الجمهورية الجزائرية الديمقراطية الشعبية REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE وزارة التعليم العالى والبحث العلمي

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE

SCIENTIFIQUE

جامعة -البليدة 1-

UNIVERSITE SAAD DAHLEB DE BLIDA کلیة التکنولوجیا

> Faculté de Technologie قسم الهندسة المدنية Département de Génie Civil مذكرة نهاية التخرج

MEMOIRE DE PROJET DE FIN D'ETUDES

POUR L'OBTENTION DU DIPLOME DE MASTER EN GENIE CIVIL

OPTION: Structure métallique et mixte

Thème

Etude d'un Bâtiment en charpente métallique à usage bureau (Rez-de chaussée +9 étages+sous-sol)

Réalisé par :

Encadré par :

• MEDJEROUB Nouha

Mme.AOUILI

Ihssene

SISSANI Yasmine

Année universitaire: 2023-2024

Remerciements

On tient avant tout à remercier le bon Dieu le tout Puissant de nous avoir donné la santé la force et la patience pour mener à terme ce modeste travail.

On exprime notre plus vive gratitude à l'égard de **Madame Aouili** pour sa précieuse orientation, ses conseils avisés et son soutien tout au long de l'élaboration de ce mémoire. Sa disponibilité nous a également permis de travailler de façon efficace

On tient aussi a remercié **Monsieur Hamid** pour son aide inestimable pour mener à terme ce travail

Nos remerciements s'adressent également aux membres de jury pour avoir accepté de se pencher sur notre travail afin de le juger.

Dédicaces

Tout d'abord je voudrais remercier Dieu pour tout

Je dédie ce modeste travail:

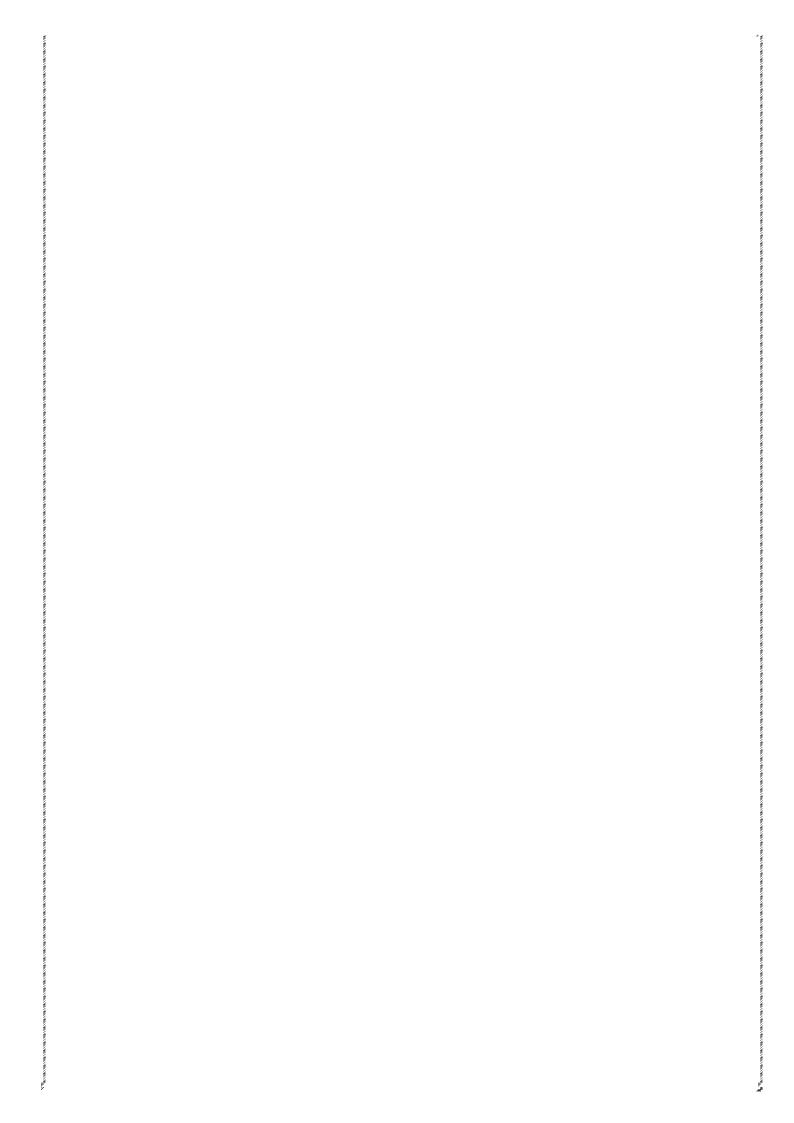
A mes chers parents, pour leurs sacrifices durant toutes ces années d'études.

À mes sœurs Fedoua et Ghofrane pour leur soutien indéfectible,

À mon oncle, **M. Boualem kobbi**, qui a été un soutien tout au long de mes années universitaires,

A mon cousin Anes pour être resté avec moi,

À tous mes chers professeurs, Surtout le promoteur : Mme Aouili


À mes tantes, Cherifa, Razika et Hamida, que Dieu les protège et prolonge leur vie, et à ma chère famille, grande et petite,

À mon binôme : Yasmine

À tous mes amis proches ou loin,

À tous ceux qui me sont chers, et qu'ils trouvent leur place dans mon cœur.

Nouha

ملخص

الهدف من هذا المشروع هو دراسة مبنى إداري ذات هيكل معدني يتكون من طابق سفلي و طابق أرضي وتسعة طوابق تقع البناية في ولاية البليدة التي تصنف في المنطقة الثالثة طبقا للقواعد الجزائرية المضادة للزلازل

في بداية المشروع قمنا أولا بتقييم اولي لأحجام العناصر الأساسية و الثانوية بعدها قمنا بدراسة الزلزال و تأثيره في البحث الديناميكي ثم التحقق من النتائج. تمت الدراسات التي قمنا بها باتباع المعايير والقوانين الحالية

RPA 99 2003, CCM97, BAEL91, EC3

Résumé

L'objectif de notre projet de fin d'études est d'analyser un édifice administratif composé d'un sous-sol, d'un R+9 en charpente métallique.

Cette construction se trouve à Blida, classée en zone sismique III, conformément au règlement parasismique algérien (RPA99 version 2003).

Au début de ce projet, nous avons effectué un pré dimensionnement des éléments. Ensuite, nous avons entamé l'étude dynamique en utilisant le logiciel Autodesk Robot Structural Analyses 2019 et le RPA 99 version 2003, puis nous avons vérifié la stabilité des éléments résistants et les assemblages, et finalement les fondations.

Les calculs ont été réalisés selon les réglementations dans notre pays, telles que : RPA 99 version 2003, CCM97, EC3 et BAEL 91.

Abstract

Our final-year project's goal is to examine an administrative structure made up of a basement and a R+9 enclosed in a metal frame.

According to Algeria's seismic laws, this construction is situated in Blida, which is categorized as seismic zone III (RPA99 version 2003).

We pre-sized the pieces when we first started this project. Next, we used the Autodesk Robot Structural Analysis 2019 program and the RPA 99 version 2003 to begin the dynamic analysis. After that, we examined the stability of the assemblies and resistant elements, and lastly the foundations.

The computations were performed in compliance with national regulations, including RPA 99 version 2003, CCM97, EC3, and BAEL 91.

A: Coefficient d'accélération de zone.

 A_s : Aire d'une section d'acier.

 φ : Angle de frottement.

Q: Charge d'exploitation.

 γ_s : Coefficient de sécurité dans l'acier.

 γ_b : Coefficient de sécurité dans le béton.

 σ_{s} : Contrainte de traction de l'acier.

 $\sigma_{bc}:$ Contrainte de compression du béton.

 $\overline{\sigma}_{s}$: Contrainte de traction admissible de l'acier.

 $\overline{\sigma}_{bc}$: Contrainte de compression admissible du béton.

 τ_u : Contrainte ultime de cisaillement.

 τ : Contrainte tangentielle.

 β : Coefficient de pondération.

 σ_{sol} . Contrainte du sol.

 $\sigma_{\scriptscriptstyle m}$: Contrainte moyenne.

G: Charge permanente.

 ξ : Déformation relative.

 V_0 : Effort tranchant a la base.

E.L.U: Etat limite ultime.

E.L.S: Etat limite service

 N_u : Effort normal pondéré aux états limites ultime.

 T_u : Effort tranchant ultime.

T: Période.

 S_t : Espacement.

 λ : Elancement.

F: Force concentrée.

f : Flèche.

f_{adm}: Flèche admissible.

L: Longueur ou portée.

 L_f : Longueur de flambement.

F_e: Limite d'élasticité de l'acier.

 M_u : Moment à l'état limite ultime.

 M_{ser} : Moment à l'état limite de service.

 M_t : Moment en travée.

 M_a : Moment sur appuis.

 M_0 : Moment en travée d'une poutre reposant sur deux appuis libres, Moment a la base.

I: Moment d'inertie.

M : Moment, Masse.

E_{ij}: Module d'élasticité instantané.

E_{vj}: Module d'élasticité différé.

E_s: Module d'élasticité de l'acier.

f_{c28}: Résistance caractéristique à la compression du béton à 28 jours d'age.

f_{t28}: Résistance caractéristique à la traction du béton à 28 jours d'age.

F_{cj}: Résistance caractéristique à la compression du béton à j jours d'age.

K : Coefficient de raideur de sol.

 δ ek : Déplacement dû aux forces sismiques (y compris l'effet de torsion).

E: Module d'élasticité longitudinale de l'acier (E = 210 000 MPa).

G: Module d'élasticité transversale de l'acier (G = 84 000 MPa).

F_p: Effort de précontrainte dans les boulons.

M: Moment sollicitant, en générale.

M_{cr}: Moment critique élastique de déversement.

Mel: Moment élastique.

M_{pl}: Moment plastique.

M_R: Moment résistant.

N_{pl} Effort normal de plastification.

f_u: Contrainte de rupture d'une pièce.

f_{ub}: Contrainte de rupture d'un boulon.

f_y: Limite d'élasticité d'une pièce.

K: Coefficient d'encastrement ou de rigidité poteau/ poutre.

k_s: Coefficient de dimension des trous de perçage pour boulon.

k_y Coefficient de flambement –flexion.

m: Nombre de plans de cisaillement ou de frottement.

n: Nombre de boulons.

 β_M : Facteur de moment uniforme équivalent (flambement).

 β_w : Facteur de corrélation (soudure).

ε: Coefficient de réduction élastique de l'acier.

η: Facteur de distribution de rigidité (flambement).

 λ : Elancement.

 λ_k : Elancement eulérien.

λ: Elancement réduit.

 λ_{LT} : Elancement de déversement.

 μ : Coefficient de frottement.

χ: Coefficient de réduction de flambement.

 χ_{LT} : Coefficient de réduction de déversement.

A_{net}: Section nette d'une pièce.

As : Section résistant de la tige d'un boulon en fond de filet.

It : Moment d'inertie de torsion.

I_y: Moment d'inertie de flexion maximale.

l_z: Moment d'inertie de flexion minimale.

W_{eff}: Module de résistance efficace.

W_{el}: Module de résistance élastique.

W_{pl}: Module de résistance plastique.

b: Largeur d'une semelle de poutre.

D: Diamètre nominale des tiges des boulons

d₀: Diamètre de perçage des trous de boulonnage.

i: Rayon de giration d'une section.

1 : Largeur d'une poutre.

t: Epaisseur d'une pièce ou d'une tôle.

t_f: Epaisseur d'une semelle de poutre.

t_w: Epaisseur d'une âme de poutre.

 v_s : Distance de la fibre extrême supérieure à l'axe neutre d'une section.

 v_i : Distance de la fibre extrême inférieure à l'axe neutre d'une section.

 α : Angle en général.

γ_{Mb} Résistance des boulons au cisaillement.

 γ_{Mb} Résistance des boulons au à la traction.

 F_v : Résistance des boulons au cisaillement par plan de cisaillement.

F_B: Résistance à la pression diamétrale des pièces assemblées.

 F_T : Résistance des boulons en traction.

 α : Facteur d'imperfection (flambement).

 $\beta_{\textit{MLT}}$: Facteur de moment uniforme équivalent pour le déversement.

Fy: Limite d'élasticité.

Ft,Rd: Résistance à la tension du boulon EN 1993-1-8 tab.

Liste des figures

Figure.I.1:	Dimensions de bâtiment en plan	2
Figure.I.2:	Diagramme Contraintes-Déformations de l'acier à L'E.L.U	5
Figure.I.3:	Conception du plancher collaborant	6
Figure.I.4:	Bac d'acier type Hi Bond 55	7
Figure .I.5:	Goujon soudée	7
Figure.I.6:	Escalier en charpente métallique	8
Figure.II.1:	Schéma des solives	11
Figure.II.2:	schéma statique de la solive	11
Figure.II.3:	largeur de la dalle effective	16
Figure. II.4:	Largeur effective	20
Figure.II.5:	Schéma statique de la poutre	23
Figure.II.6:	Position du poteau le plus sollicité	34
Figure.III.1:	Dimension de l'acrotère	40
Figure.III.2:	Diagrammes des efforts a L'ELU	41
Figure.III.3:	Schéma de ferraillage de l'acrotère	42
Figure.III.4:	Schéma d'un escalier	43
Figure.III.5:	Schéma statique de l'escalier	44
Figure.III.6:	Schéma statique d'escalier	45
Figure.III.7:	Schéma statique d'escalier	47
Figure.III.8:	Schéma de ferraillage de l'escalier	51
Figure. IV.1:	Spectre de réponse	54
Figure. IV.2:	Vu en plan de model initial	58
Figure. IV.3:	Vu en plan de model final	59
Figure .V.4:	Schéma des trois premiers modes	60
Figure .V.1:	Phénomène de flambement	64
Figure .V.2:	Phénomène de déversement	65
Figure .V.3:	Facteurs de distribution pour poteaux	67
Figure .V.4:	Dimensions de la rôle et du connecteur	75
Figure .V.5:	Contreventement intérieur au niveau des rampes sens xx	77
Figure .V.6:	Contreventement intérieur au niveau des rampes sens yy	77

Liste des figures

Figure .VI.1:	Schéma d'assemblage poutre –solive	81
Figure .VI.2:	Schéma d'assemblage poteau-poutre	83
Figure .VI.3:	Assemblage poutre platine	84
Figure .VI.4:	Assemblage soudé poutre –platine	85
Figure .VI.5:	Schéma distribution des boulons et des jarrets	87
Figure .VI.6:	Assemblage pied de poteau	91
Figure .VII.1:	Le panneau le plus sollicité de la dalle pleine	100
Figure .VII.2:	Schéma de ferraillage des poteaux	103
Figure .VII.3:	Ferraillage du voile périphérique sens X-X	107
Figure .VII.4:	semelle isolée	108
Figure .VII.5:	Ferraillage en travée	118
Figure .VII.6:	Ferraillage en appuis	118

Liste des tableaux

Tableau.I.1: Caractéristique des nuances d'acier	3
Tableau. II.1: Charge permanente d'un plancher terrasse inaccessible	9
Tableau. II.2: Charge permanente d'un plancher courant	10
Tableau.II.3: Caractéristique du profile IPE 160	12
Tableau.II.4: Les caractéristiques (phase de construction)	14
Tableau.II.5: Les vérifications de la phase finale de solive (Plancher Courant)	20
Tableau.II.6: Caractéristique du profile IPE 400	23
Tableau.II.7: les vérifications de la phase finale de poutre.P. (Plancher courant)	31
Tableau.II.8: La charge permanente sur le poteau le plus sollicité	35
Tableau.II.9: La charge d'exploitation sur le poteau central (loi de dégression)	36
Tableau .II.10: Les efforts normaux, la section et le profilé des poteaux	37
Tableau. II.11: les vérifications du flambement pour poteau central	39
Tableau. III.1: Calcule des sollicitations	41
Tableau. III.2: Les données pour calcule le ferraillage	41
Tableau. III.3: Calcule de ferraillage	42
Tableau. III.4: Charge permanente d'un palier	46
Tableau. III.5: Charge permanente d'une volée	46
Tableau. III.6: Charges a L'ELU et L'ELS	47
Tableau. IV.1: Facteur de qualité	57
Tableau. IV.2: Période et facteurs de participation massique du modèle initial	58
Tableau. IV. 3: Période et facteurs de participation massique du modèle final	59
Tableau. IV.4: Vérification des déplacements inter étages du model final	61
Tableau. IV.5: Justification vis-à-vis de l'effet P-delta	62
Tableau. V.1 : Caractéristiques de profilé HEA550	67
Tableau. V.2: Efforts internes des poteaux sous N max/ pour chaque niveau	70
Tableau. V.3: Efforts internes des poteaux sous M max/sd.z pour chaque niveau	71
Tableau. V.4: Efforts internes des poteaux sous M max/sd.y pour chaque niveau	71
Tableau. V.5 : Vérification de la stabilité au flambement du (6-7-8-9)éme étages	72
Tableau. V.6 : Caractéristique géométriques du profilé UPN 280	78
Tableau.VI.1 : Caractéristiques mécaniques des boulons leur classe d'acier	79

Liste des tableaux

Tableau.VI.2 : Caractéristiques géométriques des boulons	79
Tableau.VI.3 : Les caractéristiques du profilé (HEA360 ,IPE160)	81
Tableau.VI.4 : Les caractéristiques du profilé (HEA550 ,HEA360)	83
Tableau.VII.1 : Résultats des charges	105
Tableau.VII.2: Calcul des moments a ELU	106
Tableau.VII.3 : Ferraillage de voile périphérique	106
Tableau.VII.4 : Résultats de ferraillage de voile périphérique	106
Tableau.VII.5 : Sections initial des semelles filantes sens Y	110
Tableau.VII.6 : Poids du sol appliqué dans les semelles filantes sens Y	111
Tableau.VII.7: Sections finale des semelles filantes	111
Tableau.VII.8 : Vérification de la contrainte a ELS sens Y	113
Tableau.VII.9: Sections des semelles filantes sens Y	113
Tableau.VII.10 : Vérification de la contrainte a ELU sens Y	114
Tableau.VII.11: Ferraillage pour les semelles sens Y	115
Tableau.VII.12 : Ferraillage max en travée et sur appui de la nervure	115
Tableau.VII.13: Dimensionnement des armatures	117

SOMMAIRE

REMI	ERCIEMENTS
Dédic	aces
Résun	né
Liste	des Figures
Liste o	des Tableaux
Liste o	des Symboles
Introd	uction Générale
	Chapitre I : Généralités et présentation de l'ouvrage
I.1. In	troduction1
I.2.	Présentation de l'ouvrage
I.3.	Caractéristiques géométriques de l'ouvrage
I.4.	Matériaux utilisés
I.5.	Eléments de l'ouvrage6
I.6.	Infrastructure8
	Chapitre II : Pré-dimensionnement
II.1.	Introduction9
II.2.	Evaluation des charges et surcharges9
II.3.	Pré-dimensionnement des planchers
II.4.	Pré dimensionnement des solives
II.5.	Pré dimensionnement des poutres principales
II.5.1.	Poutre principale du plancher terrasse23
II.5.2.	Poutre principale du plancher courant30
II.6.	Pré-dimensionnement des poteaux34
	Chapitre III : Étude des éléments secondaires
III.1	1. L'acrotère
II	II.1.1. Charges verticales
II	II.1.2. Charges horizontales
	III.1.3. Ferraillage

SOMMAIRE

III.2.	Escalier on béton armé	43
II	II.2.1.Introduction	43
I	II.2.2.Définition des éléments d'un escalier	43
II	II.2.3.Choix des dimensions	43
IJ	II.2.4.Evaluation des charges	46
II	II.2.5.Détermination des efforts internes	46
	Chapitre IV : Etude dynamique en zone sismique	
IV.1.	Introduction	52
IV.2.	Etude sismique	52
IV.2.1	1. Modélisation de rigidité	52
IV.2.2	2. Modélisation de la masse	52
IV.3.	La méthode de calcul	53
IV.4.	Analyse spectrale	53
IV.5.	Résultats de l'analyse sismique	57
IV.5.	1. Model Initial	57
IV.5.2	2. Model final	59
	Chapitre V : Vérifivations des elements	
V.1.	Introduction	64
V.2.	Vérification des poteaux	65
V.3.	Vérification des poutres principales	73
V.4. V	Vérification des contreventements	61
	Chapitre VI : Les assemblages des éléments	
VI.1.	Introduction	79
VI.2.	Les différents modes d'assemblages	79
VI.3.	Assemblage poutre– poutre (HEA360 – IPE160)	81
VI.4.	Assemblage poteau–poutre (HEA 550 – HEA360)	
VI.5.	Assemblage des éléments de contreventement	90

SOMMAIRE

VI.6.	Assemblage du pied poteau (PRS)91		
	Chapitre VII : Etude de fondation		
VII.1.	Introduction		
VII.2.	Pré dimensionnement des éléments de l'infrastructure100		
VII.3.	Ferraillage des poteaux		
VII.4.	Les voiles périphériques :		
VII.5.	Choix du type de fondation		
VII.6.	Calcul des fondations		
VII.7.	. Semelle isolée sous poteaux		
VII.8.	Semelle filante		
VII.9.	Calcul du ferraillage		
Conclusion générale119			
Liste des références			

Introduction générale

La première utilisation des bâtiments métalliques remonte à la fin du XIXe siècle, lorsque les grands constructeurs de Chicago, Paris et Londres cherchaient à résoudre le grave problème de fissuration des bâtiments en brique, pierre et terre cuite dans toute l'Europe et l'Amérique du Nord. La charpente métallique est une structure généralement en acier composée d'éléments usinés en atelier et assemblés sur le chantier, elle constitue une alternative économique et pratique, et offre de nombreuses possibilités architecturales. Si vous envisagez une rénovation ou une construction neuve, la charpente métallique pourrait être une option intéressante.

Au niveau du master 2 spécialité génie civil à l'université Saad Dahleb à Blida, la réalisation d'un projet de fin d'études est obligatoire. Notre projet s'agit d'un bâtiment administratif (R+9) avec sous-sol conformément aux règlements de calcul. Plan de travail de ce mémoire :

- Le premier chapitre comporte une présentation complète de notre projet, généralités, les définitions des éléments et les caractéristiques des matériaux utilisés.
- Le deuxième chapitre se résume sur le prédimensionnement des éléments Structuraux (poutres, poteaux, planchers).
- Le troisième chapitre consacre le calcul des éléments secondaires (acrotère, escalier).
- Le quatrième chapitre se base sur l'étude de comportement de la structure vis-à vis le séisme, cette étude a été réalisée à l'aide de logiciel Robot par la méthode modale spectrale, selon le règlement « RPA99 version 2003 ».
- Le cinquième chapitre a pour objectif la vérification des éléments principaux vis-àvis les phénomènes d'instabilité tel que (le flambement et le déversement).
- Le sixième chapitre traite les différents types d'assemblages des éléments de la structure.
- A la fin nous avons procédé dans le septième chapitre une étude des éléments de sous-sol, leurs dimensionnements, ferraillages, vérifications et calculs de fondations.
- On termine le travail par une conclusion générale.

I.1. Introduction

L'objectif du présent chapitre est d'établir les fondements essentiels pour comprendre le contenu qui sera développé dans les prochains chapitres.

Nous allons présenter de manière détaillée notre projet, en commençant par les généralités qui le définissent. Nous aborderons également les définitions des différents éléments qui le composent, ainsi que la géométrie et les caractéristiques des matériaux utilisés.

I.2. Présentation de l'ouvrage

L'ouvrage est un bâtiment en charpente métallique à usage bureau, notre structure est composé d'un rez-de chaussé +9 étages+sous-sol, implanté à la wilaya de **BLIDA**, classée selon le règlement parasismique Algérien (RPA99/V.2003) comme une zone de sismicité élevée (zone III). Cet ouvrage est classé comme étant un ouvrage courant d'importance moyenne, car sa hauteur ne dépasse pas 48m, « groupe 2 »

I.3. Caractéristiques géométriques de l'ouvrage

I.3.1. Dimension en plan de l'ouvrage

Longueur totale de la superstructure	19,60 m.
Largeur totale de la superstructure	20,45m.

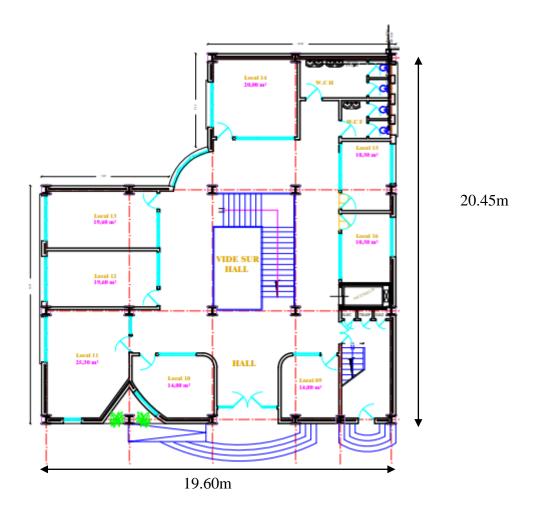


Figure.I.1: Dimensions de bâtiment en plan

I.3.2. Dimension en élévation de l'ouvrage

Hauteur de l'étage courant	3,40 m.
Hauteur du rez-de chaussé	. 3,40 m.
Hauteur du sous-sol	4,25 m.
Hauteur totale du bâtiment (sans l'acrotère)	. 34,00 m.

I.3.3. Règlements utilisés

L'étude de ce projet est basée sur les règlements suivants :

- CCM 97 : règles de calcul des constructions en acier, pour le dimensionnement et vérification des éléments de la structure.
- L'Euro code 3 (EC3) : Calcul des structures en acier.
- L'Euro code 4 (EC4) : Calcul des structures mixte.
- RPA 99 version 2003 : règles parasismiques algériennes pour l'étude sismique.

- BAEL : Béton arme aux états limites.
- CBA 93 : Règles de conception et de calcul des structures en béton arme

I.3.4. Logiciels utilisés

Autodesk Robot structural analyses Professional 2019 : pour le calcul et la vérification de l'ossature.

I.4. Matériaux utilisés

a. Acier

L'acier est un matériau caractérisé par sa bonne résistance à la traction. Nous utilisons les types d'aciers suivants :

• Acier de charpente métallique

Les caractéristiques mécaniques des différentes nuances d'acier dons le commerce sont les suivantes :

Limite élastique fy (MPa) en fonction de l'épaisseur nominale.

Nuance Epaisseur t (mm) nominale de $t \le 40 \text{ mm}$ $40 \text{ mm} \le t \le 100 \text{ mm}$ $f_y (N/mm^2)$ $f_u (N/m\overline{m^2})$ l'acier f_{v} (N/mm²) $f_u (N/mm^2)$ Fe 360 235 215 340 360 Fe 430 275 430 255 460 Fe 510 355 510 335 490

Tableau.I.1: Caractéristique des nuances d'acier.

Dans notre projet, on utilise l'acier Fe 430 dont les caractéristiques sont les suivantes :

Nuance d'acier	S275
La limite élastique	Fy=275 MPa
La résistance à la traction	Fu=430 MPa
Masse volumique de l'acier	$\rho = 7850 Kg/m^3$
Module d'élasticité longitudinale	$E = 2.1 \times 10^5 \text{ Mpa}$
Module d'élasticité transversale	$G = 8.1 \times 10^4 \text{ Mpa}$
Coefficient de poisson	v = 0.3

Aciers de béton

Haute adhérence (H.A): FeE400.

Pour ferrailler les planchers et escalier on a utilisé des barres de type HA ont les caractéristiques suivantes :

Nuance d'acier	E400
La limite élastique	$f_e = 400 \mathrm{Mpa}$
La densité volumique	$\rho = 7.850 \text{ kg/m}^3$
Module d'élasticité longitudinale	$E = 2.1 \times 10^5 \text{ Mpa}$

b. Béton

Le béton est un matériau de construction issu du mélange d'un mortier et de gravier. La composition du béton se fera selon la granulométrie des agrégats utilisés.

Classes de résistance du béton	C25/30
La résistance à la compression	$F_{c28} = 25 \text{ Mpa}$
La résistance à la traction	$F_{t28} = 2,1Mpa$
Masse volumique de Béton	$\rho = 2500 \text{ kg/m}^3$
Module sécant d'élasticité	$E_{cm} = 30500\text{Mpa}$
Coefficient de retrait	$\varepsilon = 2 \times 10^{-4} \text{ Mpa}$
Coefficient d'équivalence	n = 15

• Résistance de béton

La contrainte admissible de compression à l'état limite ultime (ELU) est donnée Par:

$$f_{ub} = \frac{0.85 \times F_{cj}}{\gamma_b}$$

Avec:

 $\gamma_b = 1.5$ action durable

 $\gamma_b = 1,15$ action accidentelle

• Résistance caractéristique à la traction

Elle est déterminée par plusieurs essais et est désignée par ft28. On peut citer :

- _ Traction directe.
- _ Traction par fendage.

Traction par flexion.

La résistance caractéristique à la traction est conventionnellement définie par la relation :

$$f_{tj} = 0.6 + 0.06 f_{cj} \text{ (MPa)}$$

• Coefficient de Poisson

Le coefficient de poisson est le rapport entre l'augmentation relative de la dimension transversale et le raccourcissement relatif longitudinal.

$$v = \frac{\text{Déformation transversale}}{\text{Déformation longitudinale}}$$

v=0 béton fissuré à l'ELU.

v = 0.2 béton non fissuré à l'ELS.

• Contraintes limites :

• Etat limite ultime :

La contrainte admissible à l'ELU a pour valeur :

En cas de situations accidentelles \longrightarrow $\sigma_{st} = 400 \text{ MPa}$

En cas de situations normales \longrightarrow $\sigma_{st} = 348 \text{ MPa}$

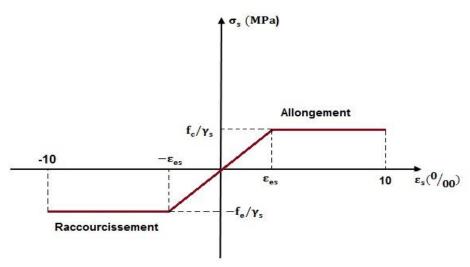


Figure.I.2: Diagramme Contraintes-Déformations de l'acier à L'E.L.U

Etat limite de service :

On ne limite pas la contrainte de l'acier sauf en état limite d'ouverture des fissures : Fissuration peu nuisible : pas de limitation.

Fissuration préjudiciable : $\sigma \leq \sigma_{st} = min(\frac{2}{3}\,f_e\,;110\sqrt{\eta f_{tj}})$

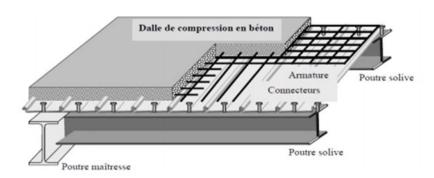
Fissuration très préjudiciable : $\sigma_{st} \leq \sigma_{bc} = min(\frac{1}{2}\,f_e$; $110\sqrt{\eta f_{tj}})$

Avec:

 η = Coefficient de fissuration

 $\eta = 1$ Pour l'acier rond lisse.

 $\eta = 1.6$ Pour l'acier HA.


I.5. Eléments de l'ouvrage

a. Ossature de la structure

En se référant aux **RPA 99 version 2003** qui exige que pour toute structures dépassant une hauteur de 17m en zone III, le type de contreventement sera soit mixte (paléesportiques) ou bien contreventé totalement par des palées triangulées.

b. Les planchers

Le type de plancher utiliser dans notre structure en charpente est un plancher collaborant d'épaisseur e=12cm, qui est constitué bac d'acier **HIBOND55**, de treillis soudé et des goujons. Cette dalle en béton est reliée aux poutres pour l'intermédiaire de connecteurs (goujons).

Figure.I.3: Conception du plancher colaborant.

• Bac d'acier :

Les bacs aciers sont de type Hi Bond 55

Cet élément forme un coffrage pour la dalle en béton, il permet :

- D'assurer un coffrage efficace et étanche en supprimant les opérations de décoffrage.
- De constituer une plateforme de travail avant la mise en œuvre du béton.
- D'éviter souvent la mise en place des étais et gagner du temps.

Le Hi-Bond utilisé dans notre calcul a les caractéristiques géométriques montrées dans la figure ci-dessous :

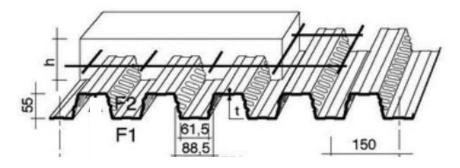


Figure.I.4: Bac d'acier type HiBond 55.

- Les planchers reposent sur un ensemble des poutres et solives métalliques.
- La liaison entre la dalle, le bac en acier collaborant et la structure porteuse est assurée par des connecteurs :

Ils permettent de développer le comportement mixte entre la poutre en acier et la dalle en béton. La connexion est essentiellement prévue pour résister au cisaillement horizontal.

• Les connecteurs :

Deux types de connecteurs principaux sont disponibles, les goujons soudés et les connecteurs cloués.

Dans notre cas, on utilise des goujons de hauteur **h=95mm** et de diamètre **d=19mm**, qui sont assemblés par soudage (voir figure ci-dessous) :

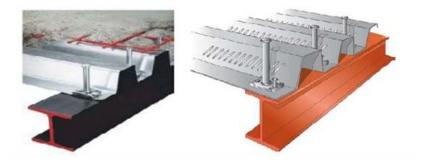
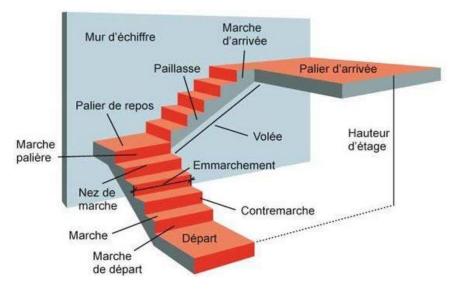



Figure.I.5: Goujon soudée

c. Escaliers

Les escaliers peuvent être droits ou hélicoïdaux. Le champ de création et presque infini, à l'intérieur des règles classiques de dimensionnement des marches et du giron.

Figure.I.6: Escalier en charpente métallique.

I.6.Infrastructure

Elle sera réalisée en béton armé coulée sur place, elle doit constituer un ensemble résistant et rigide capable de remplir les fonctions suivantes :

- Réaliser l'encastrement de la structure dans le sol.
- Limiter les tassements différentiels.
- Transmettre les charges horizontales (charges sismiques) et les charges verticales au sol d'assise de la structure.

Chapitre II Pré-dimensionnement

II.1. Introduction

Ce chapitre nous permet de faire une estimation approximative des dimensions des sections des éléments porteurs de notre structure (poteaux, poutres ... etc.). En se basant sur le principe de la descente de charges verticales transmises par les planchers aux éléments porteurs et qui les transmettent à leur tour aux fondations, le pré dimensionnement des éléments se fait selon les règles de calcul de DTR2.2, EC3, EC4.

II.2. Evaluation des charges et surcharges :

Cette étape consiste à déterminer les charges et les surcharges qui influent sur la résistance et la stabilité de notre ouvrage.

Plancher terrasse

• Charges permanentes:

Tableau.II.1: Charge permanente d'un plancher terrasse inaccessible

Matériau	Charge surfacique (KN/m²)		
Dalle en béton armé	3,06		
Bac d'acier Hi band 55	0,13		
Faux plafond	0,2		
Isolation thermique	0,16		
Protection gravillon	0,85		
Béton de pente	2,2		
Etanchéité (multicouche)	0,12		
$\sum G = 6.72 \text{ KN/m}^2$			

• Charges d'exploitation ($Q_{terrase}$) = 1 (KN/m^2)

9

Plancher courant

• Charge permanentes :

Tableau.II.2: Charge permanente d'un plancher courant

Matériaux	Charge surfacique (KN/m²)		
Dalle en béton armé ANNEXE 1	3,06		
Bac d'acier (hi-bond55)	0,13		
Faux plafond	0,2		
Lit de sable	0.54		
Chape (mortier)	0,4		
Compacto	0,4		
Cloison repartie	1		
Climatisation	0,6		
∑G=5	,73 KN/m ²		

• Charges d'exploitation ($Q_{courant}$) = 2.5kN/m² \Longrightarrow usage de bureaux

II.3. Pré-dimensionnement des planchers

Définition solives :

Les solives sont généralement des profilés en **IPE** ou **IPN** qui travaillent à la flexion simple dont leur espacement est compris entre 1 et 2m selon le type de plancher utilisé. Dans notre cas, on choisit un espacement 1.825m.

La solive la plus sollicitée à une portée égale à L= 5.3 m avec un espacement de
 1.825 m.

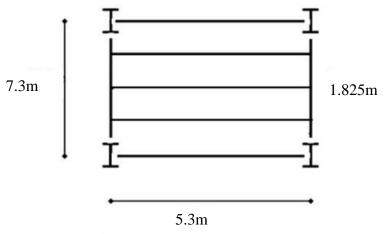
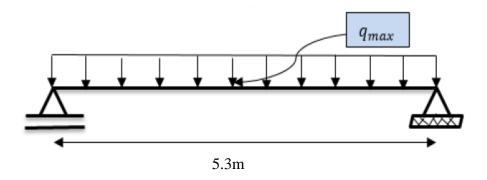



Figure.II.1: Schéma des solives

II.3.1. Plancher terrasse:

Figure.II.2: schéma statique de la solive.

La solive plus sollicité a une portée de 5.3m et un espacement de 1.825m

$$\frac{L}{25} < h < \frac{L}{15}$$

Avec:

h: la hauteur de profilé

L : la longueur de la solive

Lors de bétonnage de la dalle, on tiendra compte de la présence d'un étai placé à mi-travée

Donc : L= 2.65m

$$\frac{2650}{25} = 106mm < h < \frac{2650}{15} = 176.66mm$$

Donc : On choisit un profilé IPE 160 on opte une section de classe 1

Les caractéristiques de profilé sont regroupées dans le tableau ci-dessous :

Tableau.II.3: Caractéristique du profile IPE 160

	Poids	Section	Dimensions		Caractéristiques					
Désignation	G (kg/m)	A (cm ²)	h (mm)	b (mm)	Tf (mm)	Iz (cm ⁴)	I _y (cm ⁴)	<i>w_{ply}</i> (cm ³)	iy (cm)	iz (cm)
IPE 160	15.8	20.1	160	82	7.4	68.31	869,3	123.9	6.58	1.84

a. Phase de construction :

Le profilé d'acier travail seul, donc les charges de la phase de construction sont :

- Poids du bac d'acier..... $G_{bac} = 0.13 \text{KN/m}^2$
- Poids P du profile (IPE160)g_p=0.158KN/mL
- L'entraxe entre les solives est de 1.825 m.

1. combinaison des charges :

> ELU:

$$q_u$$
= 1.35 × (g_p+ (G_b+ G_{bac}) ×e) +1.5 × Q_c× e

$$q_u = 1.35 \times (0.158 + (3.06 + 0.13) \times 1.825) + 1.5 \times 0.75 \times 1.825$$

$$q_{\nu} = 10.125 \text{KN/ml}$$

> ELS:

$$q_{ser} = g_p + (G_b + G_{bac} + Q_c) \times 1.825$$

$$q_{ser}$$
= 0.158 + (3.06+0.13+0.75) ×1.825
 q_{ser} = 7.34KN/m

2. Vérifications :

2.1. Moment fléchissant :

Le moment fléchissant Msd dans la section transversale de classes 1 et 2 doit satisfaire la condition suivante :

$$M_{sd} \le M_{sd} = W_{ply} \times \frac{f_y}{\gamma_{m0}}$$

Avec:

M_{max} : le moment appliqué.

$$\gamma = 1$$

$$f_{v} = 275 \text{ MPa}.$$

• Le moment appliqué :

$$M_{sd} = M_{sd} = \frac{qu * l^2}{8} = \frac{10.125 \times 2.65^2}{8} = 8.88 \text{ KN. m}$$

• Moment résistant plastique :

$$M_{\rm pl,rd} = \frac{123.90 \times 10^{-6} \times 275 \times 10^{3}}{1} = 34.07 \text{ KN. m}$$

$$M_{\rm Pl,rd}=34.07~{\rm KN.\,m}>M_{\rm sd}=8.88{\rm KN.\,m}\Longrightarrow {\rm v\'erifi\'ee}$$

$$r=\frac{M_{\rm sd}}{M_{\rm pl,rd}}=\frac{8.88}{34.07}=0.26$$

r: Est le rapport entre la valeur maximale et la valeur admissible, il montre le pourcentage de participation de l'élément dans la résistance de l'ensemble.

2.2. L'effort tranchant:

$$V_{sd} < V_{pl,rd} = \frac{fy \times A_v}{\sqrt{3} \times \gamma_{m0}}$$

Avec:

V_{pl·Rd}: effort tranchant de plastification de la section.

A_v : aire de cisaillement.

• $A_v = 966 \text{mm}^2$

Donc

$$V_{pl,rd} = \frac{275 \times 966 \times 10^{-3}}{\sqrt{3}} = 153.37 \text{kN}$$

$$V_{sd} = \frac{Qu \times L}{2} = \frac{10.125 \times 2.65}{2} = 13.41 \text{ kN}$$

$$V_{Pl,rd} = 153.37 \text{kN} > V_{sd} = 13.41 \text{kN} \implies \text{v\'erifi\'ee}$$

$$0.5V_{pl, rd} = 76.68KN > V_{sd}$$

Donc il n'est pas d'interaction entre l'effort tranchant et le moment fléchissant.

