
Ministry of Higher Education and Scientific Research

UNIVERSITY OF SAAD DAHLAB BLIDA
Faculty of Sciences

Department of Mathematics

MASTER‘s THESIS
In mathematics

Option: Statistical and Stochastic Modeling

Time series prediction with a combined GARCH (Generalized
Autoregressive Conditional Heteroskedasticity) and ANN (Artificial

Neural Network) Model

Realised by
MEROUCHE Abdelkader LANDJAS Fatiha

Jury Members :

President : Mr. REDOUNE BOUDJEMAA M.C.A U.S.D.BLIDA 1
Examiner : Mr. MOHAMED BOUKHARI M.A.A U.S.D.BLIDA 1
Supervisor : Mr. REDOUANE FRIHI M.C.B U.S.D.BLIDA 1

4 July 2024

Dedicace

I dedicate this thesis to...

My Almighty Allah, the Most Gracious, who guided me to the right path, enlightened my
way, and helped me overcome all the hardships I encountered throughout this study.

To my dear parents, who always picked me up at the right time and encouraged me to
embark on every adventure, especially this one. To my sister, brother, and aunts who were
with me throughout my academic journey, guiding me with the light of hope and support,
encouraging me to keep moving forward.

To all the people who gave me the strength to continue.

FATIHA LANDJAS

Dedicace

I dedicate this thesis to...

My Almighty Allah, the Most Gracious, who guided me to the right path, enlightened my
way, and helped me overcome all the hardships I encountered throughout this study.

To my dear parents, who always picked me up at the right time and encouraged me to
embark on every adventure, especially this one. To my sisters, brothers, and their children who
were with me throughout my academic journey, guiding me with the light of hope and support,
encouraging me to keep moving forward.

To all the people who gave me the strength to continue.

ABDELKADER MEROUCHE

Acknowledgements

First and foremost, all praise is due to Allah, the Almighty, who granted us the ability to
stand here with our dissertation.

We would like to thank Mr. REDOUANE FRIHI for his guidance, assistance, patience, and
continuous support, which have played a crucial role in shaping this research.

We are also grateful to Mr. REDOUNE BOUDJEMAA and Mr. MOHAMED BOUKHARI
for the honor of accepting to preside over and review this work.

Finally, we thank all the people who contributed in any way to the development of this
work.

�
	
jÊÓ

GARCH h.
	
XAÖ

	
ß Ð@Y

	
j
�
J�AK.

�
éJ
ËAÖÏ @

�
HAJ. Ê

�
®
�
JËAK.

ñJ.

	
�
�
JË @ h.

	
XAÖ

	
ß Èñk

�
é�@PX

�
ékðQ£

B@ è

	
Yë ú

	
¯ ÐY

�
®
	
K

Õæ

J

�
®
�
JË

�
éJ

�
®J

�
®k

�
éJ
ËAÓ

�
HA

	
KAJ
K. úÎ« AëA

	
J
�
®J.£ Õç

�
' . AÒî

	
DJ
K.

	á�
j. î
�
DË @ð (ANN) �

éJ
«A
	
J¢�B@

�
éJ
�.�ªË@

�
HA¾J.

�
�Ë@ð

. Aî

E @X

@

. øQ
	
k

B@ h.

	
XAÒ

	
JË AK.

�
é
	
KPA

�
®Ó

�
éK

ñJ.

	
�
�
JË @ é

�
J
�
¯X Õæ

J

�
®
�
Kð GARCH(1, 1) h.

	
XñÖ

	
ß Z @X

@ ÉJ
Êm

�
�
' úÍ@

�
é�@PYË@

	
¬Yî

�
E

Z@X

B@

	á�
�m�
�
'

	
¬YîE.

�
é
�
®K. A�Ë@ h.

	
XAÒ

	
JË @ 	áÓ

�
èXYª

�
JÓ

�
HA

	
KñºÓ

	á�
K. ©Òm.
�'

 A

�	
JJ
j. ë A

�
g.
	
XñÖ

	
ß ÐY

�
®
	
K , @

�Q�

	
g

@ð

. Q�.»

@ É¾

�
��. ø

ñJ.

	
�
�
JË @

Ð @Y
	
j
�
J�@ ÈC

	
g 	áÓ

�
éJ
ËAÖÏ @

�
HAJ. Ê

�
®
�
JËAK.

ñJ.

	
�
�
JË @

�
é
�
¯X

	á�
�m�
�
' �
éJ

	
®J
ºË

�
�Ô«

@ Ñê

	
¯ Õç'
Y

�
®
�
K ú

	
¯

�
é�@PYË@ è

	
Yë ÑëA�

�
�

.
�
é¢Ê

�
J
	
jÖÏ @ð

�
éÓY

�
®
�
JÖÏ @ h.

	
XAÒ

	
JË @

; l .
�

'A
�
J
	
JË @

	á�
K.
	á�
j. î

�
DË @ ; (ANN) �

éJ
«A
	
J¢�B@

�
éJ
�.�ªË@

�
HA¾J.

�
�Ë@ ; GARCH : �

éJ
kA
�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

; ANN Tanh ; ANN Linear ; GARCH(1, 1) h.
	
XñÖ

	
ß ;

ñJ.
	
�
�
JË @

�
é
�
¯X ; �

éJ
ËAÖÏ @
�
HAJ. Ê

�
®
�
JËAK.

ñJ.

	
�
�
JË @

.
�
éÓY

�
®
�
JÖÏ @

�
éJ
ËAÖÏ @ h.

	
XAÒ

	
JË @ ; �

é
	
JJ
j. êË @ h.

	
XAÒ

	
JË @

Abstract

GARCH models, artificial neural networks (ANN), and their hybridization.Then we applied
it to real financial data to evaluate its performance.
The study aims to analyze the performance of the GARCH(1, 1) model and assess its predictive
accuracy compared to other models.
Finally, we propose a hybrid model that combines multiple components of the previous models
to further enhance predictive performance.
This study contributes to a deeper understanding of how to improve the accuracy of financial
volatility forecasts by using advanced and hybrid models.

Keywords: GARCH; Artificial Neural Networks (ANN); Model Hybridization; Financial
Volatility Forecasting; Predictive Accuracy; GARCH(1, 1) Model; ANN Linear; ANN Tanh;
Hybrid Models; Advanced Financial Models.

Résumé

Dans cette mémoire, nous présentons une étude sur les modèles de prévision de la volatilité
financière en utilisant les modèles GARCH, les réseaux de neurones artificiels (ANN) et leur
hybridation.Ensuite, nous l’avons appliqué à des données financières réelles pour évaluer ses
performances.
L’étude vise à analyser la performance du modèle GARCH(1, 1) et à évaluer sa précision pré-
dictive par rapport aux autres modèles.
Enfin, nous proposons un modèle hybride qui combine plusieurs composants des modèles précé-
dents afin d’améliorer davantage la performance prédictive.
Cette étude contribue à une compréhension plus approfondie de la manière d’améliorer la pré-
cision des prévisions de volatilité financière en utilisant des modèles avancés et hybrides.

Mots clés: GARCH; Réseaux de Neurones Artificiels (ANN); Hybridation des Modèles;
Prévision de la Volatilité Financière: Précision Prédictive; Modèle GARCH(1,1); ANN Linéaire;
ANN Tanh; Modèles Hybrides; Modèles Financiers Avancés.

Contents

List of Figures 10

List of Tables 12

Abbreviations 13

General Introduction 14

1 GARCH Models 16
1.1 Introduction . 16
1.2 Autoregressive Conditional Heteroskedasticity (ARCH) Model 16

1.2.1 ARCH(1) . 17
1.3 Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Model . 18

1.3.1 GARCH(1,1) model . 18
1.4 Classification of GARCH processes . 20

1.4.1 Strong GARCH . 20
1.4.2 Semi-strong GARCH . 21
1.4.3 Weak GARCH . 21

1.5 Types of GARCH processes . 22
1.5.1 EGARCH model . 22
1.5.2 TGARCH model . 22
1.5.3 GJR-GARCH model . 23

1.6 Properties of GARCH processes . 23
1.7 Parameter Estimation of GARCH Model . 24

1.7.1 Yule-Walker estimator . 24
1.7.2 Maximum likelihood estimator . 26

1.8 Information Criteria . 29
1.8.1 Akaike Information Criterion (AIC) . 29
1.8.2 Schwarz (Bayesian) Information Criterion (BIC) 29
1.8.3 Final Prediction Error (FPE) . 29

1.9 Point Forecasts . 29
1.10 Forecast Intervals . 29
1.11 Evaluating Forecast Accuracy . 30

1.11.1 Metrics . 30
1.11.2 Visualizing Forecasts . 30

1.12 Case Studies and Practical Examples . 30
1.12.1 Real-world Applications of GARCH . 30
1.12.2 Industry-specific Forecasting Examples 31

1.13 Advantages and disadvantages of GARCH Model 31
1.13.1 Advantages . 31
1.13.2 Disadvantages . 31

7

2 Artificial Neural Networks 32
2.1 Introduction . 32

2.1.1 Historical . 32
2.2 Biological Neurons . 33

2.2.1 Characteristics . 33
2.2.2 Structure . 33

2.3 Mathematical modeling of the biological neuron 34
2.3.1 The artificial neuron . 34
2.3.2 Principles of an artificial neuron . 34

2.4 Activation functions . 35
2.4.1 Threshold (Hard Limit) Transfer Function 35
2.4.2 Symmetric Hard Limit Transfer Function 36
2.4.3 Linear Transfer Function . 36
2.4.4 Logistic (Log-Sigmoid) Transfer Function 37
2.4.5 Hyperbolic Tangent Transfer Function 37
2.4.6 Saturating Linear Transfer Function . 37
2.4.7 Symmetric Saturating Linear Transfer Function 38
2.4.8 Positive Linear Transfer Function . 38
2.4.9 Radial Basis Transfer Function . 39

2.5 Network Architectures . 39
2.5.1 Multilayer network . 39
2.5.2 Local connection network . 40
2.5.3 Recurrent Neural Network (RNN) . 40
2.5.4 Fully connected network . 40

2.6 Neural Network Learning . 41
2.6.1 The type of learning in neural networks 41
2.6.2 Learning rule . 42

2.7 Perceptron . 44
2.7.1 Perceptron with a single layer . 44
2.7.2 Multilayer Perceptron (MLP) . 44

2.8 Radial Basis Function (RBF) . 45
2.8.1 Training of RBF networks . 46

2.9 Training . 46
2.10 Advantages and disadvantages of neural networks 48

2.10.1 Advantages . 48
2.10.2 Disadvantages . 49

3 Hybrid Model GARCH-ANN 50
3.1 Introduction . 50
3.2 Methodology . 50
3.3 Hybrid Models . 51

3.3.1 Type I : ANN-GARCH model . 51
3.3.2 Type II : GARCH-ANN model . 51

3.4 Forecast Encompassing . 52
3.5 Advantages and disadvantages of Hybrid Models 54

3.5.1 Advantages . 54
3.5.2 Disadvantages . 54

8

4 Application 55
4.1 Introduction . 55
4.2 Simulation . 55

4.2.1 Steps for GARCH Model Simulations . 55
4.2.2 GARCH(1,0) or ARCH(1) . 56
4.2.3 Effect of Sample Size . 59
4.2.4 Comparison between ARCH and GARCH 59
4.2.5 Accuracy and Stability . 59

4.3 Overall Conclusion . 60
4.3.1 GARCH(1,1) . 60

4.4 Artificial Neural Network . 63
4.5 Hybrid Models . 64
4.6 Conclusion . 65
4.7 Real Data . 65

4.7.1 GARCH(p,q) . 67
4.7.2 Artificial Neural Network (ANN) model 69
4.7.3 Hybrid models . 70

4.8 Results . 71
4.8.1 Results and Analysis . 71

4.9 Overall Conclusion . 71

General Conclusion 72

Bibliographic References 73

Appendix 75

9

List of Figures

1.1 Conditional variance and estimated returns example GARCH(1, 1) 19

2.1 Schematic representation of a biological neuron. 33
2.2 Model of an artificial neuron . 34
2.3 Nonlinear model of a neuron. 35
2.4 Heaviside function . 36
2.5 Sign function . 36
2.6 Linear Function . 36
2.7 Sigmoid function . 37
2.8 Hyperbolic Tangent . 37
2.9 Saturation linear . 38
2.10 Saturated symmetric linear . 38
2.11 Positive linear . 38
2.12 Radial Basis Function . 39
2.13 Classical multilayer network. 39
2.14 Locally connected network. 40
2.15 Recurrently connected network. 40
2.16 Fully connected network. 41
2.17 The block diagram of supervised learning in a neural network. 42
2.18 Block diagram of unsupervised learning in a neural network. 42
2.19 Perceptron with a single layer . 44
2.20 Multilayer Perceptron. 45
2.21 Radial Basis Function (RBF) neural networks. 45

3.1 Flowchart of the modelling process. 53

4.1 The curves represent the average of daily returns groups. 56
4.2 The curves represent the average implied volatility across ARCH(1) groups. . . 57
4.3 The curves represent the values of the µ coefficient 57
4.4 The curves represent the values of the ω coefficient 57
4.5 The curves represent the values of the α coefficient 58
4.6 The curves represent the forecast results of the ARCH(1) model 58
4.7 The curves represent the forecast results of the GARCH(1, 1) model. 59
4.8 The curves represent the average of daily returns groups. 60
4.9 The curves represent the average implied volatility across GARCH(1, 1) groups. 60
4.10 The curves represent the values of the µ coefficient 61
4.11 The curves represent the values of the ω coefficient 61
4.12 The curves represent the values of the α coefficient 61
4.13 The curves represent the values of the β coefficient 62
4.14 The curves represent the forecast results of the GARCH(1, 1) model 63
4.15 The curves represent the forecast results of the ARCH(1) model 63

10

4.16 The curves represent the forecast results of the ANN linear model 64
4.17 The curves represent the forecast results of the ANN tanh model 64
4.18 The curves represent the forecast results of the hybrid model. 65
4.19 The curve represents the closing prices. 66
4.20 The curve of the implied volatility. 67
4.21 The curve of daily returns groups. 67
4.22 The plot represents the forecast results of the GARCH(1, 1) model. 69
4.23 The plot represents the forecast results of the ANN linear model 69
4.24 The plot represents the forecast results of the ANN model with tanh as a transfer

function . 70
4.25 The plot represents the forecast results of the hybrid model 70

11

List of Tables

2.1 The analogy between biological neurons and artificial neurons. 35

4.1 The tables represent the average parameters. 58
4.2 The tables represent the mean squared error (MSE) for the models. 58
4.3 The table represents the root mean square error (RMSE) for the ARCH(1) model. 59
4.4 The table represents the root mean square error (RMSE) for the GARCH(1, 1)

model. 59
4.5 The tables represent the average parameter. 62
4.6 The tables represent the mean squared error (MSE) for the models. 62
4.7 The table represents the root mean square error (RMSE) for the GARCH(1, 1)

model. 63
4.8 The table represents the root mean square error (RMSE) for the ARCH(1) model. 63
4.9 The table represents the root mean square error (RMSE) for the ANN linear model 64
4.10 The table represents the root mean square error (RMSE) for the ANN tanh model 64
4.11 the table represents the root mean square erro (RMSE) for the hybrid model . . 65
4.12 AIC . 68
4.13 BIC . 68
4.14 FPE . 68
4.15 The table represents the root mean square error (RMSE) for each model. 71

12

Abbreviations

GARCH Gneralized Autoregressive Conditional Heteroskedasticity.
ARCH Autoregressive Conditional Heteroskedasticity.
EGARCH Exponential Generalized Autoregressive Conditional Heteroskedasticity.
TGARCH Threshold GARCH.
GJR-GARCH Glosten-Jagannathan-Runkle Generalized Autoregressive Conditional

Heteroskedasticity.
AIC Akaike Information Criterion.
BIC Schwarz (Bayesian) Information Criterion.
MAE Mean Absolute Error.
MSE Mean Squared Error.
RMSE Root Mean Squared Error.
MAPE Mean Absolute Percentage Error.
VaR Value-at-Risk.
ANN Artificial neural network.
RBF Radial Basis Function.
RNN Recurrent Neural Network.
MLP Multilayer Perceptron.

