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Abstract
The thesis discusses an optimization model for investment plan-
ning in the electrical distribution network, taking risks into ac-
count using an optimization approach. The model aims to reduce
risks through the following steps:

• Building an Optimization Model: Creating an accu-
rate mathematical model to clearly represent the investment
problem.

• Calculating Costs: Figuring out the costs related to the
objective function, like the costs for Conditional Value at
Risk (CVaR).

• Visualizing Results: Making clear visual charts that show
the best solutions for the investment planning problems.



Résumé
Ce mémoire traite d’un modèle d’optimisation pour la planifica-
tion des investissements dans le réseau de distribution électrique,
en tenant compte des risques à l’aide d’une approche d’optimi-
sation. Le modèle vise à réduire les risques en suivant les étapes
suivantes :

• Construction d’un Modèle d’Optimisation : Création
d’un modèle mathématique précis pour représenter claire-
ment le problème d’investissement.

• Calcul des Coûts : Détermination des coûts liés à la fonc-
tion objective, comme les coûts pour la Valeur à Risque
Conditionnelle (CVaR).

• Visualisation des Résultats : Création de graphiques vi-
suels clairs montrant les meilleures solutions pour les pro-
blèmes de planification des investissements.
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ABBREVIATIONS
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• OpEx: Operational Expenditure.

12



INTRODUCTION

Operations research is a discipline that aims to use advanced analytical methods to
make optimal decisions in complex situations. It encompasses a wide range of techniques,
such as mathematical modeling, optimization, simulation and data analysis, to solve decision-
making problems in various fields, including logistics, planning, operations management and
many others.In the context of an energy company such as sonelgaz, operational research can
play a crucial role in the effective planning and management of its operations related to the
distribution of electricity and gas throughout the territory, taking into account factors such as
fluctuating demand, operational constraints, maintenance costs and government regulations.

Company presentation

Sonelgaz, short for ”Société Nationale de l’Electricité et du Gaz”; is the Algerian national
company responsible for managing electricity and gas services across the country. Since
its establishment in 1969, Sonelgaz has evolved into a key player in the energy sector in
Algeria, playing a vital role in providing energy to individuals, businesses, and industries in
the country. Sonelgaz’s main areas of operation include:

1. Electricity Production.

2. Electricity and Gas Distribution.

3. Commercialization.

Electricity and gas distribution

Sonelgaz,the National Electricity and Gas Company, stands as a cornerstone within Algeria’s
energy sector. Its distribution domain, entrusted with supplying electricity and gas to mil-
lions of households, businesses, and industries nationwide, represents a crucial aspect of its
operations. Nonetheless, this domain faces its own set of challenges and issues, demanding
constant attention to ensure reliable and high-quality energy provision to its customers.
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Faced with the challenges experienced in Sonelgaz‘s distribution domain , it becomes
imperative to find a backup scheme that minimizes economic losses. By implementing an
innovative and reliable backup plan, Sonelgaz could mitigate the financial implications of
these issues while ensuring continuity of service for its customers.

General Description Of The Problem

The planning of electric distribution network expansion poses a major challenge for energy
sector companies, specially in the face of the transition to more sustainable energy sources
and the constant growth in electricity demand This evolution requires an adaptation of the
traditional planning approach in order to effectively integrate the operational constraints,
risks and uncertainties inherent in the large-scale expansion of networks. In this context,
adopting a scalable and risk management approach becomes crucial to ensure the reliabil-
ity and resilience of energy infrastructure in the long term, The central question that arises
is:How to design a scalable approach for planning the expansion of electricity distribution
networks, while taking into account the associated risks and ensuring the reliability of the
system? This question raises complex challenges in terms of modeling, optimization and
decision-making, particularly with regard to risk management and maximizing system reli-
ability. Thus, research in this area seeks to develop innovative methods to efficiently and
robustly plan the expansion of electricity distribution networks, taking into account the mul-
tiple constraints and uncertainties inherent in this process.

”A Scalable Approach to Large Scale Risk-Averse Distribution Grid Expansion
Planning” by” Alexandre Moreira, Miguel Heleno, Alan Valenzuela, Joseph H. Eto, Senior,
Jaime Ortega, and Cristina Botero”[37]

This study proposes a practical methodology to determine the optimal combinations of
investments in new line segments and storage devices, balancing the risks associated with
high-impact, low-probability (HILP) events and the reliability concerning routine outages.
A mixed-integer linear programming (MILP) model was used, incorporating various factors
such as efficiency, working hours, and different emergency scenarios. To implement the
model, Python and Pyomo were used, and CPLEX Solver was employed for its robustness
in solving complex problems.

