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Abstract: 

The dynamic loads acting on bridges result in the induction of deformations in their structure. 

These deformations, should they surpass the allowable threshold, could lead to significant 

structural deterioration or even complete collapse. It is imperative to accurately assess these 

deformations. Our research is focused on this task, aiming to calculate the deflection in the 

flooring of a bridge under isotropic and orthotropic conditions. The formulation of 

mathematical expressions that depict the behavior of anisotropic beams under dynamic loads, 

specifically a moving mass, has been undertaken. MATLAB scripts have been created based 

on these equations, enabling the determination of deflection at various locations on the two 

types of flooring being analyzed. 

 

Résumé : 

Les charges dynamiques agissant sur les ponts entraînent l'induction de déformations dans 

leur structure. Ces déformations, si elles dépassaient le seuil admissible, pourraient entraîner 

une détérioration structurelle importante ou même un effondrement complet. Il est impératif 

d'évaluer précisément ces déformations. Notre recherche se concentre sur cette tâche, visant à 

calculer la déviation dans le plancher d'un pont dans des conditions isotropes et orthotropes. La 

formulation d'expressions mathématiques décrivant le comportement des faisceaux anisotropes 

sous des charges dynamiques, en particulier une masse en mouvement, a été entreprise. Des 

scripts MATLAB ont été créés sur la base de ces équations, permettant la détermination de la 

déflexion à divers endroits sur les deux types de revêtements de sol analysés. 

 

 ملخص: 

تحريض التشوهات في هيكلها. هذه التشوهات ، إذا تجاوزت العتبة تؤدي الأحمال الديناميكية التي تعمل على الجسور إلى  

المسموح بها ، يمكن أن تؤدي إلى تدهور هيكلي كبير أو حتى انهيار كامل. من الضروري تقييم هذه التشوهات بدقة. يركز  

اغة التعبيرات  بحثنا على هذه المهمة بهدف حساب الانحراف في أرضية الجسر في ظل ظروف الخواص والتقويم. تم صي

الرياضية التي تصور سلوك الحزم متباينة الخواص تحت الأحمال الديناميكية ، وتحديدا الكتلة المتحركة. تم إنشاء نصوص 

 .لهاماتلاب بناء على هذه المعادلات ، مما يتيح تحديد الانحراف في مواقع مختلفة على نوعين من الأرضيات التي يتم تحلي
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GENERAL INTRODUCTION  

Since the inception of the earliest bridges, whether shaped by natural forces or crafted 

by early civilizations, they have endured the effects of degradation and eventual 

collapse. These phenomena are immutable laws of nature. Consequently, the dynamic 

nature of external forces acting on bridges over time, including periodic stresses from 

moving vehicles, inevitably leads to fatigue-induced damage. 

 

Over the past century and a half, extensive theoretical and experimental research has 

been conducted on the interaction between bridges and vehicles. This research is driven 

not only by the practical significance of such interactions in everyday life but also by 

the inherent complexity of the problem. 

 

Central to this endeavor is the primary objective of conducting a thorough examination 

of bridge decks. This entails a meticulous consideration of both their structural 

dimensions and their dynamic response to the passage of vehicles. The primary objective 

of this study is to analyze the effects of different factors   that impact the dynamic 

behavior of bridges. Understanding these dynamics is crucial for ensuring the safety, 

reliability, and longevity of bridge structures. The interaction between moving vehicles 

and bridges leads to various forces and vibrations that can affect the structural integrity 

of the bridge over time. 

 

When vehicles travel over a bridge, they generate dynamic loads that cause deformations 

and vibrations in the bridge structure. These vibrations are influenced by several factors, 

including vehicle speed, road conditions, vehicle mass, and the bridge's own physical 

properties like mass, stiffness, and damping. The study examines these interactions in 

detail to model and predict the dynamic effects accurately. 

 

Understanding the dynamic behavior of bridges under vehicle loads is vital for designing 

safe and durable structures. This study provides insights into the factors that contribute 

to these dynamic effects and presents methods for accurately modeling and analyzing 

them. The ultimate goal is to enhance the safety and longevity of bridges in the face of 

increasing traffic loads.
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State of knowledge 
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1 Introduction: 

The objective of this chapter is to present the phenomenon studied and to provide an 

overview of the methods used to analyze the dynamic behavior of bridges loaded with moving 

traffic loads. 

The study of the literature makes it possible to identify the important factors that play a role 

and to determine the requirements for modeling the dynamic effects in the load-bearing slabs 

of concrete bridges as realistically as possible. 

The nature of vibrations caused by vehicles on bridges is also presented. A detailed description 

of the dynamic interaction phenomenon that develops when a vehicle crosses a bridge is 

provided, complemented by a review of the main factors that contribute to this phenomenon. 

The concept of dynamic amplification factor is explained as well as the different definitions 

commonly used. The methods used to determine these factors are discussed. 

 

2 Nature of vibrations generated on bridges by vehicles: 

2.1 Explanation of the phenomenon: 

The phenomenon of vibrations generated on bridges by vehicles is explained by a complex 

interaction between vehicle movements and the structure of the bridge. When a vehicle travels 

on a bridge, it exerts forces that cause deformations and vibrations in the structure. These 

vibrations are influenced by various factors such as vehicle speed, road condition, vehicle and 

bridge mass, as well as inertia and damping forces. 

The relative displacements of the ends of the springs that model the vehicle's suspension 

change, which alters the interaction forces under the tires. In addition to elastic forces, the 

bridge is subject to inertia and damping forces, which contribute to vibrations. The balance 

configuration of the vehicle changes the intensity of the applied loads, thereby disrupting the 

balance of the bridge throughout the vehicle's passage. 

Factors such as variation in the vehicle-to-bridge mass ratio, vehicle rolling speed, axle spacing, 

as well as the vertical movement of the vehicle and the profile of the roadway affect these 

vibrations. These complex interactions between the different elements contribute to the 

generation of vibrations on bridges when vehicles pass by. 

This explanation highlights the importance of understanding these phenomena to design 

structures capable of effectively resisting the dynamic effects induced by the passage of 

vehicles on bridges [1] [2] [3] [4] 

 

2.2 The bridge: 

The geometry and the static system make each bridge a particular structure with specific 

static and dynamic behavior. The main characteristics which dictate the behavior of the 

structure are the span length, the mass, [5] stiffness and damping (Figure 1) 
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Figure I-1: Bridge elements 

 

Effects of span length: The length of the span is a parameter having a major impact on the 

dynamic behavior of road bridges. Indeed, in the literature correlations are proposed between 

the span of the bridge and its fundamental frequencies. The graph presented in (Figure 1) shows 

that as the length of a bridge span increases, the proper frequency of Deck clean decreases 

[6]Furthermore, there are national standards for the design of road bridges which provide 

formulas for calculating the FAD based on the length of the bridge span. 

 

Figure I-2: Fundamental frequencies versus span length for 898 highway bridges 
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The mass: The mass of the superstructure includes the mass of the supporting structure, the 

covering, the parapets, the sidewalks and all the bridge equipment. Mass is a dominant factor 

for bridge vibration frequencies [5].  

Rigidity: The rigidity of a bridge is determined mainly by the material, by the dimensions and 

by the type of section. Bridges whose section is formed by a box section provide greater rigidity 

with respect to transverse bending and torsion than bridges composed of independent beams. 

The latter type is very influenced by the spacers or diaphragms which transversely connect the 

beams together. Secondary elements such as cladding, sidewalks and parapets increase the 

overall rigidity of the structure. High stiffness helps increase bridge vibration frequencies [5].  

Depreciation: Damping is a physical phenomenon responsible for the dissipation of energy 

during structure vibrations. Indeed, damping can be defined by a phenomenon Thermodynamic 

since it involves a transfer of mechanical energy to thermal energy. There are two types of 

depreciation: material depreciation and structural damping. Material depreciation 

corresponds to energy losses in the molecular structure of the material. It depends on multiple 

factors including the geometry of the structure, the natural frequency, the temperature, as well 

as the type of deformation. Structural damping is of fundamentally frictional origin. In other 

words, it is explained by the energy dissipated at the interfaces between the distinct elements 

of a structure, such as joints, connections, supports [5]. 

Generally, it is very difficult to estimate the actual damping value of a bridge structure. In order 

to simplify the problem, the approach generally used in the literature is based on the Rayleigh 

method [7]. which employs equivalent viscous damping. This method is given by the formula 

presented by the equation (1) 

𝑐𝑐𝑟 = 𝑎0𝑚 + 𝑎1𝑘                                                          (1)                               

𝑐𝑐𝑟 : Critical damping of the system 

𝑚 : Mass of the structure 

𝑘 : Rigidity of the structure 

The coefficients 𝑎0 And 𝑎1 of the equation (1) are called modification coefficients and they 

are calculated and chosen so as to estimate the overall damping of the model so that it is as 

close as possible to the real damping of the structure. As the equation (1),shows, damping can 

be identified by only knowing the masses and stiffnesses. However, in order to determine these 

coefficients, it is important to have an idea of the depreciation rate 𝜁 of the structure studied. 

Therefore, for a mode 𝑖, the values of the constants 𝑎0 and 𝑎1 can be determined using the 

equation (2) 

𝜁 =
 𝑎0

2𝜔𝑛𝑖
+

𝑎1𝜔𝑛𝑖

2
                                                                 (2) 

𝜔𝑛 : Circular frequency [𝑟𝑎𝑑
𝑠⁄ ] 

In order to find the values of these modification coefficients, it is enough to use the first two 

modes as the number of unknowns is equal to 2. 
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2.3 The roadway profile: 

The roadway profile is an element of great interest for the study of the dynamic behavior of 

a bridge. A distinction is made between the static profile which represents the irregularities of 

the roadway depending on the position and the dynamic profile which corresponds to the 

deflections caused by the loads applied to the bridge. The static profile is determined by the 

profile along the length of the road on which is superimposed the differences in level at the 

supports, the differential settlements of the foundations or the misalignments of the spans, the 

counter deflections, the deflections due to delayed effects and the roughness of the coating 

(𝐹𝑖𝑔𝑢𝑟𝑒 2). These different components come from construction tolerances, operating 

conditions or the effects of time. Irregularities in the static profile of the roadway have the effect 

of inducing and maintaining oscillations of the load on the vehicle suspension system [5]. 

