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Abstract 

 

   لملخصا

الهدف من هذا المشروع هو إجراء دراسة مقارنة بين معماريتين للشبكات العصبية التلافيفية العميقة التي تقوم بالتعرف على 

MobileNetV2).و (ResNet50  قزحية العين لتقليل وقت التدريب وتكلفة موارد الكمبيوتر، نستخدم نقل التعلم عن طريق    

  Casia-Iris-Tousand. تم تطبيق مجموعة متنوعة من المعالجة المسبقة على قاعدتي بيانات ImageNetإضافة أوزان بنية 

SIFT. ساعدت خوارزمية  UbirisV2و . ثم قمنا بتحديد أي مجموعة من في تحديد الأنماط المهمة في القزحية: نقاط المفاتيح  

ResNet50البنية ومجموعة البيانات أعطت أفضل النتائج للتعرف على قزحية العين. أعطى   مع     UbirisV2 أفضل دقة. أظهر    

ResNet50النموذج المعتمد على   مع     Casia-Iris-Tousand الذي تمت معالجته مسبقًا باستخدام خوارزمية     SIFT  رسومًا ،

اط مكتشفة مركزة على القزحية. يتمتع بيانية مع أنم MobileNetV2 بإمكانية تنفيذه في الأنظمة المدمجة وفي تطبيقات الهاتف   

 المحمول

 

Résumé 

            Le but de ce projet est de faire une etude comparative entre deux reseaux de neurones 

convolutifs profonds qui effectuent la reconnaissance par l’iris (ResNet50 et MobileNetV2). Pour 

diminuer le temp d’entrainement et le cout en ressources informatiques, on utilise le transfer 

learning en ajoutant les poids de l’architecture ImageNet. On a appliqué une variété de pre-

traitement, sur les bases de données Casia-Iris-Thousand et UbirisV2. L’algorithme SIFT a aidé a 

localiser d’importants motifs dans l’iris : les keypoints. On a ensuite dererminer quelle 

combinaison d’architecture et de dataset donnait les meilleurs résultats pour la reconnaissance par 

l’iris. ResNet50 avec UbirisV2 a donné la meilleure precision. Le model basé sur ResNet50 avec 

Casia-Iris-Thousand prétraité avec l’algorithme SIFT, a montré des histograms avec des motifs 

detecté concentré sur l’iris. MobileNetV2 a la possibilité d’etre implementé dans des systemes 

embarqué et dans des applications mobiles. 

 

Abstract  

            This project’s goal is to make a comparative study between two deep convolutional neural 

networks architectures that perform iris recognition (ResNet50 and MobileNetV2). To lower 

computational training time and cost, we used transfer learning by adding the ImageNet 

architecture’s weights. We applied various pre-processing, on the databases Casia-Iris-Thousand 

and UbirisV2. The SIFT pre-processing algorithm helped locate important patterns in the iris: the 

key points.  We then determined which combination of architecture model and dataset was best 

for iris recognition. Resnet50 with UbirisV2 gave the best accuracy.  ResNet50 based model with 

Casia-Iris-Thousand pre-processed with SIFT, showed histograms with detected patterns 

concentrated in the iris region. MobileNetV2 has the possibility to be implemented in embedded 

systems and mobile applicatons.  

.
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General Introduction 

General Introduction  

Biometric identification is a technology that uses unique traits of a person to confirm their identity 

[1], there are many ways to perform biometrics, iris recognition, a process to recognize a person 

with unique patterns in their iris [2], fingerprint and also facial recognition traits are also methods 

to perform biometric identification [3]. 

 Previously we used to perform iris recognition with methods like Daugman’s method that consist 

of extracting features from segmented irises, but this method has major issues like generalizing 

complex shapes and poor noise sensitivity which make it hard to perform to use in real life 

situations [4]. 

  Nowadays with AI and robust deep learning architectures, we overcame these issues, and the 

databases available today helps the architectures adapt to both clear and noisy images, and with 

the right pre-processing it becomes even better to locate important regions of the iris, for 

optimizing the learning process we use transfer learning to combine a pre-trained model and a new 

model [5], with all this we have the formula to create an optimized model for iris recognition, 

however these techniques are commonly used today in this field with various datasets and deep 

learning architectures so how to know which is the best architecture to use and which dataset is 

most suited for it, this lead to the making of this comparative study to try to find an answer to these 

questions with the following plan: 

  In chapter 1 we present a state of the art that contains existing methods for human iris recognition, 

the classical and AI based method, from there, We the introduce convolutional neural networks 

(CNN’s) and explain the functioning of deep neural network along with some examples of deep 

convolutional neural networks architectures. 

 In chapter 2 design our iris recognition models mentioning the pretrained architectures we worked 

with (ResNet50 and MobileNetV2) implemented using transfer learning, the classification layers 

implemented, the datasets (Casia-Iris-Thousand, UbirisV2), the pre-processing of the images, the 

various training parameters we used for optimizing the performances (Batch size, learning rate), 

and the optimizer we used to compile our model are also shown. 

 In chapter 3 we will implement the iris recognition models designed previously and provide the 

results of every step taken in our code, along with the performances obtained after training the 

models, and we will have three comparisons to make at the end of this chapter and do the necessary 

discussions about the results of the models and the results of the comparisons. 
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Chapter 1                                                                                          State of the art 

 

 1. State of the art 

1.1. Introduction 

The human eye has always been known to have unique features and in today’s time thanks 

to technological advancements we know that the iris contains even more unique features than 

fingerprints 

In this chapter we will speak about the iris and why is it unique to every individual, the 

techniques of extraction of these features, and the methods used for recognition classical & AI 

based. 

1.2. Potential of iris recognition 

 Iris recognition has become more accessible due to late technological advances like new cameras, 

image processing, and the recognition itself, in addition the iris has been preferable than face or 

fingerprint recognition due to many aspects some of which are  mentioned in (Table 1.1) [6]  

 

 

Table 1.2:Comparison between different kinds of recognition 



  

  

    4 

 

Chapter 1                                                                                          State of the art 

   Ease of Use: Iris recognition is very convenient as the individual simply needs to look into a 

camera for a few seconds.  

   The process captures a video image that is non-invasive and inherently safe. Iris recognition 

scored far higher than fingerprints in terms of ease of use, speed, and overall user preference in 

field tests. 

   Inclusiveness: Iris recognition is more inclusive than fingerprints, with fewer people unable to 

provide scans at acceptable quality. In one study, over 13% of refugees over age four were unable 

to provide 4 good fingerprints, but only 2% were unable to provide a high-quality iris. Iris 

recognition remained almost stable at around 1% failure to capture rate, confirming it is both very 

secure and inclusive. 

   Stability and consistency: The iris remain stable and unchanged throughout a person’s life. 

There are no changes to the physical characteristics of the iris even when the person ages. 

Fingerprint patterns, on the other hand, can change over time due to factors like manual labor, 

injuries, or aging. 

1.3. The human iris 

 The iris is a part of the human eye that plays a crucial role in vision. And is a flat ring-shaped 

membrane behind the cornea of the eye it has an adjustable circular opening in the center called 

the pupil. 

 The iris is also the pigmented part that expresses eye color. expresses itself during the presence 

of melanin pigment the more melanin there is the darker the eye color will be [2]. 

1.3.1. Characteristics of the iris [7]: 

 The characteristics   of the iris that's playing crucial roles in both vision and ocular protection, 

(Figure 1-1) it detailed anatomical diagram of the human eye. 

Color: Iris color is determined by the amount and type of melanin pigment in the iris. Eye color 

can range from very light blue to very dark brown. 

Patterns: The iris has a unique pattern of lines, dots, crypts, furrows, and other structures that are 

distinct to each individual. These patterns form during fatal development. 

Pupillary reflex: The iris controls the size of the pupil, which constricts and dilates to regulate 

the amount of light entering the eye.  

Muscles: The iris contains two sets of smooth muscles that control pupil size. The sphincter 

pupillae constricts the pupil in response to light, while the dilator pupillae dilates the pupil in low 

light.  
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Blood vessels: The iris is highly vascularized and contains many blood vessels that supply oxygen 

and nutrients to the iris muscles and tissues. These vessels are visible in some people, especially 

those with lighter colored irises. 

Size: Iris size can vary between individuals, but the average diameter is 12 mm. The size of the 

pupil opening ranges from 2-8 mm depending on lighting conditions. 

Thickness: The stroma of the iris, composed of connective tissue and blood vessels, is about 0.5 

mm thick. The anterior epithelium is just two cells thick. 

Attachment: The iris is attached to the ciliary body and suspensory ligament of the lens, which 

hold it in place. The outer edge of the iris is continuous with the choroid. 

 

Figure 1-2:Eye characteristics [8] 

1.4. Overview of iris recognition technology 

 Iris recognition just as any other recognition has its own rules, advantages and limitations that are 

going to be listed here 

1.4.1. Iris recognition 

  Iris recognition is an automated method of biometric identification that uses mathematical 

pattern-recognition techniques on video images of one or both of the irises of an individual's eyes, 

whose complex random patterns are unique, stable, and can be seen from some distance. 

  Iris recognition systems leverage the distinctive features present in the colored tissue of the eye 

to achieve extremely reliable personal identification. With rapid verification and robust matching 

capabilities, iris scanning biometrics rival fingerprinting for accuracy while using an internal 

bodily feature almost impossible to counterfeit [9].  
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1.4.2. Recognition Rate Criteria 

 Recognition rate criteria are used in neural networks. These metrics help to determine how well a 

neural network can perform tasks related to pattern recognition. The evaluation of the ability of a 

network to recognize different classes or patterns is important through this criterion, which plays 

an essential role in demonstrating the capabilities of the network [10]. 

