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Abstract

The methodology of experimental research is a relatively recent discipline in mathemat-
ics, forming part of statistics. It is widely used by both researchers and industrialists
to plan their experiments, model the results, and perform their analysis.

This work has two main objectives: first, to provide a synthesis of the methodol-
ogy of experimental design, where two categories of classical experimental designs are
described, and second, to use Python to elaborate an application to meet the needs
of each user and experimenter. The utility of having one’s own software is evident.
The planning of experiments, modeling, and analysis of results will be considerably
facilitated. Additionally, this software can be further improved in the future by adding
other options.

Key Words : Experimental designs, multiple linear regression, screening experi-
mental designs, response surface designs, optimality criteria, full factorial designs.
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Introduction

The Experimental Research Methodology (Design of Experiments) is valuable for any-
one engaged in scientific research or industrial studies. The use of experimental designs
for the empirical study of a response law poses particular challenges for statisticians
or researchers. While they have little information about this law, they generally only
have a very limited sample of observations relative to the number of parameters of the
models they can consider for their analyses. Before any observation of the response,
they must specify not only which models to use but also how to organize the experi-
ments. Indeed, the quality of statistical analysis depends closely on the experimental
design used to observe the response. Additionally, combinatorial analysis is generally
required to construct the proposed experimental designs.

To propose a solution that meets industrial objectives, it is sometimes necessary to
seek missing information by conducting a series of experiments. Important decisions
based on experimental results and the significant cost of experimentation prohibit re-
lying solely on the experimenter’s intuition to find the solution. A methodological
approach is needed to not only reduce the cost of experimentation but also to establish
an optimal organization of experiments.

The goal of the design of experiments methodology is to propose one or more
strategies to solve a particular problem posed by experimental research.

In our work, the general principles of constructing experimental designs are pre-
sented based on the notion of experimental space. The geometric representation of
experimental points is very illustrative, but it quickly becomes limited as the space’s
dimension increases. Therefore, a matrix representation is used. With the help of both
geometric and matrix representations, the main experimental designs are described:
full factorial designs at two levels, fractional designs, Mozzo designs, full factorial de-
signs at three levels, composite designs, Box-Behnken designs, Doehlert designs, and
Roqumore designs. A Python application has been developed. It allows the construc-
tion of the eight plans mentioned above, provides the model, representative graphs, as
well as the analysis and numerical results necessary to conduct a successful experimen-
tal study. The main concepts developed in the Experimental Research Methodology
have been addressed in the first chapter.

In the second chapter, we explored the method of multilinear regression. This
method was utilized in our application to compute the model coefficients. To validate
this model, we provided a review of statistical tools such as Analysis of Variance,
Residual Analysis, etc. Additionally, we discussed important concepts such as error
propagation to model coefficients, and consequently, to predicted responses, as well as
optimality criteria.

The third chapter focuses on describing classical screening designs, while in the
fourth chapter, we delve into detailed descriptions of the primary optimization designs

13



used to establish a response surface.
Finally, the description of the developed software was addressed in the fifth chapter.
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Chapter 1

Generalities, Method And Models For
Experimental Design

In this chapter, various hypotheses involved in the use of the experimental design
method are synthesized and summarized. This method is useful for any experimenter
conducting scientific research or industrial studies. It is applicable to all disciplines
as long as one is seeking the relationship between a variable of interest, y, and other
variables that can influence its values. To achieve this, it is necessary to follow math-
ematical rules and adopt a rigorous approach.

1.1 History
The method of experimental design is not new; it is indeed extensive and can be applied
across many fields [1]. It has been around for a long time. These designs are valuable to
anyone undertaking scientific research or industrial studies. The earliest users of these
methods were agronomists and statisticians. After 1945, experimental designs sparked
numerous publications and research in the Anglo-Saxon world. Many researchers have
continued to develop this branch of statistics in various ways and directions.

Statisticians like Yates, Youden, Cochran, Plackett, and Burman, among others,
subsequently followed in the footsteps of Fisher [2], enriching and disseminating the
use of experimental design techniques in other fields. In the 1950s, Box and Hunter
[3], drawing notably on the work of Yates, developed specific methods for constructing
fractional factorial designs at two levels. Taguchi and Masuyama elaborated tables
for constructing orthogonal experimental designs suitable for the majority of industrial
problems [4]. These tables were published in 1959 and 1961 [3]. Subsequently, Taguchi,
with pragmatism, simplified and clarified the use of these designs.

Once understood, the method becomes an irreversible step in the technician’s career,
as they can no longer consider conducting experiments without using an experimental
design. Once confidential, it is now experiencing a spectacular development. With ex-
perimental designs, we obtain the maximum amount of information with the minimum
number of experiments. To achieve this, we must follow mathematical rules and adopt
a rigorous approach [5].
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1.2 Limitation of Traditional Testing Methods

1.2.1 Study Of A Phenomenon

The analysis of a phenomena may be schematized as follows: the researcher concen-
trates on a quantity, such as the amount of wheat produced on a plot of land or the
price of a chemical product used in an engine for an automobile. There are several fac-
tors that will affect this amount, including the kind of ground, the quality of fertilizer
applied, the environment, exposure to sunshine, and more [5].

Mathematically, we can write that the variable of interest y as a multi-variable
function xi.

y = f(x1, x2, . . . , xk) (1.1)

The examination of a phenomenon is then reduced to measuring the quantity based
on the various values that we can give to the variables. The traditional approach to
studying the function will be briefly described(1.1).

1.2.2 The Classical Method

In traditional practice, trials are performed sequentially [6] by varying the variables one
after the other without prior planning for the complete set of them. We fix the level
of all variables except one (variable x1) and we measure the quantity y corresponding
to different levels of this last.

Figure 1.1: All variables are fixing at well-defined value except x1 who takes
different levels

At the end of the experiment on this first variable,we can plot a curve represanting
y = f(x1) (fig 1.1). We can repeat the same experience with all different variables. If
we want to study six variables and we decide to take five experimental points for each
variable , we must run 56 = 15625 experiences.
We only act in two ways when the tester must reduce down on the number of trials:

Decrease experimental points: for three points instead of five it still 36 = 729
experiences to be made. And for two points, we have 26 = 64 experiences .
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Decrease number of variables: for four variables we take each three value, and we
must run 34 = 81 experiences.

Hence, the drawbacks of this approach become evident when dealing with security
risks or significant financial amounts. We will then discuss the Experimental Design
Method.

1.3 The Experimental Design Method
For any experimenter doing industrial studies or scientific research, the experimental
design approach is a useful tool.While it does so in a planned and logical way, it applies
to all fields. It also links between a magnitude of interest y and variables xi. for this
purpose we should follow and take strict mathematical rules such as [7] :

-Decrease the number of trials.
-The number of factors studied can be quite large.
-Detection of interactions among factors.
-Better precision on the results.
-Modeling the results.
Understanding Two essential ideas"Experimental space" and "Mathematical mod-

eling" are the foundation of the experimental design technique.

1.4 Concept of Experimental Space

1.4.1 Responses, Factors, Levels

• The response is the quantified quantity of interest in every experiment. A num-
ber of things influence this response’s value. We exclusively use the expression
"factors" in place of the term "variables."

• The initial factor can be represented by a graduated and oriented axis (fig 1.2).
The value assigned to a factor for a specific trial is called a level. When we’re
studying the influence of a factor, we typically limited its variation between two
bounds (the lower bound is the low level, and the upper bound is the high level).

Figure 1.2: Range of variation of the factor

17



• The factor’s field of variation is the collection of all values that it can take between
the low and high levels. Typically, the low level is denoted as -1, while the high
level is represented as +1.

• An axis is used to indicate any additional factors that may exist. Its range of
fluctuation, high level, and low level can alternatively be defined as the first fac-
tor.This second axis is positioned orthogonally to the first one. Thus, a Cartesian
coordinate system is obtained defining a two-dimensional Euclidean space known
as the experimental space (fig 1.3).

Figure 1.3: Definition of the experimental design

• The levels x1 and x2 of factors 1 and 2 respectively may be seen as the coordi-
nates of a point in the experimental space(fig 1.4). In this axis system, a point
corresponds to each individual experiment.An experimental design is shown by a
set of data points.

Figure 1.4: Levels of factors defining experimental points in the experimental space

1.4.2 Field of Study, Response Surface

• The factors’ fields are grouped to form the "study field." The region of the exper-
imenter’s chosen experimental space where the trials will be conducted is known
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as the field of study. Points dispersed over the study’s region indicate an experi-
ment, which consists of many well-defined experiments in (fig1.5). This method
of using points in a Cartesian space to illustrate an experiment is a geometric
representation of the research [7].

Figure 1.5: defenition of field of study

• The geometric representation of the experimental design and the response re-
quires a space with one more dimension than the experimental space. A three-
dimensional space is used to represent a two-factor design, with one dimension
for the response and two for the factors. Each point within the study domain
corresponds to a set of responses which are located on a surface known as the
response surface (fig 1.6) [8].

Figure 1.6: Defenition of the response surface
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1.4.3 Centered Reduced Coordinates

When we assigned the value of -1 to the low level of a factor and +1 to the high level,
two significant modifications are performed:

-The origin of measurements is shifted.
-The unit of measurements is altered.
New variables known as standardized centered variables are created as a result of

these two changes, the terms "standardized" and "centered" relate to the new unit and
the origin shift, respectively. The transformation from the original variables z to the
standardized centered variables x, and vice versa, is given by the following formula:

x =
z − z0
step

with:

z0 =
highlevel + lowlevel

2

step =
highlevel − lowlevel

2

Standardized variables are used to present experimental designs uniformly, independent
of the factors and study domains selected. This gives the theory of experimental designs
a great degree of generality [7].

1.4.4 Experimental Design

Every point in the research area represents a potential operational situation, which
gives the operator the opportunity to perform out an experiment.

Figure 1.7: The vertices A, B, C, and D of the study domain are the ideal positions,
as shown by the theory of experimental designs
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The primary issue in experimental designs is the selection of the quantity and
placement of experimental points. Typically, experimental designs are collections of
experimental points that follow certain criteria. These are the traditional experimental
designs, which are well-known and frequently reported. Non-conventional designs refer
to experimental point arrangements that differ from those of traditional experimental
designs. Compared to classical designs, their qualities are frequently less ideal. It is not
always feasible to follow the specifications of traditional experimental designs, which
leads to the occurrence of non-conventional designs [8].

1.4.5 Matrix of Experiments

For the task of visualizing the positions of experimental points within the research do-
main, an experimental design’s geometric representation is useful. When there are more
than three components, though, it becomes unfeasible. We use a table or experiment
matrix as our representation for multidimensional spaces. The trials to be performed
are specified in the experiment matrix (Tab1.1). The idea of an experimental point is
synonymous with the phrase "trial" [9].

Table 1.1: Experiences matrix

N°.Trials Factor 1 Factor 2
1(A) -1 -1
2(A) 1 -1
3(C) -1 1
4(D) 1 1

1.5 Concept Of Mathematical Modeling
We choose a mathematical function a priori that relates the response to the factors.
The Taylor-Mac Laurin series is expanded to a limited expansion by us. The derivatives
are assumed to be constant, and the expansion takes the form of a polynomial of more
or less high degree [10]:

y = a0 +
∑

aixi +
∑

aijxixj +
∑

aiix
2
i + . . .