 

Figure I-3: Static profile of a bridge 

2.4 Vehicles: 

When examining the dynamic responses of highway bridges, heavy vehicles, commonly 

referred to as trucks, are frequently used due to their large mass. There are different models of 

trucks, each model having unique geometric characteristics. 

The representation of the vehicle requires specifying certain properties which can be classified 

either as static properties or as dynamic properties. Static properties include geometry, i.e., axle 

spacing, number of axles and static vehicle weight distribution across the axles. Dynamic 

properties include, the natural frequencies of the axles and the damping characteristics of the 

suspension system. These quantities must be obtained from analytical estimates and the study 

of field measurements on real vehicles. There Figure 3 summarizes the majority of the static 

and dynamic properties of the vehicle. 
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Figure I-4:Vehicle elements 

 

The movement of a vehicle is mainly characterized by four oscillations: vertical oscillations (or 

bounding) and 3 possible rotations which are pitching, rolling and yaw. These 3 rotations are 

illustrated in Figure 3. In most numerical studies only vertical oscillations, which are 

sometimes coupled with pitching, are considered [8], the effect of these oscillations on the 

dynamic behavior of bridges is mainly influenced by the roughness of the surface of the 

roadway of the bridge as well as the suspension system of the vehicle considered, including the 

distributed masses. In order to take into account all possible oscillations, the vehicle must be 

modeled three-dimensionally, that is to say in its longitudinal plane as well as in its transverse 

plane. 

 

2.4.1 Suspension system:  

The suspensions on a vehicle are the elements making it possible to connect the unsprung 

masses (typically the wheel, the braking systems, the wheel drive, etc.) to the sprung masses 

(typically the chassis, the engine and all the components of the vehicle). vehicle attached to the 

chassis). 

The use of suspension is imposed by the irregularities of the surface on which the vehicle is 

moving. It reduces the impact on the machine, avoiding breakages and excessive wear, 

improving driving comfort and maintaining contact between the wheels and the ground despite 

its irregularities: an essential condition for road holding. Furthermore, the fact that a vehicle 

has mass requires the use of a return mechanism to prevent the system from sagging indefinitely 

as the terrain becomes uneven. 

Thus, the suspension consists of a connecting device between the “unsprung masses” and the 

“sprung masses”, a spring and possibly a shock absorber. In some cases, the suspension arm is 

also called a “suspension triangle”, a name due to its shape. We also distinguish between 

“independent” suspensions, on the same axle the left part is separated from the right part, and 

“rigid axle” suspensions where the left and right parts are linked. Some explanations may 

require prior reading of the suspension geometry article, particularly for land vehicles [9]. 
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2.4.2 Tires: 

Tires also influence the vibration movements of road vehicles. To account for vibrations 

caused by tire flexibility, the suspension system and tire must be separated. The structure of the 

tire, characterized by the number and arrangement of the rubber strips that constitute it, as well 

as the inflation air pressure, influence the rigidity of the tire and its damping. 

 

2.5 Interaction of the elements contributing to the phenomenon: 

Several parameters described in the previous paragraphs not only have a direct influence on 

the dynamic behavior of bridges crossed by vehicles, but, moreover, they intervene in 

interaction with other factors. 

Depending on the value of mass ratio defined by the total mass of the vehicle divided by the 

total mass of the superstructure, the frequency content of the bridge vibrations changes over 

time, because the mobility of the loads varies the mass distribution of the bridge + vehicle 

system. If the amplitude of the oscillations of the vehicle mass is large, the sensitivity of the 

response of the bridge to the variation of the mass ratio also depends on the frequency ratio. 

This ratio is expressed by the frequency of the vehicle's vertical oscillations divided by the 

fundamental frequency of the bridge. Large amplitude vibrations are observed in the event of 

resonance, when a disturbing force stresses a vibratory system with a frequency equal to that of 

the system. In the case of bridges, it is more appropriate to speak of a quasi-resonance 

phenomenon, because the amount of energy transmitted to the bridge is not infinite and the 

forced vibration does not last long enough for resonance to develop. 

The influence of speed is inseparable from axle spacing of the vehicle and pavement profile. 

Speed represents the means by which the roadway becomes the disruptive force of the vehicle. 

The speed and roughness of the roadway are the parameters which favor the movements of 

vehicles in one mode rather than another. Vehicle speed associated with axle spacing 

determines the frequency of application of loads to a structural element. Different values of this 

frequency can be determined for a vehicle made up of several axles. For low speeds the tandem 

axle spacing must be considered, while for higher speeds the basic spacing, considering the 

tandem as a single axle, becomes more important [5] 

 

3.Definitions of dynamic amplification factor: 

The notion of the dynamic increase coefficient (CMD) or the dynamic amplification factor 

(FAD) is a parameter of crucial importance for engineers responsible for the design and 

evaluation of bridges. But as it is currently formulated by the standards, it does not reflect the 

reality of the bridge-vehicle coupling because of the complex interaction between the 

movements of the bridge and the vehicle. The dynamic behavior of bridges when vehicles pass 

depends on: the dynamic characteristics of the bridge (mass, rigidity, damping, etc.), the 

dynamic characteristics of the vehicles (mass, suspension system, etc.), the progression history 

of the vehicles on the bridge (initial state of vibration, speed, etc.), and the roughness of the 
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roadway (bridge deck). The dynamic increase coefficient (CMD), also called dynamic 

amplification (𝐴𝐷), caused by the passage of a vehicle on a specific bridge is given by: 

Dynamic Amplification(𝐴𝐷) =
𝑅𝑑𝑦𝑛−𝑅𝑠𝑡𝑎𝑡𝑖𝑐

𝑅𝑠𝑡𝑎𝑡𝑖𝑐
                           (3) 

Or 𝑅𝑑𝑦𝑚 And 𝑅𝑠𝑡𝑎𝑡𝑖𝑐 are the absolute maximum responses obtained for the dynamic and static 

cases respectively and AD is the dynamic amplification. we find in the literature the notion of 

the impact factor expressed as a percentage. The impact factor (𝐼𝑚𝑝) is defined as follows [10]: 

(𝐼𝑚𝑝) = (
𝑅𝑑𝑦𝑛

𝑅𝑠𝑡𝑎𝑡𝑖𝑐
− 1) × 100%                                                        (4) 

 

From the equation (3)we can write: 

 

𝑅𝑑𝑦𝑛  = 𝑅𝑠𝑡𝑎𝑡𝑖𝑐(1 + 𝐴𝐷)                                                                   (5) 

 

The dynamic amplification factor (𝐹𝐴𝐷) is expressed by the term (1 +  𝐴𝐷). 

More marked divergences exist in the definition of FADs calculated experimentally by 

recording static and dynamic responses using gauges. The static response used to define the 

FAD is, in certain cases, that obtained at the instant 𝑡𝑑𝑦𝑛 where the maximum dynamic response 

is obtained or even at the instant 𝑡𝑠𝑡𝑎𝑡𝑖𝑐 where the maximum static response is obtained. 

Maximum static and dynamic responses do not generally occur for the same load position 

(Figure 5) 
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Figure I-5: Static and dynamic response 

 

Importance of Dynamic Amplification Factor: 

The Dynamic Amplification Factor is a very important parameter for the analysis and design 

of road bridge bearing slabs. Their importance can be summarized in the following points: 

● Present the dynamic effects in the rolling slabs which are caused by the passage of 

vehicles. These effects are determined in relation to a static reference 

● Determine the sensitivity of bearing slabs to dynamic stresses caused by road traffic 

● Define the locations considered important on the bearing slabs according to a given 

loading 

● Determine which types of bearing slabs are most sensitive to dynamic stresses. 

  

Conclusion: 

A study which involves the dynamic study of bridges under moving traffic loads requires 

firstly to present the phenomenon at hand, in this case the dynamic response from the structure 

comes in form of vibrations, these vibrations are the collective response from the different 

elements which constitute the structure, these different elements such as the bridge and its 

parameters (mass, rigidity, depreciation, roadway profile), the vehicles (suspension system, 

tires etc....). add on that an important factor (dynamic amplification factor) and its importance. 
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1 Introduction: 

Bridges are more than just static structures connecting two points; they are dynamic systems 

constantly interacting with the environment. When a vehicle crosses a bridge, it sets off a chain 

reaction of forces and vibrations that ripple throughout the structure. Understanding and 

predicting how a bridge dynamically responds to these loads is crucial to ensuring its safety, 

reliability and longevity. 

One of the main concerns of engineers is the dynamic response of bridges to automobile traffic. 

Unlike static loads, dynamic loads are transient and can induce vibrations, oscillations and 

resonance within the bridge structure. These dynamic effects can lead to fatigue, excessive 

deflection and even structural failure if not properly considered during the design and 

maintenance phases. 

There are several reasons why studying the dynamic response of the bridge is essential: 

⮚ Security: The safety of motorists, pedestrians and goods relies on the structural integrity 

of bridges. Dynamic loads, such as those generated by moving vehicles, can induce 

sudden and unexpected reactions in a bridge. Understanding these dynamic effects 

allows engineers to design bridges that can safely support traffic loads without 

compromising structural stability. 

⮚ Ease of maintenance: Bridges must not only support heavy loads, but also provide a 

smooth and comfortable ride for users. Dynamic response analysis helps engineers 

optimize bridge designs to minimize vibration, reduce vehicle-induced discomfort, and 

ensure a satisfactory level of serviceability throughout the service life. life of the 

structure. 

