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Abstract

This study presents the design, development, and evaluation of an inertially stabilized
airborne camera control system utilizing a 3-axis gimbal for UAV-based active object
tracking.

The proposed system is designed to control three servomotors, which manage the yaw,
pitch, and roll movements of the camera, using measurements from an Inertial Measure-
ment Unit (IMU) with six degrees of freedom model that reflect the vehicle’s position in
3-axis motion. The primary objective of the study is to achieve stabilization against distur-
bances induced by vehicle motion, turbulence, and other external factors that could cause
image distortion and impact computer vision tasks. IMU angle measurements were pro-
cessed using a complementary filter to enhance accuracy, and three Proportional-Integral-
Derivative (PID) controllers were implemented to independently manage each servomotor.
While the system demonstrated effective stabilization on the roll and pitch axes, limita-
tions were observed on the yaw axis, primarily due to gyroscope drift and the absence of
a magnetometer. This issue has been identified as an area for future improvement.

In addition to stabilization, object detection based on image processing capabilities
has been developed to achieve the active tracking. Due to the computational limitations
of the Raspberry Pi, which served as the system’s core processing unit, neural network-
based models were found unsuitable for real-time operations. Consequently, a lightweight
color-based detection algorithm was employed, achieving a higher frame rate. The system
exhibited reliable tracking performance, with a small Root Mean Square Error (RMSE),
following the implementation of Proportional-Derivative (PD) controllers. In the final
phase, a prototype named Aero Vision 0.1 was constructed and tested, utilizing the con-
trol system for both stabilization and tracking processes. Despite some limitations, the
overall performance of the gimbal was deemed satisfactory, providing a solid foundation
for further development.

Keywords: Inertial Stabilization, 3-Axis Gimbal, UAV, Object Detection,Active Object
Tracking, IMU, PID Controller, Visual Servoing, Complementary Filter.



Résumé

Cette étude présente la conception, le développement et ’évaluation d’un systeme de
controle de caméra aéroportée stabilisée par inertie utilisant un cardan a trois axes pour
le suivi actif d’objets par drone.

Le systeme proposé est congu pour controler trois servomoteurs qui gerent les mouve-
ments de lacet, de tangage et de roulis de la caméra, en utilisant les mesures d’une unité
de mesure inertielle (IMU) avec un modele a six degrés de liberté qui reflete la position du
véhicule dans un mouvement a trois axes. L’objectif principal de I’étude est de parvenir a
une stabilisation contre les perturbations induites par les mouvements du véhicule, les tur-
bulences et d’autres facteurs externes susceptibles de provoquer une distorsion de I'image
et d’affecter les taches de vision par ordinateur. Les mesures d’angle de 'IMU ont été
traitées a l'aide d’un filtre complémentaire pour améliorer la précision, et trois controleurs
proportionnels-intégraux-dérivés (PID) ont été mis en ceuvre pour gérer indépendamment
chaque servomoteur. Alors que le systeme a démontré une stabilisation efficace sur les
axes de roulis et de tangage, des limitations ont été observées sur 'axe de lacet, princi-
palement en raison de la dérive du gyroscope et de ’absence d’un magnétometre. Cette
question a été identifiée comme un domaine a améliorer a ’avenir.

Outre la stabilisation, la détection d’objets basée sur les capacités de traitement
d’images a été développée pour réaliser le suivi actif. En raison des limites de calcul
du Raspberry Pi, qui a servi d’unité centrale de traitement du systeme, les modeles basés
sur les réseaux neuronaux ont été jugés inadaptés aux opérations en temps réel. Par con-
séquent, un algorithme de détection léger basé sur les couleurs a été utilisé, permettant
d’atteindre une fréquence d’images élevée. Le systeme a présenté des performances de
suivi fiables, avec une faible erreur quadratique moyenne (RMSE), suite a la mise en ceu-
vre de controleurs proportionnels-dérivés (PD). Dans la phase finale, un prototype nommé
Aero Vision 0.1 a été construit et testé, utilisant le systeme de controle pour les processus
de stabilisation et de suivi. Malgré certaines limitations, les performances globales du
cardan ont été jugées satisfaisantes, ce qui constitue une base solide pour la poursuite du
développement.

Keywords: Stabilisation Inertielle, Nacelle a 3 axes, Drone, Détection d’Objets, Suivi
Actif d’Objets, IMU, Controleur PID, Asservissement Visuel, Filtre Complémentaire.
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(General Introduction

In recent years, Unmanned Aerial Vehicle (UAV) technology has seen considerable ad-
vancements, with various organizations, including private companies and research centers,
developing sophisticated systems for both military and civilian applications [36] [32].

Military UAVs often employ airborne radars or guided seekers for target acquisition
and localization. However, these systems are typically heavy and expensive, making
them impractical for civilian UAVs. Among civilian platforms, quadrotors have gained
significant popularity due to their stability and lower manufacturing costs compared to
helicopters. Despite this, most quadrotors, with a takeoff weight of under 15 kg, have
limited payload capacity and battery endurance [30]. These constraints present challenges
in accurately and reliably tracking moving targets, particularly because of the limited
computational capabilities and low-cost sensors onboard.

Cameras, being affordable, lightweight, and capable of passively capturing environ-
mental data, have emerged as promising tools for UAV-based target tracking. These
features are particularly advantageous for advanced aerial imagery applications, which
have prompted substantial research into enhancing camera-based tracking methods for
UAVs [30]. Such advancements enable the rapid detection of targets over extensive areas,
followed by continuous surveillance of selected targets during the tracking phase.

Various approaches can be used to actively track a target object with a UAV. These
include adjusting the UAV’s position, altering the camera’s orientation using a pan' and
tilt? mechanism, or deploying multiple cameras.

This study focuses on active object tracking using a gimbal system, which is a key
component of inertially stabilized platforms (ISPs) used in various mobile carriers, such
as manned and unmanned aerial vehicles (MAVs/UAVs) and helicopters [36]. These
systems, typically comprising two or three axes, stabilize the sensor against disturbances
from the vehicle, turbulence, and other external factors that can induce image distortion
[31].

!Pan: The horizontal movement of the camera, allowing it to rotate left or right.
2Tilt: The vertical movement of the camera, enabling it to rotate up or down.
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Gimbals are employed in a wide range applications to keep the target centered within
the image frame including: traffic surveillance, reconnaissance, and target acquisition
(RSTA) [30], as well as search and rescue (SAR), where they aid in locating missing
individuals or assets in unsafe geographical areas that are otherwise inaccessible to search
and rescue teams [35] [51].

Additionally, these systems are utilized for visual inspections of structures and compo-
nents in remote or difficult-to-access locations, where such tasks are typically expensive,
dangerous, and time-consuming. Examples include inspections of power lines [45], wind
turbines, transportation infrastructure, buildings, industrial sites, and mines [17], all while
maintaining the object of interest within the camera’s field of view (FOV). Further ap-
plications extend to aerial photography, missile tracking, autonomous navigation, and
agricultural seeding and monitoring.

This technology is not only pivotal for fostering innovation but also plays a signifi-
cant role in economic development, particularly within emerging markets such as Algeria.
However, Algeria currently lacks domestic manufacturers capable of producing imaging
systems tailored for UAV projects. This gap is especially crucial for military UAV systems,
where the domestic production of all components is strategically significant. Furthermore,
for civilian applications, local production of these imaging systems would bring substantial
economic benefits, particularly when integrated with domestically manufactured UAVs.

This study aims to develop a prototype of a stabilized camera control system with a
3 xis-gimbal, achieving the following objectives:

e Stabilization of the roll, pitch, and yaw axes against external perturbations.

e Object tracking functionality, ensuring that the camera’s line-of-sight (LOS) is di-
rected at the target and remains centered within the camera’s field of view (FOV).

The project is structured into several tasks to meet the outlined objectives. First, it
requires a thorough understanding of control theory to manage the three motors of the
gimbal. Additionally, studying methods for obtaining visual data and integrating them
into the control system is essential to achieve the tracking functionality. Furthermore, a
comprehensive understanding of IMU data processing is required, along with the integra-
tion of these data into the control system to ensure stabilization, all while considering the
available hardware resources.

This thesis explores the theoretical foundations, design methodologies, and practical
implementations of the system under study, and it is structured into three main chapters:

Chapter I reviews the current state-of-the-art in image stabilization techniques, includ-
ing the control theory, as well as the object detection and tracking systems. By examining
various technological approaches and algorithms, this chapter lays the foundation for the
practical development of a real-time object tracking system with high precision. Key fac-
tors such as material properties and available computational resources are considered to
ensure optimal performance, particularly in maintaining a high frames-per-second (FPS)
rate for real-time applications.
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Chpter II provides an in-depth analysis of sensor data integration using the IMU
sensor and complementary filters for accurate data processing. Visual servoing techniques
are explored to enable vision-based adjustments in the system’s motion control. The
theory of PID controllers in stabilizing and fine-tuning system responses is emphasized,
laying the groundwork for practical implementation.

Chapter III focuses on the practical application of the concepts discussed in earlier
chapters through prototype development and testing. The implementation phase involves
the successful processing of IMU data, calibration, and data fusion using a complementary
filter to ensure system stability. Detection was done by YOLOv8n model, MobileNet SSD
and color-based detection then integrate the visual data into control algorithm for effective
object tracking. The chapter concludes with an assessment of the system’s performance,
identifying future opportunities for improvement.

At the end, the results obtained in the study and future perspectives are summarized
in the conclusion.

The appendix is dedicated to the presentation of the Aero Vision startup project along
with a technical sheet.



|Chapter I

Review of Integrated Systems for
Stabilization, Object Detection and Tracking
in Dynamic Aerial Environments

I.1 Introduction

In recent years, there has been a growing demand for high-quality imagery in various
fields, particularly in aerial applications. Achieving stable and accurate images in dynamic
environments, such as during flight, is a significant challenge. This challenge has driven
the development of stabilization and object tracking technologies, which are critical for
applications such as surveillance, navigation, and search and rescue. This chapter begins
with an overview of biological vision, which serves as inspiration for understanding com-
puter vision. It then explores the state-of-the-art in image stabilization, object detection,
and object tracking, examining the various techniques and systems developed to ensure
stable, high-quality images on airborne platforms.
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Tracking in Dynamic Aerial Environments

1.2 Biological Vision

I[.2.1 The Visual System

The human eye is an extraordinary optical organ with the ability to focus light and
adjust to different lighting conditions. However, it is just one component of the intricate
process of vision.

The visual system serves as the physiological foundation for visual perception, allowing
individuals to detect and process light. This system plays a crucial role in capturing,
transducing, and interpreting information related to light within the visible spectrum. By
doing so, it constructs an image and creates a mental representation (or a mental model)
of the surrounding environment [2].

As shown in figure 1.1, the visual system encompasses both the optical system, which
includes components like the cornea and lens, and the neural system, which comprises
structures such as the retina and visual cortex. These two systems work together har-
moniously to facilitate the complex process of vision, ultimately enabling individuals to
perceive and make sense of their surroundings [2].

left visual rl@ht visual

field field

eyegla% lens eyeglaas lens
com@a

reting —— \ ) \ / N E— retma

optic nerve

optic chiasma
lateral geniculate
nucleus (LGN)

«—— primary visual cortex

Figure [.1: Human visual system

Vision is achieved through a coordinated effort involving three distinct stages: optic,
retinal, and neuronal, so it is the incredible result of highly coordinated teamwork [2].

The eye forms an image of the world on the retina during the optic stage. Specialized
cells in the retina convert light energy into electrical signals during the retinal stage.
Finally, the neuronal stage involves the brain’s processing and interpretation of neural
signals, resulting in the conscious experience of vision. This collaborative effort between
the eye’s intricate design and the brain’s processing power highlights the true complexity
of human vision|2].



Chapter 1. Review of Integrated Systems for Stabilization, Object Detection and
Tracking in Dynamic Aerial Environments

To round up the concept, figure 1.2 depicts the process:

Retina Cells Human brain f
Human eye _ sl Neurons
— | PO .

{( N Retina | @ % &-'. i ”

ik ) N | Nt
: : . ]
\ yo

Optical i i
plical nerve Visual cortex Synapses

Figure 1.2: Schematic diagram of the biological vision system [57].

1.2.2 The Vestibular System

The vestibular system, located within the inner ear, serves as a biological equivalent to
the accelerometers employed in camera image stabilization systems.This system enables
visual stability in humans and numerous animal species by maintaining gaze fixation
during head movements, which involve rotations and translations [1].

The vestibular system consists of two components: the semicircular canals !, which
detect rotational movements, and the otoliths (ear-stones) 2, which detect linear acceler-
ations. The signals sent by the vestibular system mainly go to the neural structures that
control eye movement, forming the anatomical basis of the vestibulo-ocular reflex, which
is crucial for clear vision [1].

The VOR, or vestibular-ocular reflex, is a reflexive eye movement that serves to sta-
bilize images on the retina during head movement. This is achieved by producing an eye
movement in the opposite direction of head movement, thereby preserving the image on
the center of the visual field. For instance, when the head moves to the right, the eyes
move to the left, and vice versa. Given that head movements are consistently present, the
VOR plays a critical role in maintaining visual stability: patients who experience impaired
VOR often struggle with reading, as they are unable to stabilize their eyes during minor
head tremors. Notably, the VOR reflex is not contingent upon visual input and operates
effectively total darkness or when the eyes are closed [1].

A closer look at figure 1.3 reveals that upon detection of head rotation, the vestibular
system transmits inhibitory signals to the extraocular muscles on one side and excitatory
signals to the muscles on the opposite side.

!The semicircular canals are three semicircular linked tubes found in the deepest region of each ear.
There are three semicircular canals: lateral, anterior, and posterior which provide the sensation of angular
acceleration.