1.4.2.1. Error rate: 

 The error rate in recognition refers to the quantity of incorrect matches or misclassifications made 

by a system of iris recognition [10]. 

  It is an imperative metric used to test the performances of iris recognition systems, especially 

when it comes to security applications [10]. 

𝐸𝑅 =
|𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 − 𝐸𝑥𝑎𝑐𝑡|

𝐸𝑥𝑎𝑐𝑡
 

1.4.2.2. True positives 

  These are the correctly identified iris patterns. They are the cases where the system correctly 

matches the iris image with the stored template [10]. 

𝑇𝑃𝑅 =
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

1.4.2.3. False positives 

  These are the incorrectly identified iris patterns. They are the cases where the system falsely 

matches an iris image with the stored template, this results in a false match [10]. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

1.4.2.4. False negatives 

  These are the incorrectly rejected iris patterns. They are the cases where the system incorrectly 

identifies a that an image does not match any stored template [10]. 

𝐹𝑁𝑅 =
𝐹𝑁

𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

1.4.2.5. True negatives 

  These are the correctly denied iris patterns. They are the cases where the system correctly 

identifies that an iris image does not match any stored data [11]. 

𝑇𝑁𝑅 =
𝑇𝑁

𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

1.4.3. Advantages and limitations of iris recognitions 
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  Iris recognition just like other kinds of recognitions has advantages but also limitations of its own 

and they will be presented here. 

1.4.3.1. Advantages of iris recognition [9] 

High accuracy: Iris recognition has extremely low recognition error rate. 

Stable over time: The detailed iris structure remains unchanged through adult life, enabling strong 

matches against enrolment scans decades later. 

Non-invasive process: Iris scans can be acquired easily at a short distance without any contact 

with the body. 

Hard to spoof: It requires high resolution cameras focused properly on the eye to fake an iris 

biometric trait. 

1.4.3.2. Limitations of iris recognitions [12] 

Unique Biometric Characteristic: Iris recognition is limited by the requirement that the iris 

pattern must be unique for each individual. If this uniqueness is compromised due to factors like 

ocular diseases or injuries, the accuracy of iris recognition can be affected. 

Environmental Factors: The effectiveness of iris recognition can be hindered by environmental 

factors such as lighting conditions, occlusions, or reflections that may distort the iris image. These 

factors can impact the quality of the captured iris image, leading to potential recognition errors. 

Invasive Nature: While iris recognition is non-intrusive compared to other biometric methods 

like fingerprints, it still requires proximity for image capture. This can be considered invasive in 

certain scenarios, especially in terms of privacy concerns or user acceptance. 

Cost and Complexity: Implementing iris recognition systems can be costly due to the need for 

specialized hardware and software. The complexity of iris recognition technology may also pose 

challenges in terms of system integration and maintenance. 

Security Concerns: Despite being a highly accurate biometric modality, iris recognition systems 

are not immune to security threats such as spoofing attacks where fake iris images are used to 

deceive the system. Continuous advancements in anti-spoofing techniques are essential to mitigate 

such risks. 

1.5. Fundamentals of iris recognition 

1.5.1. Iris Recognition pipeline 

 Iris recognition involves a series of steps (Figure1-3) from image capture to feature encoding and 

matching to accurately identify people based on the unique pattern of the iris. 
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Figure1-4:Iris recognition pipeline [13] 

1.5.1.1. Image acquisition: 

Acquiring a high-quality iris (Figure 1-5) miniature suitable for biometric recognition is a 

challenging task due to the iris being a small, emotive organ whose size and appearance can vary 

considerably.  

The iris is easily occluded by eyelashes, eyelids, reflections from ambient maigre sources, 

and changes in pupil dilation.  

Users might move during miniature gain, further complicating the process. To mitigate 

these issues, iris recognition systems employ specialized hardware and techniques. Typically, a 

camaieu camera with near-infrared wavelength insignificant to the human eye is used to 

photograph the iris from a laterite of 30-60 cm.  

The near-IR matin minimizes issues like corneal reflections and allows imaging of the rich 

iris texture patterns.  

Some systems utilize a wide field-of-view camera to first locate the eye region, followed 

by a narrow camera with higher resolution to gain the iris details.  

Advanced algorithms are then employed to localize the pupil and iris boundaries, account 

for non-uniform lighting, reflections, and to extract the discriminating iris texture data for 

biometric matching [14]. 
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Figure 1-6: Image acquisition [15] 

1.5.1.2. Datasets for iris recognition 

A dataset is a structured collection of data that is organized and stored together for analysis 

or processing.  

It is a collection of related data, typically of various types such as numerical values, text, 

images, and audio recordings, used for specific purposes such as training machine learning models, 

data visualization, research, or statistical analysis. 

Datasets differ from databases in that they are usually smaller, can be organized in different 

ways, and are used for specific purposes. Public datasets are free to access and are particularly 

valuable for training machine learning models.  

   Before records can be used, they must be catalogued, managed, and securely stored using a data 

management system. Here is an overview of some of the datasets of irises available in Table 1.3 
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Database Definition Characteristics Application Advantages 

Casia-Iris-

Thousand 

Iris dataset publicly 

available that was created 

by the CBSR at the 

university of science and 

technology of China 

-contains 20,000 iris 

images from 1,000 

subjects, 

-The iris images were 

collected using the 

IKEMB-100 camera 

produced by IrisKing 

Iris 

recognition, 

biometric 

identification 

-High quality 

acquisition 

-Flexibility and 

scalability 

UbirisV2 
Iris dataset from 

University Beira Interior 

- High quality iris 

images 

- Obtained under 

varying illumination 

conditions 

Iris 

recognition 

algorithm 

testing and 

benchmarking 

-Visible 

wavelength 

-Variability in 

iris pigments 

MICHE-I 
Mobile Iris Challenge 

Evaluation I dataset 

- Images captured with 

smartphone cameras 

- Varying distances and 

subject mobility 

Testing iris 

recognition 

on mobile 

devices 

- Captured in 

real mobile 

conditions 

- Tests effects of 

distance/motion 

Table 1.4:Presentation of some datasets and their characteristics 

1.5.1.3. Image preprocessing 

Image preprocessing refers to a set of techniques and procedures applied to digital images 

before performing further analysis or processing. It aims to enhance the quality of images, extract 

relevant information, adapt to the format used by the processed algorithm and improve the 

performance of subsequent algorithms or systems that operate on these images. 

The primary goal of image preprocessing is to improve the overall quality of images by 

correcting distortions, reducing noise, enhancing contrast, and extracting important features. These 

enhancements facilitate more accurate and efficient image analysis, pattern recognition, and 

computer vision tasks. 

In the context of an Iris Recognition System, image preprocessing plays a critical role in 

extracting unique iris patterns, reducing noise, and enhancing the visibility of key features for 

accurate identification and authentication of individuals in real-time [16]. 

1.6. Applications of iris recognition 
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The uses of iris recognition technology in our lives have become increasingly prevalent 

across various sectors due to its unique benefits. Iris recognition, a biometric identification method 

that uses iris images captured under near-infrared light, offers several advantages over other 

biometric approaches that were mentioned previously [17]. 

Biometrics: Iris recognition is a highly precise biometric technology that uses unique patterns in 

the iris to identify individuals. It offers several key advantages for biometric applications as it was 

mentioned previously [17]. 

Law Enforcement: Iris recognition is used to identify and verify individuals in criminal 

investigations and forensic applications, enhancing the accuracy and efficiency of these processes. 

Healthcare: Iris recognition is used in healthcare settings for patient identification, medical 

records management, and secure access to medical facilities [17]. 

Cryptocurrency Wallets: Iris recognition is used for secure access to cryptocurrency wallets, 

ensuring the integrity of digital transactions [18]. 

The image outlines (Figure 1-7) the key applications of iris recognition technology 

 

Figure 1-8:Iris recognitions applications 

1.7. Challenges and considerations  

Iris recognition faces difficulties due to various factors such as non-circular boundaries, 

non-frontal acquisition, blurred images, reflections, weak boundaries, and weak contrast. 

The performance of iris segmentation algorithms can be affected by violations of 

preconditions or assumptions of controlled conditions, as well as by the type of imagery used, such 

as near-infrared (NIR) or visible range (VIS) images. The uncontrollable acquisition process, 

including eyes, devices, and environment, also hinders iris recognition systems from learning a 

discriminative identity representation, leading to performance degradation. Additionally, poor 

image quality, including non-uniform illumination, defocus, blur, reflections, and *occlusions, can 

affect iris segmentation and localization. Despite these difficulties, advancements have been made 
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in iris recognition, including the use of uncertainty embedding and uncertainty-guided curriculum 

learning to mitigate the influence of acquisition factors [7]. 

1.8. Overview of iris recognition methods  

1.8.1. Classical methods 

In this section we will briefly talk about some classical methods for iris recognition and the 

difficulties or issues they found in them 

1.8.1.1. Hough Transform method [19] 

The Hough transform method for iris recognition is a biometric method in which the iris region 

is segmented, normalized to minimize size inconsistencies, and features are extracted using the 

Daugman's rubber sheet model (Figure 1-9). 

The method uses a circular Hough transform to derive the radius and center coordinates of the 

pupil and iris regions, allowing for accurate segmentation. The segmented iris region is then 

encoded using a Log-Gabor filter to create a biometric template, and the Hamming distance is 

chosen as an appropriate metric for recognition. The Hough transform plays a vital role in iris 

localization and segmentation, contributing to the accuracy and reliability of iris recognition 

systems. Here are some of the issues found in this approach: 

- Generalization to complex shapes  

- Noise sensitivity 

- Computational complexity 

 

Figure 1-10:Hough transform’s pipeline [20] 
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1.8.1.2. Circular contour detection 

 The technique of finding the iris and pupil boundaries for use in an iris recognition system based 

on circular contour detection involves a combination of methods (Figure 1-11). In particular, we 

first detect the iris and pupil boundary pixels using the Circular Hough Transform which defines 

a set of candidate points with their centers as the center of the iris.  