2.3. Vérification de la rigidité :

Il faut vérifiée que:

$$f_{\text{max}} = \frac{5 \times qs \times l^4}{384 \times E \times Iy} \le \bar{f}$$

Avec:

Tableau.II.4: Les caractéristiques (phase de construction).

q _{ser} (KN/m)	L(m)	E(N/mm ²)	I_y (cm ⁴)	
7.34	2.65	2.1×10 ⁵	869.3	

$$\begin{split} f_{max} &= \frac{5 \times qs \times l^4}{384 \times E \times Iy} = \frac{5 \times 7.34 \times 2650^4}{384 \times 2.1 \times 10^5 \times 869.3 \times 10^4} = 2.58 \text{ mm} \\ \overline{f} &= \frac{L}{250} = \frac{2650}{250} = 10.6 \text{ mm} \end{split}$$

$$f^{max} = 2.58mm \le \bar{f} = 10.6mm \implies vérifiée$$

2.4. Vérification de déversement :

On doit vérifier que :

$$M_{\text{sd}} < M_{\text{brd}} = \chi_{LT} \frac{w_{ply} \times f_y}{\gamma_{m1}} \beta_w$$

$$\chi_{LT} = \frac{1}{\left(\emptyset_{LT} + \sqrt{(\emptyset_{LT})^2 - (\mathcal{K}_{LT})^2}\right)}$$

Avec:

 β_w : 1 (Section de classe I)

 γ_{m1} : 1,1

Msd : le moment appliqué \implies Msd = 8.88KN.m

M_{brd} : la résistance de calcul d'un élément non maintenu latéralement au

$$\Lambda_{LT} = \frac{L/iz}{\left[1 + \frac{1}{20} \left(\frac{L/iz}{h/t_f}\right)^2\right]^{0.25}}$$
Avec: C₁=1,132

$$\delta_{LT} = \frac{2650/18.4}{\left[1 + \frac{1}{20} \left(\frac{2650/18.4}{160/7.4}\right)^2\right]^{0.25} \sqrt{1.132}} = 101.06$$

$$\hat{\Lambda}_{LT} = \frac{\hat{\Lambda}_{LT}}{93.9\epsilon} \text{ avec} : \epsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$$

$$\hat{K}_{LT} = \frac{101.06}{93.9 \times 0.92} = 1.16 > 0.4 \implies$$
 il y a un risque de diversement

$$\emptyset_{LT} = 0.5 [1 + \alpha_{LT} (\tilde{\Lambda}_{LT} - 0.2) + \tilde{\Lambda}_{LT}^{-2}] = 1.27$$

Avec:

 α_{LT} : facteur d'imperfection = 0,21

$$\chi_{LT} = \frac{1}{\left(1.27 + \sqrt{(1.27)^2 - (1.16)^2}\right)} = 0.55$$

$$M_{b.rd} = \frac{0.55 \times 123.9 \times 275}{1.1} 10^{-3} = 17.03 KN. m$$

 $M_{sd} = 8.88KN/m < M_{b.rd} = 17.03 KN/m$

donc la condition de diversement est vérifié

b. Phase finale:

Le béton ayant durci, la section mixte (le profilé et la dalle) travaillant ensemble Les charges de la phase finale sont

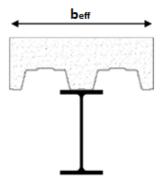
- Poids P du profile (IPE160)g_p= 0.158KN/ml
- Charge permanente G_t = 6.72 KN/m²
- Surcharge d'exploitationQ= 1 KN/m²

1. Combinaison des charges :

> ELU:

$$q_u = 1.35 \times (g_p + (G_t \times e)) + 1.5 \times Q_c \times e$$

 $q_u = 1.35 \times (0.158 + (6.72 \times 1.825)) + 1.5 \times 1 \times 1.825$
 $q_u = 19.50 \text{KN/ml}$
ELS:
 $q_u = g_p + (G_t + O) \times e$


$$q_{ser} = g_p + (G_t+Q) \times e$$

 $q_{ser} = 0.158 + (6.72 + 1) \times 1.825$
 $q_{ser} = 14.24 \text{KN.m}$

2. largeur de la dalle :

$$b_{eff}=\inf \begin{cases} 2\times L_0/8\\ b \end{cases}$$

$$b_{eff}=\inf \begin{cases} \frac{2\times 5.3}{8}=1.325m\\ 1.825m \end{cases}$$
 Donc: $b_{eff}=1.325m$

L: longueur libre d'une poutre simplement appuie

b: Entraxe entre les poutres

Figure.II.3: largeur de la dalle effective

> Position de l'axe neutre plastique :

$$R_{b\acute{e}ton} = 0.57 \times f_{ck} \times b_{eff} \times h_c = 0.57 \times 25 \times 1325 \times 95 \times 10^{-3} = 1793.71 kN$$

$$R_{Acier}$$
=0.95× f_y × A_0 = 0.95×275×2010×10⁻³ = 525.11kN

$$R_{b\acute{e}ton} = 1793.71 \text{kN} > R_{Acier} = 525.11 \text{kN}$$

Axe neutre se trouve dans la dalle de béton. Donc le moment résistant plastique développé par la section mixte est :

$$Mpl.rd = Racier[\frac{h_0}{2} + hc + hp - (\frac{R_{Acier} \times h_c}{2R_{b\acute{e}ton}})]$$

3. Vérifications :

3.1. Vérification de la flexion :

Il faut que : $M_{sd} < M_{pl.rd}$

> Le moment appliqué :

$$M_{sd} = M_{sd} = \frac{qu \times l^2}{8} = \frac{19.50 \times 5.3^2}{8} = 68.46 \text{KN. m}$$

Le moment résistant plastique développé par la section mixte :

Mpl.rd =
$$525.11[\frac{160}{2} + 95 + 55 - (\frac{525.11 \times 95}{2 \times 1793.71})] \times 10^{-3} = 113.47$$
KN.m

$$M_{Pl,rd} = 113.47 \text{ KN. m} > M_{sd} = 68.46 \text{KN. m} \Rightarrow \text{v\'erifi\'ee}$$

$$r = \frac{M_{sd}}{M_{pl,rd}} = \frac{68.46}{113.47} = 0.60$$

On constate que la condition de la résistance est vérifiée.

3.2. Vérification de l'effort tranchant :

On doit vérifier que : $V_{sd} < V_{p,rd} = \frac{f_y \times A_v}{\sqrt{3} \times \gamma m0}$

•
$$A_v = 966 \text{mm}^2$$

Donc

$$V_{pl,rd} = \frac{275 \times 10^3 \times 966 \times 10^{-6}}{\sqrt{3}} = 153.37 \text{kN}$$

$$V_{sd} = \frac{Qu \times L}{2} = \frac{19.50 \times 5.3}{2} = 51.67 \text{kN}$$

$$V_{Pl,rd} = 153.37 \text{kN} > V_{sd} = 51.67 \text{kN} \implies \text{v\'erifi\'ee}$$

$$0.5V_{pl, rd} = 76.68KN > V_{sd}$$

Donc il n'est pas d'interaction entre l'effort tranchant et le moment fléchissant.

3.3. Vérification de la rigidité :

$$f_{max} = \frac{5 \times qs \times l^4}{384 \times E \times Ic} \le \bar{f}$$

Avec:

$q_{ser}(KN/m)$	N/m) L(m) E(N/mm ²)		Ic (mm ⁴)	
14.24	5.3	2.1×10 ⁵	6.96×10^{7}	

Ic =
$$\frac{\text{Aa} \times (\text{h}_{\text{c}} + 2\text{h}_{\text{p}} + \text{h}_{\text{a}})^{2}}{4 \times (1 + \text{m. v})} + \frac{\text{b}_{\text{eff}} \times \text{h}_{\text{c}}^{3}}{12 \times \text{m}} + \text{Ia}$$

$$V = \frac{Aa}{Ab} = \frac{2010}{1325 \times 95} = 0,015$$
 $m = \frac{Ea}{Eb} = 15$

$$Ic = \frac{2010 \times (95 + 2 \times 55 + 160)^2}{4 \times (1 + 15 \times 0,015)} + \frac{1325 \times 95^3}{12 \times 15} + 869,3 \times 10^4 = 6.96 \times 10^7 \text{mm}^4$$

> La valeur de la flèche maximale est :

$$f_{max} = \frac{5 \times qs \times l^4}{384 \times E \times Ic} = \frac{5 \times 14.24 \times 5300^4}{384 \times 2.1 \times 10^5 \times 6.96 \times 10^7} = 10.009 mm$$

$$\bar{f} = \frac{L}{250} = \frac{5300}{250} = 21.2$$
mm

$$f^{max} = f^{in} + f^f = 2.58 + 10.009 = 12.58 \text{mm} \le \overline{f} = 21.2 \text{ mm} \implies \text{v\'erifi\'ee}$$

Donc : Condition de la flèche est vérifiée

II.4.2 Plancher Courant:

La solive plus sollicité a une portée de 5.3 m et un espacement de 2.43m

$$\frac{L}{25} < h < \frac{L}{15}$$

Avec:

h: la hauteur de profilé

L: la longueur de la solive

Lors de bétonnage de la dalle, on tiendra compte de la présence d'un était placé ami-travée

Donc: L=2.65m

$$\frac{2650}{25} = 106mm < h < \frac{2650}{15} = 176.66mm$$

On prend un IPE 160:

a. Phase de construction :

Les résultats qui nous vont retrouver sont les mêmes que ce qu'on a obtenus au niveau du plancher terrasse (avec le profile **IPE160**)

b. Phase final:

- Charge permanente $G_t = 5.73 \text{ KN/m}^2$
- L'entraxe entre les solives est de 1.825 m

1. combinaison des charges :

> ELU:

$$q_u$$
= 1,35 × (g_p + (G_t ×e)) +1,5 × Q_c × e
 q_u = 1,35 × (0.158+ (5.73×1.825)) + 1,5 × 2.5 × 1.825
 q_u =21.17KN/ml

> ELS:

$$q_{ser} = g_p + (G_t + Q) \times e$$

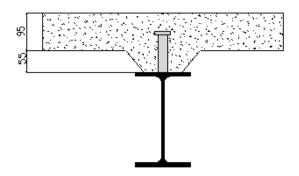
 $q_{ser} = 0.158 + (5.73 + 2.5) \times 1.825$
 $q_{ser} = 15.17 \text{KN/m}$

• Les vérifications de la phase finale sont regroupées dans le tableur ci-dessous :

Tableau.II.5: Les vérifications de la phase finale de solive (Plancher Courant).

Phase	Résistance à la flexion		L'effort Tranchant		L'interaction de l'effort tranchant		La condition de la flèche				Condition
finale	Msd (KN. m)	Mpl.rd (KN. m)	Vsd ^{max} (KN)	Vpl.rd (KN)	Vsd ^{max} (KN)	0.5V _{pl.rd} (KN)	Fmax (mm)	Ff (mm)	Fm (mm)	Fad (mm)	
	74.33	113.02	56.10	153.3	56.10	76.65	10.66	2.58	13.24	21.2	Vérifier

2. Vérification du déversement


Dans cette phase il n'est pas nécessaire de vérifier le déversement car la semelle supérieure est maintenue par dalle béton.

Conclusion:

Le profile **IPE160** vérifie tous les conditions de résistance, rigidité et déversement, donc on opte pour la solive de terrasse et courant un **IPE160**

Calcule des connecteurs :

Type goujons : $\begin{cases} hauteur = 95 \text{ mm} \\ Diamètre = 19 \text{ mm} \end{cases}$

Figure.II.4: Largeur effective

1. Détermination de (Résistance au cisaillement)

$$P_{rd} = K_t \times \inf \left\{ \begin{array}{l} 0.29 \times \propto \times \mathrm{d}^2 \times \frac{\sqrt{\mathrm{Fck} \times \mathrm{Ec}}}{\gamma \mathrm{v}} \mathrm{R\acute{e}sistance\ dans\ le\ b\acute{e}ton\ qui\ entoure\ le\ goujon} \\ 0.8 \times F_u \times \frac{\pi \times \mathrm{d}^2}{4 \times \gamma \mathrm{v}} \mathrm{La\ force\ dans\ le\ goujon} \end{array} \right.$$

Avec:

F _{ck} (KN/mm ²⁾	Ec(KN/m ²)	Fu(N/mm ²⁾	$\gamma_{ m v}$		
25	30.5	400	1.25		

$$\propto = 1$$
 si $\frac{h}{d} > 4$; $\propto = 0.2 \left(\frac{h}{d} + 1\right)$ si $3 \le \frac{h}{d} \le 4$

Dans notre cas:

$$\propto = 1 \quad car \quad \frac{h}{d} = \frac{95}{19} = 5 \ge 4$$

$$P_{rd} = K_1 \times \inf \begin{cases} 0.29 \times 1 \times 19^2 \times \frac{\sqrt{25 \times 30.5 \times 10^3}}{1.25} = 73.13 \text{KN} \\ 0.8 \times 400 \times \frac{\pi \times 19^2}{4 \times 1.25} = 72.54 \text{KN} \end{cases}$$

Prd = min(73,13;72,54) donc: Prd=72.54KN

2. Influence du sens du bac d'acier

Kt: Coefficient de réduction fonction du sens des nervures du bac pour un bac d'acier dont les nervures sont perpendiculaires à la solive. Le coefficient de réduction pour la résistance au cisaillement est calculé par :

$$k_{t} = \frac{0.7}{\sqrt{Nr}} \times \frac{b_{0}}{h_{p}} \times \left[\frac{h_{c}}{h_{p}} - 1 \right]$$

Nr : Nombre de goujon par nervure =1

$$H_p = 55 \text{ mm}$$

 $H_p = 55 \text{ mm}$ $h_c = 95 \text{ mm (hauteur du connecteur)}$ $b_0 = 88,5 \text{ mm Largeur moyenne de la nervure}$

$$Kt = \frac{0.7}{\sqrt{1}} \times \frac{88.5}{55} \times \left[\frac{95}{55} - 1 \right] = 0.819$$

Les connecteurs seront soudés à travers le bac d'acier d'après les EC4 kt doit être inférieur à 1 donc:

Prd (Résistance au cisaillement) Kt = 0.819Prd = 59.41 KN

3. Effort tranchant repris par les goujons détermination de R_L

$$R_L = \inf (R_{b\acute{e}ton}; R_{Acies})$$
; $R_L = \inf (1793.71; 525.11)$ — $R_L = 525.11 \text{ KN}$

4. Nombre de connecteurs : par demi-portée

Nbre =
$$\frac{R_L}{P_{rd}} = \frac{525.11}{59,41} = 8.83$$

On prend **10 connecteurs** pour le demi porté ; c'est-à-dire **12 connecteurs** sur toute la longueur totale de la poutre.

L'espacement minimal des connecteurs doit être supérieur à 5 fois le diamètre :

$$e_{min} \ge 5.d = 5 \times 19 = 95 \text{ mm}$$

$$e_{max} = 6h_{sc} = 6 \times 95 = 570 \text{ mm}$$

$$esp = \frac{L}{N_{br} - 1} = \frac{5300}{12 - 1}$$

 $\qquad \qquad \Longrightarrow \qquad$

$$esp = 481.81mm$$

➤ Donc on prend 12 connecteurs, avec un espacement de 481.81mm.

• Vérification au voilement

Dans le cas d'une poutre de classe 1 et 2 pas de vérification pour le voilement de l'âme des Poutres non raidies

Après le tableur des profils IPE 160 classe 1

Donc il n'a pas lieu vérifier le voilement

II.4. Pré dimensionnement des poutres principales :

Les poutres principales sont des éléments structuraux, qui permettent de supporter les charges des planchers et les transmettent aux poteaux, elles sont sollicitées principalement en flexion.

On utilise la formule approchée et simplifiée qui est en fonction de la hauteur du profilé et la portée de la poutre.

II.4.1.Poutre principale du plancher terrasse :

$$\frac{L}{25} < h < \frac{L}{15}$$

$$\frac{7300}{25} = 292mm < h < \frac{7300}{15} = 486.66mm$$

On choisit un IPE 400 qui a les caractéristiques suivantes :

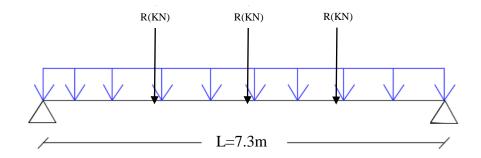


Figure.II.5: Schéma statique de la poutre

• pour un IPE400:

Tableau.II.6: Caractéristique du profile IPE 400

Poids Section			Dimensions				Caractéristiques				
	G Kg/m	A cm ²	h mm	B Mm	t _f mm	t _w mm	$I_y \ cm^4$	$I_z \ cm^4$	$W_{pl-y} \ cm^3$	i _y cm	i _z cm
	66.3	84.46	400	180	13.5	8.6	23130	1318	1307	16.55	3.95

a. Phase construction:

Le profilé d'acier travail seul, donc les charges de la phase de construction, en plus des réactions des solives sont :

- Poids propre du profiler IPE 450...... g_p =0.663 KN/ml

- Surcharge de constructionQc=0,75 KN/m²

Calcul des réactions des solives

ELU:

$$R_u = \frac{q_u solive \times Lsolive}{2}$$

ELS:

$$R_s = \frac{q_s solive \times Lsolive}{2}$$

qu (KN/mı)	qser(KN/ml)				
10.125	7.34				

$$R_{u} = \frac{5.3 \times 10.125}{2} + \frac{5.3 \times 10.125}{2} = 53.66 \text{KN}$$

$$R_{s} = \frac{5.3 \times 7.34}{2} + \frac{5.3 \times 7.34}{2} = 38.90 \text{kN}$$

$$R_{11} = R_1 + R_2 = 53.66 \text{kN}$$

$$R_U = R_1 + R_2 = 53.66 kN$$
 $R_S = R_1 + R_2 = 38.90 kN$

$$R_U = R_3 + R_4 = 53.66 \text{kN}$$

$$R_S = R_3 + R_4 = 38.90 \text{kN}$$

1. Combinaisons des charges :

ELU:

$$\mathbf{q}u = 1.35 \times (\mathbf{g}_{p} + (\mathbf{G}_{b} + \mathbf{G}_{bac}) \times \mathbf{b}s) + 1.5 \times \mathbf{Q}c \times \mathbf{b}s$$

$$\mathbf{q}u = 1,35 \times (0.663 + (3.06 + 0.13) \times 0.18) + 1,5 \times 0.75 \times 0.18$$

ELS

$$qser = gp + (Gb+g) \times bs + Qc \times bs$$

$$qser = 0.663 + (3.06 + 0.13) \times 0.18 + 0.75 \times 0.18$$

qu (KN/mi)	qser(KN/ml)
1.87	1.37

2. Vérifications

2.1. Moment fléchissant

Le moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire la condition suivante :

$$M_{sd} \leq M_{brd} = \frac{W_{pl} \cdot f_y}{\gamma_{M_0}}$$

$$M_{sd} = \frac{q_u \times l^2}{8} + \frac{R_u \times l}{2} = \frac{2.08 \times 7.3^2}{8} + \frac{53.66 \times 7.3}{2} = 208.31 \text{kN. m}$$

$$M_{pl.rd} = \frac{W_{pl} \times f_y}{\gamma_{m0}} = \frac{1702 \times 10^{-6} \times 275 \times 10^3}{1} = 468.05 \text{ kN. m}$$

$$M_{Pl,rd} = 468.05$$
kN. m > $M_{sd} = 208.31$ kN. m

⇒ La condition de la résistance c'est vérifiée

Calcule-la rondement

$$r = \frac{M_{\rm sd}}{M_{\rm pl,rd}} = \frac{208.31}{468.05} = 0.44$$

2.2. Effort tranchant

On doit vérifier que :

$$V_{\rm sd} < V_{\rm pl,rd} = \frac{f_{\rm y} \times A_{\rm v}}{\sqrt{3} \times \gamma_{\rm m0v}}$$

D'où:

$$A_v = 5085 \text{ mm}^2$$

$$V_{pl,rd} = \frac{275 \times 10^3 \times 5085 \times 10^{-6}}{1 \times \sqrt{3}} = 807.35 \text{ KN}$$

$$V_{sd} = \frac{q_u \times L}{2} + \frac{3R_u}{2}$$

$$V_{sd} = \frac{1.87 \times 7.3}{2} + \frac{3 \times 53.66}{2} = 87.31 \text{kN}$$

$$V_{Pl,rd} = 807.35 \text{ KN} > V_{sd} = 87.31 \text{kN} \implies \text{vérifiée}$$

$$0.5 \times V_{Pl,rd} = 403.67kN > V_{sd} = 87.31 \text{ kN}$$

Il n'y a pas d'interaction entre l'effort tranchant et le moment fléchissant. Donc il n'est pas nécessaire de réduire la résistance à la flexion.

2.3. La rigidité

Il faut vérifier que:

$$f_{\text{max}} \le \bar{f} = \frac{L}{250} = 29.2 \text{mm}$$

Avec:

qser(KN/mı)	Rser(KN/mi)	E(N/mm ₂)	Iy(cm2)	L(mm)	
1.37	38.90	2.1×10^{5}	23130	7300	

$$f_{\text{max}} = f^{1} + f^{2}$$

$$f \ 1 = \frac{5 \times q_{s} \times l^{4}}{384 \times E \times l_{y}} = \frac{5 \times 1.37 \times (7300)^{4}}{384 \times 2.1 \times 10^{5} \times 23130 \times 10^{4}} = 1.04 \text{ mm}$$

$$f \ 2 = \frac{19 \times R_{s} \times l^{3}}{384 \times E \times l_{y}} = \frac{19 \times 38.90 \times 10^{3} \times (7300)^{3}}{384 \times 2.1 \times 10^{5} \times 23130 \times 10^{4}} = 15.41 \text{mm}$$

$$f_{\text{max}} = 1.04 + 15.41 = 16.45 \text{mm} < f^{\text{adm}} = 29.2 \text{ mm}$$

> Condition de la flèche vérifiée.

2.4. Vérification du déversement

La vérification au déversement en phase de construction est exigée par les Euro-codes néanmoins la poutre étant maintenu latéralement par les solives de part et d'autre, on considéré qui la poutre ne risque pas de se déverser.

b. Phase finale

Le béton ayant durci la section mixte (le profilé et la dalle) travaillant ensemble les charges de la phase finale sont :

- Poids propre du profilé IPE 400.......g_p=0.663kN/m
- Charge permanente...... G_t =6.72kN/m²
- Les réactions des solives

qu (KN/ml)	qser(KN/ml)
19.50	14.24

ELU:

$$R_{\rm u} = \frac{5.3 \times 19.50}{2} + \frac{5.3 \times 19.50}{2} = 103.35 \text{kN}$$

ELS:

$$R_s = \frac{5.3 \times 14.24}{2} + \frac{5.3 \times 14.24}{2} = 75.47 \text{kN}$$

$$R_U = R_1 + R_2 = 103.35 \text{kN}$$

$$R_S = R_1 + R_2 = 75.47 \text{kN}$$

$$R_U = R_3 + R_4 = 103.35 \text{kN}$$

$$R_S = R_3 + R_4 = 75.47 \text{kN}$$

1. Combinaison des charges

• ELU

$$\mathbf{q}u = 1,35 \left[(G_t \times b_s) + g_p \right] + 1.5 \times Q_{terrasse} \times b_s$$

$$\mathbf{q}u = 1,35 [(6.72 \times 0.18) + 0.663] + 1.5 \times 1 \times 0.18$$

• ELS

$$\textbf{qser} = g_p + (G_t + Q_{terrasse}) \times b_s$$

$$qser = 0.663 + (6.72 + 1) \times 0.18$$

qu (KN/mı)	qser(KN/ml)
2.79	2.052

2. Largeur de la dalle

$$b_{eff} = \inf \left\{ \begin{array}{l} 2 \times L_0 / 8 \ldots L : \mbox{longueur libre d'une poutre simplement appuie} \\ b \ldots L : \mbox{Entraxe entre les poutres} \end{array} \right.$$

$$b_{eff} = \inf \begin{cases} 2 \times L_0/8 = 2 \times 7.3 / 8 = 1.825 \text{ m} \\ b = 5.3 \text{ m} \end{cases}$$
 Donc: $b_{eff} = 1.825 \text{ m}$

3. Position de l'axe neutre plastique

- $R_{b\acute{e}ton} = 0.57 \times f_{ck} \times b_{eff} \times h_c = 0.57 \times 25 \times 1825 \times 95 \times 10^{-3} = 2470.59 \text{kN}$
- $R_{Acier}=0.95 \times f_v \times A_0 = 0.95 \times 275 \times 9882 \times 10^{-3} = 2581.67 \text{kN}$

Rbéton < RAcier donc : L'axe neutre se trouve dans le profilé en acier

Donc calcule R_w

Aw: La section de l'âme

$$R_W = 0.95 \times f_y \times A_W \rightarrow avec: A_W = (h - (2 \times t_f)) \times t_w$$

$$A_W = 3955.52mm$$
; $R_W = 1033.37$

$$R_{\text{beton}} < R_{\text{acier}}$$
 et $R_{\text{beton}} > R_{\text{w}}$

L'axe neutre et dans la semelle supérieure du profilé

4. Vérifications :

4.1. Vérification de la flexion

Il faut que : $M_{sd} \le M_{pl.rd}$

$$M_{plrd} = (Racier \times \frac{ha}{2}) + Rb\acute{e}ton \left[\frac{ha}{2} + h_p\right]$$

$$M_{plrd} = \left(2581.67 \times \frac{450}{2}\right) + 2470.59 \left[\frac{450}{2} + 55\right] \rightarrow M_{plrd} = 1272.64 \text{ kN. m}$$

Le moment appliqué :

$$M_{sd} = \frac{q_u \times l^2}{8} + \frac{R_u \times l}{2} = \frac{2.79 \times 7.3^2}{8} + \frac{103.35 \times 7.3}{2} = 395.81 \text{kN. m}$$

$$M_{Pl,rd} = 1272.64 > M_{sd} = 395.81$$
kN. m \implies vérifiée

Calcule-la rondement

$$r = \frac{M_{sd}}{M_{pl,rd}} = \frac{395.81}{1272.64} = 0.31$$
 On constate que la condition de la résistance est vérifiée

4.2. Vérification de l'effort tranchant :

On doit vérifier que : V_{sd}<V_{pl.Rd}

 $A_v = 5085 \text{mm}^2$

$$V_{pl,rd} = \frac{275 \times 10^3 \times 5085 \times 10^{-6}}{1 \times \sqrt{3}} = 807.35 \text{kN}$$

$$V_{sd} = \frac{q_u \times L}{2} + \frac{3R_u}{2}$$

$$V_{sd} = \frac{2.79 \times 7.3}{2} + \frac{3 \times 103.35}{2} = 165.20 \text{kN}$$

$$V_{Pl,rd} = 807.35 \text{kN} > V_{sd} = 165.20 \text{kN}$$

⇒ vérifiée

$$0.5 \times V_{Pl.rd} = 403.67kN > V_{sd}$$

➤ Il n'y a pas d'interaction entre l'effort tranchant et le moment fléchissant. Donc il n'est pas nécessaire de réduire la résistance à la flexion.

4.3. Vérification de la rigidité :

Il faut vérifiée que : $f_{max} < f_{adm} = \frac{L}{250}$

Avec:

qser(KN/m1)	Rser(KN/ml)	E(N/mm ₂)	Ic (mm4)	L(mm)	
2.052	75.47	2.1×10^{5}	9.15×10^{8}	7300	

$$V = \frac{Aa}{Ab} = \frac{9882}{1825 \times 95} = 0.056$$
 , $m = \frac{Ea}{Eb} = 15$

$$Ic = \frac{9882 \times (95 + 2 \times 55 + 450)^2}{4 \times (1 + 15 \times 0.056)} + \frac{1825 \times 95^3}{12 \times 15} + 33740 \times 10^4 = 9.15 \times 10^8 \text{mm}^4$$

$$f^{1} = \frac{5 \times q_{s} \times l^{4}}{384 \times E \times I_{c}} = \frac{5 \times 2.052 \times (7300)^{4}}{384 \times 2.1 \times 10^{5} \times 9.15 \times 10^{8}} = 0.39$$

$$f^2 = \frac{19 \times R_s \times l^3}{384 \times E \times l_c} = \frac{19 \times 75.47 \times 10^3 \times (7300)^3}{384 \times 2.1 \times 10^5 \times 9.15 \times 10^8} = 7.56$$

$$f_{max} = f^{con} + f^1 + f^2 = 16.45 + 0.39 + 7.56$$

 $f_{max} = 24.4 \mathrm{mm} < f_{adm} = 29.2 \mathrm{mm} \implies \mathrm{Condition} \ \mathrm{v\'erifi\'e}$

4.4. Vérification de déversement :

Dans cette phase il n'est pas nécessaire de vérifier le déversement car la semelle supérieure est maintenue par la dalle de béton

II.4.2.Poutre principale du plancher courant :

a. Phase construction:

Les résultats qui nous vont retrouver sont les mêmes que ce qu'on a obtenus au niveau du plancher terrasse (avec le profile **IPE400**)

b. Phase finale:

Le béton ayant durci la section mixte (le profilé et la dalle) travaillant ensemble les charges de la phase finale sont :

- Poids propre du profilé IPE 400.....g_p=0.663kN/m
- Charge permanente..... $G_t=5.73kN/m^2$
- Calcul des réactions des solives

qu (KN/mı)	qser(KN/ml)
21.17	15.17

ELU:

$$R_{\rm u} = \frac{5.3 \times 21.17}{2} + \frac{5.3 \times 21.17}{2} = 112.20$$
KN

ELS:

$$R_s = \frac{5.3 \times 15.17}{2} + \frac{5.3 \times 15.17}{2} = 80.40 \text{kN}$$

$$R_U = R_1 + R_2 = 112.20 \text{kN}$$

$$R_S = R_1 + R_2 = 80.40 \text{kN}$$

$$R_U = R_3 + R_4 = 112.20 \text{ kN}$$

$$R_S = R_3 + R_4 = 80.40 \text{kN}$$

1. Combinaison des charges

• ELU

$$\mathbf{q}u = 1.35 [(G_t \times b_s) + g_p] + 1.5 \times Q_{terrasse} \times b_s$$

$$\mathbf{q}u = 1,35 [(5.73 \times 0.18) + 0.663] + 1.5 \times 2.5 \times 0.18$$

• ELS

$$qser = g_p + (G_t + Q_{terrasse}) \times 0.18$$

$$qser = 0.663 + (5.73 + 2.5) \times 0.18$$

qu (KN/mı)	qser(KN/ml)				
2.96	2.14				

Les vérifications sont regroupées dans le tableau ci-dessous :

Tableau.II.7: Les vérifications de la phase finale de poutre.P. (Plancher courant).

Phase	Résistance à la flexion		L'effort Tranchant		L'interaction de l'effort tranchant		La condition de la flèche				Condition
finale	Msd (KN. m)	Mpl.rd (KN. m)	Vsd ^{max} (KN)	Vpl.rd (KN)	Vsd ^{max} (KN)	0.5V _{pl.rd} (KN)	Fmax (mm)	Ff (mm)	Fm (mm)	Fad (mm)	
	429.24	1272.64	179.10	807.35	179.10	403.67	8.05	0.41	24.91	29.2	Vérifier

2. Vérification de déversement :

Dans cette phase il n'est pas nécessaire de vérifier le déversement car la semelle supérieure est maintenue par la dalle de béton

Conclusion:

Le profilé **IPE400** vérifie toutes les conditions de résistance, rigidité et déversement, donc on opte un **IPE400** pour les poutres de plancher terrasse et courant

A Calcul des connecteurs

Type goujons :
$$\begin{cases} \text{ hauteur} = 95 \text{ mm} \\ \text{ Diamètre} = 19 \text{ mm} \end{cases}$$

1. Détermination de (Résistance au cisaillement)

$$P_{rd} = K_t \times \inf \left\{ \begin{array}{l} 0.29 \times \propto \times \mathrm{d}^2 \times \frac{\sqrt{\mathrm{Fck} \times \mathrm{Ec}}}{\gamma \mathrm{v}} & \text{R\'esistance dans le b\'eton qui entoure le goujon} \\ 0.8 \times F_u \times \frac{\pi \times \mathrm{d}^2}{4 \times \gamma \mathrm{v}} & \text{La force dans le goujon} \end{array} \right.$$

Avec:

F _{ck} (KN/mm ²⁾	Ec(KN/m ²)	Fu(N/mm ²⁾	$\gamma_{ m v}$
25	30.5	400	1.25

$$\propto = 1$$
 $si \frac{h}{d} > 4$; $\propto = 0.2 \left(\frac{h}{d} + 1\right)$ si $3 \le \frac{h}{d} \le 4$

Dans notre cas:

$$P_{rd} = K_1 \times \inf \begin{cases} 0.29 \times 1 \times 19^2 \times \frac{\sqrt{25 \times 30.5 \times 10^3}}{1.25} = 73.13 \text{KN} \\ 0.8 \times 400 \times \frac{\pi \times 19^2}{4 \times 1.25} = 72.54 \text{KN} \end{cases}$$

Prd = min(73,13;72,54) donc: Prd = 72,54KN

2. Influence du sens du bac d'acier

Kt: Coefficient de réduction fonction du sens des nervures du bac pour un bac d'acier dont les nervures sont perpendiculaires à la solive. Le coefficient de réduction pour la résistance au cisaillement est calculé par :

$$k_{t} = \frac{0.7}{\sqrt{Nr}} \times \frac{b_{0}}{h_{p}} \times \left[\frac{h_{c}}{h_{p}} - 1 \right]$$

 $\begin{cases} Nr : Nombre de goujon par nervure = 1 \\ hp = 55 \text{ mm} ; h_c = 95 \text{ mm (hauteur du connecteur)} \end{cases}$

$$Kt = \frac{0.7}{\sqrt{1}} \times \frac{88.5}{55} \times \left[\frac{95}{55} - 1\right] = 0.82$$

Les connecteurs seront soudés à travers le bac d'acier d'après les EC4 kt doit être inférieur P_{rd} (Résistance au cisaillement) Kt = 0.82

3. Effort tranchant repris par les goujons détermination de R_L

 $R_L = \inf (R_{b\acute{e}ton; RAcies})$; $R_L = \inf (2470.59; 2581.67)$ $R_L = 2470.59 \text{kN}$

4. Nombre de connecteurs : par demi-portée :

Nbre =
$$\frac{R_L}{P_{rd}} = \frac{2470.59}{59.41} = 41.58$$

On prend **42 connecteurs** pour le demi porté ; c'est-à-dire **84 connecteurs** sur toute la longueur totale de la poutre.

L'espacement minimal des connecteurs doit être supérieur à 5 fois le diamètre :

$$e_{min} \ge 5.d = 5 \times 19 = 95 \text{ mm}$$

$$e_{max} = 6h_{sc} = 6 \times 95 = 570 \text{ mm}$$

➤ Donc on prend 84connecteurs, avec un espacement de 87.95 mm

Vérification au voilement

Le profile IPE400 est de calasse 1, donc il n'Ya pas lieu de vérifier le voilement

Vérification ou diversement

Il n'Ya pas de diversement puisque la poutre principale est maintenue par les solives

Conclusion

Toutes les conditions sont vérifiées, donc on opte un IPE400 pour le voilement

II.5. Pré-dimensionnement des poteaux :

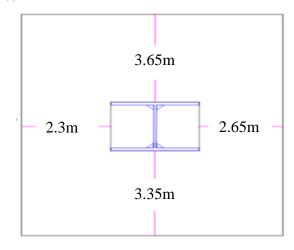
Les poteaux sont des éléments verticaux qui doivent reprendre les efforts (compression, flexion) et les transmette aux fondations.

Principe de calcul

Les poteaux sont pré-dimensionnés en compression simple en choisissant le poteau le plus sollicité de la structure. C'est-à-dire, un poteau central.

Le poteau est affecté de la surface du plancher chargé lui revenant, on utilisera un calcul basé sur la descente de charge

- Le pré-dimensionnement des poteaux s'effectue de la manière suivante :
- Détermination de l'effort de compression maximal et pondéré à l'ELU qui sollicite le poteau selon le règlement CCM 97


$$Nu = 1,35G + 1,5Q$$

G : Poids propre des éléments qui sollicite le poteau étudié non compris son poids propre.

Q: Surcharge d'exploitation dans le cas où la charge d'exploitation est la même pour tous les étages, la loi de dégression est équivalente à la règle usuelle dans laquelle les charges d'exploitation de chaque étage sont réduites.

La structure étudiée possède des poteaux en profilé **HEA**.

Poteaux la plus sollicité

Figure.II.6: Position du poteau le plus sollicité

II.5.1.Les surfaces qui reviennent aux poteaux

- Calcul de la surface : $S = 34.65 \text{ m}^2$

✓ Les charges permanentes

• Poids du plancher terrasse : $G_t \times S = 6.72 \times 34.65 = 232.84 \text{ KN}$

• Poids de poutre principale : $G_{pp (IPE 400)} = (0.663 \times 3.65) + (0.663 \times 3.35) = 4.641 \text{ KN}$

• Poids des poutres non porteuses : $G_{ps \text{ (IPE 160)}} = 0.158 \times 4.95 = 0.782 \text{KN}$

• Poids des solives : $G_{\text{solive (IPE 160)}} = (0.158 \times 4.95) \times 4 = 3.12 \text{ kN}$

• Poids du plancher courant : $G_c \times S = 5.73 \times 34.65 = 198.54 \text{ KN}$

❖ On calcule les sollicitations à L'ELU

G = G (plancher) + G (poutre porteuse) + G (poutre non porteuse) + G (solive) Q = Q (plancher)

Tableau.II.8: La charge permanente sur le poteau le plus sollicité

Niveaux	Surface (m ²)	Charge permanente
		Cumulé (kN)
9 ^{eme} étage	34.65	241.38
8 ^{eme} étage	34.65	448.46
7 ^{eme} étage	34.65	655.54
6 ^{eme} étage	34.65	862.62
5 ^{eme} étage	34.65	1069.7
4 ^{eme} étage	34.65	1276.78
3 ^{eme} étage	34.65	1483.86
2 ^{eme} étage	34.65	1690.94
1 ^{er} étage	34.65	1898.02
RDC	34.65	2105.1

✓ Les charges d'exploitation :

Plancher terrasse : $Q_t \times S = 1.0 \times 34.65 = 34.65 \text{ kN}$

Plancher courant : $Q_c \times S = 2.5 \times 34.65 = 86.62 \text{KN}$

• Charge d'exploitation (d'après la loi de dégression) :

Tableau.II.9: La charge d'exploitation sur le poteau central (loi de dégression)

Niveaux	Charge d'explantation	Surface (m ²)	Surcharges	Surcharges (KN)
9 ^{eme} étage	1	34.65	$\sum_{0}=\mathbf{Q}_{0}$	34.65
8 ^{eme} étage	2.5	34.65	$\sum_{1}=Q_0+Q_1$	121.27
7 ^{eme} étage	2.5	34.65	$\sum_{2} = \sum_{1} +0.9 \mathbf{Q}_{2}$	199.22
6 ^{eme} étage	2.5	34.65	$\sum_{3} = \sum_{2} +0.8\mathbf{Q}_{3}$	268.52
5 ^{eme} étage	2.5	34.65	$\sum_{4} = \sum_{3} +0.7 \mathbf{Q}_4$	329.15
4 ^{eme} étage	2.5	34.65	$\sum_5 = \sum_4 +0.6 \mathbf{Q}_5$	381.12
3 ^{eme} étage	2.5	34.65	$\sum_{6} = \sum_{5} +0.5Q_{6}$	424.43
2 ^{eme} étage	2.5	34.65	$\sum_{7} = \sum_{6} +0.5\mathbf{Q}_{7}$	467.74
1 ^{ee} étage	2.5	34.65	$\sum_{8} = \sum_{7} +0.5Q_{8}$	511.05
RDC	2.5	34.65	$\sum 9 = \sum 8 + 0.5 \mathbf{Q}9$	554.36

Remarque: La loi de digression des charges exploitations selon le DTR
B.C 2.2

II.5.2.Pré dimensionnement

Les poteaux sont des éléments sollicités en compression axiale, la valeur de calcul N_{sd} de l'effort de compression dans chaque section transversale doit satisfaire à la condition suivante :

$$N_{sd} \le N_{c.Rd} = \frac{A.f_y}{\gamma_{Mo}} \Rightarrow A \ge \frac{N_{sd} \times \gamma_{M_0}}{f_y}$$

N : Effort de compression.

$$f_y = 275 \text{ MPa}$$

$$\gamma_{\text{Mo}} = 1,1$$

• Poteau plus sollicité :

Poteau du RDC

$$N_{sd} = 1,35G + 1,5Q$$

$$N_{sd}$$
= 1.35×2105.1 + 1,5×554.36 = 3673.42 KN

$$a \ge \frac{N_{sd} \times \gamma_{M0}}{f_v} = \frac{3673.42 \times 10^3 \times 1.1}{275} = 146.93 \ cm^2$$

➤ Profilé choisi **HEA400**

Tableau.II.10: Les efforts normaux, la section et le profilé des poteaux.

