
dedication

can express all the respect and love we have for you.

You have always trusted us. Find in this work the consolation and
witness of patience.

To our dear fathers:

Despite the great responsibilities you assume in your work or as
fathers of

families, you have always been close to us, to listen to us, to support
us, to follow us

and to encourage us. May this work diminish your suffering and
bring you happiness.

To our dear brothers and sisters:

Most of that work is for you. You have always been very helpful to us.
We

thank you for all the good that each of you has done for us.

To our families.

To all our friends and classmates, may God preserve our friendship.

To all our teachers from Saad Dahleb Blida University

To all those who have trust us.

 Abstract.

Autonomous Mobile Robots (AMRs) are robotic systems designed to navigate

environments independently, without human intervention. With their increasing

popularity and practical applications, there has been a rapid expansion in research and

development in this field.

However, generating and executing efficient trajectory planning remains a significant

challenge for these systems.

Our aim with this study is to contribute to the field of path planning by introducing two

new methods: the first method is an extension of the Rapidly Exploring Random Tree

Star (RRT*) algorithm, which we've named Limiting Tree Expansion, and the second

method is a geometric approach inspired by mathematical operations. To validate these

proposed methods, we implemented them in a simulation environment. The results

demonstrate significant improvements in trajectory quality, with the Limiting Tree

Expansion method outperforming the original RRT* algorithm. These promising

findings underscore the potential of this optimization technique and pave the way for

further research into parallelization to enhance the efficiency and effectiveness of these

methods.

Keywords: Autonomous Mobile Robots (AMRs), path planning, Limited Tree

Expansion, Geometric method

صلخم

الذاتية المتنقلة البيئات بشكل مستقل. دون (ARMs)الروبوتات للتنقل في أنظمة روبوتية مصممة تدخل الهي

 ذلك ومع تزايد شعبيتها وتطبيقاتها العملية، حدث توسع سريع في البحث والتطوير في هذا المجال. ومع بشري. ال

 فإن إنشاء وتنفيذ تخطيط فعال للمسار لا يزال يمثل تحديًا كبيرًا لهذه الأنظمة.

الدراسة في هوهدفنا من هذه المسار مجال المساهمة الأولى مطورة تخطيط منباستخدام طريقتين جديدتين:

بتسميت Rapidly Exploring Random Tree Star (RRT*) خوارزمية ب قمنا Limited Treeها

Expansion. والطريقة الثانية هندسية مستوحاة من عمليات رياضية. ولتحقيق هذه الطرق المقترحة. قمنا بتنفيذها

طريقة تفوقت حيث المسار. جودة في ملحوظا تحسنا النتائج أظهرت المحاكاة. بيئة Limited Treeفي

Expansion خوارزمية أداءRRT* تسلط هذه النتائج الضوء على إمكانيات التقنية التحسينية وتمهد الاصلية .

 الطريق لمزيد من البحث في مجال التوازن لتعزيز كفاءة وفعالية هذه الأساليب

) الرئيسية: الكلمات الذاتية المتنقلة المسار،(ARMsالروبوتات تخطيط ، Limited Tree Expansion ،

 الطريقة الهندسية.

 Résumer

Les robots mobiles autonomes (RMA) sont des systèmes robotiques conçus pour

naviguer dans des environnements de manière indépendante, sans intervention

humaine. Avec leur popularité croissante et leurs applications pratiques, il y a eu une

expansion rapide de la recherche et du développement dans ce domaine. Cependant, la

génération et l'exécution d'une planification de trajectoire efficace restent un défi majeur

pour ces systèmes.

Notre objectif avec cette étude est de contribuer au domaine de la planification de

trajectoires en introduisant deux nouvelles méthodes : la première méthode est une

extension de l'algorithme Rapidly Exploring Random Tree Star (RRT*), que nous avons

nommée Expansion Limitée de l'Arbre, et la deuxième méthode est une approche

géométrique inspirée par des opérations mathématiques. Pour valider ces méthodes

proposées, nous les avons mises en œuvre dans un environnement de simulation. Les

résultats montrent des améliorations significatives en termes de qualité de trajectoire, la

méthode d'Expansion Limitée de l'Arbre surpassant l'algorithme RRT* original. Ces

résultats prometteurs soulignent le potentiel de cette technique d'optimisation et ouvrent

la voie à de futures recherches sur la parallélisation visant à améliorer l'efficacité et

l'efficience de ces méthodes.

Mots-clés : Robots Mobiles Autonomes, Planification de trajectoire, Expansion

Limitée de l’Arbre, Méthode géométrique.

 Acronyms and Abbreviations

AMR Autonomous Mobile Robots

RRT Rapidly Random Tree

DFS Depth First search

BFS Breadth First Search

UAVS Unnamed Aerial Vehicles

UGVS Unnamed Gond Vehicles

AUVS Autonoms Undawater Vhicles

RRT* Rapidly Random Tree Star

FC. RRT Flight Cost-Based Rapidly Random Tree

 FN-RRT Fixed Node Rapidly Random Tree

 VCS Version Control Systèmes.

 IDE Integrated Development Environment.

 2D Two-Dimensional

 Table of content

Acknowledgment ………………………………………………………………………

Abstract ………………………………………………………………………………...

Acronyms and abbreviations ………………………………………………………….

Table of content ……………………………………………………………………….

List of tables …………………………………………………………………………...

List of figures ………………………………………………………………………….

General introduction ………………………………………………………………….1

Chapter 1 ... 2

1.1 Introduction ... 3

1.2 Definition of Robotics .. 3

1.3 Classification of robotics .. 3

1.3.1 Fixed robots ... 4

1.3.2 Mobile robots .. 4

1.4 Navigation Robots ... 5

1.5 Path planning ... 5

1.5.1 Graph search method. ... 6

1.5.2 Graph construction method. ... 9

1.6 Comparison ... 12

1.7 Conclusion ... 13

2 Chapter 2 ... 14

2.1 Introduction ... 15

2.2 Obstacle avoidance .. 15

. ... 15

2.3 Reactive Methods .. 16

2.3.1 Geometric Methods .. 16

2.4 Deliberative Methods .. 18

2.4.1 RRT* star ... 19

2.5 Conclusion ... 26

3 Chapter 3 ... 27

3.1 Introduction ... 28

3.2 Limited tree expansion RRT* Methods .. 28

3.2.1 Design of Limited tree expansion RRT*method .. 29

3.2.2 Objective of Limiting Tree Expansion RRT* ... 31

3.2.3 RRT* Algorithm VS Limited Tree Expansion RRT*.. 32

3.3 Geometric Methods ... 35

3.3.1 Global Architecture ... 35

3.3.2 Overview of the Concept ... 36

3.3.3 Geometrics properties... 38

3.3.4 The Objectives of the idea ... 39

3.3.5 Theoretical Analysis. .. 39

3.3.6 Analyzing the Key Attributes of the Algorithm .. 41

3.4 Visual representation and simulation .. 42

3.4.1 Software development environment .. 42

3.4.2 Programming language ... 43

3.4.3 Visualization. ... 45

3.4.4 The libraries used. ... 46

3.5 Simulation .. 47

3.5.1 Pygame Initialization ... 47

3.5.2 Limited tree expansion. ... 48

3.5.3 Geometric Method .. 50

3.6 Statistical Analysis of Path Efficiency ... 52

3.6.1 Limited tree expansion method .. 52

3.6.2 Geometric method .. 56

3.6.3 RRT* algorithm .. 59

3.6.4 Results ... 61

3.7 Conclusion ... 63

General Conclusion ………………………………………………………………………….64

 References ……65

List of tables.

Table 1 1:Comparative table of the different method ... 12

Table 3 1:path length of limited tree expansion method ... 55

Table 3 2: Execution time of limited tree expansion method 55

Table 3 3:path length of geometric method .. 58

Table 3 4:Execution time of geometric method .. 58

Table 3 5:path length of RRT* algorithm ... 60

Table 3 6:Execution time of RRT*algorithm .. 61

Table 3 7:comparison between limited tree expansion, geometric method and RRT*

algorithm .. 61

 List of figures

FIgure1. 1:Classification of robots by environment and mechanism interaction 4

FIgure1. 2:path planning method classification schematic ... 5

FIgure1. 3:Breadth first traversal graph .. 6

FIgure1. 4:depth first traversal graph .. 7

FIgure1. 5:Dijkstra path finding graph ... 7

FIgure1. 6:A* Path finding graph. .. 8

F Igure1. 7:Voronoi diagram path finding. ... 9

FIgure1. 8:visibility graph method ... 10

FIgure1. 9:cell decompositions method. ... 11

FIgure1. 10:schematic diagram of RRT expansion ... 11

Figure2. 1:classification of obstacle avoidance method .. 15

Figure2. 2:attractive force and repulsive force in artificial potential field. 16

Figure2. 3:presentation of bug 1 algorithm. .. 17

Figure2. 4:presentation of bug 2 Algorithm. ... 18

Figure2. 5:shows the sampling of a position x random. .. 19

Figure2. 6:the nearest neighbor x nearest of x random is found and x new is generated.