⮚ Fatigue assessment: Bridges are subjected to millions of load cycles throughout their 

service life. Dynamic loading, particularly in heavy traffic conditions, can accelerate 

fatigue and lead to cracking and structural deterioration. By simulating the dynamic 

response of bridges, engineers can assess fatigue damage and develop maintenance 

strategies to extend the life of the structure. 

⮚ Resonance avoidance: Resonance occurs when the frequency of external loads 

matches the natural frequency of the bridge, leading to amplified vibrations and 

potential structural failure. Dynamic analysis helps identify critical frequencies and 

vibration modes, allowing engineers to mitigate resonance effects through design 

modifications or implementation of damping mechanisms. 

⮚ Environmental factors: External factors such as wind, seismic activity and 

temperature variations can also induce dynamic responses in bridges. Understanding 

how these environmental loads interact with vehicular traffic is essential to designing 

resilient bridges capable of withstanding a wide range of operating conditions. 

Understanding how bridges dynamically respond to vehicle traffic is vital for engineers for 

two main reasons: First, the dynamic effects of vehicles induce greater stresses than static 

loads alone, while excessive vibrations can lead to fatigue, shortening the lifespan of the 

bridge. Despite the use of a dynamic increase coefficient, factors such as traffic conditions 

and vehicle characteristics are not fully taken into account. Various methods, including 

simulations and experiments, help model bridge-vehicle interaction, but challenges include 
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complexity and measurement accuracy. Nevertheless, capturing the dynamic response of 

the bridge is crucial to ensure safety, reliability and longevity. 

in the design and maintenance of bridges, meeting modern transportation needs while 

preserving public safety. 

 

2 Modeling a bridge: 

A bridge is a structure built to span a physical obstacle without blocking the path underneath, 

It is constructed for the purpose of providing passage over the obstacle [11], one of the ways 

that a mechanical structure such as a bridge can be represented by is through using beams and 

plates, which will simplify our theoretical understanding into a more practical one making it 

easier to integrate theoretical solutions to realistic ones  

2-1 Modeling by a beam: 

 

Figure  II-1: Modeling a bridge using a beam 

 

A beam is a structural element that primarily resists loads applied laterally on the axis [12]of 

the beam. One of the commonly used and simple methods for modeling bridges involves the 

application of a Euler-Bernoulli beam, usually supported at both ends. However, this 

conventional approach oversimplifies the bridge behavior, focusing only on one-dimensional 

aspects while neglecting the influence of transverse bending. This limitation becomes obvious 

for bridges whose spans resemble length and width proportions, such as highway bridges built 

with slabs. In such scenarios, the shortcomings of beam theory become apparent, particularly 

when the bridge encounters off-center loads. As vehicles move away from the centerline bridge, 

bending and twisting effects become significant, posing challenges to the accuracy of beam-

based models [13] 
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2-2 Modeling using a plate: 

To model the bridge using a plate simply supported on two of its ends, there are several 

choices: 

⮚ Thin plates in the Love-Kirchhoff theory 

⮚ Thick plates in Mindlin's theory 

The bending of a plate is modeled by essentially two theories (apart from the theory of 

continuous media): that of a thin plate presented in this chapter and that of a thick plate 

presented in the appendix. 

The first approach to the problem of a homogeneous and elastic plate was formulated by 

Love-Kirchhoff. This theory contains a certain number of hypotheses which do not allow a 

certain number of mechanical phenomena such as shear force or rotational inertia to be 

taken into account. R. D. Mindlin proposed a new theory to take these phenomena into 

account. In the literature, there are a multitude of other theories that have been carried out 

by other researchers who have followed Mindlin. These theories will not be cited in this 

work, because they will not be used [13]. 

 

Figure II-2: Modeling a bridge using a plate  [14] 

 

2-2-1 The love-Kirchhoff theory: 

The Love-Kirchhoff theory is an extension of the Euler–Bernoulli beam theory to thin plates. 

The theory was developed in 1888 by Love using hypotheses proposed by Kirchhoff. It is 

assumed that a surface midplane can be used to represent the three-dimensional plate in two-

dimensional form [15]. 

 

The hypotheses: 

The Love-Kirchhoff theory is used to study thin plates. he states the following hypothesis: 

● The average plane is initially flat, that is, it has no curvature. 



CHAPTER II                                                              THE MODELISATION OF A BRIDGE 

15 

 

● The average sheet does not undergo deformation in its plane, that is to say that we only 

consider the transverse displacement (noted w) of the points of the average sheet [16]. 

● The sections normal to the average sheet remain normal during deformation, that is to 

say that shear can be neglected. 

● The thickness of the plate is low, that is to say only in the direction of thickness. 

● The deformation is zero which implies that the constraints in this direction can be 

neglected, and we place ourselves in small deformations. 

 

2-2-2 The displacement field: 

These hypotheses lead to the following displacement field: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑥
                                     (1) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑥
                                      (2) 

𝑤(𝑥, 𝑦) = 𝑤(𝑥, 𝑦)                                                        (3) 

 

Or 𝑥, 𝑦 And 𝑊𝑖𝑡ℎ are the coordinates of a point on the plate in a Cartesian and Galilean 

reference plane, t is the time variable write the equation of the bending motion of the plate, in 

the linear approximation the elasticity translates into: 

𝐷∇4𝑤 + 𝜌ℎ
𝜕2𝑦

𝜕𝑥2
= 0                                                     (4) 

Or 𝐷 represents the modulus of rigidity in bending, ℎ the thickness of the plate, 𝜌 the density 

of the material constitutes the plate, 𝑓 the imposed force and finally the operator 𝛻 : 

𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
                                                                  (5) 

This equation can be compared to that obtained for the bending movement of Euler-Bernoulli 

beams: 

𝐸𝐼∇4𝑤 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2
= 𝑓                                                    (6) 

where 𝐸 is the Young's modulus of the material used, 𝐼 the quadratic moment of the sections 

of the beam considered. 

 

Due to the fourth order operator and the sign + between the terms on the left side, it's not a 

wave equation. Therefore, bending vibrations transmitted in a beam or plate will be dispersive 

in nature (propagation speed is a function of frequency). 
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In the case of a plate simply supported on all these edges, in harmonic time regime, the 

transverse displacement 𝑤 (𝑥, 𝑦, 𝑡) is of the form: 

𝑤 (𝑥, 𝑦, 𝑡) = 𝑤 sin(𝑘𝑥𝑥) sin(𝑘𝑦𝑦) sin(𝑤𝑡)                               (7) 

Where 𝑤 is the pulse 𝑘𝑥 , 𝑘𝑦 , are the wavenumbers associated with the directions (𝑜𝑥) and 

(𝑜𝑦), related to the wavenumber k by the relation: 

𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2                                                         (8) 

using the equation (2.2), without the force term, and using the previous displacement 

expression 𝑤 (𝑥, 𝑦, 𝑡), we can write the dispersion equation for this simply supported thin 

plate as follows: 

𝑤2 = 𝑘2
𝐷

𝜌ℎ
                                                                         (9) 

Determining the own pulsations allowed us to determine the deviation of the plate and 

therefore to study its behavior [13]. 

3 Load modeling: 

There are many ways to model the load which depend on the solution method and required 

accuracy, such as moving load, train signature method, lumped mass with spring-dash unit, 

model 2𝐷 complete including bodywork with bogies and two layers of suspension and model 

3𝐷 complete for the bodywork. Figure 3 shows the evolution of the 2𝐷 train/vehicle modeling 

[17]. 
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Figure II-3: Evolution of 2D load modeling 

 

4 Modeling a vehicle: 

Weighing in motion is a technique aimed at estimating the static weight of a heavy vehicle 

from pressure measurements or deformations of the structure on which this vehicle is moving. 

Estimating static weight in this way is expected to improve the use and efficiency of existing 

weighing systems, and overloading heavy vehicles contributes significantly to damage to roads 

and bridges. To remedy this, manufacturers and maintenance services want to have reliable 

tools allowing them to estimate in real time the loads and weights coming from heavy vehicles 

traveling on bridges. 

Vehicles are generally described as static loads. However, they drive across and across the 

bridge at high speed. In addition, the repeated passage of axles at constant gauge can cause 

significant excitation of the bridge. The description of vehicles in the form of mobile loads is 

then necessary. 

The choice of vehicle plays an important role in the response of the bridge. From the simplest 

model which consists of a constant force moving to that of three-dimensional modeling, we 

have chosen the simplest case of a mass mounted on a spring. 
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Figure II-4: model of a simple vehicle 

 

Indeed, the use of a more sophisticated vehicle model, Figure 4 (comprising several degrees of 

freedom) could mask the essential aspect of the two-dimensional behavior of the bridge [13] 

 

 

Figure II-5: Sophisticated vehicle model 

 

 

Conclusion: 

Bridges are dynamic systems that constantly interact with their environment. When vehicles 

cross a bridge, they induce a series of forces and vibrations throughout the structure. 

Understanding and predicting these dynamic responses is crucial to ensuring bridge safety, 

reliability and longevity. 

Bridges can be modeled using beams and plates to simplify theoretical understanding into 

practical applications. 

Various methods are used to model loads on bridges, depending on the accuracy required. These 

range from simple moving loads to detailed two- and three-dimensional models. 

Bridge-structural dynamics is a vital area that ensures the safety and functionality of bridges. 

By comprehensively understanding the behavior of structural components subjected to dynamic 

loads, engineers can design more robust bridges and develop effective bridge maintenance 

strategies. This not only improves the lifespan of these critical infrastructures, but also ensures 

their safe operation under varying conditions. 
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1 Introduction: 

In this chapter, a vibration model of a multi-span bridge during the passage of a convoy will 

be presented. Vibration modeling takes into account the interaction between the bridge and the 

convoy as well as track irregularities. The design of the bridge consists of a continuous beam, 

its intermediate supports being designed by high rigidity linear springs. 