Niveau	Nsd (KN)	A (cm ²)	Profilé
9 ^{eme} étage	377.83	15.11	HEA100
8 ^{eme} étage	787.32	31.49	HEA160
7 ^{eme} étage	1183.80	47.35	HEA200
6 ^{eme} étage	1567.31	62.69	HEA220
5 ^{eme} étage	1937.82	77.51	HEA240
4 ^{eme} étage	2295.33	91.81	HEA280
3 ^{eme} étage	2639.85	105.59	HEA300
2 ^{eme} étage	2984.37	119.37	HEA320
1 ^{er} étage	3328.90	133.15	HEA340
RDC	3673.42	146.93	HEA400

II.5.3. Vérification du flambement

• Poteau plus sollicité : Poteaux HEA400 (RDC)

Il faut vérifier que :
$$N_{sd} \le N_{bRd} = \chi \frac{\beta_A \times A \times f_y}{\gamma_{M1}}$$

Avec:

 $\beta_A = 1$ Pour les sections classe 1 et 2

$$\gamma_{M1}=1,1$$

 χ : Facteur de réduction pour le déversement.

$$f_{v} = 275 \text{ MPa}$$

$$l_{fy} = 0.7l_0 = 2.625m$$

$$l_{fz} = l_0 = 3.40 m$$

$$\Lambda_{y} = \frac{l_{fy}}{i_{y}} = \frac{2625}{154.6} = 16.97$$

$$\Lambda_{\rm z} = \frac{I_{\rm fz}}{i_{\rm z}} = \frac{3400}{74.9} = 45.39$$

Choix de la courbe de flambement

$$\frac{h}{b} = \frac{390}{300} = 1.3 > 1.2$$

$$t_f = 19 \text{mm} \le 40 \text{mm}$$

 \Rightarrow Courbe de flambement a $\rightarrow \alpha = 0.34$

$$\Lambda^{-} = \left(\frac{\Lambda}{\Lambda_{1}}\right) \times \sqrt{\beta_{A}} = \frac{45.36}{93.91} = 0.48 > 0.2$$

$$\lambda_1 = 93,91\varepsilon$$

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$$

$$\emptyset = 0.5 \left[1 + \alpha \left(\overline{\Lambda} - 0.2 \right) + \overline{\Lambda^2} \right] = 0.5 \left[1 + 0.34 (0.48 - 0.2) + 0.48^2 \right] = 0.66$$

$$\chi = \frac{1}{\left(\emptyset + \sqrt{\emptyset^2 - \overline{\Lambda^2}}\right)} = \frac{1}{0.66 + \sqrt{(0.66^2 - 0.48^2)}} = 0.89$$

$$N_{sd} = 3673.42KN \ge N_{brd} = 0.89 \frac{100 \times 159 \times 275}{1,1} \times 10^{-3} = 3537.75KN$$

Condition non vérifiée

➤ donc on opte pour **HEA450**

Remarque

Les mêmes étapes seront suivies pour les vérifications des autres poteaux, les résultats sont regroupés dans le tableau suivant :

 Tableau.II.11:
 Les vérifications du flambement pour poteau central

Niveau	Profilé	N _{sd} (KN)	N _{brd} (KN)	Condition	Profile	N _{brd} (KN)
étage					finale	
9ème	HEA100	377.83	472.59	Vérifiée	HEA100	472.59
8ème	HEA160	787.32	862.63	Vérifiée	HEA160	862.63
7 ^{ème}	HEA200	1183.80	1197.71	Vérifiée	HEA200	1197.71
6 ^{ème}	HEA220	1567.31	1431.56	N.Vérifiée	HEA240	17096.90
5 ^{ème}	HEA240	1937.82	17096.9	N.Vérifiée	HEA280	2164.03
4 ^{ème}	HEA280	2295.33	2164.03	N.Vérifiée	HEA300	2503.12
3ème	HEA300	2639.85	2503.12	N.Vérifiée	HEA320	2767.90
2 ^{ème}	HEA320	2984.37	2767.90	N.Vérifiée	HEA340	2970.37
1 ^{er}	HEA340	3328.90	2970.37	N.Vérifiée	HEA400	3537.75
RDC	HEA400	3673.42	3537.75	N.Vérifiée	HEA450	3960.50

REMARQUE: la procédure de calcul de la vérification des poteaux au flambement est la même pour les poteaux de rives et d'angles est selon RPA il est recommandé d'avoir des sections de poteaux qui se rapproche par étages, donc on a généralisé les profilés du poteau central pour les autres poteaux, et on change de profiler chaque trois niveaux

- RDC+1er+2eme \Rightarrow HEA 450
- $3\text{eme}+4\text{eme}+5\text{eme} \Rightarrow \text{HEA } 320$
- 6eme+7eme+8eme + 9eme \Rightarrow HEA 240

III.1. L'acrotère

L'acrotère est un élément secondaire de sécurité entourant la terrasse. Le calcul se fait à la flexion composée pour une bande de 1m de longueur.

III.1.1. Charges verticales

Charge permanente:

La surface de l'acrotère :
$$S = 0.1 \times 0.6 + 0.08 \times 0.1 + 0.1 \times \frac{0.02}{2} \rightarrow S = 0.069m^2$$
-poids propre de l'acrotère : $G = 25 \times 0.069 = 1.725 \, KN/ml$
-revêtement : $G = P_{ci} \times e \times P_{cme} = 14 \times 0.02 \times (0.6 + 0.02 + 0.08 + 0.1 + 0.1 + 0.5)$
 $G = 0.392 \, KN/ml$

- Charge permanente totale : $G = 2.117 \, KN/ml$

III.1.2. Charges horizontales

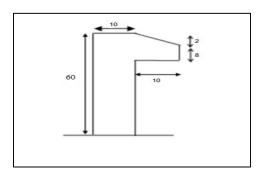


Figure.III.1: Dimension de l'acrotère.

• Charge sismique

D'après le RPA99, l'acrotère est soumis à une force horizontale due au séisme :

$$F_p = 4.A.C_p.W_p$$
 [4]

Avec:

- A : Coefficient d'accélération de zone
- C_p: Facteur de force horizontale varie entre 0,3 et 0,8
- W_p: Poids de l'élément considéré.

Dans ce cas : Le groupe d'usage approprié et Zone III

- A = 0.25
- $C_p = 0.8$
- $W_p = 2.117 \text{ KN/ml}$

Donc $F_p = 4 \times 0.25 \times 0.8 \times 2.117 = 1.69 \text{ k N /m l}$

• Charge d'exploitation

L'effet de la main courante est de Q = 1,00 kN/ml

$$Q_h = Max(1.5Q; Fp) = Max(1.5; 1.69) = 1.69 KN/ml$$

• Hypothèses de calcul

L'acrotère est calculé comme un élément console, sollicité principalement à la charge accidentelle, et donc sollicité en flexion composée.

La fissuration est considérée comme peu préjudiciable.

Le calcul se fera pour une bande d'un mètre et demi linéaire (1m).

• Calcul des sollicitations

Tableau.III.1: Calcule des sollicitations

	EL	U		ELS	s
N_u	1,35xG	2.85 kN	N_s	G	2.117 kN
M_u	$1.5 \times Q_h \times h$	1.52kN.m	M_s	$Q_h \times h$	2.56 KN.m
T_u	1,5 × Fp	2.53 kN	T_s	Fp	1.69 kN

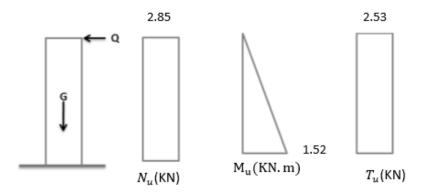


Figure.III.2: Diagrammes des efforts à l'ELU.

III.1.3. Ferraillage

Le calcul du ferraillage se fait pour une bande de 1 m de largeur.

> ELU

Données:

Tableau.III.2: Les données pour calcule le ferraillage

b (cm)	h (cm)	d (cm)	c=c'	fc28(MPa)	Ftj(MPa)	Fe(MPa)	σbc	σs(MPa)
			(cm)				(MPa)	
100	10	9	2.5	25	2.1	400	14.17	348

$$e_0 = \frac{M_u}{N_u}$$
 $e_0 = 0.64 \, mm$

$$\frac{h}{2} - c = 2.5 \ cm < e_0 \ \text{Donc} : M = M_U + N_U \left(\frac{h}{2} - c'\right) = 2.23 \ \text{KN.m}$$

D'âpres l'organigramme : $M=M_f=2.23$ KN.m

$$\mu_u = \frac{M_f}{b. d^2. \, \text{obc}} = 0.0194$$

$$\mu_u = 0.0194 < \ \mu_R = 0.391 \ \rightarrow \ A'_s = 0$$

D'âpres l'organigramme de flexion simple on aura les résultats

Tableau.III.3: Calcule de ferraillage

μ_u	μ_R	α	Z (cm)	σ _s (MPa)		$A_{s1} = A'_{s}$		
0.0194	0.391	0.024	8.91	348	71.20	0	63.01	0.63

• Condition non fragilité:

$$A_{cnf} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 1.087cm^2$$

$$A_s = \max(A_{s2}; A_{min}) = 1.087 \text{cm}^2$$

On adoptera : 5T10 $\rightarrow A_s = 3.93 \text{cm}^2$; avec un espacement $S_t = \frac{100}{4} = 25 \text{ cm}$

• Armature de répartition

$$\frac{As}{4} \le A_r \le \frac{As}{2}$$
; $A_r > 0.755 cm^2$

On adoptera : 4T8 \rightarrow A_r=2.01cm² ; avec un espacement S_t = $\frac{60-5}{3}$ = 18.33 cm \rightarrow St = 18cm

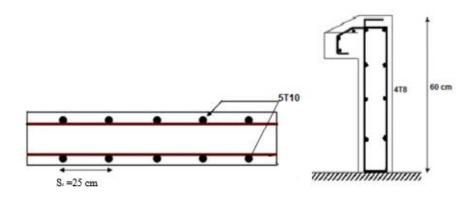


Figure.III.3: Schéma de ferraillage de l'acrotère

III.2. Escalier on béton armé

III.2.1.Introduction

Les escaliers sont des éléments d'ouvrages permettant de passer à pied d'un étage de bâtiment à un autre. Il est composé d'une succession régulière de plans horizontaux consistant en des marches et des paliers.

III.2.2.Définition des éléments d'un escalier

- Le marche : la partie horizontale des gradins constituant l'escalier.
- La contre marche : la partie verticale des gradins.
- La montée ou la hauteur d'escalier
- La hauteur d'une marche.
- Le giron : la largeur de la volée.
- La volée : suite ininterrompue des marches.
- La paillasse : le support des marches .
- Le palier : la partie horizontale entre deux volées.

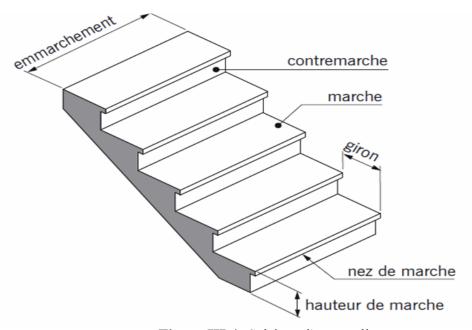


Figure.III.4: Schéma d'un escalier

III.2.3.Choix des dimensions

Pour une réalisation idéale et confortable on doit avoir 2h + g = 64

On obtient, le nombre des marches et leur dimension par les relations suivantes :

$$2h + g = 64....(1)$$

$$n \times h = H....(2)$$

$$(n-1)g = L$$
(3)

Avec:

n: Le nombre des contre marches

(n-1): Le nombre des marches

En remplaçant (2) et (3) dans (1), on obtient :

$$64n^2 - n(64 + 2H + L) + 2H = 0$$
(4)

Avec : n: La racine de l'équation

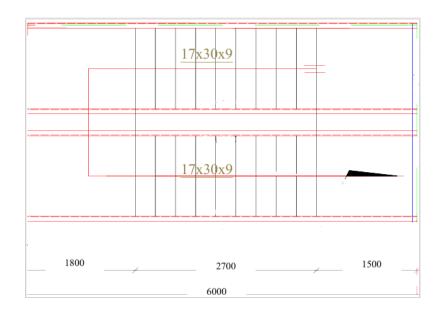


Figure.III.5: Schéma statique de l'escalier

Ce type d'escalier est composé d'une volée et deux paliers intermédiaires.

D'après (4) on aura : 64n²-674n+340=0

Vérification de l'équation de « BLONDEL »

$$(59 \le (g+2h) \le 66)$$
cm $2h+g=64$ cm $\{(16 \le h \le 18)$ cm $\{h=17$ cm $g=30$ cm $\}$ Vérifiée

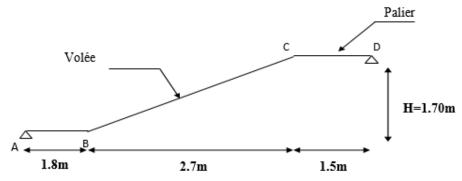


Figure.III.6: Schéma statique d'escalier.

Détermination de l'épaisseur de la paillasse :

$$\frac{L}{30} \le e \le \frac{L}{20}$$

Avec:

L : La longueur du palier et de la paillasse

$$l = \sqrt{L^2 + H^2} + 1.8 + 1.5$$

$$1 = \sqrt{2.7^2 + 1.7^2 + 1.8 + 1.5} = 6.5 \text{m}$$

Donc:

$$\frac{6.5}{30} = 0.216 \text{m} \leqslant e \leqslant \frac{6.5}{20} = 0.325 m$$

On prend l'épaisseur e = 22cm

La valeur de H et L:

H=1.7m=170cm et L=2.7m=270cm

$$64n^2 - n(64 + (170 \times 2) + 270) + (2 \times 170) = 0$$

$$64n^2 - 674n + 340 = 0$$

 $\Delta = b^2 - 4$. a. c On a deux solutions

- $n_1 = 0.53$ refusée la solution
- $n_2 = 10$ prendre de la solution

Donc:

Nombre de la contre marche :10 contre marches

Le nombre des marches : n - 1 = 10 - 1 = 9 m a r c h e s

Alors:

$$h = \frac{H}{n} = \frac{170}{10} = 17cm$$

$$g = \frac{L}{n-1} = \frac{270}{9} = 30$$
cm

N.B:

Le palier aura la même épaisseur que la paillasse.

Angle d'inclinaison de la paillasse

-
$$tan\alpha = \frac{170}{270} = 0.629$$
; $\alpha = 32.2^{\circ}$

III.2.4.Evaluation des charges : [2]

a) Palier

Charges permanentes

Tableau.III.4: Charge permanente d'un palier

Composants	Epaisseur (m)	Poids volumique (K N/m ³)	Poids surfacique (K N/m ²)						
Mortier de pose	0.02	20	0.40						
Carrelage de pose	0.02	22	0.44						
Lit de sable	0.03	18	0.54						
Dalle du palier	0.22	25	5.5						
Enduit en ciment	0.02	18	0.36						
\sum G =7.24 k N/m ²									

Charge d'exploitation : $Q = 2.5 \text{ k n/m}^2$

b) la volée :

Charge permanente

Tableau.III.5: Charge permanente d'une volée.

Composants	Epaisseur (m)	Poids volumique	Poids surfacique	
		(K N/m ³)	(K N/m ²)	
Mortier de pose	0.02	20	0.40	
Carrelage de pose	0.02	22	0.44	
Lit de sable	0.03	18	0.54	
Enduit en ciment	0.02	18	0.36	
La marche	(0.17/2) = 0.085	25	2.125	
Dalle du paillasse	$(0.22/\cos 32.2) = 0.212$	25	6.5	
Garde corps	-	-	1	
	$\sum \mathbf{G} = 11.37 \mathbf{k}$	N/m ²		

Charge d'exploitation : $Q = 2.5 \text{ k N/m}^2$

III.2.5.Détermination des efforts internes

Le chargement est donné pour une bande de 1 ml de longueur

Donc:
$$\begin{cases} G_{paller} = 7.24 \, KN/m^2 \\ G_{paillasse} = 11.37 \, KN/m^2 \end{cases}$$

Combinaison des charges

$$ELU = 1.35G + 1.5Q$$

$$ELS = G + Q$$

Tableau.III.6: Charges à l'ELU et l'ELS

			ELU (K N /ml)	ELS (K N /ml)
	G (K N /m ²)	Q (K N /m ²)	q ₁ (KN/ml)	q ₂ (KN/ml)
Volée	11.37	2.5	19.10	13.87
Palier	7.24	2.5	13.52	9.74

Calcul des efforts internes

ELU: $M_{u max} = 78.32 \text{ KN. m}$ $T_u = 48.28 KN$ ELS: $M_{s max} = 56.77 \text{ KN. m}$ $T_s = 34.93 KN$

Avec : M appui = $0.5M_{u max}$, M travée = $0.85M_{u max}$

ELU: M appui = 39.16 KN.m M travée = 66.57 KN.m Tmax= 48.28KN.m

ELS: M appui = 28.39KN.m M travée = 48.25 KN.m Tmax= 34.93KN.m

Calcul des armatures

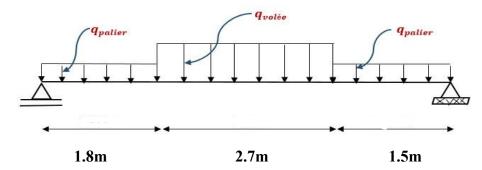


Figure : Schéma statique de l'escalier

Le ferraillage se fait en flexion simple pour une bande de 1m de largeur en suivant les étapes de l'organigramme pour le calcul d'une section rectangulaire en flexion simple à

ELU:

Données:

- b = 100cm ; d=0.9h=19.8cm ; fc28 =25MPa ; fbc =14.16MPa ; ft28 =2.1MPa ; $\gamma_b=1.5 \; ; \; \sigma=347.82\text{MPa} \; ; \; \gamma_s=1.15 \; ; \; \text{fe=400MPa} \; ; \; \text{S.D.T} \; ; \; \mu_r=0.391$

	Mu	μ	μ<μR	A's	α	Z	As ^{cal}	Choix	As ^{adp}
	(KNm)			(cm²)		(cm)	(cm²)		(cm ²)
Travée	66.57	0.120	Oui	0	0.160	18.53	10.32	7T14	10.78
Appui	39.16	0.071	Oui	0	0.092	10.07	5.90	6T12	6.79

Espacement

- En travée $esp \le \frac{100}{7} = 14.28cm$ On prend : esp=14cm

- Sur appuis $esp \le \frac{100}{6} = 16.6cm$ On prend: esp=17cm

Armature de répartition

- En travée $\frac{As}{4} \le A_r \le \frac{As}{2} \implies 2.70 \text{cm}^2/\text{ml} \le \text{Ar} \le 5.39 \text{cm}^2/\text{ml}$

Le choix est de 7T8=3.52cm² avec St=14cm

- Sur appui $\frac{As}{4} \le A_r \le \frac{As}{2} \implies 1.70 \text{cm}^2/\text{ml} \le \text{Ar} \le 3.40 \text{cm}^2/\text{ml}$

Le choix est de 6T8=3.02cm² avec St=17cm

Armature longitudinales:

$$St \le min (3h; 33cm) = min(66; 33) = 33cm$$
 St= 33cm

Vérification du ferraillage de l'escalier :

Condition de non fragilité :

$$A_{min} = \frac{0.23. \text{ b. d. } f_{t28}}{f_e}$$
 \rightarrow $A_{min} = 2.39 \text{ cm}^2$

En travée :
$$A_s = 10.78 \text{cm}^2 > A_{min} = 2.39 \text{cm}^2$$
 Condition vérifiée

En Appui :
$$A_s = 6.79 \text{cm}^2 > A_{\text{min}} = 2.39 \text{cm}^2$$
 Condition vérifiée

Vérification des armatures transversales

$$\tau_u = \frac{T_u^{max}}{b.d} = 0.24MPa \le \overline{\tau_u} = 0.05 f_{c28} = 1.25\text{MPa}$$

Avec:
$$T_u^{max} = 48.28KN$$

Donc les armatures transversales ne sont pas nécessaires

- Vérification a l'ELS:

La fissuration est considérée comme peu nuisible, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues

Vérification des contraintes du béton :

Position de l'axe neutre

$$by(y/2)+nA'_{s}(y-d')-nA_{s}5(d-y)=0$$

Travée: y=11.55cm

Appui: y=10cm

Moment d'inertie

$$I = b(\frac{y^{3}}{3}) + nA'_{s}(y - d')^{2} + nA_{s}(d - y)^{2}$$

Travée : $I=6.24\times10^4$ cm⁴

Appui : $I=4.31\times10^4 cm^4$

On doit vérifier que :

$$\sigma_{bc} = \frac{Mser}{I} y \le \overline{\sigma_{bc}} = 0.6 f_{c28}$$

Travée : $\sigma_{bc}=8.93 \mathrm{MPa} \leq \overline{\sigma_{bc}}=15 MPa \ldots \ldots$ Condition vérifiée

Appui : $\sigma_{bc} = 6.59 \mathrm{MPa} \leq \overline{\sigma_{bc}} = 15 MPa \dots \dots$ Condition vérifiée

Vérification de la flèche

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \\ \frac{A_s}{bd} \le \frac{4,2}{fe} \\ \frac{h}{L} \ge \frac{M_t}{10M_0} \end{cases} = \mathbf{0.170}$$

La 3éme condition n'est pas vérifiée, donc il est nécessaire de calculer la flèche.

Flèche totale :
$$\Delta_{fT} = f_v - f_i \le f$$

$$Avec \begin{cases} f_i = \frac{M_{ser} L^2}{10E_i I_{fi}} \\ f_v = \frac{M_{ser} L^2}{10E_v I_{fv}} \\ \hline f = 0.5 + \frac{L}{500} \end{cases}$$

• Moment d'inertie de la section homogène Io

$$I_0 = \frac{bh^3}{12} + 15A_S \left(\frac{h}{2} - d\right) + 15A'_S \left(\frac{h}{2} - d'\right)^2 = 1.01 \times 10^4 cm^4$$

$$\begin{cases} I_{fi} = \frac{1.1I_0}{1+\mu\lambda_i} \\ I_{fv} = \frac{I_0}{1+\lambda_{vul}} \end{cases}$$
 Moment d'inertie fictive

Avec:

$$\begin{cases} \lambda_i = \frac{0.05 f_{t28}}{\delta(2 + \frac{3b_0}{b})} = \\ \lambda_v = \frac{0.02 f_{t28}}{\delta(2 + \frac{3b_0}{b})} \end{cases} ; \begin{cases} \delta = \frac{A_S}{b_0 d} = 0.134 \\ \mu = 1 - \frac{1.75 f_{t28}}{4 \delta \sigma_s + f_{t28}} = 0.03 \\ \sigma_s = \frac{M_{ser}}{A_s d} = 226.05 MPa \end{cases}$$

$$\Delta_{fT} = f_v - f_i = 4.87 m \le \bar{f} = 12.5 m \dots Condition vérifiée$$

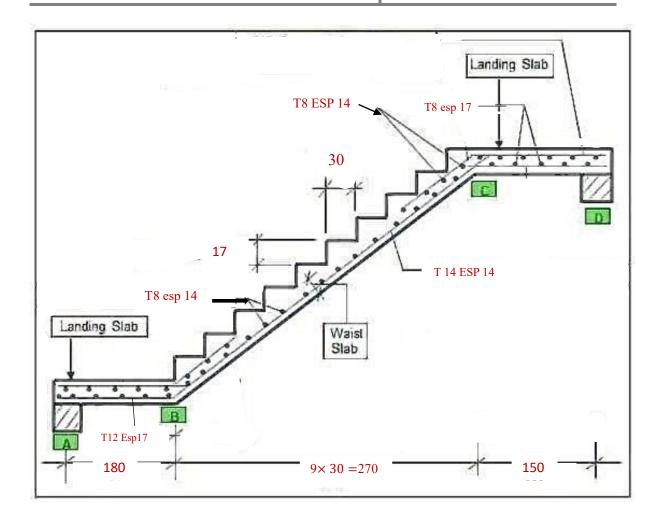


Figure.III.8: Schéma de ferraillage de l'escalier.

Chapitre IV Etude dynamique en zone sismique

IV.1. Introduction

Le risque sismique est lié à l'aléa sismique et à la vulnérabilité de la construction, raison pour laquelle une démarche globale de conception parasismique dans la construction doit être mise en place afin d'éviter d'importants dégâts humains et matériels.

Le but de ce chapitre est de définir un modèle de structure qui vérifie les conditions et critères de sécurités imposées par les règles parasismiques Algériennes **RPA99/version 2003.**

La modélisation de notre structure a été effectuée à l'aide du logiciel **Autodesk Robot Structural Analyses Professional** qui est un logiciel de calcul automatique des structures.

IV.2. Etude sismique

L'étude dynamique d'une structure telle qu'elle se présente, est souvent très complexe à cause du nombre de fonctions et éléments existants dans une structure. C'est pour cela qu'on fait souvent appel à des modélisations qui permettent de simplifier suffisamment le problème pour pouvoir l'analyser.

IV.2.1. Modélisation de rigidité

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément linéaire type poutre (frame) à deux nœuds, chaque nœud possède 6 degré de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- A tous les planchers nous avons attribués une contrainte de type diaphragme ce qui correspond à des planchers infiniment rigides dans leur plan.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

IV.2.2. Modélisation de la masse

• La charge des planchers est supposée uniformément répartie sur toute la surface du plancher. La masse est calculée par l'équation $(G+\beta Q)$ imposée par **RPA99 version2003** avec $(\beta=0,2)$ pour un bâtiment à usage Bureau (mass source).

- La masse volumique attribuée aux matériaux constituant les poteaux et les poutres est prise égale à celle du béton à savoir $25kN/m^3$.
- La charge de l'acrotère et des murs extérieurs (maçonnerie) a été répartie aux niveaux des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).

IV.3. La méthode de calcul

L'analyse d'une structure peut se faire à l'aide de deux principales méthodes. Le choix de la méthode dépend du type de la structure et de ses dimensions :

- Méthode statique équivalente.
- Méthode dynamique qui regroupe :
 - La méthode d'analyse spectrale.
 - La méthode d'analyse dynamique par accélérogrammes

La méthode statique équivalente n'est pas applicable dans notre cas, car la structure se trouve en zone III et dépasse la hauteur de 17m

➤ Donc la méthode à utiliser est la méthode d'analyse modale spectrale

IV.4. Analyse spectrale:

> Utilisation des spectres de réponse

La pratique actuelle la plus répondue consiste à définir le chargement sismique par un spectre de réponse

$$\frac{S_a}{g} = \begin{cases}
1,25A \left(1 + \frac{T}{T_1} \left(2,5\eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2,5\eta \left(1,25A\right) \frac{Q}{R} & T_1 \le T \le T_2 \\
2,5\eta \left(1,25A\right) \frac{Q}{R} \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3,0s \\
2,5\eta \left(1,25A\right) \frac{Q}{R} \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 3,0s
\end{cases}$$

Avec:

g : accélération de la pesanteur.

A : coefficient d'accélération de zone.

η: facteur de correction d'amortissement.

R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.

T₁, T₂: Périodes caractéristiques associées à la catégorie de site.

Q : Facteur de qualité.

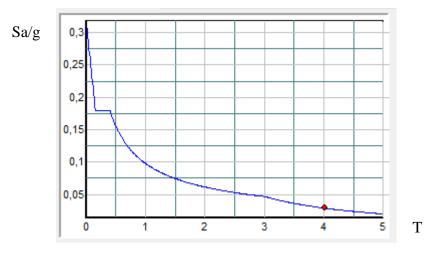


Figure.IV.1: Spectre de réponse

• Résultante des forces sismiques de calcul

L'une des premières vérifications préconisées par les « *RPA99 version 2003* » est relative à la résultante des forces sismiques.

En effet la résultante des forces sismiques à la base « V_t » obtenue par combinaison des valeurs modales ne doit pas être inférieur à 80% de la résultante des forces sismiques déterminer par la méthode statique équivalente « V » pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si $V_t < 0.8V$, il faut augmenter tous les paramètres de la réponse (forces, déplacements, moments,....) dans le rapport :

$$r = \frac{0.8V}{V_t}$$

• Calcul de la force sismique par la méthode statique équivalente

La force sismique totale V appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W$$

Avec:

• A : coefficient d'accélération de zone.

• D: facteur d'amplification dynamique moyen

Ce facteur est fonction de la catégorie du site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0s \\ 2.5\eta \left(\frac{T_2}{3.0}\right)^{2/3} \left(\frac{3.0}{T}\right)^{5/3} & T \ge 3.0s \end{cases}.$$

T1, T2 : périodes caractéristiques associée à la catégorie du site est donnée dans le tableau **4.7** [1].

Catégorie S₂
$$\longrightarrow$$
 Site ferme $\begin{cases} T1 = 0.15s \\ T2 = 0.40s \end{cases}$

•
$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

η: facteur de correction d'amortissement (quand l'amortissement différent à 5%) Dans notre cas l'amortissement = $5\% \implies \eta = 1$

Estimation de la période fondamentale de la structure (T)

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculées par des méthodes analytiques ou numériques.

Les formules empiriques à utiliser selon les RPA99/version 2003 sont :

T= min
$$(T = C_T \times h_N^{3/4}, T = 0.09 \frac{h_N}{\sqrt{D}})$$

$$C_T = 0.05$$

 $h_{\rm N}$: Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

$$h_N = 34.0 \text{ m}$$

D : Est la dimension du bâtiment mesurée à sa base dans la direction de calcul considéré

$$\int D_X = 19.60 \text{m}$$

$$D_y = 20.45 \text{ m}$$

$$T=\min \left\{ \begin{array}{l} T=0.09\frac{h_N}{\sqrt{D}} \Longrightarrow \left\{ \begin{array}{l} T_{\rm x}=0.09 \times \frac{34.0}{\sqrt{19.60}}=0.691 \, {\rm s} \\ \\ T_{\rm y}=0.09 \times \frac{34.0}{\sqrt{20.45}}=0.676 {\rm s} \\ \\ T=C_T \times h_N^{-3/4}=0.05 \times 34^{\frac{3}{4}}=0.704 {\rm s} \end{array} \right.$$

La valeur de T considère dans les deux directions :

- Sens (x-x): $T_x=min(0.691; 0.704) \implies T_x = 0.691s$.
- Sens (y-y): $T_y = min (0.676; 0.704) \implies T_y = 0.676s$.
- $-1,3\times T_x = 0.908s$
- $1,3 \times T_y = 0.887s$

Le choix de la période de calcul de l'effort tranchant à la base est limité comme suit :

$$T = \left\{ \begin{array}{ll} T_{analitique} & si & T_{analitique} \leq 1,3 \ T_{empirique} \\ \\ 1,3T_{empirique} & si & T_{analitique} \geq 1,3 \ T_{empirique} \end{array} \right.$$

• R: Coefficient de comportement

L'objet de la classification des systèmes structuraux se traduit, dans les règles et les méthodes de calcul, par l'attribution pour chacune des catégories de cette classification, d'un coefficient de comportement R qui est un paramètre qui reflète la ductilité de la structure ; il dépend du système de contreventement. Sa valeur unique est donnée par le tableau (4.3) des RPA 99 v2003.

On a choisi un **R**= **5** (palées triangulées en X).

• Q : facteur de qualité

La valeur de **Q** déterminée par la formule : $Q = 1 + \sum_{1}^{6} P_q$

 P_q : est la pénalité à retenir selon que le critère de qualité ${f q}$ "est satisfait ou non ". Sa valeur est donné par le tableau ${f 4.4}[1]$

Les Critères	observée (o/n)	Pq //	observée (o/n)	Pq // yy
		XX		
Conditions minimales sur les files de				
contreventement	Non	0,05	Non	0,05
Redondance en plan	Non	0,05	Non	0,05
Régularité en plan	Non	0,05	Non	0,05
Régularité en élévation	Oui	0	Oui	0
Contrôle de la qualité des matériaux	Oui	0	Oui	0
Contrôle de la qualité de l'exécution	Oui	0	Oui	0

Tableau.IV.1: Facteur de qualité

 $ightharpoonup Q_x=1.15$; $Q_y=1.15$

• Vérification des déplacements latéraux inter étages :

L'une des vérifications préconisées par les *RPA99 version 2003*, concerne les déplacements latéraux inter étages.

En effet, selon l'article 5.10 [1], l'inégalité ci-dessous doit nécessairement être vérifiée :

$$\Delta_K^x \leq \overline{\Delta}$$
 et $\Delta_K^y \leq \overline{\Delta}$

Avec: $\overline{\Delta} = 0.01he$

Où : he représente la hauteur de l'étage.

Avec $\delta_{K}^{x} = Rr_{x}\delta_{eK}^{x} \quad et \quad \delta_{K}^{y} = Rr_{y}\delta_{eK}^{y}$ $\Delta_{K}^{x} = \delta_{K}^{x} - \delta_{K-1}^{x} \quad et \quad \Delta_{K}^{y} = \delta_{K}^{y} - \delta_{K-1}^{y}$

 Δ_K^x : correspond au déplacement relatif au niveau K par rapport au niveau K-1 dans le sens x-x

 Δ_K^y : correspond au déplacement relatif au niveau K par rapport au niveau K-1 dans le sens y-y

IV.5. Résultats de l'analyse sismique

IV.5.1.Model initial:

• les dimensions des éléments utilisés :

- Poutre principale : **IPE 400**

- Poutre secondaire : IPE 160

- Solive : **IPE 160**

- RDC+1er+2eme \Rightarrow **HEA 450**

- $3\text{eme}+4\text{eme}+5\text{eme} \Rightarrow \text{HEA } 320$

- 6eme+7eme+8eme + 9eme \Rightarrow **HEA 240**

Palées triangulées en X : double UPN

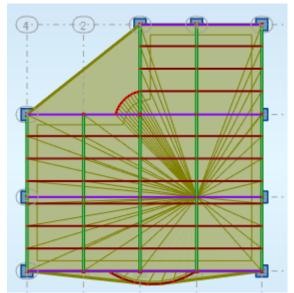


Figure.IV.2: Vu en plan de model initial

Tableau.IV.2: Période et facteurs de participation massique du modèle initial

Cas/N	lode	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masse Modale UX [%]	Masse Modale UY [%]
3/	1	0,13	7,58	76,02	0,00	76,02	0,00
3/	2	0,39	2,55	76,12	1,45	0,10	1,45
3/	3	0,41	2,43	86,68	1,46	10,56	0,01
3/	4	0,45	2,20	86,68	73,58	0,00	72,13
3/	5	0,58	1,74	86,69	73,59	0,01	0,00
3/	6	0,76	1,32	. 91,24	73,59	4,56	0,00
3/	7	1,09	0,91	91,24	73,95	0,00	0,36
3/	8	1,12	0,89	91,25	73,95	0,01	0,00
3/	9	1,12	0,89	91,25	73,95	0,00	0,01
3/	10	1,20	0,83	93,91	73,95	2,66	0,00

• L'analyse dynamique de la structure a conduit à

Une période fondamentale T= 7.58 s

- Le 1^{er} mode est un mode de translation suivant X-X.
- Le **2**ème **mode** est un mode de rotation.
- Le **3**ème **mode** est un mode de rotation.
- On rajoute les CV dans le but d'avoir une translation dans les deux premiers modes.

IV.5.2.Model final

a. Caractéristiques dynamique propres du model final

• les dimensions des éléments utilisés :

- Poutre principale : **HEA360**

- Poutre secondaire: **HEA300**

- Solive : **IPE160**

- RDC+1er+2eme \Rightarrow **HEA 550**

- 3eme+4eme+5eme \Rightarrow **HEA 450**

- 6eme+7eme+8eme + 9eme \Rightarrow **HEA 400**

- Palées triangulées en X : Profilée Double UPN 280

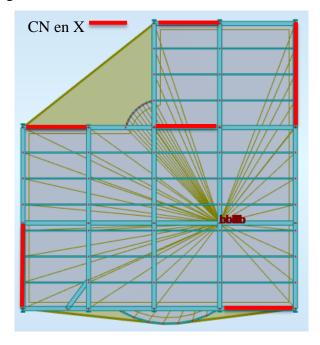


Figure.IV.3: Vu en plan de model final

Tableau.IV.3: Période et facteurs de participation massique du model final

Cas/Mode	Fréquen ce [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masse Modale UX [%]	Masse Modale UY [%]
3/ 1	0,88	1,14	65,41	1,02	65,41	1,02
3/ 2	0,92	1,08	66,46	70,86	1,05	69,84
3/ 3	1,02	0,98	66,49	70,87	0,03	0,01
3/ 4	1,14	0,87	66,49	70,87	0,00	0,00
3/ 5	1,14	0,87	66,50	70,87	0,01	0,00
3/ 6	1,14	0,87	66,50	70,88	0,01	• 0,00
3/ 7	1,30	0,77	67,98	70,93	1,48	0,05
3/ 8	2,33	0,43	67,98	70,93	0,00	0,00
3/ 9	2,87	0,35	67,98	70,93	0,00	0,00
3/ 10	2,87	0,35	67,98	70,93	0,00	0,00
3/ 11	2,87	0,35	67,98	70,93	0,00	0,00

Constatations

L'analyse dynamique de la structure ce conduit à :

Une période fondamentale : T = 1.14 s;

- Le **1**^{er}**mode** est un mode de translation parallèlement à **X-X**.
- Le 2ème mode est un mode de translation parallèlement à Y-Y
- Le **3**ème mode est un mode de rotation.

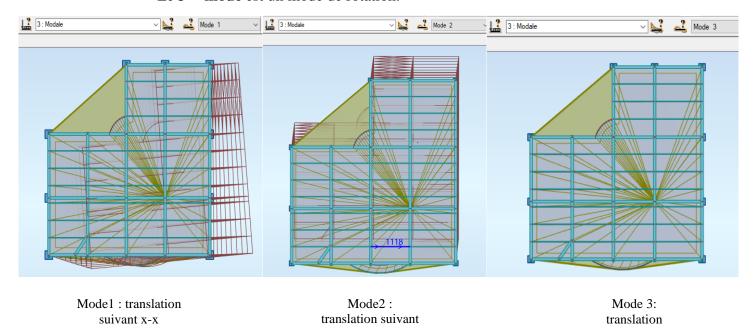


Figure.IV.4: Schéma des trois premiers modes

b. Résultantes des forces sismiques

Calcul de D :
$$\begin{cases} D_x = 2.5 \times \left(\frac{0.4}{0.908}\right)^{\frac{2}{3}} = 1.44 \\ D_y = 2.5 \times \left(\frac{0.4}{0.887}\right)^{\frac{2}{3}} = 1.489 \end{cases}$$

• Résultantes des forces sismiques :

W: Poids de la structure, donne par l'équation $(G+\beta Q)$ imposée par le **RPA99 version2003** avec $(\beta=0,2)$ pour un bâtiment à usage bureaux (**Tableau 4.5** [1]).

W = 23322.91 kN (calcul automatique)

W= 23310,80KN
$$\Rightarrow$$
 $\begin{cases} Vx = 1931.14 \\ Vy = 1996.85 \end{cases} \Rightarrow \begin{cases} 0.8 \times Vx = 1544.90KN \\ 0.8 \times Vy = 1597.47KN \end{cases}$

D'après le fichier des résultats de ROBOT on a :

$$Vt_x = 1645.14KN > 0.8V_x = 1544.90 \text{ KN}$$

$$Vt_y = 1750.43kN > 0.8V_x = 1597.47KN$$

c. Vérification des déplacements inter étage

Tableau.IV.4: Vérification	n des déplaceme	nts inter étages d	u model final
----------------------------	-----------------	--------------------	---------------

Z(m)	δ_{x} (cm)	Δ _x (cm)	δ _y (cm)	Δy (cm)	1%h étage (cm)	Observation
9	20.5	2.5	19.5	2.0	3.40	Vérifiée
8	18.0	2.5	17.5	2.0	3.40	Vérifiée
7	15.5	2.5	15.5	2.5	3.40	Vérifiée
6	13.0	2.5	13.0	2.5	3.40	Vérifiée
5	10.5	2.5	10.5	2.0	3.40	Vérifiée
4	8.0	2.0	8.5	2.5	3.40	Vérifiée
3	6.0	2.5	6.0	2.0	3.40	Vérifiée
2	3.5	1.5	4.0	1.5	3.40	Vérifiée
1	2.0	1.5	2.5	1.5	3.40	Vérifiée
RDC	0.5	0.0	1.0	0.0	3.40	Vérifiée

d. Justification vis-à-vis de l'effet P-delta-(les effets du second ordre)

C'est le moment additionnel dû au produit de l'effort normal dans un poteau au niveau d'un nœud de la structure par le déplacement horizontal du nœud considéré.

Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_K \Delta_K}{V_K h_K} \le 0.10 \text{ "RPA99 version 2003"[1]}$$

Avec:

 p_k : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau K

$$P_K = \sum_{i=k}^n (W_{Gi} + \beta W_{Qi})$$

V_K:Effort tranchant d'étage au niveau 'K'

 Δ_k : Déplacement relatif du niveau 'K' par rapport au niveau 'K-1'.

 h_k : Hauteur d'étage 'k'.

Niveau	P(kN)	Vx(kN)	Vy(kN)	$\Delta \mathbf{x}(\mathbf{cm})$	$\Delta y(cm)$	h(cm)	Өх	Өу	$\Theta \leq 0,1$
9	2461.18	430.57	447.48	2.5	2.0	340	0,042	0,032	vérifier
8	4754.35	702.70	739.60	2.5	2.0	340	0,049	0,037	vérifier
7	7047.51	879.13	944.12	2.5	2.5	340	0,057	0,054	vérifier
6	9340.55	1012.41	1101.85	2.5	2.5	340	0,067	0,06	vérifier
5	11636.12	1138.37	1232.87	2.5	2.0	340	0,075	0,055	vérifier
4	13938.26	126.07	1361.25	2.0	2.5	340	0,065	0,075	vérifier
3	16273.93	1382.90	1491.60	2.5	2.0	340	0,086	0,064	vérifier
2	18597.48	1500.14	1609.21	1.5	1.5	340	0,055	0,051	vérifier
1	20928.98	1596.64	1706.21	1.0	1.5	340	0,057	0,0	vérifier
RDC	23326.18	1646.85	1756.32	0.0	0.0	340	0,00	0,00	vérifier

Tableau.IV.5: Justification vis-à-vis de l'effet P-delta

 \blacktriangleright Vu les résultats obtenus sont inferieurs a 0,1, d'où les effets du 2° ordre (ou effet P- Δ) peuvent être négligés

e. Justification du choix du coefficient de comportement « R »

Suivant l'article **3.4.10** [1], dans le cas des ossatures avec contreventement mixtes (portique + palées) la structure doit satisfaire les deux conditions suivantes :

• au plus 20% des sollicitations dues aux charges verticales

Les charges horizontales sont reprises conjointement par les voiles et les portiques Proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux

- Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant d'étage.
- Pourcentage des sollicitations dues aux charges verticales reprises par les CV

L'effort normal total à la base de la structure : P Tot = 23326.18 kN.