 ... 19

Figure2. 7:represents the choose Parent step. ... 20

Figure2. 8:depicts the rewire step. .. 20

Figure2. 9:presentation of Triangular Inequality .. 21

Figure2. 10::(a) First Path given by RRT*, (b) An optimized path (in blue) is shown

after the Path Optimization technique is applied on the path shown in (a).,(c)

shows clustered samples as a result of biasing towards the beacons (in green),(d)

shows the optimum path .. 21

Figure2. 11:objectif of elipse in infirmed RRT* algorithm. 22

Figure2. 12:Solutions of equivalent cost found by RRT* and Informed RRT*. 23

Figure2. 13:Overview of coordinated spline-RRT* planner. 24

Figure2. 14::Simulation result of spline-RRT* algorithm. ... 24

Figure2. 15:Simulation result of RRT*FN and VS-RRT*-FN algorithm. 25

Figure3. 1:general architecture ... 29

Figure3. 2:presentation of the Exploration Bounds of the tree. 30

Figure3. 3:obstacle blocks the extension zone 30

Figure3. 4:finding the path. .. 31

Figure3. 5:presentation of RRT* map. Figure3. 6:presentation of Limited Tree

Expansion map ... 33

Figure3. 7:comparison of RRT* and limited tree expansion. 34

Figure3. 8:Global architecture .. 36

Figure3. 9:presentation of the method. ... 37

Figure3. 10:Expansion of the obstacle. ... 37

Figure3. 11:Euclidean distance. .. 38

Figure3. 12:vector projection. ... 38

Figure3. 13:Histogram representing time complexity analysis of pathfinding. 40

Figure3. 14:radar chart the strengths and weaknesses of the method across different

attributes. ... 42

Figure3. 15:PyCharm logo .. 43

Figure3. 16:python logo.. 44

Figure3. 17:Pygame logo. ... 45

Figure3. 18:presentation of the general view of a lab. .. 47

Figure3. 19:finding path by limited tree expansion method in lab 1. 53

Figure3. 20:finding path by limited tree expansion method in lab 2. 53

Figure3. 21:finding path by limited tree expansion method in lab 3. 54

Figure3. 22:finding path by Geometric method in lab 1. .. 56

Figure3. 23:finding path by Geometric method in lab 2. .. 57

Figure3. 24:finding path by Geometric method in lab 3. .. 57

Figure3. 25:finding path by RRT* algorithm in lab1. ... 59

Figure3. 26:finding path by RRT*algorithm in lab 2. ... 59

Figure3. 27:finding path by RRT* algorithm in lab 3. .. 60

1

 General Introduction

The field of autonomous mobile robots (AMRs) is rapidly evolving, driven by

advancements in technology and increasing demand for automation. These robotic

systems are designed to navigate and perform tasks in various environments without

human intervention, making them invaluable in numerous applications, from industrial

automation to service robotics.

This thesis addresses two critical aspects of AMR navigation: path planning and

obstacle avoidance. Path planning involves determining an optimal route from a starting

point to a destination, while avoiding obstacles and ensuring efficient movement.

Obstacle avoidance focuses on the robot's ability to detect and navigate around obstacles

in real-time.

The thesis is structured into three chapters. The first chapter provides a general

overview of robotics, with a focus on mobile robots. It classifies path planning methods

into two main categories: search methods and construction methods. The search

methods discussed include breadth-first search, depth-first search, Dijkstra's algorithm,

and the A* algorithm. Construction methods such as cell decomposition, Voronoi

diagrams, and visibility graphs are also explored. A comparative analysis of these

methods highlights their respective strengths and weaknesses.

The second chapter explore obstacle avoidance, categorizing the techniques into

reactive and deliberative methods. Reactive methods, including geographic techniques

such as potential fields and algorithms like Bug 1, Bug 2, are discussed. Additionally,

deliberative methods with a focus on the RRT* (Rapidly exploring Random Tree Star)

algorithm are examined.

The third chapter presents the implementation, analysis, and results of the study. It

introduces two new methods: the Limited tree Expansion of RRT* and a geometric

method. The implementation of these methods in a simulation environment is detailed,

followed by an analysis of their performance. The results demonstrate significant

improvements in trajectory quality, surpassing the original RRT* algorithm. These

findings underscore the potential of these optimization techniques and suggest

directions for future research, including the exploration of parallelization to enhance

efficiency and effectiveness.

This thesis aims to contribute to the field of autonomous navigation by providing

innovative solutions to the challenges of path planning and obstacle avoidance,

ultimately advancing the capabilities of autonomous mobile robots.

2

 Chapter 1

 Path planning

Chapter 1 Path Planning

3

1.1 Introduction

Path planning is a critical aspect of robotics and computer science, involving the

determination of a viable route from a start point to a destination while avoiding

obstacles. This chapter explores key graph search algorithms, including Depth-First

Search (DFS), Breadth-First Search (BFS), Dijkstra's Algorithm, and A* Search, which

provide various strategies for navigating through graph representations of

environments.

Additionally, we explore a graph construction technique like Rapidly Exploring

Random Trees (RRT), Voronoi diagrams, visibility graphs, and cell decomposition

methods, each offering unique approaches to modeling and solving path planning

problems in different types of spaces.

Through these methods, we gain insight into both the theoretical foundations and

practical applications of efficient and effective pathfinding.

1.2 Definition of Robotics

 Robotic is the intersection of science, engineering and technology it generally refers

to anything related to robots or resembling robots in characteristics or behavior. it is

hard to give a precise definition. It encompasses the design, construction, operation,

and application of robots, and use of machines (robots) to perform tasks done

traditionally by human beings. as well as the study of their behavior and the

integration of sensory feedback and control in machines. Robotic systems can vary

widely in complexity and functionality, from simple industrial robots programmed to

perform repetitive tasks to advanced humanoid robots capable of interacting with

humans in complex environments. [1]

1.3 Classification of robotics

 Robotics covers many different types of classifications which include fixed and mobile

robots. Each type has distinct characteristics and applications, making them suitable for

different tasks and environments. These two types of robots have very different working

https://www.britannica.com/topic/human-being

Chapter 1 Path Planning

4

environments and therefore require very different capabilities. [2]

 FIgure1. 1:Classification of robots by environment and mechanism interaction

1.3.1 Fixed robots

Fixed robots are stationary robots that are anchored in one location and do not move

from their position. They are mostly industrial robotic manipulators that work in well-

defined environments adapted for robots. Industrial robots perform specific repetitive

tasks such soldering or painting parts in car manufacturing plants. With the

improvement of sensors and devices for human-robot interaction, robotic manipulators

are increasingly used in less controlled environment such as high-precision surgery.[2]

1.3.2 Mobile robots

Mobile robots are capable of moving through their environment. They can navigate

from one location to another, often autonomously. Mobile robots can be classified in

two ways: by the environment in which they work and by the device they use to move.

Examples of different environment mobile robots include:

 Polar robots that are designed to traverse icy, uneven environments.

Aerial robots, also known as unmanned aerial vehicles (UAVs) or drones, which fly

through the air.

Landor home robots, or unmanned ground vehicles (UGVs), that navigate on dry land

or within houses.

Underwater robots, or autonomous underwater vehicles (AUVs), that can direct

themselves and travel through water.

Delivery and transportation mobile robots that are designed to move materials and

supplies around a work environment. [3]

Chapter 1 Path Planning

5

1.4 Navigation Robots

Navigation robots, a subset of mobile robots, are specifically designed to autonomously

navigate through their environment, given partial knowledge about its environment and

a goal positions or series of positions, navigation encompasses the ability of the robot

to act based on its knowledge and sensor value so as to reach it goal positions as

efficiently and as reliably as possible. Two capabilities for navigation are path planning

and obstacles avoidance.

1.5 Path planning

 Path planning lets an autonomous vehicle, or a robot find the shortest and most

obstacle-free path from a start to goal state using different methods.[4]

There are two classifications of this methods:

Graph construction, where nodes are placed and connected vid edges.

Graph search, where the computation of an (optimal) solution is performed.

 FIgure1. 2:path planning method classification schematic

Chapter 1 Path Planning

6

1.5.1 Graph search method.

Graph search methods are like giving a robot a map with marked paths and helping it

find the best way to reach a destination. Imagine each location on the map as a point,

and the paths between them as lines. Graph search methods help the robot explore these

paths efficiently to find the shortest or best route. They're like guiding the robot through

a maze to reach the goal without getting lost. Some common graph search methods

include Breadth-First Search (BFS), Depth-First Search (DFS), Dijkstra's algorithm,

and A* algorithm. Each method has its own way of searching through the map to find

the optimal path for the robot to follow.[5]

1.5.1.1 Breadth-First Search (BFS)

 Breadth-first search or the BFS algorithm systematically explores a graph by visiting

all the neighboring nodes of a given level before moving to the next level. The core

working principle of BFS is to use a queue to maintain a level-wise exploration order.

Initially, the algorithm starts with a source node, enqueues its neighbors, and continues

this process until all nodes have been visited. The breadth-first traversal strategy ensures

that nodes are visited in increasing order of their distance from the source, allowing for

finding the shortest path in unweighted graphs.[6]

1.5.1.2 Depth-First Search (DFS)

DFS Unlike BFS in which we explore the nodes breadthwise, in DFS we explore the

nodes depth-wise. In DFS we use a stack data structure for storing the nodes being

explored. The edges that lead us to unexplored nodes are called ‘discovery edges’ while

the edges leading to already visited nodes are called ‘block edges.[7]

Visited queue

 A

A B C D

B C D E F

C D E F

D E F G

E F G

F G

G

FIgure1. 3:Breadth first traversal graph

D

F

B

E
G

A

C

Chapter 1 Path Planning

7

1.5.1.3 Dijkstra algorithm

This algorithm is similar to breadth-first search, except that edge costs may assume any

positive value and the search still guarantees solution optimality.

This algorithm expands nodes starting from the start similar to breadth-first search,

except that the neighbors of the expanded node are placed in the heap and reordered

according to their value, which corresponds to the cost.