13

General Introduction

Time series are sequences of data collected or recorded at successive time points at regular
intervals. These data represent values of a specific variable over time, and the time intervals
can vary, such as hours, days, weeks, months, or years.
Time series are characterized by the presence of temporal dependency between successive val-
ues, making their analysis different from that of non-time-dependent data.

Time series analysis involves several key concepts. A trend refers to a long-term increase
or decrease in the data, indicating the overall direction of the series over a period of time.
Seasonality encompasses regular, repeating fluctuations in the data that occur at specific in-
tervals, such as daily, monthly, or yearly cycles. Cyclical patterns are fluctuations that happen
at irregular intervals, often influenced by economic conditions and other external factors.
Lastly, noise represents random variations that do not follow any discernible pattern, adding a
layer of unpredictability to the data.

Time series analysis is vital for forecasting in various fields. It helps predict stock prices,
interest rates, and economic indicators in economics and finance.
In business and marketing, it aids in sales forecasting, demand planning, and inventory manage-
ment. It is used to predict weather conditions and climate change patterns, track and predict
disease outbreaks, and monitor patients in healthcare.
The energy sector utilizes it for forecasting electricity demand and optimizing power generation,
while in manufacturing, it supports predictive maintenance and production schedule optimiza-
tion.

Time series analysis offers several advantages. It utilizes historical data to predict future
trends, enhancing the reliability of forecasts.
By identifying underlying patterns in the data, it helps in understanding the behavior of the
system being studied.
Additionally, it detects unusual patterns or outliers, which may indicate significant changes or
events. These capabilities make time series analysis a powerful tool for various applications.

Time series analysis utilizes several techniques for effective data analysis and forecasting.
Moving averages and exponential smoothing smooth data to identify trends, with the latter
giving more weight to recent observations.
The ARIMA model combines autoregression, differencing, and moving averages. Seasonal De-
composition of Time Series (STL) breaks down data into trend, seasonal, and residual compo-
nents. Fourier Transform analyzes frequency components, while machine learning models like
neural networks and RNNs handle complex forecasting.

14

These techniques collectively enhance the understanding and prediction of time series data.
Time series analysis has diverse applications across various fields. In economics, it aids in

understanding economic cycles and making policy decisions based on economic forecasts. In
finance, investment strategies and risk management rely heavily on time series forecasts of stock
prices and market trends.
In supply chain management, it drives efficient inventory management and logistics planning
through accurate demand forecasting.
In healthcare, time series analysis supports predictive analytics in patient care, resource allo-
cation, and managing public health crises.
Additionally, in energy management, it optimizes the use of renewable energy sources and man-
ages the supply-demand balance in power grids.

In Chapter, one of our study on time series analysis, we delve into the application of linear
models, specifically the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
model.
This model is adept at capturing volatility patterns and persistence within financial and eco-
nomic data, providing valuable insights into market dynamics.
In Chapter Two, we transition to exploring the capabilities of Artificial Neural Network (ANN)
models. These nonlinear models offer flexibility in capturing intricate relationships within time
series data, making them particularly useful for forecasting in complex and dynamic environ-
ments.
Moving to Chapter Three, we introduce hybrid models that combine the strengths of both
GARCH and ANN models. These hybrid approaches leverage the predictive power of neural
networks while incorporating the volatility dynamics captured by GARCH, resulting in en-
hanced forecasting accuracy.
Finally, in Chapter Four, we apply these models to real financial data. By utilizing the GARCH
model, ANN model, and hybrid model, we conduct comprehensive forecasting analyses, pro-
viding actionable insights and predictive capabilities for decision-making in financial markets.
Through this structured approach, our study aims to showcase the efficacy of these modeling
techniques and their practical applications in real-world scenarios.

In concluding our study, we summarize our insights on time series analysis, encompassing
the application of linear models such as GARCH, the adaptability of ANN models, and the
effectiveness of hybrid approaches.

15

Chapter 1

GARCH Models

1.1 Introduction
In the world of financial markets, understanding how prices and returns change is crucial

for investors and financial analysts.
Fluctuations mean the movement and changes in financial values like stocks and currencies,
which are very important for assessing investment risks and identifying profit opportunities.
Therefore, being able to predict and understand these fluctuations is essential for successful
investment strategies.

In this context, the ARCH (Autoregressive Conditional Heteroskedasticity) model and the
GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model emerge as impor-
tant tools for analyzing financial market fluctuations.
The main goal of these models is to estimate and forecast price or return changes using past
data. Providing accurate estimates of fluctuation levels is necessary for making sound invest-
ment decisions and achieving financial goals (see,e.g., [1, 7]).

It’s important to note that while the ARCH model focuses on estimating fluctuations, the
GARCH model adds the ability to analyze different effects that may occur due to price changes.
These different effects mean that fluctuations may respond differently to unexpected losses com-
pared to unexpected gains.

Through this analysis, it becomes clear that the GARCH model plays an important role in
understanding the behavior of financial markets.
Consequently, it helps in achieving investment goals and effectively managing risks.
Introducing the GARCH model highlights the importance of understanding financial fluctua-
tions and using appropriate models to analyze and predict them (see e.g., [1, 5, 6, 7, 8]).

1.2 Autoregressive Conditional Heteroskedasticity (ARCH)
Model

The basic idea behind ARCH is to capture the time-varying volatility or heteroskedasticity
in financial returns.
In financial markets, volatility tends to cluster, meaning periods of high volatility are followed
by more periods of high volatility and vice versa. ARCH models provide a framework to model

16

this phenomenon (see, e.g, [1]).

Definition 1 The ARCH(p) model allows for generating episodes of high volatility followed by
episodes of lower volatility.

Yt = µ+ εt

Where
εt/It−1 ∼ N(0, ht)

and It = σ(Xt−s)s≤t denotes the sigma-algebra generated by the Xt−s in ARCH modeling.

ε = ηtht

ht =

√√√√ω +
p∑

i=1
αiε2

t−i

and ηt an independent white noise.

ηt ∼ N(0, 1)
αi the autoregressive coefficients.

1.2.1 ARCH(1)
Definition 2 When p = 1 the ARCH(1) model is defined according to the following formula:

εt = ηtht (1.2.1)

where the conditional variance h2
t = E[ε2

t |Ft−1] is satisfied for all t ∈ R+ et ω > 0, α1 ≥ 0,
constants given:

ht =
√
ω + α1ε2

t−1

where (ηt)t is white noise: a sequence of random variables i.i.d, centered and standardized.
It is often assumed that the variables ηt are independent of the filtration Ft−1 and that ht de-
pends on εt.

Property : The ARCH(1) model has the following properties:

• V ar(εt|Ft−1) = ω + α1ε
2
t−1 = h2

t

• V ar(εt) = ω + α1V ar(εt−1)

• E(ηt|Ft−1) = 0

17

1.3 Generalized AutoRegressive Conditional Heteroskedas-
ticity (GARCH) Model

GARCH models, introduced by (see, e.g, [1]), extend the ARCH framework by allowing for
a more complex structure of volatility dynamics.
GARCH models not only incorporate lagged squared residuals but also lagged conditional vari-
ances.

GARCH models are widely used in financial econometrics for modeling and forecasting
volatility, especially in asset pricing, risk management, and derivative pricing.
They provide a flexible and powerful framework for capturing the time-varying nature of volatil-
ity in financial markets.

Definition 3 Regarding an autoregressive model, expressed in the following format:

Yt = µ+ εt ∀t ∈ R+,

εt is a weak white noise that satisfies the property E[εt/It−1] = 0

εt = ηtht

h2
t = σ2

t = ω +
p∑

i=1
αiε

2
t−1 +

q∑
j=1

βjh
2
t−j (1.3.1)

Or ηt ∼ N(0, σ2), ηt is a weak white noise such as ω > 0, αi > 0 for i = 1, 2, ..., p and
βj > 0 for j = 1, 2, ..., q satisfying to ensure the positivity of ω +∑p

i=1 αiε
2
t−1 +∑q

j=1 βjh
2
t−j

1.3.1 GARCH(1,1) model
Empirical financial market data is often modeled using the GARCH(1,1) error model. It is

given by the equation:

Yt = µ+ εt

with εt = ηtht,

and ht =
√
ω + α1ε2

t−1 + β1h2
t−1

with ω > 0, α1 > 0 and β1 > 0 , the squares of the residuals follow an ARMA(1,1) process.

ε2
t = ω + (α1 + β1)ε2

t−1 + β1vt−1 + vt

It is stationary for ω > 0, α1 > 0, and β1 > 0 or t = ε2
t − h2

t is an innovation process for
ε2

t . Under the second-order stationarity condition, the unconditional variance of the process εt

exists and remains constant over time.

18

Figure 1.1: Conditional variance and estimated returns example GARCH(1, 1)

Given that V (εt) = E(ε2
t), it is sufficient, starting from the ARMA(1, 1) form on ε2

t , to
define the variance of the process:

V (εt) = ω

1 − (α1 + β1)

kurtosis exists if

3α2
1 + 2α1β1 + β2

1 < 1
and is given by:

Ku = E[ε4
t]

E[ε2
t]

= 3 1−(α1+β1)2

1−(α1+β1)2−2α2
1

(1.3.2)

It is always greater than three. Thus, if α1 tends towards zero, the heteroscedasticity disap-
pears and the value of kurtosis tends towards three. Finally, it can be shown that for a GARCH
process, the kurtosis is directly related to conditional heteroscedasticity.

Consider the case of kurtosis associated with the unconditional distribution in a condition-
ally Gaussian GARCH process, such that ηt ∼ N(0, 1).

In this case, the conditional moments of order 2 and 4 of the process εt are related :

E[ε4
t/It−1] = 3[E(ε2

t/It−1)]2

Indeed, it is recalled that if a centered variable Xt follows a centered normal distribution,
then

E(X4
t) = 3(V ar(Xt))2 = 3(E(X2

t))2

19

If we apply the expectation operator to both sides of the previous equation, it becomes

E(ε4
t) = E(E[ε4

t/It−1])

= 3E([E(ε2
t/It−1)]2)

≥ 3E([E(ε2
t/It−1)])2

= 3E2(ε2
t)

(1.3.3)

We can calculate the kurtosis as follows:

Ku = E[ε4
t]

E2[ε2
t]

= 3E([E(ε2
t /It−1)]2)

E2[ε2
t]

= 3E2[ε2
t]

E2[ε2
t] + 3

E2[ε2
t](E([E(ε2

t/It−1)]2) − E2[ε2
t]

= 3 + 3
E2[ε2

t](E([E(ε2
t/It−1)]2) − E2[E(ε2

t/It−1)])

= 3 + 3V ar[Eε2
t /It−1]

E2[ε2
t] > 3

(1.3.4)

The kurtosis is thus linked to a measure of conditional heteroscedasticity.

1.4 Classification of GARCH processes
Since 1985, various specifications for GARCH models have been developed, and Drost and

Nijman classified them in a paper presented at the ARCH process conference held in Paris in
June 1990.(see, e.g, [3])

1.4.1 Strong GARCH
It is said that the process is strong GARCH(p, q) in the case of a semi-strong GARCH such

that the standardized innovation vt is a strong white noise (a sequence of independent variables
with the same law) and ηt ∼ N(0, 1).
To motivate the introduction of GARCH processes, we can rewrite equation (1.3.1) using op-
erators α(.) and β(.). In this new context, these operators are defined by :

α(L) = α1L+ α2L
2 + ...+ αpLp

and
β(L) = β1L+ β2L

2 + ...+ βpLp

So, we can write:
εt = ηt

√
ω + α(L)ε2

t + β(L)h2
t

20

So, we can write: L is the lag operator.

So, we have:

h2
t = ω + α(L)ε2

t + β(L)h2
t

Similar to the ARCH model, we can express the process ε2
t as an ARMA process through

inversion, defined by the innovation:

vt = ε2
t − h2

t

vt: represents the innovation or unexpected shock at time t.
The innovation vt can be interpreted as the difference between the observed squared value ε2

t

and the expected conditional variance h2
t .

If all the roots of 1 − β(L) are outside the unit circle, then we have:

ε2
t − vt = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βj(ε2
t−j − vt−j)

Hence, we conclude that:

ε2
t = ω +

p∑
i=1

(αi + βi)ε2
t−i −

q∑
j=1

βjvt−j + vt, t ∈ Z

n = max(p, q)

With the convention: αi = 0 ∀i > p , βj = 0 ∀j > q

1.4.2 Semi-strong GARCH
When the innovation process vt and ε2

t is even assumed to be weak white noise, they call
GARCH semi-strong GARCH. The same process εt when it comes to a martingale difference
with an innovation process vt that is itself a martingale difference. The semi-strong GARCH
processes thus defined coincide well with the initial idea of Engle and Bollerslev, since it is clear
conversely that if we assume that vt is a martingale difference, we deduce that :

vt = ε2
t − h2

t

where h2
t is indeed the conditional variance of εt given past information.

1.4.3 Weak GARCH
A semi-strong GARCH is a weak GARCH, but the converse is not true.

The ARCH and GARCH processes have led to multiple studies and the development of
other conditional variance processes of autoregressive form; we will present the main ones.

It is said that (εt) is a semi-strong GARCH(p, q) process if

21

• E(εt/εt−1) = 0, t ∈ Z

• There exist constants w, αi, i = 1, ..., p and βj , j = 1, ..., q such that

σ2
t = V ar(εt/εt−1) = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j, t ∈ R+. (1.4.1)

1.5 Types of GARCH processes
Here are some common types of GARCH processes, and there are more versions and modi-

fications available to meet various modeling needs in the field of financial economics and time
series analysis.(see, e.g, [4])

1.5.1 EGARCH model
The EGARCH model introduces an additional source of nonlinearity by replacing the condi-

tional variance with its logarithm, allowing to avoid constraints on the positivity of coefficients
αi and βj. The model in which the EGARCH term is used is represented as follows:

Definition 4 A process Xt satisfies an EGARCH(p, q) representation if and only if:

Xt = εt

√
ht (1.5.1)

log(ht) = ω +
p∑

i=1
αig(εt−i) +

q∑
j=1

βj log(ht−j)

where the normalized residual zt is weak white noise and the function g(.) satisfies:

g(εt−i) = θεt−i + γ(|εt−i| − E|εt−i|)

If we set ai = θαi and bi = γαi, the conditional variance of Xt can be rewritten as:

log(ht) = ω +
p∑

i=1
aiεt−i +

p∑
i=1

bi(|εt−i| − E|εt−i|) +
q∑

j=1
βj log(ht−j) (1.5.2)

1.5.2 TGARCH model
The TGARCH (Threshold GARCH) model is a type of GARCH model that accounts for

threshold effects in volatility.
This model allows positive and negative shocks to have different impacts on the volatility of
the time series, helping to capture the asymmetric changes in financial volatility.