On the other hand, the convoy is designed with a series of moving vehicles.  is represented by 

a series of vehicle models with two degrees of freedom of movement. Using the modal 

superposition method and the Lagrange of the system, two coupled equations of motion for the 

bridge and the convoy are determined. These equations are then solved using a classic Newmark 

scheme with iterative calculation. 

2 Vibration modeling of a road bridge during the passage of a convoy: 

2-1 Modeling: 

The bridge is modeled by an equivalent continuous beam, of length 𝑙, of linear mass 𝑚, 

moment of inertia 𝐼 and young’s modulus 𝐸, simply supported at the ends. The 𝑁 simple 

intermediate supports (Figure 2), The convoy is modeled by 𝑛𝑣 single-speed vehicles 𝐼𝑁, The 

mass of the vehicle 𝑖𝑛 is noted 𝑀𝑣2and the mass of its wheel 𝑀𝑣1. These two masses are linked 

by a stiffness spring 𝑘𝑣 and a damping constant damper 𝑐𝑣 . Vehicle position 𝑣 is noted 

𝑥𝑣(𝑡)and the vertical displacement of the bridge 𝑤(𝑥, 𝑡). Intermediate abscissa supports 𝑥 =

𝑠𝑝(𝑝 = 1,2, … , 𝑁)are modeled by linear springs of high rigidity and the same stiffness 𝑘. The 

spatial position of a point on the bridge is noted 𝑥(𝑡)and the imperfections of the rolling track 

are represented by the function 𝑟(𝑥). Vertical movements of masses 𝑀𝑣1 And 𝑀𝑣2 are 

respectively 𝑦𝑣1(𝑡) And 𝑦𝑣2(𝑡) . 

 

Figure III-1: Vehicle-bridge interaction element[18] 
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Figure III-2: Beam continues with N simple intermediate supports, excited by 𝑛𝑣 mobile 

vehicles [19] 

 

2-2 Equations of movement of the vehicle model: 

The equations of motion of the vehicle model with two degrees of freedom are given in the 

following derivation. The static equilibrium position is chosen as the reference position for the 

vehicle movement. The kinetic energy 𝑇 and potential energy 𝑈 of the vehicle are described 

respectively by the equations (1) And (2). 

𝑇 =
1

2
𝑀𝑣1𝑦̇𝑣1

2 +
1

2
𝑀𝑣2𝑦̇𝑣2

2                                                                     (1) 

𝑈 =
1

2
𝐾𝑣(𝑦2 − 𝑦1)2                                                                            (2) 

The dissipation function 𝐷 is expressed by: 

𝐷 =
1

2
𝐶𝑣(𝑦̇2 − 𝑦̇1)2                                                                            (3) 

The Lagrange equation is: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑦̇𝑖

) −
𝜕𝐿

𝜕𝑦𝑖

+
𝜕𝐷

𝜕𝑦̇𝑖

= 𝐹𝑖                            𝑖 = 1,2 … 𝑛𝑖             (4) 
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Or  𝐿 = 𝑇 − 𝑈  is Lagrange, and 𝑦𝑖  , 𝑦̇𝑖 And 𝐹𝑖  are generalized displacement, generalized 

velocity and generalized force, respectively. 𝑡 : the weather. 

The total number of degrees of freedom is two. By replacing the equations (1) has (3) in the 

equation (4), the equations of motion of the vehicle can be obtained as follows: 

𝑀𝑣2𝑦̈𝑣2
(𝑡) + 𝑐𝑣(𝑦̇𝑣2

(𝑡) − 𝑦̇𝑣1(𝑡)) + 𝑘𝑣 (𝑦𝑣2
(𝑡) − 𝑦𝑣1

(𝑡)) = 0                              (5)  

𝑀𝑣1𝑦̈𝑣1
(𝑡) + 𝑐𝑣(𝑦̇𝑣1

(𝑡) − 𝑦̇𝑣2(𝑡)) + 𝑘𝑣 (𝑦𝑣1
(𝑡) − 𝑦𝑣2

(𝑡)) = 𝐹𝑣                            (6)  

The resulting equations in matrix form are written: 

[
𝑀𝑣1 0

0 𝑀𝑣2
] {

𝑦̈𝑣1

𝑦̈𝑣2
} + [

𝑐𝑣 −𝑐𝑣

−𝑐𝑣 𝑐𝑣
] {

𝑦̇𝑣1

𝑦̇𝑣2
} + [

𝑘𝑣 −𝑘𝑣

−𝑘𝑣 𝑘𝑣
] {

𝑦𝑣1

𝑦𝑣2
} = {

𝐹𝑣

0
}           (7) 

𝐹𝑣  : the dynamic interaction force between the mass 𝑀𝑣1 and the beam [20] 

 

2-3 Bridge-convoy interaction forces: 

From the equation (7), by adding the static contribution, we can determine the interaction 

force at each bridge–vehicle contact point 𝑣 : 

𝐹𝑣(𝑡) = (𝑀𝑣1 + 𝑀𝑣2)𝑔 + 𝑀𝑣1𝑦̈𝑣1 + 𝑀𝑣2𝑦̈𝑣2                  𝑣 = 1,2, … , 𝑛𝑣             (8) 

The vertical displacement, velocity and acceleration of mass 𝑀𝑣1 are respectively are: 

𝑦𝑣1(𝑡) = 𝑤(𝑥𝑣(𝑡), 𝑡) + 𝑟(𝑥𝑣(𝑡))                                                                                                     (9) 

𝑦̇𝑣1(𝑡) = (
𝜕𝑤

𝜕𝑡
+ 𝑉

𝜕𝑤

𝜕𝑥
+ 𝑉

𝜕𝑟

𝜕𝑥
)|

𝑥=𝑥𝑣(𝑡)
                                                                                         (10) 

𝑦̈𝑣1(𝑡) = (
𝜕2𝑤

𝜕𝑡2
+ 2𝑉

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ 𝑉2

𝜕2𝑤

𝜕𝑥2
+ 𝑉2

𝑑2𝑟

𝑑𝑥2
)|

𝑥=𝑥𝑣(𝑡)

                                                       (11) 
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Figure III-3: Interaction force representation 

 

2-4 Modeling of the roadway profile [21]: 

Given the wide variety of phenomena involved in shaping the profile of a roadway, this 

profile should be assimilated to a stationary Gaussian random process with zero mean. This 

random process, 𝑟(𝑥), can be generated by summing n cosine functions of amplitude 𝛼, of 

angular frequency 𝜔 and phase 𝜃. On a: 

𝑟(𝑥) = ∑ 𝑎𝑛 cos(𝜔𝑛𝑥 − 𝜃𝑛)

𝑁

𝑘=1

                                              (12) 

Amplitude 𝑎𝑛 is the main parameter which determines the importance of road irregularities. 

Assuming that the phase angle 𝜃𝑛 is an independent random variable having a uniform 

probability density in the interval 0 has 2𝜋, we can demonstrate that the amplitude of the cosine 

functions is given by the following equation: 

𝑎𝑛 = √4𝑆(𝜔𝑛)∆𝜔                                                              (13) 

Or 𝑆(𝜔) is the power spectral density function representative of the irregularities. The 

exponential function describing the following power spectral density was proposed by: 

𝑆(𝜔) = 𝐴𝜔−𝑡                                                                    (14) 

 

with 𝐴 the coefficient of roughness of the roadway and t taken equal to 2. The expression 

describing the profile of the roadway becomes [1]: 

𝑟(𝑥) = ∑[√4𝑆(𝜔𝑛)∆𝜔 cos(𝜔𝑛𝑥 + 𝜃𝑛)]

𝑁

𝑘=1

                                (15) 
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Figure III -4: Modeling of bridge-vehicle interaction and evaluation of movement 

 

 

2-5 Equations of the movement of the vehicle model in the modal base [21]: 

Considering the expressions (9)-(10) , the equation (5) takes the following form: 

𝑀𝑣2𝑦̈𝑣2(𝑡) + 𝑐𝑣𝑦̇𝑣2(𝑡) + 𝑘𝑣𝑦𝑣2
(𝑡) − ∑ 𝑐𝑣𝜙𝑗(𝑥𝑣(𝑡))𝑞̇𝑖(𝑡)

𝑛

𝑗=1

− ∑(𝑘𝑣𝜙𝑗(𝑥𝑣(𝑡)) + 𝑐𝑣𝑉𝜙𝑗
′(𝑥𝑣(𝑡))𝑞𝑖(𝑡)

𝑛

𝑗=1

= 𝑘𝑣𝑟(𝑥𝑣(𝑡)) + 𝑐𝑣𝑉𝑟′(𝑥𝑣(𝑡)) ,         𝑣 = 1,2, … , 𝑛𝑣                                                   (16) 

 

The equation (18), in matrix form is written: 

[𝑀]{𝑦̈2} + [𝐶]{𝑦̇2} + [𝐾]{𝑦2} − [𝐶][𝜙]𝑇{𝑞̇} − ([𝐾][𝜙]𝑇 + 𝑉[𝐶][𝜙′]𝑇){𝑞}

= [𝐾]{𝑟} + 𝑉[𝐶]{𝑟′}                                                                                               (17) 

with 

[𝑀] = 𝑑𝑖𝑎𝑔[𝑀𝑣2]; 

[𝐶] = 𝑑𝑖𝑎𝑔[𝑐𝑣];                                                         𝑣 = 1,2, … , 𝑛𝑣                                              (18) 

[𝐾] = 𝑑𝑖𝑎𝑔[𝐾𝑣]; 

{𝑟} = {𝑟(𝑥𝑣)},                              
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2-6 Bridge motion equation [21]: 

The equation of transverse movement in pure bending of the bridge (continuous beam) is 

written: 

𝑚̅
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+ 𝑐

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝐸𝐼

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝑘 ∑ 𝑤(𝑥, 𝑡)𝛿(𝑥 − 𝑥𝑝)

𝑛𝑎

𝑝=1

= − ∑ 𝐹𝑣(𝑡)𝛿(𝑥 − 𝑥𝑣)

𝑛𝑣

𝑣=1

                  (19) 

𝑚̅ : mass per unit length 

𝑐 : the damping constant of the bridge 

𝐸 : Young's module 

𝐼 : the moment of inertia of the bridge 

𝛿 : the Dirac operator 

The mass 𝑚̅ and the moment of inertia 𝐼  are considered independent entities because it is 

assumed that the irregularities present in the raceway are of negligible magnitude. 

