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زال تطور مرض باركنسون يمثل تحدياً كبيرًا، مع تزايد عدد الحالات وصعوبة التشخيص الدقيق على الرغم من التقدم الطبي وتقنيات يلا  :ملخص

التصوير. يمكن لتقنيات الذكاء الاصطناعي تحسين دقة الكشف. هدفنا هو تطوير نظام لتصنيف صور الرنين المغناطيسي لتشخيص مرض باركنسون 

 DenseNet121و ResNet50و VGG16مع نماذج الشبكات العصبية التلافيفية المدربة مسبقاً مثل  NTUAدة البيانات باستخدام قاع

 المقترح. CNNبالإضافة الى نموذج  VGG19و MobileNetV2و

الذكاء الاصطناعي، صور الرنين المغناطيسي، نماذج مدربة مسبقًا، الشبكات العصبية الالتفافية،  :المفاتيح كلمات

NTUA. 

Résumé : La progression de la maladie de Parkinson reste un défi majeur, avec un 

nombre de cas en augmentation et un diagnostic exact souvent difficile malgré les 

avancées médicales et les techniques d'imagerie. Les techniques d’Intelligence 

Artificielle peuvent améliorer la précision de la détection. Notre objectif est de 

développer un système de classification d'images IRM pour le diagnostic de la 

maladie de Parkinson, en utilisant la base de données NTUA avec des modèles pré-

entraînés de réseaux de neurones convolutifs tels que VGG16, ResNet50, 

DenseNet121, MobileNetV2 et VGG19, ainsi que le modèle CNN proposé. 

  Mots clés : Intelligence artificielle, Images IRM, Modèle pré-entrainés, CNN, 

NTUA. 

Abstract: The progression of Parkinson's disease remains a major challenge, with an 

increasing number of cases and often difficult exact diagnosis despite medical 

advancements and imaging techniques. AI techniques can enhance detection 

accuracy. Our objective is to develop an MRI image classification system for 

Parkinson's disease diagnosis using NTUA dataset with pre-trained convolutional 

neural network models such as VGG16, ResNet50, DenseNet121, MobileNetV2, and 

VGG19, with a proposed CNN model. 

Keywords: Artificial intelligence, MRI images, Pre-trained model, CNN, NTUA. 
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General introduction 

 

 

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects 

millions of people worldwide, primarily impacting older adults. It severely limits individuals' 

physical and functional abilities, diminishing their mobility and capacity to perform daily 

activities. Early and accurate diagnosis of PD is crucial for implementing timely interventions 

that can enhance patients' quality of life and slow disease progression. However, despite 

advancements in medical imaging and diagnostic techniques, diagnosing PD, especially in its 

early stages, remains a significant challenge. 

In recent years, technology has made significant strides, particularly with the spread of 

digitalization, which has enhanced various fields, including medical diagnostics. The advent of 

artificial intelligence (AI) and machine learning has introduced new possibilities for analyzing 

medical data. Machine learning, a subset of AI, allows computers to learn from data and make 

predictions without explicit programming. Deep learning, a more specialized subfield of 

machine learning, utilizes artificial neural networks to perform complex tasks, traditionally 

done by humans, such as facial and speech recognition and decision-making. 

This study explores the application of AI, specifically convolutional neural networks (CNNs), 

in detecting Parkinson's disease from MRI images. CNNs, a type of deep learning architecture, 

have shown remarkable effectiveness in image analysis tasks. We investigate both custom pre-

trained and newly developed CNN models to assess their effectiveness in accurately diagnosing 

PD. Pre-trained models such as VGG16, VGG19, ResNet50, MobileNetV2, and DenseNet121 

are utilized to compare their performance against our proposed CNN model. 

A comprehensive examination of machine learning principles, techniques, and various 

algorithms is provided to establish the foundational knowledge required for deep learning. The 

study delves into the stages of Parkinson's disease, its motor and non-motor symptoms, and 

methods for detecting PD through handwriting analysis, voice assessment, and MRI imaging. 

Furthermore, the powerful role of transfer learning, enhanced by the ImageNet dataset, is 

highlighted by exploring advanced neural network designs like VGG, ResNet, DenseNet, and 
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MobileNet. These pre-trained models are fine-tuned for the specific task of diagnosing PD, with 

adjustments to parameters such as batch size, epochs, and learning rate. 

We also discuss the platforms and tools used to implement our networks, including Google 

Colab, Google Drive, and associated libraries. The study covers the database used, data 

augmentation techniques, and preprocessing methods employed. Finally, the performance of 

the models is evaluated using metrics such as accuracy, precision, recall, F1 score, and 

confusion matrices, and the results are summarized to highlight the effectiveness of the deep 

learning models in diagnosing Parkinson's disease. 

The structure of this paper is organized as follows: 

Chapter 1 provides an overview of fundamental concepts in AI, machine learning, and deep 

learning, with a focus on CNNs and their application in medical image analysis. 

 

Chapter 2 delves into Parkinson's disease, detailing its stages, symptoms, and current diagnostic 

methods. 

 

Chapter 3 introduces pre-trained models and describes our custom CNN model tailored for PD 

detection. It discusses the architectural details and functionalities of each model used in this 

study. 

 

Finally, chapter 4 presents the results of our experiments, comparing the performance of each 

model in terms of accuracy, confusion matrix, and F1-score. This analysis aims to identify the 

most effective approach for detecting Parkinson's disease from MRI images, contributing to 

advancements in early diagnosis and patient care. 
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                                              Chapter 1     Artificial Intelligence 
 

 

1.1 Introduction  

In recent years, technology has made great strides in many areas, mainly due to the spread 

of digitalization. The data can be of many different types, such as photos, videos, text, voice 

recordings or other forms of information. Nowadays, people are familiar with artificial 

intelligence (AI) and machine learning. Machine learning is a subset of AI that empowers 

computers to acquire knowledge without the need for explicit programming. Deep learning is a 

subfield of machine learning; AI uses predictions to optimize and solve complex tasks that 

humans have historically done, such as facial and speech recognition, and decision making. 

In this chapter, we present the principles of machine learning, its capabilities, the various 

techniques used, the different types and its algorithms. Next, we present the artificial neural 

network model that forms the basis of deep learning. 

1.2 Artificial Intelligence (AI) 

As the AAAI (American Association for Artificial Intelligence) give a definition provided 

in the foreword to [1]; artificial learning refers to the ability of a system to autonomously 

acquire and integrate knowledge. Artificial intelligence is the process of making an artificial 

being intelligent through various theories and techniques, aimed at enabling machines to think, 

process, and even learn like humans. The figure 1.1 shows the subfield of AI. 

 

 

Figure 1.1: The AI domains. 
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1.3 Machine Learning (ML) 

Artificial or machine learning is defined as, "A subfield of artificial intelligence concerned 

with giving machines the ability to improve at performing a task, by interacting with their 

environment". It refers to the development, analysis, and implementation of methods that enable 

a machine, in the broadest sense, to evolve and perform tasks related to artificial intelligence 

using a learning process; also, it is a set of methods for extracting knowledge from available 

observations and using it to search for new information, or to describe observations differently. 

This learning process results in a system that optimizes itself according to the environment, 

experience and results observed [1]. 

Machine learning is the field of study that enables computers to learn without being 

explicitly programmed. This data can be of many different types, such as photos, videos, text, 

voice recordings or other forms of information.  

 

1.3.1 Types of Machine Learning 

There are many types of Machine Learning such as supervised learning, unsupervised 

learning, semi-supervised leaning, and reinforcement learning (figure 1.2). 

 

Figure 1.2: The machine learning types. 

 

1.3.1.1 Supervised learning 

Supervised learning focuses on the creation of learning models that establish links between 

variables and previously known results, using labeled datasets. In this process, the machine is 

fed with example data, represented by different features (X), and the correct output values 

associated with these data (Y) [2]. In supervised learning, a dataset of labeled data points is 

used for building predictive models. This process involves instructing a machine based on input 

data that are linked to corresponding labels. This enables the algorithm to make predictions 

about outputs based on the input data. Supervised learning is usually used for classification and 
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regression problems.  

The figure 1.3 explains the functionality of a supervised learning algorithm by analyzing labeled 

inputs and comparing them with new test inputs to generate prediction. 

 

 

Figure 1.3: Supervised learning algorithm. 

1.3.1.1.1 Classification 

Classification is the task in which ideas and objects are determined, differentiated and 

understood. Classification defines that objects are collected into categories, usually for some 

specific purpose [3]. 

1.3.1.1.2 Regression 

Regression is a supervised learning method that seeks to identify relationships between 

variables and anticipate continuous values as a function of these variables. When the expected 

result is a continuous value, the task is referred to as a regression problem [4]. 
 

1.3.1.2 Unsupervised learning 

The model is learned only from the input data. Unsupervised learning algorithms learn 

the distribution and detect the similarity among input samples. It then separates them into 

different groups based on the distribution and similarity index. Unsupervised learning 

algorithms are frequently applied for clustering and dimensionality reduction [5].   
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Figure 1.4: Unsupervised learning. 

The figure 1.4 explains the functionality of an unsupervised learning algorithm by analyzing 

unlabeled inputs and regrouping the output according to their similarities.  

1.3.1.2.1 Clustering 

According to Jiand et al, clustering implies partitioning a particular dataset into groups, 

whose components are similar to each other [6]. It mainly deals with finding a structure or 

pattern in a collection of uncategorized data. It can be considered as the most important 

unsupervised learning problem; it deals with finding a structure in a collection of unlabeled 

data. 

 

Figure 1.5: The clustering. 

 

1.3.1.3 Semi-supervised learning 

Semi-supervised learning is a technique in machine learning that uses a combination of 

unsupervised learning and supervised learning. It can be fruit-full in those areas of machine 

learning and data mining where the unlabeled data is already present and getting the labeled 

data is a tedious process. With more common supervised machine learning methods, you train 

a machine learning algorithm on a “labeled” dataset in which each record includes the outcome 

information [7]. The figure 1.6 demonstrates the labeled and unlabeled data inputs within the 

framework of a semi-supervised learning algorithm, resulting an output prediction. 
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Figure 1.6: Semi-supervised learning. 

 

1.3.1.4 Reinforcement learning 

Reinforcement learning involves learning by trying different actions. An agent observes 

the situation and takes actions. Following each action, a numerical reward is provided. The goal 

for the agent is to increase the total reward it gets over time. In standard reinforcement learning, 

an agent interacts with its environment. At each step, the agent gets information about the 

current state of the environment, selects an action, and acts accordingly. This action affects the 

environment, generating feedback in the form of a reward or reinforcement signal. The agent's 

goal is learning to take actions that maximize the rewards received in the long term [8]. 

 

1.3.2 ML algorithms  

The field of machine learning features four notable algorithms: decision trees, support 

vector machines (SVM), K-nearest neighbors (KNN), and K-means. 
 

1.3.2.1 Decision Tree 

Decision tree is a graph to represent choices and their results in form of a tree. The nodes 

in the graph represent an event or choice and the edges of the graph represent the decision rules 

or conditions. Each tree consists of nodes and branches. Each node represents attributes in a 

group that is to be classified and each branch represents a value that the node can take [7]. 

The figure 1.7 illustrates an instance of decision-making regarding the acceptance of a new job 

offer based on selecting optimal conditions. 
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Figure 1.7: The decision tree. 

 

1.3.2.2 Support Vector Machine (SVM) 

The support-vector machines are supervised learning models with associated learning 

algorithms that analyze data used for classification and regression analysis. It basically, draw 

margins between the classes. The margins are drawn in such a fashion that the distance between 

the margin and the classes is maximum, and hence, minimizing the classification error [7].  

The figure 1.8 [4] shows the SVM algorithm; which divides into two classes.  

 

 

Figure 1.8: The SVM. 

 

1.3.2.3 K nearest neighbors (KNN) 

The K-nearest neighbor (KNN) algorithm is a supervised learning method that operates 

based on the principle of "tell me who your friends are, and I will tell you who you are". This 

means it classifies a data point based on the class of its nearest neighbors. It classifies a data 

point by considering the classifications of its nearest neighbors, it ranks the new instances using 

the information provided by the k nearest neighbors, so that the class assigned is the most 

common among them (majority vote). It stores all training data using the distance function [9]. 

Figure 1.9 illustrates how the KNN algorithm operates. A new glass has been added to a 
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group consisting of red and white glasses of juice. The objective is to determine whether the 

new glass is red or white. The k is chosen equal to 5. As a result, the new point would be 

classified as a red juice since four out of five neighbors are red. 

 

Figure 1.9: The KNN example. 

 

1.3.2.4 K means 

Simple unsupervised learning algorithm consisting on grouping data into a set of k 

clusters. Each cluster has a centroid µ, the center of the cluster. Starting from randomly selected 

k centroids, in the first step, distances of each of the samples in the dataset to each of the 

centroids are calculated. Then, samples are assigned to the nearest centroid. Finally, each 

centroid is updated to the average value of the samples assigned to this corresponding cluster. 

The process is repeated until the centroids are stable [10].  

1.4 Neural Networks  

1.4.1 Definition of Neural Networks  

Neural networks have their roots in attempts to create a mathematical model of the 

human brain. The earliest investigations date back to 1943 and were carried out by W.M. 