2These organs are a small calcium carbonate structures in the saccule or utricle of the inner ear that
allows an organism, including humans, to perceive linear acceleration, both horizontally and vertically

(gravity).
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This coordinated neural response elicits compensatory eye movements, counteract-
ing head motion and preserving a stable image on the retina. Notably, these compen-
satory eye movements exhibit minimal latency, typically occurring within 10 milliseconds
of head movement, highlighting the remarkable efficiency of this biological stabilization
mechanism|[1].

Compensating eye movement

Inhibition of extraocular muscles
on the other side

Excitation of extraocular muscles
on one side

Lateral rectus

Medial rectus

Oculomotor
MLF —~———% nucleus (midbrain)

Abducens
nucleus (pons)

Vestibular
nucleus (pons) Detection of rotation as a
result of fluid movement

in canal

7
Right
Head rotation
V M Inhibition

[ Excitation

Figure 1.3: The vestibulo-ocular reflex.

This process of adaptation and rapid image processing by the biological brain inspires
us in the design of artificial vision systems, from the image processing stage to the stabi-
lization actions that combine gyroscope and accelerometer data.
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I.3 Image Stabilization Techniques

Image stabilization plays a crucial role in enhancing the accuracy and reliability of
object detection and tracking. Stabilization systems has gone through several stages:
mechanical, optical, digital and hybrid stabilization, each tailored to address varying
degrees of instability.

Image stabilization systems

Optical Digital Stabilizing the Hybrid
Stabilization (OS) M Stabilization (DS) camera body Stabilization(HS)

Figure [.4: Image stabilization systems

The majority of cameras in use today are equipped with either ES (Electronic Stabi-
lization) or OS (Optical Stabilization) as their built-in stabilization systems [52]. Each
tackles camera shake differently, offering distinct advantages and limitations.

Optical Stabilization (OS)

1. In-Lens Stabilization

This mechanism employs a movable element within the lens itself, typically a group
of lenses or a prism to adjust the optical path to the sensor. Gyroscopes detect
camera shake, and the system adjusts the position of this element to counteract
the movement, effectively keeping the image sensor stable[54]. This system offers
excellent image quality, as it is compatible with all lenses attached to the camera
and has minimal impact on power consumption. Major shocks or sudden movements
are not absorbed by the optical elements. Compared to digital alternatives, it may
be a pricier option and might not perform as effectively for very rapid movements.

2. Sensor-Shift Stabilization or In Body Image stabilization (IBIS)

This approach stabilizes the image sensor itself rather than a lens element. By
physically shifting the sensor in the opposite direction of camera shake, a clear image
is captured. IBIS, commonly found in mirrorless cameras, offers a wider range of
effectiveness against camera shake compared to in-lens stabilization. However, it
may introduce slight image cropping due to the physical movement of the sensor
and potentially consume more battery power.

The primary function of all optical stabilization systems is to stabilize the image pro-
jected on the sensor prior to the sensor’s conversion of the image into digital information.
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Digital Stabilization (DS)

Real-time digital image stabilization, also known as Electronic Image Stabilization
(EIS), This software-based technique analyzes consecutive video frames to detect shake.
The software then adjusts each frame slightly to compensate for the movement, essentially
cropping and repositioning the image data electronically [54].

This method requires the resolution of the image sensor to exceed the resolution of
the recorded video. It’s generally less expensive than optical solutions, it can be applied
to both photos and videos and functions with any camera. However, it’s important to
consider potential drawbacks, DS may reduce image resolution due to cropping and, in
some situations, introduce artifacts like blurring or ghosting.

Additionally, it’s often less effective than optical stabilization for compensating for
larger camera movements, a minor movement or inaccuracy in the image will become
highly apparent after amplification.

So DS can be applied after the image is taken, but it is impractical for large amplifi-
cation images. And here come the Camera body stabilization system that may solve this
issue[49].

As a result, these internal systems have a limited ability to generate entirely blur-free
images or videos because their stabilization elements can resist small vibrations.

Camera Body Stabilization

Unlike internal methods, this technique stabilizes the entire camera body through an
external device. An IMU 3(Inertial Measurement Unit)[36] detects camera shake, the
information is then relayed to a motorized gimbal system (will be define in 1.3.1) that
physically counteracts the movement.

Hybrid Stabilization

As the name suggests, it means that the camera combines two or more stabilization
technologies simultaneously.

3IMU : Inertial Measurement Unit is a critical component in navigation and control systems, providing
essential data for determining an object’s orientation and motion. It typically integrates the following
types of sensors : Accelerometers, Gyroscopes and on occasion Magnetometers and Barometers.
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I.3.1 Inertially Stabilized Camera

Inertially stabilized camera is a technology that utilizes IMU measurement to counter-
act unwanted rotations and ensure stability. This is particularly beneficial for objects like
vehicles and camera systems [22]. This principle can be implemented in a device called a
gimbal.

Gimbals are mechanical devices classified as a type of active stabilizer, commonly
used in aerial vehicles to reduce vibrations and stabilize the camera in response to angular
motion of the vehicle and other disturbances through inertial stabilization [8], particularly
with the advancement of MEMS 4 technology in sensors [30], which offer high precision,
low power consumption and low cost. This enhances stability and performance across
various fields, including aerospace and military applications.

Furthermore, gimbals enhance the camera’s Field of View (FOV) through angular
motion, which can either compensate for or be integrated with translational motion to
achieve the desired objective. This ability to address FOV limitations is especially impor-
tant when tracking moving targets [8]. Active tracking using a gimbal device is, indeed,
a highly compelling functionality in computer vision applications.

Gimbals come in various configurations depending on the number of axes they stabi-
lize,here are the different types that exist for airborne cameras:

1. Single-Axis Gimbal

This is the most basic and lightweight form. It utilizes a motor on a single axis,
typically designed to counteract either pitch or roll movements. This approach is
often found in smartphone gimbals or budget-friendly drone camera systems.

2. Two-Axis Gimbal

This system represents a more advanced form. It employs motors on two axes to
counteract pitch and roll movements. This approach is effective for mitigating mild
vibrations and turbulence encountered during stable flight conditions. However, it
may struggle in scenarios involving extreme maneuvers or strong winds.

3. Three-Axis Gimbal

This system (The aim of this study) is the most versatile and commonly used option
for airborne cameras. It incorporates motors on three axes, providing correction for
pitch, roll, and yaw. This additional axis ensures exceptional stability even during
rapid maneuvers or high winds. With a three-axis system, the camera maintains
a level orientation, keeping the horizon straight and the footage smooth, even in
challenging conditions. The figure 1.5 below shows the three axes and rotations of
a camera.

4MEMS : Micro-Electro-Mechanical Systems refer to a technology that encompasses miniaturized
mechanical and electromechanical components fabricated using microfabrication techniques, typically
ranging from a few micrometers to a few millimeters.

10
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Figure 1.5: Schematics of a 3-axes gimbal system [56].

The following table summarize the different types of gimbal systems for airborne cam-
era, their advantages and limitations:

Table 1.1: The different types of gimbals.

System Type Axes Corrected Advantages Limitations

Single- Axis Pitch or Roll Simple design, Limited effectiveness
lightweight, for combined
potentially lower cost ~ movements

Two-Axis Pitch & Roll Simpler design than Limited effectiveness
3-axis, in extreme conditions
potentially lower cost

Three-Axis Pitch, Roll Most versatile, More complex design,

& Yaw excellent for various potentially higher cost

flight conditions

I.3.2 Principle of Operation of a Gimbal

The fundamental concept of this system is to generate a counteracting motion in
the direction opposite to the vibration. This is accomplished through a combination
of sensors, processing units, and actuators, all functioning within a closed-loop control
system, effectively reducing the impact of platform disturbances on the camera.

11
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The inertial IMU sensor is responsible for providing these counteracting motions by
measuring data hundreds of times per second. It detects movements, records angular
velocities, accelerations, and magnetic forces, and then transmits this information to a
microcontroller. The system uses three servo motors (or brushless motors), each operating
independently on the three gimbal axes, to make real-time adjustments that counteract
shakes by moving an equal amount in the opposite direction generated by a microcon-
troller.

The sensor continually monitors the camera’s relative position to the ground. By
comparing this with a predetermined optimal position, the system assesses how much the
camera’s position deviates with each movement. The primary goal is to maintain this
optimal position.

1.3.3 Related Works

Many aspects of visual servoing and gimbal motion control have been studied for
decades [24] including [20] and [22] as a part of Inertial Stabilized Platforms (ISPs),
and those reviewed in the two-part tutorials series by Chaumette and Hutchinson [6] [7].
Numerous control algorithms have been explored in the literature [42]. Some of the well-
known techniques include PID [36], Linear Quadratic Regulator (LQR), Sliding Mode
Control (SMC) [28], Backstepping [24], Hoo [3], Fuzzy Logic [47], and Artificial Neural
Networks. Each of these algorithms has its own distinct advantages and limitations [59].

After conducting a comprehensive analysis of various algorithms, the author in [59]
concluded that the PID control algorithm is the most effective in terms of accuracy,
simplicity, and feasibility. This conclusion is supported by its widespread use in industry,
as noted in [36].

The data acquired from the IMU are processed and filtered using various techniques,
including the Kalman filter and the Complementary filter [15] [11]. These filtering methods
are employed to enhance the accuracy and reliability of the sensor data by reducing noise
and improving the estimation of orientation and motion.

In [11], the author concludes that the choice between the complementary filter and the
kalman filter depends on the specific application and available resources. The Comple-
mentary filter is ideal for scenarios requiring simplicity and real-time performance, such
as basic robotics and motion tracking. In contrast, the Kalman filter is better suited
for high-precision applications like aerospace and autonomous vehicles due to its higher
accuracy and robustness to noise and sudden changes. His findings demonstrated that
the complementary method using less computational resources delivers performance close
to that of the more expensive Kalman filter without the aid of auxiliary sensors such as
a digital compass.

12
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Table 1.2: Comparison between Complementary filter and Kalman filter [11].

\ Complementary filter

\ Kalman filter ‘

More complex, requires more

Algorith lex- | .. . .
" gorithm — complex Simple, easy to implement computational resources and ex-
Y pertise to implement
L ticularly i .
Accuracy ow accuracy, particularly in High accuracy

noisy environments

Sensor fusion ability

Limited to combining data from
two sensors, typically an ac-
celerometer and a gyroscope

Can fuse data from multiple sen-
sors, such as accelerometer, gyro-
scope, magnetometer, and GPS,
allowing for more accurate track-
ing and compensation for various
external factors

Real-time processing is possible

Real-time perfor- Real-time processing is possible but can be limited by the com-
mance plexity of the algorithm and the
available computational resources
More robust to sudden changes
Less robust to sudden changes | and noise due to its ability to es-

Robustness

and noise

timate the noise and uncertainty
in the system

The previous background serves to achieve our first objective. The second objective
focuses on detecting the presence of the target in optical imagery within the camera’s field
of view (FOV) and subsequently actively tracking its position in the image plane, frame
by frame, using the gimbal mechanism. Achieving this requires image processing, the
integration of computer vision algorithms for object detection and tracking, and real-time
control mechanisms to stabilize and continuously center the target.

13
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I.4 Image Processing

Many researchers are currently focused on developing computer vision systems that
simulate biological abilities, such as scene understanding, object detection. Computer
vision, a key field within artificial intelligence (AI), enables computers to interpret and
understand visual inputs like digital images and videos. By leveraging machine learning
(ML) and deep learning (DL), these systems extract meaningful information, driving
innovations across various applications.

Image processing forms the foundation of CV tasks, such as object detection and
tracking. Before CV systems can interpret visual data, image processing steps are neces-
sary to enhance image quality and isolate relevant features. This process, which involves
importing, analyzing, manipulating, and extracting information from images , as shown
in Figure 1.6, is crucial for successful object detection and tracking.

Image Importation —— Image Analysis and Manipulation — Information Extraction

Figure 1.6: Image processing steps.

I.4.1 Digital Image

An image is a two-dimensional representation of a visual object or scene, captured
and stored as a digital or analog entity. In digital form, an image is typically composed
of a grid of pixels ® organized into rows (y) and columns (z) , where each pixel contains
information about the color and intensity at that specific point.

B85 |255(221) O

17 (170112 68

238(136) 0 (255

B85 [170)136[238
221|868 (119|255
119221017 136

Figure 1.7: Digital image representation in grayscale by pixels [10].

The resolution of an image, defined by the number of pixels along its width and height,
determines the level of detail it can represent. Resolution is also related to pixel density,

5Pixel : is the smallest unit of a digital image, representing a single point in the image’s grid.
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typically measured in pixels per inch (PPI) for displays or dots per inch (DPI) for printed
images, where 1 inch is equivalent to 2.54 centimeters. High PPI/DPI values indicate
that pixels are densely packed within a given physical area of a display or printed image,
resulting in greater image clarity and finer detail.

1.4.2 Color Spaces

The representation of images and the selection of appropriate color spaces are foun-
dational components of computer vision systems, exerting a profound influence on a wide
array of applications, including image processing and machine learning algorithms [55].

Color spaces are mathematical models that define how colors are expressed as sets of
numerical values, usually comprising three or four components enabling precise specifica-
tion of color values within an image.

The most widely recognized color spaces include grayscale, RGB, HSV and Lab. For
instance, RGB is commonly used in display devices, whereas Lab is preferred for color
analysis and perceptual uniformity [55].

RGB Color Space

The RGB (Red, Green, Blue) is an additive color space where colors are created by
combining varying intensities of red, green, and blue light. Each component is typically
represented by a value ranging from 0 to 255 [19].

Figure [.8: RGB color space.