Consequently, these irregularities do not have a significant influence on the linear mass and 

inertia of the bridge. 

To determine the equations of motion of the bridge, we used the modal method and the 

Lagrange equations. The vertical displacement of the bridge can be expressed by: 

𝑤(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑞𝑖(𝑡)

𝑛

𝑖=1

                                                   (20) 

𝑛 : is the number of modes necessary for the convergence of the modal series. 

𝜙𝑖  : the natural modes of free vibration of the bridge. 

𝑞𝑖 : generalized coordinates. 

 

2-7 Determination of the equation of movement of the bridge projected into the 

modal base 

The equation of motion of the bridge projected into the modal base is obtained using the 

Lagrange equations: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖

) −
𝜕𝐿

𝜕𝑞𝑖

= 𝑄𝑖                                                                 (21) 

Or 𝑞𝑖 is the generalized coordinate and 𝑄𝑖 the corresponding generalized force.  

The kinetic energy and the elastic deformation energy of the beam in pure bending are given 

by: 
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𝑇𝑝 =
1

2
𝑚 ∫ (

𝜕𝑤

𝜕𝑇
)

2

𝑑𝑋
𝑙

0

                                                               (22) 

𝑉𝑝 =
1

2
𝐸𝐼 ∫ (

𝜕2𝑤

𝜕𝑋2
)

2

𝑑𝑋
𝑙

0

                                                             (23) 

Intermediate abscissa supports 𝑋 =  𝑆𝑝(𝑝 =  1,2, . . . , 𝑁) are modeled by linear springs of 

high rigidity and the same stiffness 𝑘. 

The potential energy due to the intermediate supports is given by: 

𝑉𝑠 =
1

2
𝑘(𝑤2(𝑆1) + ⋯ + 𝑤2(𝑆𝑁))                                               (24) 

 

Or 𝑤(𝑆𝑝) is the transverse displacement of the beam evaluated at 𝑋 = 𝑆𝑝. The virtual work of 

interaction forces 𝐹𝑣(𝑇) applied to the beam at the abscissa sections 𝐹𝑖𝑛(𝑇) for a virtual trip 𝐼𝑛 

𝑤 est: 

𝛿 = − ∑ 𝐹𝑣(𝑇)𝛿𝑤(𝑥𝑣(𝑇))

𝑛𝑣

𝑣=1

                                                     (25) 

 

For convenience, we use the following dimensionless quantities: 

𝑡 = 𝑇√𝐸𝐼/𝑚𝑙4  ;  𝑥𝑣 = 𝑋𝑣/𝑙 ; 

𝑤 = 𝑊/𝑙  ;   𝑠𝑝 = 𝑆𝑝/𝑙 ; 

𝑘̅ = 𝑘𝑙3/𝐸𝐼 ;   𝑔̅ = 𝑔𝑚𝑙3/𝐸𝐼;  𝑀̅𝑣1 = 𝑀𝑣1/𝑚𝑙 ;  

𝑀̅𝑣2 = 𝑀𝑣2/𝑚𝑙  ; 𝑘̅𝑣 = 𝑘𝑣𝑙3/𝐸𝐼; 

𝑦𝑣1
= 𝑌𝑣1

/𝑙  ;    𝑦𝑣2
= 𝑌𝑣2

/𝑙  ; 

𝜉𝑣 = 𝑐𝑣/2𝑀𝑣2𝜔𝑣  ;    𝜔̅𝑣 = 𝜔𝑝,1/𝜔𝑣 

𝑟 = 𝑅/𝑙; 𝑣̅ = 𝑉√𝑚𝑙2/𝐸𝐼  ;   𝐹̅𝑣 = 𝐹𝑣𝑙2/𝐸𝐼  ;  𝑥 = 𝑋/𝑙                                                              (26) 

 

Or  𝑃,1 = 2√(
𝐸𝐼

𝑚𝑙1
4) is the first proper pulsation of the bridge, 

 𝑣 = √(
𝑘𝑣

𝑀𝑣2
) the vehicle's own pulsation 𝑣 

𝑙 : the length of the bridge 
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𝑚 : the mass of the bridge per unit of length 


𝑣
 : the damping factor in the vehicle suspension 𝑣 

𝑙1 : the length of the span. 

 

The Lagrange of the continuous beam is written: 

𝐿 = 𝑇𝑃 − 𝑉𝑃 − 𝑉𝑆                                                            (27) 

 

Considering the expressions (2) has (4) and dimensionless quantities (6), l’expression (7) 

becomes: 

𝐿 =
𝐸𝐼

2𝑙
(∫ (

𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥
𝑙

0

− ∫ (
𝜕2𝑤

𝜕𝑥2
)

2

𝑑𝑥
𝑙

0

− 𝑘̅(𝑤2(𝑆1) + ⋯ + 𝑤2(𝑆𝑁)))                            (28) 

Using the modal method, the dimensionless transverse displacement of the bridge is given by: 

𝑤(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑞𝑖(𝑡)

𝑛

𝑖=1

                                                  (29) 

Where the 𝑞𝑖(𝑡) are the generalized coordinates to be determined, and 𝜙𝑖(𝑥) the clean 

deformations of the bridge. Taking into account dimensionless quantities (6) and after 

projection of the expression (5) in the modal base, the generalized force 𝑄𝑖 has the expression: 

𝑄𝑖 = −
𝐸𝐼

𝑙
∑ [(𝑀̅𝑣1 + 𝑀̅𝑣2)𝑔̅𝜙𝑖(𝑥𝑣(𝑡)) + 𝑀̅𝑣2𝜙𝑖(𝑥𝑣(𝑡)) + 𝑦̈𝑣2(𝑡)

𝑛𝑣

𝑣=1

+ 𝑀̅𝑣1𝜙𝑖(𝑥𝑣(𝑡))𝜙𝑗(𝑥𝑣(𝑡))𝑞̈𝑗(𝑡) + 2𝑣̅𝑀̅𝑣1𝜙𝑖(𝑥𝑣(𝑡))𝜙′
𝑗
(𝑥𝑣(𝑡))𝑞̇𝑗(𝑡)

+ (𝑣̅2𝑀̅𝑣1𝜙𝑖(𝑥𝑣(𝑡))𝜙′′
𝑗
(𝑥𝑣(𝑡)) + 𝑎̅𝑀̅𝑣1𝜙𝑖(𝑥𝑣(𝑡))𝜙′

𝑗
(𝑥𝑣(𝑡))𝑞𝑗(𝑡)

+ 𝑀̅𝑣1𝜙𝑖(𝑥𝑣(𝑡))(𝑣̅2𝑟′′(𝑥𝑣(𝑡))𝑎̅𝑟′(𝑥𝑣(𝑡)))]                                                (30) 

Or 𝑣̅ And 𝑎̅  are respectively the dimensionless speed and acceleration of the convoy. 

By projecting (8) in the modal base (9), using the Lagrange equations (1), and after 

factorization, we obtain the equation of motion of the bridge: 

∑ 𝑚𝑖𝑗𝑞̈𝑗(𝑡)

𝑛

𝑗=1

+ ∑ 𝑐𝑖𝑗𝑞̇𝑗(𝑡)

𝑛

𝑗=1

+ ∑ 𝑘𝑖𝑗𝑞𝑗(𝑡)

𝑛

𝑗=1

+ ∑ 𝑀𝑣2𝜙𝑖(𝑥𝑣(𝑡))𝑦̈2𝑣(𝑡)

𝑛𝑣

𝑣=1

= 𝑃𝑖(𝑡)    𝑖 = 1,2, … , 𝑛    (31)   

 

With  𝑚𝑖𝑗 , 𝑐𝑖𝑗 , 𝑘𝑖𝑗 and 𝑃𝑖 respectively masses, damping, stiffness and generalized forces. 

with  
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𝑚𝑖𝑗 = 𝛿𝑖𝑗 + ∑ 𝑀𝑣1𝜙𝑖(𝑥𝑣)𝜙𝑗(𝑥𝑣)

𝑛𝑣

𝑣=1

                                                                                                               (32) 

𝑐𝑖𝑗 = 2𝜉𝑗𝜔𝑗𝛿𝑖𝑗 + 2𝑉 ∑ 𝑀𝑣1𝜙𝑖(𝑥𝑣)𝜙𝑗
′(𝑥𝑣)

𝑛

𝑗=1

                                                                                  (33) 

𝑘𝑖𝑗 = 𝜔𝑗
2𝛿𝑖𝑗 + 𝑘 ∑ 𝜙𝑖(𝑠𝑝)𝜙𝑗(𝑠𝑝)

𝑛𝑎

𝑝=1

+ 𝑉2 ∑ 𝑀𝑣1𝜙𝑖(𝑥𝑣)𝜙𝑗
′′(𝑥𝑣)

𝑛𝑣

𝑣=1

                                                    (34) 

𝑃𝑖 = − ∑(𝑀𝑣1 + 𝑀𝑣2)𝑔𝜙𝑖(𝑥𝑣)

𝑛𝑣

𝑣=1

− 𝑉2 ∑ 𝑀𝑣1𝑟′′(𝑥𝑣)𝜙𝑖(𝑥𝑣)