- y is the response, or the quantity of interest, is measured during the experimen-
tation, and it is obtained with a given precision,

- xi represents the level assigned to factor i by the experimenter to conduct a trial.
This value is perfectly known. It is even assumed that this level is determined without
error (classic regression hypothesis),

- a0, ai, aij, aii, . . . are coefficients of the model.they aren’t familiar and they should
be calculated starting from the results of experiments.

The term "a priori model" or "postulated model" refers to this concept.

1.5.1 Interest Of Polynomial Representation

Compared to other modeling techniques, the polynomial representation of the response
makes matrix processes possible, thus explaining why it is so valuable. Additionally, it
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allows the interactions and effects of elements to be included in the expression directly
of y something that would not be feasible if we used other mathematical functions like
exponentials, algorithms, or more. Polynomials are the favored choice for experimenters
since experience shows them to be a successful solution to a wide range of issues.

1.5.2 Mathematical Model For Experimental Design

During an experiment, the measured responses are randomized quantities that require
to be handled randomly.It is necessary to take reality into account.The identical ex-
periment will not produce precisely the same results in every determination, no matter
how hard one tries. An uncertainty known as experimental error, measurable error, or
pure error taints every measurement. This uncertainty arises from variations in specific
parameters that the investigator is unaware of. Those models fall into three types [11].

Mathematician’s model
The lack of experimental error is a characteristic of a mathematician’s mathematical
model. For example, with two factors:

y = a0 + a1x1 + a2x2 + a12x1x2 + a11x
2 + a22x

2

This model simplifies analysis but doesn’t reflect real-world experiments where mea-
surements have inherent uncertainty.

Experimentator’s model
There are three parts to this concept. A mathematician’s model makes up the first
component, adjustment error makes up the second, and random error makes up the
third:

y = a0 + a1x1 + a2x2 + a12x1x2 + a11x
2 + a22x

2 +∆+ σy

This model provides a more realistic picture but can be complex to analyze statistically.
Statistician’s model

The prior model is too complicated to be solved:

y = a0 + a1x1 + a2x2 + a12x1x2 + a11x
2 + a22x

2 + σy

This model allows for easier statistical analysis and hypothesis testing but may not
capture all sources of error.

1.6 System Of Equations
A response value is brought to each experimental location. The unknowns that must
be found are represented by the coefficients of a polynomial in this form. When the
experimental design is complete, we have a system of N equations with q unknowns (as
long as the model chosen a priori has q coefficients) if there are N trials. This system
can be expressed using a basic matrix notion [12]:

Y = XA+ e (1.2)

with:
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- Y : responses vector,
- X: calculate matrix, who depends on experimental points chosen for run the

design and the applied model,
- A: coefficients vector,
- e: residual vector.
This problem is usually difficult to solve since there are fewer equations than un-

knowns. as a matter of fact, there are N equations and q+N unknowns; this resolution
can only conducted in a good way if a regression method is used, introducing q addi-
tional equations. This approach often relies on the least squares optimization criteria.
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Chapter 2

MLR Regression, Error Transmission
and Optimality Criteria

In this chapter, we explore three key concepts essential for understanding and applying
experimental design: multiple linear regression (MLR), error transmission, and opti-
mality criteria. Multiple linear regression allows for modeling the relationship between
a dependent variable and several independent variables, providing a powerful approach
for modeling data from an experimental design. Error transmission plays a crucial role
in assessing the precision of measurements and estimates derived from statistical mod-
els. Finally, optimality criteria provide guidelines for designing experiments to achieve
reliable and significant results. This chapter aims to examine these concepts in detail,
illustrating their importance in optimizing experimental processes.

2.1 Multilinear Regression (MLR)
The aim is to determine which set of q coefficients best solves the system of equations.

2.1.1 Principle

The multiple linear regression model is the most commonly used statistical tool for the
study of multidimensional data. As a specific case of the linear model, it represents
the natural generalization of simple regression.

Table 2.1: Presentation of the results of trials for a simple regression

x y
x1 y1
x2 y2
...

...
xi yi
...

...
xN yN

The term "multiple" refers to the fact that there are several explanatory variables
xj to explain y.

24



Table 2.2: Presentation of the results of trials for a multilinear regression

x1 . . . xi xi xk y
x11 . . . x1i . . . x1k y1
...

...
...

...
...

...
xi1 . . . xii . . . xik yi
...

...
...

...
...

...
xN1 . . . xNi . . . xNk yN

For N observations, the model is expressed in this form:

y = a0 + a1x1 + a2x2 + · · ·+ ajxj + · · ·+ aqxq + e

with:
y: Endogenous variable.
x1, x2, . . . , xj, . . . , xq: Exogenous variables,

The least squares approach is used to estimate all of the model’s coefficients.
And here’s the plot of the least squares regression line:

Figure 2.1: The least squares line

2.1.2 Estimation of Coefficients by the Least Squares Method

Selecting the best possible estimator Â of A is the problem now that the model has
been established.One traditional method of searching for Â is to align the vector of
observed responses Y with the vector of predicted means : Ŷ = XÂ as closely as
feasible :

Definition :
We say that Â is the least squares estimator of A if and only if Â minimizes the
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function:

Q(A) = ||Y −XÂ||2

The function Q is minimized by the least squares estimator of A, and this minimum is
thus:

Q(Â) = ||Y −XÂ||2 = ||Y − Ŷ ||2 =
n∑

i=1

(Yi − Ŷi)
2

This demonstrates that there is a relationship between this quantity and the (quadratic)
error between the mean responses predicted by the model Ŷi and the observed responses
Yi. As for how this estimate may be determined practically, we demonstrate that:

Proposition 1.1 : The statistical model Y = XA + e with X being a full rank
matrix. The least squares estimator of A is given by:

Â = (X tX)−1X tY

The proof : We are looking for Â that minimizes the quantity : ||Y − Ŷ ||2 =∑n
i=1(Yi − Ŷi)

2 , Let’s represent
∑n

i=1(Yi − Ŷi)
2 as a function of Â in order to achieve

this :
n∑

i=1

(Yi − Ŷi)
2 = (Y −XÂ)t(Y −XÂ)

= (Y t − ÂtX t)(Y −XÂ)

= Y tY − ÂtX tY − Y tXÂ− ÂtX tXÂ

Note that
∑n

i=1(Yi − Ŷi)
2 is a scalar, and it is easy to verify that all terms in the sum

are also scalars. Therefore, we have:

Y tXÂ = (ÂtX tY )t = ÂtX tY

Is required to :
n∑

i=1

(Yi − Ŷi)
2 = Y tY − 2ÂtX tY + ÂtX tXÂ

Let us get the derivative of
∑n

i=1(Yi − Ŷi)
2 concerning the variable Â :

∂
∑n

i=1(Yi − Ŷi)
2

∂Â
=

∂(Y tY )

∂Â
− 2

∂(ÂtX tY )

∂Â
+

∂(ÂtX tXÂ)

∂Â

Where :
- ∂(Y tY )

∂Â
= 0 (Because Y tY doesn’t depend on A ).

- ∂(ÂtXtY )

∂Â
= X tY (Because ÂtX tY is a linear form in Â ).

- ∂(ÂtXtXÂ)

∂Â
= 2X tXÂ (Because ÂtX tXÂ is a quadratic form in Â ).

Thus, it comes:

∂
∑n

i=1(Yi − Ŷi)
2

∂Â
= −2X tY + 2X tXÂ
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The value of Â that minimizes
∑n

i=1(Yi − Ŷi)
2 must satisfy:

∂
∑n

i=1(Yi − Ŷi)
2

∂Â
= 0

=⇒ −2X tY + 2X tXÂ = 0

=⇒ X tXÂ = X tY

=⇒ Â = (X tX)−1X tY (2.1)

2.1.3 Hypotheses of Multilinear Regression

We separate between stochastic hypotheses and structural hypotheses by applying the
normal distribution as we see here [13]:

• The values X1i, X2i, . . . , Xpi are observed without errors,

• Residuals have a mean of zero E(ϵi) = 0,∀i = 1, . . . , n,

• The variance is equal to the unbiased estimator var(ϵi) = σ2
ϵ ;∀i = 1, . . . , n.

• The errors are uncorrelated ; E(ϵiϵj) = 0; ∀i ̸= j,

• The error ϵt is independent of the observations X1t, X2t, . . . , Xpt, E(Xitϵt) =
0,∀i = 1, . . . , p and ∀t = 1, . . . , n,

• The exogenous variables X1, X2, . . . , Xp are not collinear; therefore, the matrix
XTX is invertible,

• This matrix (XTX)/n is a finite matrix,

• n >> p + 1 the number of observations is substantially higher than the number
of exogenous variables.

2.1.4 Properties of Coefficients

If Â is the least squares estimator of A and the residuals’ hypotheses are satisfied, then:

1. Â is an unbiased estimator of A,

2. Â accepts as its matrix of covariance : var(Â) = σ2(XTX)−1.

Mathematical expectation of the coefficients: E(Â) = E[(X tX)−1X tY ] = (X tX)−1X tE(y),
because the elements of X are considered fixed. Referring to A as the vector of p true
coefficients and ε as the vector of n deviations between experimental results and theo-
retical responses, we have then :

Y = XA+ ε

=⇒ E(Y ) = E(XA+ ε) = E(XA) + E(ε) = XE(A)

From our hypotheses (E(ε) = 0), so we have:

E(Â) = (X tX)−1X tXA = A
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Variance of the coefficients : Giving var(Â) = E[(Â−A)(Â−A)t], then we replace
Â by (X tX)−1X tY and Y by XA+ ε, We get :

(Â− A) = (X tX)−1X t(XA+ ε)− A = A+ (X tX)−1X tε− A = (X tX)−1X tε

As (Â− A)t = εtX(xtX)−1 ,so :

var(Â) = E[(X tX)−1X tεεtX(X tX)−1] = (X tX)−1X tE(εεt)X(X tX)−1

Changes E(εεt) by E[(ε− 0)(ε− 0)t] = var(ε) = σ2, we can write :

var(Â) = (X tX)−1X tσ2X(X tX)−1

= σ2(X tX)−1X tX(X tX)−1

=⇒ var(Â) = σ2(X tX)−1 (2.2)

2.2 Evaluation of Model Quality
The model’s ability to effectively summarise the experiment results within the experi-
mental design is determined largely by the model’s quality evaluation. With statistical
techniques, the quality may be evaluated. There have been four methods explained for
carrying out this evaluation.

2.2.1 Graphical Examination of Results

It is always enriching and frequently aids in preventing significant misunderstandings
when this assessment is possible.

2.2.2 Analysis of Variance

Once the model is fitted, the issue of the quality of the obtained fit arises. Using
what are known as analysis of variance techniques, it is practical to produce numerical
indicators that enable this to be quantified. These methods rely on judicious decom-
positions into sums of squares. Let Y ∗ be the centered observed response vector and Ȳ
the observed mean response. Observe that in the event when 1n represents the order n
indication, meaning the vector of length n with all of its components equal to 1, then
[11]:

Ȳ =
1

n
1nY

t

Y ∗ = Y − Ȳ 1n

At this point, we define the three classical sums "Sum of Squares (SS)" that follow :

Total Sum of Squares :
∑n

i=1(Yi − Ȳ )2 (noted SST).
Sum of Regression Squares :

∑n
i=1(Ŷi − Ȳ )2 (noted SSR).