Grayscale Color Space
The grayscale color space is represented by varying shades of gray, from black to white,

using a single channel. Each pixel’s intensity value corresponds to its brightness, with no
color information. In an 8-bit grayscale image, these values range from 0 to 255., where:
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- 0 represents black.
- 255 represents white.

- Intermediate values represent various shades of gray.

254

255 165

Figure 1.9: Grayscale color space.

HSV Color Space

The HSV (Hue, Saturation, Value) color space is cylindrical-coordinate representation
of points in an RGB color model. It is designed to be more intuitive for human perception
and is often used in applications where color adjustments and selection are required [19].

- Hue represents the type of color.
- Saturation describes the intensity or purity of the color.

- Value represents the brightness or luminance.

Figure 1.10: HSV color space.

Lab Color Space
The Lab color space is a perceptually uniform color model widely used in color science,

particularly for tasks requiring precise color analysis and differentiation. It ensures that
numerical changes in color values correspond closely to visually perceived changes, making
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it a preferred choice for accurate color representation.[19]. The Lab color space comprises
three components:

- L: Lightness, representing the brightness of the color.
- a: The component representing the green-red axis.

- b: The component representing the blue-yellow axis.

+L"White

_Jﬂ'.' +b*Yellow
==

-a*Green g g +a’'Red

-L*Black

Figure I.11: lab color space.

Before proceeding, let’s establish a clear understanding of some key terminology. Arti-
ficial intelligence, Machine learning, and Deep learning are commonplace terms in today’s
society, frequently used and often interchanged by companies attempting to market their
products. However, these three terminologies are not interchangeable, as there are fun-
damental differences between them. The next figure illustrates the key distinctions and
give an overview, how CV, Al, ML, and DL are different from each other or how these
three terminologies are related to each other:

Artificial Intelligence

A programme, which can sense, think, act and
adapt

Robotics Machine Learning

Deep Learning

convolutional
neural
network

Computer Vision

Figure 1.12: Relationship between CV, AI, ML and DL.
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Artificial Intelligence (AI)

It is a branch of computer science focused on creating intelligent machines. These
machines can learn, reason, and self-correct to perform tasks typically requiring human-
like intelligence. Al can refer to either machine learning-based programs or even explicitly
programmed computer programs. Al encompasses two primary approaches:

1. Machine Learning (ML): is a subfield of AI [58] where algorithms learn from data
without explicit programming. This data can be in various formats like images,
text, or numbers. By analyzing vast datasets, ML algorithms identify patterns
and relationships within the data. This newfound knowledge empowers them to
make predictions or informed decisions on new, unseen data. Machine learning fuels
functions of computer vision such as recognition and tracking.

2. Deep Learning (DL): is a subfield of machine learning [58] inspired by the structure
of the human brain. It utilizes multi-layered Artificial Neural Networks (ANNs).
These networks process information progressively through interconnected layers,
mimicking how the brain learns. Deep learning models excel at handling complex
data like images, speech, and natural language.

In simpler terms, all deep learning is a form of machine learning, but not all machine
learning techniques involve deep learning models [26].

Besides, Machine Learning can often function with smaller datasets, especially when
combined with effective feature engineering, unlike Deep Learning which typically requires
large amounts of data to train complex models effectively. This fact is depicted in Figure
[.13.

Deep

learning
Machine
learning

Amount of data

Performance

4

Figure I.13: Machine learning and deep learning performance in general with the amount
of data [44].
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I.5 Object Detection and Tracking

The rapid advancements in deep learning (DL) and the increasing computational power
of GPUs have significantly enhanced the performance of state of the art object detectors
and trackers.

I.5.1 Object Detection

Object detection, a prerequisite for initiating the tracking process, involves identifying
and localizing objects within a single image or video frame, treating each frame indepen-
dently without retaining memory of previous frames. Consequently, it can only detect
objects that are visible in the current frame and may fail if the object is obscured or
occluded.

Object Detection Approaches

According to the literature, object detection methods are generally classified into two
categories: traditional techniques (also known as classical methods) and modern deep
learning-based techniques.

Object Detection
Methods

Traditional image
processing

Deep
learning

1
Single shot
detection
= YOLO

Based on appearance R‘ilg:::::g::ed
B Based on Hl Background
subtraction }‘ RCNN
B Based on Bl Spatio-temporal [l
et Optical flow — [l;:‘.l:?l?lfi

FPN

Figure 1.14: Classification of object detection methods [38].
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Classical Methods: These methods often rely on predefined features such as color,
motion, or texture. For instance, color-based detection involves identifying an object
based on its unique color signature relative to the background. Color thresholding is the
core technique used in color-based detection. It involves defining a specific range of color
values (threshold) that correspond to the object of interest. Pixels within this color range
are considered part of the object, while those outside the range are ignored or classified
as background. Motion-based detection works by identifying areas of movement between
frames.

Although computationally less demanding, these methods are limited in complex en-
vironments where lighting changes or occlusion may occur.

Deep Learning-Based Methods: Deep learning has revolutionized object detection
with the introduction of Convolutional Neural Networks (CNNs). A significant milestone
was achieved with the R-CNN (Region-based Convolutional Neural Network) family of
detectors, which use region proposals to localize objects and then apply CNNs for clas-
sification and bounding box refinement [16]. While models like Faster R-CNN [41] and
Mask R-CNN have achieved state-of-the-art accuracy.However, their multi-stage process
increases computational complexity, which limits their suitability for real-time perfor-
mance requirements on constrained systems.

In contrast, futher advancements were made with the one-stage detectors such as
YOLO (You Only Look Once) [39] and SSD (Single Shot MultiBox Detector) [29], priori-
tize speed over precision by bypassing the region proposal step, predicting object locations
and classes simultaneously in a single pass through the network. These models provide a
more practical solution for real-time applications, though they still require considerable
computational resources and may sacrifice some accuracy compared to their two-stage
counterparts.

Object Detection

[ : ]
Two-Stage/Proposal ’ ‘ One-Stage/Proposal-Free ’
— RCNN YOLO
— Fast RCNN SSD
—1 Faster RCNN
— RFCN

— Mask RCNN

Figure [.15: Deep learning-based object detection stages.
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Single-stage object detectors directly predict bounding boxes and class probabilities
in a single pass through the network, simultaneously performing both tasks in one step.

Two-stage object detectors follow a region proposal-based approach, where the detec-
tion process is divided into two steps: region proposal generation and object classification
and localization. In the first stage, a separate algorithm (Selective Search or a Region
Proposal Network) is used to generate region proposals or regions of interest (ROIs) that
may contain objects. In the second stage, these proposed regions are passed through
a classifier, often a CNN, to predict the class and refine the bounding box coordinates.
Two-stage detectors are generally used when accuracy is prioritized over speed.

YOLO Model

Over time, the YOLO model has evolved, with newer versions significantly improving
accuracy while maintaining high speed. These improvements involve better feature ex-
traction, more precise bounding box predictions, and a higher capacity to handle complex
object detection tasks.

YOLOv1 YOLOv3 YOLOvS YOLOv7? YOLOv9

i i
2 ® ®

Ld ® &
1 1

1 1

1 1

1

YOLOV2 ; :

YOLO9000 YOLOv4 YOLOv6 YOLOvS

Figure [.16: YOLO versions over time.

The network divides the input image into a grid, and for each grid cell, it predicts
bounding boxes, confidence scores, and class probabilities. Its biggest strength lies in its
speed, as it can process images in real-time with high frame rate but sometimes struggles
with small objects or overlapping objects due to the fixed-size grid, which can result in
lower accuracy compared to two-stage detectors like Faster R-CNN [39].

A compact variant, known as Tiny YOLO is available and operates on the same
principles of object detection, but with a focus on speed at the expense of precision [33].
Additionally, a Nano model exists which aims to balance speed and accuracy, providing
improved performance over Tiny YOLO while maintaining suitability for deployment in
resource-constrained environments.

SSD models

Like YOLO, SSD performs object detection in a single forward pass, but it differs in
how it handles object sizes. SSD applies multiple convolutional filters at different scales to
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detect objects of varying sizes. This multi-scale feature extraction allows SSD to handle
both small and large objects more effectively than YOLO [29].

When the model must operate under limited computational and energy constraints,
MobileNet SSD was introduced as a lightweight and efficient version of the SSD model
[21], specifically designed for mobile and embedded devices where computational resources
are limited. The core of this model is based on MobileNet, a family of efficient CNNs
developed by Google, used to extract features from input images. These features are then
passed through the SSD layers, which predict bounding boxes and class probabilities.
This architecture reduces the number of parameters and computational costs compared
to traditional convolutional networks [21]. While its accuracy may not match that of the
original SSD or YOLO, it performs well enough for practical real-time applications in
resource-constrained environments.

[33] reported that the combination of SSD with MobileNet v1 provides an excellent
balance between speed and accuracy, achieving a processing rate of 22 frames per second
(FPS) on embedded AI hardware, specifically the NVIDIA Jetson Tegra X2.

I.5.2 Object Tracking

Object tracking is recognized as one of the most challenging tasks in computer vision,
involving the continuous localization of a moving object (or multiple objects) over time.
This process entails analyzing a sequence of frames, where information from previous
frames is utilized to interpret the current frame. By retaining memory of past frames,
the system can effectively track and follow the object’s trajectory, even in the presence
of occlusions or other obstructions. It is further divided into two levels: Single Object
Tracking (SOT) and Multiple Object Tracking (MOT).

SOT: this is the most fundamental level of object tracking, where the objective is
to track a single object of interest throughout a video sequence. The object tracking
algorithm begins by defining the bounding box around the target object in the initial
frame and subsequently locates the same object in the remaining frames.

MOT: developed by Zenon Pylyshyn in 1988, was originally designed to study the hu-
man visual system’s ability to track multiple moving objects. MOT aims to simultaneously
track multiple objects across different classes in a video, making it more challenging than
single-object tracking. The algorithm identifies objects in each frame, draws bounding
boxes, assigns unique coordinates, and tracks their movement across consecutive frames,
even when objects occlude or appear similar, until they exit the frame.

The Difficulties Of Object Tracking

Object tracking, while a widely studied and applied technique in computer vision, still
faces several difficulties and challenges. These include occlusion, illumination variations,
background clutter, object deformation, scale and viewpoint changes, object interaction
and occlusion, real-time performance constraints, long-term tracking, lack of labeled data,
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and sensor limitations [50].

Occlusion by other objects or background elements can make it difficult to track an
object, while illumination variations (Changes in lighting conditions) can alter its appear-
ance. Background clutter (Complex or dynamic backgrounds) can lead to false detections
or lost tracks. Objects that change shape or appearance over time are more difficult to
track compared to rigid objects. Real-time performance is crucial for applications like
surveillance or autonomous systems.

Object tracking faces also other challenges such as scale and viewpoint changes that
can affect tracking accuracy. As well as sensor limitations, such as low resolution, noise,
or limited field of view, can impact performance.

Object Tracking Approaches

Several literature surveys have been published, examining state-of-the-art methods,
their limitations, and their applications in object tracking. However, many of these meth-
ods are computationally intensive and depend on parallel processing units, making them
unsuitable for the limited on-board computational resources [17].

In parallel to detection, CNNs have also been instrumental in the development of
object tracking algorithms. The Siamese Network architecture, as introduced in SiamFC
(Fully Convolutional Siamese Networks) [5], has been a foundational model in this domain.
SiamFC leverages a fully convolutional network to compare a target image with search
regions, enabling efficient and robust tracking. Subsequent models, such as SiamRPN
[27] and SiamMask [53], improved the precision and robustness of tracking by integrating
region proposal networks and segmentation masks, respectively.

Other approaches that have emerged include Correlation Filters, which were widely
used before the rise of deep learning-based methods. These filters, such as KCF (Ker-
nelized Correlation Filters) [18], are lightweight and computationally efficient, making
them suitable for real-time tracking, though they may lack the robustness of CNN-based
methods in complex scenarios.

In this study, we will focus on active object tracking with a gimbal, where the camera’s
orientation is continuously adjusted to keep the object of interest centered in the frame,
even as the UAV changes its position. The control system will rely on the detection
information to achieve this.

I.5.3 Related Works

Active object detection and tracking have been extensively studied in recent years,
particularly in the context of UAV applications.

Cunha et al. in [9] propose a vision-based control system for object tracking using
a 3-axis gimbal. Their system uses convolutional neural networks (CNNs) to track the
target and ensures the target remains at the center of the image by controlling the gimbal’s
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orientation. The approach is tested on a human face, demonstrating its effectiveness for
autonomous cinematography and other vision-enabled robotic applications.

In, Liu et al. [30] present a real-time visual tracking system implemented on a low-cost
UAV, using a Kernelized Correlation Filter (KCF)-based algorithm for object detection
and tracking. The system includes a 3-axis stabilized gimbal, which autonomously aims at
the target while the UAV tracks it during flight. To achieve real-time image processing,
a NVIDIA Jetson TX2 module was used to implement the tracking algorithm. The
experimental results show that this approach allows effective tracking of moving targets
with minimal boresight error. The study provides valuable insights for using low-cost
platforms in reconnaissance and target acquisition tasks.

A research by Regner et al. in [40] discusses an object-tracking control system using a
gimbal mechanism for RPAS (Remotly Piloted Aircraft System) in industrial inspection
environments. It leverages the YOLOv3 deep learning model for real-time target detec-
tion and a combination of non-linear inverse kinematics and PI controllers to ensure the
target remains within the camera’s field of view. The experiments in both simulations
performed Gazebo environment and real environments validated the system’s ability to
maintain target tracking under various conditions using the onboard computer Jetson
TX2 to process data.