𝑛𝑣

𝑣=1

                                                        (35) 

 

The equation (31)  , in matrix form is written: 

[𝑀∗]{𝑞̈} + [𝐶∗]{𝑞̇} + [𝐾∗]{𝑞} + [𝜙][𝑀]{𝑦̈2} = {𝑃∗}                                                                 (36) 

With: 

[𝑀∗] = [𝑚𝑖𝑗] ;[𝐶∗] = [𝑐𝑖𝑗] ;[𝐾∗] = [𝑘𝑖𝑗] ;{𝑃∗} = {𝑃𝑖(𝑡)} ;         𝑖, 𝑗 1, 2, . . . , 𝑛                      (37) 

[𝜙] = [𝜙𝑖(𝑥𝑣)]; [𝑀] = 𝑑𝑖𝑎𝑔[𝑀𝑣2]; {𝑦̈2}{𝑦̈𝑣2}        𝑖 =  1, 2, . . . , 𝑛, 𝑣 =  1, 2, . . . , 𝑛𝑣               (38) 

 

𝑚𝑖𝑗 : the masses 

𝑐𝑖𝑗 : The shock absorbers 

𝑘𝑖𝑗 : stiffness 

𝑃𝑖 : generalized forces 

Let's put the equations of motion together (17) And (36) in the following matrix form: 

[
[𝑀∗] [𝜙][𝑀]

[0] [𝑀]
] {

𝑞̈
𝑦̈2

} + [
[𝐶∗] [0]

−[𝐶][𝜙]𝑇 [𝐶]
] {

𝑞̇
𝑦̇2

} 

+ [
[𝐾∗] [0]

−[𝐾][𝜙]𝑇 − 𝑉[𝐶][𝜙′]𝑇 [𝐾]
] {

𝑞
𝑦2

} = {
{𝑃∗}

[𝐾]{𝑟} + 𝑉[𝐶]{𝑟′}
}                       (39) 

 

To solve the coupled equations of bridge-convoy movement, there are two methods:  

● The coupled method which consists of coupling the physical DOF of the vehicles with 

the modal variables of the bridge (39) using the modal method and direct integration 

 

● The decoupled method which consists of solving the two coupled systems of equations 

(17)And (36)in a decoupled manner. In this case, an iterative calculation process 
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seeks the dynamic balance of the interaction forces between the bridge and the 

vehicles at each moment. We solve the system of coupled equations (17)And (36), in 

a way decoupled by the Newmark method whose unknowns are the 𝑞𝑗(𝑗 =  1, … , 𝑛), 

and 𝑦2𝑣 (𝑣 =  1, … , 𝑛𝑣). 

2-8 Numerical resolution of the equations of motion [21]: 

To solve the coupled bridge-vehicle equations of motion (17) And (36), we use the 

Newmark method. The equation of motion of the bridge (36) has 𝑡 + ∆𝑡 is written: 

[𝑀∗]{𝑞̈}𝑡+∆𝑡 + [𝐶∗]{𝑞̇}𝑡+∆𝑡 + [𝐾∗]{𝑞}𝑡+∆𝑡 + [𝜙][𝑀]{𝑦̈2}𝑡+∆𝑡 = {𝑃∗}𝑡+∆𝑡                (40)   

Using Newmark's method, the generalized displacements and velocities respectively are:  

{𝑞}𝑡+∆𝑡 = {𝑞}𝑡 + ∆𝑡{𝑞̇}𝑡 + ∆𝑡2(0,5 − 𝛽){𝑞̈}𝑡 + 𝛽∆𝑡2{𝑞̈}𝑡+∆𝑡                                   (41) 

{𝑞̇}𝑡+∆𝑡 = {𝑞̇}𝑡 + (1 − 𝛾)∆𝑡{𝑞̈}𝑡 + 𝛾∆𝑡{𝑞̈}𝑡+∆𝑡                                                              (42) 

Or 𝛾 And 𝛽 are the stability parameters of the Newmark method, ∆𝑡 and the time step of 

integration. 

Let's replace the expressions (41) And (42) In (40), after factorization we obtain: 

[𝑆]{𝑞̈}𝑡+∆𝑡 + [𝐶∗]{𝑞̇∗}𝑡+∆𝑡 + [𝐾∗]{𝑞∗}𝑡+∆𝑡 + [𝑀2
∗]{𝑦̈2}𝑡+∆𝑡 = {𝑃∗}𝑡+∆𝑡                   (43) 

With 

[𝑆] = [𝑀∗] + 𝛾∆𝑡[𝐶∗] + 𝛽∆𝑡2[𝐾∗]; [𝑀2
∗] = [𝜙][𝑀]                                                    (44) 

{𝑞̇∗}𝑡+∆𝑡 = {𝑞̇}𝑡 + (1 − 𝛾)∆𝑡{𝑞̈}𝑡                                                                                      (45) 

{𝑞∗}𝑡+∆𝑡 = {𝑞}𝑡 + ∆𝑡{𝑞̇}𝑡 + (0,5 − 𝛽)∆𝑡2{𝑞̈}𝑡                                                               (46) 

Multipions (43) about [𝑆]−1 , we obtain: 

{𝑞̈}𝑡+∆𝑡 = {𝑃}𝑡+∆𝑡 − [𝑈]{𝑞̇∗}𝑡+∆𝑡 − [𝑉]{𝑞∗}𝑡+∆𝑡 − [𝑍]{𝑦̈}𝑡+∆𝑡                                     (47) 

With 

{𝑃}𝑡+∆𝑡 =  [𝑆]−1{𝑃∗}𝑡+∆𝑡;  [𝑈] = [𝑆]−1[𝐶∗]; [𝑉] = [𝑆]−1[𝐾∗]; [𝑍] = [𝑆]−1[𝑀2
∗]       (48) 

 

The equation of motion of mass 𝑀𝑣 has 𝑡 + ∆𝑡 is written: 

[𝑀]{𝑦̈2}𝑡+∆𝑡 + [𝐶]{𝑦̇2}𝑡+∆𝑡 + [𝐾]{𝑦2}𝑡+∆𝑡 − [𝐶][𝜙]𝑇{𝑞̇}𝑡+∆𝑡

− ([𝐾][𝜙]𝑇 + 𝑉[𝐶][𝜙′]𝑇){𝑞}𝑡+∆𝑡 = [𝐾]{𝑟}𝑡+∆𝑡 + 𝑉[𝐶]{𝑟′}𝑡+∆𝑡       (49)  

Using Newmark's method, the vehicle speeds and movements respectively are: 

{𝑦̇2}𝑡+∆𝑡 = {𝑦̇2}𝑡 + (1 − 𝛾)∆𝑡{𝑦̈2}𝑡 + 𝛾∆𝑡{𝑦̈2}𝑡+∆𝑡                                                       (50) 
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{𝑦2}𝑡+∆𝑡 = {𝑦2}𝑡 + ∆𝑡{𝑦̇2}𝑡 + (0,5 − 𝛽)∆𝑡2{𝑦̈2}𝑡 + 𝛽∆𝑡2{𝑦̈2}𝑡+∆𝑡                           (51) 

Let's replace the expressions (50)  and (51)  in equation (49),  after factorization, we obtain 

[𝑇]{𝑦̈2}𝑡+∆𝑡 + [𝐶]{𝑦̇2
∗}𝑡+∆𝑡 + [𝐾]{𝑦2

∗}𝑡+∆𝑡 − [𝐴]{𝑞̇}𝑡+∆𝑡 − [𝐺]{𝑞}𝑡+∆𝑡 = {𝑅}𝑡+∆𝑡    (52) 

With 

[𝑇] = [𝑀] + 𝛾∆𝑡[𝐶] + 𝛽∆𝑡2[𝐾]; [𝐴] = [𝐶][𝜙]𝑇; [𝐺] = [𝐾][𝜙]𝑇 + 𝑣[𝐶][𝜙′]          (53) 

{𝑅}𝑡+∆𝑡 = [𝐾]{𝑟}𝑡+∆𝑡 + 𝑉[𝐶]{𝑟′}𝑡+∆𝑡                                                      (54) 

{𝑦̇2
∗}𝑡+∆𝑡 = {𝑦̇2}𝑡 + (1 − 𝛾)∆𝑡{𝑦̈2}𝑡                                                          (55) 

{𝑦2
∗}𝑡+∆𝑡 = {𝑦2}𝑡 + ∆𝑡{𝑦̇2}𝑡 + (0,5 − 𝛽)∆𝑡2{𝑦̈2}𝑡                                (56) 

Let's multiply the equation (52) about[𝑇]−1, we obtain: 

{𝑦̈2}𝑡+∆𝑡 = {𝑅∗}𝑡+∆𝑡 − [𝑇∗]{𝑦̇2
∗}𝑡+∆𝑡 − [𝑈∗]{𝑦2

∗}𝑡+∆𝑡 + [𝐴∗]{𝑞̇}𝑡+∆𝑡 + [𝐺∗]{𝑞}𝑡+∆𝑡  (57) 

With 

{𝑅∗}𝑡+∆𝑡 = [𝑇]−1{𝑅}𝑡+∆𝑡; [𝑇∗] = [𝑇]−1[𝐶]; [𝑈∗] = [𝑇]−1[𝐾] 

[𝐴∗] = [𝑇]−1[𝐴]; [𝐺∗] = [𝑇]−1[𝐺]                                                                                       (58) 

 

 

Conclusion 

The vibration model presented in this chapter provides a comprehensive framework for 

analyzing the dynamic behavior of a multi-span bridge during convoy passage, we have gone 

through the different elements to establish the modeling of the essential parts of this study, a 

road bridge during a passage of a convoy, roadway profile, vehicle, and the equations necessary, 

equations of movement of the vehicle, the bridge motion equation, and lastly the method used 

to perform the numerical resolution of the equations of motion, by precising and defining the 

mathematical tools, it will enable us to run the simulation and analyze the results. 
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1-INTRODUCTION 

The bridge-convoy interaction is an important phenomenon, generates several undesirable 

effects due to the vibrations of the structure and of the vehicle. The dynamic behavior of road 

bridges has become a necessity in the field of engineering of engineering structures either to 

take measures during the design to minimize these effects or to maintain these structures.  