Culloch and W. Pitts [11]. They proposed that a neural impulse arises from a simple calculation 

performed by each neuron and that complex thinking emerges from the collective interactions 

of interconnected neurons. It is a collection of basic components known as "neurons," a nod to 

their biological counterparts, which are interconnected. Each neuron independently performs a 

simple task, and their collaborative operation results in the emergence of complex global 

properties. This system functions in a highly parallel manner. Information is stored in a 

distributed fashion within the network, using synaptic weights or activation functions. There is 

no distinct separation between memory and computation they are closely intertwined. 
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Neural networks are not programmed but rather trained through a learning process. Tasks that 

suit neural networks well include association, classification, discrimination, prediction, 

estimation, and the control of intricate processes. Artificial neural networks are constructed 

with varying degrees of inspiration from the human brain's operation, primarily based on the 

concept of neurons. 

 

1.4.2 Biological Neurons  

In biology, a neuron is a functional cell of the nervous system responsible for 

transmitting electrical signals linked to our metabolism. It is made up of dendrites connected to 

the cell body and an axon that ends in synapses. The electrical signal passes from the cell body 

to the synapses via the axon, then to the cell body of the next neuron where it undergoes 

modifications facilitated by the dendrites. This biological model has served as the basis for the 

development of artificial neurons, which have the ability to receive, process and relay data to 

other neurons [12], as shown in figure 1.10 [11]. 

 

 

Figure 1.10: Model of a biological neuron. 

 

1.4.3 Formal neurons  

The ‘formal neuron’ is an algebraic function that is both non-linear and constrained. Its 

result is influenced by parameters called coefficients or weights. The variables used in this 

function are generally called the ‘neuron inputs’, while the calculated result is called the 

‘output’. In essence, a neuron functions primarily as a mathematical operator, and its numerical 

value can be determined using a concise set of software instructions. It has become common 

practice to represent a neuron in graphical form, as shown in figure 1.11 [13]. 
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Figure 1.11: Model of a formal neuron. 

 

The variables 𝑃𝑅 represent input vectors, which may come from the outputs of other 

neurons or from sensory stimuli (various external signals or inputs detected by the sensory 

organs and transmitted to the nervous system).  

The values 𝑊1,𝑅 are the synaptic weights of neuron R. They correspond to the synaptic efficacy 

in biological neurons (𝑊1,𝑅> 0: excitatory synapse; 𝑊1,𝑅< 0: inhibitory synapse). These weights 

are responsible for weighting the inputs and can be adjusted during the learning process. 

Bias: the input often takes on values of -1 or +1, which adds flexibility to the network by 

allowing the activation threshold of neurons to be adjusted by modifying weights and bias (b) 

during the learning process. 

Kernel: This combines all the inputs and the bias, and calculates the neuron's output using a 

generally non-linear activation function, which improves the network's learning flexibility [11]. 

 

1.4.4 Modelling a formal neuron 

The modelling process involves the creation of a neural network system from an 

artificial, as opposed to a biological, point of view. This approach assumes that, based on 

biological principles, there is an equivalence for each constituent element of the biological 

neuron, resulting in a separate model for each of these elements. We can summarize this 

modelling process using Table 1.1, which provides a lucid representation of the transition from 

the biological neuron to the formal neuron. 

 

Neurone biologique Neurone artificiel 

Synapses Weights of connections 

Axones Output signal 

Dendrites Input signal 

Noyau cellulaire Activation function 
 

Table 1.1: Analogy between the biological neuron and formal neuron [11]. 
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1.5 The architecture of an artificial neural network  

The structure of a neural network is determined by the way in which the multiple 

neurons are organized, with most networks using the same type of neuron. However, the 

specific architecture is adapted to the task in hand. Depending on the learning task, a neural 

network generally consists of the following elements. 

A) Input layer: This layer comprises the neurons responsible for transmitting input signals 

into the network. Each neuron in this layer is connected to the next layer. 

B) Hidden layers: These layers can vary in number and complexity and play a crucial role 

in revealing relationships between variables. The choice of the number of hidden layers 

and neurons is guided by the practitioner's intuition and expertise.  

C) Output layer: The output layer represents the final result of the network, often called 

the prediction layers. 

Figure 1.12 below provides a visual representation of the architecture of an artificial neural 

network [13]. 
 

 

Figure 1.12: Structure of a surface neural network and its neuron [13]. 

 
 

1.5.1 Activation function  

There are several activation functions, generally non-linear, such as ReLU, Softmax and 

sigmoid (as shown in Table 1.2). The purpose of these functions is to manipulate the output 

within a specific range ‘they are able to spatially modify the data representation, allowing it to 

change from a linear to a non-linear form’. The choice of activation function depends on the 

nature of the model you wish to represent [14]. 
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ReLU (Rectified linear unit) function: Known for its simplicity, which makes it the most 

widely used of the other activation functions, the rectified linear unit or ReLU function [15] is 

a function that is used to determine the maximum between x and 0. 

It uses the following formula: 

ReLU(x) = max (x, 0)    {
𝐱 𝐢𝐟 𝐱 >  𝟎   
𝟎 𝐢𝐟 𝐱 <  𝟎

                                                                                (1.1)      

Softmax: This is a function that is often used in classification models for multi-class problems. 

It treats each vector independently of the others and transforms a real vector into a probability 

vector. The input axis to which Softmax is applied is determined by the axis argument [16].  

It uses the following formula: 

 Softmax(x) =  
𝒆𝒛𝒋

∑ 𝒆𝒛 𝒌𝒌
𝒌=𝟏

  Pour j=1, …, K                                                                        (1.2) 

Sigmoid: This is a function used in binary classification where the model has to determine only 

two labels since the results are always between 0 and 1[16].  

It uses the following formula: 

𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝐱) =  
𝟏

𝟏+ 𝒆−𝒙                                                                                                           (1.3) 

 

This table resume the activation function [14]. 

Function Equation Graphe 

ReLU 𝒇(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙) 

 

 

 
 

 

 

Softmax 
𝒇(𝒙) =  

𝒆𝒛𝒋

∑ 𝒆𝒛 𝒌𝒌
𝒌=𝟏

 

 

 

Sigmoïde 
𝒇(𝒙) =  

𝟏

𝟏 + 𝒆−𝒙
 

 

 
 

Table 1.2: Activation functions. 
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1.6 Different neural network architectures 

Network architectures can be divided into two main categories based on the connections 

between neurons: ‘feedforward neural networks’ and ‘recurrent neural networks’. In direct 

progression neural networks, signals flow in a single direction, from input to output, without 

any feedback loop, which means that the outputs do not influence the inputs. In contrast, 

recurrent neural networks have feedback loops where outputs can be reintroduced into the 

network as inputs, either to the same neurons or to other neurons, creating cycles [17].  

1.6.1 Feedforward neural networks (FFNN) 

FFNN Also known as non-loop neural networks, have a distinctive feature: information 

flows in one direction only, from inputs to outputs, with no backtracking. These networks use 

supervised learning by error correction, where the error is used to adjust the weights of the 

neurons by feeding it back to the inputs. The simplest form of neural network follows this feed-

forward structure. In such a structure, the neurons are connected in a single direction: the signals 

start at the input layer, pass through the hidden layers and end up at the output layer (figure 

1.13). Each neuron in the hidden and output layers is connected to each neuron in the previous 

layer, allowing information to propagate through the network. This type of structure has stable 

behavior. Non-looped (feed-forward) neural networks are highly effective for addressing 

specific problems, making them the most commonly used type of neural network [17]. 

 

Figure 1.13: A multilayer Feedforward neural network. 

 

1.6.2 Recurrent neural networks 

Unlike a Feed-Forward Neural Network, a Recurrent Neural Network (RNN) is a neural 

network whose connection graph contains at least one cycle (figure 1.14). The connectivity of 

units in recurrent neural networks is not limited, as in the case of feedforward networks, to 

architectures in which information propagates from input to output layer by layer. Any type of 
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connection is allowed, from one neuron to any other, including itself. This gives rise to dynamic 

behaviors which can be highly complex. A discrete-time loop neural network is therefore 

governed by one or more non-linear difference equations, resulting from the composition of the 

functions performed by each of the neurons and the delays associated with each of the 

connections [18].   

 

 

Figure 1.14: Recurrent Neural Network [19]. 

1.7 Deep Learning (DL) 

Deep learning represents a branch of machine learning that has evolved from neural 

networks and has benefited from the availability of abundant training data. It has achieved 

substantial success across numerous applications compared to shallow machine learning 

models. This success can be attributed to the increased computational capabilities of computers, 

enabling the creation of complex models that excel in processing and learning. The key 

advantages of deep learning in contrast to shallow machine learning models include its superior 

performance with large datasets and its incorporation of both feature learning and model 

training within a unified architecture [20]. On the other hand, deep learning algorithms extract 

knowledge from training data in a hierarchical manner through multiple layers of non-linear 

processing, rendering them highly adaptable for modeling intricate relationships [21].  

This approach also minimizes the need for human intervention and reduces wasted time. 

1.7.1 Definition of Deep Learning 

Deep learning is a part of machine learning that uses complex models and algorithms to 

simulate the way the human brain works. These models are known as artificial neural networks 

(ANNs). When the brain receives new information, it compares it with what it already knows 

to understand it better. It labels and categorizes this information to give it meaning. Deep 
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learning acts in the same way, using the same methods to process and understand new data [22]. 

1.7.2 Difference between Deep Learning and Machine Learning 

The difference between deep learning and machine learning is summarized in the table 

1.3 below. 

 Deep Learning (DL) Machine Learning (ML) 

Data Hundreds or thousands 

of data. 

Performs well with a small to a 

medium dataset. 

Hardware requirements Requires machines with 

GPU. 

Works with low-end machines 

(using CPU is often sufficient). 

Feature extraction Automatically learns 

features. 

Manual feature engineering often 

needed. 

Training time Longer due to 

complexity. 

Usually faster. 

 

Table 1.3: Difference between DL and ML. 

 

1.7.3 Neural Network Model  

Neural networks characterized by a significant number of parameters and layers, an 

illustrative example of this is the multi-layer perceptron (MLP). 

1.7.4 A multilayer perceptron (MLP) 

A multilayer perceptron (MLP) is a type of neural network characterized by the 

organization of neurons into several consecutive layers, unlike single-layer or simple artificial 

neural networks (ANNs). In an MLP, the connections between neurons are strictly 

unidirectional, running from lower to higher layers, and neurons in the same layer have no 

connections with each other, meaning that a neuron can only transmit its information to neurons 

in subsequent layers (figure 1.15). Designing the architecture of an MLP involves decisions 

about the number of hidden layers, the number of neurons in each layer, the nature of the 

connections between neurons and the properties of the neurons in each layer [23]. 
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Figure 1.15: Multilayer perceptron (MLP) [24]. 

1.7.5 Convolutional Neural Network (CNN)  

The term 'Convolutional Neural Network' signifies that this network makes use of a 

mathematical operation known as convolution. CNNs represent a specialized category of neural 

networks where convolution is employed in at least one of their layers instead of the more 

general matrix multiplication. These networks are highly regarded as effective learning 

algorithms, particularly in handling the convolution operation, which aids in extracting valuable 

features from locally related data points. The outcomes of the convolutional kernels are then 

directed to a non-linear processing unit. This unit not only assists in learning abstract features 

but also introduces non-linearity into the feature space's functionalities. This non-linearity gives 

rise to distinct activation patterns for various responses, thereby facilitating the learning of 

semantic differences in images [25]. The topology of a CNN is characterized by several learning 

stages, encompassing convolutional layers, non-linear processing units, and subsampling layers 

(figure 1.16).  
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Figure 1.16:  The general structure of a CNN network. 

1.7.5.1 Convolution layer  

The convolution layer serves as the initial step in identifying the features of an input image. 

It does this by preserving pixel relationships and acquiring image characteristics by analyzing 

small portions of the input data. This process is essentially a mathematical operation involving 

two inputs: an image matrix and a filter or kernel [26]. Therefore, the role of this layer is to 

analyze the input images and detect the presence of a set of features. The output of this layer is 

a set of feature maps. A basic example of this filter operation for a convolution step is shown 

in Figure 1.17 below [27]. 

 

Figure 1.117: Example explaining the convolution operation. 

1.7.5.2 Pooling Layer 

Typically placed between two convolution layers, the pooling layer facilitates a sampling-

based discretization process. Its main purpose is to create a reduced representation, such as a 

hidden-layer image or production matrix, by reducing its dimensionality while considering 

underlying assumptions about the features present in the pooled sub-regions.  

Various pooling techniques are used, including: 

Average pooling, which calculates the average of all pixels in the selected region, as shown in 

Figure 1.18 (b). 

Maximum pooling, which identifies the pixel with the highest value among all the pixels in 
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the selected region, as shown in Figure 1.18 (a). 

 

 

Figure .18: (a) Maximum pooling, (b) Average pooling. 

 

The pooling layer reduces the number of parameters and calculations in the network and avoids 

overfitting. Among the most commonly used are the Max-Pooling mentioned above and 

Average Pooling (Figure 1.18) [27]. 

In our work, we used Max-Pooling, which is more efficient than Average Pooling, as it 

maximizes the weight of strong activations. 