Hansen and Figueiredo in [17] propose a method that leverages a three degree of free-
dom (DoF') gimbal system mounted on UAVs to actively track spherical and planar objects
in real time. Their work emphasizes the importance of using active gimbal systems to
reduce motion blur and image distortion, especially in dynamic environments where fast-
moving objects must be detected and tracked reliably. Through experiments conducted in
Gazebo simulation environments, they demonstrate significant improvements in pose esti-
mation accuracy when compared to traditional passive tracking methods. Their findings
suggest that active gimbal-based tracking can enhance the spatial estimation of objects in
challenging conditions, making it highly relevant for autonomous UAV applications like
surveillance and inspection tasks.

1.6 Conclusion

This chapter has provided a comprehensive overview of the current state of the art in
image stabilization techniques, and object detection and tracking. The integration of these
technologies is crucial for achieving stable, accurate imagery in airborne applications. By
exploring the technological approaches, we can better understand the methods that ensure
optimal image quality in dynamic environments. This knowledge sets the foundation
for the subsequent development that will be discussed in the following chapters. The
choice of algorithms will be guided by a careful assessment of specific material properties
and available resources, with the goal of achieving real-time object detection and active
tracking with high precision and an optimal frames per second (FPS) rate.
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Theoretical Foundations of Data Acquisition,
Filtering, and Control Systems

I1.1 Introduction

Chapter II explores the critical concepts necessary for achieving precision in the system
under study through the integration of sensor data, visual servoing, and control theory.

The chapter begins by discussing data acquisition from the MPUG6050 sensor, along
with the application of complementary filters to refine the sensor data. The discussion
then transitions to visual servoing methods, which enable dynamic, vision-based control
of the gimbal. Finally, the chapter covers PID control theory, including its components
and tuning processes, which are essential for maintaining stability and achieving optimal
system performance.

” Theory guides, experiment decides...”



Chapter II. Theoretical Foundations of Data Acquisition, Filtering, and Control
Systems

I1.2 Data Aquisition and Filtering

Data filtering is a fundamental process in signal processing and control systems, used to
manipulate or enhance a signal by removing unwanted components or features to achieve
desired characteristics (reducing noise, extracting useful information...).

In this project, the complementary filter is used to get a more accurate reading from
the IMU sensor which is the MPUG6050.

I1.2.1 The MPU6050

The MPUG6050, developed by InvenSense, is a six-axis IMU sensor based on MEMS!
technology. It combines a 3-axis gyroscope and a 3-axis accelerometer integrated on a
single chip that uses a standard I2C 2 bus for data communication [25] [11]. Its three
coordinate systems are defined as follows:

Figure I1.1: The MPUG6050 3-axis.

The MPUG6050 also has an onboard processor, known as the Digital Motion Proces-
sor (DMP) [25] [52], which combines data from the accelerometer and gyroscope. This
hardware accelerator is capable of performing complex calculations, thereby relieving the
microcontroller of these tasks [11].

IMEMS : Micro-Electro-Mechanical Systems refer to a technology that encompasses miniaturized
mechanical and electromechanical components fabricated using microfabrication techniques, typically
ranging from a few micrometers to a few millimeters.

2I2C : stands for Inter-Integrated Circuit, is also known as IIC or I2C. It is a serial communication
protocol extensively used for short-distance communication between peripheral devices and microcon-
trollers. It consists of two signals, Serial Data Line (SDA) and Serial Clock Line (SCL) where the SCL is
the clock signal and the SDA is the data signal for bidirectional, synchronous serial bus communication.
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The MEMS Accelerometer

The MEMS accelerometer in the MPU6050 consists of a small proof mass suspended
by springs within the silicon substrate. It is designed to measure linear acceleration forces,
which may arise from static sources, such as gravity, or dynamic sources, such as motion
or vibrations.

When acceleration is applied, the proof mass is displaced from its equilibrium position,
leading to a change in capacitance between the mass and fixed electrodes. This variation
in capacitance is then converted into an electrical signal [11], which is proportional to the
acceleration experienced along the respective axis, this principle is explained in figure I1.2.

Capacitive MEMS Sensor

Not Moving Acceleration in X direction

It
I!
1

]
¥
{
The proof mass is suspended Change in capacitance as the
on springs and is free to move distance between the plates change

Figure 11.2: The MEMS accelerometer.

The outputs of the accelerometer are typically expressed in units of acceleration, such
as meters per second squared (m/s?) or in terms of gravitational acceleration (g), where 1g
equals approximately 9.81 m/s?. Accelerometer readings are susceptible to high-frequency
noise and vibrations, and can be influenced by external forces [11]. As a result, while
accelerometer data is more reliable for long-term orientation estimation, it is less accurate
in capturing rapid, short-term movements.

By applying trigonometric calculations, the angle of the sensor’s position relative to a
reference frame can be determined in radians.
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Roll Angle (¢)

The roll angle, which represents the rotation around the X-axis, can be calculated as
follows:

a
Roll = ¢ = arctan | —L— II.1
. ( T) 1)

Where:

® a,, a,, and a, are the accelerations along the X, Y, and Z axes, respectively.

Pitch Angle (0)

The pitch angle, representing the rotation around the Y-axis, can be calculated as:

Pitch = 0 = arctan <

——GZ — aﬁ) (I1.2)
Yaw Angle (v))

Rotation around the Z-axis does not produce a measurable change in the gravitational
force components detected by the accelerometer. This is because, during rotation around
the Z-axis, the X and Y components of the gravitational force remain unchanged, as
gravity continues to act in a vertically downward direction [11].

To calculate the yaw angle, gyroscopes are employed, as they measure angular velocity
around all three axes (X, Y, and Z), without filtering [11]. Alternatively, a magnetometer,
which is often integrated into IMUs, can be used to determine the sensor’s orientation
relative to the earth’s magnetic field, thereby providing a reference for the yaw angle [11].

The MEMS Gyroscope

The MEMS gyroscope in the MPUG6050 is composed of a small, silicon-based vibrating
structure (containing 4 proof mass as shown in I1.3 in a continuous oscillating movement)
designed to measure angular velocity [11], defined as the rate of change of angular position
over time, along the X, Y, and Z axes.
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Figure I1.3: The MEMS gyroscope

This gyroscope operates based on the Coriolis effect [11]. The Coriolis effect states
that when a mass moves in a given direction with a certain speed and an external angular
motion is applied to it, a force is generated that causes the mass to move perpendicularly
[11]. The force generated is called the Coriolis force which is directly proportional to the
angular velocity of the rotation : F, = 2m(v x ) where Fc is the Coriolis force, m is
the mass of the object, v is the velocity of the object relative to the rotating frame, w is
the angular velocity of the rotating frame and x denotes the cross product between the
velocity and angular velocity vectors.

=-2mi} x?

Coriolis —

=
Figure I1.4: The coriolis force.
Consider two masses that oscillate continuously in opposite directions. When subjected
to an angular rate, the Coriolis effect acts on each mass in opposite directions. This

differential effect induces a variation in the capacitance between the masses depending on
the axis of the angular movement, which can be detected and measured.
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Figure I1.5: Capacitance variation due to Coriolis Forces in oscillating masses.

Thus, when the device undergoes rotational motion, the Coriolis force causes the
vibrating structure to shift from its original position. This displacement is detected by
capacitive sensors, which convert the mechanical displacement into an electrical signal
[11]. The signal is subsequently processed and digitized to represent the angular velocity
in degrees per second (°/s) for each of the three axes (X, Y, and Z).

Although gyroscopes generally produce less noisy data compared to accelerometers,
they are prone to drift over time due to inherent bias and noise [11]. This drift can result
in accumulated errors in the measurements. To accurately determine angular position,
the angular velocity provided by the gyroscope must be integrated over time.

Roll Angle (¢)

The roll angle is obtained by integrating the angular velocity around the X-axis :

Roll = ¢(t) = ¢(to) +/ wy(7)dr (I1.3)

to

Where:

e w, is the angular velocity around the X-axis.
e ¢(tp) is the initial roll angle at time ¢.

e ¢(t) is the roll angle at time t.

Pitch Angle (0)

The pitch angle is obtained by integrating the angular velocity around the Y-axis :

Pitch = 6(t) = 6(to) + /t wy(T) dT (IT.4)

to
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Where:

e w, is the angular velocity around the Y-axis.
e O(tp) is the initial pitch angle at time t,.

e 0(t) is the pitch angle at time t.

Yaw Angle (¢))

The yaw angle is obtained by integrating the angular velocity around the Z-axis :

Yaw = ¢ (t) = ¢(to) + / w,(T)dr (IL.5)

to

Where:

e w, is the angular velocity around the Z-axis.
e (tp) is the initial yaw angle at time ¢.

e (1) is the yaw angle at time t.

To achieve highly accurate orientation information, data from both the accelerometer
and gyroscope are often combined, or fused, using a complementary filter (11.2.2). This
fusion process leverages the strengths of both sensors: the accelerometer provides sta-
ble long-term orientation data, while the gyroscope offers precise short-term movement
detection [11].
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I1.2.2 Complementary Filter theory

A complementary filter is a computational technique commonly employed in signal
processing, particularly in systems involving sensor fusion [48], where multiple sensor
measurements are integrated to produce a more accurate and reliable estimate of a given
quantity. This approach exploits the strengths of both sensors to mitigate their individual
weaknesses [11].

The primary objective of a complementary filter is to combine the high-frequency
response of the gyroscope with the low-frequency response of the accelerometer [11]. The
underlying concept involves applying a low-pass filter to the accelerometer data and a
high-pass filter to the gyroscope data, followed by the combination of the filtered signals
[48] [15].

Low-Pass Filter

ﬁacsef —\
+
e —_
Integral High-Pass Filter +C)_'

Opre — | - P

Figure I1.6: The Complementary Filter [37]

This approach allows the accelerometer to correct the long-term drift of the gyroscope,
while the gyroscope contributes to smooth short-term changes. The result is a stable and
robust solution to generate an estimate for orientations [48].

Mathematical Formulation

Let 6 be the estimated angle. The complementary filter can be mathematically ex-
pressed as [15]:

Oest (1) = A(best (T — 1) + wgyro - AL) + (1 — ) Bcc (IL.6)

where:

Oest (1) is the estimated angle at time t.

Oest (t — 1) is the previous estimated angle.

Weyro 15 the angular velocity measured by the gyroscope.

At is the time interval between measurements.

32



Chapter II. Theoretical Foundations of Data Acquisition, Filtering, and Control
Systems

e ... is the angle estimated from the accelerometer data.

e o is the filter coefficient, a tuning parameter that determines the balance between
the accelerometer and gyroscope data. (typically 0 < a < 1 [11]).

Gyroscope Contribution : The term ¢eg(t — 1) 4 wWgyro - At represents the predicted
orientation based on the gyroscope’s angular velocity. This prediction is subject to drift
over time.

Accelerometer Contribution : The term (1 — )@, introduces the accelerometer data,
which provides an absolute reference to correct the gyroscope’s drift.

Filter Coefficient () : The value of « controls the blending of the gyroscope and
accelerometer data. A higher o gives more weight to the gyroscope data, making the
filter more responsive to short-term changes but potentially more susceptible to drift.
A lower « relies more on the accelerometer, reducing drift but increasing the effect of
high-frequency noise.

Advantages and Limitations

Table I1.1: Advantages and Limitations of the Complementary Filter

\ Aspect

\ Advantages

\ Limitations

|

Simplicity

Computationally  efficient
and easy to implement.

Limited to linear systems;
may not perform well in
complex scenarios.

Real-time Capability

Provides real-time orienta-
tion estimation, essential for
practical applications.

Tuning sensitivity; perfor-
mance heavily depends on
correct tuning of the filter
coefficient.

Stability

Balances short-term accu-
racy of the gyroscope with
long-term stability of the
accelerometer.

Not suitable for all scenar-
ios, especially in environ-
ments with significant ex-
ternal accelerations.
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I1.3 Visual servoing

Visual servoing, or vision-based robotic control, is a fundamental technique in robotics
that uses visual data to control motion. It integrates methods from image processing,
computer vision, and control theory [24][6].

By using computer vision data as feedback, the robot can adjust its position and
orientation in real-time, reducing the difference between the desired and observed visual
features to achieve accurate positioning. Visual servoing is classified into two main types
based on the features utilized in the feedback loop [6], as follows:

I1.3.1 Position-Based Visual Servoing (PBVS)

In PBVS, visual data is processed to determine the 3D pose position and orientation of
the robot or target object within the workspace. This pose information, obtained through
image processing and camera calibration, is then used by the control system to guide the
robot to the desired position [6][24].

I1.3.2 Image-Based Visual Servoing (IBVS)

In IBVS, the control system directly utilizes visual features extracted from the image
plane, such as pixel coordinates of points, lines, or contours, to control the robot. Unlike
PBVS, IBVS operates within the 2D image space, using image measurements without
reconstructing the 3D pose [6][24]. A notable study by Hurék et al. introduced an image-
based pointing controller, developed using the IBVS approach, where the control inputs
were the camera’s angular rates [22][23].

Table I1.2: Advantages and Limitations of PBVS and IBVS

tion and calibration.

- Computationally intensive and
may need complex algorithms for
feature extraction.

- Sensitive to errors in depth per-
ception.

Aspect Point-Based Visual Servoing | Image-Based Visual Servoing
(PBVS) (IBVS)

Advantages - Provides precise control of the | - Simpler and more intuitive as it
robot’s position in 3D space. deals directly with image data.
- Allows for better handling of oc- | - Can be more robust to changes
clusions and depth variations. in the environment or occlusions.
- Useful for tasks requiring precise | - Easier to implement for certain
spatial alignment. visual tasks.

Limitations - Requires accurate 3D informa- | - Can be less accurate in terms of

3D positioning.
- Performance may degrade if
there are significant changes in
the scene or if features become in-
distinguishable.
- May suffer from scale ambiguity.
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Extracting visual data for control feedback

Figure I1.7 illustrates the pan and tilt errors that are crucial to the visual servoing
system. Pan refers to the horizontal rotation of the camera, while tilt refers to the
vertical rotation. The figure provides a visual explanation of how the system calculates
and corrects these pan and tilt errors to maintain the object of interest at the center of
the camera frame.