The methodology was tested using a real distribution network from the Commonwealth
Edison (ComEd) Reliability Program in Illinois, USA, demonstrating its efficiency in han-
dling large and complex networks, including 54-node and 2055-node systems. The results
highlighted the model’s ability to reduce problem-solving time and achieve a balance be-
tween reliability and cost. This approach proves to be scalable and applicable in real-world
operational environments, making it a valuable tool for planning and developing future elec-
trical distribution networks.
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hypotheses

Here are some hypotheses for the given problematic:

1. Technological Scalability Hypothesis: This hypothesis posits that incorporating adapt-
able and scalable technologies in the expansion planning process enhances the flexibil-
ity and efficiency of distribution networks. By leveraging technologies that can scale
with growing demands and changes in network conditions, operators can optimize re-
source allocation and operational efficiency.

2. Risk Integration Hypothesis: The integration of risk assessment methodologies into
the expansion planning framework improves decision-making by accounting for poten-
tial hazards and uncertainties. By quantifying risks associated with different expansion
scenarios, planners can prioritize investments that minimize risks and maximize sys-
tem reliability.

3. Reliability Optimization Hypothesis: Emphasizing reliability criteria and using ad-
vanced optimization algorithms in the planning process enhances the overall perfor-
mance and resilience of the distribution system. This hypothesis suggests that by op-
timizing for reliability metrics such as outage rates or system uptime, planners can
design networks that better withstand disruptions and meet customer expectations.

4. Data-Driven Planning Hypothesis: Leveraging comprehensive data analytics and
machine learning techniques enables better forecasting and decision-making in expan-
sion planning while reducing risks. By analyzing historical data and real-time infor-
mation, planners can make informed decisions that optimize network performance,
anticipate future demand, and mitigate potential failures.

5. Cost-Risk Trade-off Hypothesis: Balancing investment costs with risk mitigation
strategies leads to cost-effective expansion plans that maintain system reliability within
acceptable risk thresholds. This hypothesis acknowledges the trade-off between up-
front investment costs and ongoing operational risks, advocating for strategies that
optimize this balance to achieve long-term cost-efficiency and reliability.

6. Adaptive Planning Hypothesis: Implementing adaptive planning strategies that can
dynamically adjust to changing conditions and uncertainties promotes resilience and
reliability in distribution networks. This hypothesis emphasizes the importance of
flexibility in planning processes, allowing adjustments based on evolving technologi-
cal advancements, regulatory changes, and environmental factors to ensure sustainable
network performance.
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Objective Function:

1. Minimization of Investment Costs and Imbalance Costs: This objective function
aims to minimize the total investment cost in new line segments and storage devices,
as well as the imbalance costs in the base case and a convex combination between the
expected value and the Conditional Value at Risk (CVaR) of imbalance costs associated
with a set of failure scenarios.

2. Minimization of the Expected Value of Load Loss Cost and its CVaR: This ap-
proach considers not only the minimization of the expected value of the load loss cost
but also the CVaR of this cost for a range of failure scenarios. This allows capturing
the influence of high-impact events even if they have low probabilities

3. Components of the Total Cost Objective Function: The objective function aims to
minimize the total cost of the system by integrating several specific cost components.
The overall objective function Ctotal is defined as the sum of the following costs:

• Fixed line costs (Cline)

• Fixed and variable battery costs (Cbattery)

• Imbalance costs (Cimbalance)

• Load shedding and island operation costs (Creductioncharge)

• Conditional Value at Risk (CVaR) costs (CCVaR)

Constraints:

• Binary Investment Variables Constraints: These constraints ensure that the decision
variables, which determine which candidate assets will receive investments, are binary.
This helps to identify the optimal choice among the available alternatives [37].

• State of Charge (SOC) Constraints for Storage Devices: These constraints ensure
that the SOC of storage devices follows a predetermined schedule and stays within
specified limits, ensuring the safe and efficient use of storage devices [37].

• Loss of Load Constraints: These constraints aim to ensure that the loss of load re-
mains within maximum limits in various scenarios, guaranteeing the system’s ability
to meet demand even during failures [37].

• Power Flow Constraints: These linear constraints represent the physical properties
of the distribution grid, ensuring that power flows remain within capacity limits and
adhere to Kirchhoff’s circuit laws for both existing and prospective lines [37].
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• Voltage Bounds Constraints: These constraints impose voltage limits on each bus
within the distribution grid to ensure the safe and stable operation of the system [37].

• SOC Variation and Capacity Limits Constraints: These constraints address the
SOC variation over time and impose limits on the charging and discharging capacities
of both existing and candidate storage devices, including charging and discharging
rates [37].

• Investment Combinations and Line Installation Constraints: These constraints en-
sure that only one investment combination is chosen and link installed lines with in-
vestment decisions, clarifying the relationship between investment decisions and the
actual configurations of the grid [37].