Definition 5 A TGARCH(p, q) process is expressed as:

Xt = εtht

h2
t = ω +∑p

i=1(α+
i X

+
t−i − α−

i X
−
t−i) +∑q

j=1 βjh
2
t−j

= ω + α+(L)X+
t − α−(L)X−

t + β(L)h2
t

22

where:

X+
t = max(Xt, 0)

X−
t = min(Xt, 0)

Since the specification is not based on a square but on the conditional standard deviation,
it is possible to remove the constraints of positivity on the coefficients.
Removing these constraints allows for the consideration of the asymmetry phenomena previ-
ously described regarding volatility.

1.5.3 GJR-GARCH model
The Glosten-Jagannathan-Runkle Generalized Autoregressive Conditional Heteroskedastic-

ity (GJR-GARCH) model is an extension of the GARCH model that accounts for the different
impacts of positive and negative shocks on volatility.
It is used to model financial time series where asymmetric volatility effects are significant.
In the GJR-GARCH model, an additional term is included to allow the impact of negative
shocks to differ from that of positive shocks, helping to capture the asymmetrical effects in
volatility.

Definition 6 The GJR-GARCH model is represented by the expression

ζ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j +

p∑
i=1

γiIt−iϵ
2
t−i (1.5.3)

where:

It−i =
1 if ϵt−i < 0

0 if ϵt−i ≥ 0

1.6 Properties of GARCH processes
The theoretical properties of GARCH processes can be inferred using the same approach

used to develop the properties of ARCH processes(see, e.g, [1]).

Proposition 1 The process εt is a white noise if E(ε2
t) < ∞.

E[εt] = E[E(εt/It−1)]
and

Cov(εt, εt−k) = E(εtεt−k)

= E[εt−kE(εt/It−1)])] = 0,∀k > 0
(1.6.1)

Proposition 2 A necessary condition for the existence of the variance of a GARCH(p, q)
process is

p∑
i=1

αi +
q∑

j=1
βj < 1

23

Remark 1 If this condition is met along with the non-negativity constraints given above, it is
also sufficient. Thus, the GARCH process is weakly stationary or second-order stationary.

In the case where the previous inequality is saturated, i.e.,

∑p
i=1 αi +∑q

j=1 βj = 1

In such a case, we say that the GARCH process is integrated, and we refer to it as an
IGARCH (Integrated GARCH) process.

Proposition 3 The process ε2
t with a GARCH(p,q) representation can be expressed as an

ARMA(max(p,q),q) process defined within an innovation.

vt = ε2
t − h2

t Such that:

ε2
t = ω +∑n

i=1(αi + βi)ε2
t +∑p

j=1 βjvt−j + vt

n = max(p, q)

With the conversion αi = 0, if i > p and βj = 0 if j > q

1.7 Parameter Estimation of GARCH Model

1.7.1 Yule-Walker estimator
Based on the representation of GARCH processes, parameter estimation can be conve-

niently carried out by utilizing existing Yule-Walker equations.
We first outline the idea of Yule-Walker estimation with the ARCH(q) model as a special case
of GARCH(p, q) where p = 0
. Consider the stationary ARCH(q) process ε̄t defined by.

σ2
t = ω + α1ε̄

2
t−1 + . . .+ αqε̄

2
t−q

whose representation in ε̄2
t is:

ε̄2
t − α1ε̄

2
t−1 − . . .− αqε̄

2
t−q = ω + ηt (1.7.1)

We will now explain the main steps in conducting the Yule-Walker estimation procedure in
greater detail:

Step 1. Transform a nonzero mean process to a zero-mean one. For a stationary process
we shall use the notation µ := E (ε̄2

t). Taking the expectation on both sides of (1.7.1), we have

µ = ω

(
1 −

q∑
i=1

αi

)−1

Now we denote ε̄2
t − µ as ε2

t to obtain a zero-mean, stationary process satisfying

24

ε2
t − α1ε

2
t−1 − . . .− αqε

2
t−q = ηt (1.7.2)

Step 2. Express ε2
t in terms of ηs, s ≤ t. then

ε2
t =

∞∑
j=0

ψjηt−j, ψ0 = 1, ψj =
q∑

k=1
αkψj−k for j ≥ 1 (1.7.3)

where ψj = 0 for j < 0.

Step 3. Derive the Yule-Walker equations. Multiplying each side of (1.7.2) by ε2
t−k, k =

0, 1, . . . , q, taking expectations and using (1.7.3) to evaluate the right-hand side of (1.7.2), we
obtain the Yule-Walker equations:

γ(k) − α1γ(k − 1) − . . .− αqγ(k − q) =
σ2, k = 0

0, 0 < k ≤ q
(1.7.4)

where γ(k) = cov
(
ε2

t , ε
2
t−k

)
and σ2 = Var (ηt).

Step 4. Solve for the Yule-Walker estimators α̂1, . . . , α̂q and σ̂2, by calculating the q + 1
linear equations (1.7.4) with sample estimates:

γ̂(k) = n−1
n∑

t=k+1

(
ε2

t − µ̂
) (
ε2

t−k − µ̂
)

(1.7.5)

where µ̂ = n−1∑n
t=1 ε

2
t .

Remark 2 Stationarity is an important part required in the Yule-Walker estimation. It is
necessary for the existence of the appropriate representation of ϵ2

t in Step 2. It also guarantees
that we can consistently estimate γ(k) in Step 4.

We extend the previous result to a more general case where p > 0. Since the steps involved
are analogous, we skip some details in the subsequent description and concentrate on the key
points.

We start with the transformation of (1.3.1) :

ε2
t −

m∑
i=1

γiε
2
t−i = ηt −

p∑
j=1

βjηt−j

We express ε2
t as ε2

t = ∑∞
j=0 ψjηt−j, where Continuing as in Step 3, we find the Yule-Walker

equations.

γ(k) − γ1γ(k − 1) − . . .− γmγ(k −m) = σ2
p∑

j=k

(−βj)ψj−k (1.7.6)

for 0 ≤ k ≤ m + p, from which the unknown coefficients can be solved with the sample
covariances.
Although the Yule-Walker estimation can be adapted to ARMA models, the corresponding equa-
tions are nonlinear in the unknown coefficients, as the following example reveals.

25

Example 1 The Yule-Walker equations obtained from (1.7.6) for k = 0, 1, 2 are:

γ̂(0) −
(
α̂1 + β̂1

)
γ̂(1) =

(
1 − α̂1β̂1

)
σ̂2

γ̂(1) −
(
α̂1 + β̂1

)
γ̂(0) = −β̂1σ̂

2

γ̂(2) −
(
α̂1 + β̂1

)
γ̂(1) = 0

Simple algebra shows that

β̂2
1 − ρ2

2 − 2ρ1ρ2 + 1
ρ2 − ρ1

β̂1 + 1 = 0, α̂1 = ρ2 − β̂1

where ρ1 := γ̂(1)/γ̂(0) and ρ2 := γ̂(2)/γ̂(1).

We solve the quadratic equation for β̂1, which would require much computing time and lead
to possible nonexistence and nonuniqueness of solution.

1.7.2 Maximum likelihood estimator
A more common approach to parameter estimation is Maximum Likelihood method. Here

we review the general estimation strategy of the technique. For a given set of observations
(x1, x2, . . . , xn) drawn from a probability distribution associated with a known density function
f parameterized by θ, the likelihood function L(θ) is

L (θ | (x1, x2, . . . , xn)) = f ((x1, x2, . . . , xn) | θ)
viewed as a function of θ with x1, x2, . . . , xn fixed. An estimator of θ is then defined as

θ̂ = arg max
θ∈Θ

L(θ) (1.7.7)

In other words, the estimator is the value of θ that maximizes the probability of the observed
sample.
For likelihood maximization one frequently uses numerical iterative methods, where a likeli-
hood function is often replaced by its natural logarithm for computational convenience, which
of course does not change the location of the maximum. Many algorithms exist for solving such
problem, here we briefly recall score algorithm:

Let θj denote the parameter estimates after the j th iteration. θj+1 is then calculated from

θj+1 = θj + J−1 (θj) ∇L (θj) (1.7.8)
with the gradient

∇L = ∂L

∂θ
(1.7.9)

and the Fisher Information matrix

J = E

(
− ∂2L

∂θ∂θT

)
(1.7.10)

26

Let us now look at the application of estimation in the case p = 0 and then, as before, we
turn to the GARCH(p, q) model with p > 0.

For the ARCH(q) model defined by σ2
t = ω+∑q

i=1 αiε
2
t−i, assuming that εt is conditionally

normally distributed, we have

P (εt | Ft−1) = 1√
2πσt

exp
{

−1
2
ε2

t

σ2
t

}

The log-likelihood function L of parameter vector θ = (ω, α1, . . . , αq)T can be written as:

L(θ) =
n∑

t=q+1
lt(θ) (1.7.11)

where:

lt(θ) = logP (εt | Ft−1)

= −1
2 log(2π) − 1

2 log σ2
t − 1

2
ε2

t

σ2
t

Therefore, the derivatives of lt are given by:

∂lt
∂θ

= 1
2σ2

t

∂σ2
t

∂θ

(
ε2

t

σ2
t

− 1
)

∂2lt
∂θ∂θT

= 1
2σ2

t

(
ε2

t

σ2
t

− 1
)

∂2σ2
t

∂θ∂θT
+ 1
σ4

t

(
1
2 − ε2

t

σ2
t

)
∂σ2

t

∂θ

∂σ2
t

∂θT

where

∂σ2
t

∂θ
=
(
1, ε2

t−1, . . . , ε
2
t−q

)T

This allows us to construct the gradient

∇L = 1
2

n∑
t=q+1

1
σ2

t

∂σ2
t

∂θ

(
ε2

t

σ2
t

− 1
)

(1.7.12)

and the Fisher Information matrix

J = 1
2

n∑
t=q+1

E

(
1
σ4

t

∂σ2
t

∂θ

∂σ2
t

∂θT

)
(1.7.13)

employed in the updating scheme (1.7.8).

Example 2 As an application, let us consider an ARCH (1) model with σ2
t = ω+α1ε

2
t−1. For

the optimization of the log-likelihood function L (ω, α1), we carry out the iterations (1.7.8) with

∇L = 1
2

n∑
t=2

1
σ2

t

(
ε2

t

σ2
t

− 1
)[

1
ε2

t−1

]

27

and

J = 1
2

n∑
t=2

E

(
1
σ4

t

)[
1 ε2

t−1
ε2

t−1 ε4
t−1

]

where E
(
σ−4

t

)
is estimated by (n− 1)−1∑n

t=2

(
ω + α1ε

2
t−1

)−2
.

Having made this introduction, we continue to the GARCH(p, q) model, which could be han-
dled in a similar way.
Under the assumption of conditionally normal distribution, we write the log-likelihood function
L with the same notation as in (1.7.11) of parameter vector θ = (ω, α1, . . . , αq, β1, . . . , βp)T .
When computing the estimator, the score-algorithm (1.7.8) is still valid with the gradient
(1.7.12) and the Fisher Information matrix (1.7.13), however, in which

∂σ2
t

∂θ
= vt +

p∑
j=1

βj

∂σ2
t−j

∂θ
(1.7.14)

where

vt =
(
1, ε2

t−1, . . . , ε
2
t−q, σ

2
t−1, . . . , σ

2
t−p

)T

The only difference from the ARCH(q) regression model is the inclusion of the recursive
part in (1.7.14).

Example 3 Now consider GARCH(1, 1) process with σ2
t = ω + α1ε

2
t−1+ β1σ

2
t−1, to estimate

the unknown coefficients θ = (ω, α1, β1)T , we use iteration (1.7.8) with J and ∇L as defined
above, where

∂σ2
t

∂θ
= vt + β1

∂σ2
t−1
∂θ

, vt =
(
1, ε2

t−1, σ
2
t−1

)T
(1.7.15)

Remark 3 From (see, e.g, [1]) it follows that, under the conditions:

E (Zt | Ft−1) = 0, E
(
Z2

t | Ft−1
)

= 1, E
(
Z4

t | Ft−1
)
< ∞ (1.7.16)

and strict stationarity of εt, the estimator θ̂ is strongly consistent and asymptotically nor-
mally distributed:

√
n(θ̂ − θ) → Np+q+1

(
0, J−1IJ−1

)
with

I = E

(
∂lt
∂θ

∂lt
∂θT

)
, J = −E

(
∂2lt
∂θ∂θT

)
Moreover replacing (1.7.16) with a stronger condition

Zt ∼ N(0, 1)
as proved in (see, e.g, [1]) that I = J , the asymptotic variance can be simplified to J−1, that

is,
√
n(θ̂ − θ) → Np+q+1

(
0, J−1

)
28

1.8 Information Criteria
Information criteria are used to compare GARCH(p, q) models with different p and q values.

Lower values indicate better models.

1.8.1 Akaike Information Criterion (AIC)

AIC(p, q) = ln(σ2) + 2(p+ q)
T

(1.8.1)

where the first term represents the model fit, while the second term is a penalty for the number
of parameters.

1.8.2 Schwarz (Bayesian) Information Criterion (BIC)

BIC(p, q) = ln(σ2) + lnT · 2(p+ q)
T

(1.8.2)

where the penalty is related to the sample size.

1.8.3 Final Prediction Error (FPE)

FPE(p) = σ2
(
n+ p

n− p

)
(1.8.3)

1.9 Point Forecasts
Point forecasts involve predicting future values using the assumed GARCH model. We can

generate forecasts for future time steps using the GARCH model.

X̂t+h|t = E(Xt+h|Xt, Xt−1, . . . , X1) (1.9.1)

Here, X̂t+h|t represents the forecasted value at time t+ h based on information available up to
time t.

1.10 Forecast Intervals
Forecast intervals provide a range within which future observations are expected to fall with

a certain probability, taking into account the uncertainty in the forecasts. The forecast interval
is typically given by:

X̂t+h|t ± z × σX̂ (1.10.1)
where z (for example, if α = 0.05, z = 1.96) is the critical value from the standard normal
distribution corresponding to the desired confidence level, and σX̂ is the standard error of the
forecast.

29

1.11 Evaluating Forecast Accuracy

1.11.1 Metrics
Evaluating the accuracy of forecasts is crucial. Common metrics include:

• Mean Absolute Error (MAE):

MAE = 1
n

n∑
i=1

|Xi − X̂i| (1.11.1)

• Mean Squared Error (MSE):

MSE = 1
n

n∑
i=1

(Xi − X̂i)2 (1.11.2)

• Root Mean Squared Error (RMSE):

RMSE =
√
MSE (1.11.3)

• Mean Absolute Percentage Error (MAPE):

MAPE = 100% · 1
n

n∑
i=1

∣∣∣∣∣Xi − X̂i

Xi

∣∣∣∣∣ (1.11.4)

1.11.2 Visualizing Forecasts
Visualizing forecasts alongside actual values can provide insights into the model’s perfor-

mance. Common visualizations include:

• Line Plots: Plotting actual vs. forecasted values over time.

• Prediction Intervals: Including confidence intervals in the plots to show the uncertainty
in forecasts.

1.12 Case Studies and Practical Examples

1.12.1 Real-world Applications of GARCH
GARCH models are widely used in various fields for time series forecasting. Examples

include:

• Stock Market Predictions: Forecasting stock prices and indices.

• Weather Forecasting: Predicting temperature, precipitation, and other weather-related
variables.

• Sales Forecasting: Predicting future sales for inventory management and planning.

30

1.12.2 Industry-specific Forecasting Examples
Different industries have specific requirements and use cases for forecasting. Some examples

include:

• Finance: Risk management, portfolio optimization, and economic forecasting.

• Retail: Demand forecasting, inventory management, and supply chain optimization.