L'effort normal à la base repris par les CV : P cv = 3933.195 kN.

$$\frac{Pcv}{Ptot} = 16.86\%$$

 Pourcentage des sollicitations dues aux charges horizontales reprises par les portiques et les CV <u>Etant donné que :</u> Les contreventements reprennent moins de 20% des sollicitations dues aux charges verticales.

Le choix du coefficient de comportement global de la structure (R=5) est justifié.

Conclusion:

Les étapes de vérification suivies pour définir le modèle final étaient de :

- Déterminer les modes propres de telle sorte que le 1^{ére} et 2^{ème} translation, le 3^{ème} torsion pour avoir plus de sécurité.
- Vérifier la résultante de l'effort tranchant à la base obtenue par l'approche statique équivalente pour savoir si on va amplifier ou pas les paramètres de réponse de la structure par le rapport $(0.8V_{st} / V_{dy})$
- Vérifier le déplacement inter-étage qui est un indice de dommage de l'étage.
- Vérifier l'effet P-Δ pour la stabilité de la structure.
- Justifié le facteur de comportement **R=5**.

V.1. Introduction

Le calcul d'une structure métallique exige de garantir la stabilité statique sous toutes les combinaisons d'actions possibles, conformément aux règlements. Les sollicitations exercées sur les éléments de la structure entraînent des contraintes et des déformations, qui doivent rester en dessous des limites admissibles pour garantir le degré de sécurité souhaité. Les grandes déformations peuvent affecter les zones comprimées des pièces, qui peuvent présenter trois types de comportements caractéristiques appelés phénomènes d'instabilités :

Le flambement : Est un phénomène physique relevant des principes de la résistance des matériaux. Lorsqu'une structure est compressée dans le sens de la longueur, elle a tendance à fléchir perpendiculairement à l'axe de la force appliquée, en raison d'un phénomène d'instabilité élastique. Il affecte les barres simplement comprimées (flambement simple) ou comprimées et fléchies (flambement flexion).

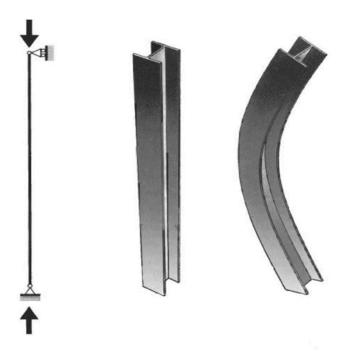


Figure.V.1: Phénomène de flambement.

Le déversement : Le déversement est associé à la flexion, il représente une explosion de l'aile comprimée et présente des similitudes certaines avec les phénomènes de flambement,

On observe généralement ce phénomène chez des poutres avec une faible résistance à la flexion transversale et à la torsion.

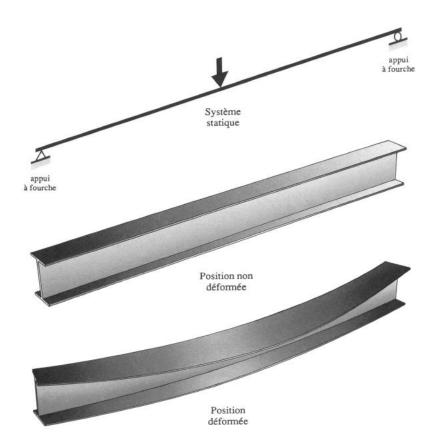


Figure.V.2: Phénomènes de déversement.

Le voilement : Le voilement est un phénomène de déformation qui affecte l'âme d'une poutre soumise au même temps à des contraintes de compression et des contraintes de cisaillement.

V.2. Vérification des poteaux

Les poteaux sont soumis à la flexion composée, ou chaque poteau est soumis à un effort normal N_{sd} , et deux moments fléchissant M_{ysd} et M_{zsd} . La vérification se fait pour toutes les combinaisons inscrites aux règlements sous les sollicitations les plus défavorables suivant les deux directions.

V.2.1. Vérification vis-à-vis du flambement

Les différentes sollicitations doivent être combinées dans les cas les plus défavorables, qui sont :

- Cas 1: N_{sd}^{max} ; M_{ysd} et M_{zsd} correspondent.
- Cas 2: M_{ysd}^{max} ; N_{sd} et M_{zsd} correspondent.
- Cas 3: M_{zsd}^{max} ; N_{sd} et M_{ysd} correspondant.

Les étapes de vérification au flambement [5]

Les éléments sollicités simultanément en flexion et en compression axiale, pour une section transversale de classes 1 ou 2, doivent satisfaire à la condition suivante :

$$\frac{N_{sd}}{\chi_{min}.\,N_{pl,rd}} + \frac{K_{y}.\,M_{y,sd}}{M_{ply,rd}} + \frac{K_{z}.\,M_{z,sd}}{M_{plz,rd}} \le 1$$

Avec:

$$-K_{y} = 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}} \quad ; K_{y} \le 1,5$$

-
$$\mu_y = \overline{\lambda_y} \times \left(2\beta_{M.y} - 4\right) + \left(\frac{W_{pl.y} - W_{el.y}}{W_{el.y}}\right)$$
 ; $\mu_y \le 0.90$

-
$$K_z = 1 - \frac{\mu_z \times N_{sd}}{\chi_z \times A \times f_y}$$
 ; $K_z \le 1.5$

-
$$\mu_z = \overline{\lambda_z} \times (2\beta_{M.z} - 4) + \left(\frac{W_{pl.z} - W_{el.z}}{W_{el.z}}\right)$$
 ; $\mu_z \le 0.90$

-
$$\chi_{min} = \min(\chi_y; \chi_z)$$

-
$$N_{pl,rd} = \frac{A f_y}{\gamma_{M1}}$$

-
$$M_{ply,rd} = \frac{W_{ply} \times f_y}{\gamma_{M_1}}$$

-
$$M_{plz,rd} = \frac{W_{plz} x f_y}{\gamma_{M1}}$$

- Cas 1: N_{sd}^{max} ; $M_{sd,y}$ et $M_{sd,z}$ correspondant
- Exemple de calcul

Notre calcul se déroule sur le Pouteau central du RDC d'un profilé HEA550 et d'une hauteur de 3.40*m*.

$$N^{max} = 3682.13 \ Kn \ ; \quad M_{sd,y}{}^{cor} = -3.87 \ Kn.m \qquad ; \qquad M_{sd,z}{}^{cor} = 11.39 \ Kn.$$

Profil						$W_{pl,z}$ (cm^3)		-	
HEA550	211.8	111900	10820	4622	4146	1107	721.3	22.99	7.15

Tableau.V.1: Caractéristiques de profilé HEA550

Suivant l'axe y-y:

$$\bar{\lambda}_y = \frac{\lambda_y}{93.91\varepsilon} \rightarrow \frac{L_{fy}/i_y}{93.9\times\varepsilon} \quad ; \left(f_y = 275 \text{ MPA}, \varepsilon = \sqrt{\frac{235}{f_y}} = 0.92\right)$$

Pour un mode d'instabilité a nœuds fixe on a :

•
$$\frac{L_f}{L_0} = \left[\frac{1 + 0.145(\eta_1 + \eta_2) - 0.265\eta_1\eta_2}{2 - 0.364(\eta_1 + \eta_2) - 0.247\eta_1\eta_2} \right]$$

Avec:

•
$$\eta_1 = \frac{K_c + K_1}{K_c + K_1 + K_{p11} + K_{p12}}$$

- $\eta_2 = \frac{K_C + K_2}{K_C + K_2 + K_{p21} + K_{p22}} \rightarrow \eta_2 = 0$ Car le poteau est encastré à la base.
- K_1 Et K_2 la rigidité des poteaux adjacents
- K_{pij} La rigidité des poutres associées au nœud considéré

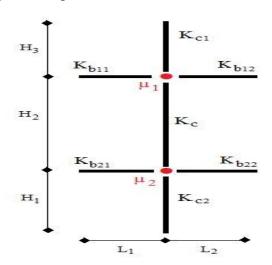


Figure.V.3: Facteurs de distribution pour poteaux continus.

Exemple de calcul manuel du poteau le plus sollicités : Poteau Central HEA550 Avec hauteur 3.4m

$$K_C = K_1 = \frac{I_y(HEA550)}{h} = \frac{111900}{540} = 207.22 \text{ cm}^3$$

$$K_{P12} = K_{P11} = \frac{I_{y(HEA360)}}{L} = \frac{33090}{304} = 108.85 \ cm^3$$

$$\eta_1 = \frac{(2 \times 207.22)}{(2 \times 207.22) + (2 \times 108.85)} = 0.656$$

$$\eta_2 = 0$$

$$L_{f,y} = \left[\frac{1 + (0.145 \times 0.656)}{2 - (0.364 \times 0.656)}\right] \times 3400$$
 \rightarrow $L_{f,y} = 2.114 m$

$$\bar{\lambda}_y = \frac{211.41/22.99}{93.91 \times 0.92} \rightarrow \bar{\lambda}_y = 0.106 < 0.2$$
 il n'y a pas de risque de flambement

$$\alpha_y \longrightarrow$$
 Courbe a donc : $\alpha = 0.21$

$$\phi_y = 0.5(1 + \alpha_y(\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2) \rightarrow \phi_y = 0.49$$

$$\chi_y = 1$$

Suivant l'axe z-z:

$$\bar{\lambda}_z = \frac{\lambda_z}{93.91\varepsilon} \rightarrow \frac{L_{fz}/i_z}{93.91\varepsilon} \quad ; \left(f_y = 275 \text{ MPA}, \varepsilon = \sqrt{\frac{235}{f_y}} = 0.92\right)$$

$$K_C = \frac{I_Z}{h} = \frac{10820}{540} = 20.04 \ cm^3$$

$$K_{P12} = K_{P11} = \frac{I_{z(HEA360)}}{I_c} = \frac{7887}{304} = 25.94 cm^3$$

$$\eta_1 = \frac{(2 \times 20.04)}{(2 \times 20.04) + (2 \times 25.94)} = 0.43$$

$$L_{f,z} = \left[\frac{1 + (0.145 \times 0.43)}{2 - (0.364 \times 0.43)}\right] \times 3400$$
 \rightarrow $L_{fz} = 1.96m$

$$\bar{\lambda}_z = \frac{196/7.15}{93.91 \times 0.92} \rightarrow \bar{\lambda}_z = 0.317 > 0.2$$
 il y a un risque de flambement.

$$\alpha_z$$
 Courbe b donc : $\alpha = 0.34$

$$\phi_z = 0.5(1 + \alpha_y(\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2) \rightarrow \phi_z = 0.57$$

$$\chi_z = 0.96 \le 1$$

D'après le logiciel Robots, la combinaison la plus défavorable est : G + Q + Ex

- Suivant l'axe y-y:

$$\beta_{M.y} = 1.8 - 0.7\Psi$$

$$\Psi = \frac{My_{min}}{My_{max}} \begin{cases} My_{min} = 5.68kn. m \\ My_{max} = -6.66kn. m \end{cases}$$
 (Obtenu du logiciel ROBOT)

$$\Psi = \frac{5.68}{-6.66} = -0.85 \rightarrow \beta_{M,y} = 2.4$$

$$\mu_y = 0.106 \times (2 \times 2.4 - 4) + \left(\frac{4622 - 4146}{4146}\right) = 0.2 < 0.9$$

$$K_v = 0.87 < 1.5$$

- Suivant l'axe z-z:

$$\beta_{M.y} = 1.8 - 0.7\Psi$$

$$\Psi = \frac{My_{min}}{My_{max}} \begin{cases} My_{max} = 0.49 \text{ kn. m} \\ My_{min} = -0.02 \text{ kn. m} \end{cases}$$
(Obtenu du logiciel ROBOT)

$$\Psi = \frac{-0.02}{0.49} = -0.04 \rightarrow \beta_{M.z} = 1.7$$

$$\mu_z = 0.34 < 0.9 \rightarrow K_z = 0.7 < 1.5$$

On aura:

$$\frac{3682.13\times10^3}{0.96\times211.8\times10^2\times_{1.1}^{275}} + \frac{0.87\times3.87\times10^6}{4622\times10^3\times_{1.1}^{275}} + \frac{0.7\times11.39\times10^6}{1107\times10^3\times_{1.1}^{275}} = 0,75 < 1......$$
 Condition vérifiée.

V.2.2. Vérification de la stabilité des poteaux vis-à-vis du déversement

Les éléments à section transversale pour lesquelles le déversement représente un mode potentiel de ruine doivent satisfaire à la condition suivante :

$$\frac{N_{sd}}{\chi_z \cdot \frac{A \times f_Y}{\gamma_{M1}}} + \frac{k_{LT} \times M_{ysd}}{\chi_{LT} \times W_{ply} \times \frac{f_y}{\gamma_{M1}}} + \frac{k_z \times M_{zsd}}{W_{plz} \times \frac{f_y}{\gamma_{M1}}} \le 1$$

Exemple de calcul (Niveau RDC):

On doit d'abord vérifier que : $\overline{\lambda_{LT}} < 0.4$

Avec:
$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} \times \sqrt{\beta_w}$$

Sachant que :
$$\lambda_{LT} = \frac{\frac{L}{iz}}{\sqrt{C1} \times \left[\left[1 + \frac{1}{20} \left[\frac{L}{iz} \right]^2 \right] \right]^{0.25}} [2]$$

 $\overline{\lambda_{LT}} = 0.2 < 0.4 \rightarrow \text{Pas de risque de déversement.}$

Remarque : la procédure de calcul du poteau ci-dessus est la même pour les autres poteaux. Les efforts internes du logiciel ROBOT sous les combinaisons citées au-dessus sont regroupés dans les tableaux suivant :

• Cas 1: N_{sd}^{max} ; M_{sdz} et $M_{sd,y}$ correspondent

Tableau.V.2: Efforts internes des poteaux sous N^{max} pour chaque niveau

Niveau	Combinaison	N ^{max}	${ m M_{sd,z}}^{ m cor}$	${ m M_{sd,y}}^{ m cor}$
9 ^{ème}	1.35G + 1.5Q	372.39	12.75	6.56
8ème	1.35G + 1.5Q	836.89	11.47	4.98
7 ^{ème}	1.35G + 1.5Q	1430.42	12.63	7.29
6 ^{ème}	1.35G + 1.5Q	1595.34	5.84	6.73
5 ^{ème}	1.35G + 1.5Q	2151.99	5.59	11.10
4 ^{ème}	1.35G + 1.5Q	2255.21	5.26	12.74
3 ^{ème}	1.35G + 1.5Q	2489.82	4.78	12.97
2 ^{ème}	1.35G + 1.5Q	2837.5	-3.90	16.67
1 ^{er}	1.35G + 1.5Q	3192.64	-3.87	34.59
RDC	G+Q+EX	3682.13	11.39	-3.87

• Cas 2: $M_{sd,z}^{max}$; N_{sd} et $M_{sd,y}$ correspondant

Tableau.V.3: Efforts internes des poteaux sous $M_{sd,z}^{max}$ pour chaque niveau

Etage	Combinaison	${ m M_{sd,z}}^{ m max}$	$M_{\mathrm{sd,y}}^{\mathrm{cor}}$	N ^{cor}
9 ^{émé}	G + Q + Ex	60.25	-129.21	134.36
8 ^{ème}	G + Q + Ex	51.59	-69.72	286.72
7 ^{ème}	G + Q + Ex	53.20	-81.63	437.27
6 ^{ème}	G + Q + Ex	49.74	-73.28	586.19
5 ^{ème}	G + Q + Ex	49.26	-85.94	735.14
4 ^{ème}	G + Q + Ex	47.74	58.22	886.68
3 ^{ème}	G + Q + Ex	44.24	46.07	1050.61
2 ^{ème}	G + Q + Ex	41.47	55.37	1210.26
1 ^{er}	G + Q + Ex	33.10	57.74	1365.75
RDC	G + Q + Ex	20.23	14.11	1515.00

• Cas 3: $M_{sd,y}^{max}$; N_{sd} et $M_{sd,z}$ correspondant

Tableau.V.4: Efforts internes des poteaux sous $M_{sd,y}^{max}$ pour chaque niveau

Etage	Combinaison	$M_{sd,y}^{max}$	$M_{\text{sd,z}}^{\text{cor}}$	N ^{cor}
9 ^{ème}	1.35G + 1.5Q	231.92	-7.80	164.84
8 ^{ème}	1.35G + 1.5Q	-133.87	6.03	340.75
7 ^{ème}	G + Q + Ey	-156.57	0.64	238.01
6 ^{ème}	1.35G + 1.5Q	131.82	-6.65	603.44
5 ^{ème}	1.35G + 1.5Q	149.17	-9.23	873.50
4 ^{ème}	1.35G + 1.5Q	-134.95	7.42	1168.04
3 ^{ème}	1.35G + 1.5Q	125.85	-4.97	1404.21
$2^{\rm eme}$	1.35G + 1.5Q	152.55	-4.02	1650.26
1 ^{er}	1.35G + 1.5Q	-142.39	3.46	1876.74
RDC	G + Q + Ey	-144.27	2.22	1714.88

D'après logiciel ROBOT:

- Niveau $6^{\text{émé}}$ - $7^{\text{émé}}$ - $8^{\text{é}m\acute{e}}$ - $9^{\text{ém\acute{e}}}$ étages :

- Poteau: HEA400

- Poutre: HEA360

Les efforts internes du niveau

$$N_{sd}^{max}$$
= 1595.34 KN; $M_{sd,y}^{cor}$ = 6.73 KN.m; $M_{sd,z}^{cor}$ = 5.84 KN.m

La stabilité du poteau au flambement composée :

Tableau.V.5: Vérification de la stabilité au flambement du (6-7-8-9)^{ème} étages

	Suivant l'axe YY		Suivant l'axe ZZ		
Poteau	$K_{C}^{HEA400} = K_{C,1}^{HEA400} = 115.56$ cm ³	Poteau	$K_{C}^{HEA400} = K_{C,1}^{HEA400} = 21.96 \text{ cm}^{3}$		
	$K_{C,2}^{\text{HEA450}} = 144.82 \text{ cm}^3$		$K_{C,2}^{HEA450} = 21.51 \text{ cm}^3$		
Poutre	tre $K_{b1,1}^{\text{HEA360}} = K_{b1,2}^{\text{HEA360}} = 108.8 \text{ cm}^3$		$K_{b1,1}^{\text{HEA360}} = K_{b1,2}^{\text{HEA360}} = 108.8 \text{cm}^3$		
	$L_{fy} = 2.38 \text{ m}$	$L_{fy} = 2,38$ m			
$\overline{\lambda_{\mathcal{Y}}} =$	$\overline{\lambda_y} = 0.16 < 0.2$ alors il n'y a pas de risque de flambement		$\overline{\lambda_z} = 0.37 < 0.2$ alors il y a un risque de flambement		
	$\phi_y = 0.5$	$\phi_z = 0.59$			
	$\chi_y = 1$		$\chi_z = 0.94 < 1.0$		
	$\beta_{Mw} = 1.4$	$\beta_{MW} = 1.5$			
	$\mu_y = 0.07 < 0.9$	$\mu_Z = 0.24 < 0.9$			
	$K_y = 0.29 < 1.5$	$K_z = 0.53 < 1,5$			
	Vérification du flambement composé : 0,42	2 < 1 Done	c pas de risque de flambement		

V.3. Vérification des poutres principales

Les calculs seront faits sur une poutre principale la plus sollicité de profilé HEA360 et de longueur L=7.30m.

D'après le logiciel Robot, la combinaison de charge la plus défavorable est 1.35G + 1.5QLes sollicitations trouvées sont :

$$M_{sd}$$
 (appui) = -293.34KN.m; M_{sd} (travée) = 139.29KN.m; V_{sd} = -224.57 KN

V.3.1 Vérification du moment fléchissant

$M_{sd} \leq M_{plrd}$

•
$$R_{B\acute{e}ton} = \frac{0.85 \, x \, f_{ck}}{1.5} \times b_{eff} \times hc$$
 avec $f_{ck} = 25 \, MPa$

•
$$R_{B\acute{e}ton} = \left(\frac{0.85 \times 25}{1.5} \times 1325 \times 95\right) \times 10^{-3} = 1783.23 \text{ kN}$$

•
$$R_{Acier} = 0.95 \times f_y \times Aa$$
 avec $Aa = 14280 \ mm^2$

•
$$R_{Acier} = (0.95 \times 275 \times 14280) \times 10^{-3} = 3730.65 \text{ KN}$$

$$R_{B\acute{e}ton} < R_{Acier}$$

•
$$h_w = ha - 2r - 2t_f = 350 - (2 \times 27) - (2 \times 17.5) = 261 \text{ mm}$$

•
$$R_{W} = [0.95 \times 275 \times 3150] \times 10^{-3} = 822.94 \text{ KN}$$

$$R_{B\acute{e}ton} > R_{w}$$

- L'axe neutre se trouve dans la semelle supérieure du profilé, donc le moment résistant plastique développé par la section mixte est :

$$\begin{split} M_{pl,rd} &= R_a \times (\frac{ha}{2}) + R_b \times (\frac{hc}{2} + hp) \\ M_{pl,rd} &= 3730.65 \times (\frac{350}{2}) + 1783.23 \times (\frac{95}{2} + 55) \times 10^{-3} = 835.64 \text{ KN.m} \\ M_{sdy}^{max} &= 293.34 \text{ KN.m} < M_{pl,rd} = 835.64 \text{ KN.m} \quad \text{Condition vérifiée} \\ M_{sdy}^{max} &= 139.29 \text{ KN.m} < M_{pl,rd} = 835.64 \text{ KN.m} \quad \text{Condition vérifiée} \end{split}$$

V.3.2. Vérification de l'effort tranchant

$$V_{plrd} = \frac{A_{vz} \times F_y}{\sqrt{3} \times 1.1} = \frac{48.96 \times 10^2 \times 275}{\sqrt{3} \times 1.1} \times 10^{-3} = 706.68 \text{KN}$$

$$V_{sd}^{max} = 224.57 < V_{plrd} = 706.68 \text{ kN}$$
 Condition vérifiée

On a : $V_{sd} = 224.57 \text{ KN} < 0.5 V_{pl,rd} = 353.34 \text{ KN} \dots$ Condition vérifié ==> il n'y a pas d'interaction entre l'effort tranchant et le moment fléchissant.

V.3.3. Vérification du déversement

Il n'est pas nécessaire de vérifier le déversement car la poutre est maintenue à la partie supérieure donc elle ne risque pas de se déverser.

V.3.4. Calcul des connecteurs [3]

• Résistance du connecteur isolée

$$P_{rd} = min \begin{cases} K. \, 0.29. \, \alpha. \, d^2. \frac{\sqrt{f_{c28}.E_c}}{\gamma_v} \\ K. \, 0.8. \, f_u. \frac{\pi. \, d^2}{4. \, \gamma_v} \end{cases}$$

Avec:

 γ_v : coefficient partiel de sécurité pour les connecteurs pris égal à 1.25;

d: diamètre du goujon, d = 19 mm;

 f_u : résistance ultime en traction de l'acier du goujon égale a 430 MPA;

 E_c : valeur du module d'élasticité sécant du béton égale a 30500 MPA;

 f_{c28} : résistance caractéristique du béton égale a 25 MPA;

K : facteur de réduction pour tenir compte de la présence des nervures ;

$$k = \begin{cases} 0.6 \times \frac{b_0}{h_p} \left(\frac{h_c}{h_p} - 1\right) \leq 1 \text{ si les nervures sont parallèle a la solive} \\ \frac{0.7}{\sqrt{N_r}} \times \frac{b_0}{h_p} \left(\frac{h_c}{h_p} - 1\right) \leq K_{t,max} \text{ si les nervures sont perpendiculaire a la solive} \end{cases}$$

Avec:

 N_r : le nombre de goujon par nervure, on le prend égal à 1

 h_c : hauteur de la dalle en béton

 h_n : hauteur du bac d'acier

 b_0 : largeur de la nervure (d'après la fiche technique du HIBOND55) 150mm

 $K_{t,max}$: limite supérieure pour le facteur K, égale 0.85 d'après le tableau 6.2 de [5].

 α : facteur correctif.

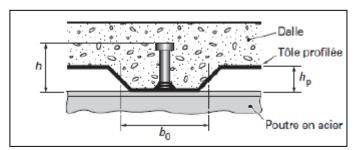


Figure.V.4: Dimensions de la tôle et du connecteur.

$$\alpha = \begin{cases} 0.2 \times \left(\frac{h}{d} + 1\right) & pour \ 3 \le \frac{h}{d} \le 4 \\ 1 & pour \ \frac{h}{d} \ge 4 \end{cases}$$

Dans notre cas, on a : $\frac{h}{d} = \frac{95}{19} = 5 > 4 \rightarrow \alpha = 1$

Et, les nervures sont parallèles, donc :

$$K = 0.6 \times \frac{b_0}{h_p} \left(\frac{h_c}{h_p} - 1 \right) \rightarrow K = 0.6 \times \frac{88.5}{55} \left(\frac{95}{55} - 1 \right) \rightarrow K = 0.702 < 1$$

Donc:

$$P_{rd} = min \begin{cases} 0.702 \times 0.29 \times 1 \times 19^{2} \times \frac{\sqrt{25 \times 30500}}{1.25} = 51.35 \text{ KN} \\ 0.702 \times 0.8 \times 450 \times \frac{\pi \times 19^{2}}{4 \times 1.25} = 57.32 \text{KN} \end{cases}$$

$$P_{rd} = 51.35 \, KN$$

• Effort tranchant repris par les goujons

$$R_L = \min(R_b; R_a)$$

Avec:

 R_b : Résistance de compression du béton ; $R_b = 1783.23 \ KN$

 R_a : Résistance de traction du profilé d'acier; $R_a = 3730.65 \, KN$

D'où : $R_L = R_b = 1783.23 \ KN$

• Nombre de connecteurs par demi portée :

$$n = \frac{R_L}{P_{rd}} \rightarrow n = \frac{1783.23}{51.35} \rightarrow n = 34.73$$

On prend **35 connecteurs** pour la demi portée ; c'est-à-dire **70 connecteurs** sur toute la longueur totale de la solive.

• Espacement entre les goujons :

Soit E l'espacement entre les goujons calculer comme suit :

$$E = \frac{L}{n-1} \rightarrow L$$
 Est la longueur de la poutre ; $L = 7.3m$

$$E = \frac{7300}{70-1} \rightarrow E = 105.8mm$$

$$E_{min} \ge 5d \rightarrow E_{min} \ge 5 \times 19 = 95 \ mm$$

$$E_{max} = 6h_c \rightarrow E_{max} = 6 \times 95 = 570 \ mm$$

On opte pour un espacement de 150 mm entre les goujons.

V.4. Vérification des contreventements

V.4.1. Généralités

En génie civil, un contreventement est un système statique destiné à assurer la stabilité globale d'un ouvrage vis-à-vis des effets horizontaux issus des éventuelles actions sur celui-ci (par exemple : vent, séisme, choc, freinage, etc.). Il sert également à stabiliser localement certaines parties de l'ouvrage (poutres, poteaux) relativement aux phénomènes d'instabilité (flambage ou déversement).

Pour assurer le contreventement horizontal qui a le rôle de transmettre les actions latérales aux éléments verticaux appelés palées de stabilité, les planchers et toitures faisant office de diaphragme rigide ne devraient pas être affaiblis par des percements trop grands ou mal placés pouvant nuire à leur résistance et leur rigidité. Les diaphragmes flexibles devraient être évités pour combattre le déversement des murs notamment en maçonnerie.

L'exécution du contreventement devrait répondre à des critères spécifiques tels que : leur nombre et leur disposition.

Figure.V.5: Contreventement intérieur au niveau des rampes sens xx.

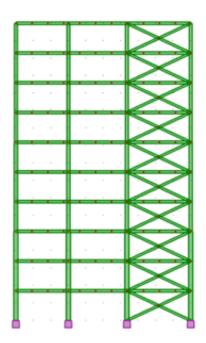


Figure.V.6: Contreventement intérieur au niveau des rampes sens yy.

V.4.2. Vérifications des contreventements

Ce système de contreventements est réalisé par des profilés UPN 280 de longueur

L = 2.86m

D'après le logiciel Robot :

La combinaison de charge la plus défavorable est 1.35G + 1.5Q

$$N_{Sd}^{max}$$
 = 921.52 KN (traction)

 $N_{Sd}^{max} = 73.32KN$ (compression)

Tableau.V.6: Caractéristiques géométriques du profilé UPN 280

Profilé	A	t	I_y	I_z	W_{ply}	W_{plz}	i_y	i_z
Trome	(cm ²)	(mm)	(cm^4)	(cm^4)	(cm^3)	(cm^3)	(mm)	(mm)
UPN 280	53.3	15	6280	399	532	109	10.9	2.74

• Vérification a la traction

 $N_{Sa}^{max} = 921.52 \ KN \ (traction)$

$$N_{sd} \le N_{t,rd}$$
; Avec: $N_{trd} = A \frac{f_y}{\gamma_{M0}} = 5330 \times \frac{275}{1.1} \times 10^{-3} = 1332.5 \text{ KN}$

$$N_{sd} = 921.52 \ KN < N_{t,rd} = 1332.5 \ KN \dots$$
 Condition vérifiée.

Vérification à la compression : [5]

- Il faut vérifier que :
$$N_{Sd}^{max} \le N_{b,Rd} = \chi x \beta_A x A x \frac{f_y}{\gamma_{M1}}$$

$$\chi = \frac{1}{\phi + \sqrt{\overline{\phi^2 - \lambda^2}}} \le 1 \qquad \text{avec} \qquad \phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$$

La longueur de la barre :
$$L_0 = 2.86m$$
 et $\varepsilon = \sqrt{\frac{235}{f_y}} = 0,924$

• Exemple de calcul:

 N_{Sd}^{max} = 73.32 KN (compression)

Calcul de l'élancement réduit $\bar{\lambda}_{y,Z}$:

$$l_{fy,z} = l_0 = 2.86 \text{ m}$$

$$\lambda_y = \frac{L_{fy}}{i_y} = \frac{286}{10.9} = 26.23$$
 $\bar{\lambda}_y = \frac{26.23}{93,91\epsilon} = 0.3 > 0.2$ alors il y a un risque de flambement

$$\lambda_z = \frac{L_{fz}}{i_z} = \frac{286}{2.74} = 104.38$$
 $\bar{\lambda}_z = \frac{104.38}{93.91\epsilon} = 1.2 > 0.2$ alors if y a un risque de flambement

On a section en U donc courbe de flambement = courbe C \rightarrow $\alpha_z = \alpha_y = 0.49$

$$\phi = 0.5 \; [1 + 0.49 \; (0.3 - 0.2) + (0.3)^2 \;] = 0.57$$

$$\chi = \frac{1}{0.57 + \sqrt{0.57^2 - 0.3^2}} = 0.94 \le 1$$

$$N_{b,Rd} = 0.94 \times 5330 \times \frac{275}{1.1} \times 10^{-3} = 1252.5 \text{ KN}$$

$$N_{Sd}^{max}$$
 = 73.32 KN < $N_{b,Rd}$ = 1252.5 KN Condition Vérifiée

Chapitre VI Les assemblages

Chapitre VI Les assemblages

VI.1. Introduction

Un assemblage est un système qui permet de réunir un ou plusieurs éléments métallique sa fin d'assurer une continuité entre eux. Ce système peut être soit par boulonnage ou soit par soudure ou les deux en même temps.

Les assemblages ont pour fonction :

- Assurer la transmission des efforts entre les différents éléments structuraux ;
- Créer une liaison de continuité;
- Correspondre au type de liaison adéquat ;

VI.2. Les différents modes d'assemblages

Dans la construction métallique, les différents modes d'assemblages les plus utilisés sont le boulonnage et la soudure.

VI.2.1. Assemblage par boulonnage

Le boulonnage est une méthode d'assemblage mécanique démontable, qui consiste à relier les éléments métalliques entre eux. On distingue deux types boulons : les boulons ordinaires et les boulons à haute adhérence. Et ces deux types de boulons se différencient par leur nuance d'acier.

Tableau.VI. 1: Caractéristiques mécaniques des boulons selon leur classe d'acier.

Valeur de la limite d'élasticité f_{yb} et de la résistance à la traction f_{ub} des boulons							
Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9
$f_{yb}(\text{N/mm}^2)$	240	320	300	400	480	640	900
f_{ub} (N/mm ²)	400	400	500	500	600	800	1000

Tableau.VI. 2: Caractéristiques géométriques des boulons

	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d (mm)	8	10	12	14	16	18	20	22	24	27	30
d ₀ (mm)	9	11	13	15	18	20	22	24	26	30	33
As (mm ²)	36,6	58	84,3	115	157	192	245	303	353	459	561

• Fonctionnement des assemblages

- Fonctionnement des assemblages par obstacle

C'est le cas des boulons ordinaires non précontraints dont les tiges reprennent les efforts et fonctionnent en cissaillement.

- Fonctionnement des assemblages par hadhérence

Dans ce cas la transmission des efforts s'opère par adhérence des surfaces des pièces en contact. Cela concerne le soudage et le boulonnage par les boulons à haute résistance.

VI.2.2. Assemblage par soudure

En charpente soudée les assemblages sont plus rigides, cela à pour effet un encastrement partiel des éléments constructifs.

• Coefficients partiels de sécurité

Résistance des boulons au cisaillement : = 1,25

Résistance des boulons à traction : = 1,50

Coefficient de frottement

Un bon assemblage par boulons HR exige que des précautions élémentaires soient prises, notamment :

Le coefficient de frottement μ doit correspondre à sa valeur de calcul.

Cela nécessite une préparation des surfaces, par brossage ou grenaillage, pour éliminer toute trace de rouille ou de calamine ; De graissage, etc.

 $\mu = 0.50$ pour les surfaces de la classe A

 $\mu = 0.40$ pour les surfaces de la classe B

 $\mu = 0.30$ pour les surfaces de la classe C

 $\mu = 0.20$ pour les surfaces de la classe D

Dans ce chapitre, (04) types d'assemblage seront traités :

- Assemblage poutre solive ;
- Assemblage poteau poutre ;
- Assemblage contreventement;

Chapitre VI Les assemblages

Assemblage pied de poteau ;

Il existe plusieurs méthodes de calcul des assemblages et pour notre cas. Nous avons utilisé comme références les cours de quatrième année (charpente métallique I) et d'autres documents, qui sont basés sur les normes des EUROCODE 03.

VI.3. Assemblage poutre–poutre (HEA360 – IPE160)

Tableau.VI. 3: Les caractéristiques du profilé (HEA360, IPE160)

	Les caractéristiques (mm)						
	A (cm ²)	b (mm)	h (mm)	tw (mm)	tf (mm)		
HEA360	142.8	300	350	10	17.5		
IPE160	20.09	82	160	5	7.44		

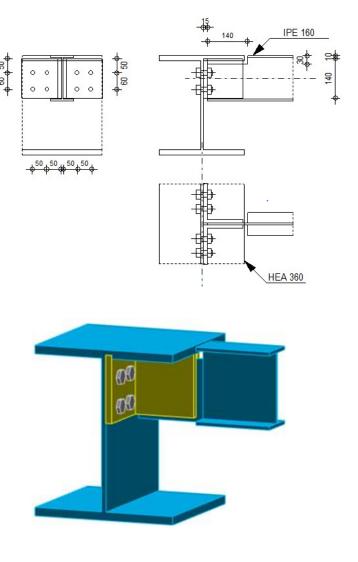


Figure.VI.1: Schéma d'assemblage poutre -solive.

Le choix des boulons :

On choisit 4 boulons ordinaires de diamètre 16 mm (M16) et de classe 10.9

M16
$$\implies$$
 d= 16 mm \implies d_0 = 18mm \implies A_S = 157 mm²

VI.3.1. Disposition constructive des boulons :

Epaisseur de la platine : $t_p = 12 \text{ mm}$

$$1,2d_0 \le e_1 \le \max i (12t \text{ ou } 150 \text{ mm})$$
 $21,60 \text{ mm} \le e_1 \le 150 \text{ mm}$ $e_1 = 50 \text{mm}$.

$$1,2d_0 \le e_2 \le \max i (12t \text{ ou } 150 \text{ mm}) \longrightarrow 21,60 \text{ mm} \le e_2 \le 150 \text{ mm}$$
 $e_2 = 50 \text{mm}.$

$$2,2d_0 \le P_1 \le \min (14t \text{ ou } 200 \text{ mm})$$
 39,6 mm $\le P_1 \le 168 \text{ mm}$ $P_1 = 60 \text{ mm}$.

$$3d_0 \le P_2 \le \min (14t \text{ ou } 200 \text{ mm})$$
 54 mm $\le P_2 \le 168 \text{ mm}$ $P_2 = 50 \text{ mm}$.

VI.3.2. Vérifications:

a. Résistance des boulons au cisaillement

Il faut vérifier que : $F_{v,sd} \leq F_{v,rd}$

$$F_{v,sd} = \frac{V_{sd,}}{n_p} = \frac{51.67}{4} = KN$$

$$F_{v,rd} \le \frac{0.6f_{ub} \times A_s}{v_{Mb}}$$

$$F_{v,rd} \le \frac{0.5 \times 1000 \times 157}{1.25} = 62.80 \text{ kN}$$

Il y a 2 boulons en double cisaillement donc :

$$F_{vrd} = n \ x \ F_{vrd} = 4 \ x \ 62, \, 80 = 125, \, 60 \ KN$$

$$V_{sd} = 51.67 \text{kN} < F_{vrd} = 25,60 \text{ kN}$$

Donc la condition est vérifiée.

b. Résistance à la pression diamétrale

Il faut vérifier que :
$$F_{v,sd} \leq F_{b,rd}$$

$$F_{b,rd} = \frac{_{2,5\;\alpha\;f_u\;d\;t}}{_{\gamma_{mb}}} \quad \text{ avec } \quad \alpha = min \qquad \frac{e_1}{_{3d_0}}\;; \frac{P_1}{_{3d_0}} - \frac{1}{_4};\; \frac{f_{ub}}{f_u}\;\;; \bigg]_1$$

Chapitre VI Les assemblages

$$\begin{split} &f_u \!= 430 \text{ MPa} \; ; \quad d \!= 16 \text{ mm} \; ; \quad d_0 \!= 18 \text{ mm} \; ; \quad t \!= 12 \text{ mm} \; ; \quad \gamma_{mb} \!= \! 1,\! 25 \; ; \\ &e_1 \!= 50 \text{ mm} \quad ; \quad P_1 \!= 60 \text{mm}. \\ &\alpha \!= \! \min \left\{ \begin{array}{l} 0,\! 92 \; ; \; 0,\! 86 \; ; \; 2 \; ,\! 32 \; ; \\ \hline 1 & \text{Donc} \; : \; \alpha \!= \! 0,\! 86 \end{array} \right. \\ &F_{b,rd} \!\!= \! \frac{2,\! 5 \; x \; 0,\! 86x \; 430 \; x \; 16 \; x \; 12}{1,\! 25} = 142, \; 0 \; \text{KN} > F_{v,sd} \!\!= 125, \; 60 \; \text{KN}. \end{split}$$

VI.4. Assemblage poteau-poutre (HEA 550 – HEA360)

Tableau.VI. 4: Les caractéristiques du profilé (HEA550, HEA360)

	Les caractéristiques (mm)						
	A (cm ²)	b (mm)	h (mm)	tw (mm)	tf (mm)		
HEA550	211.8	300	540	12.5	24		
HEA 360	142.8	300	350	10	17.5		

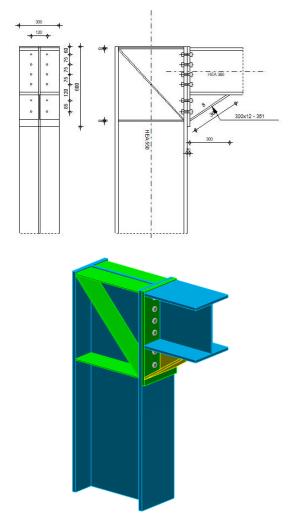


Figure.VI.2: Schéma d'assemblage poteau—poutre.

VI.4.1. Efforts sollicitant

Selon la combinaison « G+Q+1,5EY » on a les valeurs suivantes :

Moment fléchissant : M_{sd} =271.54 KN.m

Effort tranchant : $V_{sd} = 215.90 \text{ KN}$

VI.4.2. Assemblage poutre-platine (soudure)

On a utilisé la nuance d'acier S275 on aura:

$$\begin{cases} \beta_w = 0.85 \\ \gamma_{Mw} = 1.3 \\ f_{us} = 430 \end{cases}$$

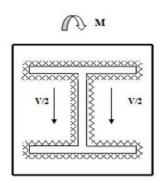


Figure.VI.3: Assemblage poutre platine.

Donc l'épaisseur du cordon sur la semelle :

$$a_f \ge t_f \times \frac{f_y}{\gamma_{m0}} \times \frac{\beta_w \times \gamma_{Mw}}{f_{us} \times \sqrt{2}}$$

$$a_f \ge 17.5 \times \frac{275}{1.1} \times \frac{0.85 \times 1.3}{430 \times \sqrt{2}} = 7.95 \text{ mm}$$

Et l'épaisseur du cordon sur l'ame :

$$a_w \ge t_w \times \frac{f_y}{\gamma_{mo}} \times \frac{\beta_w \times \gamma_{Mw}}{f_{us} \times \sqrt{2}}$$

$$a_w \ge 10 \times \frac{275}{1.1} \times \frac{0.85 \times 1.3}{430 \times \sqrt{2}} = 4.54 \text{ mm}$$

Donc pour avoir un cordon de soudure uniforme sur tout le profilée on prend a=10

On a:

 $L_1=bs=300 \text{ mm}$

$$L_2 = \frac{b_s - t_w}{2} = 145 \text{ mm}$$

$$L_3 = h - 2t_f = 315 \text{ mm}$$

$$A_s = \sum l_i a_i = (2L_1 + 4L_2 + 2L_3) a = 18100 \text{ mm}^2$$

$$I_{s/yy} = (2L_1 \times a \times d_1^2) + (4L_2 \times a \times d_2^2)$$

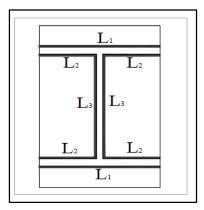


Figure.VI.4: Assemblage soudé poutre-platine.