1.7.5.3 Fully-Connected Layer  

The fully connected layer is similar to the fully connected networks found in traditional 

models. It takes the output of the initial phase, which includes convolution and repeated pooling, 

and processes it through the fully connected layer. This process involves calculating the dot 

product between the weight vector and the input vector to produce the final output. As it shown 

in the Figure 1.19 [3]. 
 

 

Figure 1.19: Fully-connected layer. 

 

1.7.6 Long-Short Term Memory (LSTM) neural networks  

LSTMs were initially introduced by Hochreiter and Schmid Huber in 1997. They 
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emerged as a response to the quest for a novel model capable of addressing the limitations 

inherent in traditional recurrent neural networks (RNNs) [28]. As a result, LSTMs are 

considered a distinctive subset of conventional neural networks (RNNs) due to their exceptional 

capacity to retain and make sense of sequential data, essentially endowing the model with a 

temporal understanding. 

The fundamental divergence between an LSTM and a basic RNN is evident in the constituents 

of the network's hidden layers. In an LSTM, every node consists of an assembly of cells 

entrusted with the task of preserving prior data streams. The uppermost line within each cell 

serves as a conduit for data transfer, conveying information from the past to the present. The 

cell's autonomy furnishes the model with a mechanism to sift and incorporate values from one 

cell to another. Concludingly, the gates that make up the sigmoidal neural network layer direct 

the cell towards an optimal state by either permitting or obstructing data flow. The overarching 

objective here is to govern the status of each cell, and this is achieved through gate control, as 

delineated as follows [28]. 

The forget gate is responsible for deciding what information is to be purged from the cell's 

state, rendering a value between 0 and 1, with 1 denoting "retain this entirely" and 0 signifying 

"discard this entirely." 

The input gate selects which new data should be incorporated into the cell, sieving data 

incoming from previous cells. 

The output gate determines the nature of the output produced by each cell. The output value 

hinges on the cell's current state, in conjunction with the most recent filtered and added data. 

The closer the value is to 0, the less information it conveys to subsequent cells. 

 

 

Figure 1.20: Architecture of a LSTM Unit. 
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1.8 Conclusion  

In conclusion, this chapter has introduced various aspects of machine learning and deep 

learning. At the beginning, we have discussed the artificial intelligence and its subnets which 

are machine learning and deep learning. In the machine learning we have explored the ML 

types, tasks and its algorithms. 

In addition, we have presented deep learning, a subset of machine learning, and delved into its  

fundamental structure. We have explored various deep learning models, such as MLP, RNN, 

CNN, and LSTM architectures, each tailored for specific applications based on specific 

requirements. 

      In the next chapter, we will provide the Parkinson’s disease, which is a neurodegenerative 

disease characterized by the destruction of a specific population of neurons, the diagnosis of 

the disease, and the medical detection of this last using AI (deep learning).
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                                                  Chapter 2    Parkinson Disease 
 

 

2.1 Introduction 

Parkinson's disease (PD) is a neurodegenerative disorder that primarily affects older adults. 

Parkinson's disease impacts individuals' physical and functional abilities, limiting their mobility 

and capacity to perform daily activities.  The diagnosis of PD remains essentially a clinical one, 

and it is important to recognize the early features together with symptoms and signs suggesting 

other causes of parkinsonism. There has also been a rapid expansion in the treatment options 

both in the early and the later stages of the illness together with a greater awareness of non-

motor complications. 

This chapter includes: the definition of Parkinson's disease (PD), its motor and non-motor 

symptoms, the stages of the disease, and methods for detecting PD through handwriting 

analysis, voice assessment, and MRI imaging. 

2.2 Neurodegenerative diseases 

Neurodegenerative diseases are a group of disorders characterized by the progressive 

degeneration of neurons in the central nervous system. Among the most well-known diseases 

are Alzheimer disease (AD), which is characterized by memory loss and cognitive decline, and 

Parkinson's disease. 

Parkinson's disease (PD) is one of the age-related neurodegenerative conditions that leads 

to significant limitations in physical, cognitive, and functional abilities. PD is a persistent and 

advancing ailment resulting from the gradual loss of neurons in the substantia nigra, a region 

involved in producing dopamine neurotransmitters. These neurotransmitters have a vital role in 

regulating motor functions [29]. To date, there is still no curative treatment available for this 

disease. The figure 2.1 illustrates the contrast between a typical neuron and a Parkinson's 

disease affected neuron, which exhibits reduced dopamine levels. 
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Figure 2.1: Parkinson disease. 

2.3 Parkinson disease 

Parkinson's disease is a neurodegenerative disorder first described by English physician 

James Parkinson in 1817, a member of the Royal College of Surgeons. He originally termed it 

"Shaking Palsy" and provided a detailed characterization involving involuntary tremors, 

reduced muscle strength in resting body parts, a tendency to bend forward, and shifting from 

walking to running pace while maintaining intact senses and intellect [30]; Parkinson's Disease 

is a chronic condition marked by the gradual loss of neurons in the substantia nigra, impacting 

dopamine production. PD is an extrapyramidal syndrome with evolving symptoms that notably 

affect motor functions and also impact autonomic, cognitive, and psycho-behavioral functions 

[31]. 

2.4 Clinical manifestations 

The symptoms of Parkinson's disease are both motor and non-motor. Both types of 

symptoms have a major impact on the daily lives of Parkinson's sufferers. 

2.4.1 Motor symptoms 

• The resting tremor: The first perceptible sign of Parkinson's disease is resting tremor, 

which often begins as a sensation of internal vibration before becoming visible and 

obvious. Depending on the case, it may appear or be accentuated by stress, fatigue or 

intense mental concentration. In the early stages of the disease, the tremor only affects 

more often than just one side of the body, then extends to the opposite half of the body 

over time [32]. 
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• Akinesia: Is prevalent in Parkinson's disease, refers to struggles in starting movements. 

It's closely linked to bradykinesia (slow movements) and hypokinesia (reduced 

movement size). Parkinsonian akinesia manifests as difficulty initiating walking, with 

symptoms like short steps, limited arm movement, stooped posture, and stiff neck. Other 

signs include reduced gestures during conversation, facial immobility, decreased 

blinking, and diminished emotional expression [33]. 

• Rigidity: Characterized by increased resistance to passive movement of the limbs, often 

accompanied by the "cogwheel" phenomenon, rigidity may occur in the neck, shoulders, 

hips, wrists, and ankles. These limbs maintain the posture at the end of movement, 

referred to as a "lead pipe" rigidity [32]. 

2.4.2 Non-motor symptoms 

a) Sleep disorders: Is common nonmotor issues in PD, encompassing difficulties in 

falling asleep, frequent awakenings, nocturnal cramping, painful dystonia, motor 

symptoms at night, restlessness, Restless Legs Syndrome (RLS), nocturnal 

incontinence, confusion, hallucinations, and daytime sleepiness. Recognition of their 

clinical significance has grown in recent years, spurring new research efforts [32]. 

b) Cognitive disorders and dementia: Can develop in the early stages of the disease 

without worsening dementia. The main characteristic of this early cognitive syndrome 

is an impairment of executive function including disorders of memory, perception, 

slowed thinking, difficulty planning, organizing, and problem-solving behavior [34]. 

c) Neurovegetative disorders or dysautonomia: Neurovegetative problems impact over 

50% of Parkinson's patients, stemming from lesions in the central and peripheral 

nervous systems. Functions such as cardiovascular, digestive, respiratory, and 

vesicourethral are most affected, leading to disability and reduced quality of life for both 

patients and caregivers. Additionally, these issues are often worsened by 

antiparkinsonian treatments [35]. 

d) Psychiatric disorders: Around 30 to 40% of Parkinson's patients experience 

depression, with factors like cognitive issues, sleep problems, fatigue, and functional 

limitations contributing to this risk. Anxiety, the most prevalent neuropsychiatric 

symptom after depression, affects 20 to 46% of individuals with Parkinson's, presenting 

as various forms including generalized anxiety, specific phobias, social anxiety, or 

sudden panic attacks [32]. 
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2.5 Stages of Parkinson’s disease 

The speed at which the disease progresses varies greatly from patient to patient. This 

evolution can be divided into five phases: a presymptomatic phase, a diagnostic phase, a 

"honeymoon" phase, during which symptoms are significantly reduced by chemical treatment, 

a phase of motor complications, with the appearance of dyskinesias, a phase of decline, with 

worsening of axial and cognitive signs, and a major handicap in daily life.  

According to [36], Parkinson's disease advances over time and spreads through different areas 

of the body in the following stages:  

▪ Stage 1: At this initial stage of Parkinson's disease, symptoms are relatively mild and don't 

significantly disrupt daily life. While there may be subtle changes in posture, walking, or 

facial expressions, they're often overlooked or attributed to other factors. Typically, 

symptoms are confined to one side of the body, and individuals can still perform routine 

tasks without much difficulty. 

▪ Stage 2: As Parkinson's progresses to stage 2, symptoms become more pronounced and 

noticeable. Stiffness, tremors, and changes in facial expressions become more evident. 

Tasks may take longer to complete due to muscle stiffness, but balance remains relatively 

unaffected at this point. However, individuals may start to notice alterations in their posture, 

and there's a gradual increase in difficulty with movement. 

▪ Stage 3: Progressing to stage 3 signifies an escalation in the severity of Parkinson's 

symptoms. While many of the symptoms from stage 2 persist, individuals now experience 

a decline in balance and reflexes. Movements become slower and more deliberate, and falls 

become more frequent due to impaired coordination. Despite these challenges, individuals 

may still maintain some level of independence but may require assistance with certain tasks. 

▪ Stage 4: It represents a further deterioration in motor function and independence. While 

individuals can still stand and walk with assistance, mobility becomes increasingly 

impaired, often necessitating the use of a walker or other assistive devices. Daily tasks 

become more challenging, and living alone may become impractical or unsafe due to the 

heightened risk of falls and difficulties with movement. 

▪ Stage 5: In the advanced stage of Parkinson's disease, individuals experience severe motor 

impairments and a profound loss of independence. Stiffness in the legs may lead to freezing 

upon standing, making it nearly impossible to walk without assistance. Wheelchair 

dependence becomes necessary, and patients are highly susceptible to falls without constant 

supervision and assistance. Daily activities become exceedingly difficult, requiring around-
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the-clock care to ensure safety and well-being. 

The figure 2.2 summarizes the various stages of Parkinson's disease. 

 

Figure 2.2: Parkinson disease stages. 

2.6 Parkinson detection methods 

Early detection of Parkinson's disease plays an important role in effective management and 

treatment. Various screening methods and diagnostic tools are employed to identify PD in its 

initial stages. 

2.6.1 Voice recognition 

Speech requires the integrity and integration of numerous neurocognitive activities. These 

activities can be summarized as follows:  

✓ When thoughts, feelings, and emotions generate intent to communicate verbally, they 

must be organized and converted into a code that abides by the rules of language. These 

combined activities are referred to as cognitive linguistic processes. 

✓ Getting ready to speak involves arranging the words so that the muscles used for speech 

can say them correctly. This means picking the right words, putting them in the right 

order, and making sure the speech muscles move at the right times and with the right 

strength. All of these tasks together are called motor speech planning, programming, 

and control. 

The speech disorders associated with PD are termed hypokinetic dysarthria and lead to reduced 

speech intelligibility. Dysarthria reflects neuromuscular disturbances of strength, speed, tone, 

steadiness, or accuracy of the movements that underlie the execution of speech. They also 



 

 

   CHAPTER 02  PARKINSON DISEASE 
 

Page | 27  

reflect disturbances at any or a combination of the major components of the speech mechanism, 

including respiration, phonation, and resonance [37]. 

In this paper [38], Loh et al, developed a 2D-CNN model for automated Parkinson's disease 

diagnosis, the model achieved remarkable accuracy, reaching 99.46% in multi-categorization 

through tenfold cross-validation. The dataset, obtained from OpenNeuro dataset, included EEG 

recordings from 16 healthy controls and 15 PD patients recorded both on and off dopaminergic 

medications. 

2.6.2 Handwriting 

 PD leads to a disruption in the execution of practiced skills such as handwriting. 

Handwriting in Parkinson's disease often exhibits several types of dysfluencies, including a lack 

of control, sudden changes in direction, tremors, slowness, hesitations, rigidity, and variability 

in baseline. A specific component of the writing movements is generated by the fingers, wrist, 

and arm [39]. 

In their research [40], Mahima et al, focused on the early detection of Parkinson's disease (PD). 

through a logical analysis of time-series data obtained from a spiral drawing assessment test 

conducted on both Parkinson's patients and individuals without the condition, utilizing digital 

tablets. Initially, a machine learning approach is applied separately to static and dynamic 

drawing tests using logistic regression and Support Vector Machine classifier to assess 

accuracies. Their study introduces an innovative strategy involving a Restricted Boltzmann 

Machine (RBM)1 coupled with a multi-layer perceptron model classifier. This combined 

approach achieves a noteworthy accuracy of 95.32% when considering both static and dynamic 

spiral drawing assessments. 

The handwriting of individuals with Parkinson's disease is often small and cramped, also known 

as micrographia as it is shown it figure 2.3 [41]. 