• Healthcare: Patient admission rates, resource allocation, and disease outbreak prediction.

1.13 Advantages and disadvantages of GARCH Model

1.13.1 Advantages
The GARCH model is distinguished by its ability to model changes in volatility over time,

aiding in understanding financial market dynamics and risk management.
It is flexible in handling various volatility patterns and provides accurate forecasts of future
volatility. Models like EGARCH can capture asymmetric effects in volatility.
These models are more statistically efficient than ARCH models and are widely used in es-
timating Value-at-Risk (VaR), evaluating risks, and developing mitigation strategies.(see, e.g,
[9])

1.13.2 Disadvantages
Despite its numerous advantages, the GARCH model has some limitations. Results can be

sensitive to chosen model specifications, making it difficult to determine the optimal model.
The model struggles to accurately predict extreme events or market shocks. Estimating complex
models can be computationally intensive and time-consuming.
Additionally, GARCH models may not fully capture the complex nonlinearities present in
financial data..(see, e.g,[6])

31

Chapter 2

Artificial Neural Networks

2.1 Introduction
Artificial Neural Networks (ANN) consist of a set of tools and computational methods. They

are characterized by their ability to learn, generalize, memorize, classify, adapt, and make de-
cisions.
They are applied in various fields, such as pattern recognition, control, and robotics. In indus-
trial maintenance, neural networks are used to solve diagnostic problems through automatic
classification of signals and shapes corresponding to the different states of normal and abnormal
machine operations.
In this chapter, we present some concepts regarding the types and characteristics of artificial
neural networks(see, e.g, [10]).

2.1.1 Historical
The history of Artificial Neural Networks (ANN) spans several decades, marked by signifi-

cant milestones and advancements. Here’s a brief historical overview:
• 1940s-1950s: The foundational work on artificial neural networks began with the devel-

opment of the McCulloch-Pitts neuron model by Warren McCulloch and Walter Pitts in
1943.
In 1949, Donald Hebb introduced the concept of Hebbian learning, which laid the ground-
work for associative learning in neural networks.

• 1950s-1960s: Frank Rosenblatt developed the perceptron, a type of artificial neural
network capable of binary classification, in the late 1950s.
However, the limitations of perceptrons in solving complex problems led to a decline in
interest in neural network research during the late 1960s.

• 1980s-1990s: Neural network research experienced a resurgence in the 1980s, fueled by
advancements in computing technology and the development of new learning algorithms.
The backpropagation algorithm, proposed by Paul Werbos in 1974 and independently re-
discovered by multiple researchers in the 1980s, allowed for efficient training of multilayer
neural networks.
This period also saw the emergence of various neural network architectures and applica-
tions, leading to increased interest from both academia and industry.

• 2000s-present: The 21st century has seen significant advancements in neural network
research due to the availability of large datasets, increased computational power, and the

32

development of deep learning techniques.
Deep neural networks have achieved remarkable success in various fields and have become
a fundamental part of machine learning and artificial intelligence research, with applica-
tions in image and speech recognition, autonomous vehicles, and medical diagnosis.

Overall, the history of artificial neural networks reflects a journey of discovery, innovation,
and continuous advancement, with each milestone building upon the achievements of previous
generations of researchers.

2.2 Biological Neurons
A neuron is a cell that can transmit information to other neurons through its various

connections (synapses). The human brain is the best model of an extremely fast multifunctional
machine(see, e.g, [11]).

Figure 2.1: Schematic representation of a biological neuron.

2.2.1 Characteristics
In their general organization and biochemical system, neurons share many similarities with

other cells. Here are the characteristics of biological neurons:
• Receiving signals from neighboring neurons.

• Integrating these signals.

• Generating a nerve impulse (nerve message).

• Conducting it.

• Transmitting it to another neuron capable of receiving it.

2.2.2 Structure
A neuron consists of three parts:
• Dendrites: receive messages.

• Cell body: generates the action potential (the response).

• Axon: transmits the signal to the next cells.

• Synapse: allows cells to communicate with each other, and it also plays a role in mod-
ulating the signals that pass through the nervous system.

33

2.3 Mathematical modeling of the biological neuron

2.3.1 The artificial neuron
The first systematic study of artificial neurons came from the neuropsychiatrist McCulloch

and the logician Pitts, who were inspired by the study of biological neurons(see, e.g,[12]).

Figure 2.2: Model of an artificial neuron

It computes the weighted sum of the inputs :

Z =
∑

wixi − θ (2.3.1)

Y = f(Z) (2.3.2)

• Z : The potential of the neuron.

• Y : The output of the neuron.

• xi : The input signal i. (Inputs can be boolean, binary (0,1), bipolar (-1,1), or real).

• wi : Weight of the connection to input i.

• θ : Bias.

• f : The activation function.

2.3.2 Principles of an artificial neuron
Each artificial neuron is a basic processor. It receives a variable number of inputs from

upstream neurons or sensors comprising the machine to which it belongs.
Each input is associated with a weight representing the strength of the connection.
Each basic processor has a single output, which then branches out to feed a variable number
of downstream neurons.

34

To each connection is associated a weight.

Figure 2.3: Nonlinear model of a neuron.

There is an obvious analogy (Table2.1) with biological neurons.

Biological neurons Artificial neurons
Synapses Weighted connections

Axons Outputs
Dendrites Inputs

summation activation function
Table 2.1: The analogy between biological neurons and artificial neurons.

2.4 Activation functions
There are many possible forms for the activation function. The most common ones are(see,

e.g, [13]):

2.4.1 Threshold (Hard Limit) Transfer Function
The Heaviside function (step function, unit step function) is a discontinuous function H

that takes the value 0 for all negative real numbers and the value 1 everywhere else :

F (x) =
{

0 if x < 0
1 if x ≥ 0 (2.4.1)

35

Figure 2.4: Heaviside function

2.4.2 Symmetric Hard Limit Transfer Function
The hard limiter function is the mostly used in classification of patterns, the characteristics

of this function is shown in Figure (2.5) and its mathematical description is :

F (x) =
{

1 if x < 0
−1 if x ≥ 0 (2.4.2)

Figure 2.5: Sign function

This function is not differentiable. Therefore it cannot be used for continuation type of
applications.

2.4.3 Linear Transfer Function
The Linear function characteristics are shown in Figure (2.6) and its mathematical de-

scription is :

F (x) = x, x ∈ R (2.4.3)

Figure 2.6: Linear Function

It is differentiable and is mostly used for output nodes of the networks.

36

2.4.4 Logistic (Log-Sigmoid) Transfer Function
Logistic function is a standard sigmoid function and is defined by

F (x) = 1
1 + e−x

(2.4.4)

The derivative of F is defined by f(x) = F (x)(1 − F (x))

Figure 2.7: Sigmoid function

The log-sigmoid transfer function is commonly used in multilayer networks that are trained
using the backpropagation algorithm.

2.4.5 Hyperbolic Tangent Transfer Function
The hyperbolic tangent is a sigmoid function and is defined by

F (x) = ex − e−x

ex + e−x
(2.4.5)

The derivative f of F is defined by

f(x) = (1 − F 2(x))

Figure 2.8: Hyperbolic Tangent

Since tan(x
2)+1
2 = 1

1+e−x then using the tanh function instead of the logistic one is equivalent.
The tanh function has the advantage of being symmetrical with respect to the origin.

2.4.6 Saturating Linear Transfer Function
The saturating linear transfer function characteristics is shown in Figure (2.9) and its

mathematical description is

37

F (x) =

0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

(2.4.6)

Figure 2.9: Saturation linear

2.4.7 Symmetric Saturating Linear Transfer Function
The symmetric saturating linear transfer function characteristics is shown in Figure (2.10)

and its mathematical description is

F (x) =

−1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1

(2.4.7)

Figure 2.10: Saturated symmetric linear

2.4.8 Positive Linear Transfer Function
The positive linear transfer function characteristics is shown in Figure(2.11) and its math-

ematical description is

F (x) =
{

0 if x < 0
x if x ≥ 0 (2.4.8)

Figure 2.11: Positive linear

38

2.4.9 Radial Basis Transfer Function
The radial basis transfer function characteristics is shown in Figure(2.12) and its mathe-

matical description is

F (x) = e−x2 (2.4.9)

Figure 2.12: Radial Basis Function

2.5 Network Architectures
The connections between the neurons that make up the network describe the topology of

the model. There are several network architectures(see, e.g, [14]), including:

2.5.1 Multilayer network
Neurons are arranged in multiple layers, with connections between neurons within each layer

restricted, without any connections between neurons in the same layer, while connections occur
only with neurons in the subsequent layers.

Figure 2.13: Classical multilayer network.

39

2.5.2 Local connection network
It’s a multilayer structure. However, like the retina, it maintains a certain topological

structure.
Each neuron maintains contact with a small number of local neurons in the downstream layer.

Figure 2.14: Locally connected network.

2.5.3 Recurrent Neural Network (RNN)
These are networks in which information propagates from layer to layer with possible back-

ward feedback.

Figure 2.15: Recurrently connected network.

2.5.4 Fully connected network
This is the most general interconnection structure where each neuron is connected to every

other neuron in the network.

40

Figure 2.16: Fully connected network.

2.6 Neural Network Learning
The learning of a neural network can be defined as the phase during which its various

characteristic parameters are updated until they enable the network to best approximate the
function it is intended to perform.
Depending on the application in which the network will be integrated, the function to be ap-
proximated may be known or unknown analytically.

In most current algorithms, the variables modified during learning are the weights of the
connections.
Learning involves modifying the network weights to align the network’s response with the
examples and experience(see, e.g, [15]).

2.6.1 The type of learning in neural networks
There are two types of learning: supervised learning and unsupervised learning.

1. Supervised learning

Supervised learning involves adjusting the synaptic coefficients of the network so that the
network output corresponds to the desired output in each case.
Supervised learning is the most common type of learning. Whenever you want to adjust
your weights,

• Every time you try, the error is calculated.
• The weight is replaced by the smallest error, if there is one.

41

Figure 2.17: The block diagram of supervised learning in a neural network.

2. Unsupervised learning

There is no prior knowledge of the outputs for given inputs. In fact, it’s learning by
exploration where the learning algorithm adjusts the weights of the connections between
neurons to maximize the quality of input classification.

Figure 2.18: Block diagram of unsupervised learning in a neural network.

3. Semi-supervised learning

In this learning context, the neural network hasn’t developed a certain fundamental be-
havior yet.
The network can determine qualitative indicators (true/false) for network performance.

2.6.2 Learning rule
The purpose of learning is to modify the weight of connections between neurons.

There are several modification rules:

42

1. Hebb’s Rule

According to the results of neurobiological observation experiments: Neurons that fire
together, wire together.
The synaptic coefficients of neurons whose activities are synchronized are higher. When
two connected units are operational at the same time, the strength of the connection
increases.
The following equations can be used to model Hebb’s rule.

Hebb’s rule can be modeled by the following equations:

wij(t+ 1) = wij(t) + ∆wij (2.6.1)

∆wij = ε · xi · xj (2.6.2)

• xj: The output value of the neuron j.
• xi: The output value of the neuron i.
• ε: It is a positive constant representing the learning rate (epsilon) or decay.

2. Widrow-Hoff rule of adaline (Delta rule)

This law is also a modified version of Hebb’s law. Using the principle of error correction,
it guides some artificial neural network learning algorithms.

E = di − xi

If the output is less than the desired response, for example, the weight of the connection
should be increased, assuming that unit j is excitable (equal to 1). This rule can be
expressed as follows:

∆wij = ε(di − xi)xj (2.6.3)
with:
Output xi and input xj

di: Desired response by the human expert.

3. Learning algorithm

• Initialize weights and S-score using random (small) values.
• Present an input El = (e1, ...en) from the training set.
• For this input, compute the output sequence x.

a =
∑

(wi · ei) − s (2.6.4)

x = signe(a) :
{
if a > 0 then x = +1
if a ≤ 0 then x = −1 (2.6.5)

43

• If the output x is different from the desired output dl for this input example El, then
modify the weights:

wij(t+ 1) = ∆wij(t) + u · (xi · xj) (2.6.6)

• Once all examples in the training set (i.e., weight adjustments) are processed cor-
rectly, please return to step 2.

2.7 Perceptron
The perceptron is a model of an artificial neuron and can be considered one of the simplest

forms of artificial neural networks.
It takes several binary inputs, applies weights to these inputs, sums the provided products, and
then produces a binary output based on the result of this sum.
The perceptron is typically used for binary classification and can be trained using a supervised
learning algorithm, such as the Widrow-Hoff rule(see, e.g, [16]).

2.7.1 Perceptron with a single layer
Due to its ability to learn simple pattern recognition, this network has attracted significant

interest: it is the first of three networks that can be used with binary or continuous inputs.

Figure 2.19: Perceptron with a single layer

2.7.2 Multilayer Perceptron (MLP)
The advancement of new learning algorithms has made this network widely used, consisting

of non-recurrent networks with one or more layers of neurons between the input and output
layers.
These additional layers contain hidden units or neurons that are not directly connected to the
neurons of the input and output layers.
A perceptron with three layers including two hidden layers is illustrated in Figure2.20.

44

Figure 2.20: Multilayer Perceptron.

2.8 Radial Basis Function (RBF)
The Radial Basis Function (RBF) network is a model of connectivity that is easy to imple-

ment and understand. The RBF network typically consists of three layers:

• The input layer, which is a linear function that simply introduces the input signal into
the hidden layer.

• The hidden layer, which is a processing unit that executes basic radial functions.

• The output layer, which is the neural output layer with a linear activation function.

RBF neural networks are widely used in areas such as function approximation, pattern classi-
fication, and prediction. They are particularly effective in representing nonlinear relationships
and robust against noise in data(see, e.g, [14]).

Figure 2.21: Radial Basis Function (RBF) neural networks.

45

ŷ =
l∑

i=1
wie

(− v2
σ2) (2.8.1)

vj(x) = ||cj − x|| =
√√√√ n∑

i=−1
(xj − cji)2 (2.8.2)

v(x) The distance between the centers of the neurons and their input vectors

σ = v√
2s

(2.8.3)

σ: The standard deviation.

2.8.1 Training of RBF networks
• Calculate the center cj using the classification algorithm.

• Calculate the dispersion coefficient using the method of mean distances.

• Calculate wij using the least squares method.

2.9 Training
In artificial neural networks (ANNs), optimizing the loss function involves finding the set

of parameters (weights and biases) that minimize the difference between the predicted outputs
of the network and the actual target values in the training data.

Commonly used loss functions in neural networks include:

• The mean squared error (MSE) for regression tasks

L(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2,

• Binary cross-entropy for binary classification tasks

L(y, ŷ) = − 1
n

n∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)],

• Categorical cross-entropy for multi-class classification tasks, Sparse categorical
cross-entropy for multi-class classification with integer labels

L(y, ŷ) = − 1
n

n∑
i=1

C∑
c=1

yi,c log(ŷi,c),

• the Kullback-Leibler divergence for measuring the difference between probability
distributions

L(P∥Q) =
∑

i

P (i) log
(
P (i)
Q(i)

)
.

Here’s a step-by-step guide on how loss function optimization is typically performed in ANNs:

46

1. Choose a Loss Function: Select an appropriate loss function based on the nature of the
problem you’re trying to solve. Common loss functions include mean squared error (MSE)
for regression tasks, binary cross-entropy for binary classification tasks, and categorical
cross-entropy for multi-class classification tasks.

2. Choose an Optimization Algorithm: Select an optimization algorithm to minimize
the loss function. Popular optimization algorithms include gradient descent, stochastic
gradient descent (SGD), Adam, RMSprop, and Adagrad. Each algorithm has its own
advantages and is suitable for different scenarios.