 This method includes some preprocessing steps such as morphology and filtering. In order to 

establish both the shape and location information, we obtain from these two boundaries (edge 

image) another one which is the eye outline using the Canny edge detector. 

 Later, we determine both centers and radii of these two circles corresponding to pupil and iris 

through this transformation model: The segmented iris is represented by another image in polar 

coordinates where each column represents an angle while each row represents a certain range. The 

issues with this method are the same as those of the Hough transform method but we can also add 

that it is also highly dependent on the image quality [21] 

 

Figure 1-12:Circular contour detection’s pipeline [22] 

1.8.1.3. Active contour method 

 The active contour method is a powerful technique used for iris segmentation and iris recognition 

it contains the ability to handle irregular iris shapes a robustness to occlusion which minimize the 

impact of eyelids and eyelashes in the segmentation process and a sub-pixel localization that 

localize precise normalization and feature extraction, overall, it is a promising method. However, 

it may more optimization and parallelization to meet real-time requirements of a practical 

recognition systems [23]. In the (Figure 1-13 ) bellow it mentioned outlines the steps 
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Figure 1-14: Active contour method’s pipeline [24] 

1.8.2. Methods based on AI machine learning [25] 

   Before we get to the method, we need to understand the layers of understanding of AI to engage 

in the AI based method (Figure 1-15) 

1.8.2.1. Layers of understanding of AI 

  The layers of AI can be categorized in various ways, and different sources provide different 

perspectives. Some common ways to categorize the layers of AI include: 

Weak AI and Strong AI: Weak AI, also known as narrow AI, focuses on performing specific 

tasks, while strong AI aims to replicate the human mind. 

Machine Learning Layer: This layer includes machine learning libraries, frameworks, and 

platforms that provide flexibility to implement custom algorithms and handle end-to-end machine 

learning workflows. 

Neural Network Layer: This layer includes the use of neural networks, which are a type of 

machine learning algorithm that can recognize patterns and make predictions based on input data. 

Application Layer: This layer includes the applications and services that use AI, such as facial 

recognition, speech recognition, and natural language processing. 

Data Collection Layer: This layer involves the collection of data from various sources, including 

devices, web-based services, and the Internet of Things, which is essential for training AI systems. 

   These layers provide a framework for understanding the different components of AI systems and 

how they work together to achieve specific goals. 
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Figure 1-16:Layers of understanding of AI [26] 

1.8.2.2. Convolutional neural networks method: 

   Including CNNs in iris recognition and using deep learning techniques to extract features from 

iris images and classify them for recognition was one of the biggest revolutions in this field 

because of the various advantages and the solving of various issues that have arisen in classical 

methods, the advantages can be resumed as Robustness to variations, Efficiency and speed, High 

accuracy, Flexibility and Scalability, and also Automatic Feature Extraction [27]. 

1.9. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) have a rich history dating back to the 1990s, with 

significant contributions from researchers like Yann LeCun and Kuniko Fukushima. The concept 

of CNNs was inspired by the noncognition and early work on neural networks with multiple 

convolutional and pooling layers. 

   Key milestones include the development of LeNet-5 in 1998 by Yann LeCun, which 

revolutionized image recognition tasks. CNNs operate by applying filters to input images, 

extracting features, down sampling, and utilizing fully connected layers for predictions.  

   Trained through backpropagation, CNNs have become a cornerstone in image processing 

applications due to their efficiency in handling visual data and extracting meaningful patterns for 

tasks like image recognition and object detection [28]. 
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Figure 1-17:Convolutional Neural Network's architecture [29] 

The Figure 1-9 illustrates the architectural CNN architecture in deep neural network. 

1.9.1. Convolutional Layer: 

   A convolutional layer in a neural network is a key component that applies filters to the input 

image to extract features. It is a fundamental part of Convolutional Neural Networks (CNNs), 

which are designed for image recognition and other visual data processing tasks.  

   The convolutional layer (Figure 1-18)  performs a convolution operation, which converts all the 

pixels in its receptive field into a single value. This process helps in detecting patterns and features 

within images by applying filters to the input data. The filters, also known as kernels, are used to 

learn what features, such as edges, are present throughout an image [30]. 

 

Figure 1-19:Convolutional Layer [31] 
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1.9.2. Pooling Layer: 

   In neural networks, specifically Convolutional Neural Networks (CNNs), the pooling layer is a 

crucial component added after convolutional layers to reduce the spatial dimensions of feature 

maps while preserving depth.  

   The pooling layer works by dividing the input feature map into non-overlapping regions, known 

as pooling regions, and transforming each region into a single output value. This process helps in 

consolidating the features learned by the CNN |30]. 

1.9.2.1. Max Pooling: 

   It is a type of pooling operation that involves sliding a window over the input data selecting the 

maximum value within each window [30]. 

 

Figure 1-20:Max pooling [32] 

 

1.9.2.2. Average Pooling: 

In average pooling, the output value for each pooling region is the average of the input values 

within that region. This has the effect of preserving more information than max pooling [30], 

 

Figure 1-21:Average pooling [33] 

 

1.9.3. Kernel: 

 A kernel is a matrix that moves over the input data, performs the dot product with a sub-region of 

input data, and gets the output as the result.  

 Kernels are also known as filters, and they are used to extract features from the input data. Some 

examples of features that kernels can extract are specific objects within an image, structural 

patterns, or dominant outlines [34]. 
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1.9.4. Feature Map: 

 Feature maps play a crucial role in capturing essential features from input data, aiding the network 

in decision-making processes.  

 These feature maps are also known as activation maps and are generated by applying filters to the 

input data through convolution operations.  

 The resulting output, known as a feature map, summarize the presence of detected features within 

the input data. Feature maps are fundamental in CNNs as they indicate the locations and strength 

of detected features, such as edges, textures, or shapes in images [35]. 

 

1.9.5. Stride: 

 Stride is a parameter that dictates the movement of the kernel, or filter, across the input data, such 

as an image (Figure1-22). 

 When performing a convolution operation, the stride determines how many units the filter shifts 

at each step. This shift can be horizontal, vertical, or both, depending on the stride's configuration 

[36]. 

 

 

Figure1-23:Stride [36] 

 

1.9.6. Padding: 

 padding is a critical technique used to manage the spatial dimensions of input data. Padding is the 

process of adding layers of zeros or other values outside the actual data in an input matrix.  

 The primary purpose of padding is to preserve the spatial size of the input so that the output after 

applying filters (kernels) remains the same size, or to adjust it according to the desired output 

dimensions [37]. 

 

1.9.7. Fully connected layer: 
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 The fully connected layer, also known as the hidden layer, is an important feature of convolutional 

neural networks (CNNs) and traditional neural networks The fully connected layer in CNNs is the 

final layers which are the result of convolutional and pooling the result of the layers is processed 

for a final classification decision. This sequence connects every node from the previous level to 

every node in the next level, enabling the network to recognize complex patterns and relationships 

in the data [38] 

1.9.8. Types of learning [39]: 

 In deep learning, there are various types of learning approaches that play crucial roles in training 

models. Some of the key types of learning in deep learning include  

1.9.8.1. Unsupervised learning: 

 In unsupervised learning, the model is trained on unlabeled data and aims to find patterns or 

structures within the data without specific output labels. This type is useful for tasks like clustering 

and dimensionality reduction. 

1.9.8.2. Semi-Supervised learning: 

 This approach combines elements of supervised and unsupervised learning by using a small 

amount of labelled data along with a larger amount of unlabeled data for training. 

1.9.8.3. Supervised learning 

 This type involves training a model on labelled data, where the algorithm learns to map input 

examples to their corresponding output labels. It is commonly used for tasks like image recognition 

and sentiment analysis. 

1.9.9. Activation functions [40]: 

 Activation functions in neural networks play a crucial role in introducing non-linearity to the 

network, enabling it to learn and perform complex tasks. Here are some key activation functions 

(Figure 1-24) commonly used in neural networks: 

1.9.9.1. Sigmoid function 

 This function produces an output between 0 and 1, making it suitable for models where probability 

needs to be predicted. It is differentiable, allowing the calculation of the slope at different points. 

However, it can cause issues like vanishing gradients during training. 

1.9.9.2. Tanh (Hyperbolic Tangent) function: 

 Similar to the sigmoid function, but with a range from -1 to 1. It is useful for classification tasks 

and mapping negative inputs strongly negative and zero inputs near zero. 

1.9.9.3. ReLU (Rectified Linear Unit) 
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 The most widely used activation function, ReLU outputs the input if it is positive; otherwise, it 

outputs zero. ReLU helps in faster learning by sparsity and non-linearity but can suffer from the 

dying ReLU problem where neurons stop learning. 

 

Figure 1-25:Representation of activation functions [41] 

 

1.9.10. Deep convolutional neural networks: 

 Deep convolutional neural networks (Figure 1-26) are a type of deep neural network architecture 

that have been widely used in various computer vision tasks, including iris detection, DCNNs are 

known for their ability to learn features from data without relying on methods removal of artifacts 

[42] 

 

Figure 1-27:Deep convolutional neural networks representation [43] 

 

1.9.10.1. ResNet50 Model [44]: 

 ResNet-50 is a convolutional neural network architecture that is 50 layer deep (Figure 1-28) and 

is partly famous for the ResNet (Residual Networks) model family designed to overcome the 
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challenges associated with training deep neural networks, making it a model it is historically 

remarkable in image classification It has highlights: 

• Architecture: ResNet-50 consists of 48 convolutional layers, a MaxPool layer, and an 

average pooling layer, making it a 50-layer deep neural network. 