0,0) ¢ A% >
( ?).
Object Of Interest
Pan
¢ T Error > 4
o
==
o~
L
= .
The center of the frame
(Xc; Yo)
The center of the object
(Xo;Yo)
v

Figure 11.7: Representation of Pan and Tilt Errors in Object Localization.

The object of interest is represented as a rectangle located within the 2D coordinate
system of the camera’s field of view. The object’s dimensions are w (width) and b (height).
The center of the object is (Xo,Yo0).

The camera frame is characterized by its width W and height H. The center of the
frame, located at (X¢,Yc¢), is the target alignment point for the object. The pan error is
the horizontal deviation between the object’s center and the frame’s center, while the tilt
error is the vertical deviation. Mathematically, the pan and tilt errors can be expressed
as:

Pan Error = Xo — Xec¢
Tilt Error=Yo — Ye¢

These errors are critical parameters for the servoing control system, which adjusts the
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camera’s orientation to minimize them, thereby ensuring the object remains centered in
the frame.

This representation is pivotal in understanding how visual feedback from the camera
is processed and used to control the gimbal’s servomotors, ensuring consistent object
tracking during airborne operations.

In visual servoing, several control strategies are commonly used, each tailored to differ-
ent aspects of the system’s dynamics and task requirements. The most prevalent strate-
gies include Proportional-Derivative (PD) control, Proportional-Integral-Derivative (PID)
control, and other advanced approaches.

I1.4 Control theory

Process control systems are critical for the design of safe and efficient industrial plants.
Among the various control methodologies available, the Proportional-Integral-Derivative
(PID) controller stands out as one of the simplest yet most effective solutions [4] .

In the context of our study, achieving stabilization and precise control of the gimbal is
paramount for maintaining steady and accurate orientation, as well as for ensuring effec-
tive object tracking. Therefore, we will implement a PID controller, widely recognized as
a robust and efficient control algorithm capable of delivering optimal system performance.

11.4.1 PID controller overview

A Proportional-Integral-Derivative (PID) controller is a control loop feedback mech-
anism widely used in industrial control systems [4]. The PID controller continuously
calculates an error value as the difference between a desired setpoint and a measured
process variable and then performing a corrective action to adjust the process accord-
ingly based on three fundamental parameters : Proportional term(P) which depends on
the present error, Integral term(I) which depends on past errors, and Derivative term(D)
which depends on anticipated future errors. These parameters can be weighted, or tuned,
to adjust their effect on the process.

Consider the exemplary scheme depicted in Figure I1.8. Initially, the system output
y(t) is fed back and compared with the setpoint r(¢) by the comparator, producing the
time-dependent error signal e(t) = r(t) —y(t). This error signal is subsequently minimized
by the loop filter and used to generate the control signal u(t), which drives the system’s
output, thus initiating closed-loop operation.
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Figure I1.8: Block Diagram of a PID Controller System.

I1.4.2 Components of a PID controller
Proportional Term (P)

The proportional term produces an output that is proportional to the current error
value. The proportional response can be adjusted by multiplying the error by a constant
K,, known as the proportional gain. If the error is large, the proportional response is
large, which helps to reduce the error quickly. However, relying solely on the proportional
term can lead to steady-state error. The proportional control action is given by:

P(t) = K,e(t) (IL7)

Integral Term (I)
The integral term (also known as Reset Control) sums the error over time, ensuring
that even small errors accumulate and are corrected. This term helps eliminate steady-

state errors, ensuring the system eventually reaches the setpoint. The integral response
is adjusted by the integral gain K;. The integral control action is given by:

I@:mAQﬂM (I1.8)

Derivative Term (D)

The derivative term predicts future error by calculating the rate of change of the error.
It adds a damping effect, reducing the tendency for the system to oscillate and improving

37



Chapter II. Theoretical Foundations of Data Acquisition, Filtering, and Control
Systems

the stability of the response. The derivative response can be adjusted by the derivative
gain K. The derivative control action is given by:

de(t)

- (I1.9)

D(t) = Ky

PID Control Equation

The overall control action is the sum of the proportional, integral, and derivative terms:

de(t)

11.10
0 (I1.10)

t
u(t) = Kpe(t) + K,-/ e(t)dr + Ky
0
where:

e u(t) is the control output.
e ¢(t) is the error at time t.

e K, K;, and K, are the proportional, integral, and derivative gains, respectively.

I1.4.3 Tuning a PID Controller

Tuning a PID controller involves setting the optimal gains K, K;, and K, to achieve
the desired performance. However, prior to tuning the PID gains, it is essential to under-
stand their effects on system performance, as shown in Table II.3:

Table 11.3: Effects of Increasing Controller Parameters on System Performance.

Controller Effect on Effect on Effect on Effect on Effect on

Parameter Rise Time Overshoot Settling Steady-State  Stability
Time Error

K, Decrease Increase Minor Decrease Degrade
change

K; Decrease Increase Increase Eliminate Degrade

K, Minor Decrease Decrease No Effect Improve

change
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The proper tuning of a servo system can be assessed based on three key characteristics:
response time, settling time, and overshoot. Response time is the duration to reach a
specified percentage of the target value, settling time is the duration to stabilize within

a certain range of the target value, and overshoot is the extent of exceeding the target

value. The aim of servo tuning is to minimize response time, settling time, and overshoot

to achieve optimal system performance. Several methods exist for tuning, including:

Manual Tuning

e Ziegler-Nichols Method [4][36] The foundational tuning rules were established by

Ziegler and Nichols in the 1940s. Their method entailed executing a basic experiment
on the process to derive dynamic features in both the time and frequency domains.
For more detailed information, please refer to [4].

e Trial and Error In practice, many PID controllers are tuned using trial and error.
Engineers adjust the parameters incrementally while observing the system’s response
until the desired performance is achieved.

— Start with K, at a low value and gradually increase it until the system responds
adequately without excessive overshoot.

— Adjust K; to eliminate steady-state error while monitoring for any introduction

of oscillations.

— Fine-tune K to reduce overshoot and damping.
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Automated Tuning

e Software Tools :

Many modern control systems use software tools that can auto-

matically tune PID controllers based on system models or response data.

e Optimization Algorithms: Techniques such as Genetic Algorithms (GA) [36], Parti-
cle Swarm Optimization (PSO)[36] [42] or gradient descent can be employed to find
optimal PID parameters.

Table II.4: Summary of Optimization Methods for PID Tuning

Method Description Advantages Disadvantages
Genetic Evolutionary algorithm
Algorithms that mimics natural se- — Can handle — Computatjona]ly
(GA) lection by iterating over nonlinear, intensive.
a populatlon of candi- Comp]ex Sys- _ Requires many
date PID parameters and tems. .
evaluates each set of PID : fgnctlon evalua-
, — Avoids local tions.
gains based on performance minima
metrics. ’ — May converge
— Flexible and slowly.
robust.
Particle Nature-inspired optimiza-
Swarm Op- tion algorithm based on the — Slmple to 1m- — May converge
timization behavior of bird ﬂOCkng plement. prematurely to
PSO or fish schooling. Each i
( ) "particle” reprgsents a - Few  parame- golutjosllllboptlmal
. ters to tune. '
possible PID  parameter _ Qepsitive to ini-
set and moves through the — Faster  con- . o
search space by adjusting vergence than tial conditions.
its position based on its GA.
own best experience and
the best experience of the
swarm.
Gradient First-order optimization al- | - Direct minimiza-
Descent gorithm that iteratively ad- | tion of the error. - — Sensitive to

justs PID parameters in the
direction of the steepest de-
crease of a cost function,
typically derived from sys-
tem error. The method can
be effective in tuning PID
parameters by minimizing
a performance index such

as Root Mean Square Error
(RMSE)

Effective for convex

problems. - Fast
convergence  with
well-behaved  sys-
tems.

learning rate.

— Struggles  with
non-convex prob-
lems.

— May get stuck in
local minima.
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The PID controller’s robustness and simplicity make it a preferred choice for many
control applications, including our system. By carefully tuning the PID gains, the system
achieves optimal performance, balancing response speed, stability, and minimal steady-
state error.

I1.5 Conclusion

This chapter has provided a concise yet comprehensive overview of the integration of
sensor data, visual servoing techniques, and PID control theory.

By leveraging the MPUG6050 sensor and complementary filters, systems can achieve
the accurate data processing essential for precise motion control. Visual servoing tech-
niques enable responsive, vision-based adjustments, enhancing the interaction between the
system and its environment. The exploration of PID controllers underscores their impor-
tance in fine-tuning system responses to ensure stability and accuracy. This groundwork
prepares for further analysis and optimization, with the next chapter focusing on imple-
menting these approaches.
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Chapter

System Design and Implementation

II1.1 Introduction

The implementation phase is a crucial stage in the development process, where the-
oretical concepts, discussed in chapter II, and designs are transformed into a functional
prototype.

This chapter outlines the detailed steps taken to realize the proposed system. Fol-
lowing this, a detailed exploration of the system architecture is presented, covering the
mechanical design, the selection of appropriate hardware components, and the software
and development tools utilized.

The core of the implementation involves processing and calibrating the Inertial Mea-
surement Unit (IMU) data, applying a complementary filter for IMU data fusion, and
integrating the processed data into the control algorithm to achieve effective stabilization.

Furthermore, the chapter delves into detection and tracking functionalities, including
the integration of visual data into the control algorithm to center the object of interest.

Each section of this chapter is written to provide a comprehensive understanding of
the technical challenges encountered and the solutions employed to ensure the system’s
performance and reliability.

7 Theory without practice is empty;
practice without theory is blind ”
Immanuel Kant



Chapter III. System Design and Implementation

I11.2 Methodology

The methodology adopted serves as a blueprint for transforming theoretical concepts
into a functional prototype, ensuring that all components work harmoniously to meet
stabilization and tracking objectives.

Requirements Gathering

|

Component Selection

|

Design and 3D Modeling

|

Electrical Circuit Design —— Mechanical Assembly

|

Algorithms Development

|

Integration

|

System Testing

|

Calibration and Tuning

!

Field Testing

Data Analysis

Figure I11.1: Design methodology flowchart

The methodology begins with the collection and documentation of system require-
ments, which guide the selection of hardware and software components. 3D design models
are developed to ensure component fit and functionality, followed by the design of electri-
cal circuits and mechanical assembly. Algorithms are developed to control the hardware,
ensuring integration between hardware and software. The system undergoes rigorous test-
ing, calibration, and tuning to meet performance standards. Finally, real-world testing
validates the system’s effectiveness in practical applications.

The successful completion of this project necessitates the manufacturing and procure-
ment of various components. Given the time constraints, the procurement process should
be streamlined, focusing on simplicity, short delivery times, and minimal costs.
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II1.3 System Architecture Overview

The system architecture integrates both hardware and software components to achieve
precise control and stabilization of the camera platform. This architecture leverages mul-
tiple sensors, actuators, and processing units to maintain camera stability and focus on
the target object.

II1.3.1 Mechanical Design

The mechanical design of the system is essential for ensuring stability, precision, and
reliability. The foundation of this mechanical design is the 3D-printed structure that forms
the 3-axis gimbal. This structure is based on an existing design from the site below !, with
several modifications and optimized dimensions to better accomodate the components and
meet the specific requirements of the system.

Figure II1.2: Gimbal exploded and isometric views.

"https://shorturl.at/Y0srd
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o

Figure I11.3: Gimbal side and front views.

Figure I11.4: Gimbal holder.
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I11.3.2 Hardware Components Selection

To achieve the desired functionality, various components were carefully selected. The
selection criteria included compatibility, performance, ease of integration, and cost-effectiveness.
The primary electronic components utilized in the system are enumerated in the table
I11.1:

Table II1.1: Gimbal Electronics

\ Component \ Description \ Specifications \

e Quad-core Cortex-A72 (ARM
v8) 64-bit SoC @ 1.5GHz

e 4GB LPDDR4-3200 SDRAM

The Raspberry Pi 4 is a e Dual-band 802.11ac wireless,

powerful single-board com- Bluetooth 5.0. BLE
Figure ITL5: puter capable of handling a 7
Raspberry variety of tasks. e 2 x USB 3.0 ports, 2 x USB 2.0
Pi 4 model ports
B.

e Gigabit Ethernet
From the datasheet [13].

e 8 megapixel Sony IMX219 sen-
sor

The Raspberry Pi Camera

V2 is a high-quality cam-

era module designed for use

e [ixed focus lens

. ) e 1080p30, 720p60 and
Figure II1.6: | with Raspberry Pi boards. 640x480p90 video
Raspberry Pi
Camera V2. From the datasheet [14].

e Operating Voltage: 4.8V - 7.2V

e Stall Torque: 9.4 kg/cm (4.8V),
The MGY996R servomotor 11 kg/cm (6V)

is a robust and high-torque
motor  widely used in e Speed: 0.19 sec/60° (4.8V), 0.14

robotics and control sys- sec/60° (6V)
Figure I11.7: tems.
MG996R e 180° rotation
Servomo- From the datasheet [34].

tor.
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\ Component

\ Description

\ Specifications

Figure II1.8:
PCA9685.

The PCA9685 is a PWM
driver board used for con-
trolling multiple servomo-
tors (3 servos are required).

16-channel, 12-bit PWM servo
driver

12C-controlled

Adjustable frequency PWM up
to about 1.6 KHz

3.3V or 5V compliant
From the datasheet [46].

Figure I11.9:
Raspberry
Pi Pico W.

The Raspberry Pi Pico W
is a microcontroller board
based on the Raspberry Pi
RP2040 chip.