3. Compute Gradients: Compute the gradients of the loss function with the respect to the
network parameters (weights and biases). This is typically done using backpropagation,
which efficiently computes the gradients of the loss function with the respect to each
parameter in the network.

4. Update Parameters: Use the computed gradients to update the parameters of the
network in the direction that minimizes the loss function. The magnitude of the update
is determined by the learning rate, which controls how much the parameters are adjusted
in each iteration.

5. Repeat: Repeat steps 3 and 4 for multiple iterations (epochs) or until a stopping cri-
terion is met. This could be a maximum number of epochs, reaching a certain level of
performance on a validation set, or convergence of the loss function.

6. Evaluate Performance: After training, evaluate the performance of the trained model
on a separate test dataset to assess its generalization ability. This involves computing
metrics such as accuracy, precision, recall, or mean squared error, depending on the task.

7. Adjust Hyperparameters: Fine-tune hyperparameters such as learning rate, batch
size, and network architecture based on the performance on the validation set. This
process may involve experimenting with different values for these hyperparameters to
find the optimal configuration.

8. Regularization: Optionally, apply regularization techniques such as L1 or L2 regular-
ization, dropout, or early stopping to prevent overfitting and improve the generalization
performance of the model. By iteratively following these steps, the loss function of the
ANN is optimized, leading to a model that accurately predicts the target values for new
input data

Algorithms for updating hyperparameters (weights and biases) in neural networks, here are
some commonly used ones:

1. Gradient Descent: Update weights by moving in the opposite direction of the gradient of
the loss function.

wt+1 = wt − α∇L(wt)
Stochastic Gradient Descent (SGD): Update weights using the gradient of the loss function
computed on a subset of the training data (mini-batch).

wt+1 = wt − α∇L(wt, xi, yi)

2. Adam: An adaptive learning rate optimization algorithm that computes adaptive learning
rates for each parameter.

• mt+1 = β1mt + (1 − β1)∇L(wt)

47

• vt+1 = β2vt + (1 − β2)(∇L(wt))2

• m̂t+1 = mt+1
1−βt+1

1

• v̂t+1 = vt+1
1−βt+1

2

• wt+1 = wt − α m̂t+1√
v̂t+1+ϵ

3. RMSprop: Another adaptive learning rate optimization algorithm that divides the learn-
ing rate by an exponentially decaying average of squared gradients.

vt+1 = βvt + (1 − β)(∇L(wt))2

wt+1 = wt − α
√
vt+1 + ϵ

∇L(wt)

4. Adagrad: An adaptive learning rate optimization algorithm that scales the learning rate
for each parameter based on the historical gradients.

Gt+1 = Gt + (∇L(wt))2wt+1 = wt − α√
Gt+1 + ϵ

∇L(wt)

5. L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno): A quasi-Newton opti-
mization algorithm that approximates the inverse Hessian matrix.

6. Each of these algorithms has its advantages and is suitable for different types of neural
network architectures and problem domains. The choice of algorithm often depends
on factors such as the dataset size, network architecture, computational resources, and
convergence speed.

Where
1. wt represents the weight vector at time step t.

2. α denotes the learning rate.

3. ∇L(wt) is the gradient of the loss function L with respect to the weights wt.

4. β1 and β2 are exponential decay rates.

5. mt and vt are moment estimates.

6. m̂t+1 and v̂t+1 are bias-corrected moment estimates.

7. Gt represents the sum of the squares of past gradients up to time step t.

8. ϵ is a small constant to prevent division by zero.

2.10 Advantages and disadvantages of neural networks

2.10.1 Advantages
Neural networks have several capabilities that make them effective in processing complex

data. They can learn from data and adapt to non-linear patterns.
They exhibit fault tolerance by handling noisy or incomplete data through their ability to
generalize patterns.
Their massive parallelism allows for fast data processing across many neurons.
Neural networks can be used for a variety of tasks, including classification, prediction, and
pattern recognition. Some types, like self-organizing maps, can organize data in an unsupervised
manner(see, e.g, [16]).

48

2.10.2 Disadvantages
Neural networks have several limitations. Their complexity makes them difficult to under-

stand and interpret.
Training them is computationally intensive and time-consuming, especially with large datasets
and complex architectures.
They are prone to overfitting, which leads to poor performance on new data. Large amounts
of labeled data are often required, which may not always be available. They are vulnerable to
adversarial attacks and require powerful, costly hardware like GPUs.
Additionally, tuning hyperparameters is challenging and time-consuming(see, e.g, [16]).

49

Chapter 3

Hybrid Model GARCH-ANN

3.1 Introduction
The hybrid model is an approach that combines multiple methods or different models in

data analysis or prediction. This is typically done by integrating different features from various
models to achieve a stronger and more accurate model.

The hybrid model between the GARCH model and Artificial Neural Network (ANN) com-
bines the strengths of both models to enhance the prediction of volatility in financial or economic
data.
The GARCH model analyzes and predicts volatility in time-series data, while the Artificial
Neural Network is used to learn nonlinear relationships in the data(see, e.g, [17]).

Generally, the hybrid model is applied in a similar manner to how each of the GARCH
model and Artificial Neural Network is individually applied, using financial or economic data
to train the model and evaluate its performance.
Integrating the advantages of each model and their variations in the data can lead to im-
proved accuracy in predicting volatility, thus enhancing risk management and decision-making
in financial or economic markets(see, e.g, [19]).

3.2 Methodology
Due to their successful application in forecasting the volatilities of economic and financial

variables, GARCH-type models are considered as part of the proposed hybrid models.

EGARCH and GJR-GARCH models are used for constructing these hybrid models, as they
allow for leverage effects, where a large decrease in the price of financial assets can have a
greater impact on volatility than a large increase in price(see, e.g, [1]).

Moreover, due to the complex non-linear correlation structures among financial variables,
more flexible models are required to approximate the features of these variables, such as Arti-
ficial Neural Network (ANN) models.
The greatest advantage of ANN models lies in their ability to model complex nonlinear rela-
tionships without making prior assumptions about the nature of the relationship. They can
relate a set of input variables to one or more output target variables in a nonlinear manner,
providing significant flexibility.

50

Therefore, ANN models are employed to construct the proposed hybrid models(see, e.g, [6]).

There are several training methods for neural networks, with Back-propagation being the
most common.
In this method, the parameters of the model are updated iteratively according to the quadratic
loss function during the model estimation process, allowing for the achievement of the lowest
error possible(see, e.g, [20]).

3.3 Hybrid Models
The purpose of this study is to propose two types of hybrid ANN and GARCH-type models

and to compare the forecast performance of volatility for both hybrid models. Type I model is
established by inputting the outcome of the preferred GARCH-type models into ANN, called
ANN-GARCH model.
On the other hand, Type II model is built by considering the output layer of ANN as a variable
of GARCH-type models, called GARCH-ANN model, so that the augmented GARCH-type
models can behavior better on forecasting volatility.
Both types of models are expressed as follows:

3.3.1 Type I : ANN-GARCH model

Based on the preferred EGARCH model, β1 log(ht−1), α1

∣∣∣∣ εt−1√
ht−1

∣∣∣∣ , and γ1
εt−1√

ht−1
are chosen

as the endogenous explanatory variables, which are regarded as the input variables in the ANN.
Similar to EGARCH, β1ht−1, α1ε

2
t−1, and γε2

t−1It−1 of the preferred GJR-GARCH model are
chosen as the input variables in the ANN.

3.3.2 Type II : GARCH-ANN model

EGARCH−ANN : log(ht) = ω+
q∑

j=1
βj log(ht−j)+

p∑
i=1

αi

∣∣∣∣ εt−i√
ht−i

∣∣∣∣+ r∑
k=1

and γk
εt−k√
ht−k

+
s∑
h

ξhψ(ztλh)

(3.3.1)

GJR−EGARCH−ANN : ht = ω+
p∑

m=1
αmε

2
t−m +γε2

t−1It−1

q∑
n=1

βnht−n +
s∑
h

ξhψ(ztλh) (3.3.2)

ψ(ztλh) =
[
1 + exp

(
λh,d,w +

v∑
d=1

[
m∑

w=1
(λh,d,wz

w
t−d)

])]−1

(3.3.3)

where: zt−d = [εt−d − E(ε)] /
√
E(ε2). 1

2λh,d,w ∼ uniform [−1,+1] .

51

3.4 Forecast Encompassing
To evaluate the characteristics of the forecast series, two forecast encompassing tests are

performed, based on Cook’s (2012) methodology. The first test is the Fair and Shiller (1989)
test, which can be derived from the following regression(see, e.g, [22, 24]):

RVt = c+ λ1f1,t + λ2f2,t + ut (3.4.1)

where RVt is the realized volatility, c is a constant, f1,t is the volatility forecast from model
1, and f2,t is the volatility forecast from model 2. When λ1 = 0 and λ2 ̸= 0, the forecast
from model 2 encompasses (outperforms) the forecast from model 1. Conversely, the forecast
from model 1 encompasses the forecast from model 2 if λ1 ̸= 0 and λ2 = 0. If both λ1 ̸= 0
and λ2 ̸= 0, then we fail to reject the null hypothesis, indicating that both forecasts contain
independent information.

The second test evaluates how well one forecast explains the error of another. Forecast error
represents the information a forecast missed. Letting the forecast error be et = RVt − ft, the
Chong and Hendry (1986) test uses the following regressions(see, e.g, [23]):

e1,t = λ2f2,t + v1,t (3.4.2)

e2,t = λ1f1,t + v2,t (3.4.3)

If the forecast error of model 1 (e1,t) is not related to the forecast of model 2 (f2,t), meaning
λ2 = 0, then forecast 1 can be used on its own.
However, if the forecast error is influenced by the other forecast, a combined forecast using
both f1,t and f2,t should be created.

52

Figure 3.1: Flowchart of the modelling process.

The flowchart in (Figure3.1)illustrates the process of collecting and analyzing data using
GARCH, ANN, and hybrid models. Here is an explanation of each part of the flowchart:

• Collect data set: This is the first step where the required data for analysis is collected.

• Verify the heteroscedasticity in the time series: Non-homogeneity of variance in
time series data is verified using tests such as the ARCH test.

• Estimate and select the preferred model among the EGARCH and GJR-
GARCH: The preferred model between EGARCH and GJR-GARCH models is esti-
mated and selected.

• Extract the estimated conditional volatility: The estimated conditional variance is
extracted from the GARCH model.

53

• Select explanatory input variables, the extracted conditional volatility and
input them into an ANN model: The explanatory variables and the estimated con-
ditional variance are selected and input into the Artificial Neural Network (ANN) model.

• Select explanatory input variables and input them into an ANN model: The
explanatory variables are selected and input into the ANN model.

• Extract the output of the ANN model: The outputs of the ANN model are extracted.

• Input the extracted output of the ANN model in the preferred model among
EGARCH and GJR-GARCH: The extracted outputs of the ANN model are input
into the preferred model between EGARCH and GJR-GARCH.

• Hybrid model Type I ANN-GARCH: Creating a hybrid model of the first type that
combines ANN and GARCH.

• Hybrid model Type II GARCH-ANN: Creating a hybrid model of the second type
that combines GARCH and ANN.

• Compare the output from the four models: The outputs of the four models
(GARCH, ANN, and the hybrid models) are compared to determine the best model.

3.5 Advantages and disadvantages of Hybrid Models

3.5.1 Advantages
A hybrid model combines the strengths of different models to boost prediction accuracy and

performance.
It excels in predicting volatility and adapts well to diverse data challenges, including unstable
or noisy conditions. By integrating various models, it provides comprehensive insights into
complex data, enhancing understanding and forecasting capabilities significantly.
Thus, the hybrid model stands out as a versatile and effective approach in predictive analytics
and decision-making processes.

3.5.2 Disadvantages
Hybrid models have several drawbacks, including increased complexity, higher computa-

tional resource requirements, and the need for specialized expertise.
They are more challenging to interpret, have a higher risk of overfitting, face integration chal-
lenges between different model components, and require more time and computational resources
compared to simpler models.

54

Chapter 4

Application

4.1 Introduction
This study aims to provide a comprehensive comparison of GARCH, ANN, and hybrid

models for time series forecasting. By leveraging both simulated and real-world data, we seek
to highlight the strengths and limitations of each approach and demonstrate the potential
benefits of hybrid models in capturing both linear and nonlinear dynamics in time series data.
The findings of this study will contribute to the growing body of knowledge in time series
forecasting and provide practical insights for researchers and practitioners in the field.

4.2 Simulation
To simulate data using a GARCH model for forecasting, we first generate a time series

that exhibits characteristics commonly observed in real-world financial data, such as volatility
clustering.
The GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model is particularly
suited for this purpose as it models the variance of the time series as a function of past variances
and past forecast errors.
Specifically, we simulate the time series data by specifying parameters for the mean equation
(e.g., an ARIMA process) and the variance equation (GARCH process), ensuring that the
generated data reflects realistic patterns of changing volatility over time.
We will apply simulations for the GARCH model using the Python programming language to
program and execute tests and benchmarks that measure the system’s performance.

4.2.1 Steps for GARCH Model Simulations
• Using the parameters for the (ω = 0.002, α = 0.234, β = 0.74345)) model for a time series

of 100 samples of size 500 and 1000.

• Calculate daily returns using the formula rt = µ+ εt = ηtht + µ , µ = −0.0003

• Calculate implied volatility using the formula ht =
√
α0 + α1ε2

t−1 + β1h2
t−1

• Extract parameters for the sets of each series.

• Calculate the Mean Squared Error (MSE) to compare the extracted values with the values
taken in the simulation. To calculate the Mean Squared Error (MSE):

55

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2

Where:

– n is the number of points in the time series.
– Yi is the actual value of point i.
– Ŷi is the predicted value of point i.

• Divide the data into two sets: a training set 97% and a test set 3%, then use the training
set to build the model and the test set to evaluate the model.

• Use the GARCH model to predict the variances for the test set and compare them with
the implied volatility.

• Calculate the Mean Squared Error (MSE) to measure the accuracy of the model in pre-
dicting the variance.

• Calculate the mean of the test sets and the mean of the prediction sets.

4.2.2 GARCH(1,0) or ARCH(1)
We will perform a simulation of the ARCH(1) model using the parameters (ω = 0.002, α =

0.234).
The simulation will generate a curve representing the average daily returns across different
groups, as well as a curve illustrating the average implied volatility across the ARCH(1) groups.
Additionally, we will display the parameter values extracted from these groups to further analyze
the model’s behavior.

(a) Sample size 500 (b) Sample size 1000

Figure 4.1: The curves represent the average of daily returns groups.

56

(a) Sample size 500 (b) Sample size 1000

Figure 4.2: The curves represent the average implied volatility across ARCH(1) groups.

(a) Sample size 500 (b) Sample size 1000

Figure 4.3: The curves represent the values of the µ coefficient

(a) Sample size 500 (b) Sample size 1000

Figure 4.4: The curves represent the values of the ω coefficient

57

(a) Sample size 500 (b) Sample size 1000

Figure 4.5: The curves represent the values of the α coefficient

Average of Parameters
µ -0.000196
ω 0.001745
α 0.234086

Sample size 500

Average of Parameters
µ 0.000005
ω 0.001699
α 0.226668

Sample size 1000

Table 4.1: The tables represent the average parameters.

MSE
µ 4.105774e-06
ω 1.976593e-07
α 0.004013

Sample size 500

MSE
µ 2.3379e-06
ω 2.2478e-07
α 0.002387

Sample size 1000

Table 4.2: The tables represent the mean squared error (MSE) for the models.