Subsequently, the cheapest state on the heap (the top element after reordering) is

extracted and expanded. This process continues until the goal node is expanded, or no

more nodes remain on the heap. A solution can then be backtracked from the goal to

the start. Due to reorder operations on the heap, the time complexity rises [8]

 6

 2 9

 5 3 1

 8 3

 2

Visited Stack data

 A

A B C D

D B C G

G B C

C B

B E F

F E

E

FIgure1. 4:depth first traversal graph

Nodes Shortest
distance

Previous
Nodes

A 0

B 2 A

C 12 F

D 7 B

E 8 B

F 9 D

FIgure1. 5:Dijkstra path finding graph

C A

E

F

B

D

Chapter 1 Path Planning

8

1.5.1.4 A* algorithm:

the A* search algorithm begins by expanding the start node and placing all of its

neighboring nodes onto a priority queue (heap). Unlike Dijkstra's algorithm, which

orders nodes based solely on the path cost, A* orders nodes according to a combined

cost value, f, which includes both the path cost and the heuristic estimate of the

remaining distance to the goal.

The combined cost value 𝑓(𝑛) for a node n is calculated as:

 𝑓(𝑛)=𝑔(𝑛)+ℎ(𝑛)

 where:

 g(n) is the actual cost from the start node to node n.

 h(n) is the heuristic estimated cost from node n to the goal.

At each step, A* selects the node with the lowest f-value from the priority queue. This

node is then expanded, meaning its neighbors are evaluated and added to the queue if

they haven't been processed or if a cheaper path to them is found.

The process continues, with nodes being selected, expanded, and evaluated based on

their f-values, until the goal node is reached. Once the goal node is reached, the

algorithm backtracks to reconstruct the path from the start node to the goal. [9]

 FIgure1. 6:A* Path finding graph.

Chapter 1 Path Planning

9

1.5.2 Graph construction method.

1.5.2.1 Voronoi diagram

The Voronoi diagram algorithm operates by partitioning the environment into distinct

regions based on the distances to obstacles. It constructs a graph where nodes represent

obstacles, and edges denote lines of equidistant points between neighboring obstacles.

These lines delineate Voronoi cells, which define the boundaries of regions within the

environment. Leveraging these cells, the Voronoi diagram algorithm devises a path by

linking the start and goal locations to cell boundaries, ultimately determining the path

that traverses the fewest number of cells.[10]

 Figure1. 7:Voronoi diagram path finding.

1.5.2.2 Visibility graph

The visibility graph algorithm works by representing obstacles as vertices in a graph,

and creating edges between vertices that are visible to each other. The start and goal

points are added as vertices, and edges are added between them and any visible vertices.

Then, a search algorithm is used to find the shortest path between the start and goal

points in the graph [11].

Chapter 1 Path Planning

10

 FIgure1. 8:visibility graph method

1.5.2.3 Cell decomposition

Exact cell decomposition is a lossless method, accurately dividing the environment into

cells that are either fully free or fully occupied by obstacles. Approximate cell

decomposition, on the other hand, uses a grid to represent the environment, where cells

can be classified as free, occupied, or mixed, introducing some approximation.

In both methods, a graph is constructed to represent the connectivity between cells,

where nodes correspond to the cells and edges represent possible transitions between

adjacent cells. The boundaries of these cells are determined by critical geometric

features, ensuring accurate representation in the case of exact decomposition.

The primary focus of cell decomposition is that the robot's specific position within a

free cell is irrelevant. What matters is the robot's ability to move from one free cell to

another. The complexity and computational efficiency of path planning depend on the

density and complexity of obstacles in the environment, with more complex

environments resulting in a greater number of cells and a more intricate connectivity

graph.[12]

Chapter 1 Path Planning

11

 FIgure1. 9:cell decompositions method.

1.5.2.4 Rapidly Exploring Random Tree RRT

The Rapidly Exploring Random Tree (RRT) is an effective algorithm for robotics and

path planning, especially useful in high-dimensional and complex environments. It

begins by initializing the tree with the robot's starting position as the root node. The

algorithm then randomly samples point within the search space. For each sample, it

identifies the nearest node in the existing tree and extends a new node towards the

sample point by a predefined step size, ensuring the path to this new node does not

intersect any obstacles. If the path is collision-free, the new node is added to the tree.

This process repeats until either a node reaches the goal region or a specified number

of iterations is completed. RRT is particularly advantageous for its ability to efficiently

explore large and complex spaces.[13]

 FIgure1. 10:schematic diagram of RRT expansion

Chapter 1 Path Planning

12

1.6 Comparison

Method

Optimal

complete

For

complex

spaces

Memory

efficient

Fast

execution
Handles

high

dimensional

spaces
Depth First

search (DFS)
No yes No yes No No

Breadth First

search (BFS)

Yes yes No No No No

Dijkstra

algorithm

Yes yes No No No No

A* search yes yes No No Yes No

RRT No yes No Yes Yes Yes

Cell

Decomposition

yes yes No No No No

Voronoi

diagram

No yes No Yes Yes Yes

Visibility

graph

yes yes Yes No Yes No

 Table 1 1:Comparative table of the different method

 When comparing path planning methods, we see that each has its own strengths and

weaknesses. Some, like A* Search and Dijkstra's Algorithm, are great at finding the

shortest path, but they might not work well in tricky spaces. Others, like Rapidly

Exploring Random Trees (RRT), handle complex environments better, but they might

not always find the absolute best path. Then there are methods like Voronoi Diagrams

and Visibility Graphs, which are good at avoiding obstacles but might struggle in

really complicated spaces. Picking the right method depends on what you need for

your specific situation, like whether you want the shortest path or need to navigate a

tricky environment. It's all about finding the right balance to get the job done well.

Chapter 1 Path Planning

13

1.7 Conclusion

In this chapter, we've explored different ways to figure out the best path to get from one

place to another, even when there are obstacles in the way.

We learned about simple methods like following paths until we reach the end (DFS) or

looking at all possible paths at once (BFS).

We also discovered more advanced techniques like A* and Dijkstra's Algorithm, which

are like super-smart ways to find the shortest route. Besides, we looked into how to

make maps using methods like drawing lines between points (Voronoi diagrams) and

connecting visible points without touching obstacles (visibility graphs). These methods

are like special tools that help us understand the environment better.

 And now, we're getting ready to dive deeper into a special version of one of these

methods called RRT*. It's like adding extra powers to our path-planning skills, so we

can handle even trickier spaces. As we keep learning and practicing, we'll become

experts at finding our way through all sorts of places, whether it's a maze, a city, or even

a virtual world!

14

2 Chapter 2

 Obstacle Avoidance

Chapter 2 Obstacle Avoidance

15

2.1 Introduction

Obstacle avoidance is a crucial aspect of autonomous robotics, enabling robots to

navigate complex environments safely and efficiently.

The methods for obstacle avoidance can be broadly classified into two categories:

reactive and deliberative methods. Reactive methods, which involve real-time decision-

making based on immediate sensor data, include geometric techniques such as potential

fields and Bug algorithms.

 Also, we will talk about Deliberative methods, which involve more complex planning

strategies that consider the entire environment to generate an optimal path, include

techniques such as RRT* and its variants.

This exploration of both reactive and deliberative methods will provide a

comprehensive understanding of the current strategies in obstacle avoidance, setting

the stage for further innovations in autonomous robotic navigation.

2.2 Obstacle avoidance

Obstacle avoidance refers to the techniques and algorithms used in robotics and

autonomous systems to detect and navigate around obstacles in their environment. This

capability is crucial for the safe and efficient operation of robots, drones, autonomous

vehicles, and other systems that operate in dynamic or unstructured environments. They

are two methods in obstacle avoidance are shown in figure 2.1.

[14]

.

 Obstacle

avoidance

Réactive

Methods
Délibérative

Methods

.

 Figure2. 1:classification of obstacle avoidance method

Chapter 2 Obstacle Avoidance

16

2.3 Reactive Methods

These methods rely on immediate sensor data to make real-time decisions to avoid

obstacles without a comprehensive plan of the entire environment. Geometric Methods

fall under this category as they typically involve real-time adjustments to the robot's

path based on the current obstacle layout.

2.3.1 Geometric Methods

are a prominent subset of reactive methods. They use geometric properties and spatial

relationships to navigate around obstacles. Common geometric methods include.

2.3.1.1 Potential Fields:

 In the artificial potential field, the robot motion is controlled by the attractive force and

the repulsive force, the attractive force is generated by the distance and direction to the

goal point, whereas the repulsive force is generated by the distance and direction to

obstacles. The forces of the robot in the artificial potential field are shown in figure 2.2,

where 𝐹2 is the repulsive force between the obstacle and the robot .𝐹1 is the attractive

force between the goal point and the robot, and F is the resultant force for controlling

the robot. [15]

 Figure2. 2:attractive force and repulsive force in artificial potential field.

https://www.mdpi.com/2076-3417/9/8/1589#fig_body_display_applsci-09-01589-f001

Chapter 2 Obstacle Avoidance

17

2.3.1.2 Bugs Algorithms

These are simple, rule-based algorithms that handle obstacle avoidance by following

the boundary of obstacles.

2.3.1.2.1 Bug 1 Algorithm

The primary goal of Bug1 is to navigate a robot from a starting point to a goal point

while avoiding obstacles encountered along the way.

Detailed Steps:

-The robot sets off towards the goal along the straight-line path.

Upon hitting an obstacle at point, A (the hit point), the robot switches to boundary-

following mode.

-The robot follows the obstacle boundary and continuously monitors its distance to the

goal. As it does this, it identifies the point B (the leave point) on the boundary that is -

closest to the goal.

-The robot completes one full circuit of the obstacle boundary, ensuring it explores the

entire perimeter of the obstacle.

-After returning to the hit point, the robot moves directly to the leave point (point B),

which is the closest point to the goal identified during the boundary following.

-From the leave point, the robot continues moving towards the goal. If it encounters

another obstacle, the process repeats.[16]

 Figure2. 3:presentation of bug 1 algorithm.