Avec:

$$\begin{bmatrix} d_1 = \frac{H_{profil\acute{e}}}{2} + \frac{a}{2} = \frac{350}{2} + \frac{10}{2} \implies d_1 = 180 \text{ mm.} \\ d_2 = \frac{H_{profil\acute{e}}}{2} - t_f - \frac{a}{2} = \frac{350}{2} - 17.5 - \frac{10}{2} = 152.5 \text{ mm.} \end{bmatrix}$$

$$I_{s/yy} = (2 \times 300 \times 10 \times 180^2) + (4 \times 145 \times 10 \times 152.5^2)$$

$$I_{s/yy} = 329.28 \times 10^6 \ mm^4.$$

• Vérification de la soudure

$$V_{sd} = 215.90 \text{ KN}$$

$$M_{sd} = 271.54 \text{ KN.m}$$

- Effet de N_{sd} et V_{sd}

$$\sqrt{2(\frac{N_{sd}}{\sum li \times ai})^2 + 3(\frac{V_{sd}}{2l_3 \times a})^2} \le \frac{f_{us}}{\beta_w \times \gamma_{mw}}$$

$$\sqrt{3(\frac{215.90\times10^3}{2\times315\times10})^2} \le \frac{430}{0.85\times1.3}$$

59.36 MPa < 389.14 Mpa Condition vérifiée.

- Effet de N_{sd} et M_{sd}

$$\sqrt{2} \left[\frac{N_{sd}}{\sum li \times ai} + \left(\frac{M_{sd}}{I_{s/yy}} \times \frac{h}{2} \right) \right] \le \frac{f_{us}}{\beta_w \times \gamma_{m2}}$$

$$\sqrt{2} \left[\left(\frac{271.54 \times 10^6}{329.28 \times 10^6} \times \frac{350}{2} \right) \right] \le \frac{430}{0.85 \times 1.3}$$

204.15 MPa < 389, 14 Mpa. Condition vérifiée

VI.4.3. Assemblage poteau-platine (boulonnage)

• Choix de diamètre du boulon

On choisit une platine de dimension 600 x 300 avec épaisseur = 20 mm

$$t \le 10 \text{ mm}$$
 $d = (12; 14) \text{ mm}$

$$10 \le t \le 25 \text{ mm}$$
 $d = (16; 20; 24) \text{ mm}$

$$t \ge 25 \text{ mm}$$
 $d = (24; 27; 30) \text{ mm}$

On à l'épaisseur de la platine t = 20 mm alors on prend $\emptyset = 16$ mm.

• Disposition constructives

On a l'épaisseur de la platine égale à 20 mm alors on prend deux files de 6 boulons HR de diamètre \emptyset = 16 mm, classe 10.9 On prend n= 12 (boulons) **HR**.

• Distance entre axe des boulons

$$d_0 = \emptyset + 2 = 16 + 2 = 18 \text{ mm}$$

$$1,2d_0 \le e_1 \le \max (12t \text{ ou } 150 \text{ mm})$$
 \implies $21.6 \text{ mm} \le e_1 \le 240 \text{ mm}$ \implies $e_1 = 60 \text{mm}.$

$$1,5d_0 \le e_2 \le \max (12t \text{ ou } 150 \text{ mm}) \qquad \Longrightarrow \qquad 27 \text{ mm} \le e_2 \le 240 \text{ mm} \qquad \Longrightarrow \qquad e_2 = 60 \text{mm}.$$

$$2.2d_0 \le P_1 \le \min (14t \text{ ou } 200 \text{ mm})$$
 \implies $39.6 \text{ mm} \le P_1 \le 200 \text{ mm}$ \implies $P_1 = 120 \text{mm}.$

$$3d_0 \le P_2 \le min (14t ou 200 mm)$$
 \Longrightarrow $54 mm \le P_2 \le 200 mm$ \Longrightarrow $P_2 = 75 mm$.

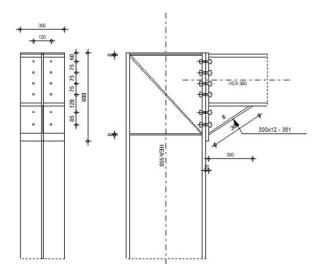


Figure.VI.5: Schéma distribution des boulons et des jarrets.

• Détermination des efforts dans le boulon

Ces efforts sont obtenus par la formule : $N_i = \frac{M_{sd} \cdot d_i}{\sum d^2_i}$ avec $M_{sd} = 271.54$ KN.m

$$d_1 = 271.25 \text{ mm}$$

$$d_2 = 196.25 \text{ mm}$$

$$d_3 = 121.25 \text{ mm}$$

$$\sum d^2_i = 403225 \text{ mm}^2$$

Afin éviter le décollement des pièces, il faut que l'effort de traction appliqué par boulonne soit inférieur à l'effort de précontrainte, soit :

$$F_{tsd} = F_{m1} \le F_{p.Cd}$$

$$F_{mi} = \frac{M_{sd} \times d_i}{n_f \times \sum d_i^2} \times 10^3$$

 n_f : Nombre des files, $n_f = 2$.

$$F_{m1} = 91.36 \text{ KN}$$

Il faut vérifier que :

$$Fm_1 \le n F_p$$

$$F_p = 0.7 \times f_{ub} \times A_s$$

- F_p: L'effort de précontrainte autorisé dans les boulons
- $f_{\rm ub}$: La contrainte de rupture du boulon, vaut 1000MPa pour les boulons 10.9.
- A_s: L'aire de la section du boulon

 $Fm_1 = 91.36 \text{ kN} \le n \text{ F}_P = 2 \times 0.7 \times 1000 \times 157 = 219.80 \text{ KN} \dots \text{CV}.$

• Vérification du moment effectif de l'assemblage

Il faut vérifier que : $M_{sd} \leq M_{rd}$

Avec:

M_{sd}: Moment résistant maximal,

 M_{rd} : Moment résistant effectif, $M_{rd} = \frac{n F_{p.\sum} d^2_i}{d_5}$

 $F_P = 0.7 \times 1000 \times 157 = 109.90 \text{KN (pour une boulon)}$

Résistance de l'assemblage sous l'effort tranchant

Il faut vérifier que : $V_{sd} \leq V_{s,rd}$

$$V_{sd} = \frac{V}{n} = \frac{215.90}{12} = 18 \text{ KN}$$

$$V_{s,rd} = \frac{k_s m \mu \left(F_P - 0.8 N_{tr} \right)}{\gamma_{ms}} = \frac{1 \times 1 \times 0.3 \left[(0.7 \times 157 \times 1000) \times 10^{-3} - (0.8 \times 182.27) \right]}{1,25} = 26.34 \ KN$$

$$V_{sd}$$
= 18 KN < $V_{s,rd}$ = 26.34 KNCV.

• Résistance de l'âme du poteau en traction

Il faut vérifier que : $F_v \le F_t$

$$F_v = \frac{M_{sd}}{h - t_f} = \frac{271.54}{(0.35 - 0.0175)} = 815.03 \text{ KN}$$

$$F_t = t_{wc} b_{eff} \frac{f_y}{\gamma_{mo}} = 10 \text{ x } 120 \text{ x } \frac{275}{1.1} = 300 \text{ KN}$$

 F_t = 300 KN > F_v = 815.03 KN.....Condition n'est pas vérifiée

Remarque : On rajoute un raidisseur pour augmenter la résistance de l'âme de poteau

• Résistance de l'âme du poteau au cisaillement

Il faut vérifier que : $F_v \le F_r$

$$F_r = 0.58 f_y h_c \frac{t_{wc}}{\gamma_{mo}}$$

Avec:

hp: la hauteur de profilé (poteau) hp = 540 mm.

twc: épaisseur de l'âme (poteau) twc = 12.5mm

$$F_r = 0.58 \times 275 \times 540 \times \frac{12.5}{1.1} = 978.75 \text{ KN}$$

$$F_r = 978.75 \text{KN} > F_v = 815.03 \text{ KN}.....\text{CV}.$$

• Résistance de l'âme du poteau en compression

Il faut vérifier que : $F_v \le F_c$

$$F_c \!\!=\!\! f_y \; x \; t_{wc} \; [1,\!25-0.5 \; \gamma_{m0} \frac{\sigma_n}{f_y} \;] \!\! \frac{b_{eff}}{\gamma_{mo}}$$

$$b_{eff} = t_{fb} + 2t_P + 5(t_{fc} + r_c)$$

 σn : Contrainte normale de compression dans l'âme du poteau

t_{fb}: Épaisseur semelle poutre HEA360 =17.5mm

 t_{fc} : Épaisseur semelle poteau HEA550=24mm

t_P: Épaisseur platine extrémité=20mm

 r_c : Rayon de raccordement âme semelle de poteau=27mm

$$b_{eff}$$
= 17.5 + (2 x 20) + [5 (24+27)] = 312.5 mm

$$\sigma_n = \frac{v_{sd}}{{}^{A}} + \frac{{}^{M}_{sd}}{{}^{W}_{ely}}$$

$$\sigma_n = \frac{215.90 \times 10^3}{211.8 \times 10^2} + \frac{271.54 \times 10^6}{4146 \times 10^3} = 75.71 \ MPa$$

$$F_c = 275 \times 12.5 \left[1.25 - (0.5 \times 1.1 \times \frac{75.71}{275})\right] \frac{312.5}{1,1}$$

$$F_c = 1072.83 \text{ KN} > F_v = 815.03 \text{ KN}.....CV.$$

VI.5. Assemblage des éléments de contreventement

VI.5.1. Assemblage du contreventement X

L'assemblage se fait avec l'élément le plus sollicité avec une section de 2UPN 280

• Assemblage du contreventement sur le gousset au niveau de la base du portique

Dans cet assemblage, on choisit d'utiliser des boulons HR de classe 10.9 et un diamètre de 20 mm avec une disposition de boulon de une rangés.

On a un effort tranchant repris par 2UPN 280 : N_{sd}^{max} = 970 KN.

• Disposition constructive

$$1,2d_0 \le e_1 \le \max i (12t \text{ ou } 150 \text{ mm}) \longrightarrow 26.4 \text{ mm} \le e_1 \le 150 \text{ mm} \longrightarrow e_1 = 120 \text{mm}.$$

$$1,2d_0 \le e_2 \le \max i (12t \text{ ou } 150 \text{ mm}) \longrightarrow 26.4 \text{ mm} \le e_2 \le 150 \text{ mm} \longrightarrow e_2 = 120 \text{mm}.$$

$$2,2d_0 \le P_1 \le \min (14t \text{ ou } 200 \text{ mm}) \longrightarrow 48.4 \text{ mm} \le P_1 \le 200 \text{ mm} \longrightarrow P_1 = 80 \text{mm}.$$

$$3d_0 \le P_2 \le \min (14t \text{ ou } 200 \text{ mm}) \longrightarrow 66 \text{ mm} \le P_2 \le 200 \text{ mm} \longrightarrow P_2 = 80 \text{mm}.$$

• Nombre de boulon nécessaire pour 1UPN

On suppose le nombre des boulons $n_p = 4$.

• Résistance à la pression diamétrale

Il faut vérifier que :
$$F_{v,sd} \leq F_{b,rd}$$

$$\begin{split} F_{b,rd} &= \frac{2.5 \, \alpha \, f_u \, d \, t}{\gamma_{mb}} \quad \text{avec} \quad \alpha = \min \, \left[\, \frac{e_1}{3 d_0} \, ; \, \frac{P_1}{3 d_0} - \frac{1}{4} ; \, \frac{f_{ub}}{f_u} \, ; \, 1 \, \, \right] \\ f_u &= 430 \, \text{MPa} \, ; \qquad d = 20 \, \text{mm} \, ; \qquad d_0 = 22 \, \text{mm} \, ; \qquad t = 12 \, \text{mm} \, ; \qquad \gamma_{mb} = 1,25 \, ; \\ e_1 &= 50 \, \text{mm} \quad ; \qquad P_1 = 100 \, \text{mm}. \\ \alpha &= \min \, \left[\, 1.81 \, ; \, 0.96 \, ; \, 1,86 \, ; \, 1 \, \, \right] \qquad \alpha = 0.96 \\ F_{b,rd} &= \frac{2.5 \, x \, 0.96 \, x \, 430 \, x \, 20 \, x \, 12}{1,25} = 198.14 \, \text{KN} \\ F_{v,sd} &= \frac{N_{sd}}{n_b} = \frac{970}{4} = 242.5 \, \text{KN} < F_{b,rd} = 198.14 \, \text{KN} \, . \end{split}$$

Chapitre VI Les assemblages

VI.6. Assemblage du pied poteau (PRS)

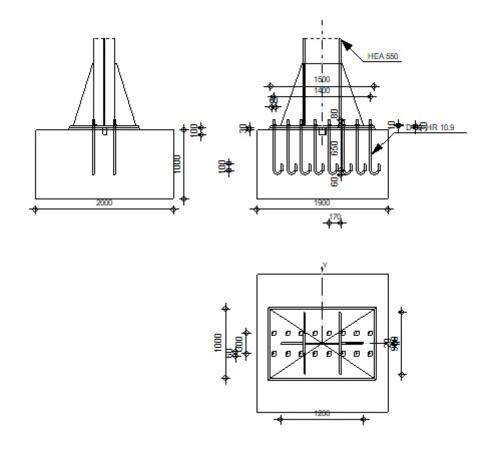


Figure.VI.6: Assemblage pied de poteau (PRS)

Poteau			
HEA 550			
L_{c}	3.40	[m]	Longueur du poteau
a	0,0	[Deg]	Angle d'inclinaison
h _c	540	[mm]	Hauteur de la section du poteau
b_{fc}	300	[mm]	Largeur de la section du poteau
$t_{ m wc}$	13	[mm]	Epaisseur de l'âme de la section du poteau
t _{fc}	24	[mm]	Epaisseur de l'aile de la section du poteau
r _c	27	[mm]	Rayon de congé de la section du poteau
Ac	211.76	[cm ²]	Aire de la section du poteau
I _{yc}	11932.00	[cm ⁴]	Moment d'inertie de la section du poteau
Matériau:	ACIER		
	E28		
f _{yc}	275,00	[MPa]	Résistance
f_{uc}	405,00	[MPa]	Résistance ultime du matériau

a- Platine de parcellement

l_{pd}	1500	[mm]	Longueur		
b _{pd}	1000	[mm]	Largeur		
t_{pd}	30	[mm]	Epaisseur		
Matériau:	ACIER E28				
f_{ypd}	275,00		[MPa]	Résistance	
f_{upd}	405,00		[MPa]	Résistance ultime du matériau	

b- Ancrage

Classe	HR 10.9		Classe de tiges d'ancrage
f_{yb}	900,00		Limite de plasticité du matériau du boulon
f_{ub}		1200,00	Résistance du matériau du boulon à la
			traction
d		30	Diamètre du boulon
A_s	5.61		Aire de la section efficace du boulon
$A_{\rm v}$	7.07		Aire de la section du boulon
n _H	8		Nombre de colonnes des boulons
nv	2		Nombre de rangéss des boulons
Ecartement	t	200 [mm]	
e _{Hi}			
Entraxe e _{Vi} 300 [mm]		300 [mm]	

c- Dimensions des tiges d'ancrage

L_1	80	[mm]
L_2	650	[mm]
L ₃	120	[mm]
L_4	100	[mm]

d- Platine

$l_{ m wd}$	60	[mm]	Longueur
$b_{ m wd}$	60	[mm]	Largeur
$t_{ m wd}$	10	[mm]	Epaisseur

e- Raidisseur

l_s	1200	[mm]	Longueur
Ws	900	[mm]	Largeur

hs	900	[mm]	Hauteur
t_s	20	[mm]	Epaisseur

f- Coefficients de matériau

У мо	1,00	Coefficient de sécurité partiel
У м2	1,25	Coefficient de sécurité partiel
ХС	1,50	Coefficient de sécurité partiel

g- Semelle isolée

L	1900	[mm]	Longueur de la semelle
В	2000	[mm]	Largeur de la semelle
Н	1000	[mm]	Hauteur de la semelle

h- Mortier de calage

tg	30	[mm]	Epaisseur du mortier de calage
f _{ck,g}	12	[MPa]	Résistance caractéristique à la compression
$C_{f,d}$	0.30		Coef. de frottement entre la plaque d'assise et le béton

i- Soudures

a_p	10	[mm]	Plaque principale du pied de poteau
$a_{\rm s}$	10	[mm]	Raidisseurs
aw	10	[mm]	Bêche

VI.6.1. Efforts

Cas 17: G+Q+1.5EX

$N_{j,Ed}$	-4705.89	[kN]	Effort axial
$V_{j,Ed,y}$	-31.56	[kN]	Effort tranchant
$V_{j,Ed,z}$	11.45	[kN]	Effort tranchant
$M_{j,Ed,y}$	9.83	[kN*m]	Moment fléchissant
$M_{j,Ed,z}$	28.71	[kN*m]	Moment fléchissant

VI.6.2. Résultats

a. Zone comprimée

• Compression du béton

f_{cd}		13.3	3	[MPa]		Résistance de calcul à la compression	
$\mathbf{f_{j}}$		14.1	5	[MPa]	Re	ésistance de calcul du matériau du joint sous la plaque d'assise	
$c = t_p$	Ö(f _y	$_{p}/(3*f_{j}*$	g _{M0}))		•	
С		76		[mm]		Largeur de l'appui additionnelle	
b _{eff}		177		[mm]		Largeur efficace de la semelle de tronçon T	
l _{eff}		453		[mm]	Lo	ongueur efficace de la semelle de tronçon en T	
A _{c0}		800.0	8	[cm ²]		Zone de contact de la plaque d'assise avec la fondation	
A _{c1}		7200.7	70	[cm ²]	A	Aire de calcul maximale de la répartition de la	
						charge	
	$F_{rdu} = A$		$d_{\rm du} = A_{\rm c}$	0*fcd*C	$\dot{O}(A_{c1}/A_{c0}) \le 3*A_{c0}*f_{cd}$		
F_{rd}	u		320	00.31	[kN]	Résistance du béton à l'appui rigide	
b _j			0	,67		Coefficient réducteur pour la compression	
$f_{jd} = b_j * F_{rdu}$	$/(b_{ef}$	ff*l _{eff})					
f _{jd} 26.6	7	[MPa]	Résistance de calcul du matériau du joint			stance de calcul du matériau du joint	
$A_{c,n}$		5179	.05	5 [cm ²]		Aire de compression efficace	
$A_{c,y}$		2309	.24	[cn	n^2]	Aire de flexion My	
$A_{c,z}$		1739	.25	[cn	n^2]	Aire de flexion Mz	
$F_{c,Rd,i} = A_{C,i}$	$F_{c,Rd,i} = A_{C,i} * f_{jd}$						
$F_{c,Rd,n}$	-	13810.8	1	[kN	1]	Résistance du béton à la compression	
F _{c,Rd,y} 6157.98 [kN]		1]	Résistance du béton à la flexion My				
F _{c,Rd,z}		4638.00)	[kN	1]	Résistance du béton à la flexion Mz	

• Aile et âme du poteau en compression

CL	2.00		Classe de la section
$W_{pl,y}$	16603.82	[cm ³]	Facteur plastique de la section
$M_{c,Rd,y}$	4566.05	[kN*m]	Résistance de calcul de la section à la flexion
$h_{f,y}$	641	[mm]	Distance entre les centres de gravité des ailes
$F_{c,fc,Rd,y} = M_c$,Rd,y / hf,y		
F _{c,fc,Rd,y}	7122.49	[kN]	Résistance de l'aile et de l'âme comprimées
$W_{\mathrm{pl,z}}$	8372.90	[cm ³]	Facteur plastique de la section
$M_{c,Rd,z}$	2302.55	[kN*m]	Résistance de calcul de la section à la flexion
$h_{\mathrm{f,z}}$	498	[mm]	Distance entre les centres de gravité des ailes
F _{c,fc}	$c_{Rd,z} = M_{c,Rd,z} / h_z$	f,z	
$F_{c,fc,Rd,z}$	4627.44	[kN]	Résistance de l'aile et de l'âme comprimées

• Résistance de la semelle dans la zone comprimée

$N_{j,Rd} = F_{c,Rd,n}$				
$N_{j,Rd}$	13810.81	[kN]	R	ésistance de la semelle à l'effort axial
F _C ,	$_{\text{Rd,y}} =$			
min(F _{c,Re}	$_{d,y}$, $F_{c,fc,Rd,y}$)			
$F_{C,Rd,y}$	6157.98	[kN]	Résista	ance de la semelle dans la zone comprimée
F _{C,I}	Rd,z =			
min(F _{c,Ro}	$_{l,z},F_{c,fc,Rd,z})$			
Fc	,Rd,z	4627.4	[kN]	Résistance de la semelle dans la zone
				comprimée

a- Contrôle de la résistance de l'assemblage

e _z 6 [mm] z _{c,z} 249 [mm]		Excentricité de l'effort axial Bras de levier F _{C,Rd,z}		
$M_{j,Ed,y} / M_{j,Rd,y} \le 1,0 (6.23)$			0.38 < 1,00	vérifié
$I_{j,Rd,y}$	y 25.56 [kN*m]		Résistance de l'asse	emblage à la flexion
Z _{t,y}	700 [mm]		Bras de levier $F_{T,Rd,y}$	
Z _{c,y}	321 [mm]		Bras de le	vier F _{C,Rd,y}
e _y 2 [mm]			Excentricité d	le l'effort axial
$N_{j,Ed}$ /	$^{\prime} N_{j,Rd} \le 1,0 \ (6)$.24)	0,34 < 1,00	vérifié

$Z_{t,z}$	z _{t,z} 150 [mm]		Bras de levier $F_{T,Rd,z}$		
M _{j,Rd,z} 55.10 [kN*m]		Résistance de l'assemblage à la flexion			
$M_{j,Ed,z}$	$/ M_{j,Rd,z} \le 1,0 (6)$.23)	0.52 < 1,00	vérifié	
$M_{j,Ed,y} / M_{j,Rd,y} + M_{j,Ed,z} / M_{j,Rd,z} \le 1,0$			0,91 < 1,00	vérifié	

b. Cisaillement

• Pression du boulon d'ancrage sur la plaque d'assise

➤ Cisaillement par l'effort V_{j,Ed,y}

$\alpha_{d,y}$	3.65	Coef. d'emplacement des boulons en direction du					
			cisaillement				
$\alpha_{b,y}$	1.00	C	Coef. pour les calculs de la résistance F _{1,vb,Rd}				
k _{1,y}	2.50	Coef. d'emplacement des boulons perpendiculairement à la					
			direction du cisaillement				
$F_{1,vb,Rd,y} =$	$k_{1,y}*a_{b,y}*f_{up}*d*t_{l}$,/					
	ү м2						
$F_{1,vb,Rd,y}$	729.00	[kN]	Résistance du boulon d'ancrage à la pression sur				
			la plaque d'assise				

➤ Cisaillement par l'effort Vj,Ed,z

$\alpha_{d,z}$	0.52	Coef. d'emplacement des boulons en direction du			
			cisaillement		
$\alpha_{b,z}$	0.52	C	oef. pour les calculs de la résistance F _{1,vb,Rd}		
k _{1,z}	2.50	Coef. d'emplacement des boulons perpendiculairement à la			
			direction du cisaillement		
$F_{1,vb,Rd,z} =$	$k_{1,z}*\alpha_{b,z}*f_{up}*d*t_{I}$,/			
	У м2				
F _{1,vb,Rd,z}	379.69	[kN]	Résistance du boulon d'ancrage à la pression sur		
			la plaque d'assise		

> Cisaillement du boulon d'ancrage

α_{b}	0.25		Coef. pour les calculs de la résistance $F_{2,vb,Rd}$
A_{vb}	7.07	[cm ²]	Aire de la section du boulon
f_{ub}	1200.00	[MPa]	Résistance du matériau du boulon à la traction
Y M2	1.25		Coefficient de sécurité partiel
$F_{2,vb,Rd} = \alpha$	$F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{vb} / \gamma_{M2}$		

$F_{2,vb,Rd}$	168.29	[kN]	Résistance du boulon au cisaillement - sans bras
			de levier

> Glissement de la semelle

$C_{f,d}$	0.30	Coef. de frottement entre la plaque d'assise et le béton				
N _{c,Ed}	4705.89	[kN] Effort de compression				

$$F_{f,Rd} = C_{f,d} {\ast} N_{c,Ed}$$

$F_{f,Rd}$	1411.77	[kN]	Résistance au glissement

> Contrôle du cisaillement

	$V_{j,Rd,y} = n_b * min(F_{1,vb,Rd,y}, F_{2,vb,Rd}, F_{v,Rd,cp}, F_{v,Rd,c,y}) + F_{f,Rd}$						
V _{j,Rd,y} 3188.87 [kN] Résistance de l'assemblage au cisaillement							
	$V_{j,Ed,y} / V_{j,Rd,y} \le 1,0$			0.01 < 1,00	vérifié		
	$V_{j,l}$	$R_{d,z} = n_b * min(I_{d,z})$	F1,vb,Rd,z,	F _{2,vb,Rd} , F _{v,Rd,cp} , F _{v,Rd,c}	$_{z})+F_{f,Rd}$		
$V_{j,Rd,z}$	3104.87	[kN]	R	ésistance de l'assemb	lage au cisaillement		
	V _{j,Ed,z} / V	$_{\rm j,Rd,z} \le 1.0$		0,00 < 1,00	vérifié		
$V_{j,Ed,y}$	$V_{j,Rd,y} + V_{j,Rd,y}$	$V_{j,Ed,z} / V_{j,Rd,z} \le$	1,0	vérifié	(0,01)		

> Contrôle des raidisseurs

• Plaque trapézoïdale parallèle à l'âme du poteau

M_1	214.34	[kN*m]	Moment fléchissant du raidisseur			
Q_1	1054.90	[kN]	Effort tranchant du raidisseur			
Z_{S}	189	[mm]	Position de l'axe neutre (à partir de la base de la			
			plaque)			
Is	364978.	[cm ⁴]	Moment d'inertie du raidisseur			
	13					
$\sigma_{ m d}$	9.36	[MPa]	Contrainte normale au contact du raidisseur et de la			
			dalle			
σ g	43.49	[MPa]	Contrainte normale dans les fibres supérieures			
t	58.61	[MPa]	Contrainte tengentielle dans le raidisseur			
σ_{z}	101.94	[MPa]	Contrainte équivalente au contact du raidisseur et de la			
			dalle			
$\max (\sigma$	y_{M0}) ≤ 1.0 0.37 < 1,00 vérifié					

• Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)

M_1	159.00	[kN*m]	Moment fléchissant du raidisseur			
Q_1	908.59	[kN]	Effort tranchant du raidisseur			
Zs	222	[mm]	Position de l'axe neutre (à partir de la base de la			
			plaque)			
I_s	337893.	[cm ⁴]	Moment d'inertie du raidisseur			
	75					
σ d	9.02	[MPa]	Contrainte normale au contact du raidisseur et de la			
			dalle			
σ g	33.33	[MPa]	Contrainte normale dans les fibres supérieures			
t	50.48	[MPa]	Contrainte tengentielle dans le raidisseur			
σ_{z}	87.89	[MPa]	Contrainte équivalente au contact du raidisseur et de la			
			dalle			
$\max (\sigma$	g, t / (0.58),	$\sigma_z)/(f_{yp}/$	$\gamma_{M0} \le 1.0$ 0.32< 1,00 vérifié			

VI.6.3. Soudures entre le poteau et la plaque d'assise

	Table to be determined to the product of the produc					
σ_n =	54.68	[MPa]	Contrainte normale dans la soudure			
t^ =	54.68	[MPa]	Contrainte tengentielle perpendiculaire			
$t_{yII} =$	-0.88	[MPa]	Contrainte tengentielle parallèle à $V_{j,\text{Ed},y}$			
$t_{zII} =$	0.50	[MPa]	Contrainte tengentielle parallèle à $V_{j,\text{Ed},z}$			
$\beta_{\rm W} =$	0,85		Coefficient dépendant de la résistance			
σ / (0.9	$\sigma / (0.9*f_u/g_{M2})) \le 1.0 (4.1)$			0.19 < 1,00	vérifié	
$\ddot{O} (\sigma^{2} + 3.0 (t_{yII}^{2} + t^{2})) / (f_{u}/(b_{W} * y_{M2}))) \leq 1.0 (4.1)$			0.29 < 1,00	vérifié		
$\ddot{O} (\sigma^2 + 3.0 (t_{zII}^2 + t^2)) / (f_{u}/(b_W * y_{M2}))) \le 1.0 (4.1)$				0.22 < 1,00	vérifié	

Chapitre VI Les assemblages

VI.6.4. Rigidité de l'assemblage

• Moment fléchissant Mj,Ed,y

b _{eff}	177	[mm]	Largeur efficace de la semelle de tronçon T			
l _{eff}	453	[mm]	Longueur efficace de la semelle de tronçon en T			
	$k_{13,y} = E_c * \sqrt{-(b_{eff} * l_{eff})/(1.275 * E)}$					
k _{13,y}	32	[mm]	Coef. de rigidité du béton comprimé			
l _{eff}	500	[mm]	Longueur efficace pour un boulon pour le mode 2			
m	419	[mm]	Pince boulon-bord de renforcement			
	$k_{15,y} = 0.850 * l_{eff} * t_p^3 / (m^3)$					
k _{15,y}	0	[mm]	Coef. de rigidité de la plaque d'assise en traction			
L_b	325	[mm]	Longueur efficace du boulon d'ancrage			
			$k_{16,y} = 1.6*A_b/L_b$			
k _{16,y}	3	[mm]	Coef. de rigidité du boulon d'ancrage en traction			
$\lambda_{0,y}$	0.17		Elancement du poteau			
$S_{j,\text{ini},y}$	1367620.3	[kN*m	Rigidité en rotation initiale			
	5					
$S_{j,rig,y}$	2074034.1	[kN*m	Rigidité de l'assemblage rigide			
	2					
	$S_{j,ini,y} < S_{j,rig,y}$ SEMI-RIGIDE					

• Moment fléchissant Mj,Ed,z

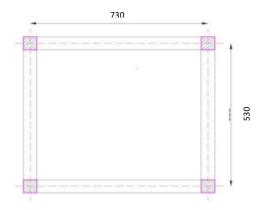
	$k_{13,z} = E_c * \sqrt{\sqrt{(A_{c,z})/(1.275*E)}}$				
k _{13,z}	47	[mm]	Coef. de rigidité du béton comprimé		
$l_{ m eff}$	750	[mm]	Longueur efficace pour un boulon pour le mode 2		
m	419	[mm]	Pince boulon-bord de renforcement		
	$k_{15,z} = 0.850*l_{eff}*t_p^3/(m^3)$				
k _{15,z}	0	[mm]	Coef. de rigidité de la plaque d'assise en traction		
L _b	325	[mm]	Longueur efficace du boulon d'ancrage		
			$k_{16,z} = 1.6*A_b/L_b$		
k _{15,z}	3	[mm]	Coef. de rigidité du boulon d'ancrage en traction		
$\lambda_{0,z}$	0.55		Elancement du poteau		
$S_{j,\text{ini},z}$	1214778.05	[kN*m]	Rigidité en rotation initiale		
$S_{j,rig,z}$	200469.71	[kN*m]	Rigidité de l'assemblage rigide		
	$S_{j,ini,z} < S_{j,rig,z} RIGIDE$				

Assemblage satisfaisant vis à vis de la Norme

Ratio 0.91

Chapitre VII Etude de l'infrastructure

VII.1. Introduction


Les fondations sont des éléments qui sont directement en contact avec le sol, elles assurent ainsi la transmission des charges de la superstructure à ce dernier. Cette transmission peut être reposant directe (cas des semelles sur le sol ou cas des radiers) ou être assurée par l'intermédiaire d'autres organes (cas des semelles sur pieux).

VII.2. Pré dimensionnement des éléments de l'infrastructure

VII.2.1. Plancher sous-sol:

a. Dalle pleine:

C'est un élément porteur horizontal qui se repose sur deux ou quatre appuis, elle reprend des différent charges (d'exploitation, permanente) et les transmettre aux éléments porteurs verticaux.

Figure.VII.1 : le panneau le plus sollicité de la dalle pleine.

> Isolation phoniques :

Selon les règles techniques CBA93 pour une bonne isolation phonique l'épaisseur doit être supérieure ou égale 13 cm.

• Donc on prend l'épaisseur de la dalle pleine : e= 15 cm.

> Résistance à la flexion :

- Dalle reposant deux appuis : $\frac{Lx}{35} < e < \frac{Lx}{30}$
- Dalle reposant sur trois ou quatre appuis : $\frac{Lx}{50} < e < \frac{Lx}{40}$

Lx : la petite portée du panneau le plus sollicité

Dans notre cas les dalles reposent sur 4 appuis et ont une portée égale à :

$$Lx = 4.6m = 460 cm$$
.

$$e = \frac{460}{40} = 9.2 \ cm$$

Donc : $e = \max(15; 9.2)$ On prend : e = 15cm

b. Poutres principales

 $L_{max} = 7.3 \text{ m}$

$$L/_{15} \le h \le L/_{10} \to \frac{730}{15} \le h \le \frac{730}{10}$$

 $48.6 \text{ cm} \le h \le 73 \text{cm}$

On prend : h = 50 cm

$$0.3h \le b \le 0.7h \rightarrow 0.3 \times 50 \le b \le 0.7 \times 50$$

 $15 \text{ cm} \le b \le 35 \text{ cm}$

On prend : b = 35 cm

Pour la zone III (zone de forte sismicité) ; les règles parasismiques Algériennes, les dimensions des poutres doivent respecter les conditions ci-dessous :

 $h = 50cm \ge 30 cm \dots Vérifié.$

 $b = 35cm \ge 20 cm \dots Vérifié.$

$$h/h = 1.43cm \le 4 \dots Vérifié$$

c. Poutres secondaires

 $L_{max} = 5.3 \text{ m}$

$$L/_{15} \le h \le L/_{10} \to \frac{530}{15} \le h \le \frac{530}{10}$$

 $35.3 \text{ cm} \le h \le 53 \text{ cm}$

On prend : h = 40 cm

$$0.3h \le b \le 0.7h \rightarrow 0.3 \times 40 \le b \le 0.7 \times 40$$

 $12 \text{ cm} \le b \le 28 \text{ cm}$

On prend : b = 25 cm

Selon le RPA 99 (Version 2003), les dimensions des poutres doivent respecter les conditions ci-dessous :

 $h = 40cm \ge 30 cm \dots Vérifié.$

 $b = 25cm \ge 20 cm \dots Vérifié.$

 $h/h = 1.6cm \le 4 \dots V$ érifié

VII.3. Ferraillage des poteaux

Les poteaux du sous-sol sont calculés à la compression simple, le ferraillage est donné par :

$$A_s \ge \left(\frac{N_u}{\alpha} - \frac{B_r}{0.9} \frac{f_{c28}}{\gamma_b}\right) \frac{\gamma_s}{f_e}$$

- ➤ Br : Section réduite du poteau considéré (Br= (a-2) ×(b-2)) cm²
- > α : Coefficient dépendant de l'élancement.

$$\alpha = \begin{cases} \frac{0.85}{1 + 2\left(\frac{\lambda}{35}\right)^2} & si \lambda \le 50\\ \frac{0.6(50)^2}{\lambda} & si > 50 < \lambda < 70 \end{cases}$$

$$\lambda = \frac{L_f}{i}$$

- Lf: Longueur de flambement.
- ightharpoonup i: Rayon de giration $\left(i = \sqrt{\frac{I}{B}}\right)$.
- > I : Moment d'inertie de la section du poteau dans la direction considérée.
- \triangleright B : Section du poteau (B=a×b).
- Nu : L'effort normal maximal au niveau des poteaux du sous-sol.
- \triangleright La longueur de flambement Lf = 0,7L₀.

• Calcul du ferraillage longitudinal

$$\lambda = \frac{Lf}{i} \to i = \frac{a}{\sqrt{12}}$$
$$\lambda = \frac{0.7 \times 425}{\frac{150}{\sqrt{12}}}$$

$$\lambda = 6.87 < 50 \text{ donc}$$
:

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} = \frac{0.85}{1 + 0.2 \left(\frac{6.87}{35}\right)^2} = 0.843$$

Et Nu = 3573.27KN (obtenu de robot)

$$A_s = \left[\frac{3573.27 \times 10^3}{0.843} - \frac{(1480 \times 980) \times 25}{0.9 \times 1.5} \right] \times \frac{1.15}{400} = -65.03 \ cm^2 \Rightarrow As < 0$$

• Calcul As min:

Selon le RPA et BAEL on a :

As min = max (4U; 0.2%B; 0.9%B)

-
$$4U = 2 \times (100 + 150) = 20 \text{ cm}^2$$

-
$$0.2\%$$
B = $\frac{0.2}{100}$ × $(150 × 100)$ = $30cm^2$

-
$$0.9\%$$
B = $\frac{0.9}{100}$ × $(150 × 100)$ = 135 cm²

As $min = 135cm^2$

• Calcul As max

- $3\%B = 3\% \times 150 \times 100 = 450 \text{cm}^2$.
- $6\%B = 6\% \times 150 \times 100 = 900$ cm².

Donc on prend $As = 20T32 = 160.8cm^2$

$$As \min = 135 \ cm^2 \le As = 160.8 \ cm^2 \le As \ max = 300 \ cm^2$$

Schéma ferraillage des poteaux

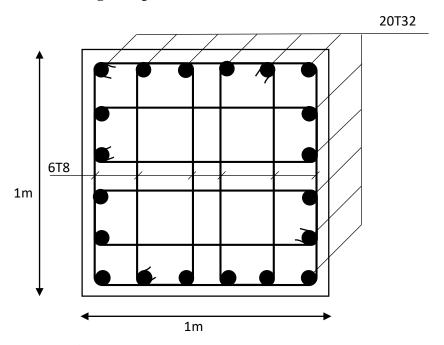


Figure VII. 2: Schéma de Ferraillage des poteaux

VII.4. Les voiles périphériques :

Le RPA99V2003 exige que tous ce qui est inférieur de niveau de la base de la structure doit comporter un voile périphérique pour assurer un bon chainage entre la superstructure, les sous-sols et les fondations.

Selon ce DTR, il est obligatoire de satisfaire les conditions suivantes :

- L'épaisseur minimale est de 15 cm.
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0.1% dans les deux sens (horizontal et vertical).
- Les armatures de ce voile ne doit pas réduire sa rigidité d'une manière importante.

L'épaisseur d'un voile périphérique est déterminée en fonction de la hauteur d'étage libre he, telle que :

$$h_e = 4.25$$

$$e = max\left(\frac{h_e}{20}, 15cm\right) = max(21.25, 15cm) = 21.25cm$$

Donc on adopte pour les voiles périphériques une épaisseur de 25cm

• Selon BAEL91:

G+Q (ELS)

• Selon RPA99 (situation accidentelle):

G+Q±E

 $0.8G\pm E$

Situation	Béton			Acier		
Durable	γ _b	f _{c28} (MPA)	σ _{bc} (MPA)	γ _s	f _e (MPA)	σ _{bc} (MPA)
	1,5	25	14,2	1,15	400	348
Accidentelle	1,5	25	18,48	1	400	400

• Caractéristiques du sol :

Poids spécifique : $\gamma = 18KN/m^3$

Angle frottement : $\phi = 30^{\circ}$

La cohésion : son effet est négligé dans notre cas d'étude.