Sum of Error Squares :
∑n

i=1(Yi − Ŷi)
2 (noted SSE).
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Proposition 1.2 : For the least squares model, if P = X(X tX)−1X t is the orthog-
onal projector onto Rn over the subspace Im(X), and if In ⊂ Im(X), then the above
sum of squares can be written as:

n∑
i=1

(Yi − Ȳ )2 = Y tY − nȲ 2.

n∑
i=1

(Ŷi − Ȳ )2 = Y tPY − nȲ 2.

n∑
i=1

(Yi − Ŷi)
2 = Y t(In − P )Y.

As a result, the following essential relationship results:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi)
2.

Proof : Using a matrix form, what follows can get written as:

• For
∑n

i=1(Yi − Ȳ )2 = (Y − Ȳ 1n)(Y − Ȳ 1n)
t = Y Y t − Ȳ Y t1n − Ȳ 1nY

t + Ȳ 21n1
t
n,

thus 1nY
t = Y t1n = nȲ and 1n1

t
n = n, so

∑n
i=1(Yi − Ȳ )2 = Y tY − nȲ 2.

• For
∑n

i=1(Yi − Ŷi)
2 = (Y − Ŷ )(Y − Ŷ )t with Ŷ = X(X tX)−1XY t = PY , so

Y − Ŷ = Y −PY = Y (In−P ), and we get
∑n

i=1(Yi− Ŷi)
2 = (Y − Ŷ )(Y − Ŷ )t =

Y t(In − P )(In − P )Y = Y t(In − P )Y

• For
∑n

i=1(Ŷi − Ȳ )2 = Y tPY − nȲ 2, we have
∑n

i=1(Ŷi − Ȳ )2 = Ŷ tŶ − 2Ȳ Ŷ tIn +

Ȳ 2I tnIn. Alternatively, for the least squares model: X tY = X tXÂ. Consequently:
X tY = X tXÂ = X tŶ , then we multiply the two parts by 1

n
1n, we get : X t 1

n
Y In =

X t 1
n
Ŷ In =⇒ X tȲ = X t ¯̂Y . Therefore, Ȳ =

¯̂
Y . Where :

∑n
i=1(Ŷi − Ȳ )2 =

Ŷ tŶ − 2Ȳ Ŷ t1n+ Ȳ 21tn1n = Ŷ tŶ −nȲ 2 = Y tPY −nȲ 2. This effectively develops
as: ∑n

i=1(Yi − Ȳ )2 =
∑n

i=1(Ŷi − Ȳ )2 +
∑n

i=1(Yi − Ŷi)
2

Cause,
∑n

i=1(Yi − Ȳ )2 = Y tY − nȲ 2 + Y t(In − P )Y = Y tPY − nȲ 2.

Calling the degrees of freedom of Y tMY the rank of the matrix M , where Y is
a random vector of Rn and M(n, n) is a non-random matrix. Typically, a chi-square
distribution is used to represent degrees of freedom. Indeed, it’s shown that if y is
a random vector with Gaussian distribution N(µ, δ2In) and if M is the matrix of a
projector, then Y tMY follows a non-central chi-square distribution, with non-centrality
parameter 1/2µtAµ and degrees of freedom equal to the rank of M [12]. Below are the
various sums of squares’ corresponding degrees of freedom.

Proposition 1.3: The sums of squares SST, SSE, and SSR are associated, respec-
tively, with degrees of freedom (n-1), (n-p), and (p-1). This allows us to define the
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following mean square sums:

MST =

∑n
i=1 Y Y 2

i − nȲ 2

n− 1
.

MSE =

∑n
i=1(Yi − Ȳi)

2

n− p
.

MSR =

∑n
i=1 Ŷ

2
i − nȲ 2

p− 1
.

(With the notation MS denoting the mean square sum).
Proof : According to the previous proposition, we have:∑n

i=1(Yi − Ȳ )2 = Y tY − nȲ 2 = Y t(In − 1
n
1n1

t
n)Y and since 1

n
1n1

t
n = 1n(1

t
n1n)

−11tn is
the orthogonal projector onto ImX of Rn, so (In − 1

n
1n1

t
n) is the orthogonal projector

onto the subspace (ImX)⊥ of Rn. Hence the matrix (In − 1
n
1n1

t
n) for the renk n − 1

cause the dimension of (ImX)⊥ equal to n− 1.
Similarly to preceding:

∑n
i=1(Ŷi − Ȳ )2 = Y tPY − nȲ 2 = Y t(P − 1

n
1n1

t
n)Y , if

1n ⊂ ImX So, it is also found in the kernel of P − 1
n
1n1

t
n and the rank of P − 1

n
1n1

t
n

is equal to p− 1 [11].

2.2.3 Statistical Tests

The outcomes of the analysis of variances are used in these tests. Under specific
conditions, they permit the computation of three often used statistics:

The multiple correlation coefficient R2:
The ratio of the part of the results that the model can explain to the full quantity that
it should explain is known as R2 :

R2 =

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

=
SSR

SST
= 1− SSE

SST

According to this formula, we can see that the R2 ratio varies between 0 and 1. The
adjusted model is considered to be "close" to the observed responses as R2 approaches
1. A classical approach consists of verifying the model according to R2 ≥ 0.95.

The Fisher test F :
The real Fisher coefficient is called:

F =

SSR
p−1

SSE
n−p

A high Fisher’s F-value suggests that the computed answers, or regression variance,
is greater than the residual variance. In that case, there is an extremely little chance
that any of the model’s coefficients are zero. A low probability (p-value) and a high
Fisher’s F-value are necessary for significant coefficients. If F > F1−α,p,n−p−1, the model
will be termed globally significant. It is also possible to state that a model has higher
quality when the adjustment variance is smaller than the experimental variation [13].

2.2.4 Residual Analysis

It is the residuals represented graphically. Plotting the "X−" and "Y−" axes respec-
tively shows the values of the responses that the model Ŷi anticipated and the residuals
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ei. The appearance of random distribution in the residuals is investigated. If the points
(Ŷi, ei) seem to be arranged randomly, the model is becomes acceptable.

2.3 Error Transmission
Based on experimental error, the answers that the researcher measures are unpre-
dictable variables. This error may be calculated from a sample and estimated by the
population standard deviation. The factor levels and the mathematical model selected
a priori aren’t considered as random variables since it’s expected that they don’t add
any errors. Consequently, there’s no mistake introduced by the matrix X and it’s not a
random variable. Only the matrix Y is a matrix whose elements are random variables.
Because of a connection, changes in any one of the matrix’s members might cause
variances or errors in the mathematical model’s coefficients.

Â = (X tX)−1X tY

Random variables make up the coefficients that the least squares technique determines.
Consequently, when included into a mathematical relationship, they produce additional
random variables. For example, because of the relation, the expected replies are random
variables:

Ŷ = XÂ

According to this brief analysis, the position of experimental points inside the research
domain, the degree of errors in the measured responses, and the model selected a priori
will all influence the errors in the model coefficients and predicted responses. The
connections that exist between these various faults will now be thoroughly examined.

2.3.1 Precision on Coefficients

The primary diagonal of V (Â) in equation (2.2) indicates where the coefficient variances
are placed. For our proposed use, the above formula becomes:

DiagV (Â) = σ2
rDiag(X tX)−1 (2.3)

This variance connection, which highlights the existence of three separate components
causing mistakes in the coefficients, is quite important. These elements consist of :

• The inaccuracy in the replies that resulted from using the initial σ2
r ,

• Where the experimental points are located,

• The mathematical model that was selected beforehand(a priori).

2.3.2 Precision on Predicted Responses

Computed coefficients make it easier to compute replies for the whole research domain
when using the least squares approach. When no experiments have been done in the
research domain, this suggests the capacity to estimate responses for all points in it.
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In the research domain, the expected response at a point p, which is described by its
coordinates, is provided by [9]:

Ŷp = XpÂ

Assuming that p represents an experimental point in the experimental design, a row of
the matrix X corresponds to the matrix-vector Xp. The row vector Xp is the modeled
vector of point p, and the matrix of coefficients obtained by the least squares approach
is A. The estimated response is impacted by the coefficients’ uncertainty:

v(Ŷp) = var(XpÂ)

Assumed by hypothesis, the coordinates of the experimental points are precisely known
and don’t lead to errors. The row matrix Xp in this equation depends on the coordinates
of a point in the research domain. Consequently, we are able to remove the brackets
from the modeled vector of point p :

var(Ŷp) = X t
pvar(Â)X

t
p

The variance of Â in this formula is known, and it is determined by:

V (Â) = σ2
r(X

tX)−1

The variance of the calculating response for p points is :

var(Ŷp) = X t
pσ

2(X tX)−1Xp

This relationship allows for the calculation of the uncertainty in the calculated response
at point p. It is observed that this error in the calculated response (or predicted
response) depends on four quantities :

• The experimental error in the measured responses,

• Point p’s location inside the research region,

• The set of points used to establish the coefficients of the model that is, the actual
experimental design,

• The hypothesis that was selected to clarify the results ( through the use of the
residual variance and the matrix for calculating coefficients).

2.3.3 Prediction Variance Function

The type of experimentation, the precision of the technology used, the experimenter’s
expertise and care, and several other factors are all under the experimenter’s control and
determine the error produced on the measured answers. These variables are dependent
on actual experimental practice rather than theory on experimental designs. In order to
separate this experimental portion from the theoretical portion, the prediction variance
function d2(Ŷp) is given by [9] :

d2(Ŷp) = X t
p(X

tX)−1Xp
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The prediction error function may be obtained by taking the variance function’s square
root:

d(ŷp) = [X t
p(X

tX)−1Xp]
1
2

In the research region, we can plot curves with identical prediction errors. Curiously,
the prediction error function is independent of the experiment results, that is, the
measured response values. Fundamentally, it is dependent on the postulated model
and the locations of the experimental points inside the research region. As a result, we
can determine, before starting the experiment, how the model and experimental point
locations will impact the precision of the predicted answers. The link between them
may be shown as follows by presenting the prediction variance function and standard
deviations:

d(Ŷp) = [σ2
rX

t
p(X

tX)−1Xp]
1
2

The anticipated replies are more accurate than the measured responses if the prediction
error function is less than 1. If the prediction error function is greater than 1, it is the
opposite. In general, we make sure that the experimental error is not more than the
forecast error. As a result, predictions in areas where the prediction error function is
larger than unity are avoided.

2.4 Optimality Criteria
Quantitative criteria must be used to assess the quality of the structure of a set of points
extracted from a database or an experimental design. The quality of an experimental
design may be assessed using a variety of metrics, among other things.

According to the chosen criteria, the placement of experimental points may vary
from one design to another. There are several optimality criteria, some of which focus
on the distribution of variance within the study domain.One such criteria is the cri-
terion of isovariance by rotation [14]. The goal of optimality criteria is to produce a
mathematical model of superior quality. The precision of the model coefficients is the
main emphasis of these requirements.