From the results of parameter estimates and (MSE), it can be concluded that the perfor-
mance of the ARCH simulations was good.

(a) Sample size 500 (b) Sample size 1000

Figure 4.6: The curves represent the forecast results of the ARCH(1) model

58

RMSE
ARCH(1) 500 0.002402
ARCH(1) 1000 0.003639

Table 4.3: The table represents the root mean square error (RMSE) for the ARCH(1) model.

(a) Sample size 500 (b) Sample size 1000

Figure 4.7: The curves represent the forecast results of the GARCH(1, 1) model.

RMSE
GARCH(1, 1) 500 0.0001534
GARCH(1, 1) 1000 0.000189

Table 4.4: The table represents the root mean square error (RMSE) for the GARCH(1, 1)
model.

4.2.3 Effect of Sample Size
We observe that the values increase with the increase in sample size from 500 to 1000 in

both models (ARCH and GARCH). This may indicate that increasing the sample size reduces
random fluctuations and makes the estimates more stable and less influenced by the specific
sample.

4.2.4 Comparison between ARCH and GARCH
Overall, we notice that the values forGARCH(1, 1) are much lower than those for ARCH(1)

for the same sample size.
This suggests that the GARCH model is more accurate in estimation and less volatile compared
to the ARCH model.

The GARCH model accounts for both conditional variance and lagged effects, whereas the
ARCH model only considers conditional variance.
This makes GARCH more effective in capturing the volatility dynamics in financial data.

4.2.5 Accuracy and Stability
The smaller values obtained from the GARCH(1, 1) model compared to the ARCH(1)

model indicate that GARCH provides more stable and accurate volatility estimates, making it

59

preferable for financial data analysis.

4.3 Overall Conclusion
The GARCH(1, 1) model appears to be more effective and stable in estimating volatil-

ity compared to the ARCH(1) model. Additionally, increasing the sample size improves the
stability of estimates in both models.

Based on these results, it is recommended to use the GARCH(1, 1) model for analyzing
financial volatility due to its accuracy and ability to capture complex dynamics in financial
data.

4.3.1 GARCH(1,1)
We will simulate the GARCH(1, 1) model using the parameters (ω = 0.002, α = 0.234, β =

0.74345).
We will display a curve for the average of daily returns across groups and a curve for the average
of implied volatility across GARCH(1, 1) groups.
Additionally, we will display the values of the parameters extracted from the groups.

(a) Sample size 500 (b) Sample size 1000

Figure 4.8: The curves represent the average of daily returns groups.

(a) Sample size 500 (b) Sample size 1000

Figure 4.9: The curves represent the average implied volatility across GARCH(1, 1) groups.

60

(a) Sample size 500 (b) Sample size 1000

Figure 4.10: The curves represent the values of the µ coefficient

(a) Sample size 500 (b) Sample size 1000

Figure 4.11: The curves represent the values of the ω coefficient

(a) Sample size 500 (b) Sample size 1000

Figure 4.12: The curves represent the values of the α coefficient

61

(a) Sample size 500 (b) Sample size 1000

Figure 4.13: The curves represent the values of the β coefficient

Average of Parameters
µ -0.000691
ω 0.0024
α 0.235406
β 0.7288

Sample size 500

Average of Parameters
µ -0.000169
ω 0.002165
α 0.23558
β 0.736577

Sample size 1000

Table 4.5: The tables represent the average parameter.

MSE
µ 4.5313e-05
ω 1.1161e-06
α 0.00273
β 0.002939

Sample size 500

MSE
µ 2.7775e-05
ω 3.1719e-07
α 0.001082
β 0.001082

Sample size 1000

Table 4.6: The tables represent the mean squared error (MSE) for the models.

From the results of parameter estimates and (MSE), it can be concluded that the perfor-
mance of the GARCH simulations was good.

62

(a) Sample size 500 (b) Sample size 1000

Figure 4.14: The curves represent the forecast results of the GARCH(1, 1) model

RMSE
GARCH(1,1) 500 0.0019611
GARCH(1,1) 1000 0.0003916

Table 4.7: The table represents the root mean square error (RMSE) for the GARCH(1, 1)
model.

(a) Sample size 500 (b) Sample size 1000

Figure 4.15: The curves represent the forecast results of the ARCH(1) model

RMSE
ARCH(1) 500 0.022492
ARCH(1) 1000 0.017214

Table 4.8: The table represents the root mean square error (RMSE) for the ARCH(1) model.

4.4 Artificial Neural Network
We will use simulated data from a GARCH(1, 1) model to test an ANN model using two

transformation functions: linear and tanh. The test results will be as follows:

63

1. Linear transfer function

(a) Sample size 500 (b) Sample size 1000

Figure 4.16: The curves represent the forecast results of the ANN linear model

RMSE
ANN linear 500 0.014204
ANN linear 1000 0.004448

Table 4.9: The table represents the root mean square error (RMSE) for the ANN linear model

2. Tanh transfer function

(a) Sample size 500 (b) Sample size 1000

Figure 4.17: The curves represent the forecast results of the ANN tanh model

RMSE
ANN tanh 500 0.016340
ANN tanh 1000 0.005643

Table 4.10: The table represents the root mean square error (RMSE) for the ANN tanh model

4.5 Hybrid Models
We will use simulated data from a GARCH(1, 1) model to test the hybrid model, and the

results are as follows:

64

(a) Sample size 500 (b) Sample size 1000

Figure 4.18: The curves represent the forecast results of the hybrid model.

RMSE
Hybrid 500 0.005675
Hybrid 1000 0.003743

Table 4.11: the table represents the root mean square erro (RMSE) for the hybrid model

4.6 Conclusion
Based on the analysis of the presented results, we conclude that:

• The GARCH(1, 1) model shows significant superiority in predicting volatility with in-
creased sample size, making it a reliable model for long-term volatility analysis.

• TheARCH(1) model shows less effective performance compared to the GARCH model,
indicating that it may not be the optimal choice for predicting financial volatility.

• Both ANN models (linear and tanh) show significant improvement in performance with
increased sample size, indicating their effectiveness in analyzing financial data when large
amounts of data are available.

• The Hybrid model provides strong and stable performance across different sample sizes,
making it a reliable and effective choice for analyzing financial volatility.

Based on these results, it is recommended to use the GARCH(1, 1) model or the Hybrid
model to achieve the highest accuracy in predicting financial volatility, while considering in-
creasing the sample size to improve prediction accuracy.

4.7 Real Data
We aim to experiment with models in U.S. equity derivatives, so we have decided to work

with the S&P500 index due to the availability of daily market data.
We will attempt to forecast the implied volatility of the S&P500 between 01-01-2015 and 01-
03-2022.
This period allows us to investigate volatility models in bullish markets as well as periods of

65

high volatility and financial crises.

The S&P500, or Standard & Poor’s 500, is a stock market index that measures the per-
formance of 500 large companies listed on stock exchanges in the United States. It is widely
regarded as one of the best gauges of the overall performance of the U.S. equity market.
The index includes companies from various industries and is used by investors as a benchmark
for the U.S. stock market.
Our target data will be the Chicago Board Options Exchange Volatility Index (VIX). "The VIX
Index is a calculation designed to produce a measure of the 30-day expected volatility of the
U.S. stock market.

" We will import the adjusted closing price of the VIX directly from Yahoo Finance, Rep-
resented in the following charts.:

Figure 4.19: The curve represents the closing prices.

66

Figure 4.20: The curve of the implied volatility.

4.7.1 GARCH(p,q)
To calibrate the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model,

we calculate the daily returns of closing prices using the following formula:

rt = Pt − Pt−1

Pt−1
.

The results will be represented in the following:

Figure 4.21: The curve of daily returns groups.

We will calculate (AIC), (BIC), and (FBE) to choose the best pair (p, q).

67

p q AIC
1 0 -5990.9366
1 1 -6304.0255
1 2 -6285.9205
1 3 -6271.7718
2 0 -6084.4499
2 1 -6294.8106
2 2 -6283.3808
2 3 -6268.4512
3 0 -6090.4102
3 1 -6279.6925
3 2 -6265.2388
3 3 -6253.2122

Table 4.12: AIC

p q BIC
1 0 -5976.3047
1 1 -6284.5164
1 2 -6261.5341
1 3 -6242.5081
2 0 -6064.9407
2 1 -6270.4241
2 2 -6254.1170
2 3 -6234.3102
3 0 -6066.0238
3 1 -6250.4287
3 2 -6231.0977
3 3 -6214.1938

Table 4.13: BIC

p q FPE
1 0 0.7012
1 1 0.8764
1 2 1.0523
1 3 1.2292
2 0 0.8763
2 1 1.0525
2 2 1.2290
2 3 1.4060
3 0 1.0523
3 1 1.2291
3 2 1.4059
3 3 1.5829

Table 4.14: FPE

From this, we conclude that the best pair is GARCH(1, 1).

The GARCH(1, 1) coefficients will be as follows:

Dep. Variable: Close R-squared: 0.000
Mean Model: Constant Mean Adj. R-squared: 0.000
Vol Model: GARCH Log-Likelihood: 3239.31
Distribution: Normal AIC: -6470.63
Method: Maximum Likelihood BIC: -6451.00

No. Observations: 1000
Df Residuals: 999
Df Model: 1

coef std err t P> |t| 95.0% Conf. Int.

mu 9.7222e-04 1.222e-05 79.577 0.000 [9.483e-04,9.962e-04]
coef std err t P> |t| 95.0% Conf. Int.

omega 3.6012e-06 1.155e-12 3.117e+06 0.000 [3.601e-06,3.601e-06]
alpha[1] 0.2000 4.112e-02 4.864 1.152e-06 [0.119, 0.281]
beta[1] 0.7800 3.094e-02 25.208 3.285e-140 [0.719, 0.841]

The

table represents the parameter values for the GARCH(1,1) model.

68

Figure 4.22: The plot represents the forecast results of the GARCH(1, 1) model.

The Root Mean Squared Error for the GARCH model is: 0.004137

4.7.2 Artificial Neural Network (ANN) model
1. Linear transfer function

Figure 4.23: The plot represents the forecast results of the ANN linear model

The Root Mean Squared Error for the Neural Network model is: 0.002147

69

2. Tanh transfer function

Figure 4.24: The plot represents the forecast results of the ANN model with tanh as a transfer
function

The Root Mean Squared Error for the Neural Network model is: 0.0019135

4.7.3 Hybrid models

Figure 4.25: The plot represents the forecast results of the hybrid model

The Root Mean Squared Error for the hybrid is 0.001903

70

4.8 Results

4.8.1 Results and Analysis
We report the out-of-sample performance metrics for each of the models covered.

The performance metrics will be root mean squared error (RMSE)

RMSE
GARCH(1,1) 0.004137
ANN linear 0.002147
ANN tanh 0.001913

Hyprid 0.001903

Table 4.15: The table represents the root mean square error (RMSE) for each model.

We can draw the following conclusions:

1. Performance of the GARCH(1, 1) Model
The GARCH(1, 1) model has the highest root mean squared error (RMSE) among all the mod-
els studied, with an (RMSE) of approximately 0.004137. This indicates that its performance is
the worst compared to the other models.

2. Performance of the ANN Linear Model
The artificial neural network linear (ANN Linear) model achieved a significant improvement
compared to the GARCH(1, 1) model, with an (RMSE) of approximately 0.002147. This in-
dicates that the (ANN Linear) model performs significantly better than the GARCH model.

3. Performance of the ANN Tanh Model
The model using the Tanh activation function (ANN Tanh) achieved a better (RMSE) than
the (ANN Linear) model, with an (RMSE) of approximately 0.001913. This indicates a further
improvement in performance.

4. Performance of the Hybrid Model
The hybrid model (Hybrid) demonstrated the best performance among all the models, achiev-
ing the lowest (RMSE) of approximately 0.0019034. This indicates that the hybrid model is
the most accurate in prediction among all the tested models.

4.9 Overall Conclusion
It is evident that the models based on artificial neural networks significantly outperform

the GARCH(1, 1) model in predictive performance, as reflected in the lower (RMSE) values.
The hybrid model is the best among the tested models, suggesting that combining multiple
components into a single model can significantly improve predictive accuracy.

71

General Conclusion

In this Master’s thesis, volatility prediction models were studied using three main types
of models: the GARCH model, Artificial Neural Networks (ANN), and hybrid models that
combine both. The main objective was to analyze the performance of each model and evaluate
its predictive accuracy compared to the others.

We applied the GARCH(1, 1) model to assess its performance in predicting financial volatil-
ity, comparing its performance with other models to evaluate its predictive accuracy.

Next, we evaluated artificial neural networks using two types of ANN models: ANN Linear
and ANN Tanh. The extent of improvement in predictive accuracy using these models was
determined in comparison to the GARCH model.

One of the most significant contributions of this thesis is the introduction of the hybrid
model that combines components of the GARCH model with neural algorithms. The perfor-
mance of the hybrid model was evaluated to determine the extent of improvement it offers in
predicting financial volatility.

The study demonstrated that artificial neural network (ANN) models significantly out-
perform the GARCH model in terms of predictive accuracy. Furthermore, the hybrid model
combining GARCH and ANN showed the best performance in predicting financial volatility,
indicating that integrating these models can substantially improve prediction accuracy.

The study recommends using hybrid and advanced models to enhance the accuracy of finan-
cial volatility predictions, which can greatly assist in financial and strategic decision-making in
financial markets.

This study contributes to a deeper understanding of how advanced and hybrid models can
be utilized to improve financial forecasts, thereby enhancing the ability of investors and ana-
lysts to make more accurate decisions.

Overall, with these considerations in mind, the GARCH-ANN hybrid model can be a power-
ful tool for financial forecasting, providing more accurate and robust predictions than traditional
models alone.

72

Bibliographic References

[1] Engle, R. F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the
Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007.

[2] Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal
of Econometrics, 31(3), 307-327.

[3] Drost, F.C., and Nijman, T.E. (1993). Temporal aggregation of GARCH processes. Econo-
metrica, 61(4), 909-927.

[4] Hull, J. (2012). Options, Futures, and Other Derivatives. Prentice Hall.

[5] Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the
expected value and the volatility of the nominal excess return on stocks. The Journal of
Finance, 48(5), 1779-1801.

[6] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.
Econometrica, 59(2), 347-370.

[7] Taylor, S. J. (1986). Modeling Financial Time Series. John Wiley and Sons.

[8] Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics
and Control, 18(5), 931-955.

[9] Engle, R. F. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econo-
metrics. Journal of Economic Perspectives, 15(4), 157-168.

[10] Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.). Prentice Hall.

[11] Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000). Principles of Neural Science (4th
ed.). McGraw-Hill.

[12] Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Math-
ematical Modeling of Neural Systems. MIT Press.

[13] Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

[14] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

[15] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

[16] Aggarwal, C. C. (2018). Neural Networks and Deep Learning: A Textbook. Springer.

[17] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; ReadLiberty.Org: Chicago,
IL, USA, 2008.

[18] Zhang, G. P. (2003). "Time series forecasting using a hybrid ARIMA and neural network
model". Neurocomputing, 50, 159-175.

73

[19] Stavroyiannis, S.; Babalos, V.; Bekiros, S.; Lahmiri, S.; Uddin, G.S. The high frequency
multifractal properties of Bitcoin. Physica A 2019, 520, 62–71

[20] Heston, S.L. (1993), A closed-form solution for options with stochastic volatility with
applications to bond and currency options. The Review of Financial Studies, 6(2), 327-
343.