In this chapter, we present a study of the dynamic behavior of a road bridge modeled by a 

continuous equivalent multi-span beam simply supported, excited by the passage of vehicles. 

Several physical parameters can be studied: the displacement, the vertical acceleration and 

speed, the bridge-vehicle interaction forces and the damping factor. 

Due to the difficulties of experimental validation of the results, the numerical simulations are 

carried out under MATLAB. 

 

2-Numerical example of validation  

In this example, we study the dynamic behavior of a beam on two simple supports under the 

effect of a mobile vehicle with two degree of freedom Figure1 

The vehicle speed is assumed to be constant 𝑉 =  80 𝑘𝑚/ℎ. The equivalent beam of length 

𝐿 =  60 𝑚, mass per unit length 𝑚 =  230000 𝑘𝑔/𝑚, quadratic moment 𝐼 =  2.9 𝑚4 and a 

Young's modulus 𝐸 =  2.87 × 10 9𝑁/𝑚2 The modeling of the bridge is general enough to be 

able to introduce the number of intermediate supports and vehicles Table 1 

The vehicles of the convoy studied are of mass 𝑀𝑣2 =  6000 𝑘𝑔 and of mass 𝑀𝑣1  =  200 𝑘𝑔 

(wheel mass). The stiffness and the damping of the viscoelastic suspension are respectively, 

kv  =  1.595 × 106 N/m and cv  = 0. For a bridge simply supported at its ends, the 

convergence takes place for a number of modes n =  2, 6, 8 and 12,for a number of 

intermediate supports N = 0. Table 2 

 

Figure IV -1: A simply supported beam subjected to the displacement of a vehicle with one 

axle 
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Table 1. Parameters of the bridge model (continuous beam) 

Data Values Unit 

Length 𝐿 

Mass 𝑚 

Quadratic moment 𝐼 

Young's modulus 𝐸  

60 

230000 

2.9 

2.87 × 109 

𝑚 

𝑘𝑔/𝑚 

𝑚4 

𝑁/𝑚2 

 

Table 2. Parameters of the vehicle model 

Data Values Unit 

Mass 𝑀𝑣2 

Mass 𝑀𝑣1 

The stiffness 𝑘𝑣 

The damping 𝑐𝑣  

6000 

200 

1.595 × 106 

0 

𝑘𝑔 

𝑘𝑔 

𝑁/𝑚 

𝑁𝑠/𝑚 

 

Figs 2.3 and 4 respectively represent the displacement, speed and the vertical acceleration in 

the middle of the bridge (Point C) of the beam as a function of the travel time.  

Figs. 5.6 and 7 show the vertical displacement speed and acceleration of the vehicle (Masse 

𝑴𝒗𝟐) as a function of time. It is noted that the results obtained from the present study are in 

excellent agreement 

 

Figure IV-2: Vertical displacement in the middle of the bridge (Point C) as a function of 

time 
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Figure IV-3: Vertical speed from the bridge to the middle (Point C) as a function of time 

 

 

Figure IV-4: Vertical acceleration in the middle (Point C) of the bridge as a function 
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Figure IV-5: Vertical displacement of the vehicle body 𝑴𝒗𝟐 as a function of time 

 

Figure IV-6: Vertical speed of the vehicle body 𝑴𝒗𝟐 as a function of time 
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Figure IV-7: Vertical acceleration of the vehicle body 𝑴𝒗𝟐 as a function of time 

 

3-Influence of the damping factor on the dynamic behavior of the convoy 

The numerical resolution of the system of equations of coupled motion is carried out using 

the Newmark average acceleration algorithm with an iterative calculation, without taking into 

account the defects in the shape of the running track and keeping the speed of the rolling of the 

convoy constant. As described in the previous chapter. 

Based on previous mathematical developments, we have developed a software in MATLAB 

language, allowing the numerical resolution of the two coupled equations of motion, using the 

Newmark average acceleration algorithm ( =  0,5) et ( =  0,25) with an iterative 

calculation. This scheme is unconditionally stable, of maximum precision; however, the choice 

of the time step is not limited. The results of this article do not take into account the shape 

defects of the raceway, given the complexity of defining the profile 𝑅(𝑋) 

In this case, we have modified the parameters of the bridge-convoy system. 

The vehicle speed is assumed to be constant 𝑉 = 20 𝑚/𝑠. The structure of the bridge tested is 

modeled by an equivalent beam of length 𝐿 =  60 𝑚, mass per unit length  𝑚 = 35000 𝑘𝑔/𝑚, 

quadratic moment 𝐼 = 3.81 𝑚4 and a Young's modulus 𝐸 = 29 × 109 N/m2 The modeling of 

the bridge is fairly general to be able to introduce the number of intermediate supports and 

vehicles, the number of intermediate supports 𝑁 = 0 

The vehicles of the studied convoy are of mass 𝑀𝑣2 = 2000 𝑘𝑔 kg and of mass   𝑀𝑣1  =
200 𝑘𝑔 (masse de roue). The stiffness and the damping of the viscoelastic suspension are 

respectively 𝑘𝑣 = 9. 106 𝑁/𝑚 and 𝑐𝑣 = 1.8 × 105 𝑁𝑠/𝑚. For a bridge simply supported at its 

ends, the convergence takes place for a number of modes 𝑛 =  2, 6, 8 𝑒𝑡 12 
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Table 3. Parameters of the bridge model (continuous beam) 

Data Values Unit 

Length 𝐿 

Mass 𝑚 

Quadratic moment 𝐼 

Young's modulus 𝐸  

60 

35000 

3.81 

29 × 109 

𝑚 

𝑘𝑔/𝑚 

𝑚4 

𝑁/𝑚2 

 

 

Table 4. Parameters of the vehicle model 

Data Values Unit 

Mass 𝑀𝑣2 

Mass 𝑀𝑣1 

The stiffness 𝑘𝑣 

The damping 𝑐𝑣 

2000 

200 

9 × 106 

1.8 × 105 

𝑘𝑔 

𝑘𝑔 

𝑁/𝑚 

𝑁𝑠/𝑚 

 

The bridge displacement is being calculated at each time step for along the bridge as the vehicle 

move across it. This means the bridge displacement is being updated for vehicle position as it 

traverses the bridge (The point of contact between the bridge and the vehicle) 

 

Figs 8 to 11 show the influence of the viscous damping factor of the suspensions on the 

displacements, the speeds, the accelerations and the interaction force of the vehicle, for a 

vehicle speed 𝑉 = 20 𝑚/𝑠 

 

The essential remarks that can be drawn from these figures are:  

➢ The significant decrease in the amplitudes for damping coefficients of v = 0,15 and 0,2 

in comparison with the case without damping. 

 

➢ The disappearance with the damping of the dynamic amplification of the vertical 

displacements, speeds and accelerations of the vehicles which manifests itself for which 

v =0. 
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Figure IV-8: Influence of Damping Factor on Bridge Displacement 

 

 

Figure IV-9: Influence of Damping Factor on Bridge Vertical Speed 
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Figure IV-10: Influence of Damping Factor on Bridge Vertical Acceleration 

 

 

Figure IV-11: Influence of Damping Factor on Vertical Interaction Force 
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4-Influence of the Vehicle speed on the dynamic bridge-convoy behavior 

Figs. 12-13 and 14 represent the influence of the speed of the vehicle on the vertical 

displacement of the bridge under the wheel of the vehicle respectively for three Vehicle 

speeds of the convoy (40, 80 and 120 km/h), 
𝑣

 = 0, 𝑁 =  0 

 

Figure IV-12: Influence of Vehicle Speeds on the Vertical Displacement of the Bridge 

 

Figure IV-13: Influence of Vehicle Speeds on the Vertical speed of the Bridge 
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Figure IV-14: Influence of Vehicle Speeds on the Vertical Acceleration of the Bridge 
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5-Influence of the number of vehicles on the dynamic bridge-convoy behavior 

We respectively present in Figs. 6-8 the vertical displacement bridge-convoy as well as the 

force of interaction between them for a bridge of 60 m in length, without intermediate supports 

(𝑁 = 0) and for a damping coefficient 𝜉𝑣  =  0.15 

The number of iterations that allows the convergence of the dynamic bridge-convoy interaction 

increases with the increase in the number of vehicles on the bridge and decreases with the 

increase in the running speed of the convoy 

 

 

 

Figure IV-15: Influence of Number of Vehicles on Vertical Displacement of the Bridge 
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Figure IV-16: Influence of Number of Vehicles on Vertical Speed of the Bridge 

 

 

 

 

Figure IV-17: Influence of Number of Vehicles on Vertical Acceleration of the Bridge 
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Conclusion 

In this chapter, the dynamic behavior of a multi-span road bridge under convoy passage is 

studied through numerical simulations using MATLAB. after establishing the mathematical 

tools necessary in the previous chapter, several physical parameters were studied, such as the 

displacement, the vertical acceleration and speed, the bridge-vehicle interaction forces and the 

damping factor, the focus is on understanding how varying the damping factor and convoy 

speed influence structural response. Results show that increasing damping reduces bridge 

displacement, vertical speed, acceleration, and interaction forces, indicating its crucial role in 

mitigating structural vibrations and enhancing durability. these results hightlights how different 

factors can dictate the dynamic response of a structure. 
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Conclusion general 

this thesis has given both a general overview and a detailed overview with regards to 

conducting a study to look at the dynamic behavior of bridges loaded with moving traffic 

loads, after defining the phenomenon created as a result of the movements of the vehicle 

or vehicles and taking a look at the factors at play, understanding the relationship 

between the dynamic behavior of the structure and the factors coupled with the change 

in parameters showcases the patterns with which we can safely predict the behavior of 

the structure, in the process of doing so the complexity of the study required a unified 

model which can be used for different elements in the study to practically introduce 

mathematical and numerical tools to simulate the influence of the factors at hand. the 

mathematical and numerical tools made it possible for us to effectively reduce the 

complexity and integrate real life elements to a computerized simulation, The findings 

underscore the significant impact of increased damping, which effectively minimizes 

bridge displacement, vertical speed, acceleration, and interaction forces. This highlights 

the critical role of damping in reducing structural vibrations and bolstering durability. 