2.4.1 Quality of Coefficient Representation

According to several authors, the limit of the confidence domain of the coefficients is
given by the relationship [14]:

(A− Â)(X tX)(A− Â) = qs2Fα(p, v) (2.4)

With :
- s2 it’s an estimation of the experimental variance,
- F is the statistic corresponding to the Fisher’s test,
- v is the chosen confidence level.
The calculated vector Â serves as the center of this domain, which is a hyperellipsoid

in the coefficient space. We may conclude that this hyperellipsoid contains the real
values of the coefficients with a risk alpha. The hyperellipsoid is graphically shown for
two coefficients as:
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Figure 2.2: confidence ellipsoid

The two coefficients identified via multilinear regression are (â1, â2) and the two
ellipsoid eigenvalues are (λ1, λ2). The performance of all observations for a specific
model is represented by this hyperellipsoid. Three descriptions apply to it:

• Volume : π(λ1λ2)
1
2 = π(det(X tX)−1)

1
2 is the ellipsoid’s volume. The determinant

of the dispersion matrix (X tX)−1 is linked to this volume. We approach the
real solution of A by decreasing the volume, which causes the hyperellipsoid to
gravitate more towards a point.

• Form : When the shape is very elongated, there is a large disparity in the precision
of the coefficients.
The ellipsoid becomes a hypersphere when (λ1 = λ2), implying that all coefficients
are determined with the same precision.

• Orientation : A coefficient’s calculated value is independent of the other coeffi-
cients’ calculated values if the hyperellipsoid’s primary axes are parallel to the
coefficients’ axes.

According to the formula (2.4), the hyperellipsoid depends on the dispersion
matrix (X tX)−1, so the criteria are based on the matrices (X tX) and (X tX)−1.

2.4.2 Criterion A

Minimize the sum, or average, of the variances of the parameter estimates.

min

p∑
i=1

1

λi

;
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2.4.3 Criterion D

A design is D-optimum if it maximizes the value of |XTX| , that is the generalized
variance of the parameter estimates is minimized.

min

p∏
i=1

1

λi

;

2.4.4 Criterion E

Minimize the variance of the least well-estimated linear combination AT β̂ with ATA = 1

minmax
i

1

λi

;

2.4.5 Criterion G

A G-optimum design minimizes the maximum over the design region X of the stan-
dardized variance d(x, ξ) . For some designs this maximum value equals:

d̄(ξ) = max
x∈X

d(x, ξ).

2.4.6 Criterion M

Using the M-criterion allows consideration of the experiment’s quality of results.The
quantity of trials in the experimental design has impact on this criteria. The moment
matrix, is defined by :

M =
(X tX)

N

Two experimental design matrices, which might not contain the same number of exper-
iments, can be compared. In terms of the M-criterion, we will agree that the first plan
is more effective than the second if: |M1| > |M2| and we have two moment matrices
associated with two experimental design matrices composed respectively of N1 and N2

experiments:

M1 =
(X t

1X1)

N1

M2 =
(X t

2X2)

N2

2.4.7 Criterion of Orthogonality

Once estimates of independent coefficients can be obtained, an experimental design
matrix is considered orthogonal. Parallel to the coefficients’ axes are ellipsoid axes
that define this. A diagonal X tX, or one in which the coefficient covariances are zero
as well [15], is required to satisfy this condition.
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2.4.8 Criterion of Near Orthogonality

The nearly orthogonality criteria is obtained if the submatrix created by eliminating
the first row and first column of the matrix (X tX)−1 is diagonal.

2.4.9 Criterion of Isovariation by Rotation

It is desired that, for sites situated at equal distances from the research domain’s center,
the responses computed using the model obtained from the experimental design have
the same prediction error. This type of design is known as a rotationally invariant
(rotable) design.
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Chapter 3

Screening Designs

Screening experimental designs are essential tools in research and development for
identifying the most influential factors among a large number of variables. They al-
low experimental efforts to be concentrated on the most significant variables, thereby
reducing the time and costs associated with testing. This chapter explores different
screening methods, focusing on their design, application, and effectiveness. We will
present the theoretical foundations of these designs, followed by practical examples,
and discuss the advantages and disadvantages of each experimental design.

3.1 Full Factorial Designs at Two Levels
The most simple factorial design consists of two levels. There are usually only two
levels (a lower and an upper value) for each element in these designs. Both discrete
and continuous variables can be employed randomly with them [16].

3.1.1 Construction of Full Factorial Designs at Two Levels

Trials matrix
A factor has to be given at least two levels in order to be studied in relation to

a response. To study two factors 1 and 2, each with two levels, we need to perform
22 = 4 trials. The operating conditions for each trial are described in Table 3.1:

Table 3.1: Experiences matrix of 22 design

Trials N° Factor 1 Factor 2
1 -1 -1
2 1 -1
3 -1 1
4 1 1

The number of trials that need to be done for three factors is 23 = 8 trials. Table
3.2 specifies the trial or experiment matrix.
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Table 3.2: Experiences matrix of 23 design

Trial N° Factor 1 Factor 2 Factor 3
1 -1 -1 -1
2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

This design family is called "2k design" as for k factors, the number of trials is 2k.
The trial matrix involves 2k rows and k columns. It’s made simply by:

- The 1st factor’s column switching between -1 and +1.
- The 2nd factor’s column every 2 rows,switching between -1 and +1.
- The 3rd factor’s column every 4 rows,switching between -1 and +1.
- The 4th factor’s column every 8 rows,switching between -1 and +1.
And so on for a higher number of factors.

Experimental field
The experimental space of factors with k dimensions can be used to describe the

study domain. A square is obtained when k = 2. The four segments of the square
represent the position of the experimental points(fig 3.1).

Figure 3.1: 22 design’s study field

With eight segments representing the eight design experiments, a cube shows the
experimental field for k = 3 (fig 3.2).
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Figure 3.2: 23 factorial design’s experimental field

The experimental points remain at the segments of a k-dimensional hypercube, even
if the geometric representation of the field is no longer possible when k > 3.
Analysis and interpretation

We found it easier to demonstrate the concepts with a 22 factorial design as the most
basic example, and to progressively increase the number of factors until we reached the
2k design.

3.1.2 Two-Factor Factorial Design

The field of study is a square for two factors. An example of a fully realized two-
factor factorial design is shown in Figure (3.1). In relation to each factor, the proposed
mathematical model is a first-degree model:

Y = â0 + â1x1 + â2x2 + â12x1x2 (3.1)

with:

• Y is the response.

• xi represents the level assigned to factor i.

• â1(resp â2 )the principal effect of factor 1 (resp) 2.

• â12 interaction between factors 1 and 2.

Factor effect : The tester who conducted the trials has four values for the response:
y1,y2,y3 and y4. Therefore,we have a system of four equations with four unknowns.
The unknowns are the coefficients of the model: â0,â1,â2,â12. By replacing the
values of xi into the ralation we had in (3.1), we obtain:

â0 = y1 + y2 + y3 + y4

â1 = −y1 + y2 − y3 + y4

â2 = −y1 − y2 + y3 + y4

â12 = y1 − y2 − y3 + y4
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The resolution of that system gives us:

â0 =
1

4
(y1 + y2 + y3 + y4) (3.2)

â1 =
1

4
(−y1 + y2 − y3 + y4) (3.3)

â2 =
1

4
(−y1 − y2 + y3 + y4) (3.4)

â12 =
1

4
(y1 − y2 − y3 + y4) (3.5)

Meaning of a0
The center of the study field is defined if we set both x1 and x2 to zero. After
then, the relation (3.1) becomes:

y = â0

The response value in the center of the research domain is represented by the
coefficient a0. Equation (3.2) also demonstrates that the mean of the four replies
could be considered as a1.

Meaning of a1
Let us now situate ourselves at the midpoint of factor 2. Let’s set x2’s value to
zero in order to do this. The relation (3.3) turns into:

y = â0 + â1x1

Plotting the development of the anticipated response on a slice plane with x2 = 0
is made possible by this relationship (Figure 3.3). When factor 1 increases from
a low to a high level, the response varies, showing the influence of factor 1.

Figure 3.3: Factor’s 1 effect

The mean response value at the high (or low) level of factor 1 is denoted by y+
(or y−).
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Meaning of a12
The relationship (3.5) can be written as:

y =
1

2
[
1

2
(y4 − y3)−

1

2
(y2 − y1)] =

1

2
(ỳ+ − ỳ−)

Between the impact of factor 1 at the high level of factor 2 (effect indicated
ỳ+) and the effect of factor 1 at the low level of factor 2 (effect noted ỳ−), the
interaction appears to correspond to the half of the difference. It shows how the
degree of one factor affects the other, reflecting variations in the effects of both.

Calcul of factor effect: Let’s go back to the formula (3.3) that gave the effect of
factor 1 :

â1 =
1

4
(−y1 + y2 − y3 + y4)

We not that:

-All answers are involved to the calculation of the effect.

-Each response is preceded by a sign, and that the following one are the same as
the column for Factor 1 in the experimental matrix (table 3.1).

-There’s a coefficient here 1
4

,which the denominator is equal to the number of
trials made.

-We multiply each response by the corresponding sign from the factor’s column,we
add the products, and then divide the sum by the number of trials.

Effect matrix: As we just saw, the effects may be calculated via to the signs in the
experimental matrix. But you would also need to figure out the mean and the
interaction.

Mean calcul : The calculation process adopte for the effects can be applied
using a column of positive signs (+) because it’s the only sign in formula (3.2).

Interaction calcul : The following signs of relation (3.5) are + − −+ . Each
sign comes from the product of x1.x2 showing in relation (3.1). This sequence of
signs can be found as follows : write in column the signs belongs to x1 and x2

then we product the scalar of the corresponding elements in the columns of the
factors. 

−1 −1 1
1 −1 −1
−1 1 −1
1 1 1


With the experience matrix in hand, it is easy to construct the effects matrix
(Table 3.3) by adding a column with a plus sign for the mean and calculating
that of the interaction as previously done.
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Table 3.3: Matrix effects for a 22 design

Trials N° Mean Factor 1 Factor 2 Interaction 12
1 1 -1 -1 1
2 1 1 -1 -1
3 1 -1 1 -1
4 1 1 1 1

Box notation: Factor 1 (resp 2) signals will be represented by the column that is
defined 1 (resp 2).The sequence of signs for the interaction between components
1 and 2 may be obtained by multiplying these two columns using the method
described in the preceding paragraph. Therefore, we define multiplication for an
algebra of sign columns, and we introduce it by expressing the column of signs
for this interaction as 12. If we multiply a column of signs by itself, we obtain a
column containing only plus (+) signs. This column will be marked as I. Leading
to :

1.1=I and for the same 2.2=I.

3.1.3 Three-Factor Factorial Design

An example:
For road network maintenance, oil companies are required to prepare bitumen emul-

sions. These emulsions must remain stable from their production to their placement.
The study we present aims to investigate the stability conditions of bitumen emulsion
based on its composition.The manager has identified three factors [16]:

Factor 1 : Low and high concentration of fatty acid.

Factor 2 : Highly and slightly diluted hydrochloric acid.

Factor 3 : Nature of bitumen A and B.

