

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DE BLIDA-1-

FACULTE DES SCIENCES DE LA NATURE ET DE LA VIE DEPARTEMENT DE BIOLOGIE DES POPULATIONS ET DES ORGANISMES

OPTION: REPRODUCTION ANIMALE

PROJET DE FIN D'ETUDES EN VUE DE L'OBTENTION DU DIPLOME DE MASTER 2

THEME

Etude d'un éventuel lien entre différents paramètres morphométriques, biométriques et la performance des reines dans la reproduction de l'abeille tellienne (Apis mellifera intermissa)

Présenté par

SALMA ROUMAISSA

&

HADJ BACHIR MERIEM

Soutenu le: 08/10/2017

Le jury:

Président (e) : Mme DJELLOULI N MCB U. Blida-1

Examinateur : Mr BENYAHIA N MAA U. Blida-1

Promoteur : Mr BESSAD M.A MCB U. Blida-1

Co- promoteur : Mr LATRECH .H Dr. vétérinaire Api MN

Année: 2016 - 2017

Declice 1985

A ceux quí ont fait de moi ce qui je suis et qui sont présents pour me soutenir à tout moment.

A MES CHERS PARENTS

A mes sœurs: Khaoula et Kawthar

A mon frère Mohamed

A mes oncles et mes tantes

A toute ma famille

A tous les étudiants de ma promotion

A mes amis

Je dédie ce modeste travail

SALMA ROUMAISSA

Déclicaces

Je dédie mon modeste travail

A mes très chers parents qui sont donné la confiance,

s conseils et le courage pour terminer mes études et je prie dieu le tout puissant de me les garder

A ma soeur Fatima et sa marie Mohamed

A mes frères Mohamed et hamza

A ma cher Youssef

A Salah Eddine koriche et touts sa famille

A mes tantes et oncles et à toute ma famille et toute mes amies

A toute les étudiantes et les étudiants de l'option reproduction animale (ma promotion 2016/2017)

HADJ BACHIR MERIEM

En premier lieu, nous remercions Allah le Tout-Puissant de nos avoir aidées durant toute notre vie, sans lui ce manuscrit n'aurait pu voir le jour.

C'est un agréable devoir d'exprimer nos remerciements à toutes les personnes qui d'une manière ou d'une autre ont contribuées à l'accomplissement de ce travail.

Nous exprimons nos profondes gratitudes à notre promoteur de mémoire Monsieur **BESSAAD M.A**, Maître de conférences à l'université de Blida1 pour le temps qu'il a consacré pour diriger ce travail, pour ses précieux conseils et ses encouragements.

Il m'est particulièrement agréable d'exprimer toute nos gratitudes à Monsieur **LATRECH H** Président de l'ANCEF pour avoir été notre co-promoteur lors de la réalisation de cette étude.

Nos remerciement iront aussi à Monsieur **BENYAHIA N**, Maître assistance à l'université de Blida1, d'avoir pris de son temps et d'avoir accepté d'examiner ce travail.

Nous tenons aussi à adresser nos sincères remerciements à Madame **DJELLOULI N** Maître de conférences à l'université de Blida 1 d'avoir accepté la présidence du jury de mémoire.

Nous souhaitons exprimer nos profondes reconnaissances à Mademoiselle **KESSI O** et Madame **BRIGHET S** pour l'aide précieuse qu'elles nous ont apportées durant notre présence à la plate- forme de Biométrie.

Nous tenons également à remercier l'ensemble des personnes qui nos ont aidés à prélever des échantillons d'abeilles, principalement Monsieur **HAMZAOUI M** (président d'association d'apiculteurs, Blida), les frères **DIFFALAH** et principalement Monsieur **AHCENE** et l'ensemble des apiculteurs qui ont participé à l'élevage.

Nous tenons à remercier aussi, Madame **MIMMOUNE** N Maître de conférences à l'Ecole National Supérieur Vétérinaire et Monsieur **RACHID** responsable de laboratoire d'anatomopathologie à l'Ecole National Supérieur Vétérinaire pour leurs aides pour les coupes histologique des ovaires.

Enfin, nous exprimons notre profonde reconnaissance à nos parents, à nos amis, à nos collègues et toutes les personnes qui ont contribuées chacune à sa manière à la réalisation de ce travail.

biste des tableaux

Tableaux	Titres	Pages
1	Analyses statistiques des résultats morphologiques (comparaison des échantillons à l'intérieur des populations)	33
2	Analyse des résultats morphologiques (comparaison entre les générations).	35
3	Analyses statistiques des résultats biométriques (comparaison des échantillons à l'intérieur des populations).	39-40
4	Analyse des résultats biométriques (comparaison entre les générations)	44
5	Les valeurs du coefficient de corrélation des caractères biométriques des trois générations de la station de Sidi Ayed	48
6	Les valeurs du coefficient de corrélation des caractères biométriques des trois générations de la station de Chiffa	50
7	Les valeurs du coefficient de corrélation des caractères biométriques des deux stations entre les trois générations	52

biste des figures

Figures Titres	Pages
De l'œuf à l'abeille adulte (Photographie Eric TOURNERET)	2
2 Temps et stade moyen de développement (Winston « La biologie de	e 3
l'abeille » ed.Nauwelaerts ou Frison-Roche 1993)	
Les différents types de castes dans une colonie d'abeilles Apis melli	fera,
Blackiston (2009)	4
· ·	
4 Le système reproducteur et vulnérant d'une reine fécondée (redess	siné 6
 de Dade 1977 et Snodgrass1956) (Winston, 1987) Classement des stades de maturation ovarienne selon Velthuis (197 	70) 9
6 Classement des stades de maturation ovarienne selon Velthuis (197	
7 Comportement des ouvrières envers la reine avant le vol (Revue l'a	
juillet 1980)	bellie, 10
8 L'accouplement (D'après « La biologie de l'abeille » Winston ed.	11
Nauwelaerts ou Frison-Roche 1993)	
9 Les principales mesures effectuées en biométrie (FRESNAYE, 1981)	17
10 Organigramme de la méthodologie	18
11 L'exploitation de SIDI AIED	19
12 L'exploitation de CHIFFA	19
13 Laboratoire LBRA	20
14 Laboratoire d'ITELV	20
15 Laboratoire d'ANAPATH	20
16 Préparation des cadres d'élevage	21
17 Ruche éleveuse	22
18 Récupération du cadre de greffage	22
19 Introduction des cadres porte-barrettes pour la familiarisation	22
20 Greffage de larves de moins de 3 jours	23
21 Nourrissement des abeilles	23
22 Introduction des reines vierges dans la ruche éleveuse	23
Récupération des reines vierges matures	23
24 La pesée des reines vierges	24
25 L'index cubital	25
26 La langue d'une reine	25
27 La pilosité	25
28 La coloration du deuxième tergite	26
29 Le tomontum	26
30 Une reine vierge disséquée	27
31 La peser des ovaires et du spermathèque	27
32 Les mesures de diamètre des ovaires et de spermathèque	27
33 La déshydratation	28

34	Enrobage des cassettes dans la paraffine liquide	28
35	Versement des ovaires dans des moules métalliques	28
36	La formation des blocs	29
37	Des coupes longitudinales au niveau de l'ovaire	29
38	La mise des coupes sur les lames	29
39	Le séchage des échantillons	29
40	Les différents bains du la coloration de trichome de Masson	30
41	Les différents bains de la coloration HE	31
42	Organigramme des résultats	32
43	Histogramme de comparaison des moyennes des cinq caractères biométriques de chaque station pour les trois générations	34
44	Histogramme de comparaison des moyennes des cinq caractères biométriques des deux stations	36
45	Histogramme de comparaison des moyennes de poids des reines de chaque station dans les trois générations	42
46	Histogramme de comparaison des moyennes de poids des deux ovaires de chaque station dans les trois générations	42
47	Histogramme de comparaison des moyennes des diamètres de chaque station dans les trois générations	43
48	Histogramme de comparaison des moyennes de nombre des ovarioles des deux ovaires de chaque station dans les trois générations	43
49	Histogramme de comparaison des moyennes de poids des reines dans les trois générations des deux stations	45
50	Histogramme de comparaison des moyennes de poids des ovaires dans les trois générations des deux stations	45
51	Histogramme de comparaison des moyennes des diamètres des deux stations dans les trois générations	46
52	Histogramme de comparaison des moyennes de nombre des ovarioles des deux ovaires dans les trois générations des deux stations	46
53	Coupe longitudinale au niveau de l'ovaire gauche d'une reine vierge selon la coloration de trichome de Masson (GX400)	56
54	Coupe longitudinale au niveau de l'ovaire gauche d'une reine vierge selon la coloration HE (GX400)	56

biste des abréviations

🤻 A. m. c : Apis mellifera carnica

🧗 A m. j : Apis mellifera jemenitica

ENSV: Ecole Nationale Supérieur Vétérinaire

G: Génération

HE: Hemalun Eosine

ITELV: L'Institut Technique des Elevages Vétérinaires

LBRA: Laboratoire de Biotechnologie de Reproduction Animale

Max : MaximumMin : MinimumMoy : Moyenne

Nbr des O d'OD : Nombre des ovarioles d'Ovaire DroitNbr des O d'OG : Nombre des Ovarioles d'Ovaire Gauche

OD: Ovaire DroitOG: Ovaire GaucheS: Spermatèque

SD: Standard Déviation

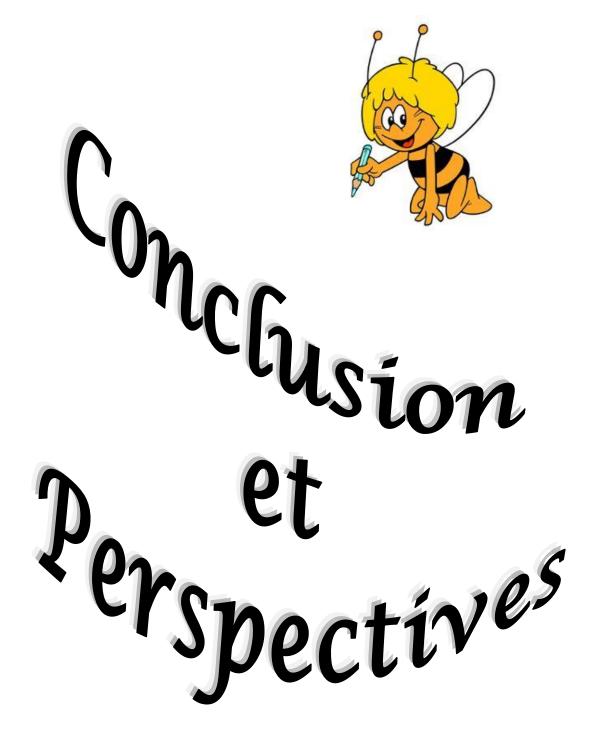
SOMMAIRE

Introd	luction01
I.	Synthèse Bibliographique
Chapi	tre 1 : La biologie de la reine
I.	Systématique02
II.	Généralité02
III.	La colonie04
IV.	Le rôle de la reine04
Chapi	tre 2 : La reproduction
I.	L'Anatomie de l'appareil reproducteur de la reine05
II.	Oogenèse07
III.	La maturité sexuelle10
IV.	Préparation à l'accouplement10
V.	L'accouplement11
VI.	La reine fertile12
VII.	La ponte12
Chapi	tre 3 : L'élevage des reines
ı.	Définition13
II.	Choix de la colonie souches13
III.	La sélection13
IV.	Les principaux critères de sélection13
V.	Les différents types de sélection14
	1. La sélection massale ou individuelle14
	2. La sélection fondée sur la valeur de la descendance14
	3. La sélection généalogique14
	4. La sélection combinée14
VI.	Les principes et règles de l'élevage des reines14
VII.	Les différentes méthodes d'élevage15
Chapi	tre 4 : La biométrie
ı.	Définition16
II.	Importance de la biométrie16
III.	L'application de la biométrie16
IV.	Les différentes méthodes16
V.	Les principaux caractères conservés pour l'étude biométriques16

II. Méthodologie

III.

ı.	Présentation de la zone d'étude	19
II.	Matériel et méthodes	20
	II .1.Matériel	20
	II .1.1. Matériel biologique	.20
	II .1.2.Matériel apicole	
	II .1.3 Matériels de laboratoire	.20
	II .2 Méthodes de travail	.20
II	.2.1 Élevage de reines	.20
	II .2.1.1 Préparation des cadres d'élevage	.21
	II .2.1.2 Préparation de la ruche éleveuse	.21
	II .2.1.3 Récupération des cadres destinés au greffage	.22
	II .2.1.4 Introduction des cadres porte-barrettes pour la familiarisation	22
	II .2.1.5 Greffage ou transfert des larves de moins de 3 jours	.22
	II .2.1.6 Nourrissement	.23
	II .2.1.7 Maturité sexuelle	.23
II	.2.2. La morphométrie des reines vierges	.24
	1. L'index cubital	.24
	2. La longueur de la langue	.25
	3. La pilosité	.25
	4. La coloration du deuxième tergite	.25
	5. Le tomontum	26
	II .2.3 la biométrie des ovaires et du spermathèque	.26
	II.2.3.1 les mesures	26
	II .2.3.2 Comptage des ovarioles	27
	II .2.4 La partie des coupes histologiques	28
. R	Résultats	
ı.	Caractérisation morphologique des populations des reines d'abeilles	33


	A. Comparaison entre les trois générations des deux stations3	5
	B. Etude de corrélation des caractères morphométriques inter et intra stations3	
	1. Station de Sidi Ayed3	6
	2. Station de Chiffa3	7
	3. Entre les deux stations3	18
II.	Caractérisation biométriques des populations des reines d'abeilles4	0
	A. Comparaison entre les trois générations des deux stations4	4
	B. Etude de corrélation des caractères biométriques inter et intra-stations4	7
	1. Station de Sidi Ayed4	7
	2. Station de Chiffa4	.9
	3. Entre les deux stations5	0
III.	Etude de correlation entre les caractères morphométriques et biométriques de reines de chaque station et des deux stations5	
	1. Station de Sidi Ayed5	3
	2. Station de Chiffa5	4
	3. Entre les deux stations5	55
II.	Histologie5	6
IV.	Discussion5	7
C	onclusion et perspectives59	,
F	éférences bibliographiques	
,	nnexes	

Annexes

Bibliographie

Discussion

Introduction

Méthodologie

Résultats

Références Bibliographiques

L'abeille est un élément indispensable de l'équilibre environnemental dans le monde notamment pour son rôle dans la pollinisation de très nombreuses espèces de plantes. Elle présente aussi d'autre intérêt comme la production du miel, de la propolis, de la gelée royal, et de la cire. La sélection de l'abeille est d'intérêt économique, les apiculteurs sont tenus d'améliorer et de moderniser la filière apicole avec plus des produis de la ruche et moins de maladies; la caractérisation d'un cheptel d'abeilles est importante. Dans ce contexte nous avons réalisé la morphométrie qui permet de donner les caractérisations des souches d'abeille à partir de l'étude des caractères morphologiques et la biométrie permit de définir la qualité des reines. Notre étude a été menée dans la Mitidja avec l'objectif de trouver un lien entre différentes paramètres morphologiques, biométriques et la performance des reines dans la reproduction de l'abeille tellienne (Apis mellifira intermissa). Nous avons réalisé 04 parties déférentes : l'élevage des reines, puis la morphométrie des reines vierges (l'index cubital, la langueur de la langue, la pilosité, la coloration, et le tomentum), ensuite la biométrie des organes reproducteurs (les deux ovaires et la spermathèque), et en termine avec les coupes histologiques des ovaires. Nous avons effectues notre élevage des reines dans deux exploitation privé : Sidi ayed et Chiffa. Selon les conditions de travaille nous avons étudié 5 caractères de la reproduction qui sont : le Poids des reines, Le Poids des deux ovaires, le Diamètre des deux ovaires, le Diamètre de la spermatèque, et le Nombre des ovarioles des deux ovaires. Les moyennes des caractères morphométriques de 180 reines sont 2.676 mm pour l'index cubital, 3.490mm Pour la longueur de la langue, 0.241mm pour la pilosité, de **0.561mm** Pour la coloration et **1.289 mm** pour le tomentum. Concernant le poids des reines d'Apis mellifira intermissa est de 0.1518g, 0.0018g pour le poids de l'ovaire droit, 0.0019g celle de l'ovaire gauche, la moyenne de diamètre de l'ovaire droit est de 3.752 mm, alors que pour l'ovaire gauche est de 3.882mm, la moyenne de diamètre de la spermathèque est de 1.217 mm, la moyenne de nombre des ovarioles de l'ovaire droit est 113 et celle de l'ovaire gauche est 118. Nos résultats montre qu'il y a des corrélations entre les caractères morphométriques et biométriques et qu'il est possible de caractériser les souches d'abeille a partir de leur qualité des reines.

Les mots clé : Apis mellifira intermissa, Mitidja, reine, morphométrie, biométrie, ovaires et spermathèque.

Abstract

The bee is an indispensable element of the environmental balance in the world especially for its role in the pollination of many species of plants. It also has other interests such as the production of honey, propolis, royal jelly, and wax. The selection of the bee is of economic interest, beekeepers are required to improve and modernize the beekeeping industry with more products of the hive and fewer diseases; the characterization of a bee flock is important. In this context we realized the morphometry that allows to give the characterizations of the bee strains from the study of the morphological characters and the biometry allowed to define the quality of the queens. Our study was conducted in the Mitidja with the objective of finding a link between different morphological, biometric and queen performance parameters in the reproduction of the Tellian bee (Apis mellifira intermissa). We carried out 04 different parts: the breeding of the queens, then the morphometry of the virgin queens (the cubital index, the languor of the tongue, the pilosity, the coloring, and the tomentum), then the biometry of the reproductive organs (the two ovaries and the spermatheca), and we finish with the histological sections of the ovaries. We raised our queens in two private farms: Sidi Ayed and Chiffa. According to the conditions of work we studied 5 characters of the reproduction which are: the Weight of the queens, the Weight of the two ovaries, the Diameter of the two ovaries, the Diameter of the spermatque, and the Number of the ovarioles of the two ovaries. The average morphometric characters of 180 queens are 2.676 mm for the cubital index, 3.490 mm for the length of the tongue, 0.241 mm for the hairiness, 0.561 mm for the coloring, and 1.289 mm for the tomentum. the weight of queens of Apis mellifira intermissa is 0.1518g, 0.0018g for the weight of the right ovary, 0.0019g that of the left ovary, the mean diameter of the right ovary is 3.752 mm, then that for the left ovary is 3.882mm, the mean diameter of the spermatheca is 1.217 mm, the average number of ovarioles of the right ovary is 113 and that of the left ovary is 118. Our results show that there are correlations between morphometric and biometric characters, and it is possible to characterize bee strains from their quality of queens.

Key words: *Apis mellifira intermissa*, Mitidja, queen, morphometry, biometrics, ovaries, and spermatheca.

الملخص

يعتبر النحل عنصر ضروري لتحقيق التوازن البيئي في العالم ليس فقط من خلال دوره في تلقيح عدد كبير من أنواع النباتات و لكن أيضا بإنتاجه : العسل، الشمع و الغداء الملكي. انتقاء سلالات النحل له هدف اقتصادي, النحالون مهتمون بتحسين و تحديث ايطار تربية النحل مع منتجات أكثر و أمراض اقل تمييز مختلف سلالات النحل مهم. في هدا السياق قمنا بانجاز دراسة مورفوميترية تسمح بوضع معايير تمييز مختلف سلالات النحل من خلال الصفات الجسمية، و أخرى بيوميترية تسمح بوضع معابير نوعية ملكة النحل. دراستنا أجريت في متيجة بهدف إيجاد علاقة بين الصفات المورفولوجية و البيوميترية و تأثيرها على تناسل ملكات النحل المحلي(الابيس مليفيرا انترميسا). في الدراسة التي قمنا بها أنجزنا 04 أقسام مختلفة : تربية الملكات ثم دراسة مورفوميترية لملكات نحل عسل غير ملقحات (المؤشر الزندي، طول اللسان، طول الشعر، خاصية اللون، و التومونتوم) ثم دراسة بيوميترية للأعضاء المسؤولة عن التكاثر و أخيرا مقاطع على مستوى نسيج المبيضين. قمنا بتربية الملكات في موقعين: سيدي عايد و الشفة. حسب ظروف العمل قمنا بدراسة 5 صفات تكاثرية وزن الملكات الغير ملقحات وزن المبيضين، قطر المبيضين، قطر السبارماتيك و حساب عدد الافاغيولات في المبيضين. معدلات الصفات المورفوميترية ل 180 ملكة هي 2.676 مم للمؤشر الزندي, 3.490 مم لطول اللسان, 0.241 مم لطول الشعر, 0.561 مم لخاصية اللون1.289 مم للتومونتوم. فيما يخص وزن ملكات الابيس مليفيرا انترميسا هو 0.1518غ, وزن المبيض الأيمن هو0.0018 غ, أما الأيسر ف0.0019غ, معدل قطر المبيض : الأيمن هو 3.752 مم أما بالنسبة للأيسر 3.882 مم, معدل قطر السبارماتيك هو1.217مم, معدل عدد الافاغيولات في المبيض الأيمن هو113 و118 بالنسبة للأيسر. من خلال الدراسة التي قمنا بها نستطيع القول بأنه توجد علاقة بين الصفات المورفوميترية و البيوميترية و انه يمكن تمييز مختلف أنواع النحل من خلال الدراسة المور فوميترية للملكات.

الكلمات المفتاحية: الابيس مليفيرا انترميسا، متيجة، ملكة النحل، دراسة مور فوميترية، دراسة بيوميترية، المبيضين و السبار ماتيك

INTRODUCTION

Introduction

La Sélection de l'abeille est d'intérêt économique, les apiculteurs voulu d'améliorer et de moderniser la filière apicole avec plus des produits de la ruche comme le miel, le pollen, la propolis et la gelée royale, qui présentent des vertus nutritionnelles importantes, moins des maladies comme le varroa d'où l'importance de la caractérisation d'un cheptel d'abeilles permanent, cette caractérisation se fait habituellement sur les ouvrières qui sont plus représentatif de la ruche or il assiste d'autre caste dans la ruche telle que la reine, donc nous voulu de caractériser la reine avec une analyse morphométrique et biométrique du l'intérêt de trouve une corrélation avec sa pouvoir reproductif.

L'analyse morphométrique est un très bon outil pour l'identification des races d'abeilles (Rinderer et al, 1995) et avec les 42 paramètres morphologiques mesurés, l'abeille est devenue l'un des insectes les plus étudiés (Mladenovic et al, 2011).

Mais dans notre travail nous avons étudié les cinq critères biométriques proposée par **M. FRESNAYE** qui sont suffisamment fiable. Elle reprend l'index cubital mais également la longueur de la langue, la couleur du 2^{ème} tergite, la largeur du tomentum du 4^{ème} tergite, la pilosité sur le 5^{ème} tergite Initialement l'analyse de ces données s'effectuait sur la moyenne des mesures ce qui engendrait une imprécision importante.

Aucune étude n'a été menée, en Algérie, sur la biométrie des reines et surtout des reines vierges et la corrélation avec son pouvoir reproductif. Dans ce contexte, nous étudierons plus particulièrement les populations des reines vierges d'Apis mellifera intermissa de quelques stations de la Mitidja, en essayant de répondre aux questions suivantes :

- 🏿 Quelle est la structure morphométrique de la population des reines de la Mitidja ?
- 🐐 En particulier, peut-on discerner une différenciation en populations local ?
- 🧗 Quelles sont les caractéristiques biométriques de la (des) population (s) trouvée (s) ?
- 🔻 Est-ce qu'il existe une hétérogénéité dans la population ?

Pour répondre à ces questions nous avons opté pour la méthodologie suivante :

- Etude de cinq caractères morphométriques chez la reine (l'index cubitale, la langueur de la langue, la pilosité, la coloration et le tomentum).
- Caractérisation du poids de la reine de notre race locale avec le poids de ces ovaires (droit et gauche).
- Caractérisation de nombre des ovarioles des deux ovaires de notre race locale.
- 🦸 Caractérisation de diamètres des deux ovaires avec la spermatèque.
- Vérifier s'il existe une corrélation entre les différents caractères morphométriques puis entre les différents caractères biométriques et entre les deux biométriques et morphométriques.

🕷 Chapitre 1 : La biologie de la reine

I. <u>Systématique</u>:

Règne : Animal

Division : Eumatozoaires
Embranchement : Arthropodes
Sous embranchement : Mandibulates
Classes : Insectes
Sous classe : Ptérygotes

Sous ordre : Apocrites

Section : Aculéates (Néoptères)

Famille : Apidea

Genre : *Apis* (LINNE, 1758)

Espèce : Apis mellifera intermissa (BUTTEL-REEPENS, 1906)

: Hyménoptères

II. Généralité :

Ordre

L'abeille possède un développement de type holométabole, c'est-à-dire une métamorphose complète, passant par les stades d'œuf, de larve, de pupe et finalement d'adulte (WINSTON, 1987). On appelle couvain l'ensemble des stades immatures, soit les œufs, les larves et les nymphes. La reine pond des œufs dans les alvéoles construites par les ouvrières. Avant de pondre, la reine détermine d'abord si elle est en présence d'une cellule d'ouvrière ou de faux-bourdon à l'aide de ses pattes avant ou de son abdomen (GARY, 2008; WINSTON, 1987).

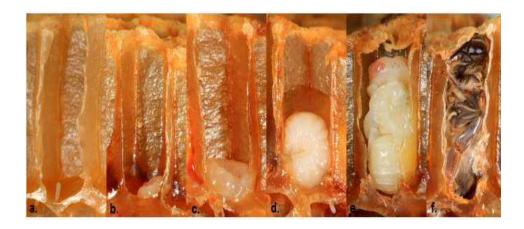


Figure 1: De l'œuf à l'abeille adulte (Photographie Eric TOURNERET).

<u>Légende</u>: a : œuf fraichement pondu b, c, d : développement de la larve

e : stade nymphal f : abeille adulte prête à sortir

Lorsque la reine ne relâche aucun spermatozoïde au moment de la ponte d'un œuf, celui-ci deviendra un individu haploïde, le faux-bourdon. Ainsi, les mâles de la colonie ne possèdent que le bagage génétique de la reine (PAGE et LAIDLAW, 2008). Au contraire, lorsque la reine fertilise l'œuf avec un ou plusieurs spermatozoïdes en même temps que l'œuf, un phénomène appelé polyspermie (MEUSEL et MORITZ, 1993), l'individu produit deviendra une femelle diploïde (KLENK et al, 2004; SEELEY, 2010). La plupart du temps, le noyau d'un seul spermatozoïde fusionne avec le noyau de l'œuf alors que les spermatozoïdes dits accessoires dégénèreront rapidement après la fertilisation (PAGE et LAIDLAW, 2008).

Le temps de développement pour chaque caste de l'abeille est variable : 24 jours sont nécessaires pour produire une femelle ouvrière adulte, 21 jours pour le faux-bourdon et seulement 16 jours pour la reine (WINSTON, 1987).

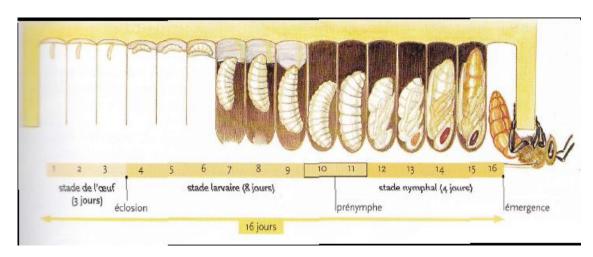


Figure 2 : Temps et stade moyen de développement (WINSTON « La biologie de l'abeille » ed.NAUWELAERTS ou FRISON-ROCHE 1993)

Le stade de l'œuf est de 3 jours pour toutes les castes. Une larve éclot au bout de 3 jours et est nourrie par les abeilles nourricières. C'est la quantité et la composition de l'alimentation larvaire qui déterminera si une femelle deviendra une ouvrière ou une reine (PAGE et PENG 2001; LAIDLAW 2008). En effet, pour les 3 premiers jours du développement larvaire, les larves issues d'œufs fécondés ont le potentiel de se développer autant en abeille ouvrière qu'en reine (EVANS et WHEELERS, 2000; WINSTON, 2008). Les abeilles nourricières sont chargées d'alimenter les larves en développement avec un mélange de sécrétions de leurs glandes mandibulaires et hypopharyngiennes et de pollen (WINSTON, 1987). Les larves de reines sont alimentées avec la gelée royale qui contient une plus grande proportion de sécrétions des glandes mandibulaires riche en sucre. De plus, les larves royales reçoivent plus de nourriture que les larves d'ouvrières. L'alimentation particulière des larves destinées à devenir des reines influence la détermination de la caste de la femelle via le système endocrinien, plus particulièrement l'hormone juvénile connue pour sa régulation du développement chez les insectes (NIJHOUT, 2003). Plus récemment, (KAMAKURA, 2011) a identifié une protéine de la gelée royale, la royalactine, qui induit le développement ovarien et la croissance corporelle et diminue le temps de développement des reines.

III. La colonie

Une colonie comporte entre 10 000 et 60 000 ouvrières, entre 0 et 6 000 faux-bourdons et une seule reine. Cette population varie en fonction de différents facteurs tels que le climat, la sous-espèce des abeilles et la quantité de ponte de la reine (MARTIN et al, 2001).

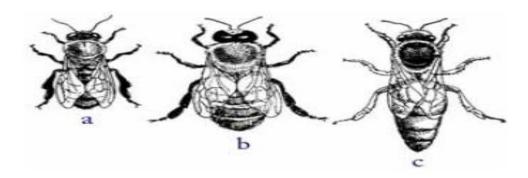


Figure3: Les différents types de castes dans une colonie d'abeilles Apis mellifera; (a): faux bourdon; (b): ouvrière; (c): reine BLACKISTON (2009).

IV. <u>Le rôle de la reine</u>

Le rôle de la reine n'est pas limité à la ponte, elle émet une substance chimique ou phéromone qui maintient la cohésion de la colonie, freine le développement des ovaires des ouvrières et empêche la construction de nouvelle cellule royales. Une fois vieille, la reine ne pond que des œufs de males d'où une colonie bourdonneuse. (G.RAVAZZE, 1996).

Chapitre 2 : la reproduction

I. <u>L'anatomie de l'appareil reproducteur</u>

Les femelles possèdent deux ovaires d'aspect filamenteux, placés de chaque côté de l'intestin. Ils s'étirent dans l'abdomen depuis la hauteur du jabot jusqu'au sixième ganglion abdominal (CHAUVIN, 1968).

Chacun de ces ovaires est formé par la réunion d'un grand nombre de tubules, les ovarioles (MARTINS & SERRAÕ, 2004). Celles-ci se regroupent à l'intérieur d'une gaine permanente ou transitoire. Toutes leurs extrémités sont reliées par deux ligaments supérieurs communs fixés à la paroi antérieure de l'abdomen, appelés ligaments suspenseurs de l'ovaire (GRASSE, 1977).

Tous les tubes ovariques d'un même côté se terminent en un calice ovarien pour former un oviducte cylindrique peu allongé qui rejoint celui du côté opposé. Ils forment ainsi un vagin cylindrique, large et court. Ses parois sont pourvues de fibres musculaires et parsemées de cellules agglomérées sécrétant un liquide visqueux. Ce liquide pourrait servir à fixer chaque œuf au fond de la cellule dans laquelle il doit être déposé.

Dans le vagin s'ouvre, par l'intermédiaire d'un petit tube appelé conduit séminal, une poche arrondie (spermathèque), dans laquelle s'accumulent les spermatozoïdes après la copulation.

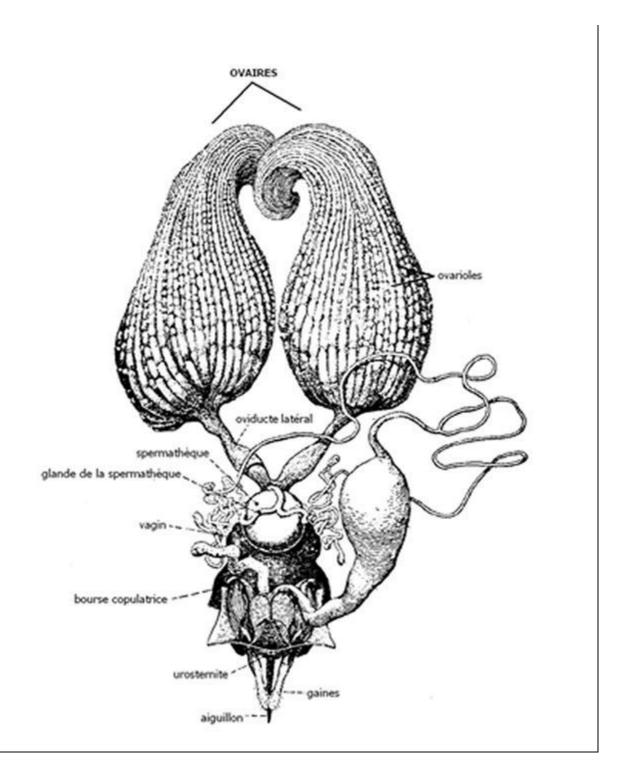


Figure 4 : Le système reproducteur et vulnérant d'une reine fécondée (Redessiné de Dade 1977 et Snodgrass1956) (WINSTON, 1987).