                                                           
1 RBM is a Restricted Boltzmann Machine is a type of neural network used for unsupervised learning tasks, such 

as feature learning and dimensionality reduction. 
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Figure 2.3: Micrograph of a 58-year-old right-handed Parkinson’s patient. 

A: under treatment, B: without treatment. 

 

2.6.3 Radiological images 

Medical imaging plays a pivotal role in the diagnosis and treatment of various illnesses by 

providing non-invasive visual representations of internal organs and tissues. These images aid 

in disease detection, treatment planning, and monitoring effectiveness. In the case of 

Parkinson's disease, radiological imaging techniques like Computed Tomography (CT) scans 

and Magnetic Resonance Imaging (MRI) are instrumental in swiftly and accurately diagnosing 

the condition. CT scans offer detailed images, enabling the identification of specific disease 

indicators, while MRIs provide a comprehensive view of the brain structures, facilitating the 

detection of subtle abnormalities associated with Parkinson's, such as changes in dopamine 

density [42]. 

2.7  The physical means of the various processes used in medical 

imaging 
Medical imaging refers to the methods and technologies used to generate visual depictions 

of the interior of the body. These visual representations, termed images, are utilized for 

diagnosing, monitoring, or treating a variety of medical conditions. Medical imaging enables 

the examination and visualization of different bodily structures. 

2.7.1 Scanner: CT stands as one of the primary medical imaging techniques. It involves 

generating a three-dimensional reconstruction of tissues from a tomographic analysis 

obtained by subjecting the patient to X-ray beam scanning. The principle of computed 

tomography revolves around measuring the spatial distribution of X-ray attenuation, 

examined from various angles during rotation around the object (figure 2.4), and 

reconstructing images from these angular projections [43]. 
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Figure 2.4: CT Scan. 

 

2.7.2 MRI: Is a noninvasive medical imaging technique that uses a magnetic field and radio 

waves to capture the internal structure of the organs in the body. The subject is placed 

in a magnetic field that polarizes the atoms in his body. A radio wave pulse sequence is 

then sent to the areas of interest, exciting the protons and breaking them from the 

alignment of the field. Once the pulse stops the protons realign by emitting energy, in 

the form of a radio signal, which is captured by sensors. Because of the varying speeds 

that protons realign in different tissues types, a distinct signal is sent from each. These 

signals are then captured by a detector and meticulously processed by a computer, 

culminating in the creation of detailed representations of the body's internal anatomy 

(figure 2.5) [44]. 

 

Figure 2.5: MRI Machine. 
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2.8 Diagnosis of Parkinson’s Disease using medical imaging 

Many people are diagnosed with Parkinson's disease at later stages when it's harder to treat 

because of the lack of medical labs. When people lose a lot of dopamine, doctors start looking 

into a PD diagnosis. It's really tough to accurately detect PD, and if someone with PD is 

mistakenly thought to be healthy, it can cause big problems, even leading to coma. Using 

image processing techniques, PD can be detected earlier. There are       a couple of common 

imaging methods. However, MRI scans can also spot signs of PD. Scientists are using machine 

learning methods like decision trees, support vector machines, and artificial neural networks 

to analyze medical images and detect PD early.  

In this section, we review some of the existing machine learning and deep learning techniques 

that have already been used to diagnose Parkinson's disease: 

▪ In the study of Pir Masoom [45], utilized a dataset sourced from the Parkinson's 

Progression Markers Initiative (PPMI) for their research. This dataset comprised 250 MRI 

scans of individuals diagnosed with Parkinson's disease (PD) alongside 250 scans of 

healthy controls (HC). To analyze these MRI scans, the researchers implemented a neural 

network architecture featuring three convolutional layers (CNN). Their proposed network 

achieved an accuracy rate of 96%, indicating its effectiveness in accurately distinguishing 

between PD patients and healthy individuals based on MRI data. 

▪ In their research Soheil Esmaeilzadeh et al [46], proposed a Parkinson's disease detection 

method using 3D Convolutional Neural Network 3D-CNN and deep learning techniques 

on MR images. The dataset, sourced from the PPMI dataset, included 452 PD-affected 

patients and 204 healthy individuals. Data processing involved skull-stripping using Brain 

Extraction Technique (BET)2 with Statistical Parametric Mapping (SPM)3 during pre-

processing, enhancing accuracy and speed. Data augmentation included flipping MR 

images, doubling the dataset size. The 3D CNN model, with padding and max-pooling 

layers, achieved a validation accuracy of 60% on the split datasets. 

▪ In the study of Ortiz et al [47], proposed a method for identifying Parkinson's disease 

detection, their approach involved employing CNN architectures such as LeNet-5 and 

                                                           
2 BET Brain Extraction Tool is a software tool used as a preprocessing step in neuroimaging to extract brain 

tissue from MRI or CT scans. 
3 SPM Statistical Parametric Mapping is a software package in neuroimaging used for the analysis of brain 

imaging data. 
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AlexNet (existing CNN models). The study utilized the PPMI dataset. The dataset 

comprised 158 subjects suffering from PD and 111 normal controls (NC), enabling a 

thorough investigation into the effectiveness of their proposed method in distinguishing 

between PD patients and healthy individuals. 

▪ In their study, Wenzel et al [48] utilized the PPMI dataset, consisting of 207 healthy controls 

and 438 patients diagnosed with PD. Their research focused on leveraging CNNs in 

conjunction with an ImageNet-based transfer learning model. This approach enabled the 

extraction of intricate features from medical imaging data, facilitating the identification and 

classification of neurological conditions. They achieved an accuracy of 97%. 

▪ The authors El Maachi et al in [49] introduced a novel approach using a 1D convolutional 

neural network (1D-Convnet) to assess gait data for Parkinson's disease. The framework 

processes 18 parallel 1D data streams from foot sensors measuring vertical ground 

response force. Their model achieved an impressive 98.7% accuracy in detecting 

Parkinson's disease, showcasing the effectiveness of deep learning in gait analysis. The 

extended work proposed an intelligent Parkinson detection system, not only identifying 

the disease but also predicting severity with 85.3% accuracy based on the Unified 

Parkinson’s Disease Rating Scale (UPDRS), demonstrating state-of-the-art performance in 

gait recognition for Parkinson's. 

▪ The paper conducted by Sabyasachi Chakraborty [50], the PPMI dataset was utilized. This 

dataset consisted of 203 individuals classified as healthy controls and an equal number 

suffering from Parkinson’s Disease. Employing a three-dimensional convolutional neural 

network (3D), their research achieved an accuracy rate of 95.29%. 

▪ The paper of Balaji E et al [51], presents a new deep learning architecture using an LSTM 

network to assess Parkinson's disease severity based on gait patterns, eliminating the need 

for manual feature crafting. The LSTM captures long-term dependencies in the gait cycle, 

addressing the vanishing gradient problem by incorporating memory blocks. The Adam-

optimized LSTM achieves 98.6% accuracy.  

▪ In the study of Vyas et al [52], they explored the identification of potential biomarkers for 

Parkinson's disease progression using magnetic resonance imaging (MRI) brain images. 

They employed 2D and 3D Convolutional Neural Networks (CNNs) trained on axial plane 

MRI scans from the PPMI dataset. Pre-processing techniques, including bias field 
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correction and histogram matching, were crucial for accurate model training. The 3D CNN 

model outperformed the 2D model, exhibiting an 88.9% accuracy and a 0.86 area under 

the curve (AUC), highlighting its superior performance in classifying test data compared 

to the 2D model with a less favorable 72.22% accuracy and 0.50 AUC.  

▪ In their research of Kollia et al [53], the authors present a diagnostic method utilizing trained 

Deep Convolutional or Convolutional-Recurrent Neural Networks (DNNs). This approach 

integrates transfer learning, k-means clustering, and k-Nearest Neighbor classification of 

DNN representations to improve disease prediction from MRI and/or DaT Scan data in the 

NTUA dataset, their research achieved an accuracy of 94%. 

▪ In the study of BASNIN et al [54], a DenseNet combined with Long Short-Term Memory 

(LSTM) is applied to MRI data samples from the National Technical University of Athens 

(NTUA) dataset. DenseNet improves feature selection by accounting for the temporal 

proximity of images in each layer, and the LSTM layer processes the output to uncover 

important dependencies in temporal features, their research achieved an accuracy of 94%. 

▪ The authors Sukanya Pechetti et al [55], they utilized the optimized MobileNet V3, 

coupled with the Improved Dwarf Mongoose Optimization algorithm (IDMO), to analyze 

MRI data for the identification of Parkinson’s disease classes. To enhance feature 

extraction from preprocessed images, they introduced a novel Pyramid Channel-based 

Feature Attention Network (PCFAN) employing a multi-stage design with attention blocks 

at each stage. their experimental work involved the utilization of the PPMI and NTUA 

datasets. The suggested methodology outperformed existing systems, demonstrating 

superior accuracy achieving 95%.  

▪ In 2023 the study of Aditi Govindu et al [56], they focused on addressing challenges related 

to Parkinson's disease (PD) in an aging population, highlighting the importance of early and 

remote detection. Utilizing machine learning in telemedicine, the study analyzed audio data 

from 30 PD patients and healthy individuals, focusing on attributes like jitter, shimmer, 

and MDVP of vowel sounds. Four machine learning (Random Forest, KNN, Logistic 

Regression Model, Yield Random Forest Classifier) models were trained on 75% of the 

PPMI dataset, with the Random Forest classifier proving most effective, achieving a high 

detection accuracy of 91.83% and a sensitivity of 0.95. The methodology involved 

comprehensive data preprocessing, analysis, and visualization for enhanced attribute 



 

 

   CHAPTER 02  PARKINSON DISEASE 
 

Page | 33  

comprehension, and the findings underscore the potential of machine learning in 

telemedicine for early PD detection, offering the promise of improved quality of life for 

those affected. 

 

Table 2.1: Synthesis of existing approach. 

This table (Table 2.1) synthesizes prior research from 2018 to 2023 on diagnosing 

Parkinson's Disease using various machine learning algorithms. It includes details on the 

datasets, algorithms, and achieved accuracies. Notably, the Parkinson's Progression Markers 

Initiative (PPMI) and National Technical University of Athens (NTUA) datasets are frequently 

used, indicating their significance in this field. The algorithms range from 3D Convolutional 

Neural Networks (CNNs) to Long Short-Term Memory (LSTM) networks and DenseNet-

LSTM hybrids, with accuracies spanning from 60% to 98.7%. The variation in accuracy 

underscores the ongoing challenges and advancements in developing effective diagnostic 

models for Parkinson's Disease. 

Reference Year Dataset Algorithm Accuracy 

SHAH et al. [45] 2018 PPMI (250 PD, 250 

HC) 

3D CNN 96% 

ESMAEILZADEH et al. 

[46] 

2018 PPMI (452 PD, 204 HC) 3D CNN 60% 

ORTIZ et al. [47] 2019 PPMI (158 PD, 111 

NC) 

Lenet 5 and 

AlexNet 

95.1% 

Kollia et al. [53] 2019 NTUA (55 PD, 23 HC) CNN 

CNN-RNN 

94% 

98% 

WENZEL et al. [48] 2019 PPMI (438 PD, 207 

HC) 

CNN 97% 

EL MAACHI et al. [49] 2020 PD dataset (95 PD, 73 

HC) 

DNN (1D-

Convnet) 

98.7% 

CHAKRABORTY et al. 

[50] 

2020 PPMI (203 PD, 203 

HC) 

3D CNN 95.29% 

Balaji E et al. [51] 2021 - LSTM 98.6% 

BASNIN et al. [54]  2021 NTUA DenseNet-LSTM 90% 

VYAS et al. [52] 2022 PPMI (250 PD, 250 

HC) 

2D and 3D CNN 88.9% 

PECHETTI et al. [55] 2023 PPMI and NTUA Optimized 

MobileNetV3 

95% 

GOVINDU et al. [56] 2023 PPMI (23 PD ,31 HC) Random Forest 

Classifier 

91.83% 
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2.9 Conclusion 

In conclusion, this chapter has provided an exploration of Parkinson's disease, 

encompassing both its motor and non-motor symptoms. We have examined the various stages 

in the progression of PD and explored various methods used for its detection. In addition, we 

discussed in detail previous research efforts aimed at diagnosing PD, including the database, 

algorithm and accuracy. The next chapter will be focused on the pretrained model architectures.
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                                                  Chapter 3   Transfer Learning 

 

 

    

3.1 Introduction 

In this chapter, we will look at how transfer learning in machine learning is strengthened by 

the ImageNet dataset. We will explore different advanced neural network designs like VGG, 

ResNet, DenseNet, and MobileNet, which were trained using ImageNet. We will also talk about 

how to tweak these pre-trained models for specific tasks by adjusting parameters like batch size, 

epochs, and learning rate. Finally, we will discuss how to measure the performance of these 

models using metrics like accuracy, precision, recall, F1 score, and confusion matrices. 