On the stability of a bitumen emulsion. The implemented plan is a 23, 3 factors with
2 levels per factor. This plan totals 23 = 8 experiments. Figure (3.2) provides the
geometric representation of the experimental design. To calculate the effects of each
factor, we construct the effect calculation matrix (Table 3.4).

Table 3.4: effect matrix of 23 design

Trial N° Mean 1 2 3 12 13 23 123 responses
1 1 -1 -1 -1 1 1 1 -1 38
2 1 1 -1 -1 -1 -1 1 1 37
3 1 -1 1 -1 -1 1 -1 1 26
4 1 1 1 -1 1 -1 -1 -1 24
5 1 -1 -1 1 1 -1 -1 1 30
6 1 1 -1 1 -1 1 -1 -1 28
7 1 -1 1 1 -1 -1 1 -1 19
8 1 1 1 1 1 1 1 1 16

Effects 27,25 -1 -6 -4 0,25 0,25 0,25 0
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Only effects 2 and 3 are significant.

Figure 3.4: effect of factor 2, factor 3 on the stability of a bitumen emulsion

Study conclusions:
The concentration of fatty acid has practically no influence on the stability of the

emulsion. On the other hand, the dilution of hydrochloric acid is an important factor
with a negative effect. The nature of the bitumen is also important; the best stability
will be obtained with bitumen B, with no significant interaction.

Note :
When the response decreases as the matching factor moves from level -1 to level

+1, the effect is negative.

3.1.4 Four-Factor Full Factorial Design

The prior method may be applied more broadly when there are four, five, or more
elements. The full factorial design for four elements has 24 = 16 trials. Sixteen pieces
of information are included in the matrix of effects in terms of:

-the effects of each of the 4 factors.
-the interactions of the second order 12, 13,. . . , etc., the number that is marked by

C2
4 = 6.

-the third-order interactions,123,124,. . . ,etc.the number that is marked by C3
4 = 4.

-The fourth-order interaction 1234, which is unique.
-The mean, which is unique.

3.1.5 2k Full Factorial Design

According to these designs, there are k factors, two levels for each. The polynomial
used as the mathematical model accounts for the mean, the effects of each factor, and
the interactions between factors are taken two by two.

Y = â0 +
∑

âixi +
∑

âijxixj (3.6)

In matrix form, we replace the xi by their values in centered reduced coordinates :

Y = XÂ (3.7)
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Reviewing the 22 plan’s system, equation (3.7) looks like this:
y1
y2
y3
y4

 =


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1



â1
â2
â3
â4


The Hadamard matrix, or matrix X, is orthogonal when it relates to two-level factorial
designs. One of its essential features is that X tX = NI, where N is the number of
trials and I is the identity matrix. By replacing this equation in formula (2.1), we get:

Â = (X tX)−1X tY = (NI)−1X tY

With :

Â =
1

N
X tY

3.1.6 Optimality of 2k Designs

A minimum variance var(Y )/N , is estimated for each effect and interaction indepen-
dently.

3.1.7 Advantages and Disadvantages of Full Factorial Designs
at Two Levels

• There are lots of advantages to factorial designs [17]; we will focus on the essential
ones here:

- Constructing full factorial designs is simple.

- There are less risks of error and the trials are simple to manage because each
factor only requires two levels.

- Effects and interactions are fairly easy to calculate.

- Any experimenter may interpret the results; an advanced knowledge of statistics
isn’t necessary.

- Partially or fully, the results from an original design might be applied for study-
ing a different section of the experimental field or to develop a higher-order math-
ematical model.

• Having to run a large number of trials rapidly becomes a disadvantage of these
systems. It is also not possible to create models of second degree and higher
while only primary effects and interactions can be calculated.

3.2 Fractional Factorial Designs at Two Levels
As we just saw, the number of experiments rises quickly as the number of factors
evaluated grows when using complete factorial designs [18]. This is the reason why
fractional factorial designs are preferred by the testers. Less trials are carried out at
the risk of information loss, which is often not frightening.
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3.2.1 Definition of Fractional Factorial Designs

It is usually observed in practice that interactions with orders of three or higher are
frequently negligible. The full factorial design therefore proposes 25 = 32 tests for five
factors, while we are only interested in 16 information points.

- The unique mean.
- The effects of the factors.
- The second-order interactions, of which there are C2

5 = 10.
It is unfortunate that 32 trials must be conducted in order to obtain just 16 pieces of

information. Fractional factorial designs suggest using the effect matrix of full factorial
designs 2k−1 , 2k−2 or 2k−p for the analysis of k factors. The advantage of these designs
is clear: the experimental load is divided by 2p, as 2k−p = 2k

2p
[6].

3.2.2 Theory of Aliases

Turning back to the previous example. The experimenter conducted eight trials. Sup-
pose that the experimenter does 23−1 = 22 = 4 experiments, or just half of the total.
Of course, the responses are the same as in the preceding case, and Table 3.5 shows
the experimental design matrix.

Table 3.5: experiences matrix (Study of a bitumen emulsion)

Trial N° 1 2 12 Y
1 -1 -1 1 y1 = 30
2 1 -1 -1 y2 = 37
3 -1 1 -1 y3 = 26
4 1 1 1 y4 = 16

We can compare the effects calculated from this fractional design with those from
the full design (table 3.6).

Table 3.6: Comparison of the calculated effects

Effects Full design Fractional design
Mean 27,25 27,25

1 -1 0,75
2 -6 -6,25
3 -4 -5,25

The results obtained are identical to the ones that were attained using the whole
eight-experiment design. Seems like we can get the same results with less work. Let’s
check the effect 3 value and interaction 12 that were calculated using the full design.
3rd factor effect :

â3 =
1

8
(−y1 − y2 − y3 − y4 + y5 + y6 + y7 + y8)

Interaction between the first factor and the second:

â12 =
1

8
(+y1 − y2 − y3 + y4 + y5 − y6 − y7 + y8)
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Adding them up:

â3 + â12 =
1

4
(−y2 − y3 − y5 + y8)

Then, we found the quantity :

c3 = â3 + â12 = −4, 25

This means that c3 is equal to the main effect a3 increased by the interaction â12. We
say that â1 and â12 are aliased. The quantity c3 can be called an alias, contrast, or
simply effect.

We also see that :

c1 = â1 + â23 = −0, 75

c2 = â2 + â13 = −6, 25

The model of the 23−1 fractional design can be written as:

Y = c0 + c1x1 + c2x2 + c3x3

3.2.3 Hypotheses of Interpretation

1st Hypothesis
Interactions of the third order or higher order are considered as negligible.

2nd Hypothesis
A neutral contrast can indicate what follows:
- We will focus on the most probable case, which is that all of the aliased effects

are null.
- That the aliased effects cancel each other out. This hypothesis is unlikely and is

not retained.
3rd Hypothesis

We shall be careful of an interaction between two strong impacts, as it may also be
strong.
4th Hypothesis

If two effects are small, we will assume that their interaction is also small.

3.2.4 Calculation of Contrasts

Consider the effects matrix of a 23 design, where trials were ordered to highlight two
22 designs for factors 1 and 2. The 23 design was divided into two half-plans (Table
3.7).
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Table 3.7: Matrix for calculating contrasts for the two fractional half-plans

Trial N° I 1 2 3 12 13 23 123
5 1 -1 -1 1 1 -1 -1 1
2 1 1 -1 -1 -1 1 1 1
3 1 -1 1 -1 -1 -1 -1 1
8 1 1 1 1 1 1 1 1
1 1 -1 -1 -1 1 1 1 -1
6 1 -1 1 1 -1 1 -1 -1
7 1 1 1 1 -1 -1 1 -1
4 1 1 -1 -1 1 -1 -1 -1

Consider the higher half plan. In Box notation, we can see that 3 and 12 are
equivalent as they have the same sign sequence +−−+. We could write:

3 = 12

However, we had previously demonstrated :

c3 = â3 + â12

So, 3 = 12 is equivalent to c3 = â3 + â12. This equivalence relationship holds in both
directions and forms the basis of aliasing theory. Similarly, we can show that:

1 = 23 equal to c1 = â1 + â23
2 = 13 equal to c2 = â2 + â13

In the higher half plan, we can find these relations. The two columns with a positive
(+) sign allow us to write:

I = 123

By successively multiplying this connection, known as the alias generator, by 1, 2, and
3:

1.I = 1.123 = 12231 = 23

2.I = 2.123 = 1.2232 = 13

3.I = 3.123 = 1.2.323 = 12

3.2.5 Practical Construction of a Fractional Design

Choosing a complete factorial design and writing its calculation matrix without includ-
ing the plus (+) sign column is the foundation of the practical contraction. The term
"basic design" refers to this new grid. In this base, we designate an extra component
to a column of signs that corresponds to an interaction. The indicators of the chosen
interaction become the high and low research levels for this extra component.

We can generalize this method and use all the columns of a basic design. For exam-
ple, to illustrate this construction of fractional designs, let’s take a basic design of 23,
the effects matrix includes 3 second-order interactions and one third-order interaction.
The full factorial design allows studying three factors on columns 1, 2, and 3.
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Table 3.8: Fractional Factorial Design for 3 factors

Trial N° I 1 2 3 12 13 23 123
1 1 -1 -1 -1 1 1 1 -1
2 1 1 -1 -1 1 -1 1 1
3 1 -1 1 -1 -1 1 -1 1
4 1 1 1 -1 1 -1 -1 -1
5 1 -1 -1 1 1 -1 -1 1
6 1 1 -1 1 -1 1 -1 -1
7 1 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1 1

In order to examine four factors, we take the first three sign columns for the first
three factors and select a column for the fourth component that represents an inter-
action. For clarification, let’s take the interaction 12 column and write that the levels
described by this interaction’s signals are given to the extra factor 4:

4=12

Hence the alias generator:

4.4=4.12
I=124

Successively ,multiplying this generator by 1, 2, 3, and 4, we get:

1=24 is equal to c1 = â1 + â24
2=14 is equal to c2 = â2 + â14
4=12 is equal to c3 = â3 + â12

3=1234 is equal to c4 = â4 + â1234

We could aliased the 4th factor in an other interaction and obtained other contrast
values. It is absolutely possible to study two additional factors, 25−2 design. We can
selected as aliases :

4=12
5=13

hence, the independent aliase generators :

I=124
I=135

If we multuply those two generator, one by one .We obtain:

I.I=124.135
I=2345

Two additional factors introduce an alias group with four terms:

I=124=135=2345
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Using this group, we are able to see how the fractionner design aliases the components
and interactions in the calculat contract. For example to identify the constract c1 , we
multiply all the terms of groupe by the first column :

1.I=1.124=1.135=1.2345
1=24=135 is equal to c1 = â1 + â24 + â135 + â2345

In a based 24 design, the effects matrix has six second-order interactions, four third-
order interactions, and one fourth-order interaction. The full design allows for the
examination of four factors: 1, 2, 3, and 4. The full design has 256 effects and interac-
tions to evaluate 8 factors, while the 28−4 = 24 design only allows for 16 contrasts. To
investigate the other four factors, four interactions are required :

5 = 123

6 = 124

7 = 134

8 = 1234

The four independent alias generators are:

I = 1235 = 1246 = 1347 = 12348

The dependent generators are calculated from the independent generators by multi-
plying them pairwise, three at a time, and four at a time.