II. Oogenèse

Chaque ordre d'insectes est caractérisé par un type déterminé d'ovarioles. Les ovaires des abeilles sont de type méroïstique polytrophique (GRASSE, 1977; GILBERT, 2004; MARTINS & SERRAÕ, 2004). Ce qui signifie que la multiplication des oogonies donne naissance à des clones de cellules. Les oogonies sont les cellules germinales femelles immatures qui peuvent se diviser par mitose.

Une seule de ces cellules évolue en oocyte, les autres deviendront des trophocytes. Tous ces trophocytes seront inclus dans les follicules du vitellarium en même temps que l'oocyte (GRASSE, 1977). Les cellules issues de l'oogonie restent attachées les unes aux autres par des ponts cytoplasmiques (GUTZEIT et al, 1993 ; GILBERT, 2004). Dans chaque ovariole, on peut suivre les étapes de l'oogenèse en observant les différentes formations de l'apex à la base (GUTZEIT et al, 1993).

Une ovariole comprend 4 segments inégaux : le filament terminal, le germinarium, le vitellarium et le pédicelle (GRASSE, 1977).

La lumière étroite du filament est remplie de cellules alignées et comprimées dans une direction antéropostérieure. Ces cellules sont considérées comme des oogonies mais il est impossible de savoir avec certitude s'il s'agit des lignées germinales ou folliculaires. Elles sont donc appelées cellules souches (GUTZEIT et al, 1993).

Le germinarium, à la lumière plus élargie, est séparé du filament par un mince septum. Il contient les cellules germinales, les oocytes, et cellules somatiques, les préfolliculeuses. Dans la région basale du germinarium, ces cellules s'organisent en follicules.

Le vitellarium est souvent très long. Les follicules y sont alignés et séparés les uns des autres par des pédoncules interfolliculaires ou par de simples amas de cellules interfolliculaires. C'est au niveau du vitellarium que se déroule l'accroissement de la cellule germinale, la vitellogenèse et la formation des enveloppes de l'oocyte.

Le pédicelle rattache le vitellarium à l'oviducte.

Les cellules souches, localisées dans la partie apicale du germinarium, donnent naissance à deux types de cellules : une cellule souche qui peut continuer à se diviser par mitose et un cystoblaste. Cette dernière cellule forme une population de cellules dont le futur oocyte et les cellules trophiques.

Dans la partie distale du germinarium, la population de cellules préfolliculeuses se divisent pour entourer le follicule formé par l'oocyte et ces trophocytes. Elles isolent ainsi les follicules les uns des autres. Le nombre de follicules varie selon l'espèce.

Chez *Apis mellifera*, l'ovulation peut avoir lieu toutes les 3 à 5h dans chacune des 150 à 180 ovarioles de l'ovaire (GUTZEIT et al, 1993). Ce haut taux de ponte peut être maintenu

pendant plusieurs saisons. Une reine d'abeille peut donc produire au total plus de 500.000 œufs (GUTZEIT et al, 1993). Il existe un rapport étroit entre l'alimentation et la reproduction chez A. mellifera, ce qui explique pourquoi le développement des ovaires est plus bas au printemps, plus grand en été et intermédiaire en automne (HOOVER et al, 2006; HUMAN et al., 2007). Les régimes riches en protéine favorisent le développement des ovaires et des œufs (HUMAN et al., 2007).

Un autre facteur influençant le nombre d'œufs pondus est le mode de vie (IWATA & SAKAGAMI, 1966).

SAKAGAMI et AKAHIRA (1958) classent les ovaires en 3 classes : classe I, les ovaires sont rudimentaires ; classe II, les ovaires commencent à enfler mais on ne distingue pas encore les œufs et classe III, les œufs peuvent être distingués.

HESS (1942 cité par VELTHUIS 1970) distingue 5 stades de développement de l'ovaire d'*Apis* : stade 1, pas de distinction entre œufs et cellules nourricières ; stade 2, l'ovaire reste mince et allongé mais quelques différences deviennent discernables ; stade 3, un seul œuf atteint la taille d'un œuf mûr et stade 4-5, plus d'un œuf a la taille d'un œuf mûr, le contour de l'œuf montre aussi des gonflements et des constrictions.

VELTHIS (1970) divise le cycle ovarien en 8 stades.

Au premier stade, les ovaires sont complètement au repos, les ovarioles sont petites et très proches les unes des autres (Fig. 5 A). Au stade suivant, l'ovogenèse commence dans le haut de l'ovariole. Les cellules élargissent l'ovariole en descendant (Fig. 5 B).

Sur l'image C (Fig. 5), la plupart des œufs plus âgés sont maintenant entourés d'un épithélium. Les œufs et les trophocytes sont facilement distinguables.

Ensuite, les trophocytes peuvent être distingués dans les follicules nutritifs.

Autour des œufs, l'épithélium est plus grand qu'autour des trophocytes (Fig. 5 D). Au stade 5, les œufs dépassent le follicule nutritif en volume (Fig. 6 E). Les cellules folliculaires autour des œufs deviennent de plus en plus différentes des cellules plates qui entourent les trophocytes. L'extension des œufs dans le follicule nutritif peut être clairement observée au fur et à mesure (Fig. 6 F).

Les œufs les plus avancés ont seulement un petit reste de trophocytes derrière eux. L'œuf supérieur est plus avancé que ceux plus bas (le matériel sombre a déjà disparu) (Fig. 6 G).

Lorsque l'œuf mature glisse de l'oviducte, le chorion se sépare de l'œuf à cause de la pression (Fig.6 H).

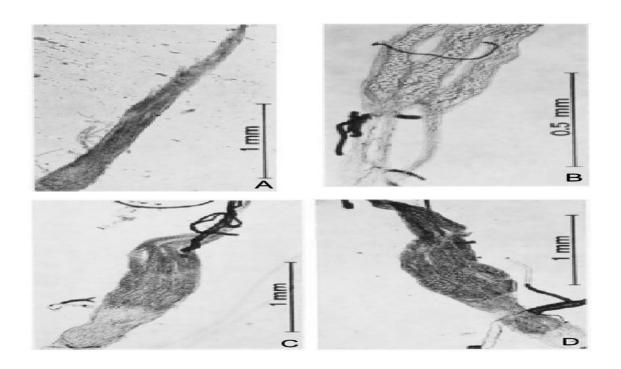


Figure 5 : Classement des stades de maturation ovarienne selon VELTHUIS (1970)

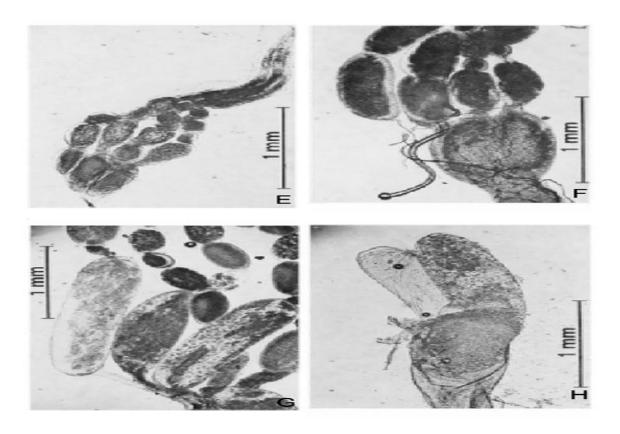


Figure 6: Classement des stades de maturation ovarienne selon VELTHUIS (1970).

III. La maturité sexuelle

La reine deviendra mûre sexuellement 6 jours après son émergence. Elle effectuera le vol nuptial au cours duquel elle est fécondée par environ 17 faux bordons (la polyandrie). Le sperme est stocké dans une sphère appelée spermathèque, il sera utilisé pour fertiliser les œufs durant toute sa vie (WOYKE, 1960).

IV. <u>Préparation à l'accouplement</u>

«Voilà de prodigieuses noces, les plus féériques que nous puissions rêver; azurées et tragiques, emportées par l'élan du désir au-dessus de la vie, foudroyantes et impérissables, uniques et éblouissantes, solitaires et infinies». C'est ainsi que Maeterlinck (MAETERLINCK, M) décrit le vol nuptial et la copulation chez les abeilles. En réalité, la reine se prépare, aidée par les ouvrières, à son «vol nuptial».

Après avoir quitté l'alvéole royale, dans laquelle la reine s'est développée en 16 jours, parfois jusqu'à 20 jours (OROSI, P.Z, 1957), les ouvrières ne semblent pas être préoccupées par elle. Le lendemain, les relations entre la jeune reine et les ouvrières changent considérablement. La reine est léchée, touchée et nourrie par les abeilles et on remarque un comportement particulier entre la reine et les ouvrières, ce qui correspondrait à une préparation rituelle de la reine pour le vol nuptial. Les ouvrières, entourant la reine, exécutent différents mouvements de tremblement, de vibration, de «rocking». La reine est traînée, tirée et basculée par les ouvrières (HAMMAN, E. 1958).

En tout 1313 mouvements différents ont été observés. La reine essaie de se défendre mais ne semble pas y parvenir. Toutefois, il semblerait que les mouvements de «piping» (les ailes de chaque côté se touchent et se frottent en même temps que leurs extrémités vibrent) figent les abeilles entourant la reine. Le troisième jour après sa naissance, la reine devient moins réticente envers les ouvrières. Elle ouvre son orifice abdominal, fait vibrer son abdomen et introduit dans les alvéoles, pour un court moment (HAMMAN, E. 1958). Ces phénomènes se manifestent à l'âge de 5 à 6 jours et indiquent la maturité sexuelle de la reine (RUTTNER, F. 1956). Les ouvrières nourrissent la reine de plus en plus pour augmenter son taux sanguin en sucre. Par la suite, la reine quitte la colonie plusieurs fois pour effectuer des vols d'orientation (HAMMAN, E. 1958).

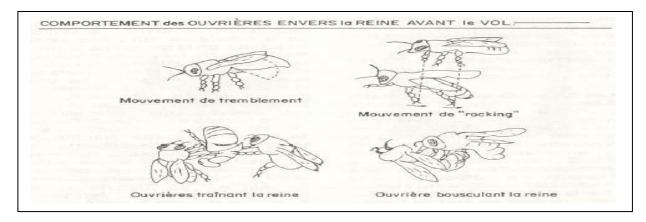


Figure 7: Comportement des ouvrières envers la reine avant le vol (Revue l'abeille, juillet 1980)

V. Accouplement

Lorsqu'elle atteint sa maturité sexuelle et que les conditions atmosphériques sont favorables, la reine quitte la colonie pour son premier vol nuptial. Il y a trois facteurs atmosphériques importants pour ce vol:

- température plus haute que 20°C
- absence ou peu de nuages
- très peu de vent (RUTTNER, F. 1956)

Les mâles atteignent leur maturité sexuelle à l'âge de 9-12 jours. La nutrition, l'activité et la condition générale des faux bourdons (RUTTNER, F. 1956). La copulation se fait dans les airs, mais on a déjà observé ce phénomène à l'extérieur de la ruche, sur le sol (PYG, W, 1952). Le mâle monte sur le dos de la reine et son organe copulateur, dans le premier stade d'éversion, est introduit dans la chambre de l'aiguillon de la femelle. Par la suite, le mâle bascule par en arrière dans un état de paralysie et le deuxième stade d'éversion se fait avec une violence explosive; après quoi, le mâle tombe sur le sol, laissant l'endophallus au complet dans la chambre de l'aiguillon de la femelle (DADE, H.A.1962).

L'endophallus détaché du mâle, dépassant le bout de l'abdomen de la femelle, est le signe d'accouplement ou le «mating sign» de la reine. Ceci peut être observé au retour de la reine, à la colonie. L'endophallus se rend jusqu'au niveau de la bourse de la femelle et le sperme est poussé dans le vagin et les oviductes. Le mucus du faux bourdon a la propriété de coaguler immédiatement au contact de l'air et, de cette façon, il forme un bouchon, empêchant la perte de spermatozoïdes; le nombre moyen par mâle, est de 4.5 millions (RUTTNER, F.1956).

Selon les recherches de Ruttner, le cours normal des vols de la reine serait le suivant:

- 1^{ier} jour: vol d'orientation
- 2^{éme} jour: vol d'orientation et copulation
- 3^{éme} jour: vol d'orientation et copulation
- 4^{éme} jour: commencement de la ponte

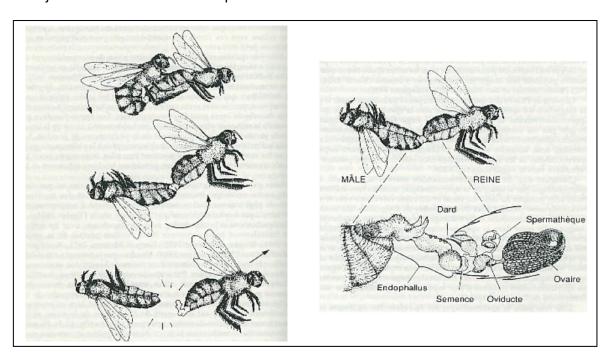


Figure 8 : L'accouplement (D'après « La biologie de l'abeille » Winston ed.Nauwelaerts ou Frison-Roche 1993)

VI. La reine fertile

Quelques heures après le retour de la reine à la ruche, les spermatozoïdes passent des oviductes dans le canal de la spermathèque, dans lequel ils peuvent être emmagasinés pour un temps indéfini. La migration des spermatozoïdes se fait par chimiotaxie ou par réponse automatique à une stimulation chimique. La source de la substance attractive serait un produit de la glande de la spermathèque (DADE, H.A.1962). Le phénomène déterminant la fertilisation des œufs n'est pas encore clarifié, mais on suppose que cela se fait par une réaction de la reine aux diamètres des alvéoles. Au niveau de l'union de la spermathèque avec son canal, celui-ci possède une valvule et une pompe en forme de «S». Le rôle de cette valvule pompe est de puiser une petite quantité de sperme dans le «S», d'obstruer le canal par la suite et de forcer le sperme à descendre vers le vagin. Parce mécanisme, la reine est capable de faire descendre du sperme pour la fertilisation des œufs mais aussi de le retenir lorsqu'elle dépose des œufs dans les alvéoles des faux bourdons. Ventralement à l'ouverture du canal du spermathèque, un repli musculaire du plancher du vagin se projette dorsalement pour former une valvule. Cette structure a comme rôle de serrer l'œuf contre l'ouverture du canal, au moment où le sperme est relâché (DADE, H.A.1962). C'est par ces structures anatomiques qu'il est permis à la reine de pondre des œufs fécondés donnant des femelles à 32 chromosomes (diploïdes) ou des œufs non fécondés à 16 chromosomes (haploïdes donnant des mâles). Ce dernier phénomène est la parthénogenèse arrhénotoque. Dans la saison de grande miellée, la reine pond entre 2000 et 3000 œufs par jour et un million et demi durant sa vie.

VII. Ponte

Pour **LUAVEAUX** (1980), la reine naissante n'est pas sexuellement mure, il s'écoulera finalement au moins trois semaines entre la ponte de l'œuf qui donnera une reine et le moment où elle est fécondée, celle-ci commencera à pondre, bien que cette dernière peut pondre des œufs avant d'être fécondée, mais les êtres vivants aux quelles elle donnera naissance seront tous des males (BIRI1981).

La reine commence à pondre 48 heures après sa fécondation un œuf par cellule **(LAFLECHE, 1981)** et arrive jusqu'à 1500 à 2000 œuf / jour, elle peut même arriver à des pontes, journalières à son propre poids. Cette ponte journalière dépend principalement de quatre circonstances différentes :

- 1. De la saison et de la récolte : la ponte de la reine est d'autant plus forte que le travail des abeilles pour la récolte est plus grand.
- **2. De l'âge de la reine :** la fécondité de la reine atteint son maximum a la 2^{ème} année de son existence, les reines de quatre ou cinq ans sont beaucoup moins fécondes.

🕷 Chapitre 3 : L'élevage de reines

I. Définition

L'élevage de reines est la pratique qui consiste à produire de jeunes reines a partir d'œufs ou des larves d'ouvrières. Le principe étant d'éviter la castration nutriciale.

Il a pour but essentiel de doter les colonies de mère de choix afin d'obtenir les meilleures résultats possibles dans l'exploitation des ruches (REGARD, 1987)

II. Choix des colonies souches

La colonie souche est la colonie ou les larves à greffer seront prélevées. L'objectif final de l'élevage de reines est la multiplication des colonies performantes et l'élimination des colonies faibles.

III. <u>Définition de la sélection</u>

La sélection est un choix basé sur comparaison d'élément connus, appelés critères de la différenciation (REGARD, 1987). Son but est l'amélioration du génome de l'abeille en vue d'augmenter la productivité (FERT, 1996)

IV. Les principaux critères de sélection

Les principaux critères de sélection sont :

- Le rendement : (en miel, en pollen, en gelée royale, selon les besoins de l'éleveur) (JEAN-PROST, 1987)
- ➤ La propreté : les bonnes nettoyeuses sont réputés résistantes aux maladies (FERT, 1996)
- La santé : les colonies présentant, dans leur passer des traces des maladies doivent être écartées de la reproduction (JEAN-PROST, 1987)
- L'essaimage : les colonies essaimeuses sont peu productives
- ➤ La douceur : pour plus de commodités des apicultures préfères des colonies douces (REGARD, 1987)
- La pureté génétique : seules les colonies de race pure sont à sélectionnés (sinon risque de pollution génétique). La sélection se portera uniquement sur une lignée stable (race géographique ou encore mieux population locale) mais non hybride. La pureté de la race sera confirmer par des mesures biométriques et l'électrophorèse (FERT, 1996).
- ➤ Il faut, cependant, réduire autant que possible le nombre des critères à considérer. En effet, tout critère ajouter dans un programme de sélection affaiblit « la pression sélective » (JEAN-PROST, 1987).

V. <u>Les différents types de sélection</u>

Les principaux types sont :

1. La sélection massale ou individuelle :

C'est la forme la plus simple de sélection. Elle est fondée sur les caractères phénotypiques des reproducteurs (FERT, 1996). Elle est consiste à reproduire entre eux les éléments les meilleurs et à supprimer systématiquement les éléments déficients (REGARD, 1987)

Elle est efficace pour les caractères fortement héritables (couleur, index cubital, nombres des crochets allaires) mais les résultats sont moins spectaculaires pour le caractère production de miel (CORNEUT, 1978)

2. La sélection fondée sur la valeur de la descendance :

Principe : les parents sont jugés sur la valeur phénotypique de leurs enfants. Elle est adoptée pour les caractères de rendement. Toutefois, à cause de problème de consanguinité, elle nécessite un effective très important.

3. La sélection généalogique :

Cette sélection consiste à accoupler les géniteurs d'élites, à créer, après chaque union, autant des lignées qu'il ya de descendants et à poursuivre la multiplication entre eux des individus d'une même lignée (JEAN-PROST, 1987).

Le problème est identique à celui de la précédente sélection.

4. La sélection combinée :

Elle consiste à estimer la valeur génétique d'un individu à partir de son propre phénotype et de celui de ces apparentés.

Il ne faut, cependant, pas oublier que toute sélection conduit à un appauvrissement en gènes, qui comporte en lui même le danger d'affaiblissement par consanguinité (CHAUVIN, 1968)

La consanguinité est l'union d'individus proches parents. Elle aboutit, après quelques générations, à l'apparition de tares (colonies plus faibles dépourvus de males, larves fragiles, dissymétrie des ailles....) (JAUN-PROST, 1987).

VI. Principes et règles de l'élevage des reines

Selon FRERE ADAM 1984:

- Les œufs qui produisent des ouvrières sont identiques à ceux d' ou naissent les reines; jusqu' au troisième jour, les larves issues de ces œufs fécondés sont nourries de gelée royale.
- Une colonie orpheline, qui dispose d'œufs ou de larves de moins de 3 jours, élève des reines d'autant mieux qu'elle compte plus de jeunes abeilles.
- o Les reines vierges seront séparées les unes des autres avant leur naissance.

I. SYNTHESE BIBLIOGRAPHIQUE

- La fécondation naturelle d'une reine ne peut avoir lieu que si cette dernière est établie dans une colonie (quelque fois très petite).
- Les chances de succès de l'élevage artificiel sont les plus grandes pendant la période de l'élevage naturel, c'est-a-dire à l'époque de l'essaimage; néanmoins, il est possible et souvent facile d'élever des reines pendant une grande partie de l'année.

vII. Les diffèrent méthodes d'élevage

- ✓ Méthode de MILLER
- ✓ Méthode de HALLEY
- ✓ Méthode du CUPOLARVE
- ✓ Méthode à L'EMPORTE PIECE
- ✓ Méthode d'élevage des reines « NID D'ABEILLES »
- ✓ Méthode simple sans prélèvement de larve
- ✓ Méthode de PICKING

I. SYNTHESE BIBLIOGRAPHIQUE

Chapitre 4 : La biométrie

I. <u>Définition de la biométrie</u>

Selon GACI, 1987, le terme biométrie dérive du mot latin :

BIOS: la vie et METRON: mesure

Ce qui explique que la biométrie est l'application à la biologie, des méthodes mathématiques en particulier statistiques à la description et à l'analyse des données recueillies sur des caractères biologiques (ANONYME 1970 et MESQUIDA, 1981) et cela avec plus de clarté. FRESNAY, 1981 définit la biométrie comme un ensemble de méthodes de mesures ou d'évaluation des caractères morphologiques qui permettent de déterminer avec plus ou moins de certitudes la race d'abeilles qu'on étudie.

II. Importance de la biométrie

La biométrie revêt d'une importance considérable, elle est à la base de tout programme de développement apicole. Elle se donne comme une mission principale la mesure de critères morphologiques permettant de distinguer de classer les races entre elle et de diagnostiquer les cas d'hybridation (LEBIBEN ,1988).

III. Les applications de la biométrie

C'est grâce à la biométrie que les chercheurs sont arrivés à mettre de l'ordre dans le monde vaste des abeilles et de les classer en espèces, en races géographiques (sous espèces) et en sous races (écotype) et de contrôler leur pureté en vue d'une sélection ou d'une restauration de la race locale. D'après **LOUVEAUX**, cité par **FRESNAY**, **1981a et 1981b** l'apiculteur devrait suivre de leurs colonies avec le temps grâce à la biométrie surtout s'il veut commercialiser les reines dont la pureté de la race soit garantie.

IV. Les différentes méthodes d'analyses biométriques

- ✓ La méthode de LINDEX CUBITAL
- ✓ La méthode des CINQ CARECTERES
- ✓ La méthode dit ABEILLES PAR ABEILLE
- ✓ La méthode des QARANTE ET UN CARACTERE MORPHOLOGIQUES

V. Les principaux caractères conservés pour l'étude biométriques

Comme il a été constaté dans différents travaux, il existe de très nombreux caractères morphologiques utilisables en biométrie de l'abeille. Mais seules cinq entre eux ont été retenues.

Ces derniers nécessitent un appareillage spécial, car aucun de ses mesures ne peut se faire à l'œil nu. Selon FRESNAY, 1981a et 1981b, et AYACH- AMOR et BELGUEBL, 1996, les cinq caractères à observer sont les suivants :

- L'index cubital
- La longueur de la langue
- La coloration du deuxième tergite
- La largeur du tomentum
- La pilosité du cinquième tergite

I. SYNTHESE BIBLIOGRAPHIQUE

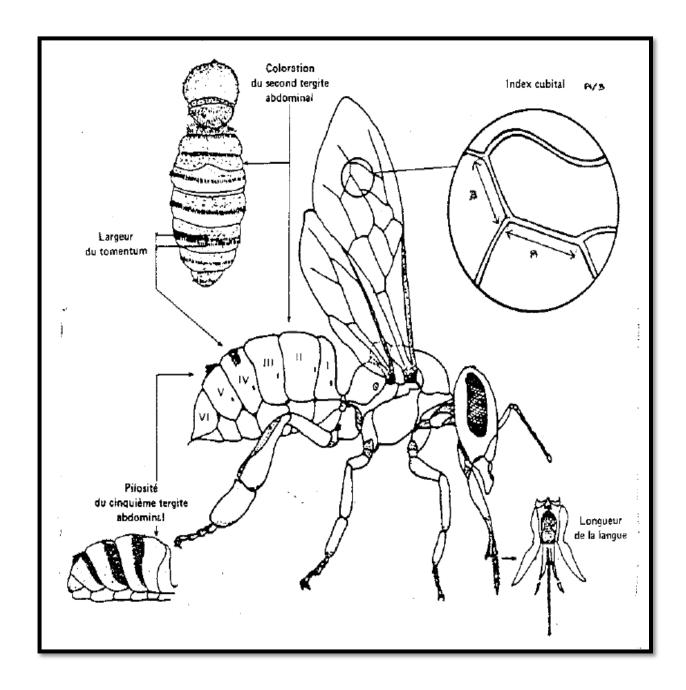


Figure 9 : Les principales mesures effectuées en biométrie (FRESNAYE, 1981)

I. <u>Présentation de la zone d'étude</u>

Notre étude s'est déroulée, du mois de mars au mois de septembre 2017 aussi bien sur le terrain, qu'au laboratoire sur 180 reines vierges.

La première partie a été réalisée dans deux exploitations privées : la première est située à **SIDI AYED**, C'est une commune de la plaine de la **MITIDJA**, située à proximité de la route nationale d'Alger a distance de 35Km du centre d'Alger et 15Km du centre de Blida ; et la deuxième exploitation est située à **CHIFFA**, à environ 18 km de BLIDA.

Figure 12: L'exploitation de CHIFFA

- Ces deux régions bénéficient d'un climat Méditerranéen caractérisé par l'alternance d'une saison chaude et sèche et d'une saison humide.
- Les précipitions sont abondantes mais irrégulières, notamment en automne et en hiver.

 Elles sont nulles en Juillet.
- Les températures sont généralement clémentes avec des pics moyens de 11.8°c et de 25.9°c respectivement, en Janvier et en Juillet.
- Ces données climatiques ont favorisé l'apparition d'une couverture végétale abondante et riche en variété, aussi au niveau de notre verger on trouve des : orangers, néfliers, pommiers, abricotiers, et autres espèces cultivées à coté de ces arbres. Nous retrouvons également une végétation spontanée, constituée de nombreuses plantes mellifères et polliniferes (oxalis, la moutarde des champs, les bouraches...).
- La deuxième partie s'est déroulée dans différents laboratoires : laboratoire de biotechnologie de la reproduction animale, à l'Institut des Sciences Vétérinaires de l'Université de Blida 1, laboratoire de la recherche d'apiculture dans l'ITLVE et le laboratoire d'ANAPATH dans l'ENSV de Bab Ezzouar.

Figure 13: Laboratoire LBRA

Figure 14: Laboratoire d'ITELV

Figure 15: Laboratoire d'ANAPATH

II. Matériel et méthodes :

II .1.Matériel :

II .1.1. Matériel biologique:

La race d'abeilles utilisée dans l'expérimentation est *Apis mellifera intermissa* ou la **tellienne**.

II .1.2. Matériel apicole:

II .1.2.1.Matériel d'exploitation : voire annexe 1

II .1.2.2. Matériel destiné à l'élevage : voire annexe 1

II .1.3 Matériels de laboratoire :

Les matériels utilisés au niveau des différents laboratoires (LBRA, ITELV, et ANAPAT) sont organisés dans l'annexe 1.

II .2 Méthodes de travail:

Notre étude se divise en 4 parties différentes : nous avons commencé par l'élevage des reines puis procédé à la morphométrie des reines vierges ensuite à la biométrie des ovaires et de spermathèque, et on a terminé par les coupes histologiques des ovaires.

II .2.1 Élevage de reines :

Nous avons travaillé dans deux exploitations différentes et pour chacune nous avons pris 30 reines sur trois générations.

Les 2 exploitations sont :

- L'exploitation de **SIDI AYED** dès le début de mars jusqu'à la fin de juillet.
- L'exploitation de CHIFFA dès la fin d'avril jusqu'au le début de septembre.

Nous avons utilisé dans notre expérimentation les techniques d'élevage de **«Doolittle et Pratt »**, qui se scinde en plusieurs étapes :

II .2.1.1 Préparation des cadres d'élevage:

Les larves à introduire sont greffées dans les cupules artificielles en plastiques

Figure 16 : Préparation des cadres d'élevage

II .2.1.2 Préparation de la ruche éleveuse :

Nous avons choisi une ruche éleveuse bien développée (15 cadres). Cette ruche est divisée en deux compartiments à l'aide d'une grille à reine.

Premier compartiment: c'est la partie orpheline, elle contient 05 cadres:

- 02 cadres de provision (pollen et miel)
- O3cadres de couvains tout âge
- Un espace est laissé pour recevoir le cadre d'élevage

Deuxième compartiment : c'est la partie contenant la reine, elle contient 10 cadres :

- 03 cadres de bâtit
- 02 cadres de couvain (tout âge)
- 02 cadres de provisions
- 03 cadres de cire gaufrée

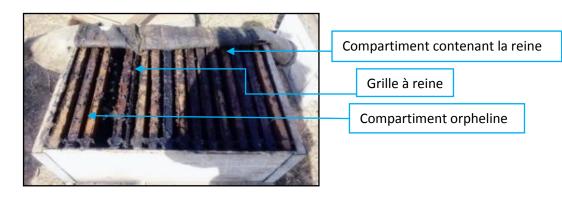


Figure 17 : Ruche éleveuse

II .2.1.3 Récupération des cadres destinés au greffage :

Au niveau de chaque colonie élite, on doit d'abord repérer un cadre un peu à l'avance du jour prévu pour le greffage; dans lequel la reine a déjà pondu et où les larves atteindront bientôt les 3 jours.

Figure 18 : Récupération du cadre de greffage

II .2.1.4 Introduction des cadres porte-barrettes pour la familiarisation :

Nous avons introduit au milieu du la ruche éleveuse le cadre portant les cupules vides pour les familiariser et les imprégner de l'odeur des abeilles pendant 24 heures. Ensuite, nous avons retiré les cadres porte cupules pour procéder au greffage.

Figure 19: Introduction des cadres porte-barrettes pour la familiarisation

II .2.1.5 Greffage ou transfert des larves de moins de 3 jours :

C'est l'opération qui consiste à transférer une jeune larve d'ouvrière âgée de moins de 24 heures dans une cupule.

Les cupules sont garnies d'une goutte d'un mélange d'eau et gelée royale. Une fois le greffage achevé, les cadres sont transportés immédiatement, dans une ruchette de

transport, vers la ruche éleveuse, pour éviter le dessèchement des larves. Le greffage est effectué dans le laboratoire ou la température est maintenue entre 18°C - 20°C.

Figure 20 : Greffage de larves de moins de 3 jours

II .2.1.6 Nourrissement:

On procédera à un nourrissement au sirop de sucre comme toutes opérations d'élevage. Cette solution sucrée, généralement composée d'un mélange 50/50 eau-sucre sera distribué régulièrement et en petite quantité pour l'exploitation de **SIDI AYED** et pour l'exploitation de **CHIFFA** un mélange de miel et de sirop sera utilisé en revanche.

Figure 21: Nourrissement des abeilles

II .2.1.7 Maturité sexuelle :

Les reines vierges (à l'éclosion) ont été laissées dans des cages individuelles protectrices, dans la ruche éleveuse, dans le compartiment orphelin jusqu'à 6 jours. Après le 6^{ème} jour, nous avons récupéré les reines vierges matures.

Figure 22 : Introduction des reines vierges dans la ruche éleveuse

Figure 23 : Récupération des reines vierges matures

Nous avons pesé les reines par une balance analytique et on les a mises dans des tubes identifiés qui contiennent une quantité suffisante du liquide de Bouin pour la conservation (voir annexe 1)

Figure 24 : La pesée des reines vierges

II .2.2. La morphométrie des reines vierges :

Nous avons utilisé la méthode « abeille par abeille » analyse par ordinateur :

Les mesures obtenues sont traitées par ordinateur.

Cette méthode consiste à mesurer les cinq caractères morphologiques sur une même abeille.

Les caractères mesurés sont faites d'après un ordre bien précis pour que les différentes parties de l'abeille ne soient pas endommagées par toute manipulation précédente.

L'ordre est le suivant :

- 1. L'index cubital
- 2. La longueur de la langue
- 3. La pilosité
- 4. La coloration du deuxième tergite
- 5. Le tomentum

1. L'index cubital:

L'index cubital est représenté par les deux segments **A** et **B** qui forment un angle au niveau de la troisième cellule cubitale de l'aile antérieure droite. Pour mesurer ces deux angles nous avons séparé l'aile antérieure droite de chaque abeille et on les disposées avec des pinces très fines sur les lames, Puis avec une loupe binoculaire reliée à un ordinateur nous avons pris des photos.