3.2 Transfer learning  

The Transfer Learning method is a widely used technique in Machine Learning, particularly 

adept at handling large and demanding datasets for training Deep Learning models. Transfer 

learning involves training a model on a task in one domain and then applying it to a related 

domain and task. The original training domain is referred to as the source domain, while the 

new domain is called the target domain. This deep learning technique allows for rapid and 

accurate training of a Convolutional Neural Network (CNN) by initializing its weights from 

another CNN that was previously trained on a larger dataset, such as the popular ImageNet 

dataset [57], 

Transfer learning is defined as "enhancing learning in a new task by leveraging knowledge from 

a related task that has already been mastered". Humans possess a unique capability to transfer 

knowledge between different individuals and various tasks. They can reuse the knowledge 

acquired from solving a previous problem to address a new problem more effectively. The 

closer the new problem is to previous learning experiences, the more efficiently the transfer can 

be carried out [58]; figure 3.1 can explain the difference between using a) the traditional 

learning and b) the transfer learning. 
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                         a) Traditional learning.                     b)  Transfer learning. 

Figure 3.1: Transfer Learning. 

3.3 ImageNet Dataset 

ImageNet is a dataset containing over 15 million labeled high-resolution images across 

approximately 22,000 categories. These images were sourced from the web and annotated by 

human labelers using Amazon’s Mechanical Turk crowd-sourcing tool. Since 2010, the annual 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) has been held as part of the 

Pascal Visual Object Challenge. ILSVRC utilizes a subset of ImageNet, featuring around 1,000 

images for each of the 1,000 categories. Overall, this subset comprises roughly 1.2 million 

training images, 50,000 validation images, and 150,000 testing images [59]. 

It is used to train a system for a specific task or assignment. Also, ImageNet helps train the 

initial layers of the system to identify generalizable features from larger datasets [60]. 

3.4 Pretrained models 

In this work, five pre-trained CNN models were utilized: VGG16, VGG19, ResNet50, 

DenseNet121, and MobileNet. These models were chosen because they are designed for images 

with a size of 224x224 pixels. The selected models are pre-trained on a large-scale dataset called 

ImageNet, which primarily includes classes of animals and everyday objects.  

 

3.4.1 MobileNet 

MobileNet is a type of convolutional neural network designed for mobile and embedded 

vision applications. As the first mobile computer vision model from TensorFlow, MobileNet 

features a simplified architecture that uses depthwise separable convolutions to create 

lightweight deep neural networks. These networks are optimized for low latency on mobile and 

embedded devices. MobileNet employs an approach where one layer performs filtering and 

another creates the output, significantly reducing computation time.  MobileNet's efficiency is 

further enhanced by introducing adjustable parameters such as the width and resolution 
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multipliers. The base configuration of MobileNetV2 typically encompasses 54 layers, although 

variations in layer count may occur based on specific hyperparameters like width and resolution 

factors [61]; the figure 3.2 below illustrates the MobileNet architecture. 

 

Figure 3.2: MobileNetV2 architecture. 

3.4.2 VGG 

The VGG network is a deep neural network introduced by Karen Simonyan and Andrew 

Zisserman in their paper "Very Deep Convolutional Networks for Large-Scale Image 

Recognition". They aimed to explore the effect of network depth on accuracy for large-scale 

image datasets and discovered that increasing the network's depth substantially improves 

accuracy. This was achieved by using more, but very small (3x3) convolution filters. The VGG 

architecture comes in multiple sizes, with the number of layers ranging from 13 to 19 [62]. 

 

3.4.2.1 VGG 16 

The VGG16 model, developed by Simonyan and Zisserman, is a convolutional neural 

network known for its depth and simplicity. It consists of 16 layers that directly contribute to 

learning, including 13 convolutional layers and 3 fully connected layers. The architecture 

employs small (3x3) convolution filters throughout, which significantly contribute to its success 

in various image classification tasks. VGG16 takes a 224 × 224 × 3 image as input [62]. VGG16 

consists of five blocks of convolutional and pooling layers. The first two blocks each have two 

convolutional layers followed by a max pooling layer, while the next three blocks each have 

three convolutional layers followed by a max pooling layer. This results in a total of 13 

convolutional layers and 16 hidden layers. 

 

3.4.2.2 VGG 19 

The VGG19 model is very similar to the VGG16, except that VGG19 includes three 

additional convolutional layers. Specifically, VGG19 consists of five blocks of convolutional 
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and pooling layers. The first two blocks each have two convolutional layers followed by a max 

pooling layer, while the next three blocks each have four convolutional layers followed by a 

max pooling layer. This results in a total of 16 convolutional layers and 19 layers in total, 

including the fully connected layers [63]. 

The figure 3.3 shows the architecture of the two previous models VGG16 and VGG19. 

 

 

Figure 3.3: VGG16 and VGG19 architecture. 

 

3.4.3 ResNet 

ResNet, short for Residual Network, is a well-known deep learning model first introduced 

in 2015 by Shaoqing Ren, Kaiming He, Jian Sun, and Xiangyu Zhang in the study titled "Deep 

Residual Learning for Image Recognition." Presented by Microsoft Research Asia, this model 

addresses the issue of performance degradation that occurs as the depth of neural networks 

increases. While increasing the number of layers initially improves accuracy, it eventually leads 

to a decline. To tackle this problem, the researchers developed a residual learning framework 

that incorporates "skip connections" and extensive batch normalization which is illustrated in 

figure 3.4, enabling the training of hundreds of layers without sacrificing speed. The network 

has an input image size of 224x224 [64]. 

 

Figure 3.4: ResNet model. 
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The first thing we notice in the diagram above is the presence of a direct link that skips several 

levels of the model. This "skip connection," as it is called, is at the core of the residual blocks. 

Because of this skip connection, the output is different. 

 

3.4.3.1 ResNet50 

ResNet50 is a specific variant of this model, consisting of 50 layers, including 48 

convolutional layers, one MaxPool layer, and one Average Pool layer (figure 3.5), with a total 

of 26 million parameters. This architecture has significantly contributed to the use of very deep 

neural networks by reducing gradient loss in the deepest layers through the addition of residual 

connections between each convolutional layer [65]. 

 

Figure 3.5: ResNet50 architecture. 

 

3.4.4 DenseNet 121 

DenseNet, introduced by Gao Huang and team in 2017, features densely connected CNN 

layers where each layer's outputs are linked to all subsequent layers in a dense block. This dense 

connectivity reduces network parameters, boosting feature reuse efficiency. DenseNet includes 

dense blocks and transition blocks between adjacent dense blocks. Each convolutional layer 

within a dense block receives input from the concatenation of the block's global input and the 

feature maps of preceding layers within the block. DenseNet leverages residual layers, with 

each layer receiving input from previous layers and passing feature maps to subsequent layers. 

Figure 3.6 explain the architecture of the DenseNet121 model, that have varying numbers of 

layers, such as 117 convolution layers, 3 transition layers, and 1 classification layer.  

DenseNet has achieved excellent performance, while also utilizing less memory and processing 

power than other state-of-the-art techniques [66]. 
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Figure 3.6: DenseNet121 architecture. 

3.5 Train parameters 

In the training process of learning models, defining the training parameters plays an  

important role in the model's performance and convergence. The key parameters in this regard  

are the "batch size", the number of iterations, commonly referred to as "epochs" and the learning 

rate; according to [67] these last are defined. 

3.5.1 Batch-size 

Training batch size is a hyperparameter that controls the number of training samples used 

in each iteration before updating the model's internal parameters. We chose a batch size of 32, 

meaning each batch processes 32 images at a time. The batch size represents the number of 

samples fed into the neural network inputs in a single step. 

 

3.5.2 Epochs 

An epoch is a hyperparameter that defines the number of times the entire dataset is passed 

through the neural network during the training process. Essentially, an epoch consists of one 

forward pass and one backward pass of all the training examples. In our case, we used a constant 

value of 50 epochs. This means the learning algorithm is applied to the whole dataset 50 times, 

allowing the model to learn and adjust its parameters iteratively. Each epoch represents a 

complete cycle of passing all the samples in the dataset through the neural network. 

 

3.5.3 Learning rate 

The learning rate, a crucial parameter in neural network optimization, determines the size 

of adjustments made at each iteration during model training. It represents the magnitude of the 

change applied to the network weights in response to the error estimation. 
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3.6 Model evaluation metrics 

When assessing the performance of machine learning models, various evaluation metrics 

are utilized to determine their ability to accurately capture patterns. The selection of these 

metrics depends on the specific task and characteristics of the data. 

 

3.6.1 Loss function 

The loss function, also called the cost function, measures the probabilities or uncertainty of 

a prediction based on the difference between the prediction and the actual value. The loss is not 

expressed as a percentage but as a sum of the errors made for each sample in the training or 

validation sets. During training, the goal is to minimize this value. In neural networks, we aim 

to reduce the error. Loss functions, which are differentiable functions, guide the learning 

process of a neural network. To train a CNN for an object detection task, the networks are 

generally optimized for both classification and regression components. One of the most 

commonly used loss functions is the Softmax loss function, typically employed in the last layer 

of the neural network [68]. 

 

3.6.2 ADAM optimizer 

Adam (Adaptive Moment Estimation) is an optimizer that incorporates information about 

the learning rate, L2 regularization factor, and mini-batch sizes. This parameter is based on the 

estimation of adaptive moments for optimizing the learning rate.  

Additionally, Adam includes bias correction terms to account for the initializations of the first 

and second moments, making it particularly effective for optimizing deep learning models with 

large datasets [69]. 

 

3.6.3 The Confusion Matrix 

A confusion matrix, or error matrix, is a table that displays the number of correct and 

incorrect predictions made by a model compared to the actual classifications in a dataset. This 

matrix provides insight into the confusions (errors) made by the model. It summarizes the 

performance of a classification model on test data where the true values are known. The 

confusion matrix is a key tool in understanding the errors made by the classifier and, more 

importantly, the types of errors that occur. It breaks down the prediction results by each class, 

highlighting not only the accuracy of the model but also the specific areas where the model's 

predictions are incorrect [70]. 

True Positive (TP): Number of normal data correctly classified as normal. 

False Positive (FP): Number of abnormal data incorrectly classified as normal. 
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True Negative (TN): Number of abnormal data correctly classified as abnormal. 

False Negative (FN): Number of normal data incorrectly classified as abnormal. 

 

3.6.4 Accuracy  

Accuracy is a fundamental metric used to evaluate the performance of a model. It is 

calculated by dividing the number of correct predictions by the total number of predictions 

made. This metric is easy to compute and intuitive to understand, making it a popular choice 

for assessing classification models. It provides a straightforward measure to determine if a 

model or algorithm is properly trained and performing its classifications correctly [71]; it is 

measured using this formula:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TP + TN)

(TP + TN + FP +FN)
                                                                                               (3.1) 

 

3.6.5 Precision 

Precision is the number of correct positive results divided by the number of positive results 

predicted by the classifier. This metric should be as high as possible, as it indicates the accuracy 

of the positive class predictions, showing how likely a positive class prediction is to be correct. 

It defines the ratio of true positives to the sum of true positives and false positives [72]; such 

as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP 

(TP +FP)
                                                                                                             (3.2)  

 

3.6.6 Recall 

Recall represents the ratio between the number of true positive examples correctly 

classified and the total number of positive examples. Sensitivity, or recall, is the percentage of 

positive instances that are correctly identified. This metric estimates a model's ability to 

accurately classify all positive cases [72]. 

𝑅𝑒𝑐𝑎𝑙 =
TP 

(TP +FN)
                             (3.3) 

 

3.6.7 F1 score 

The F1 score is an essential parameter for measuring the accuracy of a classification system. 

It evaluates the effectiveness of two key metrics: precision and recall. The F1 score ranges 

between 0 and 1 and provides an overall estimate of a model's performance. It is defined as the 

harmonic mean of precision and recall, offering a balanced measure that accounts for both false 

positives and false negatives [70]. The F1 score can be expressed as follows: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗(Recall∗ Precision) 

(Recall+ Precision)
                            (3.4) 
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3.7 Conclusion 

In conclusion, this chapter highlighted how useful transfer learning is in machine learning, 

different powerful neural networks were explored like VGG, ResNet, DenseNet, and 

MobileNet, all trained on ImageNet dataset.  

In the next chapter will delve into the implementation phase, where we apply these pre-trained 

models and the proposed CNN model to practical problems. 
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                                Chapter 4    Implementation and Results 

 

4.1 Introduction 

In this chapter, we explore the different platforms and tools utilized for implementing our 

networks, including Google Colab, Google Drive, and associated libraries. We also discuss the 

database, data augmentation techniques, and preprocessing methods employed. Furthermore, 

we outline the models utilized and summarize the results obtained. 

4.2 Working environment  

The working environment is based on two parts: hardware and software. 

4.2.1 The hardware parts  

The hardware that has been used is an HP computer with the characteristics below: 

Processor  I7-8550U CPU @1.80GHz 

RAM  8Go 

Hard disk  1To HDD 

Operating system  Windows 10 x64 

Graphics card Intel® UHD Graphics 620/ NVIDIA 

GeForce MX150 

   

4.2.2 The software parts 

The software that has been used is Google Colab and Google Drive. 

Google Colab, short for Google Collaboratory, is a free platform provided by Google that 

enables users to write and execute Python code. 

Google Drive is a cloud-based file storage service provided by Google, allowing users to save 

their files online, access them from anywhere, and share them with others. 

4.2.3 Libraries                                                                                                                     

The libraries that have been used in the code are:  

- TensorFlow: is a toolkit for solving complex mathematical problems. In other words, it   

is a Python library used for building, developing, training, and deploying machine learning and 

deep learning models.  