[21] Sahin, S., Tolun, M.R., Hassanpour, R. (2012), Hybrid expert systems: A survey of current
approaches and applications. Expert Systems with Applications, 39(4), 4609-4617.

[22] Cook, S. (2012), An historical perspective on the forecasting performance of the treasury
model: Forecasting the growth in UK consumers’ expenditure. Applied Economics, 44(5),
555-563.

[23] Chong, Y.Y., Hendry, D.F. (1986), Econometric evaluation of linear macro-economic mod-
els. The Review of Economic Studies, 53(4), 671-690.

[24] Fair, R.C., Shiller, R.J. (1989), The informational content of ex ante forecasts. The Review
of Economics and Statistics, 71(2), 325-331.

74

Appendix

Code for simulating a GARCH(1,1) model

import pandas as pd
from random import gauss
from random import seed
from arch import arch_model
import numpy as np
import matplotlib . pyplot as plt

Seed the random number generator for reproducibility
(you can uncomment the following line to use it)
seed (0)

Define GARCH (1, 1) process parameters
a0 = 0.002 # Constant term
a1 = 0.234 # Coefficient for lagged squared residuals
b1 = 0.74345 # Coefficient for lagged conditional variance
mu1 =0.003
Number of time points in the simulation
n = 1001
Number of simulations
g = 100

DataFrames to store simulated volatilities and GARCH parameters
vol = pd. DataFrame (index=range(n), columns =range(g))
garch_parameters = pd. DataFrame (index=t, columns =['mu ', 'omega ', 'alpha ', '

beta '])
sim_df = pd. DataFrame (index=range(n), columns =range(g))

Loop over the number of simulations
for j in range(g):

Set the random seed for each simulation for reproducibility
np. random .seed(j)
Generate random normal values
w = np. random . normal (size=n)
Initialize arrays for residuals (eps) and conditional variances (sigsq

)
eps = np. zeros_like (w)
sigsq = np. zeros_like (w)

Simulate the GARCH (1, 1) process
for i in range (1, n):

sigma[i] = a0 + a1 * (eps[i -1]**2) + b1 * sigsq[i -1] # Update
conditional variance

eps[i] = w[i] * np.sqrt(sigsq[i]) + mu1 # Update residuals

75

Store the simulated volatilities
vol[j] = np.sqrt(sigma)
Store the simulated residuals
sim_df [j] = eps

Fit a GARCH (1, 1) model to the simulated data
model = arch_model (eps)
model_fit = model.fit(disp='off ')
model_fit_params = model_fit . params

Extract the estimated parameters
mu = model_fit_params ['mu ']
omega = model_fit_params ['omega ']
alpha = model_fit_params ['alpha [1] ']
beta = model_fit_params ['beta [1] ']

Store the estimated parameters in the DataFrame
garch_parameters .loc[j] = [mu , omega , alpha , beta]

Remove the first row (initial values) and reset index
vol = vol.iloc [1:]. reset_index (drop=True)
sim_df = sim_df .iloc [1:]. reset_index (drop=True)

Print the estimated GARCH parameters for each simulation
print(garch_parameters)

Calculate the mean of each column in garch_parameters
column_means = garch_parameters .mean ()
print(column_means)

Function to calculate Mean Squared Error (MSE)
def calculate_mse (column , custom_mean_value):

mse = ((column - custom_mean_value) ** 2).mean ()
return mse

DataFrame containing GARCH parameters
df = garch_parameters

Custom mean values for MSE calculation
custom_mean_values = {'mu ': column_means [0], 'omega ': a0 , 'alpha ': a1 , 'beta

': b1}

Calculate MSE for each column in the DataFrame
mse_values = { column : calculate_mse (df[column], custom_mean_values [column])

for column in df. columns }
print(mse_values)

Plotting mu values
y1 = garch_parameters ['mu ']
y2_value = column_means [0]
y2 = [y2_value] * len(y1)
plt. figure (figsize =(10 , 6))
plt.plot(range(len(y1)), y1 , label='mu ', color='blue ', linestyle ='-',

linewidth =2, marker ='o')
plt.plot(range(len(y1)), y2 , label=r'$\ overline {mu}$', color='orange ',

linestyle ='-', linewidth =2)
plt. legend ()
plt.show ()

76

Plotting omega values
y1 = garch_parameters ['omega ']
y2_value = a0
y2 = [y2_value] * len(y1)
plt. figure (figsize =(10 , 6))
plt.plot(range(len(y1)), y1 , label='omega ', color='blue ', linestyle ='-',

linewidth =2, marker ='o')
plt.plot(range(len(y1)), y2 , label=r'$\ overline {omega}$', color='orange ',

linestyle ='-', linewidth =2)
plt. legend ()
plt.show ()

Plotting alpha values
y1 = garch_parameters ['alpha ']
y2_value = a1
y2 = [y2_value] * len(y1)
plt. figure (figsize =(10 , 6))
plt.plot(range(len(y1)), y1 , label='alpha ', color='blue ', linestyle ='-',

linewidth =2, marker ='o')
plt.plot(range(len(y1)), y2 , label=r'$\ overline {alpha}$', color='orange ',

linestyle ='-', linewidth =2)
plt. legend ()
plt.show ()

Plotting beta values
y1 = garch_parameters ['beta ']
y2_value = b1
y2 = [y2_value] * len(y1)
plt. figure (figsize =(10 , 6))
plt.plot(range(len(y1)), y1 , label='beta ', color='blue ', linestyle ='-',

linewidth =2, marker ='o')
plt.plot(range(len(y1)), y2 , label=r'$\ overline {beta}$', color='orange ',

linestyle ='-', linewidth =2)
plt. legend ()
plt.show ()

Plotting the average of simulated data
y1 = sim_df .mean(axis =1)
plt. figure (figsize =(10 , 6))
plt.plot(range(len(y1)), y1 , color='blue ', linestyle ='-', linewidth =2)
plt.title('Average Simulation ')
plt. legend ()
plt.show ()
Assuming vol is a DataFrame containing implied volatilities
y1 = vol.mean(axis =1)

plt. figure (figsize =(10 , 6))
plt.plot(range(len(y1)), y1 , color='blue ', linestyle ='-', linewidth =2)
plt.title('Average Implied Volatility ')
plt. xlabel ('Time ')
plt. ylabel ('Implied Volatility ')
plt. legend (['Average '])
plt.grid(True)
plt.show ()

returns = sim_df
Implied_Vol = vol

Splitting data into train and test sets
split_index = int (0.97 * len(returns))

77

returns_train = returns .iloc [: split_index]
returns_test = returns .iloc[split_index :]

Implied_Vol_train = Implied_Vol [: round (0.97 * len(returns))]
Implied_Vol_test = Implied_Vol [round (0.97 * len(returns)):]

DataFrame to store GARCH forecasted volatilities
garch_forecasted_volatilities = pd. DataFrame (index= returns_test .index)

Loop over columns (simulations)
for column in returns . columns :

series = returns [column]
forecasted_volatilities = []

Loop over test set
for i in range(len(returns_test)):

train = series [:-(len(returns_test) - i)]
model = arch_model (train , p=1, q=1)
model_fit = model.fit(disp='off ')
pred = model_fit . forecast (horizon =1)
forecasted_volatilities . append (np.sqrt(pred. variance . values

[-1 ,:][0]))

Store forecasted volatilities in DataFrame
garch_forecasted_volatilities [column] = forecasted_volatilities

Calculate average implied volatility
average_implied_volatility = Implied_Vol_test .mean(axis =1)

Calculate average forecasted volatility
average_forecasted_volatility = garch_forecasted_volatilities .mean(axis =1)

Calculate GARCH MSE and RMSE
GARCH_MSE = np.mean ((average_implied_volatility -

average_forecasted_volatility) ** 2)
GARCH_RMSE = np.sqrt(GARCH_MSE)

Print or use GARCH_MSE and GARCH_RMSE as needed
print(f"GARCH MSE: { GARCH_MSE }")
print(f"GARCH RMSE: { GARCH_RMSE }")
Plotting graph to compare actual IV against GARCH conditional volatilities

for test set
x = range(len(average_forecasted_volatility1))
y1 = average_implied_volatility
y2 = average_forecasted_volatility1

plt. figure (figsize =(10 , 6))
plt.plot(x, y1 , label='Implied Volatility ', color='blue ', linestyle ='-',

linewidth =2)
plt.plot(x, y2 , label='GARCH Forecast ', color='orange ', linestyle ='-',

linewidth =2)
plt. xlabel ('Date Index ')
plt. ylabel ('Volatility ')
plt.title('Implied Volatility vs GARCH Conditional Volatility ')
plt. legend ()

plt.show ()

78

Artificial Neural Network code

Import necessary libraries and modules
import pandas as pd
import numpy as np
import matplotlib . pyplot as plt
from sklearn . preprocessing import MinMaxScaler
from tensorflow .keras. models import Sequential
from tensorflow .keras. layers import LSTM , Dense
from sklearn . model_selection import train_test_split

Iterate over columns in returns
for i in returns . columns :

Create a DataFrame with relevant data for the current column
data = {

'returns ': returns [i]. squeeze ().values ,
'Implied_Vol_LAG1 ': Implied_Vol [i]. values ,
'Implied_Vol_LAG2 ': Implied_Vol [i]. values ,
'Implied_Vol_LAG3 ': Implied_Vol [i]. values ,
'Implied_Vol ': Implied_Vol [i]. values ,

}
df = pd. DataFrame (data)

Scale input variables using Min -Max scaler
scaler = MinMaxScaler ()
scaled_data = scaler . fit_transform (df.iloc [:, : -1])
scaled_df = pd. DataFrame (scaled_data , columns =df. columns [: -1])

d_1 = 64 # Output dimension
d_2 = 64 # Output dimension
K = 1 # Output dimension of the last layer
N_epochs = 5
N_batch_size = 64

Split data into training and test sets
X = scaled_df .iloc [:, :]. values
y = df.iloc [:, -1]. values
X_train , X_test , y_train , y_test = train_test_split (X, y, test_size

=0.03 , shuffle =False)

Reshape data for ANN input tensors
X_train = X_train . reshape (X_train .shape [0], 1, X_train .shape [1])
X_test = X_test . reshape (X_test .shape [0], 1, X_test .shape [1])

Define the ANN model architecture
model = Sequential ([

LSTM(d_1 , input_shape =(X_train .shape [1], X_train .shape [2]) ,
return_sequences =True),

LSTM(d_2),
Dense (32, activation ='linear '),
Dense(K, activation ='linear ')

])

Compile the model
model. compile (optimizer ='adam ', loss='mean_squared_error ')

79

Train the model on the training dataset
history = model.fit(X_train , y_train , epochs =N_epochs , batch_size =

N_batch_size , validation_data =(X_test , y_test))

Predict implied volatility using the ANN model
ANN_predictions = model. predict (X_test)
Ann_forecasted_volatilities_linear [i] = ANN_predictions
y_test1 [i] = y_test

Calculate average predictions and actual values
ANN_predictions_linear = Ann_forecasted_volatilities_linear .mean(axis =1)
y_test = y_test1 .mean(axis =1)

Calculate RMSE
ANN_mse = np.mean ((y_test - ANN_predictions_linear) ** 2)
ANN_rmse = np.sqrt(ANN_mse)
print("The Root Mean Squared Error for the Neural Network model is: ",

ANN_rmse)

Plot actual vs predicted values
plt. figure (figsize =(12 , 6))
plt.plot(y_test , label='Implied Volatility ')
plt.plot(ANN_predictions_linear , label='ANN Forecast_linear ')
plt. xlabel ('Date Index ')
plt. ylabel ('Implied Volatility ')
plt.title('Actual vs Predicted values ')
plt. legend ()

plt.show ()

Hybrid code

import numpy as np
import pandas as pd
import matplotlib . pyplot as plt
from sklearn . model_selection import train_test_split , GridSearchCV
from sklearn . neural_network import MLPRegressor
from sklearn . preprocessing import MinMaxScaler
from sklearn . metrics import mean_squared_error
from sklearn . impute import SimpleImputer

forecasted_volatilities = pd. DataFrame ()
y_test1 = pd. DataFrame ()

for i in returns . columns :
data = {

'returns ': returns [i]. squeeze ().values ,
'Implied_Vol ': Implied_Vol [i]. values ,

}
df = pd. DataFrame (data)

Calculate returns to make the data stationary

Create sequences for your analysis
sequence_length = 10
X, y = [], []

for j in range(len(df) - sequence_length):

80

X. append (df['Implied_Vol ']. iloc[j:j + sequence_length]. values)
y. append (df['Implied_Vol ']. iloc[j + sequence_length])

X, y = np.array(X), np.array(y)

Split the data into training and testing sets
train_size = int (0.97 * len(X))

X_train , X_test = X[: train_size], X[train_size :]
y_train , y_test = y[: train_size], y[train_size :]

scaler = MinMaxScaler ()
X_train_shape = X_train .shape
X_test_shape = X_test .shape
X_train = scaler . fit_transform (X_train . reshape (-1, X_train .shape [-1])).

reshape (X_train_shape)
X_test = scaler . transform (X_test . reshape (-1, X_test .shape [-1])). reshape (

X_test_shape)

Create an imputer to fill missing values with mean or other strategies
imputer = SimpleImputer (strategy ='mean ')
X_train = imputer . fit_transform (X_train)
X_test = imputer . transform (X_test)

Define a parameter grid for GridSearchCV
param_grid = {

'hidden_layer_sizes ': [(50 , 50) , (100 , 50) , (100 , 100)],
'alpha ': [0.0001 , 0.001 , 0.01 , 0.1] ,
'activation ': ['relu ', 'tanh '],
'learning_rate ': ['constant ', 'adaptive ']

}

Create the MLPRegressor model
model = MLPRegressor (random_state =42, max_iter =1000)

Create GridSearchCV
grid_search = GridSearchCV (estimator =model , param_grid =param_grid ,

scoring ='neg_mean_squared_error ', cv=3, n_jobs =-1, verbose =2)

Fit the model to find the best hyperparameters
grid_search .fit(X_train . reshape (X_train .shape [0], -1), y_train)

Get the best hyperparameters from the grid search
best_hidden_layer_size = grid_search . best_params_ ['hidden_layer_sizes ']
best_alpha = grid_search . best_params_ ['alpha ']
best_activation = grid_search . best_params_ ['activation ']
best_learning_rate = grid_search . best_params_ ['learning_rate ']

print(f"Best Hidden Layer Size: { best_hidden_layer_size }, Best Alpha: {
best_alpha }, Best Activation : { best_activation }, Best Learning Rate: {
best_learning_rate }")

Train the best model with the selected hyperparameters
best_model = MLPRegressor (hidden_layer_sizes = best_hidden_layer_size ,

alpha=best_alpha , activation = best_activation , learning_rate =
best_learning_rate , random_state =42, max_iter =1000)
best_model .fit(X_train . reshape (X_train .shape [0], -1), y_train)

Make predictions on the test set
y_pred = best_model . predict (X_test . reshape (X_test .shape [0], -1))

81

forecasted_volatilities [i] = y_pred
y_test1 [i] = y_test

predictions_Hybrid = forecasted_volatilities .mean(axis =1)
y_test = y_test1 .mean(axis =1)

Calculate RMSE on the test set
test_rmse = np.sqrt(mean_squared_error (y_test , predictions_Hybrid))
print(f"Test RMSE: { test_rmse }")

Plotting actual vs. predicted returns
plt. figure (figsize =(10 , 6))
plt.plot(y_test , label='Implied Volatility ')
plt.plot(predictions_Hybrid , label='Predicted Hybrid ')
plt. xlabel ('Time ')
plt. ylabel ('Implied Volatility ')
plt. legend ()
plt.grid(True) # Optionally add grid lines
plt. savefig ('hybrid_plot .pdf ') # Save the plot as PDF (or use 'hybrid_plot .