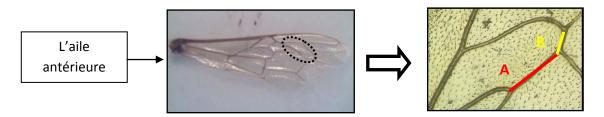


Figure 25: L'index cubital A/B

2. La longueur de la langue :

Pour la mesure de ce caractère, la tête est épinglée après avoir été coupée sous la strioscopie, de façon à présenter sa face interne au manipulateur. La langue est ensuite humectée et étirée entre les doigts délicatement jusqu'à ce qu'elle devienne droite, puis on prend des photos. La mesure de la langue se fait depuis la base du submuntum jusqu'à l'extrémité.

Nous avons gardé les ailes sur les lames pour faire une morphométrie géométrique

Figure 26: La langue d'une reine vierge

3. La pilosité:

Nous avons fixée le reste du corps de l'abeille (abdomen et le thorax) sur une plaque polystyrène. Sous la loupe binoculaire on prend des photos puis on mesure la longueur du poil le plus long de la bande pileuse du 5^{ème} tergite.

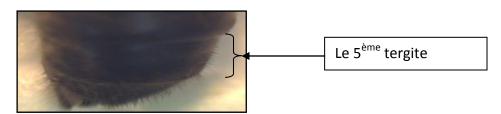


Figure 27 : La pilosité

4. La coloration du deuxième tergite :

Les reines sont fixées sur leur face ventrale. On étire le deuxième tergite qui se trouve toujours engagée sous le premier tergite, cette mesure consiste à évaluer le largueur d'une bande jaune se trouvant à l'extrémité supérieure du deuxième tergite.

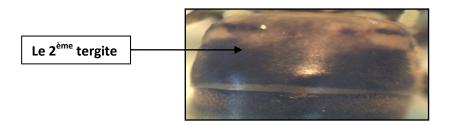


Figure 28 : La coloration du deuxième tergite

5. Le tomontum:

Cette mesure s'effectue dans la même position de l'abeille que pour la coloration. On étire le corps pour rendre visible le quatrième tergite et on prend des photos, puis on mesure le largueur de la bonde pileuse.

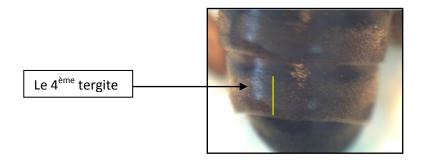


Figure 29: Le tomontum

II .2.3 la biométrie des ovaires et de la spermathèque :

II.2.3.1 les mesures

Après que avoir pris les mesures biométriques nous sommes passées à la troisième partie de notre étude : la dissection des reines vierges et la récupération des ovaires et de la spermathèque de la manière suivante :

La reine mise sur une plaque de polystyrène (ventre contre le support), est tenue par une épingle plantée à travers son thorax. Ses ailes ont été coupées pour pas gêner. Une autre épingle a été plantée au niveau de l'extrémité de l'abdomen afin de faciliter la dissection. L'abdomen a été incisé sur toute la ligne longitudinale dorsale (depuis l'anus) ainsi que sur une ligne transversale antérieure. L'incision a été maintenue ouverte au moyen d'épingles à insectes. Le tube digestif de couleur jaune clair a été déroulé afin d'avoir accès aux organes génitaux et plus précisément au spermathèque.

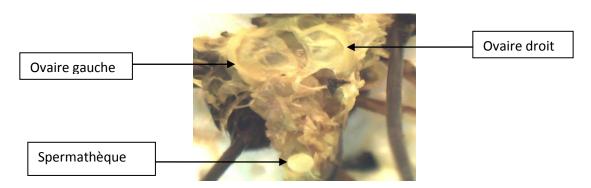


Figure 30 : Une reine vierge disséquée

✓ On a pesé que les ovaires à l'aide d'une balance analytique puis on a pris le diamètre de chaque ovaire (gauche et droit pour les 180 reines) et de la spermathèque à l'aide d'une loupe binoculaire munie d'un ordinateur muni du logiciel **motic.**

Figure 31 : La pesée des ovaires et du spermathèque

Figure 32 : Les mesures du diamètre des ovaires et du spermathèque

Une fois ces mesures effectuées, nous sommes passé au comptage des ovarioles.

II .2.3.2 Comptage des ovarioles :

Nous avons compté les ovarioles des 180 reines vierges.

À l'aide d'une loupe binoculaire à grossissement G X2.5 nous avons compté les ovarioles des deux ovaires de chaque reine.

Les ovaires sont conservés dans le liquide de Bouin.

On met l'ovaire sur une lame et on ajoute une goute d'alcool à 70% pour la fixation puis sous la loupe et à l'aide des épingles de la dissection on réalise le comptage.

II .2.4 La partie des coupes histologiques :

Nous avons fait les coupes histologiques des ovaires des reines vierges et 10 reines fécondées.

Chaque paire d'ovaires a été photographiée et ensuite conservée dans l'alcool 70 %.

Nous avons mis chaque ovaire dans un petit morceau de compresse puis dans une cassette identifiée.

Préparation des coupes :

Elle se fait selon le protocole suivant :

✓ Nous avons plongé les échantillons pendant 30 min dans un premier bain d'alcool 70% puis dans un 2^{ème} bain également d'alcool 90% puis dans un bain d'alcool 95% puis dans deux bains d'alcool 100%. On termine par deux bains de toluène.

Figure 33: La déshydratation

✓ les échantillons sont enrobés avec de la paraffine liquide à 58°C d'abord pendant 12h au minimum avant de verser le tout dans des moules métalliques prévus à cet effet.

Figure 34 : Enrobage des cassettes dans la paraffine liquide

✓ On enlève la compresse et on met l'ovaire dans un moule métallique remplis par la paraffine.

Figure 35 : Versement des ovaires dans des moules métalliques

✓ On met les moules métalliques sous un appareil de refroidissement pour constituer les blocs.

Figure 36: La formation des blocs

✓ On coupe les échantillons à l'aide d'un microtome en sections de 5µm d'épaisseur.

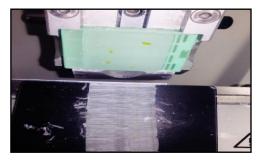


Figure 37 : Des coupes longitudinales au niveau de l'ovaire

✓ On met les coupes dans un bain marie (42°C) puis sur les lames.

Figure 38: La mise des coupes sur les lames

✓ On met les lames sur la plaque chauffante puis dans l'étuve pendant 1h:30 avant la coloration.

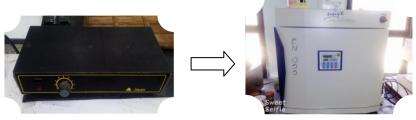


Figure 39 : Le séchage des échantillons

> La coloration :

Concernant la coloration, nous avons choisi de faire deux colorations différentes, HE et trichrome de Masson selon les méthodes suivantes :

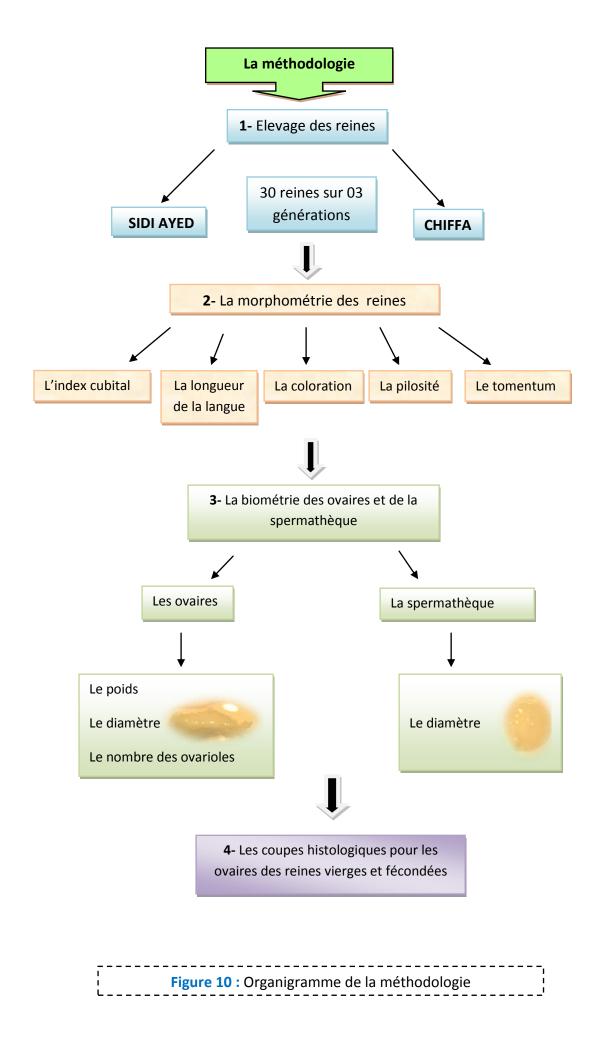
❖ Trichrome de Masson :

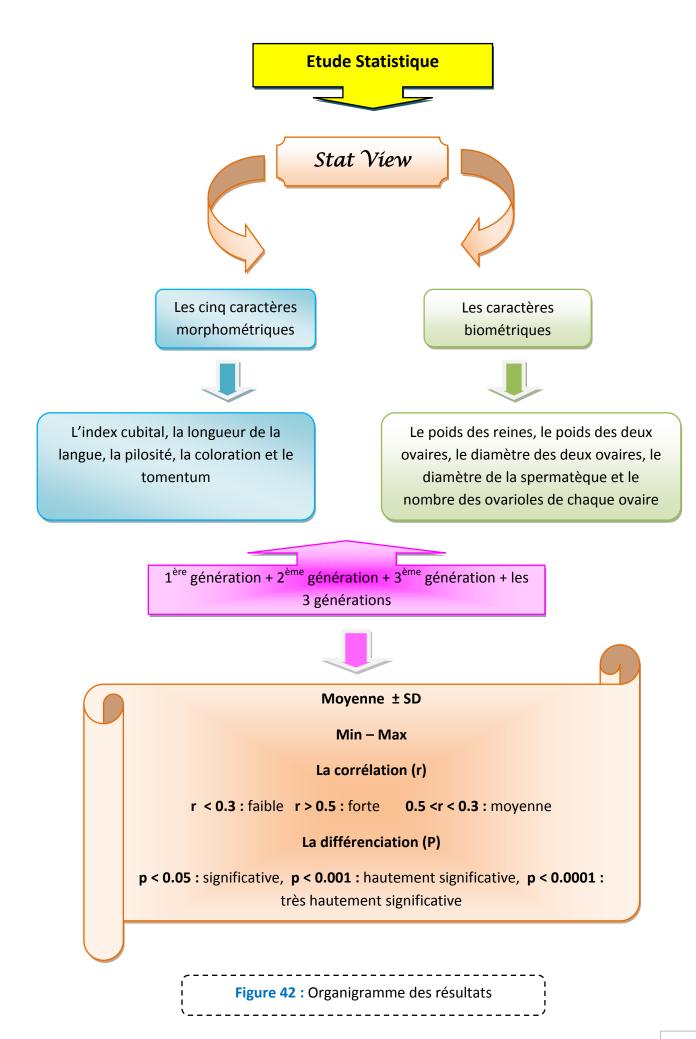
Les colorants utilisés sont solubles dans l'eau donc il faut déparaffiner les échantillons au toluène (deux passages de 5 min) pour les réhydrater. Ensuite les échantillons seront plongés dans un bain d'alcool 100% pendant une minute puis trempés dans un bain d'alcool 90% pour terminer par deux bains d'alcool 70% pendant 1 minutes. Les échantillons sont rincés sous un filet d'eau courante durant 3 minutes.

Pour colorer les échantillons, les lames sont plongées dans différents bains de colorants successifs :

- √ Hématoxyline de Groat pendant 45s pour colorer les noyaux
- ✓ Passage de 3 min sous l'eau courante pour intensifier la coloration nucléaire
- ✓ Mettre dans Fuschine-Ponceau pendant 5 minutes pour colorer le cytoplasme
- ✓ Passage dans de l'acide acétique 1% pour rincer 2 min
- ✓ Orange G molybdique pendant 5 minutes pour donner de la brillance aux composés acidophiles
- ✓ Passage dans de l'acide acétique 1% pour rincer 2 min
- ✓ Vert lumière acétique pendant 5 minutes pour colorer le tissu conjonctif
- ✓ Passage dans de l'acide acétique 1% pour rincer 2 min
- ✓ Les échantillons sont ensuite de nouveau déshydratés pour le montage via des passages dans de l'alcool 90% et 100% et éclaircis par des passages dans 2 bains de toluène.
- ✓ Les lamelles sont montées sur les lames avec de la résine synthétique.

Figure 40 : Les différents bains du la coloration de trichome de Masson


♦ HE:


La différence au niveau des bains de coloration

- ✓ Hématoxyline de Groat pendant 45s pour colorer les noyaux
- ✓ Passage de 3 min sous l'eau courante pour intensifier la coloration nucléaire
- ✓ Eosine pendant 5 minutes pour colorer le cytoplasme

Figure 41 : Les différents bains de la coloration HE

V. DISCUSSION

- Les analyses biométriques, morphométrique et statistiques que nous avons effectuées sur des échantillons de reines vierges permettent de définir la caractérisation de la race locale (*Apis mellifira intermissa*) comparativement aux autres races au sein *d'Apis mellifira* et de Trouver un lien entre ces différents paramètres et la performance des reines dans la reproduction de l'abeille tellienne (*Apis mellifira intermissa*).
- Pour caractériser la race locale (tellienne) nous avons travaillé dans 2 stations. Pour chaque station nous avons travaillé sur 3 générations pour voir la stabilité de ces caractères
- Des travaux ont été effectués en Egypte sur la race Apis mellifera carnica (en 2010 et 2011) (S.M. Kamel et al., 2013), ils ont travaillés sur 23 caractères morphometriques, et en Arabic Saoudite ont travaillés sur la race Apis mellifera jemenitica (en 2010 et 2011) (Abdulaziz S., 2013) ont prit 5 caractères parmi les 23, alors que nous avons travaillé sur autres 5 caractères qui sont : l'index cubital, la longueur de la langue, la pilosité, la coloration et le tomentum car c'est le protocole utilisé pour l'ouvrière et il est moins fastidieux d'autant plus que nous travaillons sur trois générations pour chacune des deux stations.
- Les moyennes de ces caractères sur les trois générations des deux stations sont **2.676** mm pour l'index cubital, **3.490mm** Pour la longueur de la langue, **0.241mm** pour la pilosité, de **0.561mm** Pour la coloration, et **1.289 mm** pour le tomentum.
- Nous avons étudiés 5 caractères de la reproduction : poids de la reine, poids des deux ovaires, les diamètres des deux ovaires et de la spermathéque, et le nombre des ovarioles des deux ovaires. Cependant il faut noter que dans notre étude contrairement a celle menée en **Egypte** et en **Arabie Saoudite** (ou ils ont compté le nombre des ovarioles dans l'ovaire droit) nous avons réalisé le comptage des ovarioles des deux ovaires et nous avons prit leur diamètres.
- Ces caractères sont variés selon l'effet de saison et le régime d'alimentation et parfois par le passage d'une génération à une autre. Selon HOOVER et al, 2006; HUMAN et al., 2007 il existe un rapport étroit entre l'alimentation et la reproduction chez *l'Apis m*, ce qui explique pourquoi le développement des ovaires est plus bas au printemps, plus grand en été et intermédiaire en automne.
- Concernant le poids de notre reine (*Apis mellifira intermissa*) il est lié à l'alimentation et le changement climatique et il est varié d'une génération à l'autre.
- La moyenne de poids de Notre reine (*Apis mellifira intermissa*) est de **0.1518g** inferieure par rapport à celle *d'A. m. carnica* qui pèse **0,1691 g** (les travaux ont réalisé en **2010**) et **0, 1627g** (en **2011**) (**S.M. Kamel et al., 2013**), supérieur À celle de *A m. jemenitica qui se pèse 0,1338 g* (en **2010**) et **0,1419** g (en **2011**) (**Abdulaziz S., 2013**).
- nous avons trouvé que le poids de l'ovaire gauche d'*Apis mellifira intermissa* est supérieur à celle de l'ovaire droit.

V. DISCUSSION

- le diamètre des ovaires varie de la même façon que leurs poids, et que le nombre des ovarioles de l'ovaire gauche plus important que celle de l'ovaire droit.
- Le nombre des ovarioles dans l'ovaire droit d'A. m. carnica est 150 (en 2010) et de 164 (en 2011) (S.M. Kamel et al., 2013), et celle d'A. m. jemenitica est de 147 (2010) et de 146 (en 2011) sont supérieur à celle de notre race (113) (Abdulaziz S., 2013).
- Nous avons trouvé que le diamètre de spermathèque d'Apis mellifira intermissa est 1.217mm, plus élevé par rapport a celle des deux races en 2010 : [1.201 mm pour A. m. carnica (S.M. Kamel et al., 2013), et 1.187 mm pour A. m. jemenitica (Abdulaziz S., 2013)], mais faible par rapport aux résultats obtenue en 2011 [1.305mm pour A. m. carnica (S.M. Kamel et al., 2013), et de 1.273 mm pour A. m. jemenitica (Abdulaziz S., 2013)].
- Concernant l'études des corrélation entres les caractères biométriques : Weaver, 1957; Avetisyan, 1961; Woyke, 1971; Szabo, 1973; Wen-Cheng and Chong-Yuan, 1985; Gilley et al., 2003 ont trouvés une corrélation positive entre le poids de la reine (Apis mellifera L) et le nombre des ovarioles alors que Corbella et al., 1982; Hatch et al., 1999; Jackson et al., 2011 ont trouvés une corrélation négative.
- Nos résultats montrent la présence d'une corrélation entre le poids de la reine et le poids des deux ovaires, de même entre le poids des deux ovaires, une forte corrélation entre le Diamètres des deux ovaires, de même entre le nombre des ovarioles des deux ovaires.
- Akyol et al., 2008; Kahya et al., 2008; Bieńkowska et al., 2009 ont trouvés une corrélation positive entre le poids de la reine et le diamètre de la spermathèque, notre étude montre la présence de même corrélation qui varie d'une génération à un autre inter et intra-stations.
- Concernant l'étude des corrélations entre les caractères morphometriques et biométriques nos résultats montrent la présence des corrélations significatives entre le poids des deux ovaires, la coloration, le tomentum, et la pilosité due à la localisation des ovaires dans l'abdomen.

I. <u>Caractérisation morphologique des populations des reines d'abeilles :</u>

Nous consacrerons tout d'abord en premier lieu une partie aux analyses univariées (statistiques élémentaires), les fréquences relatives de chaque caractère étudié, et on calculera la matrice de corrélation.

Pour déterminer les caractérisations biométriques des reines récoltées, nous avons calculé par site d'échantillonnage la moyenne arithmétique (x), Dév Std (SD) et la valeur minimale (min) et maximale (max) pour chaque variable biométrique. Les résultats de cette analyse sont mentionnés dans le tableau suivant :

		1 ^{ère} génération	2 ^{ème} génération	3 ^{ème} génération
		[Moy ± SD]	[Moy ± SD]	[Moy ± SD]
		[Min - Max]	[Min - Max]	[Min - Max]
	IC A/B (mm)	3.273 ± 0.616	2.378 ± 0.244	2.430 ± 0.450
		2.081- 4.520	1.488 - 3.614	1.647- 3.336
E	Longueur de la	3.334 ± 0.376	3.983 ± 0.181	3.525 ± 0.461
AYED	langue (mm)	2.824 - 4.039	3.569 - 4.246	2.968 - 4.271
SIDI	Pilosité (mm)	0.291 ± 0.081	0.249 ± 0.056	0.254 ± 0.075
		0.124- 0.456	0.158 - 0.366	0.079 - 0.384
Station de	Coloration (mm)	0.610 ± 0.346	0.378 ± 0.463	0.640 ± 0.338
ior		0.255 - 1.779	0 - 1.948	0.199 - 1.351
tat	Tomentum (mm)	1.235 ± 0.140	1.284 ± 0.126	1.380 ± 0.261
S		1.001- 1.510	1.072 - 1.595	0.883 - 1.947
	IC A/B (mm)	2.649 ± 0.480	2.465 ± 0.660	2.942 ± 0.977
4		2.047 - 3.683	1.564 - 4.054	1.716 - 5.959
CHIFFA	Longueur de la	3.477 ± 0.394	3.270 ± 0.296	3.289 ± 0.254
ᇙ	langue (mm)	2.817 - 4.144	2.610 - 4.159	2.815 – 4.185
<u>e</u> (Pilosité (mm)	0.204 ± 0.071	0.208 ± 0.067	0.243 ± 0.085
þ		0.103 - 0.413	0.104 - 0.373	0.129 - 0.425
į	Coloration (mm)	0.747 ± 0.360	0.638 ± 0.497	0.377 ± 0.135
Station de		0.161- 1.715	0.191- 2.884	0.169 - 0.747
S	Tomentum (mm)	1.297 ± 0.184	1.270 ± 0.161	1.267 ± 0.120
		0.907- 1.671	0.888 - 1.503	1.032 – 1.517

Tableau N°1: Analyses statistiques des résultats morphologiques (comparaison des échantillons à l'intérieur des populations).

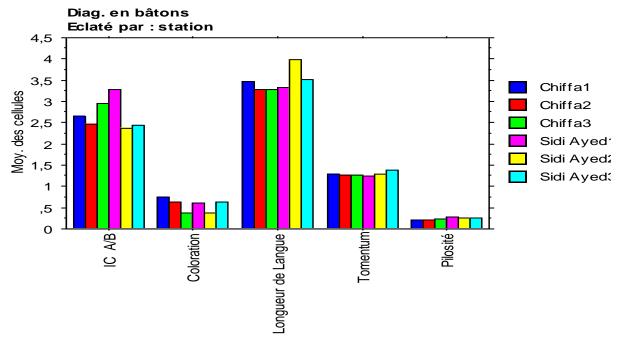
1. L'index cubital:

D'après le tableau, la moyenne de l'index cubital le plus élevé est 2.942mm dans la 3^{ème} génération de la station de Chiffa par rapport à la moyenne de la station de Sidi Ayed (2.430mm pour la 3^{ème} génération).

2. La longueur de la langue :

La moyenne de la longueur de la langue la plus élevée est de 3.983mm dans la 2^{ème} génération de la station de Sidi Ayed. celle de Chiffa est de 3.477mm dans la 1^{ère} génération.

3. La pilosité:


L'examen de ce tableau montre que la moyenne de la pilosité la plus élevée est de 0.291mm dans la 1^{ère} génération de la station de Sidi Ayed para pour à la 3^{ème} génération de la station de Chiffa 0.243mm.

4. La coloration:

La moyenne de la coloration la plus élevée est de 0.747mm dans la 1^{ère} génération de la station de Chiffa. Celle de Sidi Ayed 0.640mm dans la 3^{ème} génération.

5. Tomentum:

L'examen de tableau ci-dessus montre que la moyenne du tomentum de la station de Sidi Ayed dans la 3^{ème} génération (1.380mm) est la plus élevée par rapport à la moyenne de la 1^{ère} génération de la station de Chiffa.

Figure 43 : Histogramme de comparaison des moyennes des cinq caractères morphométriques de chaque station pour les trois générations.

L'examen de l'histogramme ci-dessus montre que la moyenne de l'index cubital est diminuée

III. RESULTATS

d'une génération à l'autre dans la station de Sidi Ayed par contre elle augmente progressivement dans la station de Chiffa et la moyenne la plus élevée est dans la 1^{ère} génération de Sidi Ayed.

La moyenne de la coloration ne représente pas une différence important dans les trois générations des deux stations mais une diminution au niveau des trois générations de la station de Chiffa.

La langueur de la langue représente une diminution progressive dans les trois générations de la station de Chiffa mais une augmentation dans la station de Sidi Ayed est plus important dans la 2^{ème} génération par rapport aux autres.

Concernant le tomentum, nous remarquons une petite diminution d'une génération à l'autre dans la station de Chiffa par contre une petite augmentation d'une génération à l'autre dans la station de Sidi Ayed et pour la pilosité, nous remarquons une stabilité partielle dans les trois générations des deux stations.

A. Comparaison entre les trois générations des deux stations :

Tableau N°2: analyse des résultats morphologiques (comparaison entre les générations).

	1 ^{ère} génération	2 ^{ème} génération	3 ^{ème} génération	Les 3	
				générations	
Caractères	[Moy ± SD]	[Moy ± SD]	[Moy ± SD]	[Moy ± SD]	
	[Min – Max]	[Min – Max]	[Min – Max]	[Min – Max]	
IC A/B (mm)	2.945 ± 0.628	2.419 ± 0.576	2.690 ± 0.801	2.676 ± 0.703	
	2.047 - 4.520	1.488 - 4.054	1.647 - 5.959	1.488 – 5.959	
Longueur de la	3.409 ± 0.389	3.644 ± 0.432	3.403 ± 0.384	3.490 ± 0.417	
langue (mm)	2.817 - 4.144	2.610 - 4.246	2.815 – 4.271	2.610 - 4.271	
Pilosité (mm)	0.245 ± 0.087	0.229 ± 0.065	0.249 ± 0.080	0.241 ± 0.077	
	0.103 - 0.456	0.104 - 0.373	0.079 - 0.425	0.079 – 0.456	
Coloration (mm)	0.682 ± 0.357	0.502 ± 0.493	0.506 ± 0.286	0.561 ± 0.398	
	0.161 - 1.779	0 - 2.884	0.169 - 1.351	0 – 2.884	
Tomentum (mm)	1.268 ± 0.166	1.278 ± 0.143	1.323 ± 0.208	1.289 ± 0.175	
	0.907 - 1.671	0.888 - 1.595	0.883 - 1.947	0.883 – 1.947	

L'examen de ce tableau montre que la moyenne de l'index cubital la plus élevée des deux stations visitées est de 2.945mm dans la 1^{ère} génération.

La moyenne de la longueur de la langue pour les 180 reines étudiées de 2^{ème} génération 3.644mm est la plus élevée.

La moyenne de la pilosité pour la 3^{ème} génération dans les deux stations 0.245 est le plus élevé.

Le caractère coloration de la 1^{ère} génération représente la moyenne la plus élevée 0.682mm. Parmi les 180 tomentum mesurés la moyenne la plus élevée est dans la 3^{ème} génération 1.323mm.

L'examen de l'histogramme ci-dessous indique qu'il n'y a pas une grande différence entre les moyennes des cinq caractères morphométriques des deux stations dans les trois générations et surtout pour la pilosité et le tomentum.

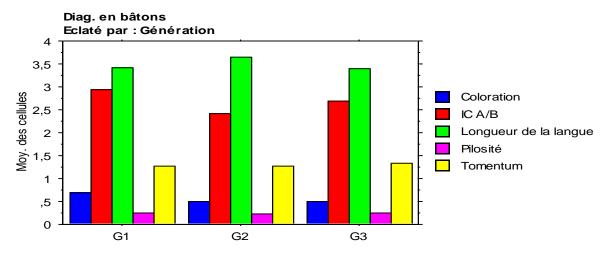


Figure 44 : Histogramme de comparaison des moyennes des cinq caractères morphométriques des deux stations

B. <u>Etude de corrélation entre les caractères morphométriques inter et intra-</u> stations :

La relation entre les cinq caractères étudiés chez la reine de l'abeille tellienne à été appréciée par l'examen des valeurs du coefficient de corrélation comme suit :

r < 0.3 : une faible corrélation

0.3 < r < 0.5 : une corrélation moyenne

r > 0.5: une forte corrélation

p < 0.05 : différence significative

p < 0.001 : différence hautement significative

p < 0.0001 : différence très hautement

significative

1. Station de Sidi Ayed:

🖣 1^{ère} génération :

D'après le tableau N°1 dans l'annexe2, il existe une forte corrélation entre la longueur de la langue et l'index cubital (r = 0.695), une faible corrélation entre la pilosité et l'index cubital (r = 0.201) de même pour la longueur de la langue et la coloration (r = 0.243) et entre le tomentum et la longueur de la langue (r = 0.416), une corrélation moyenne entre la pilosité et la longueur de la langue (r = 0.427), de même pour la pilosité et le tomentum (r = 0.444).

👰 2^{ème} génération :

Concernant la $2^{\text{\'eme}}$ génération, le tableau N°2 dans l'annexe 2 indique qu'on a une faible corrélation entre la longueur de la langue et l'index cubital (r = 0.244), de même pour la longueur de la langue et la coloration (r = 0.225) et entre la longueur de la langue et le tomentum (r = 0.200).

👸 3^{ème} génération :

Dans la 3^{éme} génération, le tableau N°3 dans l'annexe2 montre qu'on a une corrélation

III. RESULTATS

moyenne entre la longueur de la langue et la coloration (r = 0.377), une forte corrélation entre le tomentum et la longueur de la langue (r = 0.609) et une faible corrélation ente la pilosité et le tomentum (r = 0.255).

🦸 Entre les 3 générations :

Concernant les trois générations de la station de Sidi Ayed le tableau N°4 de l'annexe 2 indique qu'on a une différence hautement significative entre la $1^{\text{ère}}$ et la $2^{\text{ème}}$ génération (p = 0.0002) et très hautement significative entre la $2^{\text{ème}}$ et la $3^{\text{ème}}$ génération (p<0.0001) pour la longueur de la langue et selon le tableau N°5 on a une différence hautement significative entre la $1^{\text{ère}}$ et la $3^{\text{ème}}$ génération (p = 0.0019), de même entre la $2^{\text{ème}}$ et la $3^{\text{ème}}$ génération (p = 0.0002) pour le tomentum. Pour les autres caractères nous n'avons observé aucune différence.

2. Station de Chiffa:

🕺 1ère génération :

Le tableau N°6 de l'annexe2 montre qu'il ya une corrélation négative moyenne entre la longueur de la langue et l'index cubital (-0.355), une faible corrélation entre le tomentum et l'index cubital (-0.252), une corrélation moyenne entre la pilosité et l'index cubital (0.375), de même entre la pilosité et la coloration (0.336) et une forte corrélation entre la pilosité et la longueur de la langue (0.531).

👰 2^{ème} génération :

Le tableau N°7 de l'annexe 2 montre qu'il ya une corrélation négative moyenne entre le tomentum et l'index cubital (r = -0.309), une corrélation moyenne entre la longueur de la langue et la coloration (r = 0.360) et de même entre la pilosité et la longueur de la langue (r = 0.444).

🥞 3^{ème} génération :

Le tableau N°8 de l'annexe 2 indique qu'on a une corrélation moyenne entre l'index cubital et le tomentum (r = 0.318) et de même entre la longueur de la langue et le tomentum (r = 0.312).

🧣 Entre les trois générations :

Concernant les trois générations de la station de Chiffa le tableau N°9 de l'annexe 2 montre qu'on a une différence hautement significative entre la $1^{\text{ère}}$ et la $3^{\text{ème}}$ génération (p = 0.0003) et significative entre la $2^{\text{ème}}$ et la $3^{\text{ème}}$ génération (p = 0.0385) pour l'index cubital et selon le tableau N°10 on a une différence très hautement significative (p<0.0001) entre la $1^{\text{ère}}$ et la $1^{\text{ème}}$ génération pour la coloration et selon les tableaux N°11,12 on a une différence significative entre la $1^{\text{ère}}$ et la $1^{\text{ème}}$ génération (p = 0.0207) pour

III. RESULTATS

la longueur de la langue (p = 0.0261) et pour le tomentum et la pilosité on a aucune différence entre les trois générations.

3. Entre les deux stations :

🦸 1^{ère} génération :

Le tableau N°13 de l'annexe2 montre qu'on a une corrélation moyenne entre la pilosité et l'index cubital (r = 0.458) et pour les deux stations on n'a aucune différence dans les cinq caractères morphométriques.

👸 2^{ème} génération :

Le tableau N°14 de l'annexe 2 indique qu'il ya une différence significative entre les deux stations pour la longueur de la langue (p = 0.0088) et le tableau N°15 indique qu'on a une corrélation moyenne entre la longueur de la langue et la pilosité (r = 0.417).

§ 3ème génération :

Le tableau N°17 de l'annexe 2 montre qu'on a une différence très hautement significative entre les deux stations (p<0.0001) pour l'index cubital, la coloration, le tomentum et une différence significative (p = 0.0023) pour la longueur de la langue et le tableau N°16 indique qu'on a une corrélation moyenne entre la coloration et la longueur de la langue (r = 0.413) et une forte corrélation entre la longueur de la langue et le tomentum (r = 0.578).

🦸 Entre les trois générations :

№ IC A/B:

Concernant les trois générations des deux stations étudiées le tableau N°18 de l'annexe 2 montre qu'on a une différence significative entre la $2^{\text{ème}}$ G de station de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed (p = 0.0452), entre la $3^{\text{ème}}$ G de Chiffa et la 1^{ier} G de Sidi Ayed (p = 0.0188), une différence hautement significative entre la $3^{\text{ème}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed (p = 0.0003) et une différence très hautement significative pour la $3^{\text{ème}}$ G des deux stations (p<0.0001).

Coloration:

Le tableau N°19 de l'annexe 2 indique qu'on a une différence significative entre la $2^{\text{ème}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed (p = 0.0444) et une différence très hautement significative (p<0.0001) entre la $3^{\text{ème}}$ G de Chiffa et $1^{\text{ère}}$ G de Sidi Ayed, entre la $3^{\text{ème}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed et entre la $3^{\text{ème}}$ G des deux stations.