Chapter 2 Obstacle Avoidance

18

Bug 2 is to enable a robot to navigate towards a goal while avoiding obstacles by

following a straightforward strategy:

-The robot initially moves directly towards the goal along a straight line (called the m-

line).

-When the robot encounters an obstacle, it marks the point of contact (hit point).

-The robot then follows the boundary of the obstacle in a fixed direction (clockwise or

counterclockwise).

-The robot looks for an opportunity to return to the m-line and will leave the boundary

when it finds a point on the m-line that is closer to the goal than the hit point.

-The process repeats until the robot reaches the goal or determines that the goal is

unreachable.[16]

 Figure2. 4:presentation of bug 2 Algorithm.

2.4 Deliberative Methods
These methods involve pre-planning a path by considering the entire environment or a

significant portion of it. They often ensure global optimization and completeness’

(Rapidly exploring Random Tree Star) is a deliberative method as it plans paths by

considering the overall map and optimizes the path iteratively.

RRT* ensures that the path cost converges to the optimal solution as more samples are

added, making it particularly effective for complex environments where global

optimality is crucial.

Chapter 2 Obstacle Avoidance

19

2.4.1 RRT* star

RRT* is an optimized version of RRT. As the number of nodes approaches infinity, the

RRT* algorithm will provide the shortest possible path to the goal. The basic principle

of RRT* is the same as that of RRT, but two key additions to the algorithm yield

significantly different results.

Firstly, RRT* records the distance traversed by each node relative to its parent node.

This is referred to as the cost () of the node. Once the nearest node is found in the graph,

a neighborhood of nodes within a fixed radius from the new node is examined. If a node

with a lower cost () than the proximal node is found, the least expensive node replaces

the proximal node.

The second difference added by RRT* is tree reconnection. Once a node has been

connected to the least expensive neighbor, neighbors are re-examined. Neighbors are

checked to see if rewiring them to the newly added node will reduce their cost. If the

cost does indeed decrease, the neighbor is rewired to the newly added node. This feature

makes the path smoother.[17]

The key steps of the RRT* algorithm are as follows:

Step 1: Point Xrandom is randomly generated in the configuration space T.

 Figure2. 5:shows the sampling of a position x random.

Step 2: Node Xnearest closest to Xrandom is selected from the exploration tree with a

connecting line, and a point on this line with a distance r (extension step of the

exploration tree) from Xnearest is subsequently taken as a new leaf node, Xnew.

Figure2. 6:the nearest neighbor x nearest of x random is found and x new is generated.

Step 3: The nearest node set Xnear is constructed with the nodes of the exploration

tree in a certain range centered on Xnew.

Chapter 2 Obstacle Avoidance

20

Step 4: Node Xmin is found as the parent of Xnew by traversing Xnearest, through

which Xnew is connected to the exploration tree with the minimum path cost.

 Figure2. 7:represents the choose Parent step.

Step 5: Xnew and Xmin are added to the node set, and the branch connecting them is

added to the branch set.

 Figure2. 8:depicts the rewire step.

2.4.1.1 RRT* Variants

we will discuss the main contributions of various RRT* (Rapidly- exploring Random

Tree Star) variants:

2.4.1.1.1 RRT*-Smart

 is an extension version of RRT*, RRT*-Smart randomly searches the state space as

RRT* does. Similarly, the first path is found just like the RRT*. Once the first path is

found it then optimizes this path by interconnecting the directly visible nodes. This

optimized path yields biasing points for intelligent sampling. This process continues as

the algorithm progresses and the path keeps on being optimized rapidly.[18]

Chapter 2 Obstacle Avoidance

21

The RRT*-Smart algorithm contain two key concepts: Intelligent Sampling and Path

Optimization

 Path Optimization: is based on the concept of the Triangular Inequality, according

to the Triangular Inequality, c is always less than the sum of a and b, and hence always

gives a shorter path.[18]

 Figure2. 9:presentation of Triangular Inequality

Intelligent Sampling: is to approach optimality by generating the nodes as close as

possible to obstacle vertices.[18]

Figure2. 10::(a) First Path given by RRT*, (b) An optimized path (in blue) is shown after the

Path Optimization technique is applied on the path shown in (a).,(c) shows clustered samples

as a result of biasing towards the beacons (in green),(d) shows the optimum path

Chapter 2 Obstacle Avoidance

22

2.4.1.1.2 Informed RRT*

 is a simple modification to RRT* that demonstrates a clear improvement. It uses

heuristics to reduce the planning. once an initial solution is found, all possible

improvement is contained in an ellipse defined by the path length the start and the goal.

By directly sampling the ellipse, focus the search to only the state that have the

possibility of improving the solution.[19]

 Figure2. 11:objectif of elipse in infirmed RRT* algorithm.

Informed RRT* can find topologically distinct optimal paths more quickly, and in the

absence of obstacles can find the optimal solution to within machine zero in finite time.

It could be used in combined with other planning technique like path smoothing.[19]

Chapter 2 Obstacle Avoidance

23

Figure2. 12:Solutions of equivalent cost found by RRT* and Informed RRT*.

2.4.1.1.3 Flight Cost-based-RRT* (FC-RRT*)

 is a variant of the RRT* algorithm that incorporates flight cost considerations into the

path planning process. This algorithm aims to optimize trajectories for flight

applications. Focus on generating flight paths that minimize overall costs while

satisfying flight requirements and constraints, making it suitable for applications in

drone navigation.[20]

Chapter 2 Obstacle Avoidance

24

2.4.1.1.4 . Spline-RRT*

 is proposed for the coordinated motion of a dual-arm space robot. An initial path for

the dual-arm system is obtained by improving the standard RRT* planning algorithm.

which samples from two separated inertial spaces to avoid possible self-collisions.

Then, quartic splines reparametrize and smooth the generated RRT* path so that the

robot can execute it. The motion planning framework based on sampling efficiently

discovers a feasible path for the dual-arm space robot.[21]

 Figure2. 13:Overview of coordinated spline-RRT* planner.

 Figure2. 14::Simulation result of spline-RRT* algorithm.

Chapter 2 Obstacle Avoidance

25

2.4.1.1.5 rapidly exploring random tree-fixed node (RRT*FN)

 limits the maximum number of nodes, with the same sampling, node expansion and

parent node selection methods of the RRT*algorithm. by using a fixed set of nodes

sampled at the beginning of the algorithm. This number of nodes remains constant all

the execution. this method prevents infinite tree growth and saves memory. It includes

heuristic sampling, dichotomy greedy expansion, two additional expansions, local

environment sampling boundary expansion and triangle inequality path optimization

Therefore, when the number of nodes reaches the maximum value, the vs.-RRT*FN

algorithm forcibly removes some leaf nodes to free up memory. it involves projecting

points onto lines, checking for intersections with obstacles, and creating paths with

perpendicular points around obstacles to find optimal routes from a start point to a goal

point. [22]

 Figure2. 15:Simulation result of RRT*FN and VS-RRT*-FN algorithm.

Chapter 2 Obstacle Avoidance

26

2.5 Conclusion

the exploration of obstacle avoidance in autonomous robotics encompasses both

reactive methods, like potential fields and Bug algorithms, and deliberative methods,

including RRT* and its variants.

This dual approach provides a robust framework for navigating complex environments,

ensuring both real-time responsiveness and strategic planning. Moving forward, the

development of new geometric methods and novel variants of existing algorithms will

continue to advance the field, enhancing the capabilities of autonomous systems.

In the following chapter, we will advance the discussion by developing a novel variant

of the RRT* algorithm, aiming to improve its efficiency and performance in specific

scenarios. Additionally, we will introduce a new geometric method for obstacle

avoidance, enhancing the toolkit available for real-time robotic navigation. This

exploration will not only highlight the innovative strategies in obstacle avoidance but

also contribute to the ongoing evolution of autonomous robotic systems.

27

3 Chapter 3

Simulation,

Analysis,

 and Result

Chapter 3 Simulation, Analysis and Results

28

3.1 Introduction

In this chapter, we focus on the implementation, analysis, and results of two our method:

the Limited tree expansion RRT* and a geometric method concept-based approach. The

Limited Expansion Tree RRT* is an optimized variant of the classic RRT* algorithm.

On the other hand, the geometric concept-based method utilizes geometric principles to

create safe and optimized paths in complex environments.

First, we will provide a detailed description of these two approaches, highlighting the

theoretical principles and the innovations they bring. Then, we will explore the

implementation of the algorithms, explaining the various functions and libraries used in

our Python development environment, Finally, we will analyze the performance of both

methods in terms of generated paths, computation time, and environmental complexity.

We will conclude this chapter with a detailed comparison of the obtained results,

highlighting the advantages and limitation of each approach.

3.2 Limited tree expansion RRT* Methods

RRT* (Rapidly exploring Random Trees Star) is a motion planning algorithm used in

robotics. It continuously expands a tree structure to find near-optimal paths from the

start position to the goal, helping robots move around efficiently.

While the RRT* algorithm offers significant advantages in terms of finding near-

optimal paths efficiently in complex environments, it also has some limitations and

disadvantages:

One drawback is the process of iteratively expanding tree by sampling, connecting, and

extending nodes can be time-consuming, particularly in environments with complex

geometry or obstacles. As the tree grows. the algorithm may require more iterations to

explore the entire configuration space, leading to longer planning times.

In our project, we've introduced a new approach to address this issue, several strategies

can be employed to limit the expansion of the RRT* tree and focus the search on the

most promising areas.