png ' for PNG)
plt.show ()

Code for retrieving and preprocessing financial data

import numpy as np
import pandas as pd
import yfinance as yf
import matplotlib . pyplot as plt
from datetime import datetime

Define start and end dates
start = datetime (2015 , 1, 1)
end = datetime (2022 , 3, 1)

Ticker symbols for S&P 500 and VIX
tckr = '^GSPC '
Implied_Volatility = '^VIX '

Retrieve historical data for Implied Volatility (VIX)
Implied_Volatility = yf. Ticker (Implied_Volatility)
Implied_Volatility = Implied_Volatility . history (start=start , end=end ,

interval ="1d")

Retrieve historical data for S&P 500 (^ GSPC)
ticker = yf. Ticker (tckr)
ticker_historical = ticker . history (start=start , end=end , interval ="1d")

Plotting S&P 500 closing prices
plt. figure (figsize =(15 , 7))
plt.plot(ticker_historical .Close)
plt.title('S&P 500 Closing Prices ')
plt. xlabel ('Date ')
plt. ylabel ('Price ')
plt.grid(True)
plt.show ()

Calculate daily percentage returns of S&P 500
returns = ticker_historical .Close. pct_change (). dropna ()

82

Plotting S&P 500 returns
fig , ax1 = plt. subplots (figsize =(20 , 10))
ax1.plot(returns , color='blue ')
ax1. set_title ('S&P 500 Returns ')
ax1. set_xlabel ('Date ')
ax1. set_ylabel ('Returns ')
plt.grid(True)
plt.show ()

Calculate annualized Implied Volatility from VIX
Implied_Vol = Implied_Volatility .Close / (100 * np.sqrt (252))

Plotting Implied Volatility (VIX)
fig , ax1 = plt. subplots (figsize =(20 , 10))
ax1.plot(Implied_Vol , color='blue ')
ax1. set_title ('Implied Volatility (VIX)')
ax1. set_xlabel ('Date ')
ax1. set_ylabel ('Implied Volatility ')
plt.grid(True)
plt.show ()

Splitting data into 95:5 train and test datasets
returns = returns [-1000:]
Implied_Vol = Implied_Vol [-1000:]

returns_train = returns [: round (0.97 * len(returns))]
returns_test = returns [round (0.97 * len(returns)):]

Implied_Vol_train = Implied_Vol [: round (0.97 * len(returns))]
Implied_Vol_test = Implied_Vol [round (0.97 * len(returns)):]

GARCH model code
Below is the Python code for estimating a GARCH model, selecting the best model based

on BIC, forecasting volatility, and evaluating performance:
import numpy as np
import pandas as pd
from arch import arch_model
import matplotlib . pyplot as plt

Define the parameters for grid search
a = 1
p = 4
b = 0
q = 4

Function to calculate Final Prediction Error (FPE)
def calculate_fpe (results):

n_params = len(results . params)
n_data = len(results .resid)
sse = (results .resid ** 2).sum ()
fpe = (n_data * (n_params + 1)) / (n_data - n_params - 1) * sse
return fpe

Grid search for best GARCH model based on BIC , AIC , and FPE
p_values = range(a, p)
q_values = range(b, q)

83

bic_results = []
aic_results = []
fpe_results = []

for p in p_values :
for q in q_values :

model = arch_model (returns_train , vol='GARCH ', p=p, q=q)
results = model.fit(disp='off ')

bic = results .bic
aic = results .aic
fpe = calculate_fpe (results)

bic_results . append ((p, q, bic))
aic_results . append ((p, q, aic))
fpe_results . append ((p, q, fpe))

Convert results to DataFrames
bic_df = pd. DataFrame (bic_results , columns =['p', 'q', 'BIC '])
aic_df = pd. DataFrame (aic_results , columns =['p', 'q', 'AIC '])
fpe_df = pd. DataFrame (fpe_results , columns =['p', 'q', 'FPE '])

Print and find the best model based on BIC
print("BIC:")
print(bic_df)
best_model = bic_df .loc[bic_df ['BIC ']. idxmin ()]
best_model_p = int(best_model ['p'])
best_model_q = int(best_model ['q'])
print("Best GARCH Model (based on BIC):")
print(best_model)

Fit the best GARCH model
best_model_fit = arch_model (returns , vol='GARCH ', p= best_model_p , q=

best_model_q).fit(disp='off ')

Forecast volatility using the best GARCH model
garch_forecasted_volatilities = []
for i in range(len(returns_test)):

train = returns .iloc [:-(len(returns_test)-i)]
model = arch_model (train , p= best_model_p , q= best_model_q)
model_fit = model.fit(disp='off ')
pred = model_fit . forecast (horizon =1)
garch_forecasted_volatilities . append (np.sqrt(pred. variance . values [-1,

:][0]))

Calculate RMSE for GARCH model
GARCH_MSE = np.mean ((Implied_Vol_test - garch_forecasted_volatilities) ** 2)
GARCH_RMSE = np.sqrt(GARCH_MSE)
print("The Root Mean Squared Error for the GARCH model is: ", GARCH_RMSE)

Plotting graph to compare actual IV against GARCH conditional volatilities
for test set

x = range(len(Implied_Vol_test))
y1 = Implied_Vol_test
y2 = garch_forecasted_volatilities

plt. figure (figsize =(12 , 6))
plt.plot(x, y1 , label='Implied Volatility ', color='blue ', linestyle ='-',

linewidth =2)

84

plt.plot(x, y2 , label='GARCH Forecast ', color='orange ', linestyle ='-',
linewidth =2)

plt. xlabel ('Date Index ')
plt. ylabel ('Volatility ')
plt.title('Implied Volatility vs GARCH Conditional Volatility ')
plt. legend ()
plt.grid(True)
plt.show ()

Artificial Neural Network code
Below is the Python code for training a neural network for forecasting implied volatility:

import numpy as np
import pandas as pd
import matplotlib . pyplot as plt
from sklearn . preprocessing import MinMaxScaler
from tensorflow .keras. models import Sequential
from tensorflow .keras. layers import LSTM , Dense
from sklearn . model_selection import train_test_split
from sklearn . metrics import mean_squared_error

Define input data and target variables in a dataframe
data = {

'returns ': returns . squeeze ().values ,
'Implied_Vol_LAG1 ': Implied_Vol , # Assuming Implied_Vol is already

lagged
'Implied_Vol_LAG2 ': Implied_Vol # You can add more lagged variables if
needed

}
df = pd. DataFrame (data)

Scale input variables using MinMaxScaler
scaler = MinMaxScaler ()
scaled_data = scaler . fit_transform (df.iloc [:, : -1])
scaled_df = pd. DataFrame (scaled_data , columns =df. columns [: -1])

d_1 = 64 # Output dimension
d_2 = 64 # Output dimension
K = 1 # Output dimension of the last layer (assuming one output)
N_epochs = 2 # Number of epochs for training
N_batch_size = 64 # Batch size for training

Prepare X and y for training and testing
X = scaled_df .iloc [:, :]. values
y = df.iloc [:, -1]. values
X_train , X_test , y_train , y_test = train_test_split (X, y, test_size =0.03 ,

shuffle =False)

Reshape X into suitable LSTM input tensors
X_train = X_train . reshape (X_train .shape [0], 1, X_train .shape [1])
X_test = X_test . reshape (X_test .shape [0], 1, X_test .shape [1])

Create a neural network with 2 LSTM layers and 2 dense layers
model = Sequential ([

LSTM(d_1 , input_shape =(X_train .shape [1], X_train .shape [2]) ,
return_sequences =True),
LSTM(d_2),

85

Dense (32, activation ='linear '),
Dense(K, activation ='linear ')

])

Compile the model
model. compile (optimizer ='adam ', loss='mean_squared_error ')

Train the model on the training dataset
history = model.fit(X_train , y_train , epochs =N_epochs , batch_size =

N_batch_size , validation_data =(X_test , y_test))

Predict implied volatility using the trained ANN model
ANN_linear_predictions = model. predict (X_test)

Calculate RMSE
ANN_mse = np.mean ((y_test - ANN_linear_predictions . flatten ()) ** 2)
ANN_linear_rmse = np.sqrt(ANN_mse)
print("The Root Mean Squared Error for the Neural Network model is: ",

ANN_linear_rmse)

Plot the true values and predicted values
plt. figure (figsize =(12 , 6))
plt.plot(y_test , label='Implied Volatility ')
plt.plot(ANN_linear_predictions , label='ANN Linear Forecast ')
plt. xlabel ('Date Index ')
plt. ylabel ('Implied Volatility ')
plt.title('Actual vs Predicted Values ')
plt. legend ()
plt.grid(True)
plt.show ()

Hybrid model Code
Below is the Python code for training a hybrid model for forecasting implied volatility:

import numpy as np
import pandas as pd
import matplotlib . pyplot as plt
from sklearn . model_selection import train_test_split , GridSearchCV
from sklearn . neural_network import MLPRegressor
from sklearn . preprocessing import MinMaxScaler
from sklearn . metrics import mean_squared_error
from sklearn . impute import SimpleImputer

Define input data and target variables in a dataframe
data = {

'returns ': returns . squeeze ().values ,
'Implied_Vol ': Implied_Vol .values ,

}
df = pd. DataFrame (data)

Create sequences for analysis (adjust sequence length as needed)
sequence_length = 1
X, y = [], []

for j in range(len(df) - sequence_length):
X. append (df['Implied_Vol ']. iloc[j:j + sequence_length]. values)
y. append (df['Implied_Vol ']. iloc[j + sequence_length])

86

X, y = np.array(X), np.array(y)

Split data into training and testing sets
train_size = int (0.97 * len(X))
X_train , X_test = X[: train_size], X[train_size :]
y_train , y_test = y[: train_size], y[train_size :]

Scale input variables using MinMaxScaler
scaler = MinMaxScaler ()
X_train_shape = X_train .shape
X_test_shape = X_test .shape
X_train = scaler . fit_transform (X_train . reshape (-1, X_train .shape [-1])).

reshape (X_train_shape)
X_test = scaler . transform (X_test . reshape (-1, X_test .shape [-1])). reshape (

X_test_shape)

Fill missing values with mean using SimpleImputer
imputer = SimpleImputer (strategy ='mean ')
X_train = imputer . fit_transform (X_train)
X_test = imputer . transform (X_test)

Define parameter grid for GridSearchCV
param_grid = {

'hidden_layer_sizes ': [(50 , 50) , (100 , 50) , (100 , 100)],
'alpha ': [0.0001 , 0.001 , 0.01 , 0.1] ,
'activation ': ['relu ', 'tanh '],
'learning_rate ': ['constant ', 'adaptive ']

}

Create MLPRegressor model
model = MLPRegressor (random_state =2, max_iter =1000)

Create GridSearchCV
grid_search = GridSearchCV (estimator =model , param_grid =param_grid , scoring ='

neg_mean_squared_error ', cv=3, n_jobs =-1, verbose =2)

Fit model to find best hyperparameters
grid_search .fit(X_train . reshape (X_train .shape [0], -1), y_train)

Get best hyperparameters from grid search
best_hidden_layer_size = grid_search . best_params_ ['hidden_layer_sizes ']
best_alpha = grid_search . best_params_ ['alpha ']
best_activation = grid_search . best_params_ ['activation ']
best_learning_rate = grid_search . best_params_ ['learning_rate ']

print(f"Best Hidden Layer Size: { best_hidden_layer_size }, Best Alpha: {
best_alpha }, Best Activation : { best_activation }, Best Learning Rate: {
best_learning_rate }")

Train best model with selected hyperparameters
best_model = MLPRegressor (hidden_layer_sizes = best_hidden_layer_size , alpha=

best_alpha , activation = best_activation , learning_rate = best_learning_rate ,
random_state =2, max_iter =1000)

best_model .fit(X_train . reshape (X_train .shape [0], -1), y_train)

Make predictions on test set
y_pred = best_model . predict (X_test . reshape (X_test .shape [0], -1))

Calculate RMSE on test set
test_rmse = np.sqrt(mean_squared_error (y_test , y_pred))

87

print(f"Test RMSE: { test_rmse }")

Plot actual vs. predicted returns
plt. figure (figsize =(10 , 6))
plt.plot(y_test , label='Implied Volatility ')
plt.plot(y_pred , label='Predicted Hybrid Model ')
plt. xlabel ('Time ')
plt. ylabel ('Implied Volatility ')
plt.title('Actual vs. Predicted Implied Volatility ')
plt. legend ()
plt.grid(True)
plt.show ()

88

	List of Figures
	List of Tables
	Abbreviations
	General Introduction
	GARCH Models
	Introduction
	Autoregressive Conditional Heteroskedasticity (ARCH) Model
	ARCH(1)

	 Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Model
	GARCH(1,1) model

	Classification of GARCH processes
	Strong GARCH
	Semi-strong GARCH
	Weak GARCH

	Types of GARCH processes
	EGARCH model
	TGARCH model
	GJR-GARCH model

	Properties of GARCH processes
	Parameter Estimation of GARCH Model
	Yule-Walker estimator
	Maximum likelihood estimator

	Information Criteria
	Akaike Information Criterion (AIC)
	Schwarz (Bayesian) Information Criterion (BIC)
	Final Prediction Error (FPE)

	Point Forecasts
	Forecast Intervals
	Evaluating Forecast Accuracy
	Metrics
	Visualizing Forecasts

	Case Studies and Practical Examples
	Real-world Applications of GARCH
	Industry-specific Forecasting Examples

	Advantages and disadvantages of GARCH Model
	Advantages
	Disadvantages

	Artificial Neural Networks
	Introduction
	Historical

	Biological Neurons
	Characteristics
	Structure

	Mathematical modeling of the biological neuron
	The artificial neuron
	Principles of an artificial neuron

	Activation functions
	Threshold (Hard Limit) Transfer Function
	Symmetric Hard Limit Transfer Function
	Linear Transfer Function
	Logistic (Log-Sigmoid) Transfer Function
	Hyperbolic Tangent Transfer Function
	Saturating Linear Transfer Function
	Symmetric Saturating Linear Transfer Function
	Positive Linear Transfer Function
	Radial Basis Transfer Function

	Network Architectures
	Multilayer network
	Local connection network
	Recurrent Neural Network (RNN)
	Fully connected network

	Neural Network Learning
	The type of learning in neural networks
	Learning rule

	Perceptron
	Perceptron with a single layer
	Multilayer Perceptron (MLP)

	Radial Basis Function (RBF)
	Training of RBF networks

	Training
	Advantages and disadvantages of neural networks
	Advantages
	Disadvantages

	Hybrid Model GARCH-ANN
	Introduction
	Methodology
	Hybrid Models
	Type I: ANN-GARCH model
	Type II: GARCH-ANN model

	Forecast Encompassing
	Advantages and disadvantages of Hybrid Models
	Advantages
	Disadvantages

	Application
	Introduction
	Simulation
	Steps for GARCH Model Simulations
	GARCH(1,0) or ARCH(1)
	Effect of Sample Size
	Comparison between ARCH and GARCH
	Accuracy and Stability

	Overall Conclusion
	GARCH(1,1)

	Artificial Neural Network
	Hybrid Models
	Conclusion
	Real Data
	GARCH(p,q)
	Artificial Neural Network (ANN) model
	Hybrid models

	Results
	 Results and Analysis

	Overall Conclusion

	General Conclusion
	Bibliographic References
	Appendix