🦞 La longueur de la langue :

Le tableau N°20 de l'annexe 2 montre qu'on a une différence très hautement significative entre la $1^{\text{ère}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed (p<0.0001), une différence significative entre la $2^{\text{ème}}$ G des deux stations (p = 0.0088), entre la $2^{\text{ème}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed (p = 0.0218), entre la $3^{\text{ème}}$ G de Chiffa et la 1^{ier} G de Sidi Ayed (p = 0.0431) et entre la $3^{\text{ème}}$ G des deux stations (p = 0.0023).

Y Tomentum:

Le tableau N°21 de l'annexe 2 indique qu'on a une différence significative entre la 1^{ier} G de Chiffa et la $2^{ème}$ G de Sidi Ayed (p = 0.0425), entre la $2^{ème}$ G de Chiffa et la $3^{ème}$ G de Sidi Ayed (p = 0.0121) et une différence très hautement significative entre la $3^{ème}$ G des deux stations (p<0.0001).

🦞 Pilosité :

Le tableau N°22 de l'annexe 2 montre qu'on a une différence significative entre la $3^{\text{ème}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed (p = 0.0282).

II. <u>Caractérisation biométriques des populations des reines d'abeilles :</u>

On a calculé les mêmes paramètres comme les caractérisations morphologiques mentionnées dans le tableau ci-dessous.

Tableau N°3: Analyses statistiques des résultats biométriques (comparaison des échantillons à l'intérieur des populations).

		Station de Sidi Ayed	Station de Chiffa	
		[Moy ± DS]	[Moy ± DS]	
		[Min – Max]	[Min – Max]	
	Poids des reines (g)	0.1453 ± 0.016	0.1702 ± 0.022	
		0.1127 - 0.1786	0.1300 - 0.2158	
	Poids de l'OD (g)	0.0020 ± 0.001	0.0019 ± 4.883	
		0.0012 - 0.0035	0.0010 - 0.0031	
	Poids de l'OG (g)	0.0018 ± 4.693	0.0018 ± 0.001	
		0.0011 - 0.0033	0.0010 - 0.0032	
	Diamètre de l'OD (mm)	4.106 ± 0.871	3.976 ± 0.683	
1 ^{ère}		3.034 - 6.530	2.896 - 6.115	
génération	Diamètre de l'OG (mm)	4.162 ± 0.690	3.892 ± 0.699	
		3.073 - 6.359	2.483 - 5.114	
	Diamètre de la S (mm)	1.249 ± 0.106	1.221 ± 0.101	
		0.963 - 1.408	1.089 - 1.497	
	Nbr des O d'OD	103 ± 17.946	115 ± 18.182	
		65 - 130	84 - 154	
	Nbr des O d'OG	100 ± 22.575	116 ± 19.312	

III. RESULTATS

		65 - 155	86 - 149	
	Poids des reines (g)	0.1369 ± 0.018	0.1447 ± 0.015	
	1 2100 000 1 211100 (8)	0.0894 - 0.1635	0.1284 - 0.2054	
	Poids de l'OD (g)	0.0020 ± 0.001	0.0016 ± 0.001	
	(8)	0.0010 - 0.0036	0.0010 - 0.0034	
	Poids de l'OG (g)	0.0022 ± 0.001	0.0018 ± 0.001	
	(6)	0.0010 - 0.0057	0.0012 - 0.0036	
	Diamètre de l'OD (mm)	3.230 ± 0.545	4.070 ± 0.674	
2 ^{ème}	, ,	1.969 - 4.344	3.076 - 6.058	
génération	Diamètre de l'OG (mm)	3.496 ± 0.508	4.145 ± 0.815	
		2.602 - 4.919	2.445 - 6.641	
	Diamètre de la S (mm)	1.202 ± 0.138	1.225 ± 0.078	
		0.991 - 1.505	1.017 - 1.342	
	Nbr des O d'OD	101 ± 15.838	124 ± 14.596	
		65 - 130	98 - 158	
	Nbr des O d'OG	109 ± 13.665	133 ± 12.563	
		78 - 133	108 - 158	
	Poids des reines (g)	0.1554 ± 0.021	0.1556 ± 0.021	
		0.1128 - 0.1946	0.1193 – 0.2298	
	Poids de l'OD (g)	0.0022 ± 0.001	0.0015 ± 1.919	
		0.0010 - 0.0061	0.0011 - 0.0019	
	Poids de l'OG (g)	0.0020 ± 0.001	0.0017 ± 3.936	
àma		0.0010 - 0.0041	0.0012 - 0.0029	
3 ^{ème}	Diamètre de l'OD (mm)	3.476 ± 0.618	3.726 ± 0.575	
		2.233 - 4.503	2.611 – 4.880	
génération	Diamètre de l'OG (mm)	3.698 ± 0.557	3.948 ± 0.677	
		2.617 - 4.802	2.560 – 6.014	
	Diamètre de la S (mm)	1.245 ± 0.117	1.165 ± 0.095	
		1.022 -1.522	0.822 – 1.322	
	Nbr des O d'OD	107 ± 15.950	125 ± 6.907	
		79 - 132	112 - 137	
	Nbr des O d'OG	111 ± 18.447	134 ± 9.979	
		72 - 139	113 - 149	

a. Poids des reines (g):

D'après le tableau ci-dessus la moyenne du poids des reines le plus élevé est de (0.1702g) de la 1^{ère} génération de la station de Chiffa par rapport à la 3^{ème} génération de la station de Sidi Ayed (0.1554g).

b. Poids de l'ovaire droit (g):

La moyenne du poids de l'ovaire droit le plus élevé est de (0.0022g) de la $3^{\rm ème}$ génération de la station de Sidi Ayed celle de $1^{\rm ère}$ génération de la station de Chiffa (0.0019g).

c. Poids de l'ovaire gauche (g) :

L'examen de ce tableau montre que le poids de l'ovaire gauche de la 2^{ème} génération de la station de Sidi Ayed (0.0022g) est la plus élevée.

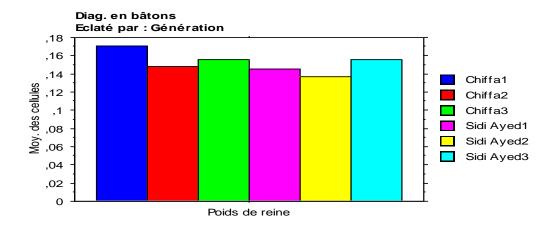
d. Diamètre de l'ovaire droit (mm) :

La moyenne de diamètre de l'ovaire droite de la 1^{ère} génération de la station de Sidi Ayed est la plus élevée (4.106g), celle de 2^{ème} génération de la station de Chiffa (4.070g).

e. Diamètre de l'ovaire gauche (mm) :

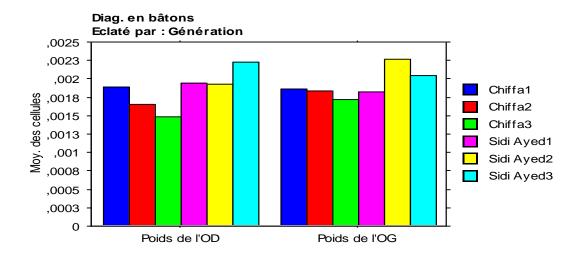
L'examen du tableau ci-dessus montre que la moyenne du diamètre de l'ovaire gauche de la 1^{ère} génération de la station de Sidi Ayed 4.162mm est la plus élevée, celle de 2^{ème} génération de la station de Chiffa 4.145mm.

f. Diamètre de la spermatèque (mm) :

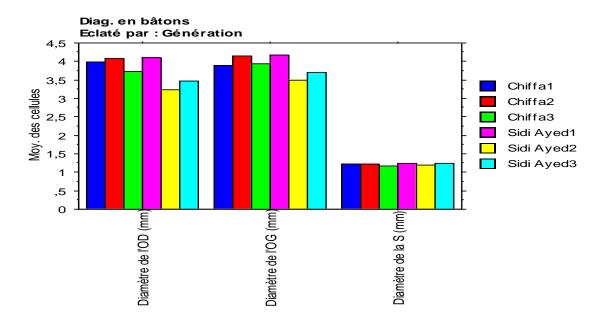

La moyenne de diamètre de la spermatèque de la station de Sidi Ayed pour la 1^{ère} génération (1.249mm) est la plus élevée par rapport à la moyenne de la 2^{ème} génération de la station de Chiffa (1.225mm).

g. Nombre des ovarioles de l'ovaire droit :

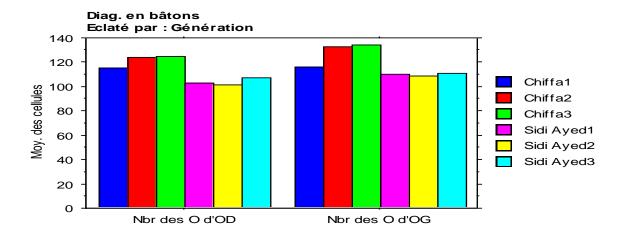
D'après le tableau N°3 la moyenne la plus élevée est celle de la 3^{ème} génération de la station de Chiffa (125) par rapport à la moyenne de la 3^{ème} génération de la station de Sidi Ayed (107).


h. Nombre des ovarioles de l'ovaire gauche :

La moyenne du nombre des ovarioles de l'ovaire gauche de la 3^{ème} génération de la station de Chiffa (134) est la plus élevé, par rapport à celle de la 3^{ème} génération de la station de Sidi Ayed (111).


Figure 45 : Histogramme de comparaison des moyennes de poids des reines de chaque station dans les trois générations.

D'après l'histogramme suivant nous remarquons une diminution du poids des reines dans la station de Chiffa par contre une augmentation dans la station de Sidi Ayed et nous remarquons que le poids des reines de la station de Chiffa est supérieur par rapport à celui de Sidi Ayed dans les trois générations.


Figure 46 : Histogramme de comparaison des moyennes de poids des deux ovaires de chaque station dans les trois générations.

L'histogramme ci-dessus montre que le poids des deux ovaires diminue d'une génération à l'autre dans la station de Chiffa par contre elle augmente dans la station de Sidi Ayed et l'histogramme ci-dessus indique aussi que le poids des deux ovaires des reines de la station de Sidi Ayed est supérieur par rapport à celui de Chiffa dans les trois générations.

Figure 47 : Histogramme de comparaison des moyennes des diamètres de chaque station dans les trois générations.

L'examen de ce histogramme montre que le diamètre des deux ovaires a diminué mais le diamètre des ovaires de la station de Chiffa est maximal par rapport à celui de Sidi Ayed dans la 2^{ème} et la 3^{ème} génération et pour le diamètre de la spermatèque on a remarquons une stabilité partielle dans les trois générations pour les deux stations.

Figure 48: Histogramme de comparaison des moyennes de nombre des ovarioles des deux ovaires de chaque station dans les trois générations.

L'histogramme ci-dessus montre que le nombre des ovarioles dans les deux ovaires augmente d'une génération à l'autre dans les deux stations mais dans la station de Chiffa il est plus important par rapport à la station de Sidi Ayed.

A. Comparaison entre les trois générations des deux stations :

Tableau N°4: analyse des résultats reproducteurs (comparaison entre les générations).

	1 ^{ère} génération 2 ^{ème} génération 3 ^{ème} génération		Les 3 générations	
	[Moy ± SD]	[Moy ± SD]	[Moy ± SD]	[Moy ± SD]
	Min - Max	[Min – Max]	[Min – Max]	[Min – Max]
Poids des	0.1584 ± 0.023	0.1421 ± 0.018	0.1555 ± 0.021	0.1518 ± 0.021
reines (g)	0.1127 - 0.2158	0.0894 - 0.2054	0.1128 - 0.2298	0.0894 - 0.2298
Poids de l'OD	0.0019 ± 0.01	0.0018 ± 0.001	0.0018 ± 0.001	0.0018 ± 0.001
(g)	0.0010 - 0.0035	0.0010 - 0.0036	0.0010 - 0.0061	0.0010 - 0.0061
Poids de l'OG	0.0018 ± 4.825	0.0020 ± 0.001	0.0019 ± 0.001	0.0019 ± 0.001
(g)	0.0010 - 0.0033	0.0010 - 0.0057	0.0010 - 0.0041	0.0010 ±0.0057
Diamètre de	4.038 ± 0.773	3.630 ± 0.738	3.605 ± 0.605	3.752 ± 0.732
l'OD (mm)	2.896 - 6.530	1.969 - 6.058	2.233 – 4.880	1.969 - 6.530
Diamètre de	4.020 ± 0.702	3.810 ± 0.744	3.825 ± 0.629	3.882 ± 0.697
ľOG (mm)	2.483 - 6.359	2.445 - 6.641	2.560 - 6.014	2.445 - 6.641
Diamètre de la	1.234 ± 0.103	1.213 ± 0.113	1.204 ± 0.113	1.217 ± 0.110
S (mm)	0.963 - 1.497	0.991 - 1.505	0.822 – 1.522	0.822 – 1.522
Nbr des O	110 ± 18.924	112 ± 18.806	116 ± 15.040	113 ± 17.808
d'OD	65 - 154	65 - 158	79 - 137	65 – 158
Nbr des O	109 ± 22.382	120 ± 17.856	123 ± 18.732	118 ± 20.530
d'OG	65 - 155	78 - 158	72 - 149	65 – 158

L'examen de tableau N°4 montre que la moyenne du poids des reines de la 1^{ère} génération des deux stations visitées est la plus élevée (0.1584g).

La moyenne de poids de l'ovaire droit pour les 180 reines étudiées pour la 1^{ère} génération est la plus élevée (0.0019g).

La moyenne de poids de l'ovaire gauche de la 2^{ème} génération des deux stations est la plus élevée (0.0018g).

La 1^{ère} génération représente la moyenne la plus élevée du diamètre des deux ovaires avec le diamètre de la spermatèque.

La 3^{ème} génération représente la moyenne la plus élevée des nombres des ovarioles des deux ovaires.

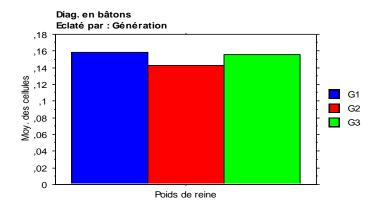
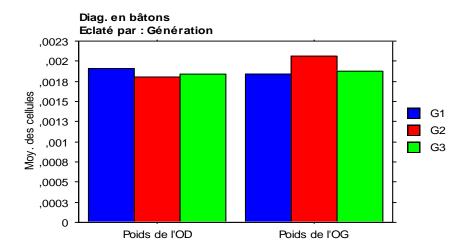
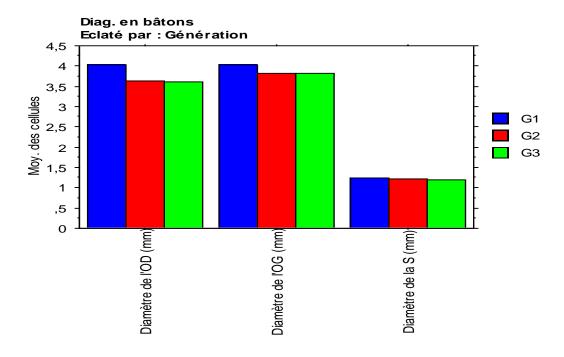
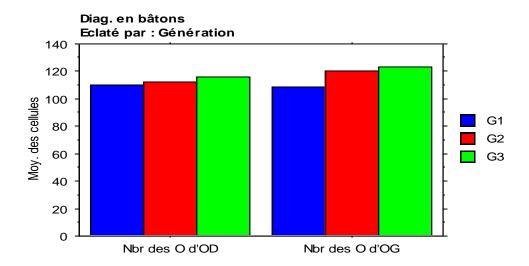


Figure 49 : Histogramme de comparaison des moyennes de poids des reines dans les trois générations des deux stations

D'après l'histogramme suivant on a remarquons une diminution de poids des reines au niveau de la 2^{ème} génération.


Figure 50 : Histogramme de comparaison des moyennes de poids des ovaires dans les trois générations des deux stations

L'histogramme suivant indique une petite diminution de poids de l'ovaire droit par contre une petite augmentation de poids de l'ovaire gauche et plus important dans la $2^{\grave{e}^{me}}$ génération.

Figure 51 : Histogramme de comparaison des moyennes des diamètres des deux stations dans les trois générations.

L'histogramme ci-dessus indique qu'on a une diminution de diamètre des deux ovaires mais le diamètre de l'ovaire gauche est supérieur par rapport à celui de droit dans les trois générations et une petite diminution de diamètre de la spermatèque au cours des trois générations.

Figure 52 : Histogramme de comparaison des moyennes de nombre des ovarioles des deux ovaires dans les trois générations des deux stations.

Le nombre des ovarioles des deux ovaires est augmenté au cours des trois générations mais le nombre des ovarioles de l'ovaire gauche est important par rapport à celui de l'ovaire droit.

III. RESULTATS

B. Etude de corrélation des caractères biométriques inter et intra-stations:

r < 0.3 : une faible corrélation p < 0.05 : différence significative

0.3 < r < 0.5: une corrélation moyenne p < 0.001: différence hautement significative

r > 0.5: une forte corrélation p < 0.0001: différence très hautement significative

1. Station de Sidi Ayed:

檱 1^{ère} génération :

L'examen du tableau N°23 de l'annexe 2 montre qu'il ya une très faible corrélation entre le poids de la reine et le poids de l'ovaire droit (r = 0.058), une corrélation moyenne entre le poids de la reine et le poids de l'ovaire gauche (r = 0.327), une corrélation moyenne entre le poids de la reine et le diamètre de la spermatèque (r = 0.470), une corrélation moyenne entre le poids des deux ovaires (r = 0.405), une forte corrélation entre le diamètre des deux ovaires (r = 0.770), de même entre le nombre des ovarioles des deux ovaires (r = 0.799), une corrélation moyenne entre le nombre des ovarioles de l'ovaire gauche et son diamètre (r = 0.316), de même entre le poids de l'ovaire gauche et son diamètre (r = 0.320) et entre le poids et le nombre des ovarioles (r = 0.395).

🕴 2^{ème} génération :

L'examen du tableau N°24 de l'annexe 2 montre qu'il ya une corrélation moyenne entre le poids de la reine et le poids de l'ovaire droit (r = 0.390), une faible corrélation négative entre le poids de la reine et le poids de l'ovaire gauche (r = -0.255) et moyenne entre le poids de la reine et le diamètre de la spermatèque (r = -0.373), une corrélation moyenne entre le poids de la reine et le diamètre de l'ovaire gauche (r = 0.334), de même, entre le poids de la reine et le nombre des ovarioles de l'ovaire gauche (r = 0.300), entre le nombre des ovarioles de l'ovaire droit et le nombre des ovarioles de l'ovaire gauche (r = 0.423),entre le poids de l'ovaire gauche et le diamètre de la spermatèque (r = 0.448), une très forte corrélation entre le nombre des ovarioles de l'ovaire droit et son diamètre (r = 0.832), de même entre le poids de l'ovaire droit et le diamètre de la spermatèque(r = 0.959), une forte corrélation négative entre le poids de l'ovaire droit et son diamètre (r = -0.721), de même entre le poids de l'ovaire droit et le nombre des ovarioles (r = -0.746) et entre le poids de l'ovaire gauche et le diamètre de l'ovaire droit (r = -0.581).

🥞 3^{ème} génération

Le tableau N°25 de l'annexe2 montre qu'il ya une corrélation moyenne entre le poids de l'ovaire droit et le poids de la reine (r = 0.373), une forte corrélation entre le poids de la reine et le poids de l'ovaire gauche (r = 0.538), une faible corrélation entre le poids de la

III. RESULTATS

reine et le diamètre de la spermatique (r = 0.241), une corrélation négative moyenne entre le poids de la reine et le nombre des ovarioles de l'ovaire droit (r = -0.471), de même entre le poids de la reine et le nombre des ovarioles de l'ovaire gauche (r = -0.437), une corrélation moyenne entre le poids de l'ovaire droit et le poids de l'ovaire gauche (r = 0.416), une faible corrélation entre le diamètre de l'ovaire droit et le diamètre de l'ovaire gauche (r = 0.251), une forte corrélation entre le nombre des ovarioles des deux ovaires (r = 0.588), une corrélation moyenne entre le nombre des ovarioles de l'ovaire gauche et son diamètre (r = 0.440).

Les 3 générations :

L'examen du tableau N°26 de l'annexe 2 montre qu'il ya une différence très hautement significative (p<0.0001) entre la génération une et trois pour le poids de l'ovaire droit et une différence hautement significative entre la $2^{\text{ème}}$ et la $3^{\text{ème}}$ génération (p = 0.0003), le tableau N°27 indique qu'on a une différence hautement significative entre la $1^{\text{ère}}$ et la $2^{\text{ème}}$ génération (p = 0.0012) et entre la $1^{\text{ère}}$ et la $3^{\text{ème}}$ génération (p = 0.0005) pour le poids de l'ovaire gauche, une différence significative entre la $1^{\text{ère}}$ et la $2^{\text{ème}}$ génération (p = 0.0146) pour le diamètre de l'ovaire droit (tableau N°28), une différence significative entre la $1^{\text{ère}}$ et la $2^{\text{ème}}$ génération (p = 0.0095) pour le nombre des ovarioles de l'ovaire gauche (tableau N°29).

Tableau N°5 : les valeurs du coefficient de corrélation des caractères biométriques des trois générations de la station de Sidi Ayed.

Matrice de corrélation								
	Poids de reine	Poids de l'OD	Poids de l'OG	Diamétre de l'OD	Diamétre de l'OG	Diamétre de S	Nbr des O d'OD	Nbr des O d'OG
Poids de reine	1,000	,304	,359	,066	,172	,142	-,061	-,007
Poids de l'OD	,304	1,000	,320	,220	,014	-,174	,096	-,237
Poids de l'OG	,359	,320	1,000	-,111	,166	-,114	-,031	,021
Diamétre de l'OD	,066	,220	-,111	1,000	,572	-,007	,219	-,042
Diamétre de l'OG	,172	,014	,166	,572	1,000	-,029	,218	,162
Diamétre de S	,142	-,174	-,114	-,007	-,029	1,000	,030	-,137
Nbr des O d'OD	-,061	,096	-,031	,219	,218	,030	1,000	,591
Nbr des O d'OG	-,007	-,237	,021	-,042	,162	-,137	,591	1,000

Le tableau montre qu'on a une corrélation moyenne entre le poids de la reine et le poids des deux ovaires, de même entre le poids des deux ovaires (r = 0.320), une forte corrélation entre le Diamètres des deux ovaires (r = 0.572), de même entre le nombre des ovarioles des deux ovaires (r = 0.591).

2. Station de Chiffa:

🕴 1ère génération

Le tableau N°30 de l'annexe 2 montre qu'il ya une corrélation moyenne entre le poids de la reine et le poids de l'ovaire droit (r = 0.354), de même entre le poids des deux ovaires (r = 0.413), entre le poids de l'ovaire droit et son diamètre (r = 0.458), entre le poids de l'ovaire droit et le nombre des ovarioles de l'ovaire droit (r = 0.389), entre le nombre des ovarioles de l'ovaire droit et son diamètre (r = 0.332), entre le poids de l'ovaire gauche et le nombre des ovarioles de l'ovaire gauche (r = 0.468), une forte corrélation entre le nombre des ovarioles des deux ovaires (r = 0.740), de même entre le diamètre des deux ovaires (r = 0.508).

🙎 2^{ème} génération :

Le tableau N°31 de l'annexe2 montre qu'il ya une corrélation moyenne entre le poids de la reine et le poids de l'ovaire droit (r = 0.467), de même entre le poids de la reine et le diamètre de l'ovaire droit (r = 0.357), entre le poids de l'ovaire gauche et son diamètre (r = 0.420), entre le poids de l'ovaire droit et le diamètre de l'ovaire gauche (r = 0.372), entre le poids de l'ovaire gauche et le diamètre de l'ovaire droit (r = 0.393), une forte corrélation entre le poids de la reine et le poids de l'ovaire gauche (r = 0.660), de même entre le poids des deux ovaires (r = 0.690), entre le diamètre des deux ovaires (r = 0.519) et entre le nombre des ovarioles de l'ovaire droit et son poids (r = 0.513).

3ème génération :

Le tableau N° 32 de l'annexe 2 montre qu'il ya une corrélation moyenne entre le poids de la reine et le poids de l'ovaire droit (r = 0.334), de même entre le poids de la reine et le poids de l'ovaires gauche (r = 0.399), entre le poids des deux ovaires (r = 0.499), entre le poids de l'ovaire gauche et le nombre des ovarioles (r = 0.498), entre le diamètre de l'ovaire droit et le nombre des ovarioles (r = 0.313), entre le diamètre de l'ovaire gauche et le nombre des ovarioles (r = 0.473) et une forte corrélation entre le diamètre des deux ovaires (r = 0.521).

🦞 Les 3 générations :

Concernant les trois générations de la station de Chiffa le tableau N°33 dans l'annexe 2 indique qu'on a une différence très hautement significative (<0.0001) entre la 1^{ier} et la 3^{ème} génération et entre la 2^{ème} et la 3^{ème} génération pour le poids de l'ovaire droit, une différence très hautement significative entre la 1^{ier} et la 3^{ème} génération(<0.0001) et entre la 2^{ème} et la 3^{ème} génération(0.0001) pour le nombre des ovarioles de l'ovaire droit (tableau N°34), une différence significative entre la 1^{ier} et la 2^{ème} génération (0.0237) et hautement significative entre la 1^{ier} et la 3^{ème} génération (0.0007) pour le nombre des ovarioles de l'ovaire gauche (tableau N°35).

Matrice de corrélation

	Poids des reines	Poids de l'OD	Poids de l'OG	Diamétre de l'OD	Diamétre de l'OG	Diamétre de S	Nbr des O d'OD	Nor des O d'OG
Poids des reines	1,000	,401	,376	,117	-,055	-,021	-,049	-,126
Poids de l'OD	,401	1,000	,531	,279	,087	,085	,259	-,120
Poids de l'OG	,376	,531	1,000	,267	,226	-,060	,149	,303
Diamétre de l'OD	,117	,279	,267	1,000	,472	-,025	,029	-,081
Diamétre de l'OG	-,055	,087	,226	,472	1,000	-,100	,083	,231
Diamétre de S	-,021	,085	-,060	-,025	-,100	1,000	,093	,105
Nbr des O d'OD	-,049	,259	,149	,029	,083	,093	1,000	,587
Nbr des O d'OG	-,126	-,120	,303	-,081	,231	,105	,587	1,000

Tableau N°6 : Les valeurs du coefficient de corrélation des caractères biométriques des trois générations de la station de Chiffa.

Le tableau N°6 montre qu'on a une corrélation moyenne entre le poids de la reine et le poids des deux ovaires, une forte corrélation entre le poids des deux ovaires (r = 0.531), de même entre le nombre des ovarioles des deux ovaires (r = 0.587).

3. Entre les deux stations :

¶ 1ère génération :

Le tableau N°36 indique qu'on a une corrélation moyenne entre le poids des deux ovaires (r = 0.406), de même entre le poids de l'ovaire droit et son diamètre (r = 0.351), entre le poids de l'ovaire gauche et le nombre des ses ovarioles (r = 0.411) et une forte corrélation entre le diamètre des deux ovaires (r = 0.644), de même entre le nombre des ovarioles de chaque ovaire (r = 0.794).

§ 2^{ème} génération :

Le tableau N°37 montre qu'on a une corrélation moyenne entre le poids de la reine et le poids des deux ovaires [OD (r = 0.320), OG (r = 0.330)], entre le poids de la reine et le diamètre de l'ovaire gauche (0.346) et le nombre des ses ovarioles (r = 0.331), entre le poids des deux ovaires (r = 0.349), entre le diamètre de l'ovaire droit et le nombre des ses ovarioles (r = 0.453), entre le diamètre de l'ovaire droit et le nombre des ovarioles de l'ovaire gauche (r = 0.385), entre le diamètre de l'ovaire gauche et le nombre des ovarioles de chaque ovaire [OD (r = 0.310), OG (r = 0.382)], une forte corrélation entre le diamètre des deux ovaires (r = 0.522), de même entre le nombre des ovarioles des deux ovaires (r = 0.612).

3ème génération :

Le tableau N°38 indique qu'on a une corrélation moyenne négative entre le diamètre de la spermatèque et le nombre des ovarioles des deux ovaires, de même entre le poids de l'ovaire droit et le nombre des ovarioles de l'ovaire gauche (r = -0.461), entre le poids de l'ovaire gauche et le nombre des ovarioles de l'ovaire droit (r = -0.349), entre le poids de la reine et le nombre des ovarioles de l'ovaire droit (r = -0.305), une corrélation moyenne positive entre le poids de la reine et le poids des deux ovaires, de même entre le poids des deux ovaires (r = 0.424), entre le diamètre de l'ovaire gauche et le nombre des ses ovarioles (r = 0.447) et une forte corrélation entre le nombre des ovarioles des deux ovaires (r = 0.700).

🌠 Entre les trois générations :

Poids de l'ovaire droit :

Le tableau N°39 de l'annexe 2 montre qu'on a une différence très hautement significative (p<0.0001) entre la $1^{\text{ère}}$ G de la station de Chiffa et la $2^{\text{ème}}$ G de la station de Sidi Ayed, de même entre la $1^{\text{ère}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed, entre la $2^{\text{ème}}$ génération des deux stations, entre la $2^{\text{ème}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed, entre la $3^{\text{ème}}$ G de Chiffa et la $1^{\text{ère}}$ G de Sidi Ayed et entre la $3^{\text{ème}}$ G des deux stations.

Poids de l'ovaire gauche :

Le tableau N°40 de l'annexe 2 indique qu'on a une différence très hautement significative (p<0.0001) entre la $1^{\text{ère}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed, de même entre la $2^{\text{ème}}$ G des deux stations, entre la $3^{\text{ème}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed et entre la $3^{\text{ème}}$ G des deux stations, une différence significative entre la $1^{\text{ère}}$ G de Chiffa et la $3^{\text{ème}}$ Gde Sidi Ayed (p = 0.0012), de même entre la $2^{\text{ème}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed.

> Diamètre de l'ovaire droit :

Le tableau N°41 dans l'annexe 2 montre qu'il ya une différence significative entre la $3^{\text{ème}}$ G de Chiffa et la $1^{\text{ère}}$ G de Sidi Ayed (p = 0.0337), de même entre la $3^{\text{ème}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed (p = 0.0079).

Diamètre de l'ovaire gauche :

Le tableau N°42 indique qu'on a une différence significative entre la $1^{\text{ère}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed (p = 0.0447), de même entre la $2^{\text{ème}}$ G des deux stations (p = 0.0051) et entre la $2^{\text{ème}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed (p = 0.0460).

Diamètre de la spermatèque :

Le tableau N°43 de l'annexe 2 montre qu'on a une différence très hautement significative (p<0.0001) entre la $1^{\text{ère}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed, de même entre la $2^{\text{ème}}$ G des deux stations et entre la $3^{\text{ème}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed, une différence significative entre la $2^{\text{ème}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed (p = 0.0389).

> Nombre des ovarioles de l'ovaire droit :

Le tableau N°44 de l'annexe 2 indique qu'on a une différence très hautement significative (p<0.0001) entre la $3^{\text{ème}}$ G de Chiffa et la $1^{\text{ère}}$ G de Sidi Ayed, de même entre la $3^{\text{ème}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed, entre la $3^{\text{ème}}$ G des deux stations et une différence significative entre la $1^{\text{ère}}$ G de Chiffa et la $2^{\text{ème}}$ G de Sidi Ayed (p = 0.0117), de même entre la $2^{\text{ème}}$ G des deux stations.

Nombre des ovarioles de l'ovaire gauche :

Le tableau N°45 de l'annexe 2 montre qu'on a une différence très hautement significative entre la $3^{\text{ème}}$ G de Chiffa et la $1^{\text{ère}}$ G de Sidi Ayed (p<0.0001), une différence significative entre la $2^{\text{ème}}$ G de Chiffa et la $1^{\text{ère}}$ G de Sidi Ayed (p = 0.0031), de même entre la $2^{\text{ème}}$ G de Chiffa et la $3^{\text{ème}}$ G de Sidi Ayed (p = 0.0446) et entre la $3^{\text{ème}}$ G des deux stations.