• Residual Blocks: ResNet-50 uses residual blocks to solve the degradation problem in deep 

neural networks. Skip connections in residual blocks enable a direct flow of information, 

mitigating the vanishing gradient problem and enabling efficient training of very deep 

networks. 

• Bottleneck design: ResNet-50 uses a building block bottleneck design, with each block 

integrating three layers instead of two. This design reduces the number of parameters and 

matrix multiplications, thus speeding up training of each layer. 

• Performance: ResNet-50 achieves a performance of 3.8 billion FLOPs and has higher 

accuracy than the 34-layer ResNet model. 

 

 

 

Figure 1-29:Residual neural networks organigram [45] 

 

1.9.10.2. MobileNetV2 Model [46]: 

 MobileNetV2 is a convolutional neural network architecture designed for efficient performance 

on mobile devices. It is based on an inverted residual structure where the residual connections are 

between the bottleneck layers. The architecture of MobileNetV2 contains the initial fully 

convolution layer with 32 filters, followed by 19 residual bottleneck layers (Figure 1-30), its key 

components are: 
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• Depthwise Separable Convolutions: MobileNetV2 uses depthwise separable 

convolutions to reduce the computational cost and model size. This is achieved by 

separating the standard convolution into two layers: a depthwise convolution and a 

pointwise convolution. 

• Linear Bottlenecks: MobileNetV2 introduces linear bottlenecks, which are layers with no 

non-linearity. This helps in maintaining the information and gradient flow. 

• Width Multiplier: MobileNetV2 uses a width multiplier to adjust the number of channels 

in each layer. This allows for a trade-off between accuracy and computational cost. 

 

Figure 1-31:MobileNetV2 architecture [47] 

1.10. Transfer learning [48] 

 Transfer learning is a machine learning method (Figure 1-32) in which a model developed for one 

task is reused as a starting point for a model for a second task.  

 This is a popular approach in deep learning that uses pre-trained models as a starting point for 

computer vision tasks, because developing neural network models for these problems requires 

massive computational and time resources, resulting in a huge leap in skill for the related problems. 
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Figure 1-33:Transfer learning diagram [49] 

1.10.1. Types of transfer learning 

 There are two types of transfer learning both have a goal when applied to a neural network or a 

deep neural network 

1.10.1.1. Feature extraction 

 In this approach, the pre-trained model is used as a fixed feature extractor. The given 

representations from the pre-trained model are used to extract important features from the new 

data. 

 The pretrained model’s weights are frozen, and the new layers are the only trained parameters on 

the dataset given. 

1.10.1.2. Fine tuning 

 In this approach, the pretrained model is not frozen completely, some of its layers adapt along 

with the new layers, this allows the model to be get familiarized better with the specific task given. 

1.10.2. Advantages of transfer learning 

- Improved performances 

- Faster Training. 

- Reduce computation costs. 

1.10.3. Limitations of transfer learning 

- Limited to the capabilities of the pretrained model 
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- May not be applicable to all tasks. 

- the choice of the pretrained model needs to fit the particular task to work on. 

1.11. Optimization of Deep learning architecture [50] 

 An optimizer in deep learning architectures refers to the method or algorithm used to renew 

model’s parameters; the main purpose of these optimizers is to get better performances out of the 

model. 

1.11.1.  AdaGrad 

 AdaGrad is an adaptive learning rate optimizer that adjusts the learning rate for each parameter 

based on the magnitude of the gradient. 

   It is particularly well-suited for problem where the input features are scattered. 

∆𝑊𝑡 = −
𝜂

√𝐺𝑖(𝑡) + 𝜖

𝜕𝐿

𝜕𝑊𝑖
(𝑡) 

1.11.2. RSMProp 

 RSMProp is an optimization algorithm used in deep learning architectures to adjust the learning 

rate for each parameter based on the magnitude of the gradient. 

 It is designed to handle non-convex optimization problems and is specifically useful for the cases 

where the input features are scattered. 

𝑊𝑡 + 1 = 𝑊𝑡 −
𝜂

√𝑣𝑡+∈
 ∇𝑊𝑡 

1.11.3. Adam optimizer 

 Adam, or Adaptive Moment Estimation. Is an adaptive learning rate algorithm created to improve 

training speeds in deep neural networks and reach convergence quickly. 

  The way it works is that it customizes each parameter’s learning rate based on the gradient 

history, and this helps the model learn at its best performance. 

𝑊𝑡 => 𝑊𝑡 − 1 − 𝑤𝑡 = 𝑤𝑡−1 − 𝜂
𝑚̂

√𝑣 + 𝜀
 

1.12. Conclusion 

 In this Chapter we saw the various key elements needed for iris recognition including the key 

features responsible for making iris so unique, the quality needed for the images, the datasets often 

used as they match the requirements for it, and we went through the uses of old and new methods 

and the most efficient one being that of convolutional neural networks, that we will be using in 

our project. 



  

  

    25 

 

Chapter 1                                                                                          State of the art 

 Based on this study, we have chosen to implement the DCNN’s ResNet50 and MobileNetV2, and 

make a comparative study of their performances using the CASIA and UbirisV2 databases. 

 In the next chapter we will go more in depth into the tools used to make our project and the key 

elements that we will be using
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2. Design of iris recognition models 

2.1. Introduction 

 Our project goal is the implementation of two deep neural network models, ResNet50 and 

MobileNetV2, including transfer learning to reduce computational costs, and building a fully 

connected layer in order to classify iris images for various iris recognition applications. 

 This chapter describes the design steps for building the two architectures, and perform various 

preprocessing on two eye datasets UbirisV2 and Casia-Iris-Thousand. 

2.2. Project overview  

 Most research papers we found [51] [52] found out that ResNet50 has a high accuracy in various 

iris classification tasks with various datasets, making it a reliable choice for our task 

 On the other hand, MobileNetV2 is not as accurate as the ResNet50 architecture, it is a lightweight 

architecture that can be applicable in embedded systems or mobile applications, it is lightweight 

because of the use of two types of convolutions depthwise and pointwise that reduce the 

computational costs, which makes it a compact and also reliable for the iris recognition task 

 In our project, Preprocessing tasks are performed on Casia-iris-Thousand and UbirisV2 datasets 

in order to make a comparative study between ResNet50 and MobileNetV2 in order to find out 

which is the best out of these architectures. 

Figure 2-1 shows the design steps of the project: 
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Figure 2-1 Project flowchart 

 

In figure 2.1 there are three comparisons between 4 different models, those are all the 

models done in this project, all different in an aspect (architecture, preprocessing or dataset), which  

are the criteria of comparison. 

Architectures ResNet50_A ResNet50_B ResNet50_C MobileNetV2 

Dataset 
Casia-Iris-

Thousand 
UbirisV2 UbirisV2 UbirisV2 

Preprocessing 

-Resizing 

-Normalization 

-Gaussian blur 

-Eye detection 

-Resizing 

-Normalization 

-Gaussian blur 

-Eye detection 

-Resizing 

-Normalization 

-Resizing 

-Normalization 

Table 2.1:Models with preprocessing and datasets 

2.3. Dataset 
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 Datasets are very important for the training of deep neural networks; we show here the datasets 

we have used to train the architectures we have chosen. 

2.3.1. UbirisV2 

 The UBIRIS.v2 dataset is a crucial resource in the field of iris recognition. We chose it for these 

following reasons: 

- Captured at a distance and on the move, it has non-ideal conditions such as varying 

illumination and occlusions, challenging the robustness of iris recognition 

algorithms. 

- Contains over 11,000 images from 261 subjects, which will provide ample data for 

training and evaluation. 

- Images are captured in the visible light spectrum (RGB), aligning with common 

imaging technologies (Figure 2-2) 

- Designed for realistic iris recognition evaluations. 

 By utilizing UBIRIS.v2, we can evaluate the robustness and adaptability of our model 

architectures (ResNet50 and MobileNetV2) to diverse and unpredictable conditions 

 

Figure 2-2: Display some of Ubiris dataset images 

2.3.2. CASIA-Iris-Thousand 

 CASIA-Iris-Thousand is one of the most known datasets in the field of iris recognition and is 

widely used for many reasons: 

- The dataset comprises high-resolution iris images, allowing for detailed analysis and 

feature extraction. 

- It contains a substantial number of Gray-scale iris images, providing ample data for 

training and evaluating iris recognition algorithms. 

- Images are captured at close range under near-infrared illumination, optimizing iris 

image quality and minimizing distortion (Figure 2-3). 

- Each iris image is accompanied by metadata such as subject ID and eye position 

(left/right), facilitating organized and structured dataset management. 
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 These characteristics make the CASIA Iris Thousand dataset a valuable resource for developing 

and testing robust iris recognition with different model architectures like what we have (MobileNet 

and ResNet50) under controlled conditions. 

 

Figure 2-3: Display some of CASIA-Iris-Thousand dataset images 

2.4. Data preprocessing 

  Image pre-processing is one of the important steps to prepare the data for a task workflow like 

iris classification and recognition, the main goal of it is to enhance the quality of iris images and 

making more suitable for accurate feature extraction. 

2.4.1. Preprocessing parameters 

2.4.1.1. Image resizing 

 The first step that needs to be done in pre-processing is resizing the image according to the 

requirements of the Neural network architecture used. In our cases in MobileNetV2 we take 

(400,300) and for ResNet50 we take (224,224), that ensures that the input images are easier to 

batch process and feed images into the network. 