Moreover, these results illuminate how various factors influence the dynamic response 

of bridge structures, providing valuable insights into optimizing their performance under 

dynamic loading conditions. 
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Annexe 1 

CINEMATIC EXCITATION 

 

The figure shows an example of a physical model of cinematic excitation. 

 

the vertical movement of point B along the 𝒚 axis generates vibrations in the vertical mass 

block M. this model is used to analyze the vertical vibrations of a road vehicle moving on a 

road in the profile of the surface condition possibly approached by a harmonic function. (in 

the form of a sine or cosine) 

the bus is represented by the mass block M and the suspension elements of the bus have the 

following characteristics: 

K: stiffness constant 

   C: damping coefficient 

The surface condition of the road presents undulations of period L and amplitude a, the bus is 

moves with a constant speed v 

Putting into equation: 

From the period of the road profile, the corresponding pulse is sought, the length L is given 

by: 

𝐿 = 𝑣𝑇  from 𝑇 =
𝐿

𝑣
                                                                 (1) 

𝜔 =
2𝜋

𝑇
=

2𝜋𝑣

𝐿
                                                                        (2) 

And the movement of point B along the y axis can be represented by: 

𝑦 = 𝑎 sin 𝜔𝑡                                                                          (3) 

The equation of the movement of the bus is given by: 

𝑀𝑥̈ = −𝑘𝑥 − 𝑐𝑥̇ + 𝑘𝑦 + 𝑐𝑦̇                                                   (4) 
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Introducing the expression (3) into (4) : 

𝑀𝑥̈ + 𝑘𝑥 + 𝑐𝑥̇ = 𝑘𝑎 sin 𝜔𝑡 + 𝑐𝑎𝜔 cos 𝜔𝑡                                       (5)  

 

Let's divide by the mass M, 

𝑥̈ + 2𝜂𝜔0𝑥̇ + 𝜔0
2𝑥 = 𝜔0

2𝑎 sin 𝜔𝑡 + 2𝜔𝜂𝜔0𝑎 cos 𝜔𝑡 = 𝑞 sin(𝜔𝑡 + 𝛼)                          (6)  

Or 

𝑞 = 𝑎𝜔0
2√1 + 4𝜂2 (

𝜔

𝜔0
)

2

                                                            (7) 

Without the generalization of the formulation being affected, we can adopt the model next 

mathematical by neglecting the phase 𝛼 in equation (6). 

𝑥̈ + 2𝜂𝜔0𝑥̇ + 𝜔0
2𝑥 = 𝑞 sin 𝜔𝑡                                                        (8) 

The movement of the block M along the axis is done according to the law already studied in 

the case of a damped forced 1 dof system: 

𝑥 = 𝐴 sin(𝜔𝑡 + 𝜑)                                                                       (9) 

Or 

𝐴 =

𝑞
𝜔0

2

√(1 − (
𝜔
𝜔0

)
2

)
2

+ 4𝜂2 (
𝜔
𝜔0

)
2

             𝑒𝑡                      tan 𝜑 =
2𝜂

𝜔
𝜔0

1 − (
𝜔
𝜔0

)
2               (10) 

 

By introducing the expression of (7) giving q in that of the vibration amplitude A on find: 

𝐴 =
𝑎√1 + 4𝜂2 (

𝜔
𝜔0

)
2

√(1 − (
𝜔
𝜔0

)
2

)
2

+ 4𝜂2 (
𝜔
𝜔0

)
2

                  𝑒𝑡                     tan 𝜑 =
2𝜂

𝜔
𝜔0

1 − (
𝜔
𝜔0

)
2              (11) 

 

If we introduce TR The transmissibility factor, 

 

𝑇𝑅 =
𝐴

𝑎
;  
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𝑇𝑅 =
√1 + 4𝜂2 (

𝜔
𝜔0

)
2

√(1 − (
𝜔
𝜔0

)
2

)
2

+ 4𝜂2 (
𝜔
𝜔0

)
2

                                                   (12) 

 

 

The transmissibility factor TR which represents the ratio of the amplitude of the force 

transmitted on the amplitude of the excitation force as well as the phase 𝜑 are represented in 

the following graphs as a function of the ratio of the pulses 𝜏 =
𝜔

𝜔0
 

 

  

For values of 𝜔 ≥ 1.4𝜔0 , it is possible to have vibration amplitudes of the which are smaller 

than those of the cinematic excitation. 

The expression of the force transmitted to the foundation is written from (4): 

𝑄 = 𝑘𝑥 + 𝑐𝑥 + 𝑘𝑦̇ − 𝑘𝑦̇                                                                        

= 𝑘𝐴 sin(𝜔𝑡 + 𝜑) + 𝑐𝜔𝐴 cos(𝜔𝑡 + 𝜑) − 𝑘𝑎 sin 𝜔𝑡 − 𝑐𝜔𝑎 cos 𝜔𝑡         (13) 

= |𝑅| sin(𝜔𝑡 + 𝛾)                                                                            

The problem of minimizing the reaction force or amplitude A is called: Vibro-insulation 
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Annexe 2 

When a bridge is subjected to dynamic loading from a moving mass, the resulting mathematical 

representation of its motion is expressed through the equation of motion 

[𝑀∗]{𝑞̈} + [𝐶∗]{𝑞̇} + [𝐾∗]{𝑞} = {𝑃∗} 

With: 

[𝑞] = {𝑞11 … 𝑞1𝑚 … 𝑞𝑛1 … 𝑞𝑛𝑚}𝑇 

 

[𝑀∗ ] = 𝐷𝑖𝑎𝑔(𝑀11 … 𝑀1𝑚 … 𝑀𝑛1 … 𝑀𝑛𝑚 ) 

 

[𝐶∗ ] = 2𝐷𝑖𝑎𝑔(ξ11𝜔11𝑀11 … ξ1𝑚𝜔1𝑚𝑀1𝑚 … ξ𝑛1𝜔𝑛1𝑀𝑛1 … ξ𝑛𝑚𝜔𝑛𝑚𝑀𝑛𝑚 ) 
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Annexe 3 

The Newmark method is a one-step numerical integration method. On y calculate the 

state of the system at a given moment 𝑡 + Δ𝑡 as a function of the state known at time 𝑡 by the 

Taylor's formula: 

 

With the {𝑅𝑛} is the rest of the development of order n 

 

The formula makes it possible to calculate the speed and the displacement at the instant 𝑡 

 

The approximation therefore consists in calculating the integrals of the acceleration. For to do 

this, let's express the following: in the interval {𝑞̈}𝜏, [𝑡, 𝑡 + Δ𝑡]as a function of {𝑞̈}𝑡 and 

{𝑞̈}𝑡+Δ𝑡 that’s at the terminals of the interval: 

 

Let's multiply by 1 − 𝛾 and by 𝛾 respectively we obtain: 

 

We find: 
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Annexe 4 

Resolution Algorithm 

1. Initialize Parameters 

• Define the bridge parameters: length (L), mass per unit length (m), moment of inertia 

(I), Young's modulus (E). 

• Define vehicle parameters: mass of the wheel (𝑀𝑣1), mass of the vehicle (𝑀𝑣2), stiffness 

of the suspension (𝑘𝑣), damping factor (v). 

• Calculate the damping of the suspension (𝑐𝑣). 

• Define convoy parameters: speed (V), Newmark parameters (gamma, beta), distance 

between vehicles. 

2. Calculate Derived Parameters 

• Natural frequency of the vehicle: 𝑣 = √(
𝑘𝑣

𝑀𝑣2
)  

• First natural frequency of the bridge: 𝑃,1 = 2√(
𝐸𝐼

𝑚𝑙1
4) 

• Time step: 𝑑𝑡 = 0.01 𝑠  

• End time: 𝑡𝑒𝑛𝑑 =
𝐿

𝑉
 

• Number of time steps: 𝑛𝑢𝑚_𝑠𝑡𝑒𝑝𝑠 =
𝑡𝑒𝑛𝑑

𝑑𝑡
 

3. Set Up External Force Vector 

• Define an example external force vector 𝐹𝑣 that varies with time. 

4. Loop Over Number of Vehicles 

• Define the number of vehicles (𝑛𝑣) and iterate over different values (e.g., 1, 2, 3). 

5. Initialize Displacement and Velocity Arrays 

• Initialize arrays to store the vertical displacements of the bridge and each vehicle at each 

time step. 

6. Calculate Initial Conditions 

• Determine the initial positions of the vehicles based on the distance between them. 

• Calculate the corresponding initial times. 

7. Time Integration Using Newmark Method 

• For each time step, compute the effective stiffness (𝐾𝑒𝑓𝑓) and damping (𝐶𝑒𝑓𝑓)  for each 

vehicle. 
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• Update the displacement of each vehicle using the effective force. 

8. Calculate Total Displacement of Bridge 

• Sum the displacements of all vehicles to get the total displacement of the bridge at each 

time step. 

9. Plot Results 

Plot the vertical displacement of the bridge as a function of the distance covered by the vehicles 

for each case. 
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Annexe 5 
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End 