Matrice de corrélation

	Poids de reine	Poids de l'OD	Poids de l'OG	Diamétre de l'OD	Diamétre de l'OG	Diamétre de S	Nbr des O d'OD	Nbr des O d'OG
Poids de reine	1,000	,241	,279	,145	,086	,030	,089	,087
Poids de l'OD	,241	1,000	,408	,170	-,001	-,055	,007	-,287
Poids de l'OG	,279	,408	1,000	-,029	,143	-,072	-,065	,002
Diamétre de l'OD	,145	,170	-,029	1,000	,531	-,039	,228	,068
Diamétre de l'OG	,086	-,001	,143	,531	1,000	-,080	,209	,253
Diamétre de S	,030	-,055	-,072	-,039	-,080	1,000	-,006	-,087
Nbr des O d'OD	,089	,007	-,065	,228	,209	-,006	1,000	,694
Nbr des O d'OG	,087	-,287	,002	,068	,253	-,087	,694	1,000

Tableau N°7: Les valeurs du coefficient de corrélation des caractères biométriques des deux stations entre les trois générations

Le tableau N°7 montre qu'on a une corrélation moyenne entre le poids des deux ovaires (r = 0.408) et une forte corrélation entre le diamètre des deux ovaires (r = 0.531), de même entre le nombre des ovarioles des deux ovaires (r = 0.694).

III. <u>Etude de corrélation entre les caractères morphométriques et biométriques des reines de chaque station et des deux stations :</u>

I. Station de Sidi Ayed:

🏿 1ère génération :

Le tableau N°46 de l'annexe 2 montre qu'il ya une corrélation moyenne positive entre la coloration et le diamètre de la spermatèque (r = 0.321) et négative entre le nombre des ovarioles des deux ovaires, une forte corrélation négative entre le nombre des ovarioles de l'ovaire droit et la longueur de la langue (r = -0.589), entre le nombre des ovarioles de l'ovaire gauche et la langueur de la langue (r = -0.522) et entre le poids de la reine et le tomentum (r = -0.529).

🙎 2ème génération :

Le tableau N°47 de l'annexe2 montre qu'il ya une corrélation moyenne entre le poids de l'ovaire droit et la coloration de deuxième tergite (r = 0.336), de même entre le diamètre de l'ovaire gauche et la coloration (r = 0.390), entre le poids de la reine et la longueur de la langue (r = 0.427), entre le nombre des ovarioles de l'ovaire gauche et la longueur de la langue (r = 0.369), entre le diamètre de la spermatèque et le tomentum (r = 0.392) et entre la pilosité et le nombre des ovarioles de l'ovaire gauche (r = 0.303).

§ 3ème génération :

Le tableau N°48 de l'annexe 2 montre qu'il ya une corrélation moyenne positive entre le poids de reine et le tomentum (r = 0.444), de même entre le poids de la reine et la coloration (r = 0.381), entre le diamètre de l'ovaire droit et l'index cubital (r = 0.416), entre le poids de l'ovaire droit et la pilosité (r = 0.308), entre le tomentum et le diamètre de la spèrmatique (r = 0.322), une corrélation négative entre le nombre des ovarioles de l'ovaire droit et le tomentum (r = -0.480), entre le diamètre de l'ovaire gauche et la coloration (r = -0.383), une forte corrélation positive entre le poids de la reine et la longueur de la langue (r = 0.625), entre le poids de l'ovaire droit et la longueur de la langue (r = 0.526) et négative entre le nombre des ovarioles de l'ovaire gauche et la longueur de la langue (r = -0.624), entre le nombre des ovarioles de l'ovaire droit et la longueur de la langue (r = -0.554) et entre le nombre des ovarioles de l'ovaire gauche et la longueur de la langue (r = -0.554) et entre le nombre des ovarioles de l'ovaire gauche et la longueur de la langue (r = -0.713).

Entre les trois générations :

Le tableau N°49 de l'annexe 2 indique qu'il ya une corrélation moyenne entre l'index cubital et le diamètre de l'ovaire droit (r = 0.328), de même entre le poids de la reine et la

III. RESULTATS

coloration (r = 0.329), entre le diamètre de l'ovaire droit et la pilosité (r = 0.348), une corrélation moyenne négative entre la longueur de la langue et le diamètre de l'ovaire droit (r = -0.310), entre le diamètre de l'ovaire gauche (r = -0.356), entre le nombre des ovarioles de l'ovaire droit (r = -0.407) et entre le nombre des ovarioles de l'ovaire gauche (r = -0.356).

II. Station de Chiffa:

1ère génération

Le tableau N°50 de l'annexe 2 montre qu'il ya une forte corrélation entre le poids de l'ovaire droit et la coloration (r = 0.516), une corrélation moyenne négative entre le nombre des ovarioles de l'ovaire droit et la longueur de la langue (r = -0.356) et positive entre le poids de la reine et le tomentum (r = 0.378), de même entre le diamètre de l'ovaire droit et le tomentum (r = 0.440) et entre le poids de l'ovaire droit et la pilosité (r = 0.353).

🙀 2^{ème} génération :

Le tableau N°51 de l'annexe 2 montre qu'il ya une forte corrélation entre le poids de la reine et la coloration (r = 0.760), de même entre le poids de l'ovaire gauche et la coloration (r = 0.611), entre le poids de l'ovaire droit et la coloration (r = 0.518), entre le diamètre de l'ovaire gauche et la pilosité (r = 0.572), une corrélation moyenne négative entre le nombre des ovarioles de l'ovaire gauche et l'index cubital (r = -0.363) et positive entre le diamètre de l'ovaire droit et la coloration (r = 0.410), de même entre le diamètre de l'ovaire gauche et la longueur de la langue (r = 0.371), entre le poids de l'ovaire gauche et la pilosité (r = 0.347), entre le poids de l'ovaire droit et la pilosité (r = 0.331).

§ 3ème génération :

Le tableau N°52 de l'annexe 2 indique qu'on a une corrélation négative entre la longueur de la langue et le nombre des ovarioles de l'ovaire droit (r = -0.422) et positive entre la coloration et le poids de la reine (r = 0.310) et de même entre le diamètre de la spermatèque (r = 0.335).

🧗 Entre les 3 générations :

Le tableau N°53 de l'annexe 2 montre qu'il ya une corrélation moyenne entre la coloration et le poids de la reine (r = 0.417), de même entre le poids de l'ovaire gauche (r = 0.411) et une forte corrélation avec le poids de l'ovaire droit (r = 0.547).

III. Entre les deux stations :

1ère génération :

Le tableau N°54 de l'annexe 2 montre qu'il ya une corrélation moyenne entre le poids de l'ovaire droit et la coloration (r = 0.318) et négative entre le poids de la reine et l'index cubital (r = -0.334), de même entre la longueur de la langue et le nombre des ovarioles de l'ovaire droit (r = -0.370) et entre la pilosité et le poids de la reine (r = -0.342).

🙎 2ème génération :

L'examen de tableau N°55 de l'annexe 2 montre qu'il ya une forte corrélation entre le poids de la reine et la coloration (r = 0.543), une corrélation moyenne entre le poids de l'ovaire droit et la coloration (r = 0.343), entre le diamètre de l'ovaire droit et la coloration (r = 0.382), entre le diamètre de l'ovaire gauche et la coloration (r = 0.301), entre le poids de l'ovaire gauche et la longueur de la langue (r = 0.305) et une corrélation négative entre le diamètre de l'ovaire droit et la longueur de la langue (r = -0.417), de même entre le nombre des ovarioles de l'ovaire droit et la longueur de la langue (r = -0.445) et entre le nombre des ovarioles de l'ovaire gauche et la longueur de la langue (r = -0.480).

🦸 3^{ème} génération :

Le tableau N°56 de l'annexe 2 montre qu'il ya une corrélation négative moyenne entre la coloration et le nombre des ovarioles des deux ovaires, entre le tomentum et le nombre des ovarioles des deux ovaires, et une forte corrélation négative entre la langueur de la langue et le nombre des ovarioles des deux ovaires, une corrélation moyenne entre la coloration et le poids de l'ovaire droit (r = 0.358), entre la langueur de la langue et le poids de la reine (r = 0.449), entre le tomentum et le poids de l'ovaire droit (r = 0.319), entre le tomentum et le diamètre de la spermatèque (r = 0.347), une forte corrélation entre la longueur de la langue et le poids des deux ovaires.

🕅 Entre les trois générations :

Le tableau N°57 de l'annexe 2 montre qu'il ya une corrélation positive entre la coloration et le poids de la reine (r = 0.392) et négative entre la longueur de la langue et le nombre des ovarioles des deux ovaires.

IV. <u>Histologie</u>

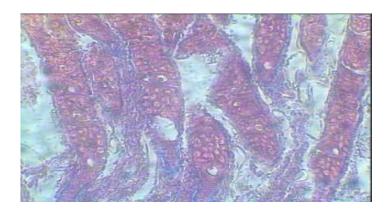


Figure 53 : Coupe longitudinale au niveau de l'ovaire gauche d'une reine vierge selon la coloration de trichome de Masson (GX400)

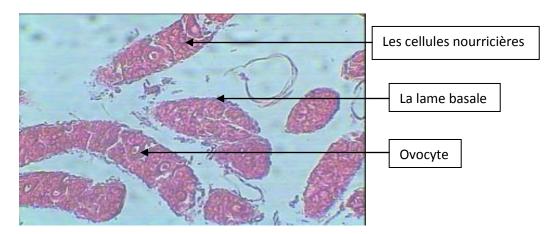


Figure 54 : Coupe longitudinale au niveau de l'ovaire gauche d'une reine vierge selon la coloration HE (GX400)

Nos coupes montrent la présence des cellules germinales en différentes stades de division dès la lame basale ou se trouve les cellules folliculaires vers le milieu ou se trouve une cellule ovocytaire bien développée entourée par amas des cellules nourricières.

CONCLUSION ET PERSPECTIVES

Le présent travail s'inscrit dans une orientation de recherche sur la reine vierge d'abeille domestique *Apis mellifera*, dont le but est de caractériser par morphométrie et biométrie la population d'abeille de la race locale *Apis mellifera intermissa*.

Nos travaux permettent d'acquérir des informations primordiales, de déterminer les moyennes des caractères morphométriques, biométriques et la corrélation qui peut exister entre eux chez la reine des abeilles.

L'étude des données morphométriques obtenues a montré qu'il existe bien des différences (hétérogénéité) entre les populations des reines étudiées entre les trois générations des deux stations.

Notre résultat montre que le poids des reines de la station de Chiffa est supérieur à celle de Sidi Ayed.

L'étude des données biométriques obtenues a montré que le poids, le diamètre et le nombre des ovarioles au niveau de l'ovaire gauche sont important de celle de l'ovaire droit.

Nos résultats montre qu'il ya des corrélations entre les caractères morphométriques et biométriques et qu'il est possible de caractériser les souches d'abeilles a partir de la qualité des reines.

La corrélation entre les cinq caractères biométriques étudié a été comme suit ; le poids de la reine est corrélé avec le poids des deux ovaires, le diamètre des deux ovaires, le nombre des ovarioles des deux ovaires et de même entre le diamètre de la spermatèque.

Concernant la corrélation entre les paramètres morphométriques et la reproduction chez les reines de la population d'abeilles telliennes, nous avons trouvé des corrélations entre le poids des deux ovaires et la coloration de même entre la pilosité, en fin entre le tomentum et le diamètre de la spermatèque.

La performance de notre reine *Apis mellifera intermissa* est faible parapport à d'autres espèces si en prend en considération le nombre des ovarioles.

Enfin il est souhaitable, dans le cadre d'une future étude de :

- Augmenter le nombre des échantillons et le nombre des stations.
- 🔻 Synchroniser l'élevage des reines dans les stations.
- Etudier d'autres caractères morphométriques différents de ceux abordés dans ce travail avec la morphométrie géométrique.
- Comparé des reines fécondées avec des reines vierges pour l'évaluation de la reproduction.

- ** ABDULAZIZ S. et alQueen morphometric and reproductive characters of Apis mellifera jemenitica, a native honey bee to Saudi Arabia, Bulletin of Insectology 66 (2): 239-244, 2013
- AKYOL, E; YENINAR, H; KORKMAZ, A; ÇAKMAK, I (2008) An observation study on the effects of queen age on some characteristics of honey bee colonies. Italian Journal of Animal Sciences, 7: 19-25. http://dx.doi.org/10.4081/ijas.2008.19
- AMSSALU B., NURU A., RADLOFF S.E., &HEPBURN H.R., 2003 -Multivariate morphometric analysis of honey bees in the Ethiopian region.Apidologie, 35(1): 71-81.
- ANONYME., 1970. Eacyctopedie internationale des sciences et des techniques. Paris. Ed. presses de la cité, pp 364-366.
- AVETISYAN, G A (1961) the relation between interior and exterior characteristics of the queen and fertility and productivity of the bee colony. Proceedings of XVIII International Beekeeping Congress: p. 44-53.
- BIEŃKOWSKA, M; PANASIUK, B; GERULA, D; WĘGRZYNOWICZ, P (2009) Weight of honey bee queens and its effect on the quality of instrumentally inseminated queens. In Proceedings of 41th International Apicultural Congress, Montpellier, France, 15-20 September, 2009. p 135.
- BIRI M, (1981); l'élevage moderne des abeilles, manuel pratique –édition deveci paris p 281.
- BLACKISTON, H .2009. Beekeeping for dummiers. Bee Culture Magazine, Wiley Publishing, inc, 336p.
- BUTTEL-REEPENS H.V., 1906. Apistica Beiträge Zur Systematik. Biologie Sowiezurgeschichtlichen und geographischen verbeitrung du Honigbienne (*Apis mellifera L.*) ihaer varietaten und übrigen. *Apis-Arten.*, Berlin.
- CHAUVIN. 1986- traité de biologie de l'abeille : T4 biologie appliquée-Masson et Cle, Paris, 434 p
- CHAUVIN R. 1968. Traité de biologie de l'abeille. Tome 1. Masson, Paris, 547 pp. 56.
- **CORBELLA, E; GONCALVES, L S (1982)** Relationship between weight at emergence, number of ovarioles and spermathecal volume of Africanized honey bee queens (Apis mellifera L.). Revista Brasileira de Genetica, 5(4): 835-840.
- **CORNEUT : 1978**, orientation actuelles des recherches sur la sélection de l'abeille à l'I.N.R.A « revue française d'apiculture, n 363 avril 1978, UNAF » France, pp 193-195.

- **DADE, H.**A. Anatomy and dissection of the honeybee. Bee Research Association the honeybee. Bee Research Association, London, England, 1962.
- **DINIZ-FILHO J.A.F., FUCHS S., et ARIA M.C.,** 1999 Phylogeographical autocorelation of phenotypic evolution in honey bees (Apis mellifera L.)..Heridity, 83:671 680.
- M DOMINION BUREAU OF STATISTICS. Catalogue No. 23-007, 1970.
- **EVANS, J. D. et D. E. WHEELER (2000).** Expression profiles during honeybee caste determination. Genome Biology **2**(1): 1-6.
- FERT, 1996- l'élevage de reines- Ed de VECCHI, France, 135 p.
- FREE J.B., 1970 Insect pollination of crops. Ed. Academic Press, London, 544p.
- FRESNAY J., 1981a. biométrie de l'abeille. 2éme éd. Echauffour, orne, office d'inf.Doc. Apic., 56 p
- FRESNAY J, 1981b. biométrie de l'abeille. Ed: OPIDA, Mont Eavet, pp 1-54.
- GACI B., 1987. Etude de variation des caractères biométriques de l'abeille locale Apis mellifera intermissa dans l'algérois. Mémoire ing ; Inst. Nata agro. EL Harrach, pp 55-99.
- GARY, N. E. (2008) « Chapter 8: Activities and Behavior of Honey Bees ». In The hive and the honey bee. Hamilton, Illinois: Dadant and Sons.
- GILBERT S. F., 2004. Biologie du développement. 2ème édition De Boeck.
- GILLEY, D C; TARPY, D R; LAND, B B (2003) Effect of queen quality on interactions between workers and duelling queens in honey bee (Apis mellifera L.) colonies. Behavioural Ecology and Sociobiology, 55(2): 190-196. http://dx.doi.org/10.1007/s00265-003-0708-y
- GRASSE P-P., 1977. Traité de zoologie: anatomie, systématique, biologie. Tome VIII Fascicule V-A. Masson, Paris, 680 p.
- GUTZEIT, H. O., D. ZISSLER and FLEIG R., 1993. Oogenesis in the Honeybee *Apis-Mellifera* Cytological Observations on the Formation and Differentiation of Previtellogenic Ovarian Follicles. Rouxs Archives of Developmental Biology 202(3): 181-191.
- **HAMMAN, E.** Which takes the initiative in the virgin queen's flight, the queen or the wor1 ers? Bee World 39 (3):57-62,1

- **HATCH, S; TARPY, D R; FLETCHER, D J C (1999)** Worker regulation of emergency queen rearing in honey bee colonies and the resultant variation in queen quality. Insectes Sociaux, 46: 372-377
- **HEPBURN H.R., RADLOFFS.E et OGHIAKHE S.,** 2000 Mountain honey bees of Africa. Apidologie, 31 : 205 221.
- **HOOPER TED ,1976 1980**; les abeilles et le miel guide de l'apiculture, édition de LAUCHAUX ET NEISTILE P.260.
- **HOOVER S. E. R., HIGO H. A. and WINSTON M. L., 2006.** Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology **176**(1): 55-63.
- WHUMAN, H., S. W. NICOLSON, STRAUSS K., PIRK C. W. W. and DIETEMANN V., 2007. Influence of pollen quality on ovarian development in honeybee workers (*Apis mellifera scutellata*). Journal of Insect Physiology **53**(7): 649-655.
- **IWATA K. and SAKAGAMI S.F., 1966.** Gigantism and dwarfism in bee eggs in relation to the modes of life, with notes on the number of ovarioles. Japanese Journal of Ecology, **16**, 4–16.
- JACKSON, J T; TARPY, D R; FAHRBACH, S E (2011) Histological Estimates of Ovariole Number in Honey Bee Queens, Apis mellifera, Reveal Lack of Correlation with other Queen Quality Measures Histological estimates of ovariole number in honey bee queens, Apis mellifera, reveal lack of correlation with other queen quality measures. Journal of Insect Science, 11: 82. http://dx.doi.org/10.1673/031.011.8201.
- JEAN-PROST, 1987- apiculture- Ed Lavoisier Paris, 579 p.
- KAHYA, Y; GENÇER, Y; WOYKE, J (2008) Weight at emergence of honey bee (Apis mellifera caucasica) queens and its effect on live weights at the pre and post mating periods. Journal of Apicultural Research, 47(2): 118-125. http://dx.doi.org/10.3896/IBRA.1.47.2.06
- KAMAKURA, M. (2011). Royalactin induces queen differentiation in honeybees. Genes and Genetic Systems 86(6): 384-384.
- KLENKI, M., G. KOENIGER, N. KOENIGER et H. FASOLD (2004). Proteins in spermathecal gland secretion and spermathecal fluid and the properties of a 29 kDa protein in queens of *Apis mellifera*. Apidologie **35**(4): 371-381.

- LAIDLAW Jr., H. H. (2008). « Chapter 23: Production of queens and package bees ». In The hive and the honey bee. Hamilton, Illinois: Dadant and Sons. Laidlaw Jr., H. H. et R. E. Page (1984). Polyandry in honey
- ** LAUVEAUX 1980 : les abeilles et leurs élevage édition : HACHETTE Paris, p237
- **LEHBIBEN N., 1988**. Etude de variations des caractères biométriques de l'abeille locale Apis mellifera intermissa dans l'est algérienne. Mémoire ing. Inst. Nati agro. EL Harrach, pp,MAETERLINCK, M. La vie des abeilles. Fasquelle Éditeur, Paris, France.
- MARTIN, C., SALVY, M., PROVOST, E., BAGNERES, A.-G., ROUX, M., CRAUSER, D., CLEMENT, J.-L., Le CONTE, Y., 2001. Variations in chemical mimicry by the ectoparasitic mite *Varroa* jacobsoni according to the developmental stage of the host honey-bee *Apis mellifera*. *Insect Biochemistry and Molecular Biology* 31, 15.
- MARTINS G. F. and J. E. SERRAÕ, 2004. A comparative study of the ovaries in some brazilian bees. Papéis Avulsos de Zoologia Vol 44: 45-53.
- MEUSEL, M. S. et MORITZ, R. F. (1993). Transfer of paternal mitochondrial DNA during fertilization of honeybee (*Apis mellifera* L.) eggs. Current genetics 24(6): 539-543.
- NIJHOUT, H. F. (2003). The control of body size in insects. Developmental Biology, **261**(1): 1-9.
- OROSI, P.Z. MEHEK KOZOTT. 5e ed. Mezogazdasagi kiado, Budapest pp. 20- 21, 1957.
- PAGE, R. E. et H. H. LAIDLAW (2008) « Chapter 7: Honey Bee Genetics and Breeding ». In The hive and the honey bee. Hamilton, Illinois: Dadant and Sons.
- PAGE, R. E. et C. Y. S. PENG (2001). Aging and development in social insects with emphasis on the honey bee, *Apis mellifera* L. Experimental Gerontology 36(4-6): 695-711.
- REGARD ANDRE; (1987) sélection et élevage de reine essaimage artificiel, p11.p97.
- REGARD, 1987- sélection et élevage des reines essaimage artificiel.- Ed REGARD, saint Mammée, 187 p
- RUTTNER, F. The mating of the honeybee. Bee World, 37 (1): 23-24,19
- SEELEY, T. D. (2010). Honeybee democracy. Princeton, New Jersey: Princeton University Press.

- S.M. KAMEL et al., Morphometric study of newly emerged unmated queens of honey bee *Apis mellifera L*. in Ismailia Governorate, Egypt, 2013, 2(2): 80-88.
- SZABO, T I (1973) Relationship between weight of honey-bee queens (Apis mellifera L.) at emergence and at the cassation of egg laying. American Bee Journal, 113(7): 250-252.
- TIDLE A.C., FUCHS S., KOENIGER N. et CERVANCIA C.R., 2000 Morphometric diversity of Apis mellifera Fabr. Within the Phelippines. Apidologie, 31: 249 263.
- **VELTHUIS H. H. W., 1970.** Ovarian development in *Apis Mellifera* worker bees. Entomologia Experimentalis et applicata **13**: 377--394.
- **WEAVER, N (1957)** Effects of larval age on dimorphic differentiation of the female honey bee. Annals of Entomological Society of America, 50: 283-294.
- **WEN-CHENG, H; CHONG-YUAN, Z (1985)** The relationship between the weight of the queen honey bee at various stages and the number of ovarioles, eggs laid and sealed brood produced. Honey Bee Science, 6: 113-116.
- WINSTON M., 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge.
- WINSTON « La biologie de l'abeille » ed.Nauwelaerts ou Frison-Roche 1993
- WINSTON, M. L. (2008). « Chapter 3: The honey bee colony: life history ». In The hive and the honey bee. Hamilton, Illinois: Dadant and Sons.
- **WOYKE J. (1960).** Natural and artificial insemination of queen honeybees. Bee world 43:21-25.
- **WOYKE, J (1971)** Correlations between the age at which honey bee brood was grafted, characteristics of the resultant queens, and results of insemination. Journal of Apicultural Research, 10(1): 45-55.

I. Matériel apicole:

1. Matériel d'exploitation

Figure 01: La ruche éleveuse

Figure 02 : Enfumoir

Figure 03: Lève cadre

Figure 04: Hausse

Figure 05 : Grille à reine

2. Matériel destiné à l'élevage :

Figure 06 : Cupule

Figure 07: Les supports portes cupules

Figure 08: Le picking

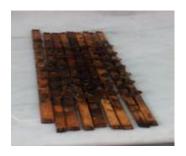


Figure 09 : Barrâtes porte cupules

Figure 10 : Cadres porte barrette

Figure 11 : Les cages rondes à reines

Figure 12 : Cadres porte cagettes

II. Matériels de laboratoire :

1. Laboratoire LBRA:



Figure 13: Balance analytique

Figure 14 : Agitateur

Figure 15 : les verriers

Figure 16: les micropipettes

Figure 17 : une loupe binoculaire

Figure 18 : Acide acétique

Figure 19 : Formaldéhyde

Figure 20 : Acide picrique

2. Laboratoire de l'ITELV

Figure 21 : Stéréoscope lie à un ordinateur

Figure 22 : Trousse de dissection

Figure 23 : Huile à immersion

Figure 24 : Lame et lamelles

3. laboratoire d'ANAPATH:

Figure 25 : Les différents bains d'alcools

Figure 27 : L'automate

Figure 29 : microtome

Figure 31 : étuve

Figure 26: les cassettes

Figure 28 : Appareille du Refroidissement

Figure 30 : bains marré

Figure 32: microscope photonique

Figure 33: les bains de coloration

Préparation du liquide de Bouin :

Nous avons préparé la solution selon le protocole suivante :

- ✓ Dans un bicher de 100 ml on met 35ml de formaldéhyde avec 5 ml d'acide acétique et on les mélange avec un agitateur
- ✓ On ajute 1,1g d'acide picrique puis on les remplis avec l'eau distillée pour obtient une solution de 100ml

Figure 34 : préparation du liquide de Bouin

Tableau N°1 : les valeurs du coefficient de corrélation de la 1^{ier} génération de la station de Sidi Ayed

Coefficient de corrélation Corrélation théorique = 0

IC A/B, Coloration
IC A/B, longueur de Langue
IC A/B, Tomentum
IC A/B, Pilosité
Coloration, longueur de Langue
Coloration, Tomentum
Coloration, Pilosité
longueur de Langue, Tomentum
longueur de Langue, Pilosité
Tomentum, Pilosité

Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
,071	27	,349	,7268	-,317	,439
,695	27	4,197	<,0001	,427	,850
,147	27	,727	,4671	-,246	,499
,201	27	,997	,3190	-,194	,540
,243	27	1,215	,2244	-,151	,570
,034	27	,168	,8666	-,350	,409
,080	27	,391	,6956	-,310	,446
,416	27	2,170	,0300	,043	,687
,427	27	2,236	,0254	,056	,694
,444	27	2,340	,0193	,077	,705

Tableau N°2: les valeurs du coefficient de corrélation de la 2^{éme} génération de la station de Sidi Ayed

Coefficient de corrélation Corrélation théorique = 0

IC A/B, coloration
IC A/B, la langueur de la langue
IC A/B, tomentum
IC A/B, la pilosité
coloration, la langueur de la langue
coloration, tomentum
coloration, la pilosité
la langueur de la langue, tomentum
la langueur de la langue, la pilosité
tomentum, la pilosité

Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
-,013	33	-,071	,9434	-,355	,332
,244	33	1,367	,1717	-,108	,542
-,024	33	-,132	,8951	-,364	,322
,113	33	,624	,5329	-,239	,440
,225	33	1,256	,2091	-,128	,528
-,123	33	-,676	,4993	-,447	,230
-,059	33	-,326	,7443	-,395	,290
,200	33	1,110	,2671	-,154	,508
,029	33	,157	,8755	-,318	,368
-,035	33	-,191	,8482	-,374	,312

Tableau N°3 : les valeurs du coefficient de corrélation de 3^{éme} génération de la station Sidi Ayed.

Coefficient de corrélation Corrélation théorique = 0

IC A/B, Coloration
IC A/B, Longueur de Langue
IC A/B, Tomentum
IC A/B, Pilosité
Coloration, Longueur de Langue
Coloration, Tomentum
Coloration, Pilosité
Longueur de Langue, Tomentum
Longueur de Langue, Pilosité
Tomentum, Pilosité

Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
-,066	29	-,338	,7356	-,422	,308
,137	28	,689	,4908	-,249	,485
,098	29	,500	,6170	-,279	,448
-,094	29	-,482	,6301	-,445	,282
,377	28	1,984	,0472	,005	,658
,194	29	1,004	,3156	-,185	,524
-,107	29	-,550	,5825	-,456	,270
,609	28	3,538	,0004	,305	,800
,168	28	,850	,3955	-,219	,509
,255	29	1,332	,1829	-,123	,569

Tableau N°4: statistique descriptives de la langueur de la langue

Test F pour LANG

Variable "groupe" : GENERATION Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
G1, G2	4,298	26	32	4,298	,0002
G1, G3	,666	26	27	,666	,3009
G2, G3	,155	32	27	,155	<,0001

Tableau N°5: statistique descriptives de tomentum

Test F pour TOM

Variable "groupe": GENERATION

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
G1, G2	1,230	26	32	1,230	,5825
G1, G3	,289	26	28	,289	,0019
G2, G3	,235	32	28	,235	,0002

Tableau N°6: les valeurs du coefficient de corrélation de 1^{ier} génération de la station de Chiffa

Coefficient de corrélation Corrélation théorique = 0

IC A/B, Coloration
IC A/B, Longueur de Langue
IC A/B, Tomentum
IC A/B, Pilosité
Coloration, Longueur de Langue
Coloration, Tomentum
Coloration, Pilosité
Longueur de Langue, Tomentum
Longueur de Langue, Pilosité
Tomentum, Pilosité

Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
-,066	30	-,342	,7322	-,416	,302
-,355	30	-1,931	,0535	-,634	,006
-,252	30	-1,336	,1817	-,561	,120
,375	30	2,051	,0403	,017	,648
-,118	30	-,618	,5368	-,459	,253
,171	30	,897	,3695	-,202	,500
,336	30	1,817	,0692	-,027	,621
-,102	30	-,531	,5952	-,446	,268
-,531	30	-3,073	,0021	-,748	-,211
-,183	30	-,960	,3369	-,509	,190

Tableau N°7: les valeurs du coefficient de corrélation de 2^{ème} génération de la station de Chiffa.