Chapter 3 Simulation, Analysis and Results

29

3.2.1 Design of Limited tree expansion RRT*method

3.2.1.1 Limiting Tree Expansion

Instead of allowing the RRT* tree to grow without bounds, the algorithm should confine

the tree expansion within the region defined by the x start and x goal coordinates. This

helps to focus the search on the relevant state space and avoid unnecessary exploration

in areas that are unlikely to improve the solution. By setting appropriate limits on the

tree's growth, the algorithm can efficiently navigate towards the goal while avoiding

wasting computational resources on distant regions.as show in figure 3.2:

Start

 Limiting Tree Expansion.

Detect obstacle blocks the extension zone

 Incremental expansion

Finding path

End

 Figure3. 1:general architecture

Chapter 3 Simulation, Analysis and Results

30

 Figure3. 2:presentation of the Exploration Bounds of the tree.

Expanding on this approach, while confining the extension of the Rapidly exploring

Random Tree (RRT*) algorithm between the coordinates of x start and x goal proves

successful in many cases, encountering obstacles within this restricted zone presents a

challenge. However, by dynamically adjusting the extension area, the algorithm can

adapt and overcome such obstacles:

3.2.1.2 Obstacle Detection

 When an obstacle blocks the extension zone between x start and x goal as shown in

figure 3.3., the algorithm detects this obstruction during the tree expansion process. This

detection triggers a deviation from the standard extension procedure, signaling the need

for an alternative approach to find a feasible path.

 Figure3. 3:obstacle blocks the extension zone .

Chapter 3 Simulation, Analysis and Results

31

3.2.1.3 Incremental expansion

When the algorithm encounters an obstacle that blocks the direct path between the start

and goal points, it responds by incrementally expanding the area it searches for a viable

route. Rather than being limited to the original bounds, the algorithm dynamically

grows the exploration space to find alternative pathways that can navigate around the

obstacle.

3.2.1.4 Finding path

once the algorithm identifies a potential path. it stops expanding the search tree any

further as shown in figure 3. 4. By halting the extension process at this point, the

algorithm indicates that it has found a feasible route from the starting point to the goal.

 Figure3. 4:finding the path.

3.2.2 Objective of Limiting Tree Expansion RRT*

In the realm of pathfinding algorithms, our method of confining tree expansion within

specified start and goal coordinates emerges as a powerful technique. This approach,

aimed at simplifying the exploration process, offers a multitude of benefits ranging from

reduced complexity to improved path quality and clearer visualization:

Reduced Complexity

Limiting the tree expansion helps in reducing the computational complexity associated

with exploring the entire problem space. The algorithm focuses on the specific area

where the optimal path is more likely to be found.

Chapter 3 Simulation, Analysis and Results

32

Faster Convergence

 By limiting the search space, the RRT* algorithm can converge to a solution more

quickly This targeted approach allows the algorithm to rapidly discover feasible

solutions, improving its overall efficiency and speed.

 Improved Path Quality

the algorithm can potentially generate paths of higher quality. Since the exploration is

focused on the relevant part of the problem space, the resulting paths are more likely to

be optimal. This targeted approach allows the algorithm to find solutions that are more

efficient and effective.

 Clear Visualization

By confining the tree's growth, the visualization becomes significantly clearer. This

allows for a simple observation of how the algorithm navigates the space, which areas

it traverses, and how it constructs paths leading to the goal.

3.2.3 RRT* Algorithm VS Limited Tree Expansion RRT*

 In the field of path planning algorithms, the strategic choice between the exploration

of the RRT* algorithm and our concept of limiting tree expansion presents a pivotal

decision point. Both approaches offer unique advantages, shaping the efficiency and

effectiveness of pathfinding solutions.

3.2.3.1 RRT* Algorithm

The RRT* algorithm is a powerful tool for probabilistic path planning, known for its

ability to construct a tree that gradually extends towards the goal while optimizing the

path by minimizing overall cost. This is achieved by iteratively sampling random points

in the configuration space and connecting them to the nearest node in the tree.

3.2.3.2 Limited Tree Expansion RRT*

To address the potential drawbacks of the RRT* algorithm, we proposed the concept of

limiting tree expansion. By confining the growth of the search tree within the region

defined by the x start and x goal coordinates, this approach focuses the exploration on

the most relevant areas of the configuration space.

Chapter 3 Simulation, Analysis and Results

33

3.2.3.3 Comparison

Limited Tree Expansion RRT* was compared to RRT* on a variety of simple planning

problems (figure 3.5, figure 3.6), Simple problems were used to test specific challenges.

The RRT* algorithm and limiting tree expansion differ in their exploration scope,

complexity, optimality, path quality, and visualization. RRT* explores the entire

configuration space, whereas limiting tree expansion confines the search to a specific

region, reducing complexity and improving efficiency. While RRT* strives for

optimality, our concept prioritizes expedient convergence. Both approaches aim for

high-quality paths but limiting tree expansion achieve this more efficiently and more

optimality. Confining tree expansion also enhances visualization clarity, aiding in easier

interpretation and debugging.

in the term of faster convergence, we compared RRT* and limited tree expansion as the

figure explains:

Figure3. 5:presentation of RRT* map. Figure3. 6:presentation of Limited Tree Expansion map

Chapter 3 Simulation, Analysis and Results

34

 Figure3. 7:comparison of RRT* and limited tree expansion.

The graph compares the performance of the RRT* algorithm with limited tree

expansion concerning the distance to the optimal path over time.

The plot for RRT* (in blue) shows a linear increase in the distance to the optimal path

over time. This indicates that RRT* is approaching the optimal path gradually.

The plot for limited tree expansion (in orange) also depicts an increase in the distance

to the optimal path over time. so, it increases at a faster rate compared to RRT*,

suggesting that limited tree expansion converges towards the optimal path more

quickly.

The red and green scatter points indicate the paths provided by RRT* and limited tree

expansion, respectively. The red point represents the path provided by RRT* at 23

seconds, while the green point represents the path provided by limited tree expansion at

10 seconds.

Overall, the graph allows for a visual comparison of how RRT* and limited tree

expansion algorithms progress towards the optimal path over time. Limited tree

expansion demonstrates a faster convergence towards the optimal path compared to

RRT*.

Chapter 3 Simulation, Analysis and Results

35

3.3 Geometric Methods

Geometric methods are fundamental in the field of path planning, particularly in

robotics and autonomous systems. These methods leverage the principles of geometry

to design efficient and effective paths for navigating through an environment.

Geometric methods often aim to find the most efficient path between two points. This

efficiency is typically measured in terms of distance, time, or energy consumption.

In our project we developed new geometric method designed to be computationally

efficient. we used well-defined mathematical properties and structures (such as

rectangles and vertex) to reduce the complexity of the path planning problem.

3.3.1 Global Architecture

Step 1: Start by establishing a straight-line segment between the starting point and the

goal point.

Step 2 : Obstacle Détection and Analysais :

Check for obstacles intersecting with the initial straight-line segment.

Step 3: Perpendicular Distance Calculation:

-Calculate perpendicular distances from the vertices of detected obstacles to the initial

line.

-Focus on vertices above or below the line, depending on the orientation of the obstacle.

Step 4: Identification of Critical Turning Points:

-Identify the longest perpendicular distances from vertices above and below the line.

-Choose the shortest of these distances as the nearest point of deviation from the straight

path.

-Mark this chosen vertex as a critical turning point with a circle.

Step 5: Path Refinement:

-Redraw the line segment the marked critical turning point to the goal .

-Repeat the obstacle detection, perpendicular distance calculation, and critical turning

point identification process along the new line segment.

Step 6: Iterative Refinement:

-Continue iterating this process until the line segment from the last marked critical

turning point to the goal point is obstacle-free.

Chapter 3 Simulation, Analysis and Results

36

Step 7: Path Completion:

-Once a clear path is established from the start to the goal without any obstacles, the

pathfinding process is complete.

 Figure3. 8:Global architecture

3.3.2 Overview of the Concept

Our approach begins by drawing an initial straight line between the starting point and

the goal point.

This line serves as the basis for our pathfinding method. We then examine this line to

check for any obstacles that intersect it.

When an obstacle is detected, we proceed to calculate the perpendicular distances from

the vertices of the obstacle to our initial line.

Specifically, we focus on the vertices that are either above or below the line. We

measure the lengths of these perpendiculars and identify the longest perpendicular

distance from the vertices above the line and the longest perpendicular distance from

the vertices below the line. Out of these two longest perpendiculars, we select the one

with the shortest length, ensuring we choose the nearest point of deviation from our

straight path. This chosen vertex is marked with a circle to indicate a critical turning

point in our path. Following this, we redraw the line segment from the starting point to

this newly marked vertex and repeat the process: checking for further obstacles along

Chapter 3 Simulation, Analysis and Results

37

the new line segment, calculating perpendicular distances, selecting the most significant

deviation point, and marking it. This iterative process continues until the line segment

from our last marked vertex to the goal point is free of obstacles, thereby constructing

a clear and navigable path from the start to the goal.

 a-presentation of the perpendiculars b-presentation of the new line

 Figure3. 9:presentation of the method.

 Purpose of Expansion

The expansion ensures that the pathfinding algorithm considers a safety margin around

each obstacle. This is crucial for scenarios where the robot has a physical size that needs

to be accommodated to avoid collisions. By expanding the obstacles, the algorithm can

create a path that maintains a safe distance from the edges of the obstacles.

Expanding the obstacle involves adjusting its boundaries to create a larger rectangle.

By shifting the left boundary leftward and the top boundary upward each by the

expansion amount, and increasing both the width and height

 Figure3. 10:Expansion of the obstacle.

Chapter 3 Simulation, Analysis and Results

38

3.3.3 Geometrics properties

The Geometrics properties and calculations ensure that the pathfinding algorithm

effectively navigates around obstacles by finding optimal points of deviation and

iteratively constructing a collision-free path.