2.4.1.2. Gaussian blur noise reduction 

  We choose a Gaussian blur noise reduction with a (5,5) kernel size for both the Casia-Iris-

Thousand and UbirisV2 datasets to effectively reduce image noise. This kernel size is large enough 

to smooth out minor irregularities and reduce various types of noise present in both near-infrared 

(Casia-Iris-Thousand) and visible light (UbirisV2) images, while still being small enough to 

maintain important iris texture information. This standard preprocessing step ensures consistency 

and improves the clarity of iris patterns, enhancing the performance and accuracy of iris 

recognition algorithms across different environmental and imaging conditions. 

2.4.1.3. Normalization 

 The normalization using the formula (dividing by 127.5 and subtracting 1) for both Casia-Iris-

Thousand and UbirisV2 datasets serves to standardize the input data for neural networks. This 

approach scales pixel values from the original 0-255 range to [-1, 1], centering the data around 

zero. Such normalization helps in: 
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 - faster convergence during training. 

- reduces the impact of varying illumination conditions across images 

- allows the model to treat features more equally. 

- facilitating more effective learning and comparison by the neural network. 

2.4.2. Eye detection 

The eye detection is necessary to limit the boundaries for iris search. 

2.4.2.1. Haar Cascade 

 We going use to locate the eye region from the images of both datasets (Casia-Iris-Thousand and 

UbirisV2) by the Haar cascades which efficiently detects eyes in an image by identifying the 

bounding box around the detected eye region. It's a machine learning object discovery algorithm 

used to identify and describe an object in images, With the function” detectMultiscale” that’s an 

object loaded from a-trained-Haar_Cascaade_Classifer to describe the eyes in the image with a 

specific parameter as shown in the figure 2-4 below: 

 We used a commonly standard setting for detecting the eye region with Haar Cascade classifiers 

in Casia-Iris-Thousand and UbirisV2. 

These settings are chosen to balance accuracy and efficiency in detecting eye regions across 

different scales and conditions encountered in iris recognition applications. 

• A scale function of 1.1 and 1.3 ensures that the classifier can detect eyes at multiple 

scales, accommodating variations in eye size and image resolution present in both 

datasets.  

• The minNeighbors parameter of 5 helps filter out false positives by requiring 

detections to have sufficient neighboring rectangles that agree on the presence of an 

eye region, promoting more reliable detections. 

• minSize to (30,30) ensures that only eye regions of minimum size are considered, 

helping to exclude noise and small artifacts that may not represent actual eyes. 
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Figure 2-4: Haar Cascade Parameters for eye detection 

 

2.4.2.2. Zoom in on eye 

 Once the eyes are detected, zooming in on the eye region allows the system to focus specifically 

on the iris, which is the area of interest for iris classification. 

 The detected eye region is cropped from the original image using array slicing. based on the 

coordinates provided by the “detectMultiscale “function. This cropped region is then saved as a 

separate image file. 

By isolating the iris, the neural network can focus on extracting features from the iris pattern 

without being influenced by irrelevant parts of the image. 

 

2.4.3. Keypoint extraction using SIFT algorithm 

 Computer vision technique for feature detection and description. It detects distinctive key points 

or features in an image that are robust to scale, rotation, and affine transformation changes. It’s 

chosen for keypoint detection in Casia-Iris-Thousand and UbirisV2 datasets due to: 

- Its robustness to scale, rotation, and illumination changes. This makes it particularly 

suitable for iris recognition across varying capture conditions. 

- Ability to detect distinctive local features in iris textures allows reliable matching 

even with partial occlusions or different viewing angles. 
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Figure 2-5: The sequence of steps followed in SIFT Detector [53] 

 

2.4.3.1. SIFT parameters 

  Based on our attempts to make the SIFT algorithm detect the keypoint (Figure 2-5) from the eye 

region and focus especially in iris texture we chose these parameters to make the SIFT algorithm 

detect the keypoint from the images of both datasets [54]: 

• Number of features (1000): To ensure that a sufficient number of keypoints is 

detected, providing a robust set of features for accurate iris recognition. 

• Contrast threshold (0.01): To filter out low-contrast keypoints that are likely to be 

noise, ensuring only meaningful features are detected. 

• Edge threshold (5): To discard edge-like features that are unstable and focus on more 

reliable keypoints. 

• Sigma (1.2): To smooth the image at the appropriate scale, enhancing the detection 

of keypoints while maintaining image detail. 

 

2.4.3.2. Feature extraction and representation 

• Detect the keypoint using SIFT 

 Based on the previous SIFT parameters we going to detect the keypoint and draw them in the 

images so as a result we obtain a set of keypoints that highlight the most significant features of the 

image. 

• Extract patches around keypoint 

 After we detect the keypoint now we need to extract the patches it’s a small sub-image that 

captures the local context around each keypoint. By focusing on these localized areas (the iris area) 

we going to get a collection of image patches, each corresponding to a detected keypoint. 

• Extract features using ResNet50 



  

  

34 

 

Chapter 2                                                            Design of iris recognition models 

 

   The collection of image patches will be input to ResNet50 to extract features from them. It 

processes each patch and generates a high-dimensional feature vector that encapsulates the 

essential characteristics of the patch 

• Aggregate features and save to CSV 

 Involves aggregating the feature vectors extracted from all patches and saving them into a CSV 

file containing the aggregated feature data, which can be used for subsequent processing or 

analysis. 

 

 

Figure 2-6: Feature extraction and representation 

  The primary goal of the process (Figure 2-6) is to extract meaningful features from images using 

a combination of traditional computer vision techniques (SIFT for keypoint detection and patch 

extraction) and deep learning (ResNet50 for feature extraction). These extracted features are then 

aggregated and stored in a structured format (CSV file). This feature extraction process aims to 

transform raw image data into a format that is suitable for downstream tasks such as image 

classification, object recognition, or further analysis in various applications of computer vision. 

 

2.5. Architecture Design  

 Here we will go more in depth into the architectures we chose for the project, from their 

implementation to the fully connected layer adapted to the iris recognition and classification task. 

2.5.1. ResNet50 design 

 In the Figure 2-7 below is the full architecture of ResNet50 with its 48 convolutional layers, a 

max pooling layer at first and an average pooling layer at last. 
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Figure 2-7: Full ResNet50 architecture [55] 

 

2.5.1.1. ResNet50 from TensorFlow 

The TensorFlow library is necessary in order to implement ResNet50, in the keras subsection   

there are various architectures and one of them is ResNet50,  

While implementing the architecture we remove the top layer (fully connected) in order to 

replace it with our classification layer 

2.5.1.2. ResNet50 with transfer learning 

As mentioned previously we need the right pretrained model that fits our task in order to 

perform any kind of transfer learning. 

   We chose the ImageNet architecture due to its training on more than 14 million images, we 

freeze its weights in order to work with it as a feature extractor. 
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2.5.1.3. Implementing fully connected layer 

   The fully connected layer in our case will be a dense layer. But before we put two layers, 

global average pooling layer, and the dropout layer. 

 

• Global average pooling 

The global average pooling is a pooling operation that condenses all the feature 

maps into one map, we use it in the fully connected to generate one feature map for 

each category of the classification task in the last layer [56]. 

• Dropout layer  

Dropout is a layer utilized in Deep neural network architectures for iris 

classification to prevent overfitting (Figure 2-8). By randomly deactivating a fraction 

of neurons during training, Dropout encourages the network to learn more robust 

features that generalize better to unseen iris images [57]. 

In this case due to the robustness of ResNet50, it has more chances to overfit, the 

dropout layer therefore helps to prevent this overfitting. 

 

Figure 2-8: Dropout illustration [58] 

 

• Dense layer 

    The dense layer, also known as the fully connected layer it is used to connect between all the 

previous layers to every neuron in the current layer [59]. 

   This layer is necessary for our work in order to perform iris classification, which is what we 

want to do. 
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2.5.1.4. Training the fully connected layer with pre-processed data 

 Once we create our model for iris recognition and classification, we train the architecture using 

the pre-processed datasets  as it mentioned in the figure bellow (Figure 2-9) 

 

Figure 2-9: Graphic representation of ResNet50 based model 

2.5.2. MobileNetV2 design 

   In Figure 2-10 we have the MobileNetV2 Architecture with along with the bottleneck layers. 

 

Figure 2-10: Full MobileNetV2 architecture with Bottleneck layer [47] 



  

  

38 

 

Chapter 2                                                            Design of iris recognition models 

 

    The MobileNetV2 contains a 2D convolutional layer at first 7 bottleneck layers and a 

convolutional layer after the bottleneck layers, an average pooling layer and another 

convolutional layer at the end. 

   The MobilNetV2 architecture contains two types of convolutional layers in order to reduce 

computational costs by reducing the number of parameters processed by the model [60]. 

 Depthwise convolution: the depthwise convolutional layer processes each channel separately 

[40]. 

 Pointwise Convolution: the pointwise convolutional layer combines the output of the 

depthwise convolutional layer across the channel [60]. 

2.5.2.1. MobileNetV2 from TensorFlow 

Same as in ResNet50 the MobileNetV2 architecture is included in the Keras subsection of 

TensorFlow, 

   While implementing the MobileNetV2 architecture, we remove the fully connected layer in order 

to replace it with our classification layer 

2.5.2.2. MobileNetV2 with transfer learning 

Here as well we choose the ImageNet model in order to perform transfer learning for feature 

extraction, meaning we freeze the weights of the pretrained model. 