Coefficient de corrélation Corrélation théorique = 0

IC A/B, Coloration
IC A/B, Longueur de Langue
IC A/B, Tomentum
IC A/B, Pilosité
Coloration, Longueur de Langue
Coloration, Tomentum
Coloration, Pilosité
Longueur de Langue, Tomentum
Longueur de Langue, Pilosité
Tomentum, Pilosité

	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
	-,085	30	-,441	,6590	-,432	,284
	-,138	30	-,723	,4700	-,475	,234
	-,309	30	-1,661	,0968	-,602	,058
	-,155	30	-,812	,4170	-,488	,217
:	,360	30	1,957	,0503	-,001	,637
	,104	30	,545	,5859	-,266	,448
	,088	30	,456	,6485	-,282	,434
n	-,124	30	-,645	,5187	-,463	,248
	,444	30	2,482	,0131	,100	,694
	-,059	30	-,306	,7595	-,410	,308

Tableau N°8 : les valeurs du coefficient de corrélation de 3^{ème} génération de la station de Chiffa

Coefficient de corrélation Corrélation théorique = 0

	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
IC A/B, Coloration	,140	30	,735	,4626	-,232	,477
IC A/B, Longueur de Langue	,001	30	,003	,9979	-,360	,361
IC A/B, Tomentum	,318	30	1,711	,0871	-,048	,608
IC A/B, Pilosité	-,240	30	-1,274	,2028	-,553	,131
Coloration, Longueur de Langue	,073	30	,378	,7056	-,295	,422
Coloration, Tomentum	,093	30	,483	,6292	-,277	,438
Coloration, Pilosité	-,259	30	-1,376	,1690	-,566	,112
Longueur de Langue, Tomentum	,312	30	1,679	,0931	-,054	,605
Longueur de Langue, Pilosité	-,067	30	-,347	,7283	-,417	,301
Tomentum, Pilosité	-,002	30	-,008	,9932	-,362	,359

Tableau N°9: statistique descriptives de l'index cubital

Test F pour IC A/B

Variable "groupe": Génération

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
G1, G2	,529	29	29	,529	,0914
G1, G3	,241	29	29	,241	,0003
G2, G3	,456	29	29	,456	,0385

Tableau N°10 : statistique descriptives de la coloration

Test F pour Coloration

Variable "groupe": Génération

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
G1, G2	,524	29	29	,524	,0870
G1, G3	7,108	29	29	7,108	<,0001
G2, G3	13,568	29	29	13,568	<,0001

Tableau N°11: statistique descriptives de la langueur de la langue

Test F pour Longueur de Langue Variable "groupe" : Génération

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
G1, G2	1,773	29	29	1,773	,1287
G1, G3	2,411	29	29	2,411	,0207
G2, G3	1,359	29	29	1,359	,4134

Tableau N°12: statistique descriptives de tomentum

Test F pour Tomentum

Variable "groupe": Génération

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
G1, G2	1,305	29	29	1,305	,4782
G1, G3	2,329	29	29	2,329	,0261
G2, G3	1,785	29	29	1,785	,1246

Tableau N°13 : les valeurs du coefficient de corrélation de 1^{ier} génération des deux stations

Coefficient de corrélation Corrélation théorique = 0

IC A/B, Coloration
IC A/B, Langueur de la langue
IC A/B, Tomentum
IC A/B, Pilosité
Coloration, Langueur de la langue
Coloration, Tomentum
Coloration, Pilosité
Langueur de la langue, Tomentum
Langueur de la langue, Pilosité
Tomentum, Pilosité

Corrélation	Nombre	z	р	95% Inf.	95% Sup.
-,091	57	-,672	,5018	-,344	,174
,071	57	,524	,6002	-,193	,326
-,148	57	-1,098	,2724	-,394	,117
,458	57	3,637	,0003	,224	,642
,079	57	,582	,5608	-,185	,333
,148	57	1,097	,2724	-,117	,394
,080,	57	,592	,5542	-,184	,334
,134	57	,988	,3233	-,132	,381
-,143	57	-1,059	,2898	-,389	,122
-,019	57	-,143	,8861	-,279	,242

🔻 Tableau N°14 : statistique descriptives de la langueur de la langue

Test F pour langueur de lalangue Variable "groupe" : station

Ratio théorique = 1

Chiffa2, génération Chiffa2, Sidi Aed2 génération, Sidi Aed2

Ratio de Var.	DDL num.	DDL dén.	F	р
•	29	•	•	•
2,653	29	32	2,653	,0088
•	•	32	•	•

Tableau N°15: les valeurs du coefficient de corrélation de 2ème génération des deux stations

Coefficient de corrélation Corrélation théorique = 0

	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
langueur de lalangue, pilosité	,417	63	3,439	,0006	,189	,603

Tableau N°16: les valeurs du coefficient de corrélation de 3^{ème} génération des deux stations

Coefficient de corrélation Corrélation théorique = 0

	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
IC A/B, Coloration	-,130	59	-,978	,3282	-,374	,131
IC A/B, Langueur de la langue	-,054	58	-,404	,6859	-,308	,207
IC A/B, Tomentum	,057	59	,426	,6703	-,202	,308
IC A/B, Pilosité	-,203	59	-1,544	,1227	-,437	,056
Coloration, Langueur de la langue	,413	58	3,254	,0011	,173	,606
Coloration, Tomentum	,279	59	2,141	,0323	,024	,499
Coloration, Pilosité	-,089	59	-,666	,5052	-,337	,171
Langueur de la langue, Tomentum	,578	58	4,888	<,0001	,375	,728
Langueur de la langue, Pilosité	,090	58	,667	,5049	-,173	,340
Tomentum, Pilosité	,165	59	1,249	,2115	-,095	,404

Tableau N°17: statistique descriptives de l'index cubital, la coloration, la langueur de la langue et le tomentum

Test F pour IC A/B

Variable "groupe": station

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa3, Sidi ayed3	4,715	29	28	4,715	<,0001

Test F pour coloration

Variable "groupe": station

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р	
Chiffa3, Sidi ayed3	,159	29	28	,159	<,0001	

Test F pour langueur de la langue

Variable "groupe": station

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa3, Sidi ayed3	,302	29	27	,302	,0023

Test F pour tomentum

Variable "groupe": station

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa3, Sidi ayed3	,213	29	28	,213	<,0001

Tableau N°18: statistique descriptives de l'index cubital

Test F pour IC A/B Variable "groupe" : station Ratio théorique = 1

Natio theorique – i					
	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	,529	29	29	,529	,0914
Chiffa1, Chiffa3	,241	29	29	,241	,0003
Chiffa1, Sidi Ayed1	,606	29	26	,606	,1957
Chiffa1, Sidi Ayed2	,944	29	32	,944	,8736
Chiffa1, Sidi Ayed3	1,137	29	28	1,137	,7341
Chiffa2, Chiffa3	,456	29	29	,456	,0385
Chiffa2, Sidi Ayed1	1,146	29	26	1,146	,7238
Chiffa2, Sidi Ayed2	1,785	29	32	1,785	,1155
Chiffa2, Sidi Ayed3	2,151	29	28	2,151	,0452
Chiffa3, Sidi Ayed1	2,512	29	26	2,512	,0188
Chiffa3, Sidi Ayed2	3,912	29	32	3,912	,0003
Chiffa3, Sidi Ayed3	4,715	29	28	4,715	<,0001
Sidi Ayed1, Sidi Ayed2	1,558	26	32	1,558	,2414
Sidi Ayed1, Sidi Ayed3	1,877	26	28	1,877	,1081
Sidi Ayed2, Sidi Ayed3	1,205	32	28	1,205	,6134

Tableau N°19: statistique descriptives de la coloration

Test F pour Coloration Variable "groupe" : station Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	,524	29	29	,524	,0870
Chiffa1, Chiffa3	7,108	29	29	7,108	<,0001
Chiffa1, Sidi Ayed1	1,081	29	26	1,081	,8401
Chiffa1, Sidi Ayed2	,604	29	32	,604	,1699
Chiffa1, Sidi Ayed3	1,130	29	28	1,130	,7458
Chiffa2, Chiffa3	13,568	29	29	13,568	<,0001
Chiffa2, Sidi Ayed1	2,063	29	26	2,063	,0630
Chiffa2, Sidi Ayed2	1,153	29	32	1,153	,6976
Chiffa2, Sidi Ayed3	2,158	29	28	2,158	,0444
Chiffa3, Sidi Ayed1	,152	29	26	,152	<,0001
Chiffa3, Sidi Ayed2	,085	29	32	,085	<,0001
Chiffa3, Sidi Ayed3	,159	29	28	,159	<,0001
Sidi Ayed1, Sidi Ayed2	,559	26	32	,559	,1248
Sidi Ayed1, Sidi Ayed3	1,046	26	28	1,046	,9082
Sidi Ayed2, Sidi Ayed3	1,872	32	28	1,872	,0919

₹ Tableau N°20 : statistique descriptives de la langueur de la langue

Test F pour Longueur de Langue Variable "groupe" : station Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	1,773	29	29	1,773	,1287
Chiffa1, Chiffa3	2,411	29	29	2,411	,0207
Chiffa1, Sidi Ayed1	1,095	29	26	1,095	,8145
Chiffa1, Sidi Ayed2	4,705	29	32	4,705	<,0001
Chiffa1, Sidi Ayed3	,729	29	27	,729	,4075
Chiffa2, Chiffa3	1,359	29	29	1,359	,4134
Chiffa2, Sidi Ayed1	,617	29	26	,617	,2129
Chiffa2, Sidi Ayed2	2,653	29	32	2,653	,0088
Chiffa2, Sidi Ayed3	,411	29	27	,411	,0218
Chiffa3, Sidi Ayed1	,454	29	26	,454	,0431
Chiffa3, Sidi Ayed2	1,952	29	32	1,952	,0699
Chiffa3, Sidi Ayed3	,302	29	27	,302	,0023
Sidi Ayed1, Sidi Ayed2	4,298	26	32	4,298	,0002
Sidi Ayed1, Sidi Ayed3	,666	26	27	,666	,3009
Sidi Ayed2, Sidi Ayed3	,155	32	27	,155	<,0001

Tableau N°21: statistique descriptives de tomentum

Test F pour Tomentum Variable "groupe" : station Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	1,305	29	29	1,305	,4782
Chiffa1, Chiffa3	2,329	29	29	2,329	,0261
Chiffa1, Sidi Ayed1	1,721	29	26	1,721	,1615
Chiffa1, Sidi Ayed2	2,117	29	32	2,117	,0425
Chiffa1, Sidi Ayed3	,497	29	28	,497	,0668
Chiffa2, Chiffa3	1,785	29	29	1,785	,1246
Chiffa2, Sidi Ayed1	1,319	29	26	1,319	,4733
Chiffa2, Sidi Ayed2	1,623	29	32	1,623	,1875
Chiffa2, Sidi Ayed3	,381	29	28	,381	,0121
Chiffa3, Sidi Ayed1	,739	29	26	,739	,4335
Chiffa3, Sidi Ayed2	,909	29	32	,909	,7946
Chiffa3, Sidi Ayed3	,213	29	28	,213	<,0001
Sidi Ayed1, Sidi Ayed2	1,230	26	32	1,230	,5825
Sidi Ayed1, Sidi Ayed3	,289	26	28	,289	,0019
Sidi Ayed2, Sidi Ayed3	,235	32	28	,235	,0002

🔻 Tableau N°22: statistique descriptives de la pilosité

Test F pour Pilosité Variable "groupe" : station Ratio théorique = 1

Ratio de Var.				
Ratio de var.	DDL num.	DDL dén.	F	р
1,131	29	29	1,131	,7430
,710	29	29	,710	,3613
,780	29	26	,780	,5188
1,601	29	32	1,601	,2002
,899	29	28	,899	,7783
,628	29	29	,628	,2159
,689	29	26	,689	,3361
1,416	29	32	1,416	,3430
,795	29	28	,795	,5446
1,098	29	26	1,098	,8078
2,255	29	32	2,255	,0282
1,267	29	28	1,267	,5323
2,053	26	32	2,053	,0588
1,153	26	28	1,153	,7139
,562	32	28	,562	,1206
	1,131 ,710 ,780 1,601 ,899 ,628 ,689 1,416 ,795 1,098 2,255 1,267 2,053 1,153	1,131 29 ,710 29 ,780 29 1,601 29 ,899 29 ,628 29 ,689 29 1,416 29 ,795 29 1,098 29 2,255 29 1,267 29 2,053 26 1,153 26	1,131 29 29 ,710 29 29 ,780 29 26 1,601 29 32 ,899 29 28 ,628 29 29 ,689 29 26 1,416 29 32 ,795 29 28 1,098 29 26 2,255 29 32 1,267 29 28 2,053 26 32 1,153 26 28	1,131 29 29 1,131 ,710 29 29 ,710 ,780 29 26 ,780 1,601 29 32 1,601 ,899 29 28 ,899 ,628 29 29 ,628 ,689 29 26 ,689 1,416 29 32 1,416 ,795 29 28 ,795 1,098 29 26 1,098 2,255 29 32 2,255 1,267 29 28 1,267 2,053 26 32 2,053 1,153 26 28 1,153

Tableau N°23: les valeurs du coefficient de corrélation de 1^{ier} génération de station SidiAyed

Coefficient de corrélation Corrélation théorique = 0

Poids de reine, Poids de l'OD Poids de reine, Poids de l'OG Poids de reine, Diamétre de l'OD Poids de reine, Diamétre de l'OG Poids de reine, Diamétre de S Poids de reine, Nbr des O d'OD Poids de reine, Nbr des O d'OG Poids de l'OD, Poids de l'OG Poids de l'OD, Diamétre de l'OD Poids de l'OD, Diamétre de l'OG Poids de l'OD, Diamétre de S Poids de l'OD, Nbr des O d'OD Poids de l'OD, Nbr des O d'OG Poids de l'OG, Diamétre de l'OD Poids de l'OG, Diamétre de l'OG Poids de l'OG, Diamétre de S Poids de l'OG, Nbr des O d'OD Poids de l'OG, Nbr des O d'OG Diamétre de l'OD, Diamétre de l'OG Diamétre de l'OD, Diamétre de S Diamétre de l'OD, Nbr des O d'OD Diamétre de l'OD, Nbr des O d'OG Diamétre de l'OG, Diamétre de S Diamétre de l'OG, Nbr des O d'OD Diamétre de l'OG, Nbr des O d'OG Diamétre de S, Nbr des O d'OD Diamétre de S, Nbr des O d'OG Nbr des O d'OD, Nbr des O d'OG

Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
-,058	27	-,286	,7749	-,429	,329
,327	27	1,662	,0966	-,061	,629
-,149	27	-,734	,4627	-,501	,245
,090	27	,444	,6568	-,300	,455
,470	23	2,281	,0226	,072	,739
,134	27	,658	,5102	-,260	,489
,137	27	,673	,5008	-,257	,491
,405	27	2,107	,0351	,030	,681
,260	27	1,304	,1921	-,133	,583
,002	27	,008	,9939	-,379	,381
-,043	23	-,193	,8470	-,447	,376
,020	27	,096	,9236	-,363	,397
-,226	27	-1,126	,2602	-,558	,169
,281	27	1,414	,1573	-,111	,597
,320	27	1,627	,1038	-,068	,624
-,131	23	-,589	,5559	-,515	,297
,256	27	1,282	,1999	-,138	,580
,395	27	2,049	,0405	,018	,674
,770	27	4,996	<,0001	,551	,890
-,264	23	-1,210	,2263	-,610	,166
,286	27	1,442	,1492	-,105	,601
,233	27	1,163	,2447	-,161	,563
-,187	23	-,849	,3962	-,557	,244
,248	27	1,241	,2144	-,146	,574
,316	27	1,604	,1088	-,073	,622
-,068	23	-,302	,7623	-,467	,355
-,201	23	-,912	,3619	-,566	,230
,799	27	5,368	<,0001	,602	,904

Tableau N°24: les valeurs du coefficient de corrélation de 2^{éme} génération de station de Sidi Ayed

95% Sup.

,654

,110

,477

,616,

-,007

,439

,592

,490

-,497

,323

,981 -,537

,157

-,292

,420

,700

-,303

,174

,386

-,567

,914

,556

,372

,455

,472

-,525

,101

,672

Coefficient de corrélation Corrélation théorique = 0

	Corrélation	Nombre	z	р	95% Inf.
Poids de reine, Poids de l'OD	,390	31	2,179	,0293	,041
Poids de reine, Poids de l'OG	-,255	31	-1,378	,1683	-,559
Poids de reine, Diamétre de l'OD	,153	32	,833	,4051	-,206
Poids de reine, Diamétre de l'OG	,334	31	1,839	,0660	-,023
Poids de reine, Diamétre de S	-,373	29	-1,996	,0460	-,650
Poids de reine, Nbr des O d'OD	,107	32	,579	,5626	-,251
Poids de reine, Nbr des O d'OG	,300	31	1,638	,1014	-,061
Poids de l'OD, Poids de l'OG	,165	31	,880	,3790	-,201
Poids de l'OD, Diamétre de l'OD	-,721	32	-4,897	<,0001	-,855
Poids de l'OD, Diamétre de l'OG	-,036	31	-,190	,8493	-,385
Poids de l'OD, Diamétre de S	,959	29	9,873	<,0001	,914
Poids de l'OD, Nbr des O d'OD	-,746	32	-5,191	<,0001	-,869
Poids de l'OD, Nbr des O d'OG	-,209	31	-1,122	,2620	-,524
Poids de l'OG, Diamétre de l'OD	-,581	32	-3,577	,0003	-,773
Poids de l'OG, Diamétre de l'OG	,083	32	,450	,6526	-,273
Poids de l'OG, Diamétre de S	,448	29	2,458	,0140	,097
Poids de l'OG, Nbr des O d'OD	-,589	32	-3,645	,0003	-,778
Poids de l'OG, Nbr des O d'OG	-,186	32	-1,014	,3108	-,502
Diamétre de l'OD, Diamétre de l'OG	,043	32	,232	,8168	-,310
Diamétre de l'OD, Diamétre de S	-,770	30	-5,303	<,0001	-,885
Diamétre de l'OD, Nbr des O d'OD	,832	33	6,543	<,0001	,684
Diamétre de l'OD, Nbr des O d'OG	,258	32	1,419	,1559	-,100
Diamétre de l'OG, Diamétre de S	,007	29	,035	,9721	-,361
Diamétre de l'OG, Nbr des O d'OD	,127	32	,686	,4927	-,232
Diamétre de l'OG, Nbr des O d'OG	,147	32	,797	,4254	-,213
Diamétre de S, Nbr des O d'OD	-,744	30	-4,987	<,0001	-,871
Diamétre de S, Nbr des O d'OG	-,276	29	-1,444	,1487	-,583
Nbr des O d'OD, Nbr des O d'OG	,423	32	2,429	,0152	,087

Tableau N°25: les valeurs du coefficient de corrélation de 3^{éme} génération de station de Sidi Ayed

Coefficient de corrélation Corrélation théorique = 0

Poids de reine, Poids de l'OD
Poids de reine, Poids de l'OG
Poids de reine, Diamétre de l'OD
Poids de reine, Diamétre de l'OG
Poids de reine, Diamétre de S
Poids de reine, Nbr des O d'OD
Poids de reine, Nbr des O d'OG
Poids de l'OD, Poids de l'OG
Poids de l'OD, Diamétre de l'OD
Poids de l'OD, Diamétre de l'OG
Poids de l'OD, Diamétre de S
Poids de l'OD, Nbr des O d'OD
Poids de l'OD, Nbr des O d'OG
Poids de l'OG, Diamétre de l'OD
Poids de l'OG, Diamétre de l'OG
Poids de l'OG, Diamétre de S
Poids de l'OG, Nbr des O d'OD
Poids de l'OG, Nbr des O d'OG
Diamétre de l'OD, Diamétre de l'OG
Diamétre de l'OD, Diamétre de S
Diamétre de l'OD, Nbr des O d'OD
Diamétre de l'OD, Nbr des O d'OG
Diamétre de l'OG, Diamétre de S
Diamétre de l'OG, Nbr des O d'OD
Diamétre de l'OG, Nbr des O d'OG
Diamétre de S, Nbr des O d'OD
Diamétre de S, Nbr des O d'OG
Nbr des O d'OD, Nbr des O d'OG

Corrélation	Nombre	z	р	95% Inf.	95% Sup.
,373	28	1,960	,0500	-4,405E-5	,655
,538	29	3,064	,0022	,213	,755
,090	28	,450	,6531	-,293	,448
-,040	29	-,205	,8373	-,401	,331
,241	27	1,206	,2278	-,153	,569
-,471	28	-2,558	,0105	-,718	-,119
-,437	29	-2,392	,0168	-,693	-,084
,416	28	2,216	,0267	,051	,683
,114	28	,571	,5679	-,271	,467
-,248	28	-1,265	,2058	-,568	,138
-,220	26	-1,070	,2844	-,559	,183
,039	28	,194	,8459	-,339	,406
-,375	28	-1,973	,0484	-,657	-,003
-,158	28	-,799	,4246	-,502	,228
,057	29	,293	,7699	-,316	,415
-,173	27	-,857	,3916	-,519	,221
-,299	28	-1,540	,1235	-,604	,084
-,248	29	-1,291	,1969	-,563	,131
,251	28	1,282	,1998	-,135	,571
,029	26	,139	,8892	-,362	,412
,026	28	,132	,8951	-,350	,396
-,195	28	-,989	,3225	-,530	,192
-,132	27	-,651	,5149	-,488	,261
,217	28	1,102	,2706	-,170	,546
,440	29	2,408	,0161	,088	,694
-,187	26	-,909	,3633	-,536	,216
-,137	27	-,674	,5002	-,491	,257
,588	28	3,375	,0007	,276	,788

Tableau N°26: statistique descriptives de poids de l'ovaire droit

Test F pour Poids de l'OD Variable "groupe" : génératio Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
g1, g2	,646	26	31	,646	,2518
g1, g3	,159	26	27	,159	<,0001
g2, g3	,246	31	27	,246	,0003

Tableau N°27: statistique descriptives de poids de l'ovaire gauche

Test F pour Poids de l'OG Variable "groupe" : génératio Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
g1, g2	,281	26	31	,281	,0012
g1, g3	,247	26	28	,247	,0005
g2, g3	,879	31	28	,879	,7284

Tableau N°28: statistique descriptives de diamètre de l'ovaire droit

Test F pour Diamétre de l'OD Variable "groupe": génératio Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
g1, g2	2,553	26	32	2,553	,0146
g1, g3	1,984	26	27	1,984	,0835
g2, g3	,777	32	27	,777	,4997

Tableau N°29: statistique descriptives de nombre des ovarioles de l'ovaire gauche

Test F pour Nbr des O d'OG Variable "groupe" : génératio Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
g1, g2	2,729	26	31	2,729	,0095
g1, g3	1,498	26	28	1,498	,3005
g2, g3	,549	31	28	,549	,1092

Tableau N°30 : les valeurs du coefficient de corrélation de 1^{ier} génération de la station de Chiffa

Coefficient de corrélation Corrélation théorique = 0

Poids des reines, Poids de l'OD
Poids des reines, Poids de l'OG
Poids des reines, Diamétre de l'OD
Poids des reines, Diamétre de l'OG
Poids des reines, Diamétre de S
Poids des reines, Nbr des O d'OD
Poids des reines, Nbr des O d'OG
Poids de l'OD, Poids de l'OG
Poids de l'OD, Diamétre de l'OD
Poids de l'OD, Diamétre de l'OG
Poids de l'OD, Diamétre de S
Poids de l'OD, Nbr des O d'OD
Poids de l'OD, Nbr des O d'OG
Poids de l'OG, Diamétre de l'OD
Poids de l'OG, Diamétre de l'OG
Poids de l'OG, Diamétre de S
Poids de l'OG, Nbr des O d'OD
Poids de l'OG, Nbr des O d'OG
Diamétre de l'OD, Diamétre de l'OG
Diamétre de l'OD, Diamétre de S
Diamétre de l'OD, Nbr des O d'OD
Diamétre de l'OD, Nbr des O d'OG
Diamétre de l'OG, Diamétre de S
Diamétre de l'OG, Nbr des O d'OD
Diamétre de l'OG, Nbr des O d'OG
Diamétre de S, Nbr des O d'OD
Diamétre de S, Nbr des O d'OG
Nbr des O d'OD, Nbr des O d'OG

Corrélation	Nombre	z	р	95% Inf.	95% Sup.
,354	30	1,921	,0548	-,008	,633
,202	30	1,064	,2871	-,171	,524
,128	30	,669	,5036	-,244	,467
-,194	30	-1,019	,3082	-,518	,179
-,065	28	-,324	,7457	-,428	,316
,115	30	,600	,5488	-,256	,456
-,030	30	-,157	,8756	-,386	,334
,413	30	2,282	,0225	,062	,673
,458	30	2,571	,0101	,117	,702
-,105	30	-,549	,5831	-,449	,265
,118	28	,591	,5543	-,267	,470
,389	30	2,132	,0330	,033	,657
,047	30	,244	,8073	-,319	,400
,259	30	1,376	,1689	-,112	,566
,125	30	,653	,5137	-,246	,464
,057	28	,285	,7753	-,323	,421
,288	30	1,540	,1235	-,081	,587
,468	30	2,635	,0084	,129	,709
,508	30	2,911	,0036	,181	,734
-,112	28	-,562	,5740	-,466	,273
,332	30	1,792	,0732	-,032	,618
-,013	30	-,068	,9459	-,372	,349
,010	28	,051	,9591	-,364	,382
,328	30	1,768	,0771	-,037	,615
,291	30	1,555	,1200	-,078	,589
,061	28	,306	,7594	-,319	,425
,212	28	1,074	,2829	-,175	,542
,740	30	4,944	<,0001	,518	,869

Tableau N°31: les valeurs du coefficient de corrélation de 2^{éme} génération de la station de Chiffa

Coefficient de corrélation Corrélation théorique = 0

,	Corrélation	Nombre	z	р	95% Inf.	95% Sup.
Poids des reines, Poids de l'OD	,467	30	2,633	,0085	,129	,708
Poids des reines, Poids de l'OG	,660	30	4,123	<,0001	,394	,824
Poids des reines, Diamétre de l'OD	,357	30	1,939	,0525	-,004	,635
Poids des reines, Diamétre de l'OG	,155	30	,811	,4172	-,218	,488
Poids des reines, Diamétre de S	-,056	28	-,282	,7779	-,421	,324
Poids des reines, Nbr des O d'OD	,147	30	,769	,4420	-,225	,482
Poids des reines, Nbr des O d'OG	,077	30	,399	,6898	-,292	,425
Poids de l'OD, Poids de l'OG	,690	30	4,408	<,0001	,439	,841
Poids de l'OD, Diamétre de l'OD	,238	30	1,260	,2078	-,134	,551
Poids de l'OD, Diamétre de l'OG	,372	30	2,030	,0423	,014	,646
Poids de l'OD, Diamétre de S	-,003	28	-,017	,9865	-,376	,370
Poids de l'OD, Nbr des O d'OD	,513	30	2,944	,0032	,187	,737
Poids de l'OD, Nbr des O d'OG	,071	30	,372	,7101	-,297	,421
Poids de l'OG, Diamétre de l'OD	,393	30	2,160	,0308	,038	,660
Poids de l'OG, Diamétre de l'OG	,420	30	2,328	,0199	,071	,678
Poids de l'OG, Diamétre de S	-,103	28	-,518	,6042	-,459	,281
Poids de l'OG, Nbr des O d'OD	,222	30	1,174	,2405	-,150	,539
Poids de l'OG, Nbr des O d'OG	,279	30	1,491	,1361	-,090	,581
Diamétre de l'OD, Diamétre de l'OG	,519	30	2,990	,0028	,196	,741
Diamétre de l'OD, Diamétre de S	-,172	28	-,869	,3846	-,512	,215
Diamétre de l'OD, Nbr des O d'OD	-,065	30	-,341	,7334	-,416	,302
Diamétre de l'OD, Nbr des O d'OG	-,077	30	-,401	,6885	-,426	,291
Diamétre de l'OG, Diamétre de S	-,193	28	-,980	,3273	-,528	,194
Diamétre de l'OG, Nbr des O d'OD	-,103	30	-,539	,5901	-,447	,267
Diamétre de l'OG, Nbr des O d'OG	,070	30	,366	,7142	-,297	,420
Diamétre de S, Nbr des O d'OD	,330	28	1,715	,0863	-,049	,626
Diamétre de S, Nbr des O d'OG	,506	28	2,787	,0053	,164	,740
Nbr des O d'OD, Nbr des O d'OG	,289	30	1,547	,1218	-,079	,588

Tableau N°32 : les valeurs du coefficient de corrélation de 3^{ème} génération de la station de Chiffa

Coefficient de corrélation Corrélation théorique = 0

Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
,334	30	1,808	,0707	-,029	,620
,399	30	2,192	,0284	,045	,664
-,025	30	-,132	,8949	-,382	,338
,147	30	,772	,4402	-,225	,482
,020	28	,101	,9194	-,356	,390
-,260	30	-1,380	,1676	-,567	,111
,275	30	1,465	,1430	-,095	,578
,499	30	2,850	,0044	,170	,729
,125	30	,652	,5141	-,246	,464
,158	30	,828	,4076	-,214	,490
-,245	28	-1,249	,2115	-,566	,141
,081	30	,423	,6725	-,288	,429
,215	30	1,137	,2556	-,157	,534
,089	30	,466	,6413	-,280	,436
,203	30	1,067	,2859	-,170	,525
-,283	28	-1,456	,1453	-,594	,100
-,123	30	-,643	,5203	-,463	,248
,498	30	2,839	,0045	,168	,728
,521	30	3,002	,0027	,198	,742
,015	28	,073	,9420	-,361	,386
,313	30	1,681	,0928	-,054	,605
,314	30	1,686	,0917	-,053	,605
-,156	28	-,787	,4311	-,500	,230
,040	30	,210	,8340	-,325	,395
,473	30	2,668	,0076	,135	,712
,135	28	,680	,4964	-,251	,484
-,049	28	-,244	,8069	-,414	,330
,230	30	1,218	,2233	-,142	,545
	,334 ,399 -,025 ,147 ,020 -,260 ,275 ,499 ,125 ,158 -,245 ,081 ,215 ,089 ,203 -,283 -,123 ,498 ,521 ,015 ,313 ,314 -,156 ,040 ,473 ,135 -,049	,334 30 ,399 30 -,025 30 ,147 30 ,020 28 -,260 30 ,275 30 ,499 30 ,125 30 ,158 30 -,245 28 ,081 30 ,215 30 ,089 30 ,203 30 -,283 28 -,123 30 ,498 30 ,521 30 ,015 28 ,313 30 ,314 30 -,156 28 ,040 30 ,473 30 ,135 28 -,049 28	,334 30 1,808 ,399 30 2,192 -,025 30 -,132 ,147 30 ,772 ,020 28 ,101 -,260 30 -1,380 ,275 30 1,465 ,499 30 2,850 ,125 30 ,652 ,158 30 ,828 -,245 28 -1,249 ,081 30 ,423 ,215 30 1,137 ,089 30 ,466 ,203 30 1,067 -,283 28 -1,456 -,123 30 -,643 ,498 30 2,839 ,521 30 3,002 ,015 28 ,073 ,313 30 1,686 -,156 28 -,787 ,040 30 ,210 ,473 30 2,668 ,135 </td <td>,334 30 1,808 ,0707 ,399 30 2,192 ,0284 -,025 30 -,132 ,8949 ,147 30 ,772 ,4402 ,020 28 ,101 ,9194 -,260 30 -1,380 ,1676 ,275 30 1,465 ,1430 ,499 30 2,850 ,0044 ,125 30 ,652 ,5141 ,158 30 ,828 ,4076 -,245 28 -1,249 ,2115 ,081 30 ,423 ,6725 ,215 30 1,137 ,2556 ,089 30 ,466 ,6413 ,203 30 1,067 ,2859 -,283 28 -1,456 ,1453 -,123 30 -,643 ,5203 ,498 30 2,839 ,0045 ,521 30 3,002 ,0027</td> <td>,334 30 1,808 ,0707 -,029 ,399 30 2,192 ,0284 ,045 -,025 30 -,132 ,8949 -,382 ,147 30 ,772 ,4402 -,225 ,020 28 ,101 ,9194 -,356 -,260 30 -1,380 ,1676 -,567 ,275 30 1,465 ,1430 -,095 ,499 30 2,850 ,0044 ,170 ,125 30 ,652 ,5141 -,246 ,158 30 ,828 ,4076 -,214 -,245 28 -1,249 ,2115 -,566 ,081 30 ,423 ,6725 -,288 ,215 30 1,137 ,2556 -,157 ,089 30 ,466 ,6413 -,280 ,203 30 1,067 ,2859 -,170 -,283 28 -1,456 ,1453</td>	,334 30 1,808 ,0707 ,399 30 2,192 ,0284 -,025 30 -,132 ,8949 ,147 30 ,772 ,4402 ,020 28 ,101 ,9194 -,260 30 -1,380 ,1676 ,275 30 1,465 ,1430 ,499 30 2,850 ,0044 ,125 30 ,652 ,5141 ,158 30 ,828 ,4076 -,245 28 -1,249 ,2115 ,081 30 ,423 ,6725 ,215 30 1,137 ,2556 ,089 30 ,466 ,6413 ,203 30 1,067 ,2859 -,283 28 -1,456 ,1453 -,123 30 -,643 ,5203 ,498 30 2,839 ,0045 ,521 30 3,002 ,0027	,334 30 1,808 ,0707 -,029 ,399 30 2,192 ,0284 ,045 -,025 30 -,132 ,8949 -,382 ,147 30 ,772 ,4402 -,225 ,020 28 ,101 ,9194 -,356 -,260 30 -1,380 ,1676 -,567 ,275 30 1,465 ,1430 -,095 ,499 30 2,850 ,0044 ,170 ,125 30 ,652 ,5141 -,246 ,158 30 ,828 ,4076 -,214 -,245 28 -1,249 ,2115 -,566 ,081 30 ,423 ,6725 -,288 ,215 30 1,137 ,2556 -,157 ,089 30 ,466 ,6413 -,280 ,203 30 1,067 ,2859 -,170 -,283 28 -1,456 ,1453

* Tableau N° 33 : statistique descriptives de poids de l'ovaire droit

Test F pour Poids de l'OD Variable "groupe" : Génération Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
G1, G2	,733	29	29	,733	,4082
G1, G3	6,474	29	29	6,474	<,0001
G2, G3	8,831	29	29	8,831	<,0001

Tableau N°34: statistique descriptives de nombre des ovarioles de l'ovaire droit

Test F pour Nbr des O d'OD Variable "groupe" : Génération Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	p
G1, G2	1,552	29	29	1,552	,2426
G1, G3	6,930	29	29	6,930	<,0001
G2, G3	4,466	29	29	4,466	,0001

Tableau N °35: statistique descriptives de nombre des ovarioles de l'ovaire gauche

Test F pour Nbr des O d'OG Variable "groupe" : Génération Ratio théorique = 1

Ratio de Var. DDL num. DDL dén. ,0237 G1, G2 2,363 29 29 2,363 G1, G3 3,745 29 29 3,745 ,0007 G2, G3 1,585 29 29 1,585 ,2209

Tableau N°36: les valeurs du coefficient de corrélation de 1^{ier} génération des deux stations

Coefficient de corrélation Corrélation théorique = 0

Poids de reine, Poids de l'OD
Poids de reine, Poids de l'OG
Poids de reine, Diamétre de l'OD
Poids de reine, Diamétre de l'OG
Poids de reine, Diamétre de S
Poids de reine, Nbr des O d'OD
Poids de reine, Nbr des O d'OG
Poids de l'OD, Poids de l'OG
Poids de l'OD, Diamétre de l'OD
Poids de l'OD, Diamétre de l'OG
Poids de l'OD, Diamétre de S
Poids de l'OD, Nbr des O d'OD
Poids de l'OD, Nbr des O d'OG
Poids de l'OG, Diamétre de l'OD
Poids de l'OG, Diamétre de l'OG
Poids de l'OG, Diamétre de S
Poids de l'OG, Nbr des O d'OD
Poids de l'OG, Nbr des O d'OG
Diamétre de l'OD, Diamétre de l'OG
Diamétre de l'OD, Diamétre de S
Diamétre de l'OD, Nbr des O d'OD
Diamétre de l'OD, Nbr des O d'OG
Diamétre de l'OG, Diamétre de S
Diamétre de l'OG, Nbr des O d'OD
Diamétre de l'OG, Nbr des O d'OG
Diamétre de S, Nbr des O d'OD
Diamétre de S, Nbr des O d'OG
Nbr des O d'OD, Nbr des O d'OG