• Operational Constraints under Failure Scenarios: These constraints deal with op-
erational decisions under various failure scenarios, including the use of storage device
capacities and maintaining the balance between supply and demand [37].

The thesis is composed of four chapters which are developed as follows:
Chapter 1: Definitions and basic concepts
In this chapter, we delve into the definitions and basic concepts in our field. We clarify

the terms and fundamental principles that underpin our research, thus establishing a common
language for the rest of our study.

Chapter 2: Optimization Models
In this chapter, We will examine in detail different optimization models and the various

methods used to solve them, emphasizing how they improve decision-making in different
settings.

Chapter 3: Foundations of Problem: Modeling, Analysis and Strategics
This chapter explores fundamental topics in distribution networks and risk manage-

ment, alongside mathematical problem formulation. It focuses on basic concepts such as
network planning, risk management, and risk aversion, as well as mathematical formulation
techniques and optimization methods. The study aims to define goals, constraints, and im-
provement methods for electrical distribution networks using practical and scalable method-
ologies.

Chapter 4: Case Study
In this chapter, the discussion centers on a series of ongoing studies. The chapter begins

by detailing the data set used, followed by presenting various case studies. Next, the optimal
model employed to achieve specific objectives is introduced, and the anticipated outcomes
are analyzed. Additionally, a comparison is provided between the utilization of Cplex and
CBC solvers. Subsequently, the final network configuration is examined, offering a graphical
interpretation of the findings. The process of selecting network branches is also explored,
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outlining the rationale behind choosing primary branches. Finally, a Monte Carlo simulation
is conducted, and the results are evaluated using both Cplex and CBC solvers.
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CHAPTER 1

DEFINITIONS AND BASIC CONCEPTS

There are several mathematical concepts and techniques that are fundamentally used in the
field of planning and expanding electrical distribution networks, and this is what we find in
section 1.1 and section 1.2

1.1 Technical definition

Electrical Network: An electrical network is designed to carry energy from the source of
production to the user.

A network comprises:

1. Electrical nodes where the facilities are connected, these are the substations.

2. Transmission lines (overhead or underground).

3. Voltage and current transformers.

4. Devices to protect the network.

Distribution: Distribution is the final processes that links the power generation plants to
the customer. This voltage is lowered to a medium value by transformer substations (HV/MV
substation). From these substations, lines or cables are connected to transformer substation
located close to the lines used, either to supply MV directly to subscribers or to public dis-
tribution substations (MV/LV substation) where the voltage is lowered to a value that allows
it to be used directly by subscribers for the various uses of electrical energy (lighting, etc...).

Distribution Grid: is the final stage of the electrical grid that distributes electricity to
homes, industry and other end-users.
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Capacity: The capacity of an electrical distribution line refers to the maximum amount
of electricity it can reliably carry without overload or excessive loss. This capacity is often
expressed in terms of the maximum current that the line can support.

Resilience: The resilience of an electrical network refers to its ability to maintain stable
and reliable operation in the face of disturbances such as equipment failures, extreme weather
conditions, or malicious attacks.

Failure: A failure in an electrical network occurs when a component, such as a transmis-
sion line or a transformer, ceases to function properly, resulting in a disruption of electrical
supply.

Risk Aversion: Risk aversion is the tendency to prefer certain outcomes with lower returns
over uncertain out comes with higher return. In the context of network planning, this may
translate to a preference for less risky solutions, even if they involve higher costs, to ensure
the reliability and stability of the network.

Storage Devices: Are computer hardware components used to store and retrieve digital
information.

1.2 Mathematical definition

Graph theory plays a fundamental and extensive role in the planning and expansion of distri-
bution grids, providing the mathematical frameworks and tools necessary for modeling, an-
alyzing, and solving various problems in this field. The network is represented as a graph to
illustrate energy flow and directions. Shortest path algorithms are used to determine efficient
routes for energy distribution, while enhancing network reliability through adding redundant
paths and identifying critical nodes. Additionally, it contributes to optimizing energy flow
and efficiently expanding the network using spanning trees and branching techniques, with
the capability to detect and isolate faults using graph techniques and dynamically adapting
to changes in load and generation patterns.

Convex combination: Is a linear combination of points where all coefficients are non-
negative and sum to 1.

Vertices: A finite set of points.

Edges: Finite number of lines.
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Graph: Is made up of vertices and edges.

1. If the two extremities of an edge are equal, the edge is said to be a loop.

2. Two different edges can have the same extremities.

view figure 1.1

Figure 1.1: A graph with 5 vertices and 10 edges

A Directed Graph: Is a graph where each edge is oriented by an arrow. a directed edge
goes from an initial extremity to a final extremity.