Multiplying pairwise :

1235.1246 = 3456

1235.1347 = 2457

1235.12348 = 458

1246.1347 = 2367

1246.12348 = 368

2347.12348 = 278

Multiplying three at a time :

1235.1246.1347 = 1567

1235.1246.12348 = 12568

1235.12347.12348 = 13576

1246.12348.1347 = 14678

Multiplying four at a time :

1235.1246.1347.12348 = 2345678

The group of alias generators will thus be:

I = 278 = 368 = 458 = 1235 = 1246 = 1347 = 3456 = 2457 = 2367

= 12348 = 1567 = 2568 = 13578 = 14678 = 234578.
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Here is the complete calculation for factor 1:

c1 = â1 + â235 + â246 + â347 + â567 + â1278 + â1368 + â1458 + â13456 + â12457 + â12367

+ â12568 + â2348 + â3578 + â4678 + â12345678

Furthermore, if we neglect interactions of order more than three, we may write:

c1 = â1, c5 = â5 + â48, c12 = â12 + â35 + â46, c24 = â24 + â16 + â57,
c2 = â2 + â78, c6 = â6 + â38, c13 = â13 + â25 + â47, c34 = â34 + â17 + â56,
c3 = â3 + â68, c7 = â7 + â28, c14 = â14 + â26 + â37, c234 = â234 + â18,
c4 = â4 + â58, c8 = â8 + â45 + â36 + â27, c23 = â23 + â15 + â67,

3.2.6 Concept of Resolution

We discovered that in a fractional factorial design, primary effects are aliased by inter-
actions with varying orders. A design’s resolution [X] equals to 1 plus the lowest-order
interaction’s order value. For example, if a major effect is aliased by interactions with
orders 2, 3 and 4,the resolution is 1 + 2 = 3. The resolution is frequently expressed in
Roman numerals.

3.2.7 Adventages And Disadvantages

On two levels, the advantages of fractional factorial designs are identical to those of
full factorial designs. But they also make it possible to get around the latter’s primary
disadvantage, which is a huge number of trials. The capacity to do the task in a
sequential manner is a significant advantage. As an example, one can begin with a
26−3 design and carry out additional tests by conducting a second 26−3 design if more
trials are required to settle ambiguities. Adding this to the initial design results in two
26−3 designs, or 2 · 26−3, which can be more simply expressed as 26−2.

Given all of these advantages, there are just a few disadvantages. The most im-
portant consideration is that the experimenter make an effort to acquire the use of
fractional factorial designs.

3.3 MOZZO’s Designs
Two advantages of Mozzo’s designs [8] are their sequentiality and the limited number
of levels that can be studied. Twelve trials allow us to study four factors, and we can
begin by examining two factors in three trials. To examine a third factor, we need only
realize three additional trials (the 4th,5th and 6th trials from the table 3.9).

Not every design created by Mozzo permits the creation of a second-degree model.
It is vital to use Mozzo’s nested quadratic designs in these situations.
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Table 3.9: Mozzo’s design for 2, 3 and 4 factors

Trials N° Factor 1 Factor 2 Factor 3 Factor 4
1 0,268 1 -1 -1
2 0,732 -0,732 -1 -1
3 -1 -0,268 -1 -1
4 -0,268 -1 1 -1
5 -0,732 0,732 1 -1
6 1 0,268 1 -1
7 -0,268 -1 -1 1
8 -0,732 0,732 -1 1
9 1 0,268 -1 1
10 0,268 1 1 1
11 0,732 -0,732 1 1
12 -1 -0,268 1 1

3.3.1 MOZZO’s Design for Two Factors

It is a design for evaluating two factors in three trials. The experimental points build
a triangle. Figure 3.5 shows one of the alternative arrangements for this triangle :

Figure 3.5: Study field of Mozzo’s design for two factors

Given that there are just a few experimental points, the mathematical model is
quite basic. It is a first-degree model that is without interactions.

Y = â0 + â1x1 + â2x2
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By writting the X matrix

X =

1 0.268 1
1 0.732 −0.732
1 −1 −0.268


Matrix X tX is calculated immediately as

X tX =

3 0 0
0 1.608 0
0 0 1.608


The matrix X is orthogonal. It can be observed that the elements of the first-degree
terms are equal. As a result, this plan also satisfies the criterion of rotation isovariance.

3.3.2 MOZZO’s Design for Three Factors

These are the first six experiments from Table 4.8. Figure 3.6 shows the arrangement
of the experimental points in the experimental space.

Figure 3.6: Study field of Mozzo’s design for three factors

Considering there are six experimental points, we could theoretically determine six
unknowns. As a result, we can construct a first-degree model with interactions. But
because of the points’ arrangement, we are unable to get interaction with the third
element. We can only discuss the interaction between factors 1 and 2. Thus, the model
is:

Y = â0 + â1x1 + â2x2 + â3x3 + â12x1x2

Writting the X matrix

X =


1 0.268 1 −1 0.268
1 0.732 −0.732 −1 −0.536
1 −1 −0.268 −1 0.268
1 −0.268 −1 1 0.268
1 −0.732 0.732 1 −0.536
1 1 0.268 1 0.268


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We can calculate the matrix to see if orthogonality is still preserved.

X tX =


6

3.22
3.22

6
0.86


3.3.3 Advantages and Disadvantages

• The main advantage of these designs is the very limited number of trials required.
For two factors, only three trials need to be conducted, with each factor taking
three levels.

• The disadvantages of Mozzo’s design are: the design does not exist for any number
of factors, and the selected model generally does not account for all interactions
between factors.
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Chapter 4

Exploration of Experimental design
for response surface

This chapter will present the fundamental principles of response surface designs,
illustrated with practical examples. We will discuss the advantages and disad-
vantages of these designs, as well as strategies for their effective implementation.
By exploring these concepts, we will provide researchers and practitioners with
powerful tools to design and optimize their experiments, ensuring robust and
reliable results.

4.1 Full Factorial Designs at Three Levels

These designs allow the study of k factors with three levels for each factor. The
designation for these plans is 3k, where k represents the number of factors that
we will study and three represents each factor’s three levels. This notation also
specifies the number of trials to be undertaken [19].

4.1.1 Construction of Full Factorial Designs at Three Lev-
els

The three-level designs will all be defined as follows:

• The sequence of the first factor’s numbers is -1, 0, +1;-1, 0, +1;. . .

• The second factor’s numbers are -1,-1,-1, followed by 0, 0, 0 and +1, +1,
+1,. . . ,-1,-1,-1; 0, 0, 0; +1, +1, +1;. . .

• The third factor will have 9 levels equal to -1, followed by 9 equal to 0, then
9 equal to +1.

• The fourth factor will have 27 levels of -1, followed by 27 levels of 0, then
27 levels of +1.

• And so on . . .
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For two factors, the number of experiments needed is 32 = 9 trials. The table
4.1includes details about the experience matrix.

Table 4.1: Experience Matrix for a 32 design

Trials N° Factor 1 Factor 2
1 -1 -1
2 0 -1
3 1 -1
4 -1 0
5 0 0
6 1 0
7 -1 1
8 0 1
9 1 1

The figure 4.1 shows the study’s field.

Figure 4.1: Study’s field of 32 design

For 3 factors, we obtain a cube with twenty-seven trials as indicated in the figure
4.2.

Figure 4.2: Study’s field of 33 design
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4.1.2 Advantages and Disadvantages

• Althought the model adopted by these designs is of second degree.The ad-
vantages of full factorial designs with three levels are the same as those of
full factorial designs with two levels.

• The basic disadvantage of these designs is that as the number of factors
rises, the design size might grow greatly.

4.2 Composite Designs

A composite design [20, 21] consists of three parts:

1. A factorial design where the factors take two levels.

2. At least, there should be an experimental point in the center of the study’s
regions.

3. Axial points. These experimental points are located on the axes of each of
the factors.

using a composite design. The sum of the trials from the factorial design nf , the
star design nα, and the center n0 equals the total number of trials N that need
to be done by :

N = nf + nα + n0

Figure 4.3 shows a composite design for two elements. Points A, B, C, and D
are the experimental points in a 22-plan. Point E is the center point. This point
may have been repeated one or more times. F, G, H, and I are the axial points.
The remaining four points form what is termed as the star design.

Figure 4.3: Composite design for two factors
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We run nine trials, and six coefficients must be determined. Consequently, it is
necessary to solve a system of nine equations with six unknowns.

Table 4.2 shows the experience matrix for this design. The letter α indicates the
distance from the center of the field to the points in the star.

Table 4.2: Experiences matrix of a composite design for two factors

Trials N° Factor 1 Factor 2
1 -1 -1
2 1 -1
3 -1 1
4 1 1
5 −α 0
6 α 0
7 0 −α
8 0 α
9 0 0

4.2.1 Properties of Composite Designs

Postulated mathematical model
A second-degree model with interactions is the mathematical model used with
composite designs. Usually, only interactions of the second order are kept.

•For two factors :

Y = â0 + â1x1 + â2x2 + â12x1x2 + â11x
2
1 + â22x

2
2

• For three factors :

Y = â0 + â1x1 + â2x2 + â3x3 + â12x1x2 + â13x1x3 + â23x2x3 + â11x
2
1 + â22x

2
2 + â33x

2
3

The design matrix
The design matrix X for two factors is a matrix of dimension (11, 6), as the
postulated model has 6 coefficients and 11 trials :

X =



1 −1 −1 1 1 1
1 1 −1 −1 1 1
1 −1 1 −1 1 1
1 1 1 1 1 1
1 −α 0 0 α2 0
1 α 0 0 α2 0
1 0 −α 0 0 α2

1 0 α 0 0 α2

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


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The information matrix
Using the formula (X tX)−1, the information matrix is calculated from the design
matrix. For two factors, we have:

X tX =


N 0 0 0 4 + 2α2 4 + 2α2

0 4 + 2α2 0 0 0 0
0 0 4 + 2α2 0 0 0
0 0 0 4 0 0

4 + 2α2 0 0 0 2 + α2 4
4 + 2α2 0 0 0 4 4 + 2α2


The optimality criteria
The value of α will change depending on the chosen optimality criterion.

Isovariance by rotation
The information matrix’s elements have to satisfy the relation [8]

3nf = nf + 2α4

=⇒ 2nf = 2α4

=⇒ α = (nf )
1
4

In the case of a composite design for two factors with star points located at a
distance of 1.414 from the center, the isovariance by rotation requirement is in
fact satisfied by this information matrix :

X tX =


12 8 8

8
8

4
8 12 4
8 4 12


Nearly orthogonal
Instead of rotation isovariance, probably we should follow the orthogonality cri-
terion. A diagonal X t matrix would be produced by this point arrangement.
We are unable to invalidate the elements that correspond to constant terms and
squared terms, hence this is not achievable. Remember that the submatrix of
(X tX)−1 that results from removing the first row and first column has to be
diagonal. This is proven to be possible if [8]:

α =
nf (

√
N −√

nf )
2

4

For two factors, we have α = 1.21. Let’s write the corresponding information
matrix :

X tX =


12 6.928 6.928

6.928
6.928

4
6.928 8.287 4
6.928 4 8.287


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The corresponding dispersion matrix is indeed nearly orthogonal since if we elim-
inate the first row and column, we obtain a diagonal matrix

(X tX)−1 =


0.239 −0.135 −0.135

0.144
0.144

0.25
−0.135 0.233
−0.135 0.233


Standard deviation of the coefficients of the predictive model
The variance of each coefficient of the postulated model is given by (the for-
mula 2.2). By taking the square roots of the diagonal elements of the variance-
covariance matrix, we obtain the standard deviations of the coefficients.