• Calcul de la poussée de terre :

La poussée de terres est calculée par la formule suivante :

$$P = \gamma \times H \times K_a$$

Avec:

H: la hauteur total de voile

 K_a : Le coefficient de poussée de terre $K_a = tan^2(\frac{\pi}{4} - \frac{\varphi}{2})$

Tableau.VII.1: Résultats des charges

H(m)	φ	$\gamma \left(\frac{KN}{m^3}\right)$	Ka	P (ELS) (KN/m ²)	1,35*P (la charge à l'ELU)
4.25	30	18	0.405	30.98	41.82

Ferraillage du voile périphérique :

Le ferraillage de voile se calcul comme un panneau d'une delle pleine, le calcul se fait pour une band de b=1m et h=0,2 m (l'épaisseur du voile)

$$\rho = \frac{Lx}{Ly} = \frac{4.25}{7.3} = 0.58 > 0.4$$

Le panneau travaille dans deux sens

Détermination des sollicitations (les moments) :

$$M_X = \mu_x \times P_u \times L_{x2} \qquad / M_y = \mu_y \times M_x$$

En travée:

$$M_x^t = 0.75 M_x$$
 / $M_y^t = 0.75 M_y$

En appui:

$$M_x^a = 0.5 M_x$$
 $/ M_y^a = 0.5 M_y$

Tableau.VII.2: Calcul des moments a ELU

	μ	M (KN.m)	M ^t (KN. m)	Ma(KN.m)
Sens x-x	0.0851	64.28	48.21	
Sens y-y	0.2703	17.37	13.02	32.14

Le ferraillage est calculé pour une bande de 1 m en flexion simple avec une section ($b \times e$) tel que : b=1 m ; e=0.25m

Tableau.VII.3: Ferraillage de voile périphérique

	M (KN.m)	μ	α	Z (mm)	A s (c m ²)
Travée x-x	48.21	0.105	0.139	180.94	7.66
Travée y-y	13.02	0.028	0.035	177.41	2.15
Appui	32.14	0.07	0.091	173.46	5.32

• Suivant le RPA99V2003

$$A_{min} = 0.1\% \times b \times h$$

$$A_{min} = 0.1\% \times 1000 \times 250$$

• **Espacement :** On a une fissuration préjudiciable, donc :

Sens x-x: $S_t \le \min (2h; 25cm) \rightarrow S_t = 12cm$ Sens y-y: $S_t \le \min (3h; 33cm) \rightarrow S_t = 20cm$

Tableau.VII.4: Résultat de Ferraillage de voile périphérique

	M(KN.m)	$A_{s cal}(cm^2)$	A min	A _{s adp}	Choix	S _t (cm)
Travée x- x	48.21	7.66	2	9.05	8T12	12
Travée y-y	13.02	2.15	2	5.65	5T12	20
Appui	32.14	5.32	2	5.65	5T12	20

D'après RPA99 version 2003 on a : h=e=25cm ; b=100cm ; ρ_0 =0,0008 pour les barres de FeE400

$$\begin{cases} A_x \geq A_x^{min}; & A_x^{min} = \rho_0 \left[3 - \frac{L_x}{L_y} \right] \frac{bh}{2} \\ A_y \geq A_y^{min}; & A_y^{min} = \rho_0 bh \end{cases}$$

> En travée

$$\begin{cases} A_x^{min} = 0.0008 \left[3 - \frac{4250}{7300} \right] \times \frac{1000 \times 200}{2} \\ A_y^{min} = 0.0008 \times \frac{1000 \times 200}{2} \end{cases}$$

$$\begin{cases} A_{x}^{min} = 1.93cm^{2} \\ A_{y}^{min} = 1.6cm^{2} \end{cases}$$
 Condition vérifier

> Sur appuis:

$$\begin{cases} A_x^{min} = 1.93cm^2 \\ A_y^{min} = 1.6cm^2 \end{cases}$$
Condition vérifier

Vérification de l'effort tranchant :

$$T_x = \frac{q_u \times L_x \times L_y}{2L_x + L_y} = \frac{41.82 \times 4.25 \times 7.3}{2 \times 4.25 + 7.3} \rightarrow T_x = 82.12KN$$

$$T_Y = \frac{41.82 \times 4.25}{3} \rightarrow T_Y = 59.25 KN$$

$$T_u^{max} = 82.12KN$$

$$\tau_u = \frac{82.12 \times 10^3}{1000 \times 180} = 0.46 MPa < \bar{\tau}_u = 1.25 MPa \dots Condition vérifier$$

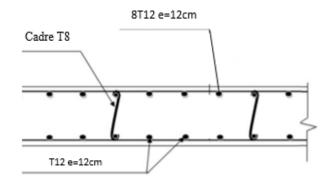


Figure VII. 3: Ferraillage du voile périphérique sens X-X

VII.5. Choix du type de fondation

Le choix des fondations se fait dans l'ordre suivant :

- Semelles isolées
- Semelles filantes
- Radier général.

Il y a plusieurs facteurs qui rentrent en jeu, on peut citer

- Contrainte du sol σ_{sol}
- La classification du sol
- Les efforts transmis à la base

On suppose que la contrainte admissible égale à 2 bars

VII.6. Calcul des fondations

On suppose que l'effort normal prévenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

On doit vérifier la condition suivante : $\frac{N}{S} \le \sigma_{sol} \Rightarrow S \ge \frac{N}{\sigma_{sol}}$

Avec:

- σ_{sol} : Contrainte du sol.
- N : Effort normal appliqué sur la fondation.
- S : Surface de la fondation.

VII.7. Semelle isolée sous poteaux :

1. Calcul les dimensions A, B:

Condition d'homothétie :

$$\frac{A}{B} = \frac{a}{b}$$

$$A = \frac{a \times B}{b}$$

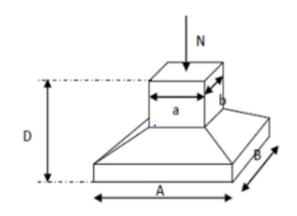


Figure VII. 4: Semelle isolée.

$$B = \frac{A \times b}{a}$$

Pour les poteaux carrés a = b donc $A = B \Rightarrow S = B^2$

$$\sigma_{\rm cal} \leq \overline{\sigma_{\rm sol}}$$

Avec:

$$\overline{\sigma_{sol}} = 2 \; bar = 200 \; KN/m^2$$

$$\sigma_{cal} = \frac{N}{S} = \frac{N}{A \times B} = \frac{N}{B^2}$$

N : Effort normal appliqué sur la fondation.

S : Surface de la fondation.

Selon logiciel ROBOT et sous la combinaison à l'ELS (G + Q)

Nser = 2827.82 kN

$$\frac{2827.82}{B^2} \le 200$$

$$B \ge \sqrt{\frac{2827.82}{200}} = 3.76 \text{ m}$$

On choisit B = 4 m.

Donc A = 4 m.

2. Vérification de l'interférence entre deux semelles

$$L_{\min} \ge 1,5 \times B$$

Il faut vérifie que

Avec: L min est l'entre axe minimum entre deux poteaux.

B: Largeur maximum de la semelle (B = 4 m).

On $L_{min} = 4.6 \text{ m} < 1.5 \times 4 = 6 \text{ m}$ La condition non vérifié.

Conclusion

La condition précédente n'est pas vérifiée, donc on passe à l'étude des semelles filantes.

VII.8. Semelle filante

L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux qui se trouve dans la même ligne.

Nous allons procéder à une petite vérification telle que :

- La surface des semelles doit être inférieure à 50% de la surface totale du bâtiment (Ss / Sb< 50 %)

On doit vérifier que :
$$S_{semll} \ge \frac{N_{ser}}{\sigma_{sol}}$$

Tel que:

- $N = \sum N_i$ de chaque fil de poteaux.
- $S = B \times L$
- B : Largeur de la semelle.
- L : Longueur du fil considéré.

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$
 Selon BAEL91

• Calcul les efforts de la structure dans la semelle filante

- Suivant Y:

Tableau.VII.5: Sections initial des semelles filantes sens Y.

Files	N (KN)	L(m)	B(m)	S (m ²)
1	2946.71	13.30	1.10	14.36
2	4939.84	13.30	1.85	24.60
3	6782.20	20.60	1.64	33.78
4	7917.28	20.60	1.92	39.55
5	5273.38	20.60	1.28	26.38

Calcul les efforts du sol dans la semelle filante

On a ajouté le poids du sol appliqué sur les semelles, Avec :

- $\gamma_{sol} = 18 \, KN/m^3$
- $P_{sol} = S \times h \times \gamma_{sol}$ (h= profond de la semelle on suppose h=1.5m)

- Suivant Y:

Tableau.VII.6: Poids du sol appliqué dans les semelles filantes sens Y.

Files	L(m)	S (m ²)	Psol (KN)
A	13.30	14.36	395.01
В	13.30	24.60	664.20
С	20.60	33.78	912.06
D	20.60	39.55	1067.85
E	20.60	26.38	712.26

• Calcul l'effort total et la section finale de la semelle filante

Tableau.VII.7: Sections finale des semelles filantes.

Files	L(m) N (KN) P _{sol} P _{finale} B(m)	B(m)	Bfinale(m)	S (m ²)			
riies	L(m)	IN (ININ)	(KN)	(KN)	D(III)		
A	13.30	2946.71	395.01	3341.72	1.10	1.50	19.95
В	13.30	4939.84	664.20	5604.04	1.85	2.00	26.60
С	20.60	6782.20	912.06	7694.26	1.64	2.00	41.20
D	20.60	7917.28	1067.85	8985.13	1.92	2.00	41.20
E	20.60	5273.38	712.26	5985.64	1.28	1.50	30.90

Surface de la semelle filante $S_{sem} = 118.65 \text{ m}^2$

$$\frac{S_{sem}}{S_{batiment}} = \frac{118.65}{405.82} = 29.23 \% > 50 \%$$

Conclusion:

La surface totale de la semelle ne dépasse pas 50% de la surface d'emprise du bâtiment.

• La hauteur « h_t »

La hauteur de la semelle est : $h_t > d + 0.05$

Pour satisfaire la condition de l'inclinaison de 45° de la bielle moyenne, la hauteur utile vaut :

$$h_t \ge \frac{B-b}{4} + 0.05 = \frac{2-0.6}{4} + 0.05 = 0.40$$

Avec:

b = 0.6m pour les poteaux.

On adopte : $h_t = 0.40 m$

Dimensionnement de la poutre de libage

✓ Condition forfaitaire

$$\frac{Lmax}{15} \le h \le \frac{Lmax}{10} \implies \frac{7.3}{15} = 0.48m \le h \le \frac{7.3}{10} = 0.73m$$

Donc: h = 0.7m

• Condition de rigidité des semelles

Les semelles filantes ou continues sous poteaux sont soumises à des contraintes linéaires réparties, pour cela elles doivent être suffisamment rigides pour ne pas se comporter comme une poutre sur un sol élastique, on doit alors vérifier la condition suivante vis à vis de la longueur élastique :

$$L_{\max} \le \frac{\pi}{2} L_e + a$$

Avec:
$$L_e = \left(\frac{4EI}{KB}\right)^{1/4}$$

- L_{max}: longueur max entre axe des poteaux.
- E: Module d'élasticité du béton (prendre en moyenne E=20000MPa).
- K: Coefficient de raideur du sol (5MPa/m \leq K \leq 120MPa/m).

On pourra par exemple adopter pour K les valeurs suivantes :

- K=5 [MPa/m] →pour un très mauvais sol.
- K=40 [MPa/m] →pour un sol de densité moyenne. (la valeur prise dans notre cas)
- $K=120 \text{ [MPa/m]} \rightarrow \text{pour un très bon sol.}$
- I: moment d'inertie de la semelle ; $I = \frac{b h_N^3}{12}$

• Calcul hauteur de nervure h_N :

$$h_N \ge \left(\frac{48KBl^4}{Eb\pi^4}\right)^{1/3}$$

$$h_N \ge \left(\frac{48 \times 40 \times 2 \times 7.3^4}{2 \times 10^5 \times 0.4 \times \pi^4}\right)^{1/3}$$

Pour la grande travée $l = 7.3 \text{ m} : h_N \ge 1.11 \text{m}$ **choix** $h_N = 1.20 \text{ m}$

 $\sigma_{structure} < \sigma_{sol}$

$$\sigma_{ser} = \frac{N_{ser}}{S_{semelle}} \le \overline{\sigma_{sol}}$$

a. Vérifications contraintes à ELS

Tableau.VII.8: Vérification de la contrainte à ELS sens Y.

Files	N (kN)	S (m ²)	$\sigma (kN/m^2)$	$\sigma_{\rm sol}$	Résultat
1	2946.71	19.95	147.70	200	Vérifiée
2	4939.84	26.60	185.70	200	Vérifiée
3	6782.20	41.20	164.16	200	Vérifiée
4	7917.28	41.20	192.16	200	Vérifiée
5	5273.38	30.90	170.65	200	Vérifiée

b. Vérifications contraintes à ELU

Les mêmes étapes pour les résultats a l'ELU

Tableau.VII.9: Sections des semelles filantes sens Y.

Files	N (kN)	L(m)	B ^{choisie} (m)	S (m ²)
1	4114.72	13.30	2.00	26.60
2	6860.22	13.30	3.00	39.90
3	9420.77	20.60	2.50	51.50
4	10929.11	20.60	3.00	61.80
5	7316.43	20.60	2.00	41.20

Files	N (kN)	S (m ²)	$\sigma (kN/m^2)$	$1,5\sigma_{sol}$	Résultat
1	4114.72	26.60	154.68	300	Vérifiée
2	6860.22	39.90	171.93	300	Vérifiée
3	9420.77	51.50	182.92	300	Vérifiée
4	10929.11	61.80	176.84	300	Vérifiée
5	7316.43	41.20	177.58	300	Vérifiée

Tableau.VII.10: Vérification de la contrainte à ELU sens Y.

VII.9. Calcul du ferraillage

Calcul le ferraillage de la semelle

> Exemple de calcul « A »

On applique la méthode des bielles :

$$f_{c28}$$
=25MPa; f_{t28} =2,1MPa; σ_{bc} =14,17MPa; f_{e} =400MPa; σ_{s} =348MPa; h=40cm

$$d=0.9h = 36cm$$

À l'état limite ultime :

$$Nu = \sum N_{if} = 4114.72kN$$

$$P_{u} = \frac{Nu}{L_{sf}} = \frac{4114.72}{13.30} = 309.37kN/ml$$

$$A_{s} = \frac{P_{u} (B - b)}{8d \times \sigma_{st}}$$

Avec:

$$\sigma_{st} = \frac{f_e}{\gamma_s} = 348 \, MPa$$

$$d = 0.36 \text{ m}$$

$$A_s = \frac{309.37 (2 - 0.6)}{8 \times 0.36 \times 348 \times 10^3} = 4.32 cm^2$$

Choix 4T16 \longrightarrow A_S = 8.04 cm² avec : e = 25 cm

Tableau.VII.11: Ferraillage pour les semelles sens Y.

Files	N _{ELU} (kN)	P _u (kN/m)	A _S (mm ²)	Choix	A _S (mm ²)
1	4114.72	309.37	4.32	4T16	8.04
2	6860.22	515.80	7.20	4T16	8.04
3	9420.77	457.31	6.38	4T16	8.04
4	10929.11	530.53	7.41	4T16	8.04
5	7316.43	355.16	4.96	4T16	8.04

Armatures de répartition

Calcul des charger sens Y

$$Ar \ge \frac{A_s \times B}{4} = \frac{8.04 \times 2}{4} = 4.02 \ cm^2$$

Choix 4T12
$$\longrightarrow$$
 A_S =4.52 cm²

Tableau.VII.12: Ferraillage max en travée et sur appui de la nervure

Files	Nelu (kN)	qu (kN/m)
1	4114.72	309.37
2	6860.22	515.80
3	9420.77	457.31
4	10929.11	530.53
5	7316.43	355.16

Comme les charges revenant sont presque égales alors on prend la poutre la plus sollicité :

• Ferraillage longitudinal

$$q_u = 530.53 \ kN/m$$

$$M_0 = ql^2/8$$

En travée $M_t = 0.85 M_0$

Sur appui $M_a = 0.5 M_0$

Pour la travée (L = 6.7m)

 $M_0 = 2976.93 \; KN.m \; ; \; Mt = 2530.39 \; KN.m \; ; \; M_a = 1488.46 \; KN.m \; ; \; b = 60 \; cm \; ; \; d = 1.2m$

a- Travée

$$\mu_u = \frac{M_t}{b.d^2.f_{bc}} \mathbf{Avec} : f_{bc} = \frac{0.85.f_{c28}}{\gamma_b} = \frac{0.85 \times 25}{1.5} = 14,17 \text{MP}a$$

$$\mu_u = \frac{2530.39 \times 10^6}{600 \times 1200^2 \times 14.17} = 0.206$$

$$\mu_u = 0.206 < \mu_R = 0.391$$

$$a = 1.25(1 - \sqrt{1 - 2\mu}) = 0.29$$

$$Z = d (1 - 0.4 \times \alpha) = 106.08 \text{ cm}$$

$$A_s = \frac{M_t}{z.\sigma_s} \mathbf{A} \mathbf{vec} : \sigma_s = \frac{f_e}{\gamma_s} = 348 \mathrm{MP} a$$

$$A_s = \frac{2530.39 \times 10^6}{106.08 \times 348} = 68.5 \text{ cm}^2$$

Donc on prend **12T32** —

 $A = 96.51 \text{ cm}^2$

b- Appui

$$\mu_u = \frac{1488.46 \times 10^6}{600 \times 1200^2 \times 14.17} = 0.12$$

$$\mu_{\rm u} = 0.12 < \mu_{\rm R} = 0.391$$

$$a = 1.25 \left(1 - \sqrt{1 - 2\mu}\right) = 0.16$$

$$Z = d(1 - 0.4 \times \alpha) = 112.32 \text{ cm}$$

$$A_s = \frac{M_a}{z \cdot \sigma_s}$$

$$A_s = \frac{1488.4 \times 10^6}{112.32 \times 348} = 38.07 \text{ cm}^2$$

Donc on prend 12T25

 $A = 58.91 \text{ cm}^2$

Condition de non fragilité

$$A_s^{min} = 0.23bd \frac{f_{t28}}{f_e} = 9.99mm^2 \le 43.98cm^2....$$
 Vérifiée.

Tableau.VII.13: Dimensionnement des armatures.

	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	68.5	12T32	96.51
Appui	38.07	12T25	58.91

Vérification de la contrainte tangentielle du béton :

On doit vérifier que : $\tau_u \prec \bar{\tau}_u = Min(0.1f_{c28};4MPa) = 2.5MPa$

Avec:

$$\tau_u = \frac{T_u}{bd}$$

$$T_u = \frac{q_u L}{2} = \frac{530.53 \times 7.3}{2} = 1936.43 \text{ KN}$$

$$\tau_u =~0.7~\text{MPa} < 2.5~\text{MPa}$$
 vérifiée

• Ferraillage transversale

$$\frac{A_t}{b_0 \times S_t} \ge \frac{\tau_u - 0.3 f_{tj} K}{0.8 f_e} \quad (K = 1 \ pas \ de \ reprise \ de \ bétonnage)$$

$$S_t \le Min(0.9d; 40cm) = 40cm$$

$$\frac{A_t \times f_e}{b_0 \times S_t} \ge Max \left\{ \frac{\tau_u}{2}; 0.4MPa \right\} = 0.4MPa$$

• RPA99 version 2003

$$\frac{A_t}{S_t} \ge 0.003b_0$$

$$S_t \le Min\left[\frac{h}{4}; 12\emptyset\right] = 30cm \dots zone nodale$$

$$S_t \leq \frac{h}{2} = 60cm \dots \dots zone courante$$

Avec:

$$\varphi_t \leq Min\left(\frac{h}{35}; \varphi_l; \frac{b}{10}\right) = 2,5cm$$

Fe=400MPa ; τ_u =1,70Mpa ; f_{t28} =2,1Mpa ; b=40cm ; d=126cm

On trouve:

 S_t = 15cm.....Zone nodale.

 $S_t = 25 \text{cm}$Zone courante.

 $A_t \ge 4,50 \text{ cm}^2$

On prend: 6T10=4,71 cm²

Donc on prend $4T12 = 4,52 \text{ cm}^2$

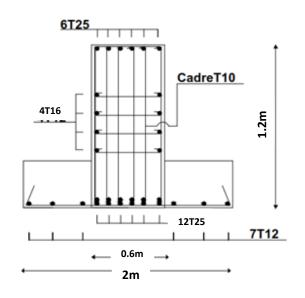


figure.VII.5: Ferraillage en appuis

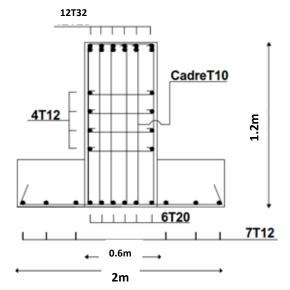


figure.VII.6 : Ferraillage en travée.

Conclusion générale

Le projet actuel nous a permis de mettre en avant toutes les connaissances déjà acquises, et nous a également permis d'acquérir des connaissances sur les différentes techniques et logiciels de calcul Robot, ainsi que sur la réglementation et les principes de conception des ouvrages dans le domaine des bâtiments.

D'après les études menées, les répartitions homogènes des masses et de la rigidité jouent un rôle crucial dans la stabilité et la résistance des structures en cas de séisme, ainsi que dans la réalisation d'une structure sans surcoût important. Il est donc essentiel que l'ingénieur en génie civil et l'architecte collaborent dès le début pour une conception parasismique efficace.

La réalisation de ce projet constitue notre première véritable expérience avant de commencer notre carrière. Ce mémoire nous a donné l'opportunité d'acquérir, d'une part, les diverses techniques et logiciels de calcul des structures, et d'autre part, les règlements qui règlent les principes de conception et de calcul des ouvrages dans le secteur du bâtiment.

En fin de compte, nous espérons que notre travail a été bien réalisé. Nous serions extrêmement reconnaissantes à toute personne qui pourrait nous faire part de son opinion sur le contenu de ce rapport, sa présentation, ainsi que toute autre proposition.

Liste des références

Documents Techniques

- [1]: Document Technique Réglementaire D.T.R-BC-2.2; CHARGES PERMANENTES ET CHARGES D'EXPLOITATIONS.
- [2] : Document Technique Réglementaire D.T.R-BC-2-44 ; REGLES DE CONCEPTION ET DE CALCUL DES STRUCTURES EN ACIER « CCM 97 ».
- [3] : Règles techniques de conception et de calcul des ouvrages et des constructions en béton armé suivant la méthode des états limites « BAEL 91».
- [4]: Règles parasismiques algériennes (RPA 99/ Version 2003).
- [5]: cour charpente métallique Master 1 (4ème année), les assemblages, Mm Badis.
- [6]: Cours fondation Master 2, (5ème année), Mr Aouali.

Chapitre I Présentation de l'ouvrage

Chapitre II Pré-dimensionnement

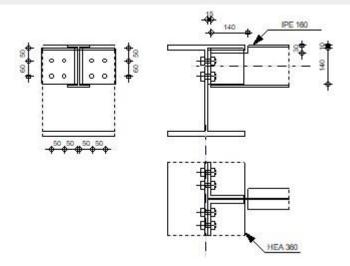
Chapitre III Étude des éléments secondaires

Chapitre IV Etude dynamique en zone sismique

Chapitre V Vérifivations des elements

Chapitre VI Les assemblages

Chapitre VII Etude de l'infrastructure


Autodesk Robot Structural Analysis Professional 2019

0,94

Ratio

Calculs de l'assemblage poutre-poutre (âme)

NF EN 1993-1-8:2005/NA:2007/AC:2009

GENERAL

Assemblage N°:

Nom de l'assemblage : Poutre-poutre (âme)

Nœud de la structure: 526

1897, 615 Barres de la structure:

GEOMETRIE

POUTRE PRINCIPALE

Profilé: **HEA 360** 1897 Barre N°:

-90,0 [Deg Angle d'inclinaison $\propto =$

350 [mm] Hauteur de la section poutre principale $h_g =$

300 [mm] Largeur de l'aile de la section de la poutre principale $b_{fg} =$

 t_{wg} 10 [mm] Epaisseur de l'âme de la section de la poutre principale

18 [mm] Epaisseur de l'aile de la section de la poutre principale $t_{fg} =$

27 [mm] Rayon de congé de l'âme de la section de la poutre principale $r_g =$

 $A_p =$ 142,76 [cm²] Aire de la section de la poutre principale

33089,80 [cm⁴] Moment d'inertie de la section de la poutre principale $I_{vp} =$

Matériau: ACIER E28

 $f_{yg} =$ 275,00 [MPa] Résistance de calcul 405,00 [MPa] Résistance à la traction $f_{ug} =$

POUTRE

Profilé: IPE 160 Barre N°: 615

 $\alpha = 0.0$ [Deg] Angle d'inclinaison

 $h_b = 160$ [mm] Hauteur de la section de la poutre $b_b = 82$ [mm] Largeur de la section de la poutre

 $t_{wb} =$ 5 [mm] Epaisseur de l'âme de la section de la poutre $t_{fb} =$ 7 [mm] Epaisseur de l'aile de la section de la poutre $r_b =$ 9 [mm] Rayon de congé de la section de la poutre

 $A_b = 20,09$ [cm²] Aire de la section de la poutre $I_{yb} = 869,29$ [cm⁴] Moment d'inertie de la poutre

Matériau: ACIER E28

 f_{yb} = 275,00 [MPa] Résistance de calcul f_{ub} = 405,00 [MPa] Résistance à la traction

ENCOCHE DE LA POUTRE

 $h_1 =$ 30 [mm] Encoche supérieur $h_2 =$ 0 [mm] Encoche inférieure l = 140 [mm] Longueur de l'encoche

CORNIERE

Profilé: CAE 140x13

 $h_k = 140$ [mm] Hauteur de la section de la cornière $b_k = 140$ [mm] Largeur de la section de la cornière

 $t_{fk} = 13$ [mm] Epaisseur de l'aile de la section de la cornière

 $r_k = 15$ [mm] Rayon de congé de l'âme de la section de la cornière

 $l_k = 140$ [mm] Longueur de la cornière

Matériau: ACIER E28

 $f_{yk} = 275,00$ [MPa] Résistance de calcul $f_{uk} = 405,00$ [MPa] Résistance à la traction

BOULONS

BOULONS ASSEMBLANT LA CORNIERE A LA POUTRE PRINCIPALE

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe = 10.9 Classe du boulon d = 16 [mm] Diamètre du boulon

 $d_0 = 18$ [mm] Diamètre du trou de boulon

 $A_s = 1,57$ [cm²] Aire de la section efficace du boulon

 $A_v = 2.01$ [cm²] Aire de la section du boulon

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	10.9		Classe du boulon
$f_{ub} =$	1000,00	[MPa]	Résistance à la traction
k =	2		Nombre de colonnes des boulons
$\mathbf{w} =$	2		Nombre de rangéss des boulons
$e_1 =$	50	[mm]	Niveau du premier boulon
$p_2 =$	50	[mm]	Ecartement
$p_1 =$	60	[mm]	Entraxe

SOUDURES

 $a_{ab} = 12$ [mm] Soudures d'angle entre la cornière et la poutre

COEFFICIENTS DE MATERIAU

$\square_{M0} =$	1,00	Coefficient de sécurité partiel	[2.2]
$\square_{M2} =$	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas: Calculs manuels

 $N_{b,Ed} = 0,00$ [kN] Effort axial $V_{b,Ed} = 56,16$ [kN] Effort tranchant $M_{b,Ed} = 37,17$ [kN*m] Moment fléchissant

RESULTATS

BOULONS ASSEMBLANT LA CORNIERE A LA POUTRE PRINCIPALE

RESISTANCE DES BOULONS

$F_{v,Rd}$	96,5 [k Résistance du boulon au cisaillement dans la partie non	$F_{v,Rd} =$
=	1 N] filetée d'un boulon	$0.6*f_{ub}*A_v*m/\gamma_{M2}$
$F_{t,Rd} \\$	113, [k 04 N] Résistance d'un boulon à la traction	$F_{t,Rd} =$
=	04 N	$0.9*f_u*A_s/\gamma_{M2}$

Pression du boulon sur l'âme de la poutre principale

Direction x

$$\begin{aligned} k_{1x} = & 2,50 \text{ Coefficient pour le calcul de } F_{b,Rd} \ k_{1x} = min[2.8*(e_1/d_0)-1.7,\ 1.4*(p_1/d_0)-1.7,\ 2.5] \\ k_{1x} > & 0.0 & 2,50 > 0,00 & v\'{e}rifi\'{e} \\ \alpha_{bx} = & 0,68 \ \text{Coefficient pour le calcul de } F_{b,Rd} \quad \alpha_{bx} = min[e_2/(3*d_0),\ p_2/(3*d_0)-0.25,\ f_{ub}/f_u,\ 1] \\ \alpha_{bx} > & 0.0 & 0,68 > 0,00 & v\'{e}rifi\'{e} \end{aligned}$$

$F_{b,Rd1x}$ 87,6 [kN Résistance d'un boulon en pression $F_{b,Rd1x}$ = 0] diamétrale	$=k_{1x}*\alpha_{bx}*f_{u}*d*t_{i}\gamma/M$
Direction z $k_{1z}=2,19 \text{Coefficient pour le calcul de } F_{b,Rd} k_{1z}=\min[2.8^*(e_2/d_0)-1.7, k_{1z}>0.0 \qquad 2,19>0,00 \qquad \text{vérifié} $ $\alpha_{bz}=0,86 \text{Coefficient pour le calcul de } F_{b,Rd} \alpha_{bz}=\min[e_1/(3^*d_0),p_1/(\alpha_{bz}>0.0) \qquad 0,86>0,00 \qquad \text{vérifié} $ $F_{b,Rd1z} 97,7 \text{[kN Résistance d'un boulon en pression} \qquad F_{b,Rd1z} = \qquad 1 \text{] diamétrale}$	
Pression du boulon sur la cornière	2
Direction x $k_{1x} = 2,50 \text{ Coefficient pour le calcul de } F_{b,Rd} k_{1x} = min[2.8*(e_1/d_0)-1.7, \\ k_{1x} > 0.0 \qquad 2,50 > 0,00 \qquad \text{vérifié} \\ \alpha_{bx} = 0,68 \text{Coefficient pour le calcul de } F_{b,Rd} \alpha_{bx} = min[e_2/(3*d_0), p_2/(\alpha_{bx} > 0.0) \qquad 0,68 > 0,00 \qquad \text{vérifié} \\ F_{b,Rd2x} 113,8 \text{ [kN Résistance d'un boulon en pression} \qquad F_{b,Rd} = 8] \text{diamétrale}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
= 5] diamétrale FORCES AGISSANT SUR LES BOULONS DANS L'ASSEMBLAGE POUTRE PI	2 RINCIPALE -
cisaillement des boulons e = 78 [mm Distance du centre de gravité du groupe de boulons de la] cornière du centre de l'âme de la poutre	
M ₀ 2,1 [kN = 8 *m] Moment fléchissant réel	$M_0 = 0.5 * V_{b,Ed} * e$
F_{Vz} 7,0 Force résultante dans le boulon due à l'influence de l'effor = $2^{[kN]}$ tranchant	
F_{Mx} 10, [kN] Effort composant dans le boulon dû à l'influence du mome $= 70$	ent $F_{Mx}= M_0 *z_i/\sum_{z_i^2}$
$F_{x,E}$ 10, [kN] Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed} = F_{Nx} + F_{Mx}$
$F_{z,E}$ 15, [kN] Effort de calcul total dans le boulon sur la direction z	$F_{z,Ed} = F_{Vz} + \\ F_{Mz}$
F _{Ed} 19, [kN] Effort tranchant résultant dans le boulon = 20	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$

e = 78 [mm Distance du centre de gravité du groupe de boulons de la] cornière du centre de l'âme de la poutre				
F_{Rd} 87, [kN] Résistance résultan	te de calcul du boulon sur la directi	on x	$F_{Rdx} = min(F_{bRd} 1x, F_{bRd2x})$	
F_{Rd} 81, [kN] Résistance résultan $z = 95$	te de calcul du boulon sur la directi	on z	$F_{Rdz} = min(F_{bRd} \\ _{1z}, F_{bRd2z})$	
$ F_{x,Ed} \leq F_{Rdx}$	10,70 < 87,60	véri fié	(0,12)	
$ F_{z,Ed} \leq F_{Rdz}$	15,94 < 81,95	véri fié	(0,19)	
$F_{Ed} \leq F_{v,Rd}$	19,20 < 96,51	véri fié	(0,20)	

Traction des boulons

e = 107 [m Distance du centre de gravité des groupes de soudures du m] centre de l'âme de la poutre principale			
M_{0t} 21, [kN Momen = 65 *m]		$M_{0t}\!\!=\!\!0.5^*(M_{b,Ed}\!\!+\!\!V_{,Ed}^*\!\!+\!V_{,Ed}^*\!\!+\!V_{,Ed$	
$F_{t,E}$ 106 [kN $d = 0.48$] Effort d	e traction dans le boulon extrême	$F_{t,Ed} = M_{0t} * z_{max} / \sum z_{i} + 0.5 * N_{b2,Ed} / z_{i}$	
$F_{t,Ed} \leq F_{t,Rd}$	106,48 < 113,04	vér ifié (0,94	

Action simultanée de l'effort de traction et de cisaillement dans le boulon

$F_{v,Ed} = 19,20 \text{ [kN]}$	Effort trancha	ant résultant dans	le boulon	$F_{v,Ed} = \sqrt{[F_{x,Ed}^2]}$	$+F_{z,Ed}^2$
$F_{v,Ed}/F_{v,Rd} + F_{t,Ed}/(1.4*$	$F_{t,Rd} \leq 1.0$	0.87 < 1.00	vérifié		(0,87)

RESISTANCE DES SOUDURES

SOUDURES D'ANGLE ENTRE LA CORNIERE ET LA POUTRE

e = 1	[m Distance du centre de gravité des groupes de soudures m] du centre de l'âme de la poutre principale	
$M_0 = 21$,5 [kN 9 *m] Moment fléchissant réel	$M_0\!\!=\!\!0.5^*(M_{b,Ed} + \\ V_{b,Ed}^*e)$
A _w 46	$\begin{bmatrix} 6,8 \text{ [cm} \\ 0 \end{bmatrix}^2 \end{bmatrix}$ Aire de la section des soudures	
I_0 2 = 8,	90 [cm 76 ⁴] Moment d'inertie polaire des soudures	
	00 [MP] Contrainte composante due à l'influence de l'effort axial	$\tau_{Fx}\!\!=\!\!0.5^*N_{b,Ed}\!/A_w$
$\tau_{Fz} = 6,$	00 [MP Contrainte composante due à l'influence de l'effort a] tranchant	$\tau_{Fz}\!\!=\!\!0.5^*V_{b,Ed}\!/A_w$
$\tau_{\rm Mx}$ 64	5,6 [MP Contrainte composante due à l'influence du moment sur la direction x	$ au_{Mx} = M_0 * z_i / I_0$
$\tau_{\rm Mz}$ 51 =	,9 [MP Contrainte composante due à l'influence de l'effort du6 a] moment sur la direction z	$ au_{Mz} = M_0 * x_i / I_0$

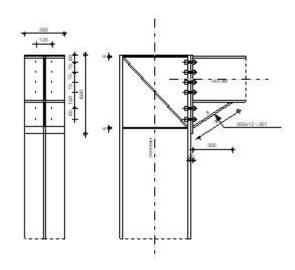
SOUDURES D'ANGLE ENTRE LA CORNIERE ET LA POUTRE

 $\begin{array}{lll} e = & 107 & [m] & Distance \ du \ centre \ de \ gravit\'e \ des \ groupes \ de \ soudures \\ m] & du \ centre \ de \ l'âme \ de \ la \ poutre principale \\ & \tau = \frac{87,7 \ [MP]}{0 \ a]} & Contrainte \ r\'esultante \\ & \tau = \sqrt{\left[(\tau_{Fx} + \tau_{Mx})^2 + \tau_{(Fz} + \tau_{Mz})^2\right]} \\ \beta_{w} & 0.85 & Coefficient \ de \ corr\'elation \\ & f_{vw}, \ 220, \ [MP] & f_{vw,d} = \\ & d = & 07 \ a] & f_{u}/(\sqrt{3}\beta^*_{w}*\gamma_{M2}) \\ & \leq f_{vw,d} & 87,70 < 220,07 & v\'erifi\'e & (0,40) \\ \end{array}$

REMARQUES

Longueur de la cornière est supérieure à la hauteur de l'ân	140 [mm] > 127	
poutre		[mm]
Pince boulon-extrémité horizontale de la cornière de l'aile	supérieure	3 [mm] < 21
de la poutre trop faible		[mm]
Pince boulon-extrémité horizontale de la cornière de l'aile de la poutre trop faible	3 [mm] < 21	
Assemblage satisfaisant vis à vis de la Norme	Ratio 0,94	[mm]

Autodesk Robot Structural Analysis Professional 2019



Ratio

0,85

Calcul de l'Encastrement Traverse-Poteau

NF EN 1993-1-8:2005/NA:2007/AC:2009

GENERAL

Assemblage N°: 3

Nom de l'assemblage: Angle de portique

Nœud de la structure: 79

Barres de la structure: 59, 1893

GEOMETRIE

POTEAU

Profilé: HEA 550

Barre N°: 59

a = -90,0 [Deg] Angle d'inclinaison

 $h_c = 540 \, \text{ [mm]} \, \text{Hauteur de la section du poteau}$ $b_{fc} = 300 \, \text{ [mm]} \, \text{Largeur de la section du poteau}$

 $t_{wc} =$ 13 [mm] Epaisseur de l'âme de la section du poteau $t_{fc} =$ 24 [mm] Epaisseur de l'aile de la section du poteau $r_c =$ 27 [mm] Rayon de congé de la section du poteau

 $A_c = 211,76 \text{ [cm}^2\text{]}$ Aire de la section du poteau

 $I_{xc} = 111932,00$ [cm⁴] Moment d'inertie de la section du poteau

Matériau: ACIER E28

 $f_{yc} = 275,00 [MPa] Résistance$

POUTRE

Profilé:			HEA 360
Barre No	·:		1893
a =	-0,0	[Deg]	Angle d'inclinaison
$h_b =$	350	[mm]	Hauteur de la section de la poutre
$b_f =$	300	[mm]	Largeur de la section de la poutre
$t_{\mathrm{wb}} =$	10	[mm]	Epaisseur de l'âme de la section de la poutre
$t_{fb} =$	18	[mm]	Epaisseur de l'aile de la section de la poutre
$r_b =$	27	[mm]	Rayon de congé de la section de la poutre
$r_b =$	27	[mm]	Rayon de congé de la section de la poutre
$A_b =$	142,76	$[cm^2]$	Aire de la section de la poutre
$I_{xb} =$	33089,80	$[cm^4]$	Moment d'inertie de la poutre
Matária	ACIED	E20	

Matériau: ACIER E28

 $f_{yb} = 275,00$ [MPa] Résistance

BOULONS

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

d =	16 ^{[mm}	Diamètre du boulon
Classe =	HR 10.9	Classe du boulon
$F_{tRd} =$	135,65 [kN]	Résistance du boulon à la traction
$n_h =$	2	Nombre de colonnes des boulons
$n_v =$	6	Nombre de rangéss des boulons
$h_1 =$	60 ^{[mm}	Pince premier boulon-extrémité supérieure de la platine d'about
Ecartement 6	e _i 120 [mm]	
Entraxe p _i =	75;75;75;	120;85 [mm]

PLATINE

$h_p =$	600	[mm]	Hauteur de la platine
$b_p =$	300	[mm]	Largeur de la platine
$t_p =$	20	[mm]	Epaisseur de la platine
Matériau:		ACIER	E28

 $f_{yp} = 275,00 \text{ [MPa] Résistance}$

JARRET INFERIEUR

$\mathbf{w}_{d} =$	300	[mm]	Largeur de la platine
$t_{fd} = \\$	12	[mm]	Epaisseur de l'aile
$h_d =$	200	[mm]	Hauteur de la platine
$t_{wd} = \\$	8	[mm]	Epaisseur de l'âme
$l_d =$	300	[mm]	Longueur de la platine
a =	33,7	[Deg]	Angle d'inclinaison

Matériau: ACIER

 $f_{ybu} = 235,00 \text{ [MPa] Résistance}$

RAIDISSEUR POTEAU

Supérieur

 $h_{su} = 492$ [mm] Hauteur du raidisseur $b_{su} = 144$ [mm] Largeur du raidisseur $t_{hu} = 8$ [mm] Epaisseur du raidisseur

Matériau: ACIER E28

 $f_{vsu} = 275,00$ [MPa] Résistance

Inférieur

 $h_{sd} =$ 492 [mm] Hauteur du raidisseur $b_{sd} =$ 144 [mm] Largeur du raidisseur $t_{hd} =$ 8 [mm] Epaisseur du raidisseur

Matériau: ACIER E28

 $f_{ysu} = 275,00$ [MPa] Résistance

RAIDISSEUR INCLINE

Typ: A gauche

 $w_a = 144$ [mm] Largeur du raidisseur diagonal $t_a = 8$ [mm] Epaisseur du raidisseur diagonal

Matériau: ACIER E28

 $f_{ya} = 275,00 \text{ [MPa] Résistance}$

SOUDURES D'ANGLE

 $\begin{array}{llll} a_w = & 8 & [mm] & Soudure \ a_me \\ a_f = & 14 & [mm] & Soudure \ semelle \\ a_s = & 10 & [mm] & Soudure \ du \ raidisseur \\ a_{fd} = & 5 & [mm] & Soudure \ horizontale \end{array}$

COEFFICIENTS DE MATERIAU

$g_{M0} =$	1,00	Coefficient de sécurité partiel	[2.2]
$g_{M1} =$	1,00	Coefficient de sécurité partiel	[2.2]
$g_{M2} =$	1,25	Coefficient de sécurité partiel	[2.2]
$g_{M3} =$	1,10	Coefficient de sécurité partiel	[2.2]

EFFORTS

Etat limite: ultime

Cas: 18: G+ Q+1,5EY (1+2)*1.00+6*1.50

 $M_{b1,Ed} = 271,54$ [kN*m] Moment fléchissant dans la poutre droite $V_{b1,Ed} = 132,63$ [kN] Effort tranchant dans la poutre droite

 $N_{b1,Ed} = -0.00$ [kN] Effort axial dans la poutre droite

 $\begin{array}{lll} M_{b1,Ed} = & 271,54 \ [kN*m] \ Moment \ fléchissant \ dans \ la \ poutre \ droite \\ M_{c1,Ed} = & -75,33 \ [kN*m] \ Moment \ fléchissant \ dans \ la \ poteau \ inférieur \\ V_{c1,Ed} = & -86,78 \ [kN] \ Effort \ tranchant \ dans \ le \ poteau \ inférieur \\ N_{c1,Ed} = & -1456,93 \ [kN] \ Effort \ axial \ dans \ le \ poteau \ inférieur \\ M_{c2,Ed} = & -9,25 \ [kN*m] \ Moment \ fléchissant \ dans \ la \ poteau \ supérieur \\ V_{c2,Ed} = & -5,35 \ [kN] \ Effort \ tranchant \ dans \ le \ poteau \ supérieur \\ N_{c2,Ed} = & -1245,57 \ [kN] \ Effort \ axial \ dans \ le \ poteau \ supérieur \\ \end{array}$

RESULTATS

RESISTANCES DE LA POUTRE

COMPRESSION

CISAILLEMENT

FLEXION - MOMENT PLASTIQUE (SANS RENFORTS)