Dual-core ARM Cortex MO+

processor

264KB SRAM, 2MB onboard
Flash memory

2.4GHz 802.11n wireless LAN

26 multi-function GPIO pins
From the datasheet [12].

1TG,MPU

Figure I11.10:
MPU6050.

The MPU6050 is a 6-axis
motion tracking device that
integrates a J3-axis gyro-
scope and a 3-axis ac-
celerometer.

3-axis gyroscope and 3-axis ac-
celerometer

Digital Motion Processor
(DMP) for sensor fusion

Communication: 12C

Operating Voltage: 3.3V - 5V
From the datasheet [25].
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Component Communication and Integration within the System Architecture

Central Processing Unit

3 MGO96R

bbb

Figure II1.11: System Architecture.

The central processing unit of the system is the Raspberry Pi 4, which is responsible for
executing control algorithms, processing visual data, and managing communication with
peripheral devices. This device functions as the primary computational hub, coordinating
inputs from sensors and outputs to actuators.

The Raspberry Pi Camera v2 is directly connected to the Raspberry Pi 4 via the
Camera Serial Interface (CSI) port. It captures live video feeds, which are integral to
both object detection and tracking processes.

The PCA9685 is an 12C 2-based PWM 2 driver utilized for controlling the MG996R
servomotors [46]. The PCA9685 interfaces with the Raspberry Pi 4 to receive control
signals and accurately modulate the positions of the servomotors.

212C : stands for Inter-Integrated Circuit, is also known as IIC or I2C. It is a serial communication
protocol extensively used for short-distance communication between peripheral devices and microcon-
trollers. It consists of two signals, Serial Data Line (SDA) and Serial Clock Line (SCL) where the SCL
is the clock signal and the SDA the data signal for bidirectional, synchronous serial bus communication.

3PWM : stands for Pulse Width Modulation is a technique used to control servos by varying the width
of the pulse in a periodic signal.
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MG996R Servomotors are high-torque servos tasked with adjusting the camera’s ori-
entation. These servomotors allow the system to counteract movements and vibrations,
thereby stabilizing the camera and maintaining a steady focus on the tracked object.

The Raspberry Pi Pico W is a microcontroller that assists in processing additional
sensor data, specifically from the MPUG6050. It communicates with the Raspberry Pi 4
via UART [12] 4, facilitating efficient data collection and processing.

The MPU6050 (Gyroscope and Accelerometer) provides real-time data on the system’s
orientation and acceleration. This sensor is essential for detecting and compensating for
any disturbances that may affect the camera’s stability.

4UART : stands for Universal Asynchronous Receiver/Transmitter. It is a hardware communication
protocol used for asynchronous serial communication between devices. It utilizes two lines, TX (Transmit
Line) and RX (Receive Line).
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I11.3.3 Software and Development Tools

To effectively manage and develop the system, several software and development tools
were utilized. In this project, a Raspberry Pi OS Legacy 64-bit, a port of Debian Bullseye,
was used.

We established a connection to the Raspberry Pi using the SSH protocol °. We used
PuTTY, a user-friendly interface that allows remote connections to UNIX, Linux, and
Raspberry Pi systems from a Windows computer. To achieve this, we obtained the IP
address of our Raspberry Pi on our network. Since the Raspberry Pi does not provide
direct output, the project employs the VNC Viewer client to display the output. The
VNC Viewer connects to the RPi via its [P address, enabling us to interface with it from
our desktop computer [43].

Table II1.2 provides a comprehensive overview of the software and development tools
used in this project.

Table II1.2: Software and Development Tools Used.

Software/Tool Description
Raspberry Pi OS (Legacy-64 bits)
Operating system based on Debian Bullseye, opti-
mized for the Raspberry Pi hardware.
PuTTY Free and open-source terminal emulator, used for
SSH, Telnet, and serial console connections, com-
monly used for accessing the Raspberry Pi re-
motely via SSH.
VNC Viewer VNC stands for Virtual Network Computing. It is
Qx a remote desktop access tool, used for managing
C the Raspberry Pi remotely.
Pyth
yoon High-level programming language used for devel-
P oping control algorithms and image processing rou-
tines.
MicroPython Lean and efficient implementation of Python 3 for
microcontrollers, used on the Raspberry Pi Pico
W.
Thonny

Integrated development environment (IDE) for
Tﬂ—% Python, used for writing and debugging Python
and MicroPython code.

5SSH or Secure Shell: a network protocol that enables a secure and encrypted connection between
two computers
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I11.4 Prototype

Before assembly, each component of the system was individually tested using a bread-
board and basic connections to ensure proper functionality. A prototype has been then
constructed as shown in Figure I11.12.

Figure I11.12: The prototype Aero Vision 0.1

PLA (Polylactic Acid) was chosen for its ease of printing, strength, and lightweight
properties. The structure is printed with a layer height of 0.2 mm and an infill density of
60% to balance strength and weight.

Precise alignment and calibration of the servomotors are crucial for accurate control,
and the mounting points are designed to ensure correct positioning.
Pan Axis (Yaw): The top section of the gimbal supports the pan servomotor, enabling
horizontal rotation.
Tilt Axis (Pitch): The middle section of the gimbal houses the tilt servomotor, allowing
for vertical movement.
Roll Axis: The base of the gimbal contains the roll servomotor, ensuring stable camera
orientation.
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I11.5 The Camera Stabilization

I11.5.1 IMU data Processing and Calibration

Before integrating the IMU into a project, it must undergo calibration. Accurate
calibration is essential for ensuring precise measurements and reliable performance in gy-
roscopic and accelerometric applications. This section details the data readings obtained
from the MPU6050 sensor and describes the calibration procedures used, with a focus on
aligning the sensor’s output with known reference values.

S 4 8 s s s E N EESENENENNESEENENERERRREREEEE®ESSES

Figure I11.13: MPUG6050 Sensor with Raspberry Pi Pico W.

The sensor is powered by the Raspberry Pi Pico W, and data is read digitally via the
12C serial communication protocol. The MPUG6050 library for MicroPython, from the site
below ¢, was used to convert the information from bits to raw sensor data. This data can
then be utilized to calculate the pitch, roll, and yaw angles.

Gyroscope Readings Before Calibration

The readings obtained from the gyroscope sensor before the calibration process are
presented in Figures I11.14, II1.15. When the IMU is in a steady state, it should ideally
measure approximately 0°/s on the x, y, and z-axes.

X Ang.Vel: -7.847328 *fa ¥ Bng.Vel: -1.442748 °f= Z Bng.Vel: 1.091603 */=s
¥ Bng.Vel: -7.7709%32 °/= ¥ Bng.Vel: -1.152672 °/s Z Ang.Vel: 1.137405 */=
X Bng.Vel: -7.83%6%4 °/= ¥ Bng.Vel: -1.068702 °/s Z Bng.Vel: 1.06106% */=
X Bng.Vel: -7.8625%6 “/= ¥ Bng.Vel: -1.648855 °/s Z Bng.Vel: 0.9538%313 °/s
X Ang.Vel: -7.80916 °/= ¥ Ang.Vel: -1.356547 °/s Z Ang.Vel: 1.320611 /=
X Ang.Vel: -8.038168 *fa ¥ Bng.Vel: -1.250076 °f= Z Bng.Vel: 0.5236641 °/=

Figure I11.14: Gyroscope raw data readings from MPUG6050 before calibration.

Shttps://shorturl.at/sIyV2
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-10 X AngularV: «°/s Y AngularV: = %/s 7 AngularV: = °/s

Figure II1.15: Visualization of gyroscope signals before calibration.

Accelerometer readings before calibration

The readings obtained from the accelerometer sensor before calibration process are
presented in figures II1.16, I11.17, and II1.18. When the IMU is in a steady state, it
should ideally measure 9.8 m/s? on the z-axis and approximately 0 m/s? on the x and
y-axes.

X Lccel: 0.006347656 G Y Accel: -—-0.00583%375 G 2 bhcocel: 0.57115%14 &
X hccel: 0.005033202 G Y RAccel: 0.002441406 G Z hccel: 0.5707031 &
¥ Accel: 0.00252%688 G ¥ RAccel: -0.002%2%c88 G Z Rhccel: 0.5705%473 &
¥ Accel: 0.009277344 G Y Accel: -0.0015%532125 G Z Accel: 0.5967041 G
¥ Zccel: 0.005126953 G ¥ Reocel: -0.00878%063 G Z Rheocel: 0.5785156 G
¥ Rccel: 0.010005977 G Y RAccel: -0.0034175%65% G Z RAccel: 0.97753%91 G

Figure I11.16: Accelerometer raw data readings from MPUG6050 before calibration.

0.75
0.5
0.25
=0
-0.25 AAccel oG YAccel =G ZAccel =G

Figure II1.17: Visualization of the accelerometer signals before calibration.

Figures II1.16 and III.17 demonstrate that accelerometer calibration was not required,
as the raw data outputs and signals confirm that the accelerometer is correctly aligned.
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-2 KAccel # G Yhccel » G ZAccel » G

Figure I11.18: Impact of vibrations on accelerometer readings.

Following the application of vibration to the accelerometer, Figure II1.18 illustrates
the sensor’s sensitivity to these vibrations, as discussed in Chapter IT (I1.2.1).

Given that the IMU may not be perfectly aligned with the ground when mounted on
the gimbal, it is necessary to collect a series of measurements from both the accelerometer
and gyroscope to determine the required offsets. These offsets are crucial for converting
data from the Body Frame (the IMU’s position on the gimbal) to the Inertial Frame (the
reference system used for calculating angles and velocities).
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Gyroscope Calibration

Several methods can be employed to calibrate the gyroscopic values. The following
algorithm will describe the calibration procedure.

Algorithm 1 Gyroscope Calibration Procedure

—_

Input: Calibration time calibration_time in seconds

2: Output: Offset values offsets for gyro calibration

3:

4: Start

5: Inmitialize MPU6050 sensor with 12C communication

6: Delay 4 seconds to allow MPUG6050 to settle

7

8: procedure DEFINE_GET_GYRO

9: Function get_gyro

10: gx, gy, gz < Read gyro values from MPU6050

11: Return gx, gy, gz

12: end procedure

13:

14: procedure DEFINE_GYRO_CALIBRATION(calibration_time)

15: Function gyro_calibration

16: offsets « [0, 0, 0]

17: num_of_points < 0

18: end_loop_time < current_time + calibration_time

19: while current_time < end_loop_time do

20: num_of_points < num_of_points + 1

21: (gx, gy, gz) < get_gyro()

22: offsets[0] < offsets[0] + gx

23: offsets[1] < offsets[1] + gy

24: offsets[2] < offsets[2] + gz

25: if num_of_points % 100 == 0 then

26: Print: “Still Calibrating Gyro... num_of_points points so far”
27: end if

28: end while

29: Print: “Calibration for Gyro is Complete! num_of_points points total”
30: Compute mean of offsets: offsets «<— offsets / num_of_points
31 Return offsets

32: end procedure

33:

34: Call gyro_calibration(calibration_time) and print the result
35: End

The code used for this study is available online on GitHub. For detailed code, please
refer to the following link “. The aim is to minimize the offsets as much as possible.

"https://shorturl.at/u52J8
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After completing the calibration process, 3 offsets values were provided:

Calibration for Gyro i=s Complete! 25345 points total
[-7.784549, -1.378134, 1.078178]

Figure I11.19: Final gyroscope calibration offsets.

To align the body frame of the gimbal with the inertial frame, the offsets must be

subtracted from the gyroscope outputs. Figure II1.20 illustrates the calibrated outputs.

MopgPe b M XM

Ang.Vel: -0.08568001 °/s ¥ BAng.Vel: 0.026%885%8 °/s % Bng.Vel: -0.009%475708 °/=
Ang.Vel: -0.07041264 °/= ¥ Bng.Vel: -0.1333164 °/s Z Bng.Vel: 0.005751426 °/s
Ang.Vel: -0.04751205 ®/=s ¥ Ang.Vel: 0.026988%8 °/= % Ang.Vel: -0.062910%1 */=
Ang.Vel: -0.1467485 °/s ¥ Ang.Vel: -0.1485835 /= Z Ang.Vel: -0.05527723 °/s
Zng.Vel: 0.0898%286 °/s ¥ Ang.Vel: -0.0264461 °/s Z Ang.Vel: 0.02863213 °/s

Ang.Vel: 0.013556%6 °/s ¥ Ang.Vel: -0.04171336 /s 7 Ang.Vel: -0.03237653 /s
Ang.Vel: -0.062778%5 °/= ¥ Ang.Vel: -0.01881254 °/= % Bng.Vel: 0.1202353 °/=

Figure I11.20: Gyroscope raw data readings from MPUG6050 after calibration.

5 ) Tt PVW

-1 KAngVel /s YAngWel » %5 ZAngVel =°/s

Figure II1.21: Visualization of gyroscope signals after calibration.

Accelerometer Calibration

According to the accelerometer data, calibration was not necessary. However, to cali-

brate the accelerometer outputs, you can use the code available on GitHub, accessible via
the link below &.

8https://shorturl.at/p69Z9
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Visualizing Angles from IMU Sensors

The formulas discussed in Chapter II (I1.2.1)(II.2.1) were implemented to calculate
and display the angles derived from both the gyroscope and the accelerometer. In Figures
I11.22 and II1.23 the drift from the gyroscope data and the noise of the accelerometer data

over time can be observed in a steady state.

0.75

0.5

0.25

-0.25 Gyro_Pitch: *  Gyro_Roll: »

Gyro_Yaw: »°*

Figure I11.22: Gyroscope Drift over time.

0.5

h

-0.5

-1 Accel_Pitch; » ©

Accel_Roll; » ©

Figure I11.23: Accelerometer Noise over time.