σ(âi) =
√
σ2
rV ar(âi) = σr

√
V ar(âi)

4.2.2 Advantages and Disadvantages

A gradual and methodical approach becomes possible through composite designs.
One can perform an initial factorial design. This design will indicate the impact
of every factor and if the selected domain should be kept. The experimenter
can conduct a supplemental design if, after the examination of this first factorial
design, there are still difficulties. Verifying the validity of the first-degree model
is important after defining the appropriate field and identifying the influential
factors. The experimenter can stop if it is valid; if not, they have to move to
a second-degree model. The additional experimental points from the composite
design are useful in this case.

4.3 Doehlert Designs

Experimental space is consistently filled with the experimental points of designs
suggested by David H. Doehlert in 1970 [22]. It’s an alternative strategy to what
we have discovered thus far [23]. Finding the ideal placement for the experimental
points to suit the fitted model is not our goal. Rather, we just split the points in
a regular manner, avoiding the optimality criterion.

4.3.1 Doehlert Designs for two factors

The experimental points are located at the borders of a regular hexagon, with
an additional point at the center. (Figure 4.4) shows the arrangement of these
points for a two-factor design (trials 1 to 7) :
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Figure 4.4: Doehlert Designs for two factors

The experimental design matrix is constructed by taking the coordinates of each
experimental point (Table 4.3).

Table 4.3: Experiences matrix of Doehlert designs for two factors

Trial N° Factor 1 Factor 2
1 0 0
2 1 0
3 0.5 0.866
4 -0.5 0.866
5 -1 0
6 -0.5 -0.866
7 0.5 -0.866

All points in the Doehlert design are on a circle with a unit radius. A circle
for one factor, a sphere for three factors, and a hypersphere for more than three
factors build up the spherical region that the Doehlert designs specify.

4.3.2 Postulated Mathematical Model

The postulated mathematical model for Doehlert designs is generally a second-
degree model with second-order interactions. In terms of two factors, we have:

Y = â0 + â1x1 + â2x2 + â12x1x2 + â11x
2
1 + â22x

2
2

4.3.3 Doehlert Designs for k factors

This type of design exists for any number of factors. The experimenter may
simply add more experimental points to create a design that is exactly the same

60



as the first one, if they would like to investigate the experimental field longer.
With three (or more) experimental points, a new Doehlert design can be created.

The Doehlert designs with a maximum of four factors are shown in a single (Table
4.4). Nothing stops us from realizing many central points, even though we have
only pointed out one.

Table 4.4: Doehlert designs from two to four factors

Trial N° Factor 1 Factor 2 Factor 3 Factor 4
1 0 0 0 0
2 1 0 0 0
3 0.5 0.866 0 0
4 -0.5 0.866 0 0
5 -1 0 0 0
6 -0.5 -0.866 0 0
7 0.5 -0.866 0 0
8 0.5 0.289 0.816 0
9 -0.5 0.289 0.816 0
10 0 -0.577 0.816 0
11 0.5 -0.289 -0.816 0
12 -0.5 -0.289 -0.816 0
13 0 0.577 -0.816 0
14 0.5 0.289 0.204 0.791
15 -0.5 0.289 0.204 0.791
16 0 -0.577 0.204 0.791
17 0 0 -0.612 0.791
18 0.5 -0.289 -0.204 -0.971
19 -0.5 -0.289 -0.204 -0.971
20 0 0.577 -0.204 -0.971
21 0 0 0.612 -0.971
22 0 0 0 0

4.3.4 Advantages and Disadvantages

Advantages

• Permit a limited number of trials to efficiently explore the response in a
multidimensional space.

• Ideal for researching factor interactions and nonlinear responses.

• Offer great flexibility in choosing factor levels and the distribution of exper-
imental points.

• Make it possible for second-order interactions in second-degree models to be
formed.

• Easy to analyze and interpret.

Disadvantages
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• Larger designs could need a large number of trials, which can be expensive
both in terms of time and resources.

• The analysis may become more difficult if nonlinear equations must be solved
in order to estimate model coefficients.

• Generated models can become complex and difficult to interpret as the num-
ber of factors increases.

• In light of experimental restrictions, some combinations of experimental sites
might not be practical in reality.

4.4 Roquemore Designs

Roquemore designs proposed on 1976 [24] are a family of experimental designs
designed for factorial experiments analysis. They are characterized by a uniform
distribution of experimental points in the factor space. These plans allow for
studying interactions between factors and constructing mathematical models to
predict the behavior of the system under study. Roquemore designs are partic-
ularly useful for investigating a limited number of factors while minimizing the
number of required trials. They aim to satisfy both the criterion of rotation
isovariance and the criterion of near orthogonality.

- For three factors, there are two Roquemore designs, 311A and 311B. They allow
the study of 3 factors in 11 trials.

- For four factors, there are two Roquemore designs, 411A and 411B.

- For six factors, there is one Roquemore design, 618A.

We will detail the 311A design and simply mention the other designs without
analyzing them.

4.4.1 Roquemore’s 311A Design

This design allows three factors to be studied in eleven trials.

Experiences matrix : The experimental points are as shown in (Table 4.5).
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Table 4.5: Roquemore’s 311A Design for three factor

Trial N° Factor 1 Factor 2 Factor 3
1 0 0 2
2 0 0 -1
3 -1.414 -1.414 1
4 1.414 -1.414 1
5 -1.414 1.414 1
6 1.414 1.414 1
7 -2 0 -1
8 2 0 -1
9 0 -2 -1
10 0 2 -1
11 0 0 0

Location of experimental points : Evaluating the table makes it possible to
identify the following elements:
- A 22 design consists of four points located at the corners of a square (trials
3, 4, 5, and 6). These trials are at level +1 for factor 3.
- Four points located at the corners of a square (trials 7, 8, 9, and 10) shifted
by 45 degrees compared to the previous square. These points are at level -1
of factor 3.
- Level 0 of factor 3, the central point, is one of three locations on an axis
that passes through the centers of the two preceding squares. For the third
element, the other two spots are situated at levels +2 and -2, respectively
(Figure 4.5) :

Figure 4.5: Location of experimental points in the Roquemore’s 311A design
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Mathematical model : The used model in Roquemore Designs is a second-
degree model with second-order interactions :

Y = â0 + â1x1 + â2x2 + â3x3 + â12x1x2 + â13x1x3 + â23x2x3 + â11x
2
1 + â22x

2
2 + â33x

2
3

The design matrix : In this regard, this strategy is almost saturated.So, we
given that there are 10 coefficients in the postulated model and 11 trials are
performed out, the calculation matrix X for the Roquemore 311A plan is a
(10,10) matrix.

The information matrix : In this case, isovariance by rotation is respected
for factors 1 and 2, and it’s not respected for factor 3. So the information
matrix is a (10,10) :

X tX =



11 16 16 16
16

16
16

16
16

16
16 48 16 16
16 16 48 16
16 16 16 40


Variance-covariance matrix : This matrix is the inverse of the information

matrix (X tX)−1. It will be used to calculate the variances of the coefficients
and it’s also a (10,10) matrix :



1 −0.188 −0.188 −0.188
0.063

0.063
0.063

0.063
0.063

0.063
−0.188 0.061 0.029 0.029
−0.188 0.029 0.06 0.029
−0.188 0.029 0.039 0.094


Optimality cretiria : The Roquemore 311A plan for three factors satisfies the

isovariance by rotation condition for two factors but not for the third, ac-
cording to an analysis of the information matrix. The Roquemore 311A de-
sign does not satisfy the nearly orthogonality requirement, as can be shown
from the dispersion matrix analysis. Even so, the values of the secondary
diagonal elements are weak.

4.4.2 Other Roquemore Designs

The majority of hybrid Roquemore designs are three- or four-factor designs. They
are also present for six factors. The next tables (Table 4.6 and Table 4.7), include
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these different plans. The 311A plan’s properties can be obtained in the same
manner as these plans’ properties.

Table 4.6: Roquemore’s 311B Design for three factor

Trial N° Factor 1 Factor 2 Factor 3
1 0 0 2.449
2 0 0 -2.449
3 -0.751 -2.106 -1
4 0.751 -2.106 1
5 -0.751 2.106 1
6 0.751 2.106 -1
7 -2.106 -0.751 1
8 2.106 -0.751 -1
9 -2.106 0.751 -1
10 2.106 0.751 1
11 0 0 0

Table 4.7: Roquemore’s Design from two to four factors

Trial N° Factor 1 Factor 2 Factor 3 Factor 4
1 0 0 0 1.732
2 0 0 0 -0.269
3 -1 -1 -1 0.605
4 1 -1 -1 0.605
5 -1 1 -1 0.605
6 1 1 -1 0.605
7 -1 -1 1 0.605
8 1 -1 1 0.605
9 -1 1 1 0.605
10 1 1 1 0.605
11 -1.518 0 0 -1.05
12 1.518 0 0 -1.05
13 0 -1.518 0 -1.05
14 0 1.518 0 -1.05
15 0 0 -1.518 -1.05
16 0 0 1.518 -1.05
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Table 4.8: Roquemore’s 416C Design for four factors

Trial N° Factor 1 Factor 2 Factor 3 Factor 4
1 0 0 0 1.765
2 0 0 -1 -0.568
3 -1 -1 -1 0.568
4 1 -1 -1 0.568
5 -1 1 -1 0.568
6 1 1 1 0.568
7 -1 -1 1 0.568
8 1 -1 1 0.568
9 -1 1 1 0.568
10 1 0 0 -1.051
11 -1.470 0 0 -1.051
12 1.470 1.470 0 -1.051
13 0 1.470 0 -1.051
14 0 0 -1.470 -1.051
15 0 0 -1.470 -1.051
16 0 0 0 -1.051

4.4.3 Advantages and Disadvantages

Advantages

• Through applying these designs, a second-degree model may be created and
the 4 factors can be studied in just 16 trials.

• Contrary to this, Doehlert designs need 21 trials.

Disadvantages

• These designs’ disadvantage is that they are only available for factors 3, 4,
and 6.

4.5 BOX-BEHNKEN Designs

These ideas for second-degree models, which enable the study of three levels -1,
0 and +1 were put out by Box and Behnken in 1960 [4]. These designs have the
sequentiality trait, which makes them easier to implement and satisfies a certain
optimization requirement.
The results of previously completed tests can be preserved while exploring the
first k variables and keeping open the potential of adding more.

4.5.1 Construction of BOX-BEHNKEN Designs

For three factors: The experimental points are located at the midpoints of
each edge of the cube (Figure 4.6). Twelve trials represent this design, and one
or more central points may be added.
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Figure 4.6: Box-Behnken design for three factor

The construction of the design follows these principle:

- Two factors describe a square (4 experiments of a 22 design).