 $W_{plb} = 2088,47 \quad [cm^3]$ Facteur plastique de la section EN1993-1-1:[6.2.5.(2)] $M_{b,pl,Rd} = W_{plb} \; f_{yb} \; / \; g_{M0}$ EN1993-1-1:[6.2.5.(2)] $M_{b,pl,Rd} = 3 \; m$ (sans renforts) EN1993-1-1:[6.2.5.(2)]

FLEXION AU CONTACT DE LA PLAQUE AVEC L'ELEMENT ASSEMBLE

 $W_{pl} = 3207,56 \quad [cm^3]$ Facteur plastique de la section EN1993-1-1:[6.2.5] $M_{cb,Rd} = W_{pl} \; f_{yb} \; / \; g_{M0}$ $M_{cb,Rd} = 882,08 \; [kN*m]$ Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5]

AILE ET AME EN COMPRESSION

 $M_{cb,Rd}$ = 882,08 [kN*m] Résistance de calcul de la section à la flexion EN1993-1-1:[6.2.5] h_f = 534 [mm] Distance entre les centres de gravité des ailes [6.2.6.7.(1)] $F_{c,fb,Rd}$ = $M_{cb,Rd}$ / h_f [6.2.6.7.(1)] $F_{c,fb,Rd}$ = 1651,71 [kN] Résistance de l'aile et de l'âme comprimées [6.2.6.7.(1)]

AME OU AILE DU RENFORT EN COMPRESSION - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Pression diamétrale:	
$b = 0.0 \frac{[Deg]}{]}$ Angle entre la platine d'about et la poutre	
g = 33,7 [Deg Angle d'inclinaison du renfort	
b _{eff,c,wb} 284 [mm Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vb} = 48,96 \frac{[cm^2]}{]}$ Aire de la section au cisaillement	EN1993-1- 1:[6.2.6.(3)]
w = 0,83 Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
s _{com,Ed} 107,0 [MP = 9 a] Contrainte de compression maximale dans l'ân	ne [6.2.6.2.(2)]
$k_{wc} = 1,00$ Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
$F_{c,wb,Rd1} = [w k_{wc} b_{eff,c,wb} t_{wb} f_{yb} / g_{M0}] \cos(g) / \sin(g - b)$	
F _{c,wb,Rd1} = 976,48 [kN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
Flambement:	[(0,0,0,(1)]
d _{wb} = 261 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]
l _p = 0.92 Elancement de plaque	[6.2.6.2.(1)]
$r = 0.85$ Coefficient réducteur pour le flambement de l'é $F_{c,wb,Rd2} = [w \ k_{wc} \ r \ b_{eff,c,wb} \ t_{wb} \ f_{yb} \ / \ g_{M1}] \cos(g) \ / \sin(g - b)$	lément [6.2.6.2.(1)]
$F_{c,wb,Rd2} = 832,10$ [kN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
1 c,wb,kd2 = 652,10 [KIV] Resistance de l'ame de la pourte	[0.2.0.2.(1)]
Résistance finale:	
$F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1}, F_{c,wb,Rd2})$	
$F_{c,wb,Rd,low} = 832,10$ [kN] Résistance de l'âme de la poutre	[6.2.6.2.(1)]
•	
RESISTANCES DU POTEAU	
RESISTANCES DU FOTEAU	
PANNEAU D'AME EN CISAILLEMENT	57.0 (0)3
$M_{b1,Ed} = 271,54$ [kN*m] Moment fléchissant dans la poutre droite	[5.3.(3)]
$M_{b2,Ed} = 0.00 \text{ [kN*m]}$ Moment fléchissant dans la poutre gauche	
$V_{c1,Ed} = -86,78$ [kN] Effort tranchant dans le poteau inférieur	[5.3.(3)]
$V_{c2,Ed} = -5,35$ [kN] Effort tranchant dans le poteau supérieur	[5.3.(3)]
z = 456 [mm] Bras de levier	[6.2.5]
$V_{wp,Ed} = (M_{b1,Ed} - M_{b2,Ed}) / z - (V_{c1,Ed} - V_{c2,Ed}) / 2$	[5 2 (2)]
$V_{wp,Ed} = 636,48$ [kN] Panneau d'âme en cisaillement	[5.3.(3)]
83.7 ₂₋₂ Aire de cisaillement de l'âme du	
$A_{vs} = {83.7 \atop 2} [cm^2] {Aire de cisaillement de l'âme du \atop poteau}$	EN1993-1-1:[6.2.6.(3)]
$A_{vd} = {15,6 \atop 7} [cm^2] {Aire de cisaillement du raidisseur \atop diagonal}$	EN1993-1-1:[6.2.6.(3)]
7 [CIII] diagonal	L1V1773-1-1.[0.4.0.(3)]

$A_{vs} = {83.7 \atop 2} [cm^2] {Aire de cisailleme} {poteau}$	ent de l'âme du	EN1993	-1-1:[6.2.6.(3)]
$A_{vc} = {99,3 \over 9} [cm^2]$ Aire de la section	au cisaillement	EN1993	-1-1:[6.2.6.(3)]
$d_s = 572 \text{ [mm]} \frac{\text{Distance entre less}}{\text{des raidisseurs}}$	centres de gravit	és	[6.2.6.1.(4)]
$M_{pl,fc}$, 11,8 [kN* Résistance plastic $Rd = 8$ m] poteau en flexion	•		[6.2.6.1.(4)]
$M_{pl,stu}$ 1,32 [kN* Résistance plastic $M_{pl,stu}$ m] transversal supéri	que du raidisseur eur en flexion		[6.2.6.1.(4)]
$M_{pl,stl}$, 1,32 [kN* Résistance plastic Rd = m] transversal inférie	que du raidisseur eur en flexion		[6.2.6.1.(4)]
$V_{wp,Rd} = 0.9 (A_{vs} * f_{y,wc} + A_{vd} * f_{ya}) / (A_{vs} * f_{y,wc} + A_{vd} * f_{ya})$	$(\ddot{O}3 g_{M0}) + Min(4$	$M_{\text{pl,fc,Rd}}/d_s$, (2 $M_{\text{pl,fc,Rd}}$	d
$+ M_{pl,stu,Rd} + M_{pl,stl,Rd}) / d_s)$			
$V_{wp,Rd} = 1466,42$ [kN] Résistance	du panneau d'âm	e au cisaillement	[6.2.6.1]
V = 1/V = 1/10	0.42 < 1.00	vérifié	(0.43)
$V_{wp,Ed} / V_{wp,Rd} \le 1,0$	0,43 < 1,00	verme	(0,43)

AME EN COMPRESSION TRANSVERSALE - NIVEAU DE L'AILE INFERIEURE DE LA POUTRE

Pression diamétrale: 13 [mm] Epaisseur efficace de l'âme du poteau [6.2.6.2.(6)]b_{eff,c,wc} 349 [mm] Largeur efficace de l'âme à la compression [6.2.6.2.(1)]83,7 [cm²] Aire de la section au cisaillement EN1993-1-1:[6.2.6.(3)] Coefficient réducteur pour l'interaction avec le 0,86 w =[6.2.6.2.(1)]cisaillement 83,5 [MPa Contrainte de compression maximale dans l'âme Scom,Ed [6.2.6.2.(2)]Coefficient réducteur dû aux contraintes de 1,00 $k_{wc} =$ [6.2.6.2.(2)]compression $\frac{19,1}{5}$ [cm²] Aire de la section du raidisseur renforçant l'âme EN1993-1-1:[6.2.4] 47,0 [Deg | Angle d'inclinaison du raidisseur diagonal ^{19,1}/₅[cm²] Aire de la section du raidisseur diagonal EN1993-1-1:[6.2.4] $F_{c,wc,Rd1} = w \; k_{wc} \; b_{eff,c,wc} \; t_{wc} \; f_{yc} \; / \; g_{M0} + A_s \; f_{ys} \; / \; g_{M0} + A_{sd} \; cos(a) \; f_{ya} \; / \; g_{M0}$ $F_{c,wc,Rd1} = 1916,78$ [kN] Résistance de l'âme du poteau [6.2.6.2.(1)]

Flambement:

$$l_p = {1,0 \atop 5}$$
 Elancement de plaque [6.2.6.2.(1)]

d _{wc} 438 [mm = 1	Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$r = \begin{array}{c} 0.7 \\ 7 \end{array}$	Coefficient réducteur pour le flambement de l'élément	[6.2.6.2.(1)]
$l_{s} = \begin{array}{c} 4.9 \\ 5 \end{array}$	Elancement du raidisseur	EN1993-1-1:[6.3.1.2]
$c_s = \begin{array}{c} 1.0 \\ 0 \end{array}$	Coefficient de flambement du raidisseur	EN1993-1-1:[6.3.1.2]
$l_{sd} = 7,2$	Elancement du raidisseur diagonal	EN1993-1-1:[6.3.1.2]
c_{sd} 1,0 = 0	Coefficient de flambement du raidisseur diagonal	EN1993-1-1:[6.3.1.2]
$F_{c,wc,Rd2} = w k$ g_{M1}	$_{\text{wc}} r b_{\text{eff,c,wc}} t_{\text{wc}} f_{\text{yc}} / g_{\text{M1}} + A_{\text{s}} c_{\text{s}} f_{\text{ys}} / g_{\text{M1}} + A_{\text{sd}} c_{\text{sd}} \cos(a)$	f _{ya} /
	7,70 [kN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
	ale: Iin (F _{c,wc,Rd1} , F _{c,wc,Rd2}) ',70 [kN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
	ACTION TRANSVERSALE - NIVEAU DE L'AIL	- , , , -
LA POUTRE		E INFERIEURE DE
Pression diam	étrale:	
_	mm] Epaisseur efficace de l'âme du poteau	[6.2.6.2.(6)]
b _{eff,c,wc} 352 [mm] Largeur efficace de l'âme à la compression	[6.2.6.2.(1)]
$A_{vc} = \frac{83.7}{2}$	cm ²] Aire de la section au cisaillement	EN1993-1- 1:[6.2.6.(3)]
w = 0.86	Coefficient réducteur pour l'interaction avec le cisaillement	[6.2.6.2.(1)]
$s_{\text{com,Ed}}$ 83,5 [$=$ 4	MPa Contrainte de compression maximale dans l'âme	[6.2.6.2.(2)]
$k_{wc} = 1,00$	Coefficient réducteur dû aux contraintes de compression	[6.2.6.2.(2)]
$A_s = \frac{19,1}{5}$	cm ²] Aire de la section du raidisseur renforçant l'âme	EN1993-1-1:[6.2.4]
	$_{wc}$ $b_{eff,c,wc}$ t_{wc} f_{yc} / g_{M0} + A_s f_{ys} / g_{M0} 4,68 [kN] Résistance de l'âme du poteau	[6.2.6.2.(1)]
Flambement:		
$d_{wc} = 438 \begin{bmatrix} mr \\ \end{bmatrix}$	m Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$l_p = {1,0 \atop 6}$	Elancement de plaque	[6.2.6.2.(1)]
0,7	Coefficient réducteur pour le flambement de	

d _{wc} = 438 [mm] Hauteur de l'âme comprimée	[6.2.6.2.(1)]
$l_s = \begin{pmatrix} 4.9 \\ 5 \end{pmatrix}$ Elancement du raidisseur	EN1993-1- 1:[6.3.1.2]
$c_s = \begin{pmatrix} 1.0 \\ 0 \end{pmatrix}$ Coefficient de flambement du raidisseur	EN1993-1- 1:[6.3.1.2]
$\begin{split} F_{c,wc,Rd2} &= w \ k_{wc} \ r \ b_{eff,c,wc} \ t_{wc} \ f_{yc} \ / \ g_{M1} + A_s \ c_s \ f_{ys} \ / \ g_{M1} \\ F_{c,wc,Rd2} &= 1321,37 [kN] R\acute{e}sistance \ de \ l'âme \ du \ poteau \end{split}$	[6.2.6.2.(1)]
Résistance finale:	
$F_{c,wc,Rd,upp} = Min (F_{c,wc,Rd1}, F_{c,wc,Rd2})$	
$F_{c,wc,Rd,upp} = 1321,37$ [kN] Résistance de l'âme du poteau	[6.2.6.2.(1)]

PARAMETRES GEOMETRIQUES DE L'ASSEMBLAGE

LONGUEURS EFFICACES ET PARAMETRES - SEMELLE DU POTEAU

Nr	m	mx	e	ex	p	leff,cp	leff,nc	leff,1	leff,2	leff,cp,g	leff,nc,g	leff,1,g	leff,2,g
1	32	-	90	-	75	202	257	202	257	176	174	174	174
2	32	-	90	-	75	202	241	202	241	150	75	75	75
3	32	-	90	-	75	202	241	202	241	150	75	75	75
4	32	-	90	-	98	202	241	202	241	195	98	98	98
5	32	-	90	-	103	202	241	202	241	205	103	103	103
6	32	-	90	-	85	202	257	202	257	186	179	179	179

LONGUEURS EFFICACES ET PARAMETRES - PLATINE D'ABOUT

Nr	m	m_x	e	$\mathbf{e}_{\mathbf{x}}$	p	l _{eff,cp}	l _{eff,nc}	l _{eff,1}	l _{eff,2}	l _{eff,cp,g}	leff,nc,g	l _{eff,1,g}	l _{eff,2,g}
1	46	_	90	_	75	289	368	289	368	219	257	219	257
2	46	_	90	_	75	289	296	289	296	150	75	75	75
3	46	_	90	_	75	289	296	289	296	150	75	75	75
4	46	_	90	_	98	289	296	289	296	195	98	98	98
5	46	_	90	_	103	289	296	289	296	205	103	103	103
6	46	-	90	-	85	289	296	289	296	229	191	191	191

m — Distance du boulon de l'âme

 $m_x \qquad - \, Distance \, du \, \, boulon \, \, de \, \, l'aile \, \, de \, \, la \, \, poutre \, \,$

e – Pince entre le boulon et le bord extérieur

e_x – Pince entre le boulon et le bord extérieur horizontal

p – Entraxe des boulons

l_{eff,cp} – Longueur efficace pour un boulon dans les mécanismes circulaires

l_{eff,nc} – Longueur efficace pour un boulon dans les mécanismes non circulaires

 $l_{eff,1}$ — Longueur efficace pour un boulon pour le mode 1

l_{eff,2} – Longueur efficace pour un boulon pour le mode 2

m – Distance du boulon de l'âme

leff,cp, – Longueur efficace pour un groupe de boulons dans les mécanismes circulaires

g

l_{eff,nc,} – Longueur efficace pour un groupe de boulons dans les mécanismes non

g circulaires

 $l_{eff,1,g}$ — Longueur efficace pour un groupe de boulons pour le mode 1 $l_{eff,2,g}$ — Longueur efficace pour un groupe de boulons pour le mode 2

RESISTANCE DE L'ASSEMBLAGE A LA COMPRESSION

 $N_{j,Rd} = Min$ ($N_{cb,Rd} 2 \; F_{c,wb,Rd,low}$, $2 \; F_{c,wc,Rd,low}$, $2 \; F_{c,wc,Rd,upp}$)

N_{j,Rd} = 1664,19 [kN] Résistance de l'assemblage à la compression [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,00 < 1,00 vérifié (0,00)

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION

 $F_{t,Rd} = 135,65 \text{ [kN]}$ Résistance du boulon à la traction [Tableau 3.4]

B_{p,Rd} = 293,15 [kN] Résistance du boulon au cisaillement au poinçonnement [Tableau 3.4]

 $\begin{array}{ll} F_{t,fc,Rd} & -\text{r\'esistance de la semelle du poteau à la flexion} \\ F_{t,wc,Rd} & -\text{r\'esistance de l'âme du poteau à la traction} \\ F_{t,ep,Rd} & -\text{r\'esistance de la platine fl\'echie à la flexion} \end{array}$

F_{t,wb,Rd} – resistance de la platine riechie a la li F_{t,wb,Rd} – résistance de l'âme à la traction

 $F_{t,fc,Rd} = Min (F_{T,1,fc,Rd}, F_{T,2,fc,Rd}, F_{T,3,fc,Rd})$ [6.2.6.4], [Tab.6.2]

 $F_{t,wc,Rd} = w \ b_{eff,t,wc} \ t_{wc} \ f_{yc} \ / \ g_{M0}$ [6.2.6.3.(1)]

 $F_{t,ep,Rd} = Min (F_{T,1,ep,Rd}, F_{T,2,ep,Rd}, F_{T,3,ep,Rd})$ [6.2.6.5], [Tab.6.2]

 $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / g_{M0}$ [6.2.6.8.(1)]

RESISTANCE DE LA RANGEE DE BOULONS N° 1

F _{t1,Rd,comp} - Formule	Ft1,Rd,comp	Composant
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	271,30	Résistance d'une rangée de boulon
$F_{t,fc,Rd(1)} = 271,30$	271,30	Aile du poteau - traction
$F_{t,wc,Rd(1)} = 656,65$	656,65	Ame du poteau - traction
$F_{t,ep,Rd(1)} = 271,30$	271,30	Platine d'about - traction
$F_{t,wb,Rd(1)} = 793,94$	793,94	Ame de la poutre - traction
$B_{p,Rd} = 586,30$	586,30	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/b = 1466,42$	1466,42	Panneau d'âme - compression
$F_{c,wc,Rd} = 1677,70$	1677,70	Ame du poteau - compression
$F_{c,fb,Rd} = 1651,71$	1651,71	Aile de la poutre - compression
$F_{c,wb,Rd} = 832,10$	832,10	Ame de la poutre - compression

RESISTANCE DE LA RANGEE DE BOULONS N° 2

F _{t2,Rd,comp} - Formule	Ft2,Rd,comp	Composant
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	206,74	Résistance d'une rangée de boulon
$F_{t,fc,Rd(2)} = 271,30$	271,30	Aile du poteau - traction
$F_{t,wc,Rd(2)} = 656,65$	656,65	Ame du poteau - traction
$F_{t,ep,Rd(2)} = 271,30$	271,30	Platine d'about - traction
$F_{t,wb,Rd(2)} = 793,94$	793,94	Ame de la poutre - traction
$B_{p,Rd} = 586,30$	586,30	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/b - \sum_{1}^{1} F_{ti,Rd} = 1466,42 - 271,30$	1195,12	Panneau d'âme - compression
$F_{c,wc,Rd}$ - $\sum_{1}^{1} F_{tj,Rd} = 1677,70$ - 271,30	1406,41	Ame du poteau - compression
$F_{c,fb,Rd}$ - $\sum_{1}^{1} F_{tj,Rd} = 1651,71 - 271,30$	1380,42	Aile de la poutre - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{1} F_{tj,Rd} = 832,10 - 271,30$	560,80	Ame de la poutre - compression
$F_{t,fc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 542,59 - 271,30$	271,30	Aile du poteau - traction - groupe
$F_{t,wc,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 788,46 - 271,30$	517,17	Ame du poteau - traction - groupe
$F_{t,ep,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 478,03 - 271,30$	206,74	Platine d'about - traction - groupe
$F_{t,wb,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 912,85$ - $271,30$	641,55	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 3

Ft3,Rd,comp - Formule	Ft3,Rd,com	Composant
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	152,36	Résistance d'une rangée de boulon
$F_{t,fc,Rd(3)} = 271,30$	271,30	Aile du poteau - traction
$F_{t,wc,Rd(3)} = 656,65$	656,65	Ame du poteau - traction
$F_{t,ep,Rd(3)} = 271,30$	271,30	Platine d'about - traction
$F_{t,wb,Rd(3)} = 793,94$	793,94	Ame de la poutre - traction
$B_{p,Rd} = 586,30$	586,30	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/b - \sum_{1}^{2} F_{ti,Rd} = 1466,42 - 478,03$	988,39	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1677,70 - 478,03$	1199,67	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1651,71 - 478,03$	1173,68	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 832,10 - 478,03$	354,06	Ame de la poutre - compression
$F_{t,fc,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 465,67 - 206,74$	258,94	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 499,59 - 206,74$	292,86	Ame du poteau - traction - groupe
$F_{t,fc,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 807,06 - 478,03$	329,03	Aile du poteau - traction - groupe
$F_{t,wc,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 975,59$ - 478,03	497,55	Ame du poteau - traction - groupe
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 359,09 - 206,74$	152,36	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 412,50 - 206,74$	205,76	Ame de la poutre - traction - groupe

Ft3,Rd,comp - Formule	Ft3,Rd,com	Composant
$F_{t,ep,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 668,65$ - $478,03$	190,62	Platine d'about - traction - groupe
$F_{t,wb,Rd(3+2+1)}$ - $\sum_2{}^1$ $F_{tj,Rd} = 1119,10$ - $478,03$	641,07	Ame de la poutre - traction - groupe

RESISTANCE DE LA RANGEE DE BOULONS N° 4

Ft4,Rd,comp - Formule	Ft4,Rd,com	Composant
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	201,71	Résistance d'une rangée de boulon
$F_{t,fc,Rd(4)} = 271,30$	271,30	Aile du poteau - traction
$F_{t,wc,Rd(4)} = 656,65$	656,65	Ame du poteau - traction
$F_{t,ep,Rd(4)} = 271,30$	271,30	Platine d'about - traction
$F_{t,wb,Rd(4)} = 793,94$	793,94	Ame de la poutre - traction
$B_{p,Rd} = 586,30$	586,30	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/b - \sum_{1}^{3} F_{ti,Rd} = 1466,42 - 630,39$	836,03	Panneau d'âme - compression
$F_{c,wc,Rd}$ - $\sum_{1}^{3} F_{tj,Rd} = 1677,70 - 630,39$	1047,31	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1651,71 - 630,39$	1021,33	Aile de la poutre - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{3} F_{tj,Rd} = 832,10$ - 630,39	201,71	Ame de la poutre - compression
$F_{t,fc,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 490,30 - 152,36$	337,95	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 568,94$ - 152,36	416,59	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 723,14 - 359,09$	364,05	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 784,03 - 359,09$	424,94	Ame du poteau - traction - groupe
$F_{t,fc,Rd(4+3+2+1)}$ - $\sum_3{}^1$ $F_{tj,Rd} = 1064,53$ - $630,39$	434,14	Aile du poteau - traction - groupe
$F_{t,wc,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd} = 1177,48$ - 630,39	547,09	Ame du poteau - traction - groupe
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 393,21 - 152,36$	240,85	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 474,38 - 152,36$	322,02	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 583,83 - 359,09$	224,73	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 680,63 - 359,09$	321,53	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd} = 871,24$ - 630,39	240,85	Platine d'about - traction - groupe
$F_{t,wb,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd} = 1387,22$ - $630,39$	756,83	Ame de la poutre - traction - groupe

Réduction supplémentaire de la résistance d'une rangée de boulons

$$\begin{split} F_{t4,Rd} &= F_{t1,Rd} \; h_4/h_1 \\ F_{t4,Rd} &= 147,55 \; \text{[kN] R\'esistance r\'eduite d'une rang\'ee de boulon} \end{split}$$

 $F_{t4,Rd} = F_{t2,Rd} \ h_4/h_2$

 $F_{t4,Rd} = 132,60$ [kN] Résistance réduite d'une rangée de boulon

[6.2.7.2.(9)]FRA

RESISTANCE DE LA RANGEE DE BOULONS N° 5

Ft5,Rd,comp - Formule	F _{t5,Rd,com}	Composant
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	_	Résistance d'une rangée de boulon
$F_{t,fc,Rd(5)} = 271,30$	271,30	Aile du poteau - traction
$F_{t,wc,Rd(5)} = 656,65$	656,65	Ame du poteau - traction
$F_{t,ep,Rd(5)} = 271,30$	271,30	Platine d'about - traction
$F_{t,wb,Rd(5)} = 793,94$	793,94	Ame de la poutre - traction
$B_{p,Rd} = 586,30$	586,30	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/b - \sum_{1}^{4} F_{ti,Rd} = 1466,42 - 762,99$	703,43	Panneau d'âme - compression
$F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} = 1677,70 - 762,99$	914,72	Ame du poteau - compression
$F_{c,fb,Rd}$ - $\sum_{1}^{4} F_{tj,Rd} = 1651,71 - 762,99$	888,73	Aile de la poutre - compression
$F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 832,10 - 762,99$	69,11	Ame de la poutre - compression
$F_{t,fc,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd} = 520,41 - 132,60$	387,81	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 650,81 - 132,60$	518,21	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 753,25 - 284,96$	468,29	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3)}$ - $\sum_{4}^{3} F_{tj,Rd} = 856,14 - 284,96$	571,18	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 986,08 - 491,69$	494,39	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3+2)}$ - $\sum 4^2 F_{tj,Rd} = 1033,57$ - $491,69$	541,88	Ame du poteau - traction - groupe
$F_{t,fc,Rd(5+4+3+2+1)}$ - $\sum_4{}^1F_{tj,Rd}=1327,\!47$ - $762,\!99$	564,49	Aile du poteau - traction - groupe
$F_{t,wc,Rd(5+4+3+2+1)}$ - $\sum_4{}^1F_{tj,Rd} = 1344,38$ - $762,99$	581,39	Ame du poteau - traction - groupe
$F_{t,ep,Rd(5+4)}$ - $\sum_{4}^{4} F_{tj,Rd} = 407,84 - 132,60$	275,24	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 550,00 - 132,60$	417,40	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3)}$ - $\sum_4^3 F_{tj,Rd} = 598,46 - 284,96$	313,50	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3)}$ - $\sum_{4}^{3} F_{tj,Rd} = 756,25$ - 284,96	471,29	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2)}$ - $\sum_{4}^{2} F_{tj,Rd} = 789,08$ - $491,69$	297,38	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2)}$ - $\sum_4 {}^2F_{tj,Rd} = 962,50$ - $491,69$	470,81	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(5+4+3+2+1)}$ - $\sum_{4}^{1} F_{tj,Rd} = 1076,49$ - 762,99	313,50	Platine d'about - traction - groupe
$F_{t,wb,Rd(5+4+3+2+1)}$ - $\sum_{4}^{1} F_{tj,Rd} = 1669,10$ - $762,99$	906,11	Ame de la poutre - traction - groupe

Réduction supplémentaire de la résistance d'une rangée de boulons

 $F_{t5,Rd} = F_{t3,Rd} \ h_5/h_3$

F_{t5,Rd} = 65,81 [kN] Résistance réduite d'une rangée de boulon

[6.2.7.2.(9)]

 $F_{t5,Rd}=F_{t4,Rd}\;h_5/h_4$

 $F_{t5,Rd} = 73,29$ [kN] Résistance réduite d'une rangée de boulon

[6.2.7.2.(9)]FRA

RESISTANCE DE LA RANGEE DE BOULONS N° 6

Ft6,Rd,comp - Formule	Ft6,Rd,co	Composant
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	3,29	Résistance d'une rangée de boulon
$F_{t,fc,Rd(6)} = 271,30$	271,30	Aile du poteau - traction
$F_{t,wc,Rd(6)} = 656,65$	656,65	Ame du poteau - traction
$F_{t,ep,Rd(6)} = 271,30$	271,30	Platine d'about - traction
$F_{t,wb,Rd(6)} = 793,94$	793,94	Ame de la poutre - traction
$B_{p,Rd} = 586,30$	586,30	Boulons au cisaillement/poinçonnement
$V_{wp,Rd}/b - \sum_{1}{}^{5} F_{ti,Rd} = 1466,42 - 828,80$	637,61	Panneau d'âme - compression
$F_{c,wc,Rd}$ - $\sum_{1}^{5} F_{tj,Rd} = 1677,70 - 828,80$	848,90	Ame du poteau - compression
$F_{c,fb,Rd} - \sum_{1}^{5} F_{tj,Rd} = 1651,71 - 828,80$	822,91	Aile de la poutre - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{5} F_{tj,Rd} = 832,10 - 828,80$	3,29	Ame de la poutre - compression
$F_{t,fc,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 542,59 - 65,81$	476,78	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5)}$ - $\sum 5^5 F_{tj,Rd} = 873,01 - 65,81$	807,20	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd} = 813,89$ - $198,41$	615,48	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4)}$ - $\sum 5^4 F_{tj,Rd} = 1095,04 - 198,41$	896,62	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd} = 1085,18 - 350,77$	734,41	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd} = 1235,07$ - 350,77	884,30	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1332,95 - 557,51$	775,44	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2} F_{tj,Rd} = 1351,48$ - 557,51	793,97	Ame du poteau - traction - groupe
$F_{t,fc,Rd(6+5+4+3+2+1)}$ – $\sum_5{}^1$ $F_{tj,Rd} = 1627,78$ – $828,80$	798,97	Aile du poteau - traction - groupe
$F_{t,wc,Rd(6+5+4+3+2+1)}$ - $\sum_5{}^1$ $F_{tj,Rd} = 1549{,}78$ - $828{,}80$	720,98	Ame du poteau - traction - groupe
$F_{t,ep,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 457,39 - 65,81$	391,58	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 806,16 - 65,81$	740,34	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 659,98 - 198,41$	461,57	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd} = 1074,28 - 198,41$	875,87	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 850,60 - 350,77$	499,83	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd} = 1280,53$ - 350,77	929,76	Ame de la poutre - traction - groupe

Ft6,Rd,comp - Formule	Ft6,Rd,co mp	Composant
$F_{t,ep,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2} F_{tj,Rd} = 1041,22$ - 557,51	483,71	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3+2)}$ - $\sum_5^2 F_{tj,Rd} = 1486,78$ - $557,51$	929,28	Ame de la poutre - traction - groupe
$F_{t,ep,Rd(6+5+4+3+2+1)}$ - $\sum_{5}^{1} F_{tj,Rd} = 1328,63$ - $828,80$	499,83	Platine d'about - traction - groupe
$F_{t,wb,Rd(6+5+4+3+2+1)}$ - $\sum_5{}^1F_{tj,Rd} = 2193,38$ - $828,\!80$	1364,58	Ame de la poutre - traction - groupe

TABLEAU RECAPITULATIF DES EFFORTS

N r	hj	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$\mathbf{B}_{\mathrm{p,Rd}}$
1	493	271,30	271,30	656,65	271,30	793,94	271,30	586,30
2	418	206,74	271,30	656,65	271,30	793,94	271,30	586,30
3	343	152,36	271,30	656,65	271,30	793,94	271,30	586,30
4	268	132,60	271,30	656,65	271,30	793,94	271,30	586,30
5	148	65,81	271,30	656,65	271,30	793,94	271,30	586,30
6	63	3,29	271,30	656,65	271,30	793,94	271,30	586,30

RESISTANCE DE L'ASSEMBLAGE A LA FLEXION M_{j,Rd}

 $M_{j,Rd} = \sum h_j \; F_{tj,Rd}$

$$M_{j,Rd} = 318,15 \text{ [kN*m]}$$
 Résistance de l'assemblage à la flexion [6.2]

$$M_{b1,Ed} / M_{j,Rd} \le 1,0$$
 $0,85 < 1,00$ vérifié $(0,85)$

RESISTANCE DE L'ASSEMBLAGE AU CISAILLEMENT

$a_v =$	0,60		Coefficient pour le calcul de F _{v,Rd}	[Tableau 3.4]
$b_{\mathrm{Lf}} =$	0,94		Coefficient réducteur pour les assemblages longs	[3.8]
$F_{v,Rd} = \\$	108,94	[kN]	Résistance d'un boulon au cisaillement	[Tableau 3.4]
$F_{t,Rd,max} =$	135,65	[kN]	Résistance d'un boulon à la traction	[Tableau 3.4]
$F_{b,Rd,int} = \\$	259,20	[kN]	Résistance du boulon intérieur en pression diamétrale	[Tableau 3.4]
$F_{b,Rd,ext} =$	259,20	[kN]	Résistance du boulon de rive en pression diamétrale	[Tableau 3.4]

Nr	$F_{tj,Rd,N}$	$\mathbf{F_{tj,Ed,N}}$	$\mathbf{F}_{tj,Rd,M}$	$\mathbf{F}_{tj,\mathrm{Ed},\mathrm{M}}$	$\mathbf{F}_{\mathbf{tj},\mathbf{Ed}}$	$\mathbf{F}_{\mathbf{vj},\mathbf{Rd}}$
1	271,30	-0,00	271,30	231,56	231,56	85,04
2	271,30	-0,00	206,74	176,45	176,45	116,65
3	271,30	-0,00	152,36	130,04	130,04	143,28
4	271,30	-0,00	132,60	113,18	113,18	152,95

Nr	Ftj,Rd,N	Ftj,Ed,N	Ftj,Rd,M	Ftj,Ed,M	Ftj,Ed	Fvj,Rd
5	271,30	-0,00	65,81	56,17	56,17	185,65
6	271,30	-0,00	3,29	2,81	2,81	216,26

 $\begin{array}{ll} F_{tj,Rd,N} & -\text{R\'esistance d'une rang\'ee de boulons à la traction pure} \\ F_{tj,Ed,N} & -\text{Effort dans une rang\'ee de boulons dû à l'effort axial} \\ F_{tj,Rd,M} & -\text{R\'esistance d'une rang\'ee de boulons à la flexion pure} \\ F_{tj,Ed,M} & -\text{Effort dans une rang\'ee de boulons dû au moment} \\ F_{tj,Ed} & -\text{Effort de traction maximal dans la rang\'ee de boulons} \\ \end{array}$

F_{vj,Rd} – Résistance réduite d'une rangée de boulon

 $\ddot{O}[s_{max}^2 + 3*(t_{max}^2)] \le f_u/(b_w*g_{M2})$ 148,12 < 381,18

 $\ddot{O}[s^2 + 3*(t^2 + t_{II}^2)] \le f_u/(b_w * g_{M2})$

 $s \le 0.9 f_u/g_{M2}$

 $F_{tj,Ed,N} = N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd}$

 $F_{tj,Ed,M} = M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd}$

 $F_{tj,Ed} = F_{tj,Ed,N} + F_{tj,Ed,M}$

 $F_{vj,Rd} = Min \; (n_h \; F_{v,Ed} \; (1 \; - \; F_{tj,Ed} / \; (1.4 \; n_h \; F_{t,Rd,max}), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd}))$

 $V_{j,Rd} = n_h \sum_{l} {}^{n} F_{vj,Rd}$ [Tableau 3.4]

 $V_{j,Rd} = 899,83 \text{ [kN]}$ Résistance de l'assemblage au cisaillement [Tableau 3.4]

 $V_{b1,Ed} / V_{j,Rd} \le 1,0$ 0,15 < 1,00 vérifié (0,15)

RESISTANCE DES SOUDURES

$A_w =$	256,81 [cm ²]	Aire de toutes les soudures	[4.5.3.2(2)]
$A_{wy} =$	185,36 [cm ²]	Aire des soudures horizontales	[4.5.3.2(2)]
$A_{wz} =$	71,45 [cm ²]	Aire des soudures verticales	[4.5.3.2(2)]
$I_{\rm wy} =$		Moment d'inertie du système de soudures par rapport à l'axe horiz.	[4.5.3.2(5)]
$s_{max}=t_{max}$	$74,06 \frac{[MP}{a]}$	Contrainte normale dans la soudure	[4.5.3.2(6)]
s^=t^ =	69,49 [MP a]	Contraintes dans la soudure verticale	[4.5.3.2(5)]
$t_{\rm II} =$	$18,56 \frac{[MP}{a]}$	Contrainte tangentielle	[4.5.3.2(5)]
$b_w =$	0,85	Coefficient de corrélation	[4.5.3.2(7)]

142,66 < 381,18

74,06 < 291,60

vérifié

vérifié

vérifié

(0,39)

(0,37)

(0,25)

RIGIDITE DE L'ASSEMBLAGE

$t_{wash} =$	4	[mm]	Epaisseur de la plaquette	[6.2.6.3.(2)]
$h_{head} = \\$	12	[mm]	Hauteur de la tête du boulon	[6.2.6.3.(2)]
$h_{nut} = \\$	16	[mm]	Hauteur de l'écrou du boulon	[6.2.6.3.(2)]
$L_b =$	66	[mm]	Longueur du boulon	[6.2.6.3.(2)]
$k_{10} =$	4	[mm]	Coefficient de rigidité des boulons	[6.3.2.(1)]

RIGIDITES DES RANGEES DE BOULONS

Nr	hj	k 3	k4	k5	k _{eff,j}	keff,j hj	keff,j hj ²
					Somme	18,81	706,23
1	493	3	65	16	2	7,45	367,37
2	418	1	28	6	1	3,41	142,51
3	343	1	28	6	1	2,80	95,99
4	268	2	37	7	1	2,67	71,62
5	148	2	38	8	1	1,53	22,70
6	63	3	67	14	2	0,96	6,05

$$k_{eff,j} = 1 / (\sum_{3}^{5} (1 / k_{i,j}))$$
 [6.3.3.1.(2)]

$$\begin{aligned} z_{eq} &= \sum_{j} k_{eff,j} \ h_{j}^{2} / \sum_{j} k_{eff,j} \ h_{j} \\ z_{eq} &= 376 \ [mm] \ Bras \ de \ levier \ \'equivalent \end{aligned} \tag{6.3.3.1.(3)}$$

$$k_{eq} = \sum_{j} k_{eff,j} h_j / z_{eq}$$

 $k_{eq} = 5$ [mm] Coefficient de rigidité équivalent du système de boulons [6.3.3.1.(1)]

$$k_1 = Y$$
 Coefficient de rigidité du panneau d'âme du poteau en cisaillement [6.3.2.(1)]

$$k_2 = Y$$
 Coefficient de rigidité du panneau d'âme du poteau en compression [6.3.2.(1)]

$$S_{j,ini} = E z_{eq}^{2} / \sum_{i} (1 / k_{1} + 1 / k_{2} + 1 / k_{eq})$$
 [6.3.1.(4)]

$$S_{j,ini} = 148308,56 \text{ [kN*m]}$$
 Rigidité en rotation initiale [6.3.1.(4)]

$$S_j = S_{j,ini} / m$$
 [6.3.1.(4)]

$$S_j = 76111,20 \text{ [kN*m]}$$
 Rigidité en rotation finale [6.3.1.(4)]

Classification de l'assemblage par rigidité.

$$S_{j,rig} = 76151,87$$
 [kN*m] Rigidité de l'assemblage rigide [5.2.2.5]
 $S_{i,pin} = 4759,49$ [kN*m] Rigidité de l'assemblage articulé [5.2.2.5]

S_{j,ini} ³ S_{j,rig} RIGIDE

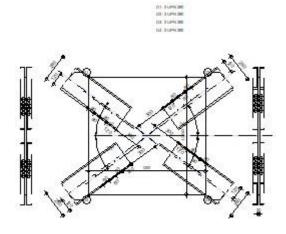
COMPOSANT LE PLUS FAIBLE:

AME DE LA POUTRE OU AILE DE LA CONTREPLAQUE EN COMPRESSION

REMARQUES

Epaisseur de l'âme de la contreplaque inférieure à l'épaisseur de l'âme de la poutre [mm]Epaisseur de l'aile de la contreplaque inférieure à l'épaisseur de l'aile de la poutre [nm]

Assemblage satisfaisant vis à vis de la Norme Ratio 0,85


Autodesk Robot Structural Analysis Professional 2019

Ratio **0,86**

Calcul de l'assemblage au gousset

NF EN 1993-1-8:2005/NA:2007/AC:2009

GENERAL

Assemblage N°: 9

Nom de l'assemblage: Gousset - contreventement

Nœud de la structure: 211

Barres de la structure: 443, 441, 442, 440,

GEOMETRIE

BARRES

		Barre 1	Barre 2	Barre 3	Barre 4	
Barre N°:		443	441	442	440	
Profilé:		2 UPN 280	2 UPN 280	2 UPN 280	2 UPN 280	
	h	280	280	280	280	mm
	$b_{\rm f}$	95	95	95	95	mm
	$t_{\rm w}$	10	10	10	10	mm
	$t_{\rm f}$	15	15	15	15	mm
	r	15	15	15	15	mm
	A	106,80	106,80	106,80	106,80	cm2
Matériau:		ACIER E28	ACIER E28	ACIER E28	ACIER E28	
	f_y	275,00	275,00	275,00	275,00	MPa
	f_u	405,00	405,00	405,00	405,00	MPa
Angle	a	36,5	36,5	36,5	36,5	Deg
Longueur	1	0,00	0,00	0,00	0,00	m

BOULONS

Barre 1

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

```
Classe = HR 10.9
                              Classe du boulon
d =
                 20 [mm] Diamètre du boulon
                 22 [mm] Diamètre du trou de boulon
d_0 =
              2,45 [cm<sup>2</sup>] Aire de la section efficace du boulon
              3,14 [cm<sup>2</sup>] Aire de la section du boulon
A_v =
           900,00 [MPa] Limite de plasticité
f_{vb} =
          1200,00 [MPa] Résistance du boulon à la traction
f_{ub} =
                              Nombre de colonnes des boulons
n =
Espacement des boulons
                                                               80;80;80 [mm]
e_1 = 120 mm Distance du centre de gravité du premier boulon de l'extrémité de la barre
e_2 = 120 \frac{lmm}{l} Distance de l'axe des boulons du bord de la barre
e_c = 300 \ \begin{tabular}{l} [mm \ Distance \ de \ l'extrémité \ de \ la \ barre \ du \ point \ d'intersection \ des \ axes \ des \ ] \ barres \end{tabular}
```

Barre 2

Le plan de cisaillement passe par la partie FILETÉE du boulon

Classe =	HR 10.9		Classe du boulon
d =	20	[mm]	Diamètre du boulon
$d_0 =$	22	[mm]	Diamètre du trou de boulon
$A_s =$	2,45	$[cm^2]$	Aire de la section efficace du boulon
$A_v =$	3,14	$[cm^2]$	Aire de la section du boulon
$f_{yb} =$	900,00	[MPa]	Limite de plasticité
$f_{ub} =$	1200,00	[MPa]	Résistance du boulon à la traction
n =	4		Nombre de colonnes des boulons
Ecnacama	nt dec houl	lone 80	.80.80 [mm]