This method results in progressively inaccurate measurements over time due to the

accumulation of integration errors, ultimately leading to angular drift.

The angle derived from acceleration is frequently subject to significant noise and dis-

turbances, particularly from minor movements.

50

25

m

-25 Accel Pitch: «°  Accel Roll: «°  Gyro_Rell: =% Gyro_Pitch: »°

Figure I11.24: Comparison of angle estimations: Gyroscope vs Accelerometer.
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I11.5.2 Implementing the Complementary Filter for IMU Data Fusion

To improve the stability of angle estimation and to ensure an accurate determination
of the camera’s orientation, data from both the gyroscope and the accelerometer were
processed and fused using a complementary filter. In practice, this filter is implemented
in a discrete form, where sensor readings are processed at small time intervals. The update
equation is applied iteratively, enabling the filter to generate a continuous estimate of the
orientation.

The combination of accelerometer and gyroscope data using the complementary filter is
expressed as follows:

(best (t) =
eest (t>

(‘best(t - 1) + wx,gyro : At) + (1 — a)¢aco

a
A (Best (t — 1) + Wy gyro - At) + (1 — @)bacc

By implementing the sensor fusion algorithm, data from the gyroscope and accelerom-
eter are integrated into a unified signal, with different weights assigned to each, as de-
scribed in Eq.(I1.6). The appropriate weighting values for these filters were determined
empirically through trial and error.

The accelerometer data was given a weight of 0.01 (1%), while the gyroscope data
was assigned a weight of 0.99 (99%), resulting in a smooth and filtered signal of Roll and
Pitch angles, as shown in Figures I11.25 and III.26.

50
25
. <<%
-50 Accel Roll: »=  Accel Pitch: »° Rell Comp: = Pitch Comp: » °
Figure I11.25: The filtered Roll angle signal using complementary filter.
50
25 /\
] . -\#
-25
-50 Accel Roll: #°  Accel Pitch: »* Roll Comp: » =  Pitch Comp: » *

Figure I11.26: The filtered Pitch angle signal using complementary filter.
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Figure II1.27 illustrates the stability of the roll and pitch angles after applying the
complementary filter, in comparison to the accelerometer data.

Accel Roll: 0.1727479 ° Accel_Pitch: -0.3167057 ° Roll Comp: 0.04756401 ° Pitch Comp: -0.06576684 °
Zccel Roll: 0.3175826 ° Accel Pitch: 0.216533 ° Roll Comp: 0.04904793 ° Pitch Comp: -0.05310453 °
Accel Roll: -0.3440267 ° Accel_Pitch: -—0.186347 ° Roll Comp: 0.0385%178 ° Pitch Comp: -0.06463672 °
Accel_Roll: -0.1728372 ° Accel_Pitch: -0.08641851 ° Roll Comp: 0.03014012 ° Pitch Comp: -0.07024873 °
Accel Roll: -0.1001672 ° Accel Pitch: 0.1001672 ° Roll Comp: 0.03453096 ° Pitch Comp: -0.0682643 °
Bocel Roll: 0.6041433 ° Zccel Pitch: 0.2876832 ° Roll Comp: 0.03830857 ° pitch Comp: -0.06126%64 °
hccel Roll: 0.4325215 ° Accel_Pitch: 0.01441725 ° Roll Comp: 0.04534317 ° Pitch Comp: -0.06823507 °
Accel Roll: 0.1736227 ° Accel Pitch: -—0.1157484 ° Roll Comp: 0.051959% ° Pitch Comp: -0.06482096 °
Accel_Roll: -0.1005188 ° Accel_Pitch: 0.01435982 ° Roll Comp: 0.05129814 ° Pitch Comp: -0.06395372 °
Accel Roll: 0.1873345 ° Accel Pitch: -—0.07205162 ° Roll Comp: 0.04856511 ° Pitch Comp: -0.06019593 °

Figure II1.27: Stability enhancement of Roll and Pitch angles using the complementary
filter.

100

50

=0

-50 Gyro_Roll: »*  Gyro_Pitch: = Roll Comp: »*  Pitch Comp: = ®

Figure II1.28: Drift correction of Roll and Pitch angles using the complementary filter.

This approach allowed the accelerometer to correct the gyroscope’s long-term drift,
while the gyroscope smoothed out short-term variations. The result was a stable estimate
of orientations.

IT1.5.3 Integration of Filtered Data into Control Algorithm

After calculating the required angles, the camera’s positional data is acquired by the
sensor. The project utilizes three MG996R, servomotors, controlled by a motor control
system that includes the RPi Pico W, a PWM driver (PCA9685), the MPU6050 sensor,
and the RPi 4. The RPi Pico W calculates the angles from the IMU sensor and transmits
this data via the UART protocol to the RPi 4. The RPi 4, connected to the PCA9685,
sends commands to the motor driver, which generates the PWM signals needed to regulate
the servomotors based on the received angular data.

A PID controller is integrated into the system to autonomously regulate motor di-
rection in response to the camera’s position. This controller establishes a feedback loop
between motor control and sensor data acquisition, adjusting motor positions across the
axes using PWM signals. The PID controller minimizes error by applying corrections
based on the constants K, = 1, K; = ﬁ, and Kg = ﬁ, ensuring system responsiveness
and stability. The algorithm flowchart is depicted in Figure I11.29.
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@

Initialize the PID parameters
and state variables

v

v

Capture camera frame =

Data from

IMU 2 Compute PID control

NO

A

A command from
the operator

Yes

Continue ?

Figure 111.29: Flowchart of the Stabilization Algorithm.
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Stabilization Control Results

Position Absolute Error Over Time
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Figure I11.30: Results of stabilization control.

Figure I11.30 presents the results of the stabilization control. The graphs demonstrate how
the control system dynamically compensates for disturbances in both axes by adjusting
the servo positions to counteract the deviations, thereby restoring stability to the system.

Initially, the graphs show that the roll and pitch errors are effectively zero, indicating
that the system is stable with no significant deviations from the desired orientation. This
suggests that the control system is maintaining the roll and pitch angles as intended.

At around 5 seconds, a perturbation is introduced, causing noticeable deviations in
the roll and pitch angles. Specifically, the roll axis undergoes a substantial displacement
of approximately -90°, indicating a significant deviation from its initial position. Simul-
taneously, the pitch axis experiences a smaller but still notable deviation of about 10°.

The third graph, which plots the servo positions, clearly reflects the control system’s
response to these deviations. To counteract the -90° deviation in the roll axis, the con-
trol system adjusts the roll angle to approximately 180°, effectively bringing the system
back toward the desired orientation. This significant correction highlights the system’s
capability to handle large disturbances.

For the pitch axis, the control system makes a more modest adjustment, shifting the
angle from 90° to around 80°. This smaller correction corresponds to the lesser deviation
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observed in the pitch axis, demonstrating the control system’s proportional response to
the magnitude of the disturbance.

In the second graph, the relative error plots indicate that the control system is actively
correcting the errors introduced by the perturbation, making continuous adjustments to
return the system to equilibrium.

This behavior aligns with the principles discussed in Chapter 1.3.2, where the system’s
dynamic response to disturbances and its subsequent correction mechanisms were outlined.

II1.6 Object Detection

Yolov8n-based Detection

The primary objective in this project is to ensure that the airborne camera remains
focused on the object of interest, which necessitates an accurate detection and tracking
mechanism.

The work started with implementing the YOLOv8n nano model on the Raspberry Pi
4. As the smallest and fastest model in the YOLOvVS family, it is designed for scenarios
with constrained computational resources.

Figure I11.31: Detection results using YOLOv8n model at a resolution of 300 x 300 pixels.
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MobileNet SSD-based Detection

FPS: 12416

Pan Angla: dag 1 o s =T
Tilt Angle: 2747 dag Tilt Angle: 8883 -ja-g/

Figure II1.33: Detection results using MobileNet SSD at a resolution of 160 x 160 pixels.

A closer look at Figures I11.33 and I11.32 reveals that the implementation of the YOLOv8n
model resulted in 0.5 FPS, while we achieved around 13 FPS with MobileNet SSD at a
resolution of 160 x 160. Consequently, the servo control was slow, necessitating the
adoption of a different approach.

Given the constraints of the Raspberry Pi 4, which has a quad-core ARM Cortex-AT72
CPU and 4GB of RAM III.1, the detection algorithm needed to be both computationally
lightweight and effective. Therefore, color-based detection was selected as the primary
method for object identification due to its relatively low computational requirements and
the effectiveness of color as a distinguishing feature in many scenarios.
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Color-based Detection

Target detection is performed using an OpenCV-based application ?. The process con-
verts the input image from RGB to HSV color space, defining a specific range of HSV
values to capture the target object’s color. These thresholds are determined experimen-
tally under different lighting conditions to isolate the object effectively. A binary mask is
then created, where pixels within the range are set to white (1), representing the object,
and those outside the range are set to black (0), representing the background.

e
U

Figure I11.34: Detection of Various Colors Based on the Defined HSV Ranges.

Open Source Computer Vision Library (OpenCV) is an open-source software library that
9 n provides a vast collection of tools and functions for computer vision, image processing,

and machine learning. It is widely used in a variety of real-time applications, including
OpenCV object detection, image recognition, and video processing.

64



Chapter III. System Design and Implementation

While color-based detection is computationally efficient, it presents several challenges:

e Lighting Sensitivity: Changes in lighting can affect the perceived color of the object,
potentially leading to detection inaccuracies. This challenge is mitigated by using
the HSV color space, but further optimization may be necessary for environments
with extreme lighting conditions.

e Background Interference: If the background contains colors similar to the object,
false positives may occur. The system’s accuracy can be improved by refining the
color thresholds or incorporating additional features such as shape or size.

e Object Color Variability: Objects that do not have a uniform color or that change
color (e.g., due to rotation or deformation) can be challenging to detect consistently.

II1.6.1 Integration of Visual Data into Control Algorithm

The final and most critical phase involves integrating visual data into the control
algorithm governing the gimbal system. This process requires converting visual inputs
into actionable control commands, which dynamically adjust the camera’s orientation to
maintain focus on the object of interest according to the algorithm in Figure IT1.35.

Image sequences were streamed at a resolution of 480 x 360 pixels and a frame rate of
60 fps. The control objective was to position the target at the center of the image plane
with zero steady-state error and a smooth transient response, ensuring effective visual
tracking.

The control system operates in a closed-loop configuration, starting with object de-
tection, followed by error computation, control signal generation, and the subsequent
adjustment of the camera’s orientation. A proportional-derivative (PD) control approach
is implemented to progressively minimize the error, ensuring the object remains as close

to the center of the frame as possible, with K, = 5, and Ky = 5.

Once the object is detected and its centroid is identified in the image plane coordi-
nates, the tracking angles are calculated by the core processing unit (RPi 4). Continuous
feedback from visual data informs servo adjustments, minimizing the deviation between
the object’s centroid and the center of the image frame, despite any movement of either
the camera or the object. The performance of the tracking system is evaluated based on

its ability to quickly reduce errors and maintain a stable lock on the object.
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Figure I11.35: Flowchart of the Tracking Algorithm.
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As depicted in Figures I11.36 and II1.37, the control system actively minimizes both pan
and tilt errors after 4 movements. The optimal tracking position is (240, 180), which
represents the center of the frame. The RMSE is calculated to verify the precision of the
tracking.

The Root Mean Square Error (RMSE)

The RMSE is a commonly used metric to measure the differences between values
predicted by a model and the actual observed values.

RMSE can be used to evaluate how well the control system maintains the position
of the object’s centroid relative to the desired target position, typically the center of
the image frame (240, 180), and provides a quantitative measure of the control system’s
tracking performance. A lower RMSE indicates more precise tracking. The RMSE is
given by the following formula:

n

1

MSE =, | — — Ui)? IIT.1
RMSE = | &3 (0 =39 (L)

Where:
e y; is the observed position of the object’s centroid,

e ¢, is desired target position,

e 1 is the number of observations.

The obtained RMSE values were 23 for the pan error and 20 for the tilt error.

II1.7 Graphical User Interface (GUI) for Gimbal Control

In order to facilitate efficient manipulation and control of the gimbal system, a Graph-
ical User Interface (GUI) was developed 111.38. The GUI was created to offer an intuitive
and user-friendly platform, allowing users to easily switch between various gimbal opera-
tion modes such as manual control, stabilization mode, and tracking mode. Additionally,
the interface enables the execution of predefined scripts and provides real-time feedback
on system performance through an output display.

Moreover, the GUI also includes an integrated progress bar to indicate the execution
status of operations, ensuring the user is constantly informed of the system’s state.
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Figure I11.38: Graphical User Interface (GUI) for Gimbal Control.

IT1.8 Discussion

Despite some limitations, the gimbal’s performance is generally satisfactory but leaves
room for further improvement

Stabilization

In terms of stabilization, the gimbal effectively stabilizes two of the three axes using
input from the IMU sensor to detect the camera’s angular position and adjust each motor
to achieve the desired angle. While the stabilization process works well on the roll and
pitch axes, it lacks precision on the yaw axis.

The filter applied in this project effectively reduced unpredictable spikes and incon-
sistencies from the accelerometer, as well as drift from the gyroscope. Test runs and
subsequent analysis revealed that the complementary filter significantly improved overall
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performance.

While obtaining roll and pitch values from the IMU was relatively straightforward,
acquiring accurate yaw values posed a greater challenge. A simple yaw reading could be
obtained by integrating the gyroscope values, but this method resulted in significant drift
over time, rendering it unreliable for accurately determining the yaw angle.

Visual Servoing

The first issue encountered was the system’s poor performance when YOLOv8n model
was implemented. Therefore, we switched to MobileNet SSD, where the frames per second
(FPS) increased to an average of 13 FPS, but it did not meet the control requirements.
These models were not suitable due to the computational constraints of the RPi 4.