The Euclidean distance

The distance function calculates the Euclidean distance between two points. The

formula is:

 Figure3. 11:Euclidean distance.

the Euclidean distance helps:

- in finding the closest point on a line segment to a given point.

-Find the longest and shortest perpendicular vertices of obstacles.

-Finding the shortest and longest distance from a point to a line.

-When a path segment intersects an obstacle, projecting the obstacle's vertices onto the

path helps determine which points to use to navigate around the obstacle.

 Victor Projection

 Figure3. 12:vector projection.

Chapter 3 Simulation, Analysis and Results

39

-Helps for Normalized the Direction Vector from start point to goal point and Direction

of perpendiculars.

3.3.4 The Objectives of the idea

 Create a straight-line path between the start and goal points.to Provides a quick estimate

of the path length and a framework for further refinement.

 Identify obstacles that intersect the initial path to Ensures that the algorithm can

effectively navigate around obstacles.

 Measure perpendicular distances from obstacle vertices to the initial path to Identifies

key points where the path needs to deviate to avoid obstacles.

Choose the most efficient deviation points based on the calculated distances to

Minimizes the overall path deviation, ensuring efficient navigation.

 Continuously adjust the path by adding new turning points until the path is clear of

obstacles to Creates a smooth, obstacle-free path from the start to the goal point.

Provide a visual representation of the pathfinding algorithm's progress to Enhances

understanding and debugging of the algorithm through clear visualization.

Develop a path that is both efficient in terms of distance and clear of any obstacles to

Facilitates reliable and effective navigation in various environments.

By meeting these objectives, the pathfinding algorithm aims to deliver a reliable

solution for autonomous navigation, ensuring that the path from the start to the goal is

as direct and obstacle-free as possible.

3.3.5 Theoretical Analysis.

Time Complexity Analysis.

For each obstacle, check if it intersects the line Complexity per Obstacle Intersection

checks can typically be done in C (1) time per obstacle. If there are n obstacles, the

complexity is C(n).

Vertices per Obstacle Assume each obstacle has v vertices on average. Distance

Calculation Computing the perpendicular distance for each vertex involves basic

arithmetic operations, resulting in C (1) time per vertex. The Complexity is for n

obstacles with v vertices each, the complexity is C(nv).

Finding the longest perpendicular distances from above and below the line involves

comparing distances for each vertex. The Complexity As each comparison is C (1), the

complexity for all vertices is C(nv).

Chapter 3 Simulation, Analysis and Results

40

Iterations, In the worst case, this process may need to be repeated for each obstacle.

The complexity per iteration is C(nv). If k iterations are needed, the overall complexity

is C(knv)

 Figure3. 13:Histogram representing time complexity analysis of pathfinding.

Space Complexity Analysis

 Path Storage: Store the list of deviation points. In the worst case, there might be as

many deviation points as there are obstacle Storing the vertices of each obstacle,

requiring a space.

Path Optimality By selecting the nearest critical deviation point, the approach ensures

minimal deviation at each step.

Robustness

Obstacle Handling: Efficiently handles a variety of polygonal obstacles, provided they

have well-defined vertices.

Dynamic Environments: This static pathfinding method does not adapt to dynamic

changes. Modifications are required for real-time obstacle updates.

Path Optimality

Local Optimality: By selecting the nearest critical deviation point, the approach ensures

minimal deviation at each step.

Chapter 3 Simulation, Analysis and Results

41

Global Optimality: The algorithm does not guarantee a globally optimal path, as it

focuses on local optimizations. It may result in a longer overall path if locally optimal

points do not align well globally.

Completeness

Solution Guarantee: If a path exists, the iterative process should eventually find it by

repeatedly refining the path and avoiding detected obstacles.

Exploration Coverage: The method systematically checks and adjusts for obstacles,

ensuring thorough exploration along the initial path line.

Implementation Complexity

Ease of Implementation: The algorithm is straightforward to implement, involving basic

geometric calculations and iterative refinement.

Computational Requirements: Suitable for environments with moderate complexity;

may require optimization for high-density obstacle fields or very large environments.

3.3.6 Analyzing the Key Attributes of the Algorithm

Simplicity: The method starts with a straightforward straight-line path between the start

and goal points, which serves as the basis for further refinement. This simplicity makes

the algorithm easy to understand and implement.

Efficiency: By initially drawing a straight line, the algorithm provides a quick

estimation of the path length. This estimation can be valuable, especially in real-time

applications where quick decisions are required.

Adaptability: The algorithm adapts to obstacles by iteratively refining the path based

on detected intersections. This adaptability allows it to navigate complex environments

with both vertical and horizontal obstacles effectively.

Optimization: By selecting critical turning points along the initial straight line, the

algorithm optimizes the path by choosing the nearest deviation point. This optimization

minimizes the number of calculations needed to reach the goal, leading to efficient

pathfinding.

Clear Path Construction: The iterative process of refining the path ensures that the final

path from the start to the goal is clear and navigable, avoiding obstacles effectively.

This clear path construction is essential for successful navigation in obstacle-rich

environments.

Versatility: The method is versatile and can be applied to various pathfinding scenarios,

including robotics, game development, and logistics planning. Its simplicity and

adaptability make it suitable for different applications.

Chapter 3 Simulation, Analysis and Results

42

Incremental Improvement: The algorithm iteratively improves the path by detecting

obstacles, calculating perpendicular distances, and selecting optimal deviation points.

This incremental improvement ensures that the final path is well-suited for navigation.

the radar chart in figure highlight that the pathfinding method excels in simplicity, clear

path construction, and efficiency, while also being highly versatile and capable of

incremental improvement. There is a moderate strength in adaptability and

optimization, indicating potential areas for further enhancement. This visual

representation underscores the method's effectiveness and suitability for various

pathfinding tasks.

Figure3. 14:radar chart the strengths and weaknesses of the method across different attributes.

Keys:

Blue Line: Represents the pathfinding method’s performance on each attribute.

Shaded Blue Area: Visualizes the overall performance; a larger area indicates stronger

overall performance.

Concentric Circles: Provide the scale for each attribute, with the outermost circle

typically representing the highest score (10).

Axes Labels: Indicate the attributes being measured.

3.4 Visual representation and simulation

3.4.1 Software development environment

PyCharm 2024.1

PyCharm is an Integrated Development Environment (IDE) used for programming in

Python. It provides code analysis, a graphical debugger, an integrated unit tester,

Chapter 3 Simulation, Analysis and Results

43

integration with version control systems (VCSes), and supports web development with

Django. PyCharm is developed by the Czech company JetBrains.

PyCharm is a powerful and comprehensive IDE that greatly simplifies the development

of Python applications, from simple scripts to complex web and data projects.[23]

 Figure3. 15:PyCharm logo

3.4.2 Programming language

Starting with the research of the programming language, which will be used to develop

the idea, is usually the first thing to do. After taking a deep and careful general look at

many programming languages, Python was the one catching the interest.

python is an interpreted, object-oriented, high-level programming language with

dynamic semantics. Its high-level built in data structures, combined with dynamic

typing and dynamic binding, make it very attractive for Rapid Application

Development, as well as for use as a scripting or glue language to connect existing

components together. Python's simple, easy to learn syntax emphasizes readability and

therefore reduces the cost of program maintenance. Python supports modules and

packages, which encourages program modularity and code reuse. The Python

interpreter and the extensive standard library are available in source or binary form

without charge for all major platforms and can be freely distributed.

Python is a general-purpose programming language started by Guido van Rossum that

became very popular very quickly, mainly because of its simplicity and code

readability. It enables the programmer to express ideas in fewer lines of code without

reducing readability.[24]

Chapter 3 Simulation, Analysis and Results

44

 Figure3. 16:python logo.

Why python?

Due to the above reasons, Python was chosen as Programming Language. To summarize

it all

Python is robust.

It is solid and powerful. Python has a relatively small quantity of lines of code, which

makes it less prone to issues, easier to debug, and more maintainable. It is also very fast.

Python is flexible.

Because it was not created to answer a specific need, Python is not driven by templates

or specific APIs, therefore, well suited to the rapid development of all kinds of

applications.

Python is easy to learn and use.

"Python, in particular, emerges as a nearly ideal candidate for a first programming

language", says John M. Zelle, in the Department of Mathematics, Computer Science,

and Physics at Wartburg College in Iowa.

Python is free.

Since Python is an open-source programming language, it immediately reduces upfront

project costs by leveraging Python in the development projects.

Python in robotics.

In robotics, programming, simulation, and visualization are an essential factor in

facilitating and simplifying complex matters. In our experience, the Python

programming language has been instrumental and powerful.

Chapter 3 Simulation, Analysis and Results

45

3.4.3 Visualization.

Visualizing the process of our program is crucial for understanding its behavior and

effectiveness. Pygame serves as the perfect tool for this purpose, offering a versatile

framework for creating interactive graphical interfaces. By integrating Pygame into our

program, we unlock the ability to dynamically display various elements.

Pygame is a powerful Python library specifically designed for creating and developing

multimedia applications and games. It provides a robust set of tools and functionalities

for handling graphics, sound, input devices, and other multimedia components, making

it a popular choice among game developers.[25]

 Figure3. 17:Pygame logo.

In our code we utilize Pygame to visualize the Limited Tree Expansion RRT* path

planning algorithm in action. Let's break down how Pygame is utilized in the code:

Pygame is used to draw various elements on the screen. Circles representing the start

and goal positions are drawn using. pygame. draw. circle (), while rectangles

representing obstacles are drawn using pygame. draw. rect (). Lines representing the

RRT* tree and the final path are drawn using pygame. draw. line ()

and pygame. draw. Lines () respectively.