Espacement des boulons 80;80;80 [mm]

 $e_1 = 120$ ${mm \atop l}$ Distance du centre de gravité du premier boulon de l'extrémité de la barre $e_2 = 120$ ${mm \atop l}$ Distance de l'axe des boulons du bord de la barre $e_c = 300$ ${mm \atop l}$ Distance de l'extrémité de la barre du point d'intersection des axes des barres

Barre 3

Le plan de cisaillement passe par la partie FILETÉE du boulon

Classe = HR 10.9 Classe du boulon d = 20 [mm] Diamètre du boulon Le plan de cisaillement passe par la partie FILETÉE du boulon

Classe = HR 10.9 Classe du boulon

 $d_0 =$ 22 [mm] Diamètre du trou de boulon

 $A_s = 2,45$ [cm²] Aire de la section efficace du boulon

 $A_v = 3.14$ [cm²] Aire de la section du boulon

f_{yb} = 900,00 [MPa] Limite de plasticité

 $f_{ub} = 1200,00$ [MPa] Résistance du boulon à la traction

n = 4 Nombre de colonnes des boulons

Espacement des boulons

80;80;80 [mm]

 $e_1 = 120$ [mm] Distance du centre de gravité du premier boulon de l'extrémité de la barre

 $e_2 = 120$ [mm] Distance de l'axe des boulons du bord de la barre

 $e_c = 300$ [mm Distance de l'extrémité de la barre du point d'intersection des axes des la barres

Barre 4

Le plan de cisaillement passe par la partie NON FILETÉE du boulon

Classe =	HR 10.9		Classe du boulon
d =	20	[mm]	Diamètre du boulon
$d_0 =$	22	[mm]	Diamètre du trou de boulon
$A_s =$	2,45	$[cm^2]$	Aire de la section efficace du boulon
$A_v =$	3,14	$[cm^2]$	Aire de la section du boulon
$f_{yb} =$	900,00	[MPa]	Limite de plasticité
$f_{ub} =$	1200,00	[MPa]	Résistance du boulon à la traction
n =	4		Nombre de colonnes des boulons

Espacement des boulons 80;80;80 [mm]

 $e_1 = 120 \frac{[mm]}{l}$ Distance du centre de gravité du premier boulon de l'extrémité de la barre

 $e_2 = 120 \frac{\text{[mm]}}{\text{]}}$ Distance de l'axe des boulons du bord de la barre

 $e_c = 300$ [mm Distance de l'extrémité de la barre du point d'intersection des axes des barres

GOUSSET

$l_p =$	1200	[mm]	Longueur de la platine
$h_p =$	1200	[mm]	Hauteur de la platine
$t_{\rm p} =$	20	[mm]	Epaisseur de la platine

Paramètres

 $h_1 = 0$ [mm] Grugeage $v_1 = 0$ [mm] Grugeage

$h_1 =$	0	[mm]	Grugeage
$h_2 =$	0	[mm]	Grugeage
$v_2 =$	0	[mm]	Grugeage
$h_3 =$	0	[mm]	Grugeage
$v_3 =$	0	[mm]	Grugeage
$h_4 =$	0	[mm]	Grugeage
$v_4 =$	0	[mm]	Grugeage

Centre de gravité de la tôle par rapport au centre de gravité des barres (0;0)

600 [m Distance verticale de l'extrémité du gousset du point d'intersection des $e_{V} =$ m] axes des barres

600 [m Distance horizontale de l'extrémité du gousset du point d'intersection des $e_H =$ m] axes des barres

Matéria

u:

ACIER E28

 $f_v =$ 275,00 [MPa] Résistance

COEFFICIENTS DE MATERIAU

$g_{M0} =$	1,00	Coefficient de sécurité partiel	[2.2]
$g_{M2} =$	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas: 17: G+Q+1,5EX (1+2)*1.00+5*1.50

 $N_{b1,Ed} = -817,07$ [kN] Effort axial $N_{b2,Ed} = -925,84$ [kN] Effort axial $N_{b3,Ed} = -805,57$ [kN] Effort axial $N_{b4,Ed} = -969,00$ [kN] Effort axial

RESULTATS

BARRE 1

RESISTANCE DES BOULONS

361,9 [kN Résistance de la tige d'un boulon au $F_{v,Rd}$ $0.6*f_{ub}*A_v*m/g_{M2}$ 1] cisaillement

 $F_{v,Rd}=$

Pression du boulon sur la barre

Direction x

Coefficient pour le calcul de F_{b,Rd} $k_{1x} =$ 2,50 $k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$

 $k_{1x} > 0.0$ 2,50 > 0,00vérifié

a_{bx} 0,9 Coefficient dépendant de l'espacement des $a_{bx}=\min[e_1/(3*d_0), p_1/(3*d_0)-0.25,$ 6 boulons f_{ub}/f_u , 1]

vérif 0.96 > 0.00 $a_{bx} > 0.0$ ié

F_{b,Rd1} 311, [k Résistance de calcul à l'état limite de plastification de $F_{b,Rd1x}=k_{1x}*a_{bx}*f_{u}*$ 73 N] la paroi du trou $_{x} =$ $d*t_i/g_{M2}$

Direction z

 $k_{1z} = 2,50$ Coefficient pour le calcul de $F_{b,Rd}$ $k_{1z} = min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$

 $k_{1z} > 0.0$ 2.50 > 0.00vérifié

Coefficient pour le calcul de F_{b,Rd} $a_{bz}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$ $a_{bz} = 1,00$

 $a_{bz} > 0.0$ 1.00 > 0.00vérifié

324,0 [kN Résistance d'un boulon en pression $F_{b,Rd1z} = k_{1z} * a_{bz} * f_u * d * t_i / g_M$ $F_{b,Rd1z}$

0] diamétrale

Pression du boulon sur la platine

Direction x

 $k_{1x} =$ 2,50 Coefficient pour le calcul de F_{b,Rd} $k_1 = min[2.8*(e_2/d_0)-1.7, 2.5]$

2.50 > 0.00vérifié $k_{1x} > 0.0$

a_{bx} 0,9 Coefficient dépendant de l'espacement des $a_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25,$

 f_{ub}/f_u , 1]

 $M_0=N_{b1.Ed}*e$

6 boulons

vérif $a_{bx} > 0.0$ 0.96 > 0.00ié

F_{b,Rd2} 311, [k Résistance de calcul à l'état limite de plastification de la F_{b,Rd2x}=k₁*a_b*f_u*d 73 N] paroi du trou $_{x} =$ $*t_i/g_{M2}$

Direction z

 $k_{1z} = 2,50$ Coefficient pour le calcul de $F_{b,Rd}$ $k_{1z} = min[2.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5]$

 $k_{1z} > 0.0$ vérifié 2,50 > 0,00

Coefficient pour le calcul de F_{b,Rd} $a_{bz} = 1,00$ $a_{bz}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$

 $a_{bz} > 0.0$ 1,00 > 0,00vérifié

324,0 [kN Résistance d'un boulon en pression $F_{b,Rd2z} = k_{1z} * a_{bz} * f_u * d * t_i / g_M$ $F_{b,Rd2z}$

0] diamétrale

VERIFICATION DE L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR LES BOULONS

cisaillement des boulons

-20 [mm] Excentricité de l'effort axial par rapport à l'axe des boulons

 $M_0 = 16,34$ [kN* Moment fléchissant réel

cisaillement des boulons

e =	-20	[mm]	Excentricité de l'effort axial par rapport à l'aboulons	axe des	
$F_{NSd} =$	204,2 7	[kN]	Force résultante dans le boulon due à l'influ- l'effort axial	ence de	$F_{NSd} = N_{b1,Ed}/n$
F _{MSd} =	61,28	[KIN]	Effort composant dans le boulon dû à l'influ moment		$F_{MSd} = M_0 * x_{max} / Sx_i^2$
$\begin{array}{l} F_{x,Ed} \\ = \end{array}$	/		Effort de calcul total dans le boulon sur la direction $F_{x,Ed} = \frac{1}{2}$		
$\begin{array}{l} F_{z,Ed} \\ = \end{array}$	61,28	[kN]	Effort de calcul total dans le boulon sur la d	$F_{z,Ed} = F_{MSd} \\$	
$F_{Ed} =$	213,2 6	[kN]	Effort tranchant résultant dans le boulon	$F_{Ed} = \ddot{O}(F_{x,Ed}^2 + F_{z,Ed}^2)$	
$F_{Rdx} =$	311,7	[kN]	Résistance résultante de calcul du boulon sur la F_{Rdx} =min(F_{bRd1}) direction x		
$\begin{array}{l} F_{Rdz} \\ = \end{array}$	324,0 0	[kN]	Résistance résultante de calcul du boulon su direction z	ır la	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
$\left F_{x,Ed}\right $	$\leq F_{Rdx}$		-204,27 < 311,73 vér	ifié	(0,66)
$\left F_{z,Ed}\right $	$\leq F_{\text{Rdz}}$		61,28 < 324,00 vér	ifié	(0,19)
$F_{Ed} \leq$	F_{vRd}		213,26 < 361,91 vér	ifié	(0,59)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

A =	53,40 [cm ²]	Aire de la section transversale du pro	filé en U	
$A_{net} =$	51,20 [cm ²]	Aire de la section nette		$A_{net} = A - t^*d_0$
$N_{uRd} = \ ^{1}$	492,9 9 [kN]	Résistance de calcul de la section net	te	$N_{u,Rd} = (0.9*A_{net}*f_{u1})/g_{M2}$
N_{plRd} 1	468,5 0 [kN]	Résistance de calcul plastique de la s brute	ection	$N_{plRd}\!\!=\!\!A^*f_{yl}/g_{M0}$
$ 0.5*N_{b1,1} $	$ E_d \leq N_{tRd}$	-408,53 < 1492,99	vérifié	(0,27)
$ 0.5*N_{b1.1} $	$ E_d \leq N_{pl,Rd}$	-408,53 < 1468,50	vérifié	(0,28)

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

$$\begin{array}{lll} A_{nt} = & \begin{array}{ll} 14,9 \ [cm \ Aire \ nette \ de \ la \ zone \ de \ la \ section \ en \\ 0 & ^2 \] & traction \end{array}$$

$$A_{nv} = & \begin{array}{ll} 28,3 \ [cm \\ 0 & ^2 \] & Aire \ de \ la \ zone \ de \ la \ section \ en \ traction \end{array}$$

$$\begin{array}{lll} V_{effRd} & 690, [kN \ R\acute{e}sistance \ de \ calcul \ de \ la \ section \ & V_{effRd} = 0.5 *f_u *A_{nt}/g_{M2} + \\ = & 70 \ \] & affaiblie \ par \ les \ trous \ & (1/\ddot{O}3) *f_y *A_{nv}/g_{M0} \\ \hline |0.5 *N_{b1,Ed}| \leq V_{effRd} & |-408,53| < 690,70 \ & v\'{e}rifi\'{e} \end{array}$$

BARRE 2

RESISTANCE DES BOULONS

 $\begin{array}{lll} F_{v,Rd} & 282,2 \text{ [kN R\'esistance de la tige d'un boulon au} & F_{v,Rd} = \\ & 4 &] & cisaillement & 0.6*f_{ub}*A_s*m/g_{M2} \end{array}$

Pression du boulon sur la barre

Dimostion	•-
Direction	Χ

$k_{1x} = 2,50$	Coefficient pour le calcul de F	b,Rd	$k_{1x}=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$	2,50 > 0,00	vérifié	
a _{bx} 0,9 Coeffi	cient dépendant de l'espacement	des a _{bx} =	$\min[e_1/(3*d_0), p_1/(3*d_0)-0.25,$
= 6 boulor	ns		f_{ub}/f_u , 1]
$a_{bx} > 0.0$	0,96 > 0,00	vérifié	
F _{b,Rd1x} 311, [k	Résistance de calcul à l'état lim	ite de plastific	cation de $F_{b,Rd1x}=k_{1x}*a_{bx}*f_u*d$
= 73 N	la paroi du trou		$*t_i/g_{M2}$

Direction z

$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd} k _{1z} =min[2.8]	* (e_1/d_0) -1.7, 1.4* (p_1/d_0) -1.7, 2.5]
$k_{1z} > 0.0$	2,50 > 0,00 vérifié	
$a_{bz} = 1,0$	Coefficient pour le calcul de F _{b,Rd}	$a_{bz}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$a_{bz} > 0.0$	1,00 > 0,00	vérifié
$F_{b,Rd1z}$	324,0 [kN Résistance d'un boulon en pression	$F_{b,Rd1z} = k_{1z} * a_{bz} * f_u * d * t_i / g_M$
=	0] diamétrale	2

Pression du boulon sur la platine

rec		

$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_1=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$	2,50 > 0,00 v	vérifié
	oefficient dépendant de l'espacement des oulons	$a_{bx}=min[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$
$a_{bx} > 0.0$	0.96 > 0.00	vérifié
$F_{b,Rd2x}$ 31	1, [k Résistance de calcul à l'état limite d	de plastification de $F_{b,Rd2x}=k_1*a_b*f_u*d*$
=	73 N] la paroi du trou	$t_{\rm i}/g_{ m M2}$

Direction z

$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd} k _{1z} =min[2.	$.8*(e_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5$
$k_{1z} > 0.0$	2,50 > 0,00 vérifi	é
$a_{bz} = 1,0$	Coefficient pour le calcul de $F_{b,Rd}$	$a_{bz}=min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$a_{bz} > 0.0$	1,00 > 0,00	vérifié
$F_{b,Rd2z} \\$	324,0 [kN Résistance d'un boulon en pression	$F_{b,Rd2z} = k_{1z} * a_{bz} * f_u * d * t_i / g_M$
=	0] diamétrale	2

VERIFICATION DE L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR LES BOULONS

cisaillement des boulons

e = -20 [[mm]	Excentricité de l'effort axial par rapport à l'aboulons	ke des	
$M_0 = 18,52$	[kN* m]	Moment fléchissant réel		$M_0=N_{b2,Ed}*e$
$F_{\text{NSd}} = 231,4$	[kN]	Force résultante dans le boulon due à l'influe l'effort axial	nce de	$F_{NSd} = N_{b2,Ed}/n$
F _{MSd} 69,44	[kN]	Effort composant dans le boulon dû à l'influe moment	ence du	$F_{MSd} = M_0 * x_{max} / Sx_i^2$
$F_{x,Ed} = 231,4$	[kN]	Effort de calcul total dans le boulon sur la di x	rection	$F_{x,Ed} = F_{NSd} \\$
$F_{z,Ed} = 69,44$	[kN]	Effort de calcul total dans le boulon sur la di z	rection	$F_{z,Ed} = F_{MSd} \\$
$F_{Ed} = {241,6 \atop 5}$	[kN]	Effort tranchant résultant dans le boulon		$F_{Ed} = \ddot{O}(F_{x,Ed}^2 + F_{z,Ed}^2)$
F_{Rdx} 311,7 = 3	[kN]	Résistance résultante de calcul du boulon sur direction x	· la	$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
$F_{Rdz} 324,0$ $= 0$	[kN]	Résistance résultante de calcul du boulon sur direction z	· la	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
$ F_{x,Ed} \leq F_{Rdx}$		-231,46 < 311,73	vérif ié	(0,74)
$ F_{z,Ed} \leq F_{Rdz}$		69,44 < 324,00	vérif ié	(0,21)
$F_{Ed} \leq F_{vRd}$		241,65 < 282,24	vérif ié	(0,86)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

$$\begin{array}{lll} A = & 53,40 \begin{bmatrix} cm^2 \\ 1 \end{bmatrix} \text{ Aire de la section transversale du profilé en U} \\ A_{net} = & 51,20 \begin{bmatrix} cm^2 \\ 1 \end{bmatrix} \text{ Aire de la section nette} & A_{net} = A-t*d_0 \\ N_{uRd} = & \begin{bmatrix} 1492,9 \\ 9 \end{bmatrix} \text{ [kN] Résistance de calcul de la section nette} & N_{u,Rd} = \\ N_{plRd} = & \begin{bmatrix} 1468,5 \\ 0.9*A_{net}*f_{u2})/g_{M2} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} 1468,5 \\ 0.9*A_{net}*f_{u2} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} + A*f_{y2}/g_{M0} \end{bmatrix} \\ N_{plRd} = & \begin{bmatrix} N_{plRd} +$$

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

$A_{nt} = \begin{array}{cc} 14.9 \text{ [cm Aire nette de la zone de la section en} \\ 0 & 2 \end{array}] traction$	
$A_{nv} = {28,3 \text{ [cm} \over 0^{-2}]}$ Aire de la zone de la section en traction	
V _{effRd} 690, [kN Résistance de calcul de la section	$V_{effRd} = 0.5 * f_u * A_{nt}/g_{M2} + (1/\ddot{O}3) * f_v * A_{nv}/g_{M0}$
= 70] affaiblie par les trous	$(1/O3)^{*}$ ly * Anv/gM0
$ 0.5*N_{b2,Ed} \leq V_{effRd} \hspace{1.5cm} \text{-462,92} < 690,70 \hspace{1.5cm} \text{v\'erifi\'e}$	(0,67)

BARRE 3

RESISTANCE DES BOULONS

 $F_{v,Rd}$ 282,2 [kN Résistance de la tige d'un boulon au $F_{v,Rd}$ = 4] cisaillement 0.6* f_{ub} *A_s*m/g_{M2}

Pression du boulon sur la barre

Direction x

$\mathbf{k}_{1\mathbf{x}} =$	= 2,50	Coefficient pour le ca	lcul de F _{b,Rd}	$k_{1x} = min[2.8*($	$[e_2/d_0)-1.7, 2.5]$
$k_{1x} >$	0.0	2,50 > 0,00	vérifié		
a _{bx}	0,9 Coefficient of 6 boulons	lépendant de l'espaceme	nt des a _{bx} =	$=\min[e_1/(3*d_0),$	$p_1/(3*d_0)-0.25,$ $f_{ub}/f_u, 1]$
a _{bx} >	0.0	0,96 > 0,00		vérif ié	
$F_{b,Rd}$	311, [k Résist 73 N] la pare	ance de calcul à l'état li oi du trou	mite de plastific	eation de $F_{b,R}$	$d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{bx}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*a_{0x}*f_{u}*d_{1x}=k_{1x}*f$

Direction z

Pression du boulon sur la platine

Direction x

k _{1x} =	2,50	Coefficient pour le calcul de	e F _{b,Rd}	$k_1=min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} >$	0.0	2,50 > 0,00	vérifié	
a_{bx}	0,9 Coefficient de 6 boulons	épendant de l'espacement des	$a_{bx}=$	min[$e_1/(3*d_0)$, $p_1/(3*d_0)$ -0.25, f_{ub}/f_u , 1]
a _{bx} >	0.0	0,96 > 0,00		vérif ié

 $F_{b,Rd2}$ 311, [k Résistance de calcul à l'état limite de plastification de la $F_{b,Rd2x}$ = $k_1*a_b*f_u*d$ x = 73 N] paroi du trou $*t_i/g_{M2}$

Direction z

$k_{1z} = 2,50$	Coefficie	ent pour le calcul	de F _{b,Rd}	$k_{1z}=min[2]$	$2.8*(e_1/d_0)-1.7$	7, $1.4*(p_1/d_0)-1.7$, 2.5]
$k_{1z} > 0.0$		2,50 > 0,00	v	érifié		
$a_{bz} = 1,0$	0 (Coefficient pour le	e calcul d	e F _{b,Rd}	$a_{bz}=n$	$\min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$a_{bz} > 0.0$		1,00 >	0,00	vérif	ïé	
$F_{b,Rd2z}$	324,0 [kN	Résistance d'un	boulon er	n pression	$F_{b,R}$	$a_{d2z} = k_{1z} * a_{bz} * f_u * d * t_i / g_M$
=	0]	diamétrale				2

VERIFICATION DE L'ASSEMBLAGE POUR LES EFFORTS AGISSANT SUR LES BOULONS

cisaillement des boulons

e =	-20	[mm]	Excentricité de l'effe boulons	ort axial par rapport	à l'axe des	
$\mathbf{M}_0 =$	16,11	[kN* m]	Moment fléchissant	réel		$M_0 = N_{b3,Ed} * e$
F _{NSd} =	201,3 9	[kN]	Force résultante dan l'effort axial	ns le boulon due à l'in	nfluence de	$F_{NSd} = N_{b3,Ed}/n \label{eq:FNSd}$
F _{MSd}	60,42	[kN]	Effort composant da moment	ans le boulon dû à l'i	nfluence du	$F_{MSd} = M_0 * x_{max} / Sx_i^2$
$F_{x,Ed} =$	201,3 9	[kN]	Effort de calcul tota x	l dans le boulon sur	la direction	$F_{x,Ed} = F_{NSd} \\$
$\begin{array}{l} F_{z,Ed} \\ = \end{array}$	60,42	[kN]	Effort de calcul tota z	l dans le boulon sur	la direction	$F_{z,Ed} = F_{MSd} \\$
$F_{Ed} =$	210,2 6	[kN]	Effort tranchant résu	ultant dans le boulon	l	$F_{Ed} = \ddot{O}(F_{x,Ed}^2 + F_{z,Ed}^2)$
$F_{Rdx} =$	311,7	[kN]	Résistance résultant direction x	te de calcul du boulo	n sur la	$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
$\begin{array}{l} F_{Rdz} \\ = \end{array}$	324,0 0	[kN]	Résistance résultant direction z	te de calcul du boulo	n sur la	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
	$\leq F_{Rdx} \\ \leq F_{Rdz} \\ F_{vRd}$		60	, , ,	vérifié vérifié vérifié	(0,65) (0,19) (0,74)

VERIFICATION DE LA SECTION DE LA POUTRE AFFAIBLIE PAR LES TROUS

A =	53,40 [cm ²]	Aire de la section transversale du pro	filé en U	
$A_{net} =$	51,20 [cm ²]	Aire de la section nette		$A_{net} = A - t * d_0$
$N_{uRd} = \frac{1}{2}$	492,9 9 [kN] ¹	Résistance de calcul de la section net	te	$N_{u,Rd} = (0.9*A_{net}*f_{u3})/g_{M2}$
N_{plRd} 1	$N_{plRd} \!\!=\!\! A^* f_{y3} \!/ g_{M0}$			
$ 0.5*N_{b3,I} $	$ E_d \leq N_{tRd}$	-402,78 < 1492,99	vérifié	(0,27)
0.5*N _{b3,I}	$ E_d \leq N_{pl,Rd}$	-402,78 < 1468,50	vérifié	(0,27)

$ 0.5*N_{b3,Ed} \le N$	tRd	-402,78 < 1492	2,99 vérifi	(0,27)
VERIFICATION	DE LA BARRE POUR	LE CISAILLEMEN	NT DE BLOC	
	Aire nette de la zor traction	ne de la section en	n	
$A_{nv} = {28,3 \text{ [cm]} \over 0}^{2}$	Aire de la zone de l	la section en trac	tion	
	Résistance de calcu affaiblie par les tro			V_{effRd} =0.5* f_u * A_{nt}/g_{M2} + (1/Ö3)* f_y * A_{nv}/g_{M0}
$ 0.5*N_{b3,Ed} \leq V$	effRd	-402,78 < 690,	70 vérifi	(0,58)
BARRE 4				
RESISTANCE DI	ES BOULONS			
	kN Résistance de la] cisaillement	tige d'un boulon	au	$F_{v,Rd} = 0.6*f_{ub}*A_v*m/g_{M2}$
Pression du bo	oulon sur la barre			
Direction x				
$k_{1x} = 2,50$	Coefficient pour le	e calcul de F _{b.Rd}	\mathbf{k}_1	$x = min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$	2,50 >		érifié	. [(- */ /)
a _{bx} 0,9 Coeffi = 6 boulor	cient dépendant de l ns	'espacement des	a _{bx} =mi	$n[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$
$a_{bx} > 0.0$	0.96 > 0.00	0	vérifié	
	Résistance de calcu la paroi du trou	ıl à l'état limite d	e plastificati	on de $F_{b,Rd1x}=k_{1x}*a_{bx}*f_u*d$ $*t_i/g_{M2}$
Direction z				
	efficient pour le cald	cul de F _{b Rd} k _{1z} =m	in[2.8*(e ₁ /d ₁	$(p_1/d_0)-1.7, 1.4*(p_1/d_0)-1.7, 2.5$
$k_{1z} > 0.0$	_		érifié	(F1. 10)
$a_{bz} = 1,00$	Coefficient pour	le calcul de F _{b,Rd}	6	$a_{bz} = min[e_2/(3*d_0), f_{ub}/f_u, 1]$
$a_{bz} > 0.0$		1,00 > 0,00		vérifié
$F_{b,Rd1z}$ 324,0 = 0	[kN Résistance d'un] diamétrale	boulon en press	ion	$F_{b,Rd1z}\!\!=\!\!k_{1z}\!\!*\!a_{bz}\!\!*\!f_u\!\!*\!d\!\!*\!t_i\!/g_M$
Drossian du ha	ulon sur la nlatina			
r ression au Do	oulon sur la platine			
Direction x				
$k_{1x} = 2,50$	Coefficient pour l	e calcul de F _{b,Rd}	k	$=\min[2.8*(e_2/d_0)-1.7, 2.5]$
$k_{1x} > 0.0$	2,50	> 0,00 v	érifié	
a _{bx} 0,9 Coeffi = 6 boulor	cient dépendant de l ns	'espacement des	a _{bx} =min	$n[e_1/(3*d_0), p_1/(3*d_0)-0.25, f_{ub}/f_u, 1]$
$a_{bx} > 0.0$	0.96 > 0.00)	vérifié	

	ésistance de calcul à l'état limite de p paroi du trou	lastification de	$F_{b,Rd2x}=k_1*a_b*f_u*d* \ t_i/g_{M2}$
Direction z			
	icient pour le calcul de F _{b,Rd} k _{1z} =min[$1.4*(p_1/d_0)-1.7, 2.5$
$k_{1z} > 0.0$	2,50 > 0,00 véri		F //Osk 1 > C /C 13
	Coefficient pour le calcul de F _{b,Rd}		$n[e_2/(3*d_0), f_{ub}/f_u, 1]$
$a_{bz} > 0.0$	1,00 > 0,00 N Résistance d'un boulon en pression	vérifié E	-lz. *o. *f *d*t./g
	diamétrale	1 b,Rd2z	$z = k_{1z} * a_{bz} * f_{u} * d * t_{i} / g_{M}$
VERIFICATION DE	L'ASSEMBLAGE POUR LES EFFORTS	AGISSANT SUR L	ES BOULONS
cisaillement des l	ooulons		
e = -20 [mm]	Excentricité de l'effort axial par rapp boulons	oort à l'axe des	
$M_0 = 19,38 \frac{[kN^*]}{m}$	Moment fléchissant réel		$M_0 = N_{b4,Ed} * e$
$ \begin{array}{ccc} F_{\text{NSd}} & & & \\ = & & 242,2 & [kN] \\ & & 5 \end{array} $	Force résultante dans le boulon due l'effort axial	à l'influence de	$F_{NSd} = N_{b4,Ed}/n$
$F_{MSd} = 72,67 [kN]$	Effort composant dans le boulon dû moment	à l'influence du	$F_{MSd} = M_0 * x_{max} / Sx_i^2$
$F_{x,Ed} = 242,2 \text{ [kN]}$	Effort de calcul total dans le boulon x	sur la direction	$F_{x,Ed} = F_{NSd} \\$
	Effort de calcul total dans le boulon z	sur la direction	$F_{z,Ed} = F_{MSd} \label{eq:Fzed}$
$F_{Ed} = \frac{252.9}{2} [kN]$	Effort tranchant résultant dans le bo	ulon	$F_{Ed} = \ddot{O}(F_{x,Ed}^2 + F_{z,Ed}^2)$
$F_{Rdx} 311,7 \\ = 3 [kN]$	Résistance résultante de calcul du bedirection x	oulon sur la	$F_{Rdx}=min(F_{bRd1x}, F_{bRd2x})$
$F_{Rdz} 324,0 \\ = 0 [kN]$	Résistance résultante de calcul du be direction z	oulon sur la	$F_{Rdz}=min(F_{bRd1z}, F_{bRd2z})$
$ F_{x,Ed} \leq F_{Rdx}$	-242,25 < 311,73	vérif ié	(0,78)
$ F_{z,Ed} \leq F_{Rdz}$	72,67 < 324,00	vérif ié	(0,22)
$F_{Ed} \leq F_{vRd}$	252,92 < 361,91	vérif ié	(0,70)
VERIFICATION DE	LA SECTION DE LA POUTRE AFFAIBI	IE PAR LES TRO	US
A = 53,40 [cr	n ² Aire de la section transversale du p	orofilé en U	
$A_{net} = 51,20 \begin{bmatrix} cr \\ \end{bmatrix}$	n ² Aire de la section nette		$A_{net} = A\text{-}t*d_0$

$$\begin{array}{lll} A = & 53,40 \ \frac{[cm^2}{]} \ Aire \ de \ la \ section \ transversale \ du \ profilé \ en \ U \\ N_{uRd} = & \frac{1492,9}{9} \ [kN] \ Résistance \ de \ calcul \ de \ la \ section \ nette \\ N_{plRd} = & \frac{1468,5}{0} \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ de \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ la \ section \\ = & 0 \ [kN] \ Résistance \ de \ calcul \ plastique \ la \ section \ la \ la \ section \\ = & 0 \ [kN] \ Résistance \ la \ section \ la \ section \ la \ la \ section \ la \ section \ la \ la \ section \ la \ la \ sect$$

VERIFICATION DE LA BARRE POUR LE CISAILLEMENT DE BLOC

 $\begin{array}{lll} A_{nt} = & 14.9 \ [cm \ Aire \ nette \ de \ la \ zone \ de \ la \ section \ en \\ & 0 \ ^2] & traction \\ A_{nv} = & 28.3 \ [cm \\ & 0 \ ^2] & Aire \ de \ la \ zone \ de \ la \ section \ en \ traction \\ V_{effRd} = & 690, \ [kN \ R\acute{e}sistance \ de \ calcul \ de \ la \ section \\ & = & 70 \ \] & affaiblie \ par \ les \ trous \\ & |0.5*N_{b4,Ed}| \leq V_{effRd} & |-484,50| < 690,70 & v\'{e}rifi\'{e} \end{array}$

Assemblage satisfaisant vis à vis de la Norme Ratio 0,86

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

POINT: 1 PIECE: 32 COORDONNEE: x = 0.00

L = 0.00 m

CHARGEMENTS:

Cas de charge décisif: 11 G Q EX (1+2+5)*1.00

MATERIAU:

ACIER E28 fy = 275.00 MPa

PARAMETRES DE LA SECTION: HEA 550

h=54.0 cmgM0=1.00gM1=1.00

Ay=157.01 cm2 Iy=111932.00 cm4 b=30.0 cmAz=83.72 cm2Ax = 211.76 cm 2tw=1.3 cm Iz=10819.00 cm4 Ix=352.64 cm4

Wply=4621.82 cm3 Wplz=1106.90 cm3 tf=2.4 cm

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 3682.13 kNMy,Ed = -3.87 kN*m Mz,Ed = 11.39 kN*m Vy,Ed = 5.16 kNMz,Ed,max = 11.39Nc,Rd = 5823.40 kN My,Ed,max = -12.16 kN*m

Vy,T,Rd = 2492.67 kNkN*m

Nb.Rd = 5430.63 kN My.c.Rd = 1271.00 kN*mMz,c,Rd = 304.40

kN*m Vz,Ed = -0.94 kN

> MN,y,Rd = 556.36 kN*mMN,z,Rd = 240.19

Vz,T,Rd = 1329.18 kNkN*m

> Tt,Ed = 0.00 kN*mClasse de la section = 2

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

Ly = 3.40 m

en y:

Lam y = 0.12 Lz = 3.40 m

en z:

Lam z = 0.38

Ler,y = 2.38 m	•	Lcr, z = 2.38 m	
Lamy = 10.35	kzy = 0.49	Lamz = 33.30	kzz = 0.69
FORMULES DE	VERIFICATION:		
Contrôle de la rési	stance de la section:		
N,Ed/Nc,Rd = 0.63	3 < 1.00 (6.2.4.(1))		
(My,Ed/MN,y,Rd)	$^{\circ}$ 2.00 + (Mz,Ed/MN,z	$(z,Rd)^3.16 = 0.00 < 1.00$	(6.2.9.1.(6))
Vy,Ed/Vy,T,Rd = 0	0.00 < 1.00 (6.2.6-7)		
Vz,Ed/Vz,T,Rd=0	0.00 < 1.00 (6.2.6-7)		
Tau,ty,Ed/(fy/(sqrt	(3)*gM0)) = 0.00 < 1.00	00 (6.2.6)	
Tau,tz,Ed/(fy/(sqrt)	(3)*gM0)) = 0.00 < 1.0	00 (6.2.6)	
	oilité globale de la bar		
<u> </u>	< Lambda,max = 210.	00 Lambda, $z = 33.3$	30 < Lambda, max = 210.00
STABLE			
, ,	, , , ,	x/(XLT*My,Rk/gM1) +	
• • • • • • • • • • • • • • • • • • • •	Mz,Rk/gM1) = 0.66 <	` ` ' / /	
-		x/(XLT*My,Rk/gM1) +	
kzz*Mz,Ed,max/(N	Mz,Rk/gM1) = 0.71 < 1	1.00 (6.3.3.(4))	
DEPLACEMENT	S LIMITES		

uy = 0.0 cm < uy max = L/200.00 = 1.7 cmVérifié

Cas de charge décisif: 5 E Dir. - masses_X

Vérifié uz = 0.0 cm < uz max = L/200.00 = 1.7 cm

Cas de charge décisif: 6 E Dir. - masses_Y

Déplacements (REPERE GLOBAL):

vx = 0.1 cm < vx max = L/150.00 = 2.3 cmVérifié

Cas de charge décisif: 5 E Dir. - masses_X

vy = 0.2 cm < vy max = L/150.00 = 2.3 cmVérifié

Cas de charge décisif: 6 E Dir. - masses Y

Profil correct !!!

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

POINT: 1 PIECE: 92 COORDONNEE: x = 0.00

L = 0.00 m

CHARGEMENTS:

Cas de charge décisif: 11 G Q EX (1+2+5)*1.00

MATERIAU:

ACIER E28 fy = 275.00 MPa

■ PARAMETRES DE LA SECTION: HEA 450

gM0=1.00h=44.0 cmgM1=1.00

Ay=138.47 cm2 Az=65.78 cm2 Ax=178.03 cm2 Iy=63721.60 cm4 Iz=9465.33 cm4 Ix=244.61 cm4 b=30.0 cmtw=1.1 cm

tf=2.1 cm Wply=3215.87 cm3 Wplz=965.53 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N,Ed = 2330.97 kN My,Ed = 2.54 kN*m Mz,Ed = 16.29 kN*m Vy,Ed = 8.96 kNMz,Ed,max = 16.29Nc,Rd = 4895.82 kN My,Ed,max = -15.64 kN*m

kN*m Vy,T,Rd = 2198.04 kN

Nb,Rd = 4580.03 kN Mv,c,Rd = 884.36 kN*mMz,c,Rd = 265.52

kN*m Vz,Ed = -1.18 kN

> MN,y,Rd = 542.59 kN*mMN,z,Rd = 247.60

kN*m Vz,T,Rd = 1044.36 kN

> Tt.Ed = 0.01 kN*mClasse de la section = 1

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

en y:

Ly = 3.40 m	Lam_y = 0.14	Lz = 3.40 m	$Lam_z = 0.38$	
Lcr,y = 2.38 m	Xy = 1.00	Lcr, z = 2.38 m	Xz = 0.94	
Lamy = 12.58	kzy = 0.49	Lamz = 32.64	kzz = 0.74	

FORMULES DE VERIFICATION:

Contrôle de la résistance de la section:

 $N,Ed/Nc,Rd = 0.48 < 1.00 \quad (6.2.4.(1))$

 $(My,Ed/MN,y,Rd)^2 2.00 + (Mz,Ed/MN,z,Rd)^2 2.38 = 0.00 < 1.00$ (6.2.9.1.(6))

Vy,Ed/Vy,T,Rd = 0.00 < 1.00 (6.2.6-7)

Vz,Ed/Vz,T,Rd = 0.00 < 1.00 (6.2.6-7)

Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Tau,tz,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)

Contrôle de la stabilité globale de la barre:

 $Lambda, y = 12.58 < Lambda, max = 210.00 \qquad Lambda, z = 32.64 < Lambda, max = 210.00 \\ STABLE$

N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) +

kyz*Mz,Ed,max/(Mz,Rk/gM1) = 0.52 < 1.00 (6.3.3.(4))

N, Ed/(Xz*N,Rk/gM1) + kzy*My, Ed, max/(XLT*My,Rk/gM1) +

kzz*Mz,Ed,max/(Mz,Rk/gM1) = 0.56 < 1.00 (6.3.3.(4))

DEPLACEMENTS LIMITES

Flèches (REPERE LOCAL):

uy = 0.0 cm < uy max = L/200.00 = 1.7 cm Vérifié

Cas de charge décisif: 5 E Dir. - masses Xuz = 0.0 cm < uz max = L/200.00 = 1.7 cm

Vérifié

Cas de charge décisif: 6 E Dir. - masses_Y

Déplacements (REPERE GLOBAL):

vx = 0.4 cm < vx max = L/150.00 = 2.3 cm Vérifié

Cas de charge décisif: 5 E Dir. - masses_X

vy = 0.4 cm < vy max = L/150.00 = 2.3 cm Vérifié

Cas de charge décisif: 6 E Dir. - masses_Y

Profil correct !!!

NORME: NF EN 1993-1:2005/NA:2007/AC:2009, Eurocode 3: Design of steel structures.

TYPE D'ANALYSE: Vérification des pièces

FAMILLE:

POINT: 1 **PIECE: 142** COORDONNEE: x = 0.00

L = 0.00 m

CHARGEMENTS:

Cas de charge décisif: 8 ELU 1*1.35+2*1.50

MATERIAU:

ACIER E28 fy = 275.00 MPa

PARAMETRES DE LA SECTION: HEA 400

h=39.0 cmgM1=1.00gM0=1.00

Ay=126.20 cm2 Az=57.33 cm2 Iy=45069.40 cm4 Iz=8563.83 cm4 b=30.0 cmAx=158.98 cm2tw=1.1 cm Ix=189.76 cm4

Wply=2561.80 cm3 tf=1.9 cm Wplz=872.86 cm3

EFFORTS INTERNES ET RESISTANCES ULTIMES:

N.Ed = 1595.34 kNMy,Ed = 6.73 kN*m Mz,Ed = 5.84 kN*m Vy,Ed = 5.06 kNMz,Ed,max = -11.37Nc,Rd = 4371.95 kN My,Ed,max = 6.73 kN*m

Vy,T,Rd = 2003.33 kNkN*m

Nb,Rd = 4094.10 kN My,c,Rd = 704.50 kN*mMz,c,Rd = 240.04

kN*m Vz,Ed = -3.81 kN

> MN,y,Rd = 521.15 kN*mMN,z,Rd = 236.90

kN*m Vz,T,Rd = 910.14 kN

> Tt,Ed = 0.01 kN*mClasse de la section = 1

PARAMETRES DE DEVERSEMENT:

PARAMETRES DE FLAMBEMENT:

Ly = 3.40 m

en y:

Lam y = 0.16 Lz = 3.40 m

en z:

Lam z = 0.37

Ler, y = 2.38 m	Xy = 1.00	Lcr,z = 2.38 m	Xz = 0.94
Lamy = 14.14	kzy = 0.29	Lamz = 32.43	kzz = 0.53
FORMULES DE	VERIFICATION:		
Contrôle de la résistance de la section:			
N,Ed/Nc,Rd = 0.36 < 1.00 (6.2.4.(1))			
$(My,Ed/MN,y,Rd)^2 2.00 + (Mz,Ed/MN,z,Rd)^1.82 = 0.00 < 1.00 $ (6.2.9.1.(6))			
Vy,Ed/Vy,T,Rd = 0.00 < 1.00 (6.2.6-7)			
Vz,Ed/Vz,T,Rd = 0.00 < 1.00 (6.2.6-7)			
Tau,ty,Ed/(fy/(sqrt(3)*gM0)) = 0.00 < 1.00 (6.2.6)			
Tau,tz,Ed/(fy/(sqrt((3)*gM0) = 0.00 < 1.00	(6.2.6)	
	pilité globale de la barre:		
Lambda, $y = 14.14$	< Lambda,max = 210.00	Lambda, $z = 32$.43 < Lambda, max = 210.00
STABLE			
N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed,max/(XLT*My,Rk/gM1) +			
kyz*Mz,Ed,max/(Mz,Rk/gM1) = 0.39 < 1.00 (6.3.3.(4))			
N,Ed/(Xz*N,Rk/gM1) + kzy*My,Ed,max/(XLT*My,Rk/gM1) +			
kzz*Mz,Ed,max/(Mz,Rk/gM1) = 0.42 < 1.00 (6.3.3.(4))			
DEPLACEMENT	'S LIMITES		
Flèches (REPERE LOCAL):			
Treches (REI ENE LUCAL).			

uy = 0.0 cm < uy max = L/200.00 = 1.7 cmVérifié

Cas de charge décisif: 9 G Q (1+2)*1.00

uz = 0.0 cm < uz max = L/200.00 = 1.7 cmVérifié

Cas de charge décisif: 6 E Dir. - masses_Y

Déplacements (REPERE GLOBAL):

vx = 0.5 cm < vx max = L/150.00 = 2.3 cmVérifié

Cas de charge décisif: 5 E Dir. - masses_X

vy = 0.5 cm < vy max = L/150.00 = 2.3 cmVérifié

Cas de charge décisif: 6 E Dir. - masses Y

Profil correct !!!