- Keras: is a high-level library for machine learning, enabling quick creation of neural  
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network models in a few lines of code. 

- Pandas: is a widely used Python library that excels in organizing data, making it easy  

to use and understand. It's primarily employed for data manipulation and analysis tasks. Pandas 

provides features for reading and writing data from CSV and Excel formats.   

- NumPy: is a library dedicated to scientific and mathematical computing, handling data  

in multidimensional arrays or matrices. 

- Matplotlib: is a library in Python used for generating visual representations such as  

images and graphs, often with interactive features. It's commonly employed for visually 

presenting results and for comparing images. 

- Gradio: is a powerful Python library that allows for the creation of interactive graphical  

user interfaces easily.  
 

 

Figure 4.1: Library’s Logo. 

4.3 Dataset description 

In this study, the NTUA4 (National Technical University of Athens) database has been 

utilized, a publicly accessible dataset containing MRI images in PNG format with varying 

dimensions. The dataset consists of 43,087 images, categorized into 32,706 PD and 10,381 HC 

instances, representing two classes: PD Patients and Non-PD Patients. 

Specifically, the T1 MRI images have been used, with 410 entries for PD patients and 390 

entries for Non-PD individuals [54]. According to [73], T1 MRI images are more accurate 

because they highlight anatomical details and provide excellent contrast between gray and white 

matter. This enhanced visual clarity improves the demonstration of brain atrophy patterns, 

which is crucial for diagnosing and understanding the disease. The following figures illustrate 

the images of the database between PD and Non-PD patients (figure 4.2), and the figure 4.3 

                                                           
4 NTUA: https://github.com/ails-lab/ntua-parkinson-dataset 

 

https://github.com/ails-lab/ntua-parkinson-dataset
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illustrates the dataset distribution. 

 

Figure 4.2: NTUA images. 

 

Figure 4.3: Dataset distribution. 

4.4 Architecture of our system 

In this section, we will outline the different steps used in our study. Before transmitting the 

dataset to our models, we must initially undertake several data loading, preprocessing, and data 

augmentation steps to streamline the training process. The following diagram (figure 4.4) 

outlines the steps followed before obtaining our results. 

 
 

Figure 4.4: Architecture model. 
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4.5 Dividing and loading data  

In this database, the data has been partitioned such that 80% was designated for the training 

set, 10% for validation, and the remaining 10% for testing. Afterward, this data was 

organized into CSV files to facilitate exploration and analysis. These files contain the file paths 

of images along with their corresponding labels. Specifically, the training set consists of 640 

entries, the validation set comprises 80 entries, and the test set encompasses 80 entries. 

 

Figure 4.5: Number of images for each dataset. 

 

In terms of label distribution, each set exhibits a consistent pattern. For the training data, there 

are 312 entries labeled as PD Patients and 328 entries labeled as Non-PD Patients. Similarly, in 

the validation set, there are 41 PD patients and 39 Non-PD patients. Lastly, the test set consists 

of 41 PD patients and 39 Non-PD patients; the following graphs (figure 4.6) show the 

distribution of each dataframe. 

 

 

 

Figure 4.6: Train, validation and test df. 

 

4.6 Data Preprocessing 

The preprocessing applied in this study involves resizing and data normalization: 

4.6.1 Resizing: Since the sizes of images in the dataset vary, we addressed this issue by 

resizing them to a standard dimension of 224x224. 

4.6.2 Normalization: The pixel values are normalized by dividing them by 255, ensuring that 

the pixel intensities ranged from 0 to 1. 

These preprocessing steps was crucial to make the images compatible with the models used in 
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the study; the following figure illustrates the different images for each dataframe. 

 

 

Figure 4.7: the dataset after preprocessing. 

 

4.6.3 Data augmentation 

The data augmentation technique performed in Keras using the DataGenerator class allows 

for adding new photos to the dataset based on existing ones after undergoing transformations 

without losing the random characteristics of each image, such as rotation_range, zoom_range, 

width_shift_range, height_shift_range, horizontal_flip. 

4.6.3.1 Rotation_range: This parameter controls the range of rotation for images during 

data augmentation, allowing them to be rotated slightly left or right to create 

different viewing angles. 

4.6.3.2 Zoom_range: This parameter specifies that images can be slightly enlarged or 

reduced, enabling the model to learn to recognize objects at different sizes. 

4.6.3.3 Width_shift_range and height_shift_range: These parameters indicate that 

images can be slightly shifted horizontally or vertically, mimicking variations in the 

position of objects within the image. 
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4.6.3.4 Horizontal_flip: This parameter allows images to be randomly flipped horizontally, 

adding additional variety to the training data. 

 

 

Figure 4.8: The application of data augmentation. 

4.7 Proposed CNN model 

The use of pre-trained CNN architectures such as DenseNet121, VGG16, VGG19, 

ResNet50, and MobileNetV2 requires significant hardware resources and computational power 

due to the large number of trainable parameters each architecture contains: more than 143 

million for VGG19, over 138 million for VGG16, more than 25 million for ResNet50, about 

3.5 million for MobileNetV2, and over 8 million for DenseNet121. Additionally, the deeper the 

network, the longer the training time, and the inference time also increases as the data needs to 

pass through all the layers. Therefore, in this work, we propose to develop our own CNN 

architecture from scratch for diagnosing Parkinson's disease, which is much less demanding 

than pre-trained architectures. 

This architecture takes as input an image of size 224x224 pixels, which passes through an initial 

convolutional layer with 32 filters of size 3x3 pixels. This is followed by several convolutional 

layers with an increasing number of filters: 64, 128, and finally 256 filters of size 3x3 pixels. 

Each convolutional layer is followed by a ReLU activation function and a max-pooling layer 

of size 2x2 pixels to reduce the spatial dimensions. A dropout layer is added to prevent 

overfitting. The final feature maps are then flattened into a vector, which is passed to a dense 

layer with 64 neurons and a ReLU activation. The last dense layer with a sigmoid activation 

provides a probability of the presence or absence of Parkinson's disease. This architecture is 

optimized to be both computationally efficient and accurate for the specific task of detecting 

Parkinson's disease. This architecture has 4383649 parameters and is summarized in table 4.1. 
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Figure 4.9: Proposed CNN model architecture. 

 

Layer (Type) Output Shape Parameters 

Conv2D (None, 224, 224, 32) 896 

Conv2D (None, 224, 224, 32) 9248 

MaxPooling2D (None, 112, 112, 32) 0 

Conv2D (None, 112, 112, 64) 18496 

Conv2D (None, 112, 112, 64) 36928 

MaxPooling2D (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 128) 73856 

Conv2D (None, 56, 56, 128) 147584 

MaxPooling2D (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 256) 295168 

Conv2D (None, 28, 28, 256) 590080 

MaxPooling2D (None, 14, 14, 256) 0 

Dropout (None, 14, 14, 256) 0 

Flatten (None, 50176) 0 

Dense (None, 512) 3211328 

Dense (None, 1) 65 

Number of parameters 4383649 

 

Table 4.1: Architecture of the proposed model. 
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4.8 Implementation and results 

We will describe the pre-trained models used and summarise the results obtained. 

4.8.1 DenseNet121 

For the DenseNet121 model (Figure 4.10), all the base layers were used without including 

the top layers. The pre-trained weights on ImageNet were utilized to initialize the network. The 

base layers were frozen to prevent the weights from being updated during training. To adapt the 

model to our specific task of Parkinson's disease detection, we added custom layers. 

Here are the details of the layers used and added: 

▪ GlobalAveragePooling2D: This layer is used to reduce the dimensionality of the feature 

space and obtain a fixed representation of the output from the last convolutional layer of 

DenseNet121. It performs a global average on each feature map. 

▪ Dense (1024 units, activation ReLU):  A dense layer with 1024 units and a ReLU 

(Rectified Linear Unit) activation. This layer is used to learn non-linear combinations of 

features from the global representations. 

▪ Dense (512 units, activation ReLU): A second dense layer with 512 units and a ReLU 

activation. It further refines the representations learned by the previous layer. 

▪ Dense (1-unit, activation sigmoid): The output layer with a single unit and a sigmoid 

activation, used for binary classification (presence or absence of Parkinson's disease). 
 

 

Figure 4.10: DenseNet121 parameters. 

 

4.8.2 VGG16 

For the VGG16 model (Figure 4.11), a similar approach was followed to tailor the model to 

our Parkinson's disease detection task. By using pre-trained weights on ImageNet, we initialized 

the network and froze the base layers to retain the knowledge gained from training on ImageNet. 

The added custom layers include a GlobalAveragePooling2D to reduce feature dimensionality, 

followed by two Dense layers with ReLU activations to learn non-linear combinations of 

features and an output layer with a sigmoid activation for binary classification. By freezing the 

base layers and adding these custom layers, we effectively adapt the VGG16 model to our 
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specific task of Parkinson's disease detection. 

 

Figure 4.11: VGG16 parameters. 

 

4.8.3 MobileNetV2 

For the MobileNetV2 model, a similar approach was followed to tailor the model for our 

task. We utilized pre-trained weights from ImageNet to initialize the network and excluded the 

top layers. The added custom layers include GlobalAveragePooling2D to reduce feature 

dimensionality, followed by two Dense layers with ReLU activations for learning non-linear 

combinations of features, and an output layer with a sigmoid activation for binary classification. 

By freezing the base layers and adding these custom layers, we effectively adapt the 

MobileNetV2 model to our specific task. This allows us to leverage the learned representations 

from ImageNet while fine-tuning the model for our particular application. 

 

Figure 4.12: MobileNetV2 parameters. 

4.8.4 VGG19 

For the VGG19 model, a similar approach was employed as with other pre-trained models. 

Utilizing pre-trained weights from ImageNet, we initialized the network while excluding the 

top layers. Custom layers were then added, including GlobalAveragePooling2D to reduce 

feature dimensionality, followed by two Dense layers with ReLU activations for learning non-

linear combinations of features, and an output layer with a sigmoid activation for binary 

classification. By freezing the base layers and incorporating these custom layers, we effectively 

adapted the VGG19 model to our specific task. This strategy enables us to capitalize on the 

learned representations from ImageNet while fine-tuning the model for our particular 

application. 
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Figure 4.13: VGG19 parameters. 
 

4.8.5  ResNet50 

For the ResNet50 model, a similar procedure was followed as with other pre-trained models. 

We initialized the network using weights pretrained on ImageNet, excluding the top layers. 

Then, custom layers were added to tailor the model for our specific task. These new layers 

included GlobalAveragePooling2D to condense the feature space, followed by two Dense layers 

with ReLU activations to capture nonlinear feature combinations, and an output layer with a 

sigmoid activation for binary classification. By freezing the base layers and integrating these 

custom layers, we effectively fine-tuned the ResNet50 model for our task. This approach 

allowed us to benefit from the pretrained representations learned on ImageNet while adapting 

the model to our particular application. 

 

Figure 4.14: ResNet50 parameters. 

4.9 Results and discussion 

We have generated the results obtained during the realization and execution of the different 

pre-trained models below. 

4.9.1 Accuracy and Loss result 

Here is a recap of the accuracy and the loss of the pre-trained model. 
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DenseNet121 Accuracy. 

 

DenseNet121 Loss. 

 

VGG16 Accuracy. 

 

VGG16 Loss. 

 

MobileNetV2 Accuracy. 

 

MobileNetV2 Loss. 
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VGG19 Accuracy. 

 

VGG19 Loss. 

 

ResNet50 Accuracy. 

 

ResNet50 Loss. 

 

CNN Accuracy. 

 

CNN Loss. 

Table 4.2: Accuracy and loss of pre-trained model.  

 

4.9.1.1 Discussion the pre-trained model accuracy graph 

The results from various pre-trained models over 50 epochs reveal distinct patterns of 
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learning and generalization. The MobileNetV2 model shows rapid initial improvement in both 

training and validation accuracy, reaching 98.91% and 91.25% respectively, with some 

validation fluctuations indicating slight overfitting. The VGG16 model demonstrates steady 

improvement, with training and validation accuracies converging around 95.63% and 93.75% 

respectively, with minimal overfitting, showcasing robust performance. DenseNet121 achieves 

a training accuracy of 93.91%, but exhibits erratic validation accuracy stabilizing at 81.25%, 

despite significant fluctuations. The VGG19 model displays steady training accuracy growth to 

96.41%, with validation accuracy also improving to slightly above 88.75%, showing good 

generalizability with minor fluctuations. Finally, the ResNet50 model improves training 

accuracy of 93.28%, while its validation accuracy, despite an overall increase to 87.50%, shows 

sporadic drops, indicating challenges in generalization. 

As we can illustrate, our CNN model performs very well in terms of training accuracy and 

validation, with 98.28% and 91.25% respectively. 

 

4.9.1.2 Discussion on the pre-trained model loss graph 

The loss graphs for various pre-trained models over 50 epochs reveal distinct learning 

patterns and generalization abilities. The MobileNetV2 model shows rapid initial learning with 

a steady decline in training loss to 0.01 and a more fluctuating validation loss ending at 0.5, 

indicating slight overfitting. The VGG16 model exhibits initial loss reduction with a divergence 

between epochs 10 and 40, suggesting overfitting, but eventual convergence of losses indicates 

good generalization with a 0.1 of train loss and 0.12 of validation loss. DenseNet121 shows 

training with a loss of 0.14, but an erratic validation loss of 0.4, indicating some overfitting. 