 Pygame is used to handle events such as quitting the application. The

pygame.event.get () function is used to retrieve and handle events, such as the user

closing the window.

After drawing all the elements, the screen is updated using pygame. display. Flip () to

reflect the changes.

Pygame is utilized in conjunction with custom classes (Node and RRTMap) to

Chapter 3 Simulation, Analysis and Results

46

represent nodes in the RRT* tree and to draw the map with obstacles, start, goal, tree,

and path.

Pygame serves as the backbone for creating the graphical interface and visualizing

our concept in real-time, making it easier to understand and debug the algorithm's

behavior.

3.4.4 The libraries used.

In our program, we used three libraries: the pygame library, which we mentioned

earlier, the math library, and the random library, to implement an RRT* (Rapidly

exploring Random Tree Star) path planning algorithm.

pygame: Used for creating a graphical user interface to visualize the path planning

process. It provides functions for drawing shapes, handling events like quitting the

application, and updating the display.

math: Utilized for mathematical operations required in the path planning algorithm,

such as calculating distances between points and performing geometric calculations for

steering towards a new point.

random: Employed for generating random points within a specified range, which is

essential for the random sampling strategy in the RRT* algorithm.

Chapter 3 Simulation, Analysis and Results

47

3.5 Simulation

3.5.1 Pygame Initialization

3.5.1.1 Creation of the environment

We created the scene using the Pygame library to establish the 2D environment and

visualize the path planning process. This environment serves as a representation of a

laboratory within our department.

3.5.1.2 Creating obstacles

In our program, obstacles are introduced as rectangular entities within the 2D

environment depicted by the Pygame window. These obstacles, akin to the walls of a

laboratory, are defined by their positions (x coordinate, y coordinate) and dimensions

(width, height). They remain static throughout the program's execution, serving as

permanent fixtures in the environment and influencing the path planning process to

avoid collisions. These obstacles, representing the walls of a lab, are stored in a list

structure:

Here is the general view of the scene.

 Figure3. 18:presentation of the general view of a lab.

Chapter 3 Simulation, Analysis and Results

48

3.5.2 Limited tree expansion.

3.5.2.1 Algorithm logigram

3.5.2.2 Utility Functions.

3.5.2.2.1 New functions:

random_point_within_zone

This function is designed to generate a random point within the zone defined by the x-

coordinates of two given point: start and goal, for limited the expansion of the tree

Chapter 3 Simulation, Analysis and Results

49

is_path_clear.

This function checks if there are any obstacles along a path from one node to another

node. it checks If any obstacle is found to be blocking the path, or if there is a collision

detected.

random_point.

this function generates a random point within an expanded search space to avoid

obstacles. The expansion is achieved by adjusting the range of x-coordinates based on

the offset value, ensuring that the random point is not too close to obstacles that might

block the direct path from start to goal.

3.5.2.2.2 Tree function

nearest_node: find and return the node in the tree that is closest to the specified point,

using the Euclidean distance as the measure of closeness.

Steer: to steer toward a new point

rrt_star: function to find a path:

- Find the node closest to the goal.

 -Build the path from the nearest node to the start.

- Reverse the path to start at the beginning.

Chapter 3 Simulation, Analysis and Results

50

3.5.3 Geometric Method

3.5.3.1 Algorithm logigram

 NO Yes

Draw a line between

start and goal

Identify longest

perpendicular distances

above and below the line

Mark selected vertex as

critical turning point.

Redraw line segment

from start to marked

vertex to le goal

Go to the goal

Check for

obstacles

intersect the line

End

Start

Chapter 3 Simulation, Analysis and Results

51

3.5.3.2 Utility Functions

distance: Computes the Euclidean distance between two points.

project_point_onto_line: Projects a point onto a line segment.

does_line_intersect_obstacle: Checks if a line intersects with any obstacle.

The function does_line_intersect_obstacle checks whether a line segment defined by

its start and end points intersects with a given obstacle. It utilizes the clipline method

of the obstacle object to perform this check. It calls the clipline method of the obstacle

object, passing the start and end points of the line segment as a tuple.

If the clipline method returns an empty tuple, it means there's no intersection, and the

function returns False. Otherwise, it returns True, indicating an intersection.

Chapter 3 Simulation, Analysis and Results

52

find_longest_perpendicular_to and find_shortest_perpendicular_bottom: Find the

longest perpendicular distances from obstacle vertices to the initial straight line.

Pathfinding Functions.

create_path_with_perpendiculars: Constructs a path by finding perpendicular

vertices on intersecting obstacles.

3.6 Statistical Analysis of Path Efficiency

in the preceding chapter, we examined the contrast between the RRT star and Limited

Tree Expansion algorithm. Now, in this section we’ll extend our analysis to encompass

three diverse environments, each environment was carefully selected to represent

different challenges. enabling a thorough examination of how the algorithms navigates

obstacles, adapts to changes, and optimizes its pathfinding strategy.

Through this comprehensive analysis, our objective was to elucidate the unique

strengths and weaknesses of each algorithm, RRT*, limited tree expansion, and the

geometric method. By subjecting these algorithms to various environments, we evaluate

the variations in complexity, path length, and execution time for real-world applications

across diverse settings. This comparative approach allowed us to evaluate not only their

individual capabilities but also their relative advantages and limitations in addressing

different challenges.

3.6.1 Limited tree expansion method

We introduced three distinct environments to observe how the limited tree expansion

algorithm executes and reacts within each setting:

Chapter 3 Simulation, Analysis and Results

53

 Figure3. 19:finding path by limited tree expansion method in lab 1.

 Figure3. 20:finding path by limited tree expansion method in lab 2.

Chapter 3 Simulation, Analysis and Results

54

 Figure3. 21:finding path by limited tree expansion method in lab 3.

3.6.1.1.1 Complexity in multiple environments.

In this study, we examine Limited tree expansion method in diverse environments to

compare their performance.

we evaluated in three distinct environments to assess its efficacy in path planning from

the start point (green circle) to the goal point (red circle) as show above in figure 3.19,

figure 3.20 and figure 3.21. Despite encountering complexity within the environments,

we observed that this method consistently provided a viable path in all cases.

3.6.1.2 path length.

the path length in the limited tree expansion method refers to the total distance covered

along the generated path. It is computed by summing the lengths of all line segments

connecting consecutive points in the path. The length of each segment is calculated

using the Euclidean distance based on the coordinates of the points in the path. This

measure helps evaluate the effectiveness of the path generated by this method in

navigating from the start node to the goal node while avoiding obstacles in the

environment. We evaluated the path length under the three cases of the environment,

with the findings presented in the table 3.1:

Chapter 3 Simulation, Analysis and Results

55

 Path length (m)

 Lab 1 8.29
 Lab 2 8.95
 Lab 3 11.29

 Table 3 1:path length of limited tree expansion method

3.6.1.3 Execution time.

Execution time refers to the duration it takes for the program to complete its

execution, The time taken by the limited tree expansion algorithm to find the path

from the start of the algorithm to the completion of the pathfinding. We evaluated the

execution time under the three cases of the environment, with the findings presented in

the table:

 Execution time (S)

 Lab 1 8.29
 Lab 2 8.75
 Lab 3 9.82

 Table 3 2: Execution time of limited tree expansion method

Upon comparing the results of path length and execution time, it becomes evident that

as the path length extends, so does the duration of execution.

Chapter 3 Simulation, Analysis and Results

56

3.6.2 Geometric method

We introduced three distinct environments to observe how the geometric method

executes and reacts within each setting.

 Figure3. 22:finding path by Geometric method in lab 1.

Chapter 3 Simulation, Analysis and Results

57

 Figure3. 23:finding path by Geometric method in lab 2.

 Figure3. 24:finding path by Geometric method in lab 3.

Chapter 3 Simulation, Analysis and Results

58

3.6.2.1 Complexity in multiple environments:

In this study, we examine Geometric method in diverse environments to compare their

performance.

we evaluated in three different environments to measure its effectiveness in path

planning from the start point (green circle) to the goal point (red circle) as show above

in figure 3.22, figure 3.23 and figure 3.24. With escalating complexity in the

environment, the method became less efficient in successfully generating a path.

3.6.2.2 path length.

Path length, in the geometric methods, refers to the cumulative distance covered along

a route between two points in a space, typically measured along the curve representing

the path. This measurement involves calculating the sum of distances between

consecutive points or segments along the path, utilizing geometric principles such as

the Euclidean distance in Cartesian coordinates. We evaluated the path length under the

three cases of the environment, with the findings presented in the table:

 Path length (m)

 Lab 1 6.28

 Lab 2 5.91

 Lab 3 8.32

 Table 3 3:path length of geometric method

3.6.2.3 Execution time

Execution time signifies the duration it takes for the geometric method to complete its

tasks. reflecting the time taken for each step and the cumulative duration of the entire

process. We evaluated the execution time under the three cases of the environment, with

the findings presented in the table:

 Execution time (S)

 Lab 1 0.75

 Lab 2 0.67

 Lab 3 0.88

 Table 3 4:Execution time of geometric method

Chapter 3 Simulation, Analysis and Results

59

3.6.3 RRT* algorithm

We introduced three distinct environments to observe how the RRT* algorithm executes and reacts

within each setting.

 Figure3. 25:finding path by RRT* algorithm in lab1.

 Figure3. 26:finding path by RRT*algorithm in lab 2.

Chapter 3 Simulation, Analysis and Results

60

 Figure3. 27:finding path by RRT* algorithm in lab 3.

3.6.3.1 Complexity in multiple environments.

In this study, we evaluated RRT*algorithm in three distinct environments to assess its

efficacy in path planning from the start point (green circle) to the goal point (red circle)

as show above in figure 3.25, figure 3.26 and figure 3.27. Despite encountering

complexity within the environments, we observed that this algorithm consistently

provided a viable path in all cases.