Corrélation	Nombre	z	р	95% Inf.	95% Sup.
,121	57	,890	,3732	-,145	,370
,226	57	1,693	,0904	-,036	,460
-,045	57	-,330	,7415	-,302	,218
-,173	57	-1,284	,1992	-,415	,092
,045	51	,313	,7545	-,233	,317
,273	57	2,061	,0393	,014	,498
,239	57	1,793	,0729	-,023	,471
,406	57	3,162	,0016	,162	,603
,351	57	2,691	,0071	,099	,560
-,042	57	-,306	,7594	-,299	,221
,052	51	,359	,7194	-,227	,323
,180	57	1,336	,1814	-,085	,421
-,110	57	-,815	,4153	-,361	,155
,263	57	1,978	,0479	,002	,490
,202	57	1,507	,1317	-,062	,440
-,022	51	-,155	,8765	-,296	,255
,270	57	2,036	,0418	,010	,496
,411	57	3,208	,0013	,168	,606
,644	57	5,615	<,0001	,460	,774
-,172	51	-1,203	,2291	-,427	,109
,260	57	1,959	,0501	-1,272E-4	,488
,086	57	,634	,5261	-,179	,339
-,052	51	-,362	,7176	-,323	,227
,207	57	1,546	,1221	-,056	,444
,202	57	1,505	,1324	-,062	,439
-,040	51	-,276	,7824	-,312	,238
-,047	51	-,326	,7444	-,318	,232
,794	57	7,962	<,0001	,673	,874

Tableau N°37: les valeurs du coefficient de corrélation de 2^{ème} génération des deux stations

Coefficient de corrélation Corrélation théorique = 0

poids des reines, poids de l'OD poids des reines, poids de l'OG poids des reines, diamètre de l'OD poids des reines, diamètre de l'OG poids des reines, diamètre de la S poids des reines, Nbr des O d'OD poids des reines, Nbr des O d'OG poids de l'OD, poids de l'OG poids de l'OD, diamètre de l'OD poids de l'OD, diamètre de l'OG poids de l'OD, diamètre de la S poids de l'OD, Nbr des O d'OD poids de l'OD, Nbr des O d'OG poids de l'OG, diamètre de l'OD poids de l'OG, diamètre de l'OG poids de l'OG, diamètre de la S poids de l'OG, Nbr des O d'OD poids de l'OG, Nbr des O d'OG diamètre de l'OD, diamètre de l'OG diamètre de l'OD, diamètre de la S diamètre de l'OD, Nbr des O d'OD diamètre de l'OD, Nbr des O d'OG diamètre de l'OG, diamètre de la S diamètre de l'OG, Nbr des O d'OD diamètre de l'OG, Nbr des O d'OG diamètre de la S, Nbr des O d'OD diamètre de la S, Nbr des O d'OG Nbr des O d'OD, Nbr des O d'OG

Corrélation	Nombre	z	р	95% Inf.	95% Sup.
,320	63	2,571	,0101	,079	,526
,330	62	2,637	,0084	,088	,536
,280	63	2,226	,0260	,034	,493
,346	62	2,775	,0055	,106	,549
-,235	58	-1,773	,0762	-,465	,025
,177	63	1,388	,1652	-,074	,407
,331	62	2,646	,0081	,089	,537
,349	62	2,802	,0051	,109	,551
,072	63	,562	,5739	-,179	,315
,171	62	1,325	,1851	-,082	,403
-,238	58	-1,799	,0721	-,467	,022
,112	63	,871	,3835	-,140	,350
-,159	62	-1,232	,2179	-,393	,095
-,116	62	-,893	,3717	-,355	,138
,239	62	1,872	,0613	-,012	,461
-,069	57	-,511	,6097	-,324	,195
-,041	62	-,314	,7539	-,288	,211
-,044	62	-,341	,7328	-,291	,208
,522	62	4,446	<,0001	,313	,683
,030	58	,222	,8245	-,230	,286
,453	63	3,788	,0002	,232	,630
,385	62	3,118	,0018	,150	,579
-,057	57	-,418	,6763	-,313	,207
,310	62	2,460	,0139	,065	,519
,382	62	3,087	,0020	,146	,576
,288	58	2,197	,0281	,032	,508
,171	57	1,270	,2041	-,094	,413
,612	62	5,466	<,0001	,427	,747

Tableau N°38: les valeurs du coefficient de corrélation de 3^{ème} génération des deux stations

Coefficient de corrélation Corrélation théorique = 0

poids des reines, poids de l'OD poids des reines, poids de l'OG poids des reines, diamètre de l'OD poids des reines, diamètre de l'OG poids des reines, diamètre de la S poids des reines, Nbr des O d'OD poids des reines, Nbr des O d'OG poids de l'OD, poids de l'OG poids de l'OD, diamètre de l'OD poids de l'OD, diamètre de l'OG poids de l'OD, diamètre de la S poids de l'OD, Nbr des O d'OD poids de l'OD, Nbr des O d'OG poids de l'OG, diamètre de l'OD poids de l'OG, diamètre de l'OG poids de l'OG, diamètre de la S poids de l'OG, Nbr des O d'OD poids de l'OG, Nbr des O d'OG diamètre de l'OD, diamètre de l'OG diamètre de l'OD, diamètre de la S diamètre de l'OD, Nbr des O d'OD diamètre de l'OD, Nbr des O d'OG diamètre de l'OG, diamètre de la S diamètre de l'OG, Nbr des O d'OD diamètre de l'OG, Nbr des O d'OG diamètre de la S, Nbr des O d'OD diamètre de la S, Nbr des O d'OG Nbr des O d'OD, Nbr des O d'OG

Corrélation	Nombre	z	р	95% Inf.	95% Sup.
,276	58	2,099	,0359	,019	,498
,449	59	3,617	,0003	,218	,632
,032	58	,237	,8127	-,228	,288
,062	59	,468	,6396	-,197	,314
,120	55	,870	,3843	-,150	,374
-,305	58	-2,339	,0193	-,522	-,051
-,137	59	-1,029	,3033	-,380	,124
,455	58	3,641	,0003	,223	,638
,006	58	,043	,9653	-,253	,264
-,203	58	-1,529	,1264	-,439	,058
-,034	54	-,241	,8094	-,299	,236
-,198	58	-1,487	,1370	-,434	,064
-,461	58	-3,699	,0002	-,643	-,230
-,125	58	-,931	,3518	-,371	,138
,047	59	,351	,7258	-,212	,299
-,102	55	-,737	,4609	-,358	,168
-,349	58	-2,705	,0068	-,557	-,100
-,217	59	-1,646	,0997	-,448	,042
,424	58	3,356	,0008	,186	,615
-,056	54	-,399	,6898	-,319	,215
,208	58	1,568	,1169	-,053	,443
,122	58	,906	,3651	-,141	,368
-,211	55	-1,548	,1215	-,451	,057
,238	58	1,799	,0720	-,022	,468
,447	59	3,595	,0003	,215	,631
-,294	54	-2,163	,0306	-,521	-,028
-,300	55	-2,229	,0258	-,523	-,037
,700	58	6,427	<,0001	,539	,811

Tableau N°39: statistique descriptives de poids de l'ovaire droit

Test F pour Poids de l'OD Variable "groupe": Génération

Ratio théorique = 1

Natio theorique – i					
	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	,733	29	29	,733	,4082
Chiffa1, Chiffa3	6,474	29	29	6,474	<,0001
Chiffa1, Sidi Ayed1	,873	29	26	,873	,7236
Chiffa1, Sidi Ayed2	3,226E-12	29	31	3,226E-12	<,0001
Chiffa1, Sidi Ayed3	,139	29	27	,139	<,0001
Chiffa2, Chiffa3	8,831	29	29	8,831	<,0001
Chiffa2, Sidi Ayed1	1,190	29	26	1,190	,6517
Chiffa2, Sidi Ayed2	4,400E-12	29	31	4,400E-12	<,0001
Chiffa2, Sidi Ayed3	,189	29	27	,189	<,0001
Chiffa3, Sidi Ayed1	,135	29	26	,135	<,0001
Chiffa3, Sidi Ayed2	4,982E-13	29	31	4,982E-13	<,0001
Chiffa3, Sidi Ayed3	,021	29	27	,021	<,0001
Sidi Ayed1, Sidi Ayed2	3,697E-12	26	31	3,697E-12	<,0001
Sidi Ayed1, Sidi Ayed3	,159	26	27	,159	<,0001
Sidi Ayed2, Sidi Ayed3	43062816605,658	31	27	43062816605,658	<,0001

* Tableau N°40 : statistique descriptives de poids de l'ovaire gauche

Test F pour Poids de l'OG Variable "groupe" : Génération

Ratio théorique = 1

nano moonquo – i					
	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	,897	29	29	,897	,7721
Chiffa1, Chiffa3	1,623	29	29	1,623	,1982
Chiffa1, Sidi Ayed1	1,142	29	26	1,142	,7308
Chiffa1, Sidi Ayed2	1,522E-8	29	31	1,522E-8	<,0001
Chiffa1, Sidi Ayed3	,282	29	28	,282	,0012
Chiffa2, Chiffa3	1,809	29	29	1,809	,1161
Chiffa2, Sidi Ayed1	1,273	29	26	1,273	,5320
Chiffa2, Sidi Ayed2	1,696E-8	29	31	1,696E-8	<,0001
Chiffa2, Sidi Ayed3	,314	29	28	,314	,0028
Chiffa3, Sidi Ayed1	,704	29	26	,704	,3628
Chiffa3, Sidi Ayed2	9,375E-9	29	31	9,375E-9	<,0001
Chiffa3, Sidi Ayed3	,173	29	28	,173	<,0001
Sidi Ayed1, Sidi Ayed2	1,333E-8	26	31	1,333E-8	<,0001
Sidi Ayed1, Sidi Ayed3	,247	26	28	,247	,0005
Sidi Ayed2, Sidi Ayed3	18505182,612	31	28	18505182,612	<,0001

Tableau N°41: statistique descriptives de diamètre de l'ovaire droit

Test F pour Diamétre de l'OD Variable "groupe": Génération

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL den.	F	р
Chiffa1, Chiffa2	1,025	29	29	1,025	,9471
Chiffa1, Chiffa3	1,408	29	29	1,408	,3617
Chiffa1, Sidi Ayed1	,614	29	26	,614	,2082
Chiffa1, Sidi Ayed2	,523	29	32	,523	,0791
Chiffa1, Sidi Ayed3	1,219	29	27	1,219	,6046
Chiffa2, Chiffa3	1,374	29	29	1,374	,3974
Chiffa2, Sidi Ayed1	,599	29	26	,599	,1861
Chiffa2, Sidi Ayed2	,511	29	32	,511	,0684
Chiffa2, Sidi Ayed3	1,189	29	27	1,189	,6506
Chiffa3, Sidi Ayed1	,436	29	26	,436	,0337
Chiffa3, Sidi Ayed2	,372	29	32	,372	,0079
Chiffa3, Sidi Ayed3	,865	29	27	,865	,7046
Sidi Ayed1, Sidi Ayed2	,852	26	32	,852	,6712
Sidi Ayed1, Sidi Ayed3	1,984	26	27	1,984	,0835
Sidi Ayed2, Sidi Ayed3	2,329	32	27	2,329	,0254

🔻 Tableau N°42 : statistique descriptives de diamètre de l'ovaire gauche

Test F pour Diamétre de l'OG Variable "groupe": Génération

Ratio théorique = 1

natio theorique - i					
	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	,736	29	29	,736	,4135
Chiffa1, Chiffa3	1,066	29	29	1,066	,8652
Chiffa1, Sidi Ayed1	1,027	29	26	1,027	,9439
Chiffa1, Sidi Ayed2	2,113	29	31	2,113	,0447
Chiffa1, Sidi Ayed3	1,578	29	28	1,578	,2295
Chiffa2, Chiffa3	1,448	29	29	1,448	,3240
Chiffa2, Sidi Ayed1	1,397	29	26	1,397	,3873
Chiffa2, Sidi Ayed2	2,871	29	31	2,871	,0051
Chiffa2, Sidi Ayed3	2,145	29	28	2,145	,0460
Chiffa3, Sidi Ayed1	,964	29	26	,964	,9246
Chiffa3, Sidi Ayed2	1,982	29	31	1,982	,0658
Chiffa3, Sidi Ayed3	1,481	29	28	1,481	,3006
Sidi Ayed1, Sidi Ayed2	2,056	26	31	2,056	,0602
Sidi Ayed1, Sidi Ayed3	1,536	26	28	1,536	,2716
Sidi Ayed2, Sidi Ayed3	,747	31	28	,747	,4334

Tableau N°43 : statistique descriptives de diamètre de la spermatèque

Test F pour Diamétre de S Variable "groupe": Génération

Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL den.	F	р
Chiffa1, Chiffa2	1,687	27	27	1,687	,1809
Chiffa1, Chiffa3	1,126	27	27	1,126	,7596
Chiffa1, Sidi Ayed1	,906	27	22	,906	,8100
Chiffa1, Sidi Ayed2	,035	27	29	,035	<,0001
Chiffa1, Sidi Ayed3	,742	27	26	,742	,4479
Chiffa2, Chiffa3	,668	27	27	,668	,3002
Chiffa2, Sidi Ayed1	,537	27	22	,537	,1331
Chiffa2, Sidi Ayed2	,021	27	29	,021	<,0001
Chiffa2, Sidi Ayed3	,440	27	26	,440	,0389
Chiffa3, Sidi Ayed1	,804	27	22	,804	,5963
Chiffa3, Sidi Ayed2	,031	27	29	,031	<,0001
Chiffa3, Sidi Ayed3	,659	27	26	,659	,2893
Sidi Ayed1, Sidi Ayed2	,039	22	29	,039	<,0001
Sidi Ayed1, Sidi Ayed3	,819	22	26	,819	,6301
Sidi Ayed2, Sidi Ayed3	21,069	29	26	21,069	<,0001

Tableau N°44: statistique descriptives de nombre des ovarioles de l'ovaire droit

Test F pour Nbr des O d'OD Variable "groupe" : Génération

Ratio théorique = 1

•	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	1,552	29	29	1,552	,2426
Chiffa1, Chiffa3	6,930	29	29	6,930	<,0001
Chiffa1, Sidi Ayed1	1,027	29	26	1,027	,9459
Chiffa1, Sidi Ayed2	,391	29	32	,391	,0117
Chiffa1, Sidi Ayed3	1,299	29	27	1,299	,4930
Chiffa2, Chiffa3	4,466	29	29	4,466	,0001
Chiffa2, Sidi Ayed1	,661	29	26	,661	,2853
Chiffa2, Sidi Ayed2	,252	29	32	,252	,0003
Chiffa2, Sidi Ayed3	,837	29	27	,837	,6421
Chiffa3, Sidi Ayed1	,148	29	26	,148	<,0001
Chiffa3, Sidi Ayed2	,056	29	32	,056	<,0001
Chiffa3, Sidi Ayed3	,188	29	27	,188	<,0001
Sidi Ayed1, Sidi Ayed2	,381	26	32	,381	,0120
Sidi Ayed1, Sidi Ayed3	1,266	26	27	1,266	,5482
Sidi Ayed2, Sidi Ayed3	3,322	32	27	3,322	,0018

Tableau N°45 : statistique descriptives de nombre des ovarioles de l'ovaire gauche

Test F pour Nbr des O d'OG Variable "groupe" : Génération Ratio théorique = 1

	Ratio de Var.	DDL num.	DDL dén.	F	р
Chiffa1, Chiffa2	2,363	29	29	2,363	,0237
Chiffa1, Chiffa3	3,745	29	29	3,745	,0007
Chiffa1, Sidi Ayed1	,732	29	26	,732	,4189
Chiffa1, Sidi Ayed2	1,909	29	31	1,909	,0818
Chiffa1, Sidi Ayed3	1,096	29	28	1,096	,8084
Chiffa2, Chiffa3	1,585	29	29	1,585	,2209
Chiffa2, Sidi Ayed1	,310	29	26	,310	,0031
Chiffa2, Sidi Ayed2	,808,	29	31	,808,	,5629
Chiffa2, Sidi Ayed3	,464	29	28	,464	,0446
Chiffa3, Sidi Ayed1	,195	29	26	,195	<,0001
Chiffa3, Sidi Ayed2	,510	29	31	,510	,0699
Chiffa3, Sidi Ayed3	,293	29	28	,293	,0016
Sidi Ayed1, Sidi Ayed2	2,609	26	31	2,609	,0131
Sidi Ayed1, Sidi Ayed3	1,498	26	28	1,498	,3005
Sidi Ayed2, Sidi Ayed3	,574	31	28	,574	,1381

Tableau N°46 : les valeurs du coefficient de corrélation de 1^{ier} génération de la station de Sidi Ayed.

	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
IC A/B, Coloration	,071	27	,349	,7268	-,317	,439
IC A/B, longueur de Langue	,695	27	4,197	<,0001	,427	,850
IC A/B, Tomentum	,147	27	,727	,4671	-,246	,499
IC A/B, Poids de reine	-,004	27	-,018	,9858	-,383	,377
IC A/B, Diamétre de S	,075	23	,338	,7355	-,348	,473
IC A/B, Nbr des O d'OD	-,362	27	-1,855	,0636	-,652	,021
IC A/B, Nbr des O d'OG	-,268	27	-1,343	,1792	-,588	,125
Coloration, longueur de Langue	,243	27	1,215	,2244	-,151	,570
Coloration, Tomentum	,034	27	,168	,8666	-,350	,409
Coloration, Poids de reine	,179	27	,886	,3754	-,216	,523
Coloration, Diamétre de S	,321	23	1,487	,1371	-,105	,647
Coloration, Nbr des O d'OD	-,020	27	-,097	,9231	-,397	,363
Coloration, Nbr des O d'OG	-,181	27	-,899	,3687	-,525	,213
longueur de Langue, Tomentum	,416	27	2,170	,0300	,043	,687
longueur de Langue, Poids de reine	-,077	27	-,380	,7043	-,444	,312
longueur de Langue, Diamétre de S	,171	23	,774	,4391	-,259	,545
longueur de Langue, Nbr des O d'OD	-,589	27	-3,309	,0009	-,792	-,269
longueur de Langue, Nbr des O d'OG	-,522	27	-2,834	,0046	-,752	-,177
Tomentum, Poids de reine	-,529	27	-2,883	,0039	-,757	-,186
Tomentum, Diamétre de S	-,076	23	-,343	,7318	-,474	,347
Tomentum, Nbr des O d'OD	-,066	27	-,324	,7462	-,435	,322
Tomentum, Nbr des O d'OG	-,237	27	-1,185	,2361	-,566	,157
Poids de reine, Diamétre de S	,470	23	2,281	,0226	,072	,739
Poids de reine, Nbr des O d'OD	,134	27	,658	,5102	-,260	,489
Poids de reine, Nbr des O d'OG	,137	27	,673	,5008	-,257	,491
Diamétre de S, Nbr des O d'OD	-,068	23	-,302	,7623	-,467	,355
Diamétre de S, Nbr des O d'OG	-,201	23	-,912	,3619	-,566	,230
Nbr des O d'OD, Nbr des O d'OG	,799	27	5,368	<,0001	,602	,904

Tableau N°47: les valeurs du coefficient de corrélation de 2^{éme} génération de station de Sidi Ayed.

4	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
Coloration, longueur de Langue	,225	33	1,256	,2091	-,128	,528
Coloration, Tomentum	-,123	33	-,676	,4993	-,447	,230
Coloration, Pilosité	-,059	33	-,326	,7443	-,395	,290
Coloration, Poids de reine	,293	32	1,627	,1037	-,062	,582
Coloration, Poids de l'OD	,336	32	1,884	,0596	-,014	,613
Coloration, Diamétre de l'OG	,390	32	2,218	,0265	,048	,650
Coloration, Diamétre de S	-,043	30	-,221	,8248	-,397	,323
Coloration, Nbr des O d'OG	,197	32	1,076	,2817	-,163	,511
longueur de Langue, Tomentum	,200	33	1,110	,2671	-,154	,508
longueur de Langue, Pilosité	,029	33	,157	,8755	-,318	,368
longueur de Langue, Poids de reine	,427	32	2,460	,0139	,093	,675
longueur de Langue, Poids de l'OD	,196	32	1,069	,2850	-,164	,510
longueur de Langue, Diamétre de l'OG	,291	32	1,614	,1066	-,064	,581
longueur de Langue, Diamétre de S	-,051	30	-,263	,7923	-,404	,315
longueur de Langue, Nbr des O d'OG	,369	32	2,087	,0369	,024	,636
Tomentum, Pilosité	-,035	33	-,191	,8482	-,374	,312
Tomentum, Poids de reine	-,229	32	-1,254	,2098	-,535	,130
Tomentum, Poids de l'OD	-,168	32	-,912	,3615	-,488	,192
Tomentum, Diamétre de l'OG	-,103	32	-,558	,5766	-,436	,255
Tomentum, Diamétre de S	,392	30	2,151	,0315	,037	,659
Tomentum, Nbr des O d'OG	,108	32	,584	,5592	-,250	,440
Pilosité, Poids de reine	,150	32	,816	,4145	-,209	,474
Pilosité, Poids de l'OD	-,104	32	-,563	,5733	-,437	,254
Pilosité, Diamétre de l'OG	,032	32	,175	,8610	-,320	,377
Pilosité, Diamétre de S	-,154	30	-,807	,4195	-,487	,218
Pilosité, Nbr des O d'OG	,303	32	1,686	,0918	-,051	,590
Poids de reine, Poids de l'OD	,390	31	2,179	,0293	,041	,654
Poids de reine, Diamétre de l'OG	,419	31	2,363	,0181	,076	,673
Poids de reine, Diamétre de S	-,376	29	-2,017	,0437	-,653	-,011
Poids de reine, Nbr des O d'OG	,298	31	1,623	,1045	-,064	,590
Poids de l'OD, Diamétre de l'OG	,329	31	1,810	,0704	-,028	,612
Poids de l'OD, Diamétre de S	-,348	29	-1,852	,0640	-,634	,021
Poids de l'OD, Nbr des O d'OG	-,017	31	-,091	,9277	-,369	,339
Diamétre de l'OG, Diamétre de S	-,120	29	-,612	,5403	-,466	,258
Diamétre de l'OG, Nbr des O d'OG	,210	32	1,150	,2500	-,149	,521
Diamétre de S, Nbr des O d'OG	-,114	29	-,582	,5607	-,461	,264

Tableau N°48 : les valeurs du coefficient de corrélation de 3^{éme} génération de station de Sidi Ayed.

·	Corrélation	Nombre	z	р	95% Inf.	95% Sup.
Coloration, longueur de Langue	,377	28	1,984	,0472	,005	,658
Coloration, Tomentum	,194	29	1,004	,3156	-,185	,524
Coloration, Poids de reine	,381	29	2,045	,0409	,017	,656
Coloration, Poids de l'OD	,247	28	1,261	,2073	-,139	,568
Coloration, Poids de l'OG	,025	29	,126	,8996	-,345	,388
Coloration, Diamétre de S	,060	27	,293	,7693	-,328	,430
Coloration, Nbr des O d'OD	-,256	28	-1,307	,1913	-,574	,130
Coloration, Nbr des O d'OG	-,168	29	-,863	,3882	-,503	,212
longueur de Langue, Tomentum	,609	28	3,538	,0004	,305	,800
longueur de Langue, Poids de reine	,625	28	3,667	,0002	,329	,809
longueur de Langue, Poids de l'OD	,528	27	2,880	,0040	,185	,756
longueur de Langue, Poids de l'OG	,526	28	2,924	,0035	,190	,752
longueur de Langue, Diamétre de S	,144	26	,694	,4875	-,258	,503
longueur de Langue, Nbr des O d'OD	-,554	27	-3,060	,0022	-,772	-,221
longueur de Langue, Nbr des O d'OG	-,713	28	-4,466	<,0001	-,858	-,463
Tomentum, Poids de reine	,444	29	2,432	,0150	,092	,697
Tomentum, Poids de l'OD	,262	28	1,339	,1805	-,124	,578
Tomentum, Poids de l'OG	,254	29	1,324	,1855	-,124	,568
Tomentum, Diamétre de S	,322	27	1,635	,1021	-,066	,625
Tomentum, Nbr des O d'OD	-,480	28	-2,618	,0088	-,724	-,131
Tomentum, Nbr des O d'OG	-,624	29	-3,731	,0002	-,806	-,334
Poids de reine, Poids de l'OD	,373	28	1,960	,0500	-4,405E-5	,655
Poids de reine, Poids de l'OG	,538	29	3,064	,0022	,213	,755
Poids de reine, Diamétre de S	,241	27	1,206	,2278	-,153	,569
Poids de reine, Nbr des O d'OD	-,471	28	-2,558	,0105	-,718	-,119
Poids de reine, Nbr des O d'OG	-,437	29	-2,392	,0168	-,693	-,084
Poids de l'OD, Poids de l'OG	,416	28	2,216	,0267	,051	,683
Poids de l'OD, Diamétre de S	-,220	26	-1,070	,2844	-,559	,183
Poids de l'OD, Nbr des O d'OD	,039	28	,194	,8459	-,339	,406
Poids de l'OD, Nbr des O d'OG	-,375	28	-1,973	,0484	-,657	-,003
Poids de l'OG, Diamétre de S	-,173	27	-,857	,3916	-,519	,221
Poids de l'OG, Nbr des O d'OD	-,299	28	-1,540	,1235	-,604	,084
Poids de l'OG, Nbr des O d'OG	-,248	29	-1,291	,1969	-,563	,131
Diamétre de S, Nbr des O d'OD	-,187	26	-,909	,3633	-,536	,216
Diamétre de S, Nbr des O d'OG	-,137	27	-,674	,5002	-,491	,257
Nbr des O d'OD, Nbr des O d'OG	,588	28	3,375	,0007	,276	,788

Tableau N°49 : les valeurs du coefficient de corrélation des trois générations de station de Sidi Ayed

Matrice de corrélation

	IC A/B	Coloration	longueur de Langue	Tomentum	Pilosité
IC A/B	1,000	,123	-,102	-,097	,251
Coloration	,123	1,000	-,022	,093	,039
longueur de Langue	-,102	-,022	1,000	,387	,055
Tomentum	-,097	,093	,387	1,000	,153
Pilosité	,251	,039	,055	,153	1,000
Poids de reine	-,036	,329	,095	,183	,073
Poids de l'OD	,068	,239	,272	,249	,062
Poids de l'OG	-,174	-,067	,311	,159	,001
Diamétre de l'OD	,328	,065	-,310	-,064	,348
Diamétre de l'OG	,192	,020	-,356	-,207	,280
Diamétre de S	,086	,193	-,023	,229	-,082
Nbr des O d'OD	-,062	-,065	-,407	-,183	-,135
Nbr des O d'OG	-,234	-,133	-,356	-,281	-,129

Tableau N°50 : les valeurs du coefficient de corrélation de 1^{ier} génération de station de Chiffa.

Coloration, longueur de Langue
Coloration, Tomentum
Coloration, Pilosité
Coloration, Poids de reine
Coloration, Poids de l'OD
Coloration, Diamétre de l'OD
Coloration, Nbr des O d'OD
longueur de Langue, Tomentum
longueur de Langue, Pilosité
longueur de Langue, Poids de reine
longueur de Langue, Poids de l'OD
longueur de Langue, Diamétre de l'OD
longueur de Langue, Nbr des O d'OD
Tomentum, Pilosité
Tomentum, Poids de reine
Tomentum, Poids de l'OD
Tomentum, Diamétre de l'OD
Tomentum, Nbr des O d'OD
Pilosité, Poids de reine
Pilosité, Poids de l'OD
Pilosité, Diamétre de l'OD
Pilosité, Nbr des O d'OD
Poids de reine, Poids de l'OD
Poids de reine, Diamétre de l'OD
Poids de reine, Nbr des O d'OD
Poids de l'OD, Diamétre de l'OD
Poids de l'OD, Nbr des O d'OD
Diamétre de l'OD, Nbr des O d'OD

Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
-,118	30	-,618	,5368	-,459	,253
,171	30	,897	,3695	-,202	,500
,336	30	1,817	,0692	-,027	,621
,263	30	1,397	,1625	-,108	,569
,516	30	2,970	,0030	,192	,739
,131	30	,683	,4945	-,241	,469
-,023	30	-,120	,9048	-,380	,340
-,102	30	-,531	,5952	-,446	,268
-,531	30	-3,073	,0021	-,748	-,211
,013	30	,067	,9465	-,349	,371
-,130	30	-,682	,4955	-,469	,241
,031	30	,163	,8706	-,333	,387
-,356	30	-1,932	,0533	-,635	,005
-,183	30	-,960	,3369	-,509	,190
,378	30	2,068	,0387	,021	,650
,164	30	,860	,3899	-,209	,495
,440	30	2,452	,0142	,094	,691
-,069	30	-,359	,7196	-,419	,299
,011	30	,056	,9554	-,351	,370
,353	30	1,918	,0552	-,008	,633
-,177	30	-,930	,3522	-,505	,196
,212	30	1,116	,2642	-,161	,531
,354	30	1,921	,0548	-,008	,633
,128	30	,669	,5036	-,244	,467
,115	30	,600	,5488	-,256	,456
,458	30	2,571	,0101	,117	,702
,389	30	2,132	,0330	,033	,657
,332	30	1,792	,0732	-,032	,618

Tableau N°51: les valeurs du coefficient de corrélation de 2^{éme} génération de station de Chiffa

Correlation theorique = 0	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
IC A/B, Coloration	-,085	30	-,441	,6590	-,432	,284
IC A/B, longueur de Langue	-,138	30	-,723	,4700	-,475	,234
IC A/B, Pilosité	-,155	30	-,812	,4170	-,488	,217
IC A/B, Poids de reine	,040	30	,209	,8341	-,325	,395
IC A/B, Poids de l'OD	-,241	30	-1,276	,2020	-,553	,131
IC A/B, Poids de l'OG	-,297	30	-1,589	,1121	-,593	,071
IC A/B, Diamétre de l'OD	,039	30	,205	,8376	-,325	,394
IC A/B, Diamétre de l'OG	-,183	30	-,960	,3370	-,509	,190
IC A/B, Nbr des O d'OG	-,363	30	-1,976	,0482	-,640	-,003
Coloration, longueur de Langue	,360	30	1,957	,0503	-,001	,637
Coloration, Pilosité	,088	30	,456	,6485	-,282	,434
Coloration, Poids de reine	,760	30	5,181	<,0001	,551	,880
Coloration, Poids de l'OD	,518	30	2,979	,0029	,194	,740
Coloration, Poids de l'OG	,611	30	3,691	,0002	,321	,796
Coloration, Diamétre de l'OD	,410	30	2,266	,0235	,059	,671
Coloration, Diamétre de l'OG	,118	30	,618	,5369	-,253	,459
Coloration, Nbr des O d'OG	,093	30	,485	,6273	-,276	,439
longueur de Langue, Pilosité	,444	30	2,482	,0131	,100	,694
longueur de Langue, Poids de reine	,252	30	1,338	,1810	-,119	,561
longueur de Langue, Poids de l'OD	,150	30	,785	,4322	-,222	,484
longueur de Langue, Poids de l'OG	,128	30	,667	,5045	-,244	,467
longueur de Langue, Diamétre de l'OD	,218	30	1,152	,2493	-,154	,536
longueur de Langue, Diamétre de l'OG	,371	30	2,026	,0427	,013	,645
longueur de Langue, Nbr des O d'OG	,155	30	,810	,4178	-,218	,488
Pilosité, Poids de reine	,094	30	,492	,6225	-,275	,440
Pilosité, Poids de l'OD	,308	30	1,656	,0977	-,058	,602
Pilosité, Poids de l'OG	,347	30	1,882	,0598	-,015	,629
Pilosité, Diamétre de l'OD	,331	30	1,787	,0739	-,033	,618
Pilosité, Diamétre de l'OG	,572	30	3,381	,0007	,267	,773
Pilosité, Nbr des O d'OG	-,044	30	-,230	,8180	-,398	,321
Poids de reine, Poids de l'OD	,467	30	2,633	,0085	,129	,708
Poids de reine, Poids de l'OG	,660	30	4,123	<,0001	,394	,824
Poids de reine, Diamétre de l'OD	,357	30	1,939	,0525	-,004	,635
Poids de reine, Diamétre de l'OG	,155	30	,811	,4172	-,218	,488
Poids de reine, Nbr des O d'OG	,077	30	,399	,6898	-,292	,425
Poids de l'OD, Poids de l'OG	,690	30	4,408	<,0001	,439	,841
Poids de l'OD, Diamétre de l'OD	,238	30	1,260	,2078	-,134	,551
Poids de l'OD, Diamétre de l'OG	,372	30	2,030	,0423	,014	,646
Poids de l'OD, Nbr des O d'OG	,071	30	,372	,7101	-,297	,421
Poids de l'OG, Diamétre de l'OD	,393	30	2,160	,0308	,038	,660
Poids de l'OG, Diamétre de l'OG	,420	30	2,328	,0199	,071	,678
Poids de l'OG, Nbr des O d'OG	,279	30	1,491	,1361	-,090	,581
Diamétre de l'OD, Diamétre de l'OG	,519	30	2,990	,0028	,196	,741
Diamétre de l'OD, Nbr des O d'OG	-,077	30	-,401	,6885	-,426	,291
Diamétre de l'OG, Nbr des O d'OG	,070	30	,366	,7142	-,297	,420
,	,		, , ,	,	,=-,	, :=0