2.5.2.3. Implementing fully connected layer 

 The fully connected layer for MobileNetV2 will be a classification layer composed of a global 

average pooling layer, a dropout layer even if MobileNetV2 is not as robust as ResNet50 but 

preventing overfitting is necessary, and a dense layer, as previously explained in section 

2.5.1.3. 

2.5.2.4. Implementing fully connected 

 Once we create our model for iris recognition and classification, we train the architecture 

(Figure 2-11)  using the pre-processed datasets. 

 

Figure 2-11: Graphic representation of MobileNetV2 model 
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 2.6. Training Parameters 

Training parameters important for the optimization of our results, These specific values either 

make our models work at optimal performances or make them fall off. 

2.6.1. Batch size 

   A batch size is a training parameter that defines the number of samples passed to the neural 

network at once during the training [61],  

   In the datasets we have there are a lot of images so in order to optimize the training time and to 

have better classification, using a batch size is important. 

2.6.2. Loss function 

A loss function in neural networks is a function that measures how good the model’s predicted 

outputs match with the true output labels [62]. 

   In our case we will be using the Cross Entropy loss function which is a widely used loss function 

that calculates the difference between the true labels and the predicted probabilities 

2.6.3. Epoch 

An epoch in machine learning refers to one complete pass of the whole dataset through the 

algorithm or neural network, it is a hyperparameter that controls the training process of the model. 

Each epoch includes both forward and backward pass through the dataset [63]. 

2.6.4. Learning rate 

The Learning rate is a training parameter that controls how much to change the model in response 

to the calculated error each time the model weights are updated [64]. 

   Choosing the learning rate can be quite difficult as a too small value could result in a longer 

training process that could get stuck, however a value too big as well has a downside which is the 

learning of a sub-optimal set of weights results in a too fast or an unstable model behaviour. 

2.7. Adam optimizer 

Previously we said that the optimization methods are to improve performances, and this meant 

reducing the loss function by changing the model’s parameters such as the weights or learning 

rate. 
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Figure 2-12: Comparison between Adam and other optimizers [65] 

 In Figure 2-12 we see that Adam is the most performant out of the optimizers presented so we use 

Adam as our optimizer for our deep learning models. 

Conclusion 

 In this chapter we presented the DCNN models ResNet50 and MobileNetV2 and the datasets 

Casia-Iris-Thousand and UbirisV2, we will use for iris recognition. 

 In the next chapter their implementation and results will be shown, and their results will be 

discussed. 
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 3. Realization of iris recognition models 

3.1. Introduction 

 In this chapter after talking previously about the tools and architectures we will be using we are 

going to put all of this into work and present our work with precision and see the results of this 

one. 

 This chapter will contain 3 comparative studies the first one will be a comparison between 2 

architectures (ResNet50 and MobileNetV2) to see which one is better when it comes to 

performances (accuracy and loss) to see which one is more performant. 

 And the third between of two identical models with the same dataset, but different pre-processing 

steps. 

 For the second comparison it will be between two identical models, with the same pre-processing 

steps, but with different datasets (Casia-Iris-Thousand and UbirisV2) and see which one will have 

the best performances according to the pre-processing steps. 

 And the third between of two identical models with the same dataset, but different pre-processing 

steps. 

3.2. Overview of path to follow  

 This overview will give a better idea of the path to follow to get to the results we wish to obtain 

and do the comparative study between. 
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Figure 3-1: Path to follow 

 In figure 3-1 shows all the steps that we will go through in the making of our deep learning models 

to make it clear and organized  

3.3. Creating the environments 

In this section we will be showing the code for the creation of the environment and 

implementation of the libraries along with the setting of the paths to the databases: 

 

Figure 3-2:  Importing libraires 

 

Figure 3-3: Setting path to the databases 

3.4. Splitting the data 

  This diagram explains how we divided the whole database to 2 sections 
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Figure 3-4: Splitting the data diagram 

 Either before or after the preprocessing we made sure to split the data in 2 parts one for the training 

(80%), and one for the validation (20%) to prevent any overfitting and also to make our models 

performances better overall. 

3.5. Data preprocessing 

  As mentioned previously image preprocessing is an important step when talking about iris 

recognition, here we will be going in depth into the code used to preprocess the images 

3.5.1. Preprocessing parameters 

3.5.1.1. Image resizing 

 In this step we resize the images according to the MobileNetV2 as said previously the image 

height needs to be 400px and its width needs to be 300px. and for ResNet50 the height needs to 

be 224px and its width either needs to be 244px. 

3.5.1.2. Normalize the data 

 

Figure 3-5: Code of data normalization 

 

3.5.1.3. Apply Gaussian blur 

 We use noise reduction especially for the UbirisV2 dataset since the images were taken outdoors 

unlike for Casia-Iris-Thousand, we need to reduce the noise occlusion caused by the sun. 

 



  

  

45 

 

Chapter 3                                                      Realization of iris recognition models 

 

Figure 3-6: Result of applying preprocessing parameters 

In Figure 3-6 we show the result of applying the preprocessing parameters in both of 

the datasets. 

3.5.2. Eye Detection  

3.5.2.1. Load Haar Cascade 

 The code bellow’s (Figure 3-7) function is to download and load the Haar cascade, It is an XML 

file used for detecting eyes or parts of them. 

 

Figure 3-7: Code of loading the Haar cascade 

 

 The first step when using Haar cascade is to convert the images to grayscale. Following this, we 

will set specific parameters as indicated in the upcoming table. 

3.5.2.2. Haar Cascade parameters 

 This table lists the Haar cascade parameters used for eye detection in images from Casia-Iris-

Thousand and UbirisV2 datasets. 
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Dataset Casia-Iris-Thousand UbirisV2 

Scale Function 1.1 1.3 

minNeighbors 5 5 

minSize (30,30) / 

Table 3.1: Haar cascade parameters for eye detection 

 We used on the Casia-Iris-Thousand parameters that result in moderate sensitivity, on the other 

hand we used higher sensitivity parameters on the UbirisV2 datase (Table 3.1) 

3.5.2.3. Zooming on the eye 

 This code in Figure 3-8 iterates through each detected eye and crops the corresponding region 

from the image to zoom on the eye. 

 

Figure 3-8: Zooming on the eye code 

 

Figure 3-9: visualization of the detection and zoom in on the eye for CASIA (a, b) and Ubiris 

V2 (c, d) 

In this Figure 3-9we can see that Haar cascade draw a boundary box in the images then we 

zoom in on eye to be the region of iris clearer. 
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3.5.3. Keypoint extraction by using the SIFT algorithm 

 After eye detection and the division of the results into train and Val set directories, now we’ll 

work with the train path for detecting the keypoints from the eye images. 

3.5.3.1. Creating the SIFT detection with its specific parameters 

Based on the SIFT parameters in the Table 3.2 we create a SIFT detector  

Parameters Number of features Contrast threshold Edge threshold Sigma 

Values 1000 0.01 5 1.2 

Table 3.2: SIFT parameters 

3.5.3.2. Draw the keypoint on the images 

Based on the previous parameters given to the SIFT algorithm is going to give us the keypoints. 

 

Figure 3-10: Code to draw keypoints 

 

 

Figure 3-11: Code to count keypoints for the histogram 

 

 In figure 3-11 The code written is made to have the keypoints detected in both datasets in a 

histogram for better visualization. 
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Figure3-12: Result of drawing keypoints and histogram for Casia-Iris-Thousand (a, b) and 

UbirisV2 (c, d) 

 The keypoints detected by SIFT vary across images in both datasets due to differences such as the 

presence of eyelashes. SIFT identifies the edges and corners of eyelashes, the pupil center, and the 

iris boundary as keypoints.  

   Despite these variations, the majority of keypoints are located in the iris region due to its distinct 

texture patterns and significant intensity changes in the iris 

3.5.3.3. Extract patches  

 After detecting the keypoint by using the SIFT algorithm, now we need to extract patches around 

these keypoint, that helps in focusing on the most informative parts of the image; in this case, this 

part is the iris region.by following this step:  

• Extract Square patches around keypoint from the image 

• Resize patches to a specific size (224,244) pixel 

• Convert to NumPy array  

• Pre-process patches  

o Convert patches to ‘float32’ 

o Normalize pixel values 
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3.5.3.4. Store features and manage them in a CSV file 

After extracting the patches that contain features and labels, we need to store and manage 

them in a CSV file for further machine-learning tasks such as classification and recognition. and 

Due to the large size of our dataset, which requires considerable processing time, we use a batch 

size of 32. We aggregate the features and append them with labels to each batch before saving 

them to the CSV file. 

 

Figure3-13: List to store features and labels temporarily 

 

 For each image that is extract features, we can have a CSV file containing the features extraction 

data as Figure 3.14: 

 

Figure3-14:CSV file of features extraction 

3.6. Implementing the architectures 

In our work we have 2 architectures but we used the ResNet50 architecture 3 times for the 

same purpose but not with the same preprocessing or dataset. 

3.6.1. Implementing ResNet50 architecture 

 In order to implement the ResNet50 architecture we use the TensorFlow library, we will be using 

It for feature extraction. 

 

3.6.2. Implementing MobileNetV2 architecture 

 In order to implement the MobilenetV2 architecture we use TensorFlow library and write the code 

line: tf. keras. applications. MobileNetV2. 
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3.7. Transfer learning for feature extraction 

 As said previously to apply transfer learning we need to find the right architecture to build our 

pre-trained model.  

 In all our models we chose ImageNet (Figure3-15) that was the best choice since it is trained on 

more than 14 million images, therefore it was the best choice. 

 

Figure3-15: Code of applying the transfer learning 

 

 As said previously freezing the weights will make the new layers the only trainable parameters 

on the new dataset given. 