- The corresponding coordinates of the third factor are set to zero.

(Table 4.9) shows these trials :

Table 4.9: Box-Behnken designs for three factor

Trial N° Factor 1 Factor 2 Factor 3
1 -1 -1 0
2 1 -1 0
3 -1 1 0
4 1 1 0
5 -1 0 -1
6 1 0 -1
7 -1 0 1
8 1 0 1
9 0 -1 -1
10 0 1 -1
11 0 -1 1
12 0 1 1

13 to 15 0 0 0

For four factors: The design is built on a hypercube in 4 dimensions, the
experimental points are located at the center of the 24 squares.(Figure 4.7) shows:

Figure 4.7: Difference between Box-Behnken designs for 3 and 4 factors
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The construction of the design is as follows:

Table 4.10: Box-Behnken designs for four factor

Trial N° Factor 1 Factor 2 Factor 3 Factor 4
1 to 4 ±1 ±1 0 0
5 to 8 ±1 ±1 ±1 0
9 to 12 ±1 0 0 0
13 to 16 0 ±1 ±1 0
17 to 20 0 ±1 0 0
21 to 24 0 0 ±1 0
25 to 27 0 0 0 0

In this table, the factor levels are indicated by ±1. This means that the factor
alternately takes the levels +1 and -1, and that all combinations are realized.

4.5.2 Properties of BOX-BEHNKEN Designs

postulated mathematical model
The used model is a second-degree model with second-order interactions :

Y = â0 + â1x1 + â2x2 + â3x3 + â12x1x2 + â13x1x3 + â23x2x3 + â11x
2
1 + â22x

2
2 + â33x

2
3

The design matrix
The design matrix is constructed based on the experimental design and the pos-
tulated model. For three factors the matrix is :

X =



1 −1 −1 0 1 0 0 1 1 0
1 1 −1 0 −1 0 0 1 1 0
1 −1 1 0 −1 0 0 1 1 0
1 1 1 0 1 0 0 1 1 0
1 −1 0 −1 0 1 0 1 0 1
1 1 0 −1 0 −1 0 1 0 1
1 −1 0 1 0 −1 0 1 0 1
1 1 0 1 0 1 0 1 0 1
1 0 −1 −1 0 0 1 0 1 1
1 0 1 −1 0 0 −1 0 1 1
1 0 −1 1 0 0 −1 0 1 1
1 0 1 1 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0


The information matrix
Using the formula (X tX), the information matrix is calculated from the design
matrix. We notice that for 3 factors, the plan does not respect the criterion of
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isovariance by rotation,so we have:

X tX =



15 8 8 8
8

8
8

4
4

4
8 8 4 4
8 4 8 4
8 4 4 8


Variance-covariance matrix
This matrix is the inverse of the information matrix :

(X tX)−1 =



0.333 −0.167 −0.167 −0.167
0.125

0.125
0.125

0.25
0.25

0.25
−0.167 0.271 0.021 0.021
−0.167 0.021 0.271 0.021
−0.167 0.021 0.021 0.271


The dispersion matrix shows that this design does not respect the criterion of nearly
orthogonality. But, if four points are added to the center instead of three, we will
obtain a Box-Behnken design that respect this criterion.

4.5.3 Principal of Box-Behnken Designs

There are several other Box-Behnken designs available, but the one with three factors
(Table 4.9) is the most popular. As released by the researchers [4], we additionally
provide the designs for factors 6 and 7 (Tables 4.11 and 4.12).

Table 4.11: Box-Behnken designs for six factor

Trial N° Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6
1 to 8 ±1 ±1 0 ±1 0 0
9 to 16 0 ±1 ±1 0 ±1 0
17 to 24 0 0 ±1 ±1 0 ±1
25 to 32 ±1 0 0 ±1 ±1 0
33 to 40 0 ±1 0 0 ±1 ±1
41 to 48 ±1 0 ±1 0 0 ±1
49 to 52 0 0 0 0 0 0
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Table 4.12: Box-Behnken designs for seven factor

Trial N° Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7
1 to 8 0 0 0 ±1 ±1 ±1 0
9 to 16 ±1 0 0 0 0 ±1 ±1
17 to 24 0 ±1 0 0 ±1 0 ±1
25 to 32 ±1 ±1 0 ±1 0 0 0
33 to 40 0 0 ±1 ±1 0 0 ±1
41 to 48 ±1 0 ±1 0 ±1 0 0
49 to 56 0 ±1 ±1 0 0 ±1 0
57 to 62 0 0 0 0 0 0 0

4.5.4 Advantages and Disadvantages

Box-Behnken designs are easy to construct and allow the making of a second-degree
model. Even so, these designs need a large number of trials when the number of studied
factors rises.
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Chapter 5

Software Description

The construction of experimental designs is facilitated by the use of specific software.
Interpreting experimental designs requires numerous calculations and graphs. Here
again, the software we developed simplifies the construction of the most common ex-
perimental designs. It performs the necessary calculations for interpreting results and
provides the ability to plot numerous graphs that illustrate these results. This makes it
possible to appreciate the capabilities offered by experimental design software. Inter-
ested readers can use it by selecting one of the programmed designs for various studies
in a wide range of fields.

There are several experimental design software programs, each with its own advan-
tages and disadvantages. This version of the software gives a good idea of the con-
tribution of computing to experimental designs and the support that an experimenter
can expect from it.

5.1 Startup
The software being installed on the hard drive, we perform to open it double click on
his icon, we get the software opening window. After clicking on the button "Open",
you access the home window consisting of the toolbar:

Figure 5.1: Open Window Figure 5.2: Home Window
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This toolbar contains five menu choices, which are :

Figure 5.3: Toolbar

5.1.1 Example

Let’s consider the process of baking a cake where we want to study the effect of tem-
perature (T) and baking time (BT) on the thickness (E) of the cake. The experimenter
decides to use a full factorial design at 2 levels. He defines the study domain of
the two parameters as follows:

Table 5.1: Our example for 2 study field with 2 factors

low level hight level
Temperature 150° 200°
Baking time 15 mn 25 mn

The measured results of the thickness (E) for each experiment conducted are given
in a table.

Table 5.2: Experimental designs with results

Trial N° T BT Thickness (E)
1 -1 -1 26
2 1 -1 22
3 -1 1 52
4 1 1 24

5.2 Description Of The Menu Bar

5.2.1 File Menu

It has the following fields:

Figure 5.4: File Menu
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New : When the "New" item is clicked, a window appears, and the user may follow
its steps :

• A window specifying to define at first number of factors then the name, unit,
high level, and low level.

Figure 5.5: Enter Number of Factors

Choosing a number then we click on the "Next" button, we get a form to
fill :

Figure 5.6: Introducing factors

• We keep clicking the "Next" button and fill in the factor’s information. A
window opens up to show and stock all what we had, after validating we
introducing the response.

Figure 5.7: Introducing Responses

• Once we click on "OK", we get an other window it shows us a remark.
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Figure 5.8: Remark

• By tapping the "Next" bottom, a window give us the opportunity to choose
a design that we want to work on :

Figure 5.9: Types of Designs

• We choose the Full factorial designs at 2 levels, and we face an input
prompt to enter responses values.

Figure 5.10: responses

• Now we obtain the following results :

1. Estimation by the least squares method :
It select the best possible estimator of Â which is a vector and it has a
relationship with the predicted Ŷ , which is also a vector. And here is
the results :

74



Figure 5.11: Estimated coefficients with ŷ ajusted

Now, it shows the value of each coefficients that’s refer to " the A
coefficients vector" representer by :

Figure 5.12: Coefficients

And here are the residuals :

Figure 5.13: Residuals

The reason why they are all equals to null, because the Ŷ equals to Y .
2. Variance analysis :

It is rely to judicious decompositions into sums of squares, obtained as
follow :

Figure 5.14: Sums of squares

We get the sums of error squares null, because we had null residuals in
(Figure 5.13). And here are the degrees of freedom (Figure 5.15), and
variances (Figure 5.16) as follows :

Figure 5.15: Degrees of freedom Figure 5.16: Variances
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3. Statistical tests :
The outcomes of the variance analysis are used to obtain these tests,
which are :

Figure 5.17: R2, R2ajusted, and Fisher test

4. Graphical designs :
Although this examination is possible, here are the graphical results :

Figure 5.18: Histogram Coefficients

• Histogram showing the different value of each coefficients.

Figure 5.19: Diagram of R2, R2ajusted, and Fisher test

• We have just the R2, because it is the most frequent value.
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Figure 5.20: Residuals Diagram

• The residuals are defined in that way because they are null (Ŷ = Y ).

Figure 5.21: Prediction Error (X1, X2)

• When using the least squares approach, it suggests to estimate re-
sponses, and above we had the curve of the prediction error.

Figure 5.22: Responses Observed Compared to Responses Predicted

• As mentioned the Y and the Ŷ have the same value.
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Open : Open an application that the user has previously saved.

Save : Saves the problem data to a file or a folder.

Print : Prints the study results.

Leave : Permits you to stop using the program or not.

Figure 5.23: Verify Remark For Leaving The Application

5.2.2 Objectives Menu

It allows the choice between a screening designs and optimization ones.

Figure 5.24: Types Designs

After choosing a specific design, the software ask to enter number of factors, then
gives us how the trial matrix is formed.

For the menu item "Related to", it will show you what’s about the types of designs
:

Figure 5.25: Related to Types
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5.2.3 View Menu

In that menu, we will putting up the 4th matrix we have in our designs, with the
centered reduced coordinates.

Figure 5.26: View bar

5.2.4 Display bar

It has the following traits :

Figure 5.27: Display menu screen

Each menu item contains a specific results we can have it simply when we finish
our study.

5.2.5 Help Menu

The help bar show you a screen that explain what the software is able to do, and here
is what it contains :

Figure 5.28: About our Software
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Conclusion

Mathematicians have always been at the forefront of research, developing several sci-
entific theories, both fundamental and practical. They have consistently improved and
refined these theories. However, there has often been a gap between the discovery
of these theories and their practical application in the industrial world. This is be-
cause these theories often require a considerable volume of calculations when put into
practice. Fortunately, the advent of computer tools has addressed this issue by avoid-
ing researchers the burden of tedious and often impossible calculations. For example,
Data Analysis, whose initial theoretical developments date back to the 1930s, was only
widely used in the industrial world in the 1960s. The same applies to the application
of graph theory and many other mathematical theories.

Experimental Research Methodology, also known as experimental design, is a math-
ematical discipline within inferential statistics. The theory of experimental designs is
constantly evolving, and its significance is such, thanks to the existence of specialized
software, that it is legitimate to wonder if this discipline should not be taught from
the early university years. The work proposed to us had two main objectives: first, to
provide a state-of-the-art overview of the various categories of experimental designs ex-
isting in the literature, to study their conception, and to evaluate their advantages and
disadvantages in order to provide users with a comprehensive document to guide them
in choosing and implementing these designs according to their specific needs. Secondly,
to develop our own software. This will not only free us from tedious calculations and
allow us to process and analyze any practical experiment in chemical, pharmaceutical,
agronomic, physical, etc., fields, but also to improve this software.
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