3.6.3.2 path length.

path length is the sum of the Euclidean distances between consecutive nodes along the

path traversed by the RRT* algorithm, from the starting point to the goal point. We

evaluated the path length under the three cases of the environment, with the findings

presented in the table 3.5:

 Path length (m)

 Lab 1 12.19

 Lab 2 9.2

 Lab 3 12.35

 Table 3 5:path length of RRT* algorithm

Chapter 3 Simulation, Analysis and Results

61

3.6.3.3 Execution time

Execution time refers to the duration it takes for the program to complete its

execution, The time taken by RRT* algorithm to find the path from the start of the

algorithm to the completion of the pathfinding. We evaluated the execution time under

the three cases of the environment, with the findings presented in the table below:

 Execution time (S)

 Lab 1 10.27

 Lab 2 9.27

 Lab 3 13.5

 Table 3 6:Execution time of RRT*algorithm

3.6.4 Results

in this section, we have conducted a comparison of all the outcomes obtained through

the two methods concerning both path length generated, and the time taken for the

execution of processes in one table.

Table 3 7:comparison between limited tree expansion, geometric method and RRT*

algorithm

The results obtained from comparing the two methods reveal that the geometric

approach excels in optimizing path length compared to the limited tree expansion

method. Additionally, in terms of time efficiency, the geometric method demonstrates

a faster path-finding capability compared to the limited tree expansion approach.

Geometric methods offer several advantages over tree-based approaches. Firstly, they

often involve direct calculations of distances between points, facilitating more precise

path determination. Additionally, geometric methods typically operate in continuous

space, allowing for smoother and more accurate path interpolation, Furthermore, these

Chapter 3 Simulation, Analysis and Results

62

methods frequently employ efficient search techniques, which enable rapid

convergence to optimal or near-optimal solutions.

The limited tree expansion method demonstrates inferior performance compared to

geometric methods in path planning for several reasons. Firstly, it relies on discrete

sampling of the search space, leading to suboptimal paths, especially in environments

with complex geometries or obstacles. Moreover, the discrete nature of limited tree

expansion methods makes them prone to getting trapped in local minima, hindering

exploration of alternative paths efficiently. Furthermore, these methods require fine-

tuning of parameters such as step size, tree expansion strategy, which can be challenging

and time-consuming, and may not always yield optimal path results. Finally, limited

tree expansion methods may struggle with accurately interpolating paths between

sampled points, resulting in jagged or suboptimal trajectories, particularly in

environments with intricate geometries or sharp turns.

On the other hand, the Limited Tree Expansion method proves to be more efficient

compared to the RRT* algorithm due to its shorter execution time. By strategically

expanding the tree only within the vicinity of the start and goal points, and incrementing

expansion only when encountering obstacles, this method significantly reduces the time

required to find the optimal path.

Finally, each method has its own set of advantages and limitations, making them

suitable for different applications and environments. The RRT* algorithm excels in

finding optimal paths in complex and dynamic environments but comes with higher

computational costs. The Limited Tree Expansion method offers a balance between

efficiency and optimality, making it suitable for challenges requiring faster execution

times. The Geometric method, while simpler and faster in certain contexts, may lack

the robustness and adaptability needed for more challenging environments. Thus, the

choice of method depends on the specific requirements and characteristics of the given

challenges.

Chapter 3 Simulation, Analysis and Results

63

3.7 Conclusion

In conclusion, this chapter has demonstrated the capabilities and limitations of the

Limited Tree expansion RRT* and geometric concept-based methods for path planning

and obstacle avoidance. The performance analysis revealed that the Limited Expansion

Tree RRT* excels in environments where path quality and computational efficiency are

paramount, thanks to its ability to limit unnecessary expansion of the search tree. In

contrast, the geometric method stands out for its simplicity and efficiency in structured

environments where obstacles can be represented geometrically.

Quantitative comparisons showed that each method has its optimal application

domains, depending on the complexity of the environment and the specific mission

requirements. The obtained results provide a solid basis for choosing the most

appropriate method based on operational constraints and mission objectives. These

findings also open up future improvement opportunities, such as combining both

approaches to leverage their respective advantages and overcome their limitations.

Thus, this chapter has not only presented a thorough evaluation of two distinct

methods but also provided valuable insights for the future development of robust and

efficient navigation solution

64

 General Conclusion

The methods presented in this thesis represent significant advancements in the field of

autonomous mobile robot (AMR) navigation. By introducing enhanced variants of the

Rapidly exploring Random Tree Star (RRT*) algorithm, such as the Limited Expansion

Tree RRT*, along with our new geometric method, we have demonstrated notable

improvements in trajectory quality. These methods outperform the original RRT*

algorithm by providing more efficient and optimized trajectories, which are crucial for

autonomous navigation in complex environments.

One of the key advantages of these new approaches is their ability to balance trajectory

planning efficiency with computational complexity, making robots more responsive and

adaptable to dynamic changes in their environment. Additionally, the use of geometric

techniques allows for better obstacle handling and the planning of safer and more

precise paths.

The results obtained highlight the considerable potential of these methods to enhance

AMR capabilities. In the future, the development of these techniques can benefit from

the integration of parallelization and advanced algorithmic optimization. This will not

only improve the efficiency and effectiveness of these methods but also make them

more robust and adaptable to a wider range of real-world scenarios.

In conclusion, the innovations presented in this thesis open new avenues for

autonomous mobile robot navigation. They establish a solid foundation for future

research aimed at fully exploiting the potential of AMRs in various industrial,

commercial, and service applications, thereby contributing to the ongoing advancement

of autonomous robotics

65

 References

[1] https://www.britannica.com/technology/robotics

[2] https://link.springer.com/chapter/10.1007/978-3-319-62533-1_1

[3] What is a mobile robot? Definition from WhatIs.com. (Techtarget.com)

[4] Path Planning - MATLAB & Simulink (mathworks.com)

[5] https://memgraph.com/blog/graph-search-algorithms-developers-guide

[6] https://memgraph.com/blog/graph-search-algorithms-developers-guide

[7] Depth First Search (DFS) C++ Program To Traverse A Graph Or Tree

(softwaretestinghelp.com)

[8] Dijkstra's Shortest Path Algorithm - A Detailed and Visual Introduction

(freecodecamp.org)

[9] Hart, P.E., Nilsson, N.. and Raphael, B., 1968. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2), pp.100-107.

[10] Aurenhammer, F., 1991. Voronoi diagrams-a survey of a fundamental geometric

data structure. ACM Computing Surveys (CSUR), 23(3), pp.345-405.

[11] Lozano-Pérez, T. and Wesley, M.A., 1979. An algorithm for planning collision-

free paths among polyhedral obstacles. Communications of the ACM, 22(10), pp.560-

570.

[12] Methodology for Path Planning and Optimization of Mobile Robots: A Review

Mohd. Nayab

[13] https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf

[14] [11] https://en.wikipedia.org/wiki/Obstacle_avoidance

[15] https://www.sciencedirect.com/science/article/pii/S0019057823000769

[16] Robotic Motion Planning: Bug Algorithms Robotics Institute 16-735

http://www.cs.cmu.edu/~motion

[17] Sertac Karaman, Emilio Frazzoli. Sampling-based Algorithms for Optimal

Motion Planning

https://www.britannica.com/technology/robotics
https://link.springer.com/chapter/10.1007/978-3-319-62533-1_1
https://www.techtarget.com/iotagenda/definition/mobile-robot-mobile-robotics
https://www.mathworks.com/discovery/path-planning.html#:~:text=What%20Is%20Path%20Planning%3F%20Path%20planning%20lets%20an,along%20with%20start%20and%20goal%20states%20as%20input.
https://memgraph.com/blog/graph-search-algorithms-developers-guide
https://memgraph.com/blog/graph-search-algorithms-developers-guide
https://www.softwaretestinghelp.com/cpp-dfs-program-to-traverse-graph/
https://www.softwaretestinghelp.com/cpp-dfs-program-to-traverse-graph/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.sciencedirect.com/science/article/pii/S0019057823000769

66

[18] Fahad Islam1,2, Jauwairia Nasir1,2 , Usman Malik1 , Yasar Ayaz1 and Osman

Hasan. RRT*-Smart: Rapid convergence implementation of RRT* towards optimal

solution

[19] Jonathan D. Gammell1 , Siddhartha S. Srinivasa2 , and Timothy D. Barfoot1.

Informed RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling

of an Admissible Ellipsoidal Heuristic

[20] Yicong Guo 1 , Xiaoxiong Liu 1,2,*, Xuhang Liu 1 , Yue Yang 1 and Weiguo

Zhang 1,2. FC-RRT*: An Improved Path Planning Algorithm for UAV in 3D

Complex Environment

[21] Min Yu, ∗ Jianjin Luo, Mingming Wang, Dengwei Gao. Spline-RRT*:

Ccoordinated Motion Planning of Dual-Arm Space Robot

[22] Jianyou Qi1 · Qingni Yuan1,2 · Chen Wang1 · Xiaoying Du1 · Feilong Du1,2 ·

Ao Ren1. Path planning and collision avoidance based on the RRT*FN framework for

a robotic manipulator in various scenarios.

[23] PyCharm at Python US 2024: Engage, Learn, and Celebrate! | The PyCharm

Blog (jetbrains.com)

[24] https://www.python.org/doc/essays/blurb/

[25] https://datascientest.com/pygame-tout-savoir

https://blog.jetbrains.com/pycharm/2024/05/pycharm-at-pycon-us-2024/
https://blog.jetbrains.com/pycharm/2024/05/pycharm-at-pycon-us-2024/
https://datascientest.com/pygame-tout-savoir