 

Figure3-16: Code for freezing the weights 

 

 As we can see freezing the weights made the trainable parameters (Figure3-17) go from 2223872 

to 0 which means that we have successfully froze the weights. 

Figure3-17: Results of freezing the weights 
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Figure3-18: Visualization of features extraction in Casia-iris-Thousand (a) and UbirisV2 (b) 

The Figure3-18shows two plots related to the ResNet50 CNN model, visualizing the feature values 

learned by the model. 

 

3.8. Building the classification layer  

To create a classification layer, we need to first create a dense layer that will connect all 

the neurons to the previous layer’s neurons. 

We need to give also to this dense layer the number of classes we have in our case it is 50 

Classes.as we can see in Figure 3-19 below : 

 

 

Figure 3-19: Code for classification layer 

3.9. Creating the model 

Here we will present the model that will be training on the classification of the images and 

therefore recognizing the individuals and classifying them in the right classes. 
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Figure3-20: Model layers 

 

 In this code(Figure3-20) we set the inputs to their right size we defined above two variables 

IMG_HEIGHT and IMG_WIDTH as we showed above, they’re the standard proportions for 

ResNet50 and MobileNetV2. 

3.10. Setting training parameters 

In order to optimize our model, we need to choose the right training parameters(Table 3.3) that 

will suit the model and make it work at its best performances. 

 

 

Model ResNet50_A ResNet50_B ResNet50_C MobileNetV2 

Batch size 32 32 32 64 

Dropout 30 30 30 30 

Learning rate 0.001 0.001 0.001 0.001 

Epochs 20 20 20 20 

Table 3.3: Training parameters 

3.11. Compile the model 
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 In order to compile our model, we chose to add an optimizer and a function to calculate the loss 

here is the code used for that in figure 3-21: 

 

Figure 3-21: Code of compiling model 

3.12. Results 

 After setting the training parameters and compiling the model we start the training by executing 

the program and wait for the training to end and plot the results using the seaborn library: 

3.12.1. Result of ResNet50_A 

 ResNet50_A is the model that is using the SIFT algorithm and ResNet50 architecture for feature 

extraction and Casia-Iris thousand as its dataset 

 

Figure 3-22: Accuracy and loss graphs for ResNet50_A 

 

• Accuracy and Loss 

We can in figure 3-22 see that the accuracy curve is increasing greatly from the 1st to the 15th 

epoch, then it increases normally until settling at its final value of 83.38%. 

For the lost curve we observe that it is decreasing greatly from the 1st to the 15th epoch, then it is 

decreasing until its final value of 0.8323. 

 

• Validation accuracy and loss 
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 We can see that the Val_Accuracy curve increases greatly from the beginning to the 6th epoch 

then decreases a little bit, in the next epochs it is having the same pattern until it starts to settle at 

its final value of 80.30%. 

 We see that the Val_Loss has nearly the opposite behavior of the Val accuracy except for sudden 

increases, and at the end it settles at its final value of 0.8030. 

The Table 3.4 show the parameters with it result (Value) for ResNet50_A 

 

Parameters Value 

Accuracy 83.38% 

Loss 0.5500 

Val_Accuracy 80.30% 

Val_Loss 0.8030 

Table 3.4:Results of ResNet50_A 

 

3.12.2. Result of ResNet50_B  

 

Figure 3-23: Accuracy and loss graphs for ResNet50_B 

 

• Accuracy and Loss 

 We can see in figure 3-23 that the accuracy curve increases greatly from beginning to end without 

until settling at its peak value of 63.69%. 

 The loss curve has the opposite behavior to the accuracy’s, it decreases greatly throughout all 

epochs to settle at its lowest value of 1.2223. 
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• Validation accuracy and loss 

  We can see that the Val_Accuracy curve is increasing, settling, and sometimes decreasing 

throughout all epochs and at the end it ends up settling at 39.64% 

 The Val_Loss curve in figure 3-23 has an opposite behavior to the Val_Accuracy, and in some 

epochs (10, 14) we see that it increases which means that there is a slight overfitting in the model. 

The Table 3.5 show the parameters with it result (Value) for ResNet50_B 

 

Parameters Values 

Accuracy 63.69% 

Loss 1.2223 

Val_Accuracy 39.64% 

Val_Loss 2.8391 

Table 3.5:Results of ResNet50_B 

3.12.3. Result of ResNet50_C 

 

Figure 3-24: Accuracy and loss graphs for ResNet50_C 

 

 

• Accuracy and Loss 

We can in figure 3-24 that the accuracy grows greatly from the 1st to the 10th epoch, then it 

starts slowly settling when it gets to 18th epoch to get finally to its last value of 96,96%. 

We can see that the loss curve is decreasing greatly from the 1st to the 12th epoch then it 

slowly gets lower from there to the 18th epoch then it settles to its final value of 0,2558. 
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• Validation accuracy and loss 

 We can see that the Val_Accuracy curve starts to increase greatly from the 1st to the 3rd epoch 

then settles for an epoch and then continues in the same process of growing and settling and 

sometimes decreasing a little at the end settling to its final value of 86,25% 

 When it comes to the Val_Loss we see that in most epochs the loss is decreasing just like the loss 

but in the 15th epochs we see the loss slightly increasing which means that there is a slight 

overfitting in the model. 

The Table 3.6show the parameters with it result (Value) for ResNet50_C 

 

Parameters Values 

Accuracy 96.96% 

Loss 0.2558 

Val_Accuracy 86.25% 

Val_Loss 0.6268 

Table 3.6: Results of ResNet50_C 

 

3.12.4. Result of MobileNetV2 

 

Figure 3- 25: Accuracy and loss graphs for MobileNetV2 

• Accuracy and Loss 

 We can see that the accuracy curve increases greatly from the 1st to the 6th epoch then increases 

at a normal pace until reaching the 18th epoch then starts settling to its final value of 93.72% 
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 For the loss curve we notice that the curve greatly decreases from beginning to end to settle at its 

final value of 0.7474. 

 

• Validation accuracy and loss 

 We can see that the Val_Accuracy is growing greatly from the 1st to the 3rd epoch then starts 

settling for 3 epochs and then grows significantly until reaching the 11th epoch, for the next epochs 

it keeps increasing then decreasing until settling at the value of 80%. 

 We can see that the Val_Loss decreases greatly throughout all epochs to finally settle at its final 

value of 1.2664. 

The Table 3.7 show the parameters with it result (Value) for MobileNetV2 

 

Parameters Values 

Accuracy 93.72% 

Loss 0.7474 

Val_Accuracy 80% 

Val_Loss 1.2664 

Table 3.7:Results of MobileNetV2 

3.13. Discussion  

 In this section we will be having comparisons, one between 2 neural network architectures that 

are ResNet50 and MobileNetV2, the second between the same dataset but with different 

preprocessing steps and the third will be between 2 databases Casia-Iris-Thousand and UbirisV2. 

in all of three comparison we will focus on the performance result in each one of them. 

Model Accuracy Loss Validation_accuracy Validation_Loss 

ResNet50_A 83.38% 0.5500 80.30 0.8030 

ResNet50_B 63.69% 1.2223 39.64% 2.8391 

ResNet50_C 96.96% 0.2558 86.25% 0.6268 

MobileNetV2 93.72% 0.7474 80% 1.2664 

Table 3.8: Results of all models 

3.13.1. Comparison between ResNet50_C and MobileNetV2 
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Since this is a comparison between 2 architectures, we will mostly focus on the performances 

of both architectures, which means the accuracy, Val_Accuracy, loss, and Val_Loss and see which 

one is better overall. 

• Accuracy 

   We will start first by comparing the accuracies to see which one is more precise. 

 

Figure 3-26: Comparison of the accuracies of ResNet50_C and MobileNetV2 

 Based on what we saw before and comparing the results side by side we can see clearly that the 

ResNet50_C architecture is better when it comes to both its accuracies (accuracy, Val_Accuracy), 

which means for precision the ResNet50_C architecture comes out on top. 

• Loss 

 

Figure 3-27: Comparison of the losses of ResNet50_C and MobileNetV2 
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 Also, here we can see that when it comes to the loss, ResNet50 is indeed better, we see that in the 

result the MobileNetV2’s loss is nearly double that of the other. 

 However, we can observe a slight overfitting of the ResNet50 architecture which is not the case 

for the MobileNeV2’s architecture. 

• Conclusion of comparison 

 Overall, the ResNet50 architecture comes out on top in all the parameters analysed which is not 

really a surprised it is a more rigid architecture with more layers and more complexity to 

implement, when in the other hand MobileNetV2 is more adapted to embedded systems or phones 

applications where it can be implemented and perform pretty well, and for the ResNet50 

architecture it is better suited for bigger systems that need a lot of performances to be implemented 

in. 

3.13.2. Comparison with ResNet50_B and ResNet50_C 

 We will compare between two performances of ResNet50_B that’s is training based on a lot of 

preprocessing steps such as resizing, normalization, Gaussian blur, eye detection, and keypoint 

detection, and the ResNet50_C that we just apply two preprocessing parameters is image resizing 

and data normalization. 

 

• Accuracy 

 

Figure3-28: Comparison of the accuracies of ResNet50_B and ResNet50_C 
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 ResNet50_B shows rapid initial improvement in training accuracy, levelling off at around 0.8, 

with validation accuracy plateauing lower, indicating some overfitting. In contrast, ResNet50_C 

also demonstrates rapid initial training accuracy improvement but stabilizes at a higher level close 

to 1.0, with validation accuracy converging more closely to training accuracy, suggesting 

improved generalization and less overfitting. 