For real-time tasks, external hardware accelerators, such as the Coral USB Accelerator,
which is a device that connects via USB and includes a Google Edge TPU ' coprocessor,
specifically designed to accelerate machine learning models, particularly for low-power
and edge devices, or an NVIDIA Jetson device, would have been necessary, but they were
not available.

Consequently, the detection algorithm needed to be both lightweight and efficient.
Thus, color-based detection was chosen as the primary method for object detection due
to its low computational requirements, achieving a performance of 60 fps.

For the visual servoing task, the gimbal successfully extracted visual data from the
camera sensor and integrated this information into the control loop. Horizontal and
vertical errors were quickly minimized, ensuring a stable lock on the object of interest,
with a root mean square error (RMSE) of 23 for pan error and 20 for tilt error.

One major limitation of the current system is the quality of the camera used, which
restricts its effectiveness under real-world sunlight conditions. Future work should focus on
integrating a higher-performance camera, enabling better functionality in various lighting
conditions and improving the system’s overall tracking accuracy.

PID Parameters Tuning

The PID parameters were determined through trial and error, ultimately set to values
that yielded acceptable results with minimal instability for both camera stabilization (us-
ing PID) and visual tracking (using PD). However, further refinement of these parameters
may enhance the system’s responsiveness, improving the overall stability of the camera.

One major limitation of the current system is the quality of the camera used, which
restricts its effectiveness under real-world sunlight conditions. Future work should focus on
integrating a higher-performance camera, enabling better functionality in various lighting

10TPU: Tensor Processing Unit is a type of chip designed by Google specifically to accelerate machine
learning tasks, especially those involving neural networks, making them faster and more efficient compared
to regular processors.
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conditions and improving the system’s overall tracking accuracy.

I11.9 Conclusion

This chapter has presented a comprehensive overview of the implementation and test-
ing of the proposed system, with a focus on the practical application of the theoretical
concepts discussed in earlier chapters.

The prototype development involved meticulous assembly and wiring, which provided
a stable foundation for the subsequent gyrostabilization and detection functionalities.

The successful processing and calibration of IMU data, coupled with the implemen-
tation of a complementary filter, enabled accurate data fusion, which is critical for the
system’s stability and control.

The integration of visual data through color-based detection further enhanced the
system’s capabilities, enabling effective detection and tracking. This approach offered a
practical solution to the challenges posed by limited computational resources.

Overall, the implementation phase has demonstrated the feasibility of the proposed
design, effectively addressing both the technical challenges and the functional requirements
of the system.

The results of this chapter provide a solid foundation for future work, including the
refinement and optimization of the system. Potential improvements may involve the inte-
gration of more advanced techniques, such as machine learning-based detection, advanced
control algorithms, as processing capabilities evolve.
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The study presented in this thesis successfully developed and tested a prototype, illus-
trated in Figure II1.12, for a stabilized camera control system using a 3-axis gimbal with
three servomotors for UAV-based active object tracking.

Throughout the project, several challenges were encountered, leading to the discon-
tinuation of certain concepts due to time constraints. The design and development of the
gimbal’s control system proved to be more time-consuming than initially anticipated. Ad-
ditionally, interfacing the system components and achieving seamless integration of their
functionalities presented further difficulties. The project addressed critical challenges re-
lated to stabilizing the camera on three axes—roll, pitch, and yaw—while integrating
visual data to enable real-time tracking of moving targets.

In terms of stabilization, the system performance is generally satisfactory on the roll
and pitch axes, as shown in the experimental results, owing to the accurate processing of
IMU data. The complementary filter applied to sensor data significantly reduced noise
and improved the precision of stabilization. However, yaw axis stabilization proved to be
more challenging due to gyroscope drift, highlighting the need to fuse the gyroscope data
with another sensor data.

For object tracking, several detection methods were evaluated, including advanced
neural networks such as YOLOv8n and MobileNet SSD. However, due to the compu-
tational limitations of the Raspberry Pi 4, these models did not meet real-time control
requirements. A lightweight color-based detection algorithm was therefore implemented,
achieving an impressive frame rate of 60 FPS. The successful integration of visual data
into the control system enabled reliable tracking of the target, with a root mean square
error (RMSE) of 23 for pan error and 20 for tilt error.

The implementation of PID controllers played a crucial role in stabilizing the system
for both camera stabilization and object tracking. While the selected PID and PD pa-
rameters were sufficient for basic operation, further tuning could enhance the system’s
responsiveness and reduce instability, particularly in dynamic environments.

The first prototype, Aero Vision 0.1, served as a proof of concept for the system,
demonstrating the viability of the design. Additionally, the study emphasizes the potential
for developing domestic capabilities in Algeria to produce such systems, which holds
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significant promise for both economic growth and strategic security.

Perspectives

Despite these achievements, there remains significant room for further enhancement
and future research.

First, the gimbal’s mechanical design will be revised to meet specific performance
requirements, with brushless motors replacing servomotors to enable smoother and more
precise motion. Refining yaw axis stabilization is also a key priority, with the integration
of a magnetometer and advanced filtering techniques to provide better long-term stability
and eliminate drift. Achieving full stabilization across all axes is essential.

To improve detection and tracking accuracy, higher-performance cameras will be in-
corporated, enhancing functionality in various lighting conditions. Additionally, more
complex object detection algorithms will be explored to improve performance in challeng-
ing environments with complex backgrounds. These algorithms will be supported by more
powerful computing platforms, such as NVIDIA devices, and will include depth extraction
for 3D target awareness, further enhancing tracking precision.

Integrating the inertial stabilization system with the tracking algorithm will optimize
system performance, particularly in dynamic environments. Future research could also
focus on adaptive PID tuning methods that respond to varying environmental conditions
or investigate alternative control strategies, such as sliding mode control (SMC), fuzzy
logic, or neural network-based control systems. These approaches could offer improved
stability and adaptability in unpredictable environments.

For the system to become fully operational, extensive field testing will be necessary.
Future work should involve testing the tracking algorithm on real UAVs under various
conditions to identify practical limitations and provide valuable insights for refining both
hardware and software components. In parallel, developing a user interface will facilitate
easier human-machine interaction, enhancing usability and control.
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Introduction

The development and innovation in the field of unmanned aerial vehicles (UAVs) have
expanded the possibilities for civilian applications, notably in areas such as surveillance,
reconnaissance, and search and rescue operations. The startup project aims to bridge the
gap between the growing demand for advanced UAV technologies and the limited avail-
ability of locally produced solutions in Algeria, particularly focusing on imaging systems
for UAV-based object tracking and stabilization.

The primary focus of this venture is the design of an inertially stabilized airborne
camera system integrated with UAVs for active object tracking. The system utilizes a
3-axis gimbal to stabilize camera movement in real-time, ensuring that images remain
clear and the object of interest stays centered despite UAV motion or environmental
disturbances. This technology is critical for both military and civilian use, especially
in search and rescue, infrastructure inspection, and other applications requiring precise,
real-time imaging.

Given Algeria’s strategic interest in developing local UAV technologies, this startup not
only fills a technological gap but also contributes to economic development by providing an
affordable, locally manufactured solution for both government and private entities. The
combination of advanced engineering and local production ensures that this initiative
will foster innovation, reduce dependency on imports, and open new opportunities for
technological development within the country.
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Ability to customize the
camera system based on
the client's requirements.

Customer Relationships

Provide excellent
customer service before
and after the sale.
Technical support for
integration with UAV
systems.

After-sales maintenance
service.

Long-term partnership by
offering customization
and continuous updates
to meet their evolving
needs.

Customer Segments

— Local Drone Manufacturers.

— Authorities responsible for
surveillance missions
(wildfires, search and
rescue...).

— Research Laboratories and
Universities.

— Environmental and Safety
Organizations.

— Private Security and
Industrial Sectors.



Key Resources

Cost Structure

Component Costs.

Costs associated with the assembly, production, and quality testing

Technical Personnel.
Supply Chain for

Electronic Components.

R&D team.

of the camera systems, including labor costs.
Investment in ongoing R&D activities.
Marketing and Sales to promote the product.

Ongoing costs for providing customer support, technical

troubleshooting, and system maintenance.

Costs related to customizing the camera system to meet specific
client needs, including software updates or hardware modifications.

Channels

— Direct sales to drone
manufacturers.

— Online Marketing and
Website.

— Collaborations with local
authorities and research
centers.

— Presence at professional
trade shows and
exhibitions.

Revenue Streams

— Sales of stabilized cameras.

— Maintenance and technical support contracts.
— Leasing or Rental for short-term usage.

— Training Services.

— Customization Services.

— R&D Collaborations.



SWOT Analysis

Strengths, Weaknesses, Opportunities, and Threats
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La fiche technique de projet

Carte d’information

Hind Yasmine KADDOURI

il g ansy)
Your first and last Name
Votre prénom et nom

Aero Vision

AERO VISION

&jﬂ.&u ng@ﬂ\ @MY‘
Intitulé de votre projet
Title of your Project

Legal in case of authorization

£ 5 pall L5 gAY dial)
Votre statut juridique
Your legal status

A professional number will be
available.

G o8
Votre numéro de téléphone
Your phone number

kaddourihindyasmine@gmail.com

9 SN &y )
Votre adresse e-mail
Your email address

Mascara

(Apald) Ay 6 ) Jaliil) ALl e jRa
Votre ville ou commune d'activité
Your city or municipality of activity
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La nature de projet

el gl Al Al 53 7 giial)
Vente de marchandises ou de services

Sale of services )
Sale of goods or services

100 %
Innovations de Marché Innovations Radicales
Incertitude de .

marché B gudl ) 85! Wyl ol Sl
i . & J/
dy«.” ‘3 St pos ] a ] \

Innovations Innovations

\_ J Incrementielles Technologiques
sud LI ol Sy \_ L of iS5 &l Kl )
Incertitude technologique 100 %
ool S uST pue
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Déterminer le probléme rencontré par le client

The goal is to emerge market in Algeria by providing locally-
produced gimbals with Al-based applications that easily integrate
with drones and meet the specific needs of local manufacturers,
surveillance authorities, research centers, and other stakeholders.

flgla 3 5 Al Al 2 L

Lack of UAV project manufacturers

Aqall 3929 Ao Jai AN il 35 giall clilud) 4 La
foaaal)

Al g ACEal) (i cidagind AN 5 A @ L) & La
SLALEY g

The goals of my project are to develop locally-produced gimbal
systems with Al-based applications that can easily integrate with
drones to meet the needs of local manufacturers, surveillance
authorities, and research centers.

The expected outcomes include:

¢ Improving efficiency in aerial surveillance operations, such as
wildfire detection and search-and-rescue missions in difficult-to-
access areas.

e Boosting local production by providing advanced Al-driven
technological solutions to support the local economy.

428 gial) Aailil gif g Sle g pdia cilaal Rl
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¢ Reducing dependence on imported systems, offering cost-
effective local alternatives.

e Encouraging innovation and scientific research by providing
advanced tools for academic institutions and research centers.

e Generating job apportunities.

La proposition de valeur ou I'offre faite
L _leall 399 da ddalf Lasdll

La valeur proposée selon les critéres suivants

LMY puileall (399 da sidal) Lasdlf

/ Uanadilly dadl)
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/ s A o
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Business Model Canvas — BMC
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Géographique
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Continent
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Pays
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Ville
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Quartier
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gl
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Démographique (B2C)

Age
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Sexe
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Revenus annuels

:Ja b g3e40 000 o
s A
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Langue
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Customer Segments il of gdladdl il ud 2

Démographique (B2B)

Secteur
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Nombre d'employés
gl & Jlanl) 230

Maturité de I'entreprise
L al) gia

Situation financiéere
Twagall 4al) A

Détention/ actionnariat
dan Lusal)fdSLall

Valorisation/
capitalisation boursiére
4 gud) Lahl) [ apiil)
Business model
Jue ¥ Zigal
Secteur servi
4.4.\5,3 ‘533‘ &w‘
Technologie utilisée
Alantiiall L ¢ gisil)

Format du produit ou
packaging
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Classe sociale
Ao laiay) dial

Niveau de vie
Humall (s gieual)

Valeurs

psil)

Personnalité
Tai )

Convictions
i) diiaal)

Présence digitale et sur
les réseaux sociaux
Jual i) B L ol i) Jlantina)

Centres d'intéréts
alaia¥) 3S) e

Comportemental
il gladf

Usage
PARESA

Loyauteé
N

Intérét
alaia)

Passion
il g 4 o)

Sensibilité
L\ EVSHPIEN
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consommation
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Mode de paiement

ERERS

Connaissance
‘u):.d\
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demande
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Al a sl

Customer Relationship sleell go 4ff 4

To manage our relationships with customers, we adopt an approach based on foMlanl) aa ilBMe a1 (S
building long-term partnerships founded on trust and ongoing collaboration. This
approach includes:

¢ Providing continuous technical support: we assist customers with integrating our
products into their systems, offering guidance and training to ensure effective use
of the product.

e Maintenance and after-sales services: we ensure regular maintenance contracts
are available to resolve any technical issues that may arise after the sale,
enhancing customer satisfaction and maintaining the relationship.

e Continuous communication: We maintain regular contact with customers to stay
updated on their new needs and developments, helping to adapt future products
to better meet their requirements.
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Flexibility in customization: we offer the ability to customize products to meet
each customer’s specific needs, providing tailored solutions that add value to the
product.

Listening to feedback: We actively gather customer feedback and evaluations to
improve products and services, ensuring a great experience that meets their
expectations.

B A Lo adiatin Al gal ) aa) daala

- - LTS & A8Mal

Social Medla Microsoft Dynamics

Web Site Monday CRM
Zoho CRM
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