Tableau N°52: les valeurs du coefficient de corrélation de 3^{ème} génération de la station de Chiffa

Coefficient de corrélation Corrélation théorique = 0

longueur de Langue, Coloration longueur de Langue, Poids de reine longueur de Langue, Diamétre de S longueur de Langue, Nbr des O d'OD Coloration, Poids de reine Coloration, Diamétre de S Coloration, Nbr des O d'OD Poids de reine, Diamétre de S Poids de reine, Nbr des O d'OD Diamétre de S, Nbr des O d'OD

_	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
	,073	30	,378	,7056	-,295	,422
	,247	30	1,309	,1906	-,125	,557
	,076	28	,380	,7041	-,306	,437
	-,422	30	-2,337	,0194	-,679	-,072
	,310	30	1,667	,0956	-,056	,603
	,335	28	1,742	,0815	-,044	,629
	-,091	30	-,475	,6348	-,437	,278
	,020	28	,101	,9194	-,356	,390
	-,260	30	-1,380	,1676	-,567	,111
	,135	28	,680	,4964	-,251	,484

Tableau N°53: Les valeurs du coefficient de corrélation des trois générations de la station de Chiffa

Coefficient de corrélation Corrélation théorique = 0

Coloration, longueur de Langue Coloration, Poids de reine Coloration, Poids de l'OD Coloration, Poids de l'OG Coloration, Diamétre de l'OD Coloration, Nbr des O d'OD longueur de Langue, Poids de reine longueur de Langue, Poids de l'OD longueur de Langue, Poids de l'OG longueur de Langue, Diamétre de l'OD longueur de Langue, Nbr des O d'OD Poids de reine, Poids de l'OD Poids de reine, Poids de l'OG Poids de reine, Diamétre de l'OD Poids de reine, Nbr des O d'OD Poids de l'OD, Poids de l'OG Poids de l'OD, Diamétre de l'OD Poids de l'OD, Nbr des O d'OD Poids de l'OG, Diamétre de l'OD Poids de l'OG, Nbr des O d'OD

Diamétre de l'OD, Nbr des O d'OD

_	Corrélation	Nombre	z	р	95% Inf.	95% Sup.
	,174	90	1,636	,1019	-,035	,367
	,417	90	4,142	<,0001	,230	,575
	,547	90	5,734	<,0001	,384	,678
	,411	90	4,078	<,0001	,223	,570
	,312	90	3,014	,0026	,113	,488
	-,013	90	-,118	,9061	-,219	,195
	,238	90	2,261	,0238	,032	,424
	,106	90	,995	,3199	-,103	,307
	,080,	90	,748	,4542	-,129	,282
) [,066	90	,616	,5380	-,143	,269
	-,297	90	-2,860	,0042	-,475	-,096
	,402	90	3,975	<,0001	,213	,562
	,362	90	3,532	,0004	,167	,529
	,114	90	1,064	,2873	-,096	,313
	-,072	90	-,673	,5009	-,275	,137
	,541	90	5,653	<,0001	,376	,673
	,323	90	3,124	,0018	,124	,497
	,275	90	2,628	,0086	,071	,456
	,285	90	2,738	,0062	,083	,465
	,164	90	1,541	,1234	-,045	,359
	,139	90	1,303	,1927	-,070	,336

Tableau N°54 : les valeurs de coefficient de corrélation de 1^{ier} génération des deux stations

	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
IC A/B, Coloration	-,091	57	-,672	,5018	-,344	,174
IC A/B, longueur de Langue	,071	57	,524	,6002	-,193	,326
IC A/B, Pilosité	,458	57	3,637	,0003	,224	,642
IC A/B, Poids de reine	-,334	57	-2,554	,0106	-,547	-,081
IC A/B, Poids de l'OD	,069	57	,508	,6117	-,195	,324
IC A/B, Nbr des O d'OD	-,188	57	-1,400	,1614	-,428	,076
Coloration, longueur de Langue	,079	57	,582	,5608	-,185	,333
Coloration, Pilosité	,080,	57	,592	,5542	-,184	,334
Coloration, Poids de reine	,293	57	2,217	,0266	,035	,514
Coloration, Poids de l'OD	,318	57	2,419	,0156	,062	,534
Coloration, Nbr des O d'OD	,042	57	,311	,7561	-,221	,300
longueur de Langue, Pilosité	-,143	57	-1,059	,2898	-,389	,122
longueur de Langue, Poids de reine	,084	57	,620	,5354	-,180	,337
longueur de Langue, Poids de l'OD	,044	57	,321	,7478	-,219	,301
longueur de Langue, Nbr des O d'OD	-,370	57	-2,855	,0043	-,575	-,121
Pilosité, Poids de reine	-,342	57	-2,619	,0088	-,553	-,089
Pilosité, Poids de l'OD	,196	57	1,460	,1443	-,068	,434
Pilosité, Nbr des O d'OD	-,150	57	-1,109	,2674	-,395	,115
Poids de reine, Poids de l'OD	,121	57	,890	,3732	-,145	,370
Poids de reine, Nbr des O d'OD	,273	57	2,061	,0393	,014	,498
Poids de l'OD, Nbr des O d'OD	,180	57	1,336	,1814	-,085	,421

▼ Tableau N°55: les valeurs du coefficient de corrélation de 2ème génération des deux stations

	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
Coloration, longueur de Langue	-,058	63	-,450	,6527	-,301	,193
Coloration, Poids de reine	,543	62	4,678	<,0001	,340	,698
Coloration, Poids de l'OD	,343	62	2,749	,0060	,102	,546
Coloration, Poids de l'OG	,284	62	2,242	,0250	,037	,498
Coloration, Diamétre de l'OD	,382	63	3,115	,0018	,148	,575
Coloration, Diamétre de l'OG	,301	62	2,384	,0171	,055	,512
Coloration, Nbr des O d'OG	,277	62	2,182	,0291	,029	,492
Coloration, Nbr des O d'OD	,240	63	1,899	,0576	-,008	,461
longueur de Langue, Poids de reine	-,088	62	-,681	,4960	-,331	,165
longueur de Langue, Poids de l'OD	,262	62	2,057	,0397	,013	,480
longueur de Langue, Poids de l'OG	,305	62	2,423	,0154	,060	,516
longueur de Langue, Diamétre de l'OD	-,417	63	-3,440	,0006	-,603	-,189
longueur de Langue, Diamétre de l'OG	-,196	62	-1,527	,1268	-,425	,056
longueur de Langue, Nbr des O d'OG	-,480	62	-4,020	<,0001	-,652	-,262
longueur de Langue, Nbr des O d'OD	-,445	63	-3,709	,0002	-,624	-,222
Poids de reine, Poids de l'OD	,344	61	2,731	,0063	,101	,548
Poids de reine, Poids de l'OG	,325	61	2,571	,0101	,080,	,533
Poids de reine, Diamétre de l'OD	,284	62	2,242	,0249	,037	,498
Poids de reine, Diamétre de l'OG	,349	61	2,772	,0056	,106	,552
Poids de reine, Nbr des O d'OG	,340	61	2,695	,0070	,096	,545
Poids de reine, Nbr des O d'OD	,190	62	1,481	,1385	-,062	,420
Poids de l'OD, Poids de l'OG	,354	61	2,819	,0048	,112	,556
Poids de l'OD, Diamétre de l'OD	,071	62	,545	,5856	-,182	,315
Poids de l'OD, Diamétre de l'OG	,198	61	1,525	,1274	-,057	,428
Poids de l'OD, Nbr des O d'OG	-,143	61	-1,100	,2712	-,382	,112
Poids de l'OD, Nbr des O d'OD	,126	62	,976	,3289	-,127	,365
Poids de l'OG, Diamétre de l'OD	-,116	62	-,893	,3717	-,355	,138
Poids de l'OG, Diamétre de l'OG	,239	62	1,872	,0613	-,012	,461
Poids de l'OG, Nbr des O d'OG	-,044	62	-,341	,7328	-,291	,208
Poids de l'OG, Nbr des O d'OD	-,041	62	-,314	,7539	-,288	,211
Diamétre de l'OD, Diamétre de l'OG	,522	62	4,446	<,0001	,313	,683
Diamétre de l'OD, Nbr des O d'OG	,385	62	3,118	,0018	,150	,579
Diamétre de l'OD, Nbr des O d'OD	,453	63	3,788	,0002	,232	,630
Diamétre de l'OG, Nbr des O d'OG	,382	62	3,087	,0020	,146	,576
Diamétre de l'OG, Nbr des O d'OD	,310	62	2,460	,0139	,065	,519
Nbr des O d'OG, Nbr des O d'OD	,612	62	5,466	<,0001	,427	,747

Tableau N°56: les valeurs du coefficient de corrélation de 3^{ème} génération des deux stations

CA/B, Coloration	Correlation theorique = 0	0 (1.6)				050/ 1.6	050/ 0
C.A/B, longueur de Langue	10 4 /5 0 1	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
IC A/B, Tomentum 0.057 59 4.26 .6703 .202 .308 IC A/B, Poids de reine -1,132 59 9.993 3209 .375 ,129 IC A/B, Poids de l'OD 062 58 461 .6445 315 ,199 IC A/B, Diamétre de S 033 59 245 .8066 286 .225 IC A/B, Nbr des O d'OD .276 58 2.099 .9358 .019 .499 IC A/B, Nbr des O d'OG .088 59 .658 .5104 -,172 .336 Coloration, Iongueur de Langue .413 58 3,254 .0011 .173 .606 Coloration, Tomentum .279 59 2,141 .0323 .024 .499 Coloration, Droids de rione .293 59 2,257 .0240 .044 .511 Coloration, Poids de l'OG .117 59 .882 .3779 .143 .963 Coloration, Nor des O d'OG .4415 58 -3,552	·						
IC A/B, Poids de reine -,132 59 -,993 ,3209 -,375 ,129 IC A/B, Poids de l'OD -,062 58 4,461 ,345 ,199 IC A/B, Droids de l'OG -,033 59 -,245 ,8066 -,286 ,225 IC A/B, Nbr des O d'OD 2,76 58 2,099 ,0358 ,019 ,499 IC A/B, Nbr des O d'OG ,088 59 ,658 5,104 -,172 ,336 Coloration, Tomentum ,279 59 2,141 ,0323 ,024 ,499 Coloration, Poids de reine ,293 59 2,257 ,0240 ,040 ,511 Coloration, Poids de rione ,293 59 2,257 ,0240 ,040 ,511 Coloration, Poids de rione ,293 59 2,257 ,0240 ,040 ,511 Coloration, Diamétre de S ,266 55 1,887 ,0592 ,010 ,488 Coloration, Nor des O d'OG ,440 58 3,552 ,0004				-			
IC A/B, Poids de l'OD -,062 58 -,461 .6445 -,315 .199 IC A/B, Poids de l'OG -,033 59 -,246 .8066 -,286 .225 IC A/B, Diamétre de S -,107 55 -,778 .4366 -,362 .162 IC A/B, Nbr des O d'OG .088 59 .658 .5104 -,172 .336 Coloration, Jongueur de Langue .413 58 3,254 .0011 .173 .606 Coloration, Poids de reine .293 59 2,257 .0240 .040 .511 Coloration, Poids de l'OD .358 58 2,774 .0055 .109 .564 Coloration, Diamétre de S .256 55 1,887 .0592 -,010 .488 Coloration, Nor des O d'OD -,445 58 3,552 .0004 .631 -,211 Coloration, Nor des O d'OD -,445 58 3,552 .0004 .631 -,211 Coloration, Nor des O d'OD -,445 58	·						
IC A/B, Poids de l'OG -,033 59 -,245 .8066 -,286 .225 IC A/B, Damétre de S -,107 55 5,778 .4366 .,362 .162 IC A/B, Nbr des O d'OD ,276 58 2,099 ,0358 ,019 ,499 Coloration, brids de o d'OG ,088 59 ,658 ,5104 ,172 ,336 Coloration, longueur de Langue ,413 58 3,254 ,0011 ,173 ,606 Coloration, Poids de reine ,2293 59 2,277 ,00240 ,0440 ,511 Coloration, Poids de l'OG ,117 59 ,882 ,3779 ,143 ,363 Coloration, Diamétre de S ,256 55 1,887 ,0052 ,010 ,488 Coloration, Nbr des O d'OB ,445 58 3,552 ,0004 ,631 ,211 Coloration, Nbr des O d'OB ,445 58 3,589 ,0001 ,378 ,728 Coloration, Nbr des O d'OB ,445 58	·						
CA/B, Diamétre de S	·				-		
IC A/B, Nbr des O d'OD .276 58 2,099 .0358 .019 .499 IC A/B, Nbr des O d'OG .088 59 .658 .5104 172 .336 Coloration, longueur de Langue .413 58 3,254 .0011 .173 .606 Coloration, Poids de reine .293 59 2,257 .0240 .040 .511 Coloration, Poids de l'OG .117 59 .882 .3779 -,143 .363 Coloration, Diamétre de S .256 .55 1,887 .0592 -,010 ,484 Coloration, Nbr des O d'OD -,445 58 3,552 .0004 -,631 -,211 Coloration, Nbr des O d'OG -,404 58 3,589 .0001 .375 .728 Iongueur de Langue, Tomentum .578 58 4,888 ,0001 .375 .728 Iongueur de Langue, Poids de reine .449 58 3,589 .0001 .374 .694 Iongueur de Langue, Poids de rion .504	·					·	
CA/B, Nbr des O d'OG	·						
Coloration, longueur de Langue A113 58 3,254 0,0011 0,173 0,606	,	,276		2,099	-		
Coloration, Tomentum ,279 59 2,141 ,0323 ,024 ,499 Coloration, Poids de reine ,293 59 2,257 ,0240 ,040 ,511 Coloration, Poids de l'OG ,358 58 2,774 ,0055 ,109 ,564 Coloration, Diamétre de S ,256 55 1,887 ,0592 -,010 ,488 Coloration, Nbr des O d'OD -,445 58 3,552 ,0004 ,631 -,211 Coloration, Nbr des O d'OG -,400 59 -3,169 ,0015 -,595 -,160 Iongueur de Langue, Poids de reine ,449 58 3,589 ,0003 ,216 ,634 Iongueur de Langue, Poids de l'OG ,500 58 4,070 <,0001	·			•		-,172	,336
Coloration, Poids de reine .293 59 2,257 .0240 .040 .551 Coloration, Poids de l'OD .358 58 2,774 .0055 .109 .564 Coloration, Poids de l'OG .117 59 .882 .3779 .143 .363 Coloration, Nor des O d'OD .445 58 3.552 .0004 .631 .211 Coloration, Nor des O d'OG .440 59 -3,169 .0015 .595 .160 Iongueur de Langue, Poids de reine .449 58 3,552 .0004 .631 .211 Longueur de Langue, Poids de reine .449 58 3,559 .0001 .378 .728 Iongueur de Langue, Poids de l'OG .500 58 4,070 <,0001			58	•		,173	-
Coloration, Poids de l'OD ,358 58 2,774 ,0055 ,109 ,564 Coloration, Poids de l'OG ,117 59 ,882 ,3779 ,143 ,363 Coloration, Diamétre de S ,266 55 1,887 ,0592 -,010 ,488 Coloration, Nbr des O d'OD -,445 58 -3,552 ,0004 -,631 -,211 Coloration, Nbr des O d'OG -,400 59 -3,169 ,0015 -,595 -,160 Iongueur de Langue, Tomentum ,578 58 4,888 <,0001	Coloration, Tomentum	,279	59	2,141	,0323	,024	,499
Coloration, Poids de l'OG Coloration, Diamétre de S Coloration, Diamétre de S Coloration, Nbr des O d'OD Coloration, Nbr des O d'OD Coloration, Nbr des O d'OC Coloratic Nbr des O d'OC Co	Coloration, Poids de reine		59	2,257	,0240	,040	,511
Coloration, Diamétre de S Coloration, Nor des O d'OD Coloration, Nor des O d'OD Coloration, Nor des O d'OD Coloration, Nor des O d'OG Coloration, Nor des O d'OD Coloration, Nor des O d'OG Coloration, Nor des O	Coloration, Poids de l'OD	,358	58	2,774	,0055	,109	,564
Coloration, Nbr des O d'OD Coloration, Nbr des O d'OG Coloration, Nbr des O d'OB Coloration, Nbr des O	Coloration, Poids de l'OG	,117	59	,882	,3779	-,143	,363
Coloration, Nbr des O d'OG -,400 59 -3,169 ,0015 -,595 -,160 Iongueur de Langue, Tomentum ,578 58 4,888 <,0001	Coloration, Diamétre de S	,256	55	1,887	,0592	-,010	,488
Iongueur de Langue, Tomentum	Coloration, Nbr des O d'OD	-,445	58	-3,552	,0004	-,631	-,211
Iongueur de Langue, Poids de reine ,449 58 3,589 ,0003 ,216 ,634 Iongueur de Langue, Poids de l'OD ,534 57 4,378 <,0001 ,318 ,698 Iongueur de Langue, Poids de l'OG ,500 58 4,070 <,0001 ,277 ,671 Iongueur de Langue, Diamétre de S ,207 54 1,499 ,1340 -,065 ,450 Iongueur de Langue, Nbr des O d'OD -,594 57 -5,021 <,0001 -,740 -,394 Iongueur de Langue, Nbr des O d'OG -,604 58 -5,186 <,0001 -,746 -,409 Tomentum, Poids de reine ,213 59 1,619 ,1054 -,046 ,445 Tomentum, Poids de l'OD ,319 58 2,452 ,0142 ,066 ,533 Tomentum, Diamétre de S ,347 55 2,608 ,0091 ,090 ,560 Tomentum, Nbr des O d'OG -,568 59 -4,819 <,0001 -,719 -,364 Poids de reine, Poids de l'OD ,276 58 2,099 ,0359 ,019 ,498 Poids de reine, Diamétre de S ,120 55 ,870 ,3843 -,150 ,374 Poids de reine, Diamétre de S ,120 55 ,870 ,3843 -,150 ,374 Poids de reine, Nbr des O d'OD -,305 58 2,339 ,0193 -,522 -,051 Poids de riene, Nbr des O d'OG ,449 59 3,641 ,0003 ,223 ,638 Poids de riene, Nbr des O d'OG -,137 59 -1,029 ,3033 -,380 ,124 Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OD, Nbr des O d'OD -,349 58 -,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OD -,349 58 -2,229 ,0258 -,523 -,037 Diamétre de S, Nbr des O d'OD -,294 54 -2,2163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OD -,294 54 -2,2163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OD -,294 54 -2,2163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OD -,294 54 -2,2163 ,0306 -,521 -,028	Coloration, Nbr des O d'OG	-,400	59	-3,169	,0015	-,595	-,160
Iongueur de Langue, Poids de l'OD ,534 57	longueur de Langue, Tomentum	,578	58	4,888	<,0001	,375	,728
Iongueur de Langue, Poids de l'OG 5.500 5.8 4,070 <,0001 ,277 ,671 Iongueur de Langue, Diamétre de S ,207 5.4 1,499 ,1340 -,065 ,450 Iongueur de Langue, Nbr des O d'OD -,594 57 -5,021 <,0001 -,740 -,394 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OG -,604 5.8 -5,186 <,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OD -,604 5.8 -,568 5.9 1,619 1,054 -,046 -,409 Iongueur de Langue, Nbr des O d'OD -,305 5.8 -,248 -,0001 -,746 -,409 Iongueur de Langue, Nbr des O d'OD -,305 5.8 -,2339 .0091 -,006 -,568 Iongueur de Langue, Nbr des O d'OD -,472 5.8 -,3803 .0014 -,046 -,533 Iongueur de Langue, Nbr des O d'OD -,472 5.8 -,3803 .0014 -,046 -,533 Iongueur de Langue, Nbr des O d'OD -,472 5.8 -,3803 .0014 -,046 -,568 -,523 -,051 Iongueur de Langue, Nbr des O d'OD -,472 5.8 -,4819 -,0001 -,740 -,446 -,241 .0003 -,223 .638 Iongueur de Langue, Nbr des O d'OD -,472 5.8 -,4819 -,4000 -,448 .042 Iongueur de Langue, Nbr des O d'OD -,472 5.9 -,1646 .0997 -,448 .042 Iongueur de Langue, Nbr des O d'OD -,294 5.4 -,2163 .0306 -,521 -,028 Iongueur de Langue, Nbr des O d'OD -,294 5.4 -,2163 .0306 -,521 -,028 Iongueur de Langue, Nbr des O d'OD -,300 5.5 -,229 .0258 -,523 -,037 Iongue	longueur de Langue, Poids de reine	,449	58	3,589	,0003	,216	,634
Longueur de Langue, Diamétre de S .207 54 1,499 .1340 065 .450 Longueur de Langue, Nbr des O d'OD 594 57 .5,021 0001 740 394 Longueur de Langue, Nbr des O d'OG 604 58 5,186 0001 746 409 Tomentum, Poids de reine .213 59 1,619 .1054 046 445 Tomentum, Poids de l'OD 319 58 2,452 .0142 066 533 Tomentum, Poids de l'OG 250 59 1,913 0558 006 476 Tomentum, Diamétre de S 347 55 2,608 0091 090 560 Tomentum, Nbr des O d'OD 472 58 3,803 0001 719 364 Poids de reine, Poids de l'OD 276 588	longueur de Langue, Poids de l'OD	,534	57	4,378	<,0001	,318	,698
longueur de Langue, Nbr des O d'OD longueur de Langue, Nbr des O d'OG longueur de Langue, Nbr des O d'OG Tomentum, Poids de reine ,213	longueur de Langue, Poids de l'OG	,500	58	4,070	<,0001	,277	,671
Iongueur de Langue, Nbr des O d'OG	longueur de Langue, Diamétre de S	,207	54	1,499	,1340	-,065	,450
Tomentum, Poids de reine 213 59 1,619 1,1054 -,046 ,445	longueur de Langue, Nbr des O d'OD	-,594	57	-5,021	<,0001	-,740	-,394
Tomentum, Poids de l'OD 319 58 2,452 ,0142 ,066 ,533 Tomentum, Poids de l'OG ,250 59 1,913 ,0558 -,006 ,476 Tomentum, Diamétre de S ,347 55 2,608 ,0091 ,090 ,560 Tomentum, Nbr des O d'OD -,472 58 -3,803 ,0001 -,651 -,243 Tomentum, Nbr des O d'OG -,568 59 -4,819 -,0001 -,719 -,364 Poids de reine, Poids de l'OD ,276 58 2,099 ,0359 ,019 ,498 Poids de reine, Poids de l'OG ,449 59 3,617 ,0003 ,218 ,632 Poids de reine, Nbr des O d'OD -,305 58 -2,339 ,0193 -,522 -,051 Poids de reine, Nbr des O d'OG -,137 59 -1,029 ,3033 -,380 ,124 Poids de l'OD, Poids de l'OG ,455 58 3,641 ,0003 ,223 ,638 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OG, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Nbr des O d'OG -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	longueur de Langue, Nbr des O d'OG	-,604	58	-5,186	<,0001	-,746	-,409
Tomentum, Poids de l'OG Tomentum, Diamétre de S Tomentum, Diamétre de S Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OG	Tomentum, Poids de reine	,213	59	1,619	,1054	-,046	,445
Tomentum, Diamétre de S Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'OD Tomentum, Nbr des O d'OG Tomentum, Nbr des O d'	Tomentum, Poids de l'OD	,319	58	2,452	,0142	,066	,533
Tomentum, Nbr des O d'OD -,472	Tomentum, Poids de l'OG	,250	59	1,913	,0558	-,006	,476
Tomentum, Nbr des O d'OG -,568 59 -4,819 <,0001 -,719 -,364 Poids de reine, Poids de l'OD ,276 58 2,099 ,0359 ,019 ,498 Poids de reine, Poids de l'OG ,449 59 3,617 ,0003 ,218 ,632 Poids de reine, Diamétre de S ,120 55 ,870 ,3843 -,150 ,374 Poids de reine, Nbr des O d'OD -,305 58 -2,339 ,0193 -,522 -,051 Poids de reine, Nbr des O d'OG -,137 59 -1,029 ,3033 -,380 ,124 Poids de l'OD, Poids de l'OG ,455 58 3,641 ,0003 ,223 ,638 Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD<	Tomentum, Diamétre de S	,347	55	2,608	,0091	,090	,560
Poids de reine, Poids de l'OD ,276 58 2,099 ,0359 ,019 ,498 Poids de reine, Poids de l'OG ,449 59 3,617 ,0003 ,218 ,632 Poids de reine, Diamétre de S ,120 55 ,870 ,3843 -,150 ,374 Poids de reine, Nbr des O d'OD -,305 58 -2,339 ,0193 -,522 -,051 Poids de reine, Nbr des O d'OG -,137 59 -1,029 ,3033 -,380 ,124 Poids de l'OD, Poids de l'OG ,455 58 3,641 ,0003 ,223 ,638 Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OG, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Nbr des O d'OG -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des	Tomentum, Nbr des O d'OD	-,472	58	-3,803	,0001	-,651	-,243
Poids de reine, Poids de l'OG ,449 59 3,617 ,0003 ,218 ,632 Poids de reine, Diamétre de S ,120 55 ,870 ,3843 -,150 ,374 Poids de reine, Nbr des O d'OD -,305 58 -2,339 ,0193 -,522 -,051 Poids de reine, Nbr des O d'OG -,137 59 -1,029 ,3033 -,380 ,124 Poids de l'OD, Poids de l'OG ,455 58 3,641 ,0003 ,223 ,638 Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OG, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OD -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr d	Tomentum, Nbr des O d'OG	-,568	59	-4,819	<,0001	-,719	-,364
Poids de reine, Diamétre de S ,120 55 ,870 ,3843 -,150 ,374 Poids de reine, Nbr des O d'OD -,305 58 -2,339 ,0193 -,522 -,051 Poids de reine, Nbr des O d'OG -,137 59 -1,029 ,3033 -,380 ,124 Poids de l'OD, Poids de l'OG ,455 58 3,641 ,0003 ,223 ,638 Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OG, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr	Poids de reine, Poids de l'OD	,276	58	2,099	,0359	,019	,498
Poids de reine, Nbr des O d'OD -,305 58 -2,339 ,0193 -,522 -,051 Poids de reine, Nbr des O d'OG -,137 59 -1,029 ,3033 -,380 ,124 Poids de l'OD, Poids de l'OG ,455 58 3,641 ,0003 ,223 ,638 Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OD, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OG -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S,	Poids de reine, Poids de l'OG	,449	59	3,617	,0003	,218	,632
Poids de reine, Nbr des O d'OG Poids de l'OD, Poids de l'OG Poids de l'OD, Diamétre de S Poids de l'OD, Nbr des O d'OD Poids de l'OG, Diamétre de S Poids de l'OG, Nbr des O d'OG Poids de l'OG, Nbr des O d'OG Poids de l'OG, Nbr des O d'OD Poids de l'OG, Nbr des O d'OG	Poids de reine, Diamétre de S	,120	55	,870	,3843	-,150	,374
Poids de l'OD, Poids de l'OG ,455 58 3,641 ,0003 ,223 ,638 Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OD, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de reine, Nbr des O d'OD	-,305	58	-2,339	,0193	-,522	-,051
Poids de l'OD, Diamétre de S -,034 54 -,241 ,8094 -,299 ,236 Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OD, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de reine, Nbr des O d'OG	-,137	59	-1,029	,3033	-,380	,124
Poids de l'OD, Nbr des O d'OD -,198 58 -1,487 ,1370 -,434 ,064 Poids de l'OD, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de l'OD, Poids de l'OG	,455	58	3,641	,0003	,223	,638
Poids de l'OD, Nbr des O d'OG -,461 58 -3,699 ,0002 -,643 -,230 Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de l'OD, Diamétre de S	-,034	54	-,241	,8094	-,299	,236
Poids de l'OG, Diamétre de S -,102 55 -,737 ,4609 -,358 ,168 Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de l'OD, Nbr des O d'OD	-,198	58	-1,487	,1370	-,434	,064
Poids de l'OG, Nbr des O d'OD -,349 58 -2,705 ,0068 -,557 -,100 Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de l'OD, Nbr des O d'OG	-,461	58	-3,699	,0002	-,643	-,230
Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de l'OG, Diamétre de S	-,102	55	-,737	,4609	-,358	,168
Poids de l'OG, Nbr des O d'OG -,217 59 -1,646 ,0997 -,448 ,042 Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037	Poids de l'OG, Nbr des O d'OD	-,349	58	-2,705	,0068	-,557	-,100
Diamétre de S, Nbr des O d'OD -,294 54 -2,163 ,0306 -,521 -,028 Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037		-,217	59	-1,646			
Diamétre de S, Nbr des O d'OG -,300 55 -2,229 ,0258 -,523 -,037			54				
	Diamétre de S, Nbr des O d'OG	-,300	55	-2,229	,0258		
		,700	58	6,427	<,0001		

▼ Tableau N°57 : les valeurs du coefficient de corrélation de 3^{ème} génération des deux stations

Correlation theorique = 0	Corrélation	Nombre	Z	р	95% Inf.	95% Sup.
IC A/B, Coloration	-,013	179	-,174	,8620	-,159	,134
IC A/B, Longueur de Langue	-,093	178	-1,239	,2152	-,237	,054
IC A/B, Tomentum	-,066	179	-,880	,3789	-,211	,081
IC A/B, Pilosité	,078	179	1,035	,3005	-,070	,222
IC A/B, Poids de reine	-,049	178	-,645	,5189	-,194	,099
IC A/B, Diamétre de l'OD	,163	178	2,169	,0301	,016	,302
IC A/B, Diamétre de l'OG	,007	178	,092	,9263	-,140	,154
IC A/B, Nbr des O d'OD	,079	178	1,046	,2955	-,069	,223
IC A/B, Nbr des O d'OG	-,111	178	-1,471	,1414	-,254	,037
Coloration, Longueur de Langue	,054	178	,714	,4753	-,094	,199
Coloration, Tomentum	,097	179	1,289	,1975	-,051	,240
Coloration, Pilosité	-,011	179	-,148	,8824	-,158	,136
Coloration, Poids de reine	,392	178	5,478	<,0001	,260	,510
Coloration, Diamétre de l'OD	,176	178	2,348	,0189	,029	,315
Coloration, Diamétre de l'OG	,037	178	,484	,6286	-,111	,183
Coloration, Nbr des O d'OD	,034	178	,452	,6515	-,114	,180
Coloration, Nbr des O d'OG	-,071	178	-,940	,3472	-,216	,077
Longueur de Langue, Tomentum	,239	178	3,226	,0013	,095	,373
Longueur de Langue, Pilosité	,077	178	1,018	,3086	-,071	,221
Longueur de Langue, Poids de reine	,042	177	,560	,5758	-,106	,189
Longueur de Langue, Diamétre de l'OD	-,256	177	-3,450	,0006	-,389	-,112
Longueur de Langue, Diamétre de l'OG	-,180	177	-2,396	,0166	-,319	-,033
Longueur de Langue, Nbr des O d'OD	-,415	177	-5,827	<,0001	-,530	-,285
Longueur de Langue, Nbr des O d'OG	-,358	177	-4,944	<,0001	-,480	-,222
Tomentum, Pilosité	,060	179	,797	,4252	-,087	,205
Tomentum, Poids de reine	,118	178	1,574	,1154	-,029	,261
Tomentum, Diamétre de l'OD	,033	178	,440	,6598	-,114	,179
Tomentum, Diamétre de l'OG	-,093	178	-1,237	,2159	-,237	,055
Tomentum, Nbr des O d'OD	-,095	178	-1,260	,2077	-,239	,053
Tomentum, Nbr des O d'OG	-,210	178	-2,825	,0047	-,347	-,065
Pilosité, Poids de reine	-,092	178	-1,219	,2230	-,236	,056
Pilosité, Diamétre de l'OD	,090	178	1,199	,2305	-,057	,234
Pilosité, Diamétre de l'OG	,151	178	2,015	,0440	,004	,292
Pilosité, Nbr des O d'OD	-,055	178	-,727	,4670	-,200	,093
Pilosité, Nbr des O d'OG	-,132	178	-1,758	,0787	-,274	,015
Poids de reine, Diamétre de l'OD	,166	177	2,215	,0267	,019	,306
Poids de reine, Diamétre de l'OG	,076	177	1,009	,3127	-,072	,221
Poids de reine, Nbr des O d'OD	,112	177	1,485	,1375	-,036	,255
Poids de reine, Nbr des O d'OG	,080,	177	1,058	,2899	-,068	,225
Diamétre de l'OD, Diamétre de l'OG	,511	177	7,445	<,0001	,393	,613
Diamétre de l'OD, Nbr des O d'OD	,465	178	6,669	<,0001	,342	,573
Diamétre de l'OD, Nbr des O d'OG	,144	177	1,908	,0564	-,004	,285
Diamétre de l'OG, Nbr des O d'OD	,214	177	2,864	,0042	,068	,350
Diamétre de l'OG, Nbr des O d'OG	,268	178	3,635	,0003	,126	,399
Nbr des O d'OD, Nbr des O d'OG	,645	177	10,121	<,0001	,550	,724