• Loss 

 

Figure3-29: Comparison of the loss of ResNet50_B and ResNet50_C 

 

 In the ResNet50_B, the model shows rapid initial improvement in training loss but struggles with 

overfitting, as indicated by the slower decrease and higher validation loss. In contrast, the 

ResNet50_C, depicted in the second image, exhibits smoother and more closely aligned training 

and validation loss curves, suggesting better generalization and less susceptibility to overfitting. 

 

 Based on the result that we have and the comparison that we make, we conclude that the more 

preprocessing steps doesn’t mean a better performance, the opposite as in this case the accuracy 

and the loss result is clearly different when we apply more of the preprocessing functions eve if 

there’s a result in keypoints and features extraction. 

 

3.13.3. Comparison between ResNet50_A and ResNet50_B 
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  For this comparison it will be between two datasets (Casia-Iris-Thousand) using the same 

architecture and preprocessing steps for both of them, to see which one will give us better features 

to extract and also more importantly better performances overall. 

 

• Preprocessing of the dataset 

 

Figure 3-30: image preprocessing for Casia-Iris-Thousand (a) and UbirisV2 (b) 

 

 Our datasets share some preprocessing steps and parameters, such as resizing, noise reduction, 

normalization, and eye detection.  

 As seen in the (Figure3-30) Casia-Iris-Thousand pre-processed images(a) maintain a consistent 

appearance with minimal noise, while UbirisV2 pre-processed images (b), although improved, 

show residual contrast and noise.  

 These differences in results are due to the varying data collection environments. where the Casia-

Iris-Thousand images were captured in controlled indoor environments with consistent 

illumination and imaging conditions. In contrast, the UbirisV2 dataset images were captured in 

uncontrolled outdoor environments with varying natural lighting. 

 

• Feature extraction 
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Figure 3-31: Visualization of keypoint images and Histogram of ResNet50 features for Casia-

Iris-Thousand (a, c) an UbirisV2 (a, d) 

 

 Keypoint detection using the SIFT algorithm and feature extraction yielded varying results across 

the two datasets as we seen in the (Figure 3.30) below: 

• In the Casia-Iris-Thousand dataset, keypoints were more consistent and concentrated 

within the iris region (image (a)). 

• while the UbirisV2 dataset presented challenges with a broader distribution of 

keypoints (image (b)).  

 The feature extraction process using the pre-trained ResNet50 model was consistent across both 

datasets. The same ResNet50 architecture, pre-trained on the ImageNet dataset, was used to extract 

features from patches around the detected keypoints in the iris images. However, the visual 

representations of the extracted features, as shown in (Figure 3.30) indicate differences in quality 

and characteristics between the datasets: 

• For the Casia-Iris-Thousand dataset (image (c)), the feature visualizations are more 

consistent and exhibit uniform patterns, indicating distinctive and representative iris 

features.  

• In contrast, the UbirisV2 dataset (image (d)) displays higher diversity and variation 

in patterns, reflecting the complexities of uncontrolled imaging conditions.  
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 Consequently, the features obtained from the Casia-Iris-Thousand dataset are more distinctive and 

representative of the iris patterns, whereas the features extracted from the UbirisV2 dataset are 

more complex and varied. due to these reasons: 

• The Casia-Iris-Thousand dataset images are in gray-scale, while the images of the 

UbirisV2 dataset are RGB which are mismatching whit the SIFT parameters. 

•  Differences in preprocessing outcomes. 

• Classification performances  

 All of the previous comparisons can make a difference in the model training where the training 

loss and accuracy curves for both datasets, provide insights into the classification performance 

achieved using the extracted features and the ResNet50 model with a new classification layer. 

• For the Casia-Iris-Thousand dataset (Figure 3.22), the training loss steadily decreased, and 

the accuracy curve reached approximately 0.99 (99%) on the training set. This high training 

accuracy indicates that the model effectively learned the patterns and features present in 

the Casia-iris-thousand dataset. 

• In contrast, for the UbirisV2 dataset (Figure3.23), while the training loss also decreased, 

the accuracy curve plateaued at around 0.95 (95%) on the training set. This slightly lower 

training accuracy, suggests that the model encountered more challenges in learning the 

patterns and features from the UbirisV2 dataset. 

However, the lower training accuracy achieved on the UbirisV2 dataset aligns with the 

more varied and complex features extracted, as discussed in the feature extraction comparison.  

The challenging imaging conditions and the diverse features present in the UbirisV2 dataset may 

have made it more difficult for the model to learn robust and discriminative representations, 

leading to a slightly lower classification performance compared to the Casia-Iris-Thousand dataset. 

• Conclusion of Comparison 

 In conclusion, the Casia-Iris-Thousand dataset outperforms the UbirisV2 dataset due to its 

controlled imaging conditions, which result in more consistent pre-processing, keypoint detection, 

and feature extraction. Casia-Iris-Thousand's grayscale images and stable environment lead to 

more reliable keypoints and distinctive iris features. This consistency enables higher classification 

accuracy, reaching approximately 83% compared to UbirisV2's 64%. The UbirisV2 dataset, with 

its varied outdoor conditions and complex RGB images, presents greater challenges, resulting in 

less effective keypoint detection and feature extraction, ultimately impacting classification 

performance. 

3.14. Conclusion 
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As a conclusion of our work in this chapter we can say first that the preprocessing of the data is an 

important matter but it doesn’t necessarily mean better performances. 

   For our first comparison between our two architectures, we saw that more rigidity truly means 

better performance but also means more complexity which has its downsides as we saw a slight 

overfitting in the ResNet50 architecture, on the other hand a more lightweight architecture means 

less complexity so no overfitting which is also something the architecture’s layers work on and 

also more deployable in many hardware devices like mobiles or embedded systems. 

   For our second comparison we used the architecture with better performances on two datasets 

one with black and white pictures and one with coloured pictures which we applied to a specific 

preprocessing to see which one reacts better to it, to see also which one will give more features, 

and more importantly which will have the best performances. 

   In the end we ended up having the results and did the both comparisons and did the analysis 

which gave us an answer to which of the architectures is better, and which of the two datasets is 

better to work with. 

 

 

 

 

 

 

 

  

 

 

 

 

 



  

  

 

 Conclusion  Générale 

 

General conclusion 

  In the beginning after doing some research we decided to make a comparative study, due to the 

variety of work done in the field of iris recognition using deep learning and also the variety of 

work we have done on our own, our problematic initially was iris recognition using ResNet50 then 

became which of these various architectures is better and which dataset is more suited for it , 

effectively large eye datasets Casia-iris thousand and UbirisV2 we used did not have the same 

resolution, neither the same eye background nor the position in the images. This greatly impacted 

the results therefore preprocessing the datasets was crucial. 

 This led us to study the iris specific features that make differences between individuals. We 

decided to create new databases from Casia-Iris-Thousand, and UbirisV2, by applying the SIFT 

algorithm, that extracted keypoints from eye images. 

 We named the pretrained model ResNet50 using different databases and preprocessing: 

ResNet50_A, ResNet50_B, ResNet50_C 

 We trained and dismissed other preprocessing tools either because they were less efficient (SURF) 

or too time consuming (labelme) 

 When comparing the performances of ResNet50_A, ResNet50_B, ResNet50_C, MobileNetV2, 

ResNet50_C came out on top with 96.96% accuracy. 

 ResNet50 based architecture proved to be robust, and MobileNetV2 embedded. 

 Furthermore work should consider improving the accuracy of the MobileNetV2 models as 

embedded applications on IOT’s for real time applications that are greatly. 

 Datasets, preprocessing is another important parameter, since it has a high influence on the 

training process, prediction and classification. In particular preprocessing tools for effective iris 

segmentation should be developed.
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ANNEXE 

Python and Libraries 

 

 

Python programming language: 

   Python is an interpreted, high-level, object-oriented programming language known for its 

simplicity, readability, and ease to use. 

   it is statistically one of the most used programming languages in today’s time due to its various 

applications like web development, data science, but here the most important is machine learning. 

Libraries in Python: 

   Libraries in python are a collection of related modules that provide pre-written code, tools, and 

functions for specific tasks. 

   It simplifies the coding process by proposing reusable code that can be used in different 

programs. 

• NumPy: 

   NumPy (Numerical Python) is a Python library used for working with arrays, it provides a strong 

N-dimensional array object and advanced function for integrating C/C++ code. NumPy is a 

fundamental package for scientific computing with Python. 

• TensorFlow:  

   TensorFlow is an open-source machine learning framework developed by Google, designed to 

be versatile and used for various ML tasks, as training and deployment,  

   It provides a comprehensive ecosystem of tools, libraries of its own and community resources 

that give room to research and development. 

 

 

 



  

  

72 

 

 Annexes 

• Keras: 

    Keras is an open-source, high-level neural network API written in Python. It is designed to be 

user friendly to make it accessible to any developer whether it’s a beginner or advanced in machine 

learning, it is built on top of other frameworks such as TensorFlow. 

• OpenCV: 

   OpenCV (Open-Source Computer Vision Library) is an open-source computer vision and 

machine learning software library. It is designed to come up with a comprehensive set of tools and 

algorithms for real-time computer vision applications. 

• Scikit-learn: 

Scikit-learn is a free software machine learning libraries in Python. It is designed to provide a 

comprehensive set of tools and algorithms for various machine learning tasks, including mostly 

classification, regression and clustering. 

• Matplotlib: 

   Matplotlib is a comprehensive library for creating static, animated and interactive visualizations 

in Python, it allows users to create publication-quality plots and customize visual styles and 

layouts, it is open-source and can be used in plenty of environments.  

•  Seaborn: 

   Based on Matplotlib, Seaborn is a Python data visualisation library, it provides a high-level 

interface for drawing and informative statistical graphics, Seaborn is designed to make it easy to 

make informative and attractive statistical graphics. 
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