The VGG19 model shows rapid initial learning with a steady decline in training loss to 0.09 

and a more fluctuating validation loss ending at 0.3, indicating slight overfitting. The ResNet50 

model has a learning loss of 0.2, and despite occasional fluctuations in the validation loss, it 

ends with a validation loss of 0.3. Collectively, these results highlight varying overfitting and 

generalization levels across models, each showing unique strengths and weaknesses in handling 

training and validation data. 

After these pre-trained models results we illustrate, that our CNN model performs very well 

in terms of training loss and validation, with 0.04 and 0.1 respectively. 
 

4.9.2 Confusion Metric result 

Here is a recap of the confusion metric of the pre-trained model. 
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DenseNet121. 

 

VGG16. 

 

MobileNetV2. 

 

VGG19. 

 

ResNet50. 

 

CNN Model. 

Table 4.3: Recap of Confusion Metric. 

 

4.9.2.1 Discussion on the pre-trained model confusion metric 

The confusion metrics for various models highlight their classification performance for PD 
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and Non-PD patients. The MobileNetV2 model shows strong performance with 41 true 

positives, 36 true negatives, 3 false positives, and 0 false negatives, indicating high reliability. 

The VGG16 model correctly identified 36 PD patients and 36 Non-PD patients, with 3 false 

positives and 5 false negatives, demonstrating effective classification. DenseNet121 achieved 

36 true positives, 33 true negatives, 6 false positives, and 5 false negatives, indicating high 

accuracy with minimal errors. The VGG19 model classified 41 PD patients and 33 Non-PD 

patients correctly, with 6 false positives and 0 false negatives, still showing notable 

effectiveness. Lastly, the ResNet50 model had 39 true positives, 29 true negatives, 10 false 

positives, and 2 false negatives, indicating effective but less precise classification compared to 

the other models. Overall, all models exhibited strong performance, particularly with low false 

negative rates, which is crucial in medical diagnostics. 

After these results of the different pre-trained models, we note that our CNN model shows 

very extremely result with 0 false positives and 0 false negatives. 

 

4.10 Comparison of the Results 

 

Model DenseNet121 VGG1

6 

MobileNetV

2 

VGG19 ResNet50 Our 

CNN  

Train 

Accuracy 

0.9391 0.9563 0.9891 0.9641 0.9328 0.9828 

Validation 

Accuracy 

0.8125 0.9375 0.9125 0.8875 0.8750 0.9125 

Test 

Accuracy 

0.8625 0.9250 0.9625 0.9000 0.8500 0.9875 

F1-score  0.862 0.900 0.962 0.924 0.847 1 

Recall 0.878 0.878 1 1 0.951 1 

Precision 0.857 0.923 0.931 0.872 0.795 1 
 

Table 4.4: Results’ comparison. 

 

 In comparing the results of various deep learning models for classification tasks, our custom 

CNN model exhibits outstanding performance across multiple evaluation metrics, making it the 

best-performing model in the set. The CNN achieves the highest test accuracy of 98.75%, 

significantly surpassing DenseNet121 (86.25%), VGG16 (92.50%), MobileNetV2 (96.25%), 

VGG19 (90.00%), and ResNet50 (85.00%). This indicates that our CNN model is the most 

accurate in predicting the correct class labels for the test dataset. 

The F1-score of the CNN model is perfect at 1, showcasing its exceptional balance between 

precision and recall. This means the CNN not only identifies all relevant instances (high recall) 
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but also ensures that all identified instances are correct (high precision). In contrast, other 

models like DenseNet121 and VGG16 have lower F1-scores, with DenseNet121 scoring 0.862, 

and VGG16 scoring 0.9. 

Furthermore, the CNN model's recall and precision are both perfect at 1, indicating that the 

model accurately detects all true positive cases (recall) and that all predicted positive cases are 

indeed true positives (precision). This perfect balance underscores the CNN model's superior 

capability in handling the classification task with minimal false positives and false negatives. 

Other models, such as DenseNet121 and VGG16, exhibit lower recall and precision, further 

highlighting the effectiveness of the CNN model. 

The CNN's performance on training and validation datasets is impressive, with a training 

accuracy of 98.28% and a validation accuracy of 91.25%.  

 

4.11 Comparison of our CNN model with related work 
 

To position our approach with regard to the literature, we compare it with the works in [54], 

[55], and [56] since we are using the same dataset. This table presents the comparison results 

in terms of accuracy metrics. 

 

Reference Year Model Imaging Type Testing 

Accuracy 

 

Kollia et al 

(53) 

2019 CNN MRI 94% 

BASNIN et al 

(54) 

2021 DenseNet-LSTM T1, T2, Flair 

MRI 

90% 

PECHETTI et al 
(55) 

 

2023 Optimized 

MobileNet V3 

T1, T2, Flair 

MRI 

95% 

Our Model  CNN Model T1 MRI 98.75% 
 

Table 4.5: Theoric comparison. 

 

This study demonstrated the effectiveness of deep learning models, particularly our 

proposed CNN model, in diagnosing Parkinson's disease using MRI data. Our experiments 

showed that this model outperformed existing studies, as evidenced by a testing accuracy of 

98.75%, higher than those achieved by another model such as Optimized MobileNet V3 (95%). 

This indicates that our CNN model can significantly improve the accuracy of Parkinson's 

disease diagnosis. 
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4.12 Model Diagnosis 

As an extension of our work, we aimed to develop an application or website where users 

could upload MRI images to predict whether they indicate Parkinson's disease or not. 

However, due to time constraints, we were unable to do this task. Instead of halting our efforts, 

we have found an alternative solution which is the Gradio library.  

Gradio is a powerful Python library that allows for the creation of interactive graphical user 

interfaces with ease. Utilizing Gradio enabled us to implement a user-friendly interface for 

our prediction model, facilitating the process of uploading and analyzing MRI images for PD 

detection. 

The figure 4.15 shows the Gradio interface. 

 

 
 

Figure 4.15: Gradio interface. 

Figure 4.16 shows the Gradio interface predicting that the input MRI image does not indicate 

Parkinson's disease, with a perfect confidence score of 99.8%. This result demonstrates the 

model's accuracy and reliability in distinguishing Non-PD cases from PD cases. 
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Figure 4.16: Non_PD prediction. 
 

In Figure 4.17, the Gradio interface is used to predict that the input MRI image indicates the 

presence of Parkinson's disease with a confidence level of 97.87%. This high confidence 

score reflects the model's strong ability to identify features associated with PD in MRI 

images. 

 

 
 

Figure 4.17: PD prediction. 

4.13 Conclusion 

In this chapter, first, we have discussed the libraries utilized for the implementation of our 

models. The dataset was defined, detailing the number of images in each dataframe. then we 

have explored the results from several pre-trained models as well as our proposed CNN model. 

Our proposed CNN model demonstrated exceptional performance, achieving an accuracy of 

98.75% and a loss of 5.23%. This significant accuracy proves the effectiveness of our model in 



CHAPTER 04   IMPLEMENTATION AND RESULT 

 

Page | 62  

accurately classifying images, and the low loss value indicates the model's reliability in 

prediction.
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General conclusion 

 

 

 

This work explored the use of deep learning for the detection of Parkinson's disease, the 

second most common neurodegenerative disease after Alzheimer's disease. For this purpose, 

we used the NTUA database, which contains MRI (Magnetic Resonance Imaging) images 

essential for our analysis. 

In the first chapter, we laid the foundation of our study by defining the key concepts of 

Artificial Intelligence (AI), Machine Learning, and Deep Learning. We also explored the 

different architectures underlying these technologies, providing a solid theoretical framework 

for our research. 

The second chapter focused on understanding neurodegenerative diseases, with a particular 

emphasis on Parkinson's disease. We described the different stages of the disease, its main 

symptoms, and included an overview of previous work in this field. This section highlighted 

the importance and urgency of developing early and accurate detection tools. 

In the third chapter, we delved into the technical details by presenting the architectures of 

the pre-trained models we used, as well as our own proposed Convolutional Neural Network 

(CNN) model. We explained why and how each model was selected and adapted for our specific 

task. 

Finally, the last chapter was dedicated to the implementation and analysis of the results 

obtained. We tested our models with a batch size of 32 over 50 epochs, using the ADAM 

optimizer, and achieved the following accuracies: 

▪ VGG16 : 92.50% 

▪ VGG19 : 90% 

▪ MobileNetV2 : 96.25% 

▪ DenseNet121 : 86.25% 

▪ ResNet50 : 85% 

Our own CNN model outperformed all these models with a remarkable accuracy of 98.75%. 

This result demonstrates the potential and effectiveness of our customized approach for 

detecting Parkinson's disease. 
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In conclusion, our study shows that deep learning, and especially CNN architectures, 

can play an important role in the early and accurate diagnosis of Parkinson's disease. The 

outstanding performance of our proposed model opens promising prospects for Future research 

will involve testing additional MRI scans from the PPMI dataset to enhance diagnostic 

performance and exploring the identification of Parkinson's disease stages to aid in personalized 

treatment planning and monitoring disease progression. Integration of other imaging modalities, 

such as DaT Scans, with MRI could further improve diagnostic accuracy. Implementing real-

time processing capabilities will facilitate immediate diagnosis during clinical visits, and 

validating the model across multiple centers and diverse populations will ensure its 

generalizability and robustness. Developing a user-friendly interface for clinicians to easily 

interpret the results and integrate them into their workflow will enhance the practical utility of 

the proposed system. 



 

Page | 65  

 

    Bibliography 
 

 

 

[1] CORNUÉJOLS, Antoine et MICLET, Laurent. Apprentissage artificiel : concepts et 

algorithmes. . s.l. : Editions Eyrolles., 2011. 

[2] THEOBALD, Oliver.. Machine learning for absolute beginners: a plain English 

introduction. . London, UK : Scatterplot press,, 2017. 

[3] KADHIM, Ammar Ismael. Survey on supervised machine learning techniques for automatic 

text classification. . Artificial Intelligence Review, 2019,. 2019. Vol. vol. 52, , no 1, p. 273-292. 

[4] MUHAMMAD, Iqbal et YAN, Zhu. SUPERVISED MACHINE LEARNING 

APPROACHES: A SURVEY. ICTACT Journal on Soft Computing, 2015, vol. 5, no 3.  

[5] NGUYEN, Duc-Phong. Enhanced facial behavior recognition and rehabilitation using 3D 

biomechanical features and deep learning approaches. 2022. Thèse de doctorat. Compiègne.  

[6] JIANG, Jung Yi, CHENG, Wen Hao, et LEE, Shie Jue. A dissimilarity measure for 

document clustering. ICIC Express Letters, 2012, vol. 6, no 1, p. 15-21.  

[7] MAHESH, Batta. Machine learning algorithms-a review. International Journal of Science 

and Research (IJSR). [Internet], 2020, vol. 9, no 1, p. 381-386.  

[8] KAELBLING, Leslie Pack, LITTMAN, Michael L., et MOORE, Andrew W. 

Reinforcement learning: A survey. Journal of artificial intelligence research, 1996, vol. 4, p. 

237-285.  

[9] SOUCY, Pascal et MINEAU, Guy W. A simple KNN algorithm for text categorization. In: 

Proceedings 2001 IEEE international conference on data mining. San Jose, California. IEEE, 

2001. p. 647-648.  

[10] SCHRITTWIESER, Julian, ANTONOGLOU, Ioannis, HUBERT, Thomas, et al. 

Mastering Atari, go, chess and shogi by planning with a learned model. Nature, 2020, vol. 588, 

no 7839, p. 604-609.  

[11] Youcef Djeriri, Université de Sidi-Bel-Abbès, Les réseaux de neurones Artificiels 09/2017.  

[12] AOUEDI, Ons, PIAMRAT, Kandaraj, HAMMA, Salima, et al. Network traffic analysis 

using machine learning: an unsupervised approach to understand and slice your network. 

Annals of Telecommunications, 2022, vol. 77, no 5, p. 297-309.  

[13] KIMURA, Nobuaki, YOSHINAGA, Ikuo, SEKIJIMA, Kenji, et al. Convolutional neural 

network coupled with a transfer-learning approach for time-series flood predictions. Water, 

2019, vol. 12, no 1, p. 96.  

[14] KRIZHEVSKY, Alex, SUTSKEVER, Ilya, et HINTON, Geoffrey E. Imagenet 

classification with deep convolutional neural networks. Advances in neural information 

processing systems, 2012, vol. 25.  



 

Page | 66  

[15] L. Deng et al., “Recent advances in deep learning for speech research at Microsoft,” 

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - 

Proceedings, pp. 8604–8608, 2013, doi: 10.1109/ICASSP.2013.6639345.  

[16] BENRADI, Hicham, CHATER, Ahmed, et LASFAR, Abdelali. A hybrid approach for 

face recognition using a convolutional neural network combined with feature extraction 

techniques. IAES Int J Artif Intell, 2023, vol. 12, no 2, p. 627.  

[17] SAZLI, Murat H. A brief review of feed-forward neural networks. Communications 

Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 

2006, vol. 50, no 01.  

[18] BULLINARIA, John A. Recurrent neural networks. Neural Computation: Lecture, 2013, 

vol. 12, no 1.  

[19] KUMARASWAMY, Balachandra. Neural networks for data classification. In : Artificial 

intelligence in data mining. Academic Press, 2021. p. 109-131.  

[20] ZHANG, Qingchen, YANG, Laurence T., CHEN, Zhikui, et al. A survey on deep learning 

for big data. Information Fusion, 2018, vol. 42, p. 146-157.  

[21] ZHANG, Guoqiang Peter. Neural networks for classification: a survey. IEEE Transactions 

on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2000, vol. 30, no 4, p. 

451-462.  

[22] Jakhar, D., & Kaur, I. (2019). Artificial intelligence, machine learning & deep learning: 

Definitions and differences. Clinical and Experimental Dermatology. doi:10.1111/ced.14029.  

[23] BADRAN, Fouad et THIRIA, Sylvie. Les perceptrons multicouches : de la régression non-

linéaire aux problèmes inverses. In: Journal de Physique IV (Proceedings). EDP sciences, 2002. 

p. 157-188.  

[24] PEIXOTO, Francke. A simple overview of multilayer perceptron (MLP). Data Science 

Blogathon, December, 2020, vol. 13.  

[25] KHAN, Asifullah, SOHAIL, Anabia, ZAHOORA, Umme, et al. A survey of the recent 

architectures of deep convolutional neural networks. Artificial intelligence review, 2020, vol. 

53, p. 5455-5516.  

[26] INDOLIA, Sakshi, GOSWAMI, Anil Kumar, MISHRA, Surya Prakesh, et al. Conceptual 

understanding of convolutional neural network-a deep learning approach. Procedia computer 

science, 2018, vol. 132, p. 679-688.  

[27] ABINAYA, R., et al. Acoustic based scene event identification using deep learning cnn. 

Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2021, vol. 12, no 5, 

p. 1398-1405.  

[28] MOGHAR, Adil et HAMICHE, Mhamed. Stock market prediction using LSTM recurrent 

neural network. Procedia Computer Science, 2020, vol. 170, p. 1168-1173.  

[29] MORO-VELAZQUEZ, Laureano, GOMEZ-GARCIA, Jorge A., ARIAS-LONDOÑO, 

Julian D., et al. Advances in Parkinson's disease detection and assessment using voice and 



 

Page | 67  

speech: A review of the articulatory and phonatory aspects. Biomedical Signal Processing and 

Contro.  

[30] PARKINSON, James. An essay on the shaking palsy. The Journal of neuropsychiatry and 

clinical neurosciences, 2002, vol. 14, no 2, p. 223-236.  

[31] JANKOVIC, Joseph. Parkinson’s disease: clinical features and diagnosis. Journal of 

neurology, neurosurgery & psychiatry, 2008, vol. 79, no 4, p. 368-376.  

[32] ROMDHAN, Sawssan Ben. Étude génétique et corrélation génotype-phénotype de la 

maladie de Parkinson dans la population tunisienne. Thèse de doctorat. Université Paris 

sciences et lettres et 2019., Université de Sfax (Tunisie).  

[33] DEMAAGD, George et PHILIP, Ashok. Parkinson’s disease and its management: part 1: 

disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharmacy and 

therapeutics, 2015, vol. 40, no 8, p. 504.  

[34] PFEIFFER, Helle Cecilie Viekilde, LØKKEGAARD, A., ZOETMULDER, Marielle, et 

al. Cognitive impairment in early‐stage non‐demented Parkinson's disease patients. Acta 

Neurologica Scandinavica, 2014, vol. 129, no 5, p. 307-318.  

[35] JOST, Wolfgang H. Autonomic dysfunctions in idiopathic Parkinson's disease. Journal of 

neurology, 2003, vol. 250, p. i28-i30.  

[36] PAHUJA, Gunjan et NAGABHUSHAN, T. N. A comparative study of existing machine 

learning approaches for Parkinson's disease detection. IETE Journal of Research, 2021, vol. 67, 

no 1, p. 4-14.  

[37] Duffy, J. “Motor speech disorders: Substrates, differential diagnosis, and management.” 

St. Louis, MO: Elsevier (2013).  

[38] LOH, Hui Wen, OOI, Chui Ping, PALMER, Elizabeth, et al. GaborPDNet: Gabor 

transformation and deep neural network for Parkinson’s disease detection using EEG signals. 

Electronics, 2021, vol. 10, no 14, p. 1740.  

[39] TEULINGS, Hans-Leo, CONTRERAS-VIDAL, José L., STELMACH, George E., et al. 

Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. 

Experimental neurology, 1997, vol. 146, no 1, p. 159-170.  

[40] Automated restrictes Boltzmann machine transfert for early diagnosis pf Parkinson's 

disease using digitized spiral drawings. THAKUR, Mahima, DHANALAKSHMI, Samiappan, 

KURESAN,Harisudha, et al. no 1, s.l. : Journal of Ambient Intelligence and Humanized 

Computing., 2023, Vol. col. 14. p. 175-189. 

[41]  Helen Ling, Luke A. Massey, Andrew J. Lees, Peter Brown, Brian L. Day, Hypokinesia 

without decrement distinguishes progressive supranuclear palsy from Parkinson's disease, 

Brain, Volume 135, Issue 4, April 2012, Pages 1141–1153.  

[42]  ISLAM, SK M. Shadekul, NASIM, Md Abdullah Al, HOSSAIN, Ismail, et al. 

Introduction of Medical Imaging Modalities. In: Data Driven Approaches on Medical Imaging. 

Cham: Springer Nature Switzerland, 2023. p. 1-25.  



 

Page | 68  

[43] Kak AC, Slaney M. Principles of Computerized Tomographic Imaging: IEEE Press, 1987. 

Kalender WA. Computed Tomography. Fundamentals, System Technology, Image Quality, 

Applications. Erlangen: Publicis.  

[44] TAGARIS, Athanasios, KOLLIAS, Dimitrios, STAFYLOPATIS, Andreas, et al. Machine 

learning for neurodegenerative disorder diagnosis—survey of practices and launch of 

benchmark dataset. International Journal on Artificial Intelligence Tools. 2018. Vol. vol. 27, no 

03. p.1850011. 

[45] SHAH, Pir Masoom, ZEB, Adnan, SHAFI, Uferah, et al. Detection of Parkinson disease 

in brain MRI using convolutional neural network. In: 2018 24th international conference on 

automation and computing (ICAC). IEEE, 2018. p. 1-6.  

[46]  ESMAEILZADEH, Soheil, YANG, Yao, et ADELI, Ehsan. End-to-end parkinson disease 

diagnosis using brain mr-images by 3d-cnn. arXiv preprint arXiv:1806.05233, 2018.  

[47] ORTIZ, Andrés, MUNILLA, Jorge, MARTÍNEZ-IBAÑEZ, Manuel, et al. Parkinson's 

disease detection using isosurfaces-based features and convolutional neural networks. Frontiers 

in neuroinformatics, 2019, vol. 13, p. 48.  

[48]  WENZEL, Markus, MILLETARI, Fausto, KRÜGER, Julia, et al. Automatic classification 

of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust 

with respect to variable image characteristics. s.l. : European journal of nuclear medicine and 

molecular imaging, 2019. Vol. vol. 143. 

[49] EL MAACHI, Imanne, BILODEAU, Guillaume-Alexandre, et BOUACHIR, Wassim. 

Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. 

Expert Systems with Applications, 2020, vol. 143, p. 113075.  

[50]  CHAKRABORTY, Sabyasachi, AICH, Satyabrata, et KIM, Hee-Cheol. Detection of 

Parkinson’s disease from 3T T1 weighted MRI scans using 3D convolutional neural network. 

Diagnostics, 2020, vol. 10, no 6, p. 402.  

[51]. Balaji E, Brindha D, Elumalai VK, Vikrama R. Automatic and non-invasive Parkinson’s 

disease diagnosis and severity rating using LSTM network. Appl Soft Comput. 2021 et 

108:107463.  

[52] VYAS, Tarjni, YADAV, Raj, SOLANKI, Chitra, et al. Deep learning‐based scheme to 

diagnose Parkinson's disease. Expert Systems, 2022, vol. 39, no 3, p. e12739.  

[53] Kollia, I., Stafylopatis, A.G., Kollias, S.: Predicting parkinson’s disease using latent 

information extracted from deep neural networks. In: 2019 International Joint Conference on 

Neural Networks (IJCNN). pp. 1–8. IEEE (2019).  

[54] BASNIN, Nanziba, NAHAR, Nazmun, ANIKA, Fahmida Ahmed, et al. Deep learning 

approach to classify Parkinson’s disease from MRI samples. In: International conference on 

brain informatics. Cham: Springer International Publishing, 2021. p. 536-547.  

[55] PECHETTI, Sukanya et RAO, Battula Srinivasa. Optimized MobileNetV3: a deep 

learning-based Parkinson’s disease classification using fused images. PeerJ Computer Science, 

2023, vol. 9, p. e1702.  



 

Page | 69  

[56] GOVINDU, Aditi et PALWE, Sushila. Early detection of Parkinson's disease using 

machine learning. Procedia Computer Science, 2023, vol. 218, p. 249-261.  

[57] Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-

scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern 

Recognition (pp. 248–255). https://doi.org/10.1109/CVPR.2009.5206848.  

[58] Jude Shavlik Lisa Torrey. Handbook of research on machine learning applications and 

trends: Algorithms, methods, and techniques. In IGI Global, chapter 11. Transfer Learning. IGI 

Global, 2009. ISBN 9781605667669. doi: 10.4018/978-1-60566-766-9.  

[59] KRIZHEVSKY, Alex, SUTSKEVER, Ilya, et HINTON, Geoffrey E. ImageNet 

classification with deep convolutional neural networks. Communications of the ACM, 2017, 

vol. 60, no 6, p. 84-90.  

[60] A. A. Abbasi, L. Hussain, I. A. Awan, I. Abbasi, A. Majid, M. S. A. Nadeem, and Q.-A. 

Chaudhary, “Detecting prostate cancer using deep learning convolution neural network with 

transfer learning approach,” Cognitive Neurodynamics,. 2020. Vol. vol. 14,, no. 4, . pp. 523–

533, . 

[61] A. G. Howard, M. Zhu. B. Chen, D. Kalenichenko. MobileNets: Efficient Convolutional 

Neural Networks for Mobile Vision Applications, arxiv: 170404861v1, 2017.  

[62] Simonyan, K. et Zisserman, A. (2015): Very deep convolutional networks for large-scale 

image recognition. arXiv:1409.1556v6.  

[63] Mascarenhas, Sheldon et Mukul Agarwal. (2021). A comparison between the VGG16, 

VGG19 and ResNet50 architecture frameworks for image classification. 2021 International 

Conference on Disruptive Technologies for Multidisciplinary Research and Applications.  

[64] He, K., et al. He, K.; Zhang, X.; Ren, S.; Sun, J. (2015): Deep Residual Learning for Image 

Recognition. arXiv:1512.03385v1.  

[65] A. Victor Ikechukwu, S. MuraliR. DeepuR.C. Shivamurthy. (2021). ResNet-50 vs VGG-

19 vs training from scratch: a comparative analysis of pneumonia segmentation and 

classification from chest X-ray images. Proceedings on Global Transitions. Vol. Vol, no2. 

pp375-381. 

[66] Huang, Gao et al. (2016). “Densely Connected Convolutional Networks”. In: arXiv: 1608. 

06993 [cs.CV].  

[67] W. Liu, H. Li, C. Hua, L. Zhao. Classification of Breast Cancer Images by Deep Learning, 

medrxiv, pages 1-13, https://doi.org/10.1101/2020.06.13.20130633, 2020.  

[68] Venali Sonone. (2019). Notes on Deep Learning Softmax Classifier. [Online]. 

Available:https://medium.com/datadriveninvestor/. notes-on-deep-learning-softmax-classifier-

971b3df27466.  

[69]. Introduction douce à l'algorithme d'optimisation Adam pour l'apprentissage en profondeur 

. J Brownlee - Maîtrise de l'apprentissage automatique, 2017.  



 

Page | 70  

[70] S. Deepak, P.M. Ameer. (2019). Classification des tumeurs cérébrales à l’aide de 

fonctionnalités CNN approfondies via l’apprentissage par transfert. Informatics in Biology and 

Medicine. Vol 11.  

[71] FATOUMATA Y & AMOR A. (2021), « Machine learning pour la maintenance prédictive 

», Mémoire de fin d’études, Université Larbi Ben Mhidi d’Oum El-Bouaghi, juillet, 42p.  

[72] MIFDAL R, « Application des techniques d’apprentissage automatique pour la prédiction 

de la tendance des titres financiers », L’obtention De La Maitrise, Sous la direction de M. 

Edmond Miresco, École De Technologie Supérieure Université Du Québec, 2019,. p 176. 

[73] Heim, B., Krismer, F., De Marzi, R., Seppi, K. Magnetic resonance imaging for the 

diagnosis of parkinson’s disease. 124, 915–964. s.l. : Journal of neural transmission, 2017. 124. 

915–964. 

 

 