Bipartite Graphs: A graph whose nodes can be divided into two distinct sets such that no
edge connects two nodes from the same set. Bipartite graphs are often used to model binary
relationships between sets of data.

Expansion Graph: An extended graph that includes both the nodes and edges of the exist-
ing distribution graph, as well as potential new installations for network expansion, such as
new transformers, substations, and distribution lines. This graph allows for modeling various
possible configurations for network expansion.

A Path: Is a sequence of edges joined end to end, connecting two vertices called path
extremities.

An Oriented Path: Is a sequence of oriented edges such that the final edge of an edge is
equal to the initial edge of the next edge.

Shortest Paths: A shortest paths in a graph are the paths between two nodes that require
the fewest number of edges. These paths are important for determining efficient routes for
transporting electricity through the distribution network.
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Tree: is an indirect graph in which any two vertices are connected by exactly one path, or
equivalently connect a cyclic indirect graph. For example the figure 1.2

Figure 1.2: A labeled tree with 6 vertices and 5 edges

Nodes: In a graph, nodes represent individual entities in the network, such as transformers,
substations, or other connection points. Each node can be considered as a starting or ending
point for the flow of energy in the network.

Flow: A flow is a function that assigns a value to each edge, representing the amount
of flow passing through that edge. The flow must satisfy certain constraints, such as not
exceeding the capacity of any edge and maintaining flow conservation at each intermediate
vertex (except for the source and sink).

Flow network: Is a directed graph where each edge has a capacity and is typically used
to model a system where quantities can flow from one node to another. Flow networks
are extensively used in various real-world applications, including transportation systems,
computer networks, and hydraulic systems. the key components of a flow network:Vertices
(Nodes), Edges (Links), Capacity, Source and Sink, flow.

Maximum Flow: In a graph network, maximum flow refers to the maximum amount of
flow (e.g., electricity in an electrical network) that can be transported from a source node
to a destination node while respecting the capacities of the edges and the constraints of the
network. view the figure 1.3
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Figure 1.3: the maximum flow

Cut: The cut is often denoted as (S,T ) where S contains the source vertex s and possibly
other vertices, and T contains the sink vertex t and possibly other vertices. Edges in the flow
network that have one endpoint in S and the other end point in T constitute the ”cut edges.

Minimum Cut: A partition of a graph into two sets of nodes such that the number of edges
crossing the partition is minimized. Minimum cuts are used in various contexts, including
network segmentation and resilience planning. view figure 1.4

Figure 1.4: A minimum cut

By clarifying the key definitions, we have established a common language that will
facilitate in-depth discussions and subsequent analyses. Thus, this chapter serves not only as
a starting point but also as a reference point for our study.
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CHAPTER 2

OPTIMIZATION MODELS

Optimization models are mathematical tools used to find the best solution to a problem by
maximizing or minimizing an objective function while considering constraints. These mod-
els come in various forms such as linear programming, integer programming and nonlinear
programming [30]. They are crucial in lead optimization processes in drug discovery, where
properties of molecules are improved based on specific criteria [34]. Researchers have devel-
oped generic models for optimization, utilizing methods like simulated-annealing and hill-
climbing to find optimal solutions efficiently [45]. Additionally, a structured set of data and
templates are used to generate prescriptive models that are then translated into technical and
business prescriptive domains, ultimately leading to the creation and solving of optimization
models for specific problems [14].

2.1 Types of mathematical optimization models

In general, the more basic the assumptions made about the components of the optimization
model, the more effective the approaches are for resolving such issues.

The model can be expressed in general form as:
Minimize

f (x)

subject to
gi(x)≤ 0 for i = 1, . . . ,m

hi(x) = 0 for i = 1, . . . , ℓ

x ∈ X ,
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where f : Rn→ R is the objective function, g : Rn→ Rm is a collection of m inequality
constraints and h : Rn→ Rl is a collection of l equality constraints.

In fact, every inequality constraint can be represented by an equality constraint by mak-
ing hi(x) = gi(x)+ xn+1 and augmenting the decision variable vector x ∈ Rn to include the
slack variable xn+1. However, since these constraints behave very differently from an algo-
rithmic standpoint, we will explicitly represent both whenever necessary.

In the next section we will present the general types of optimization models:

2.1.1 Linear Programming problem

Linear programming(LP), also known as linear optimization, is a method used to achieve
the best outcome in a mathematical model by optimizing a linear objective function subject
to linear equality and inequality constraints [4] [16].It involves finding a vector that mini-
mizes a function while satisfying given constraints,commonly applied in mathematics, eco-
nomics,business and engineering fields like transportation and manufacturing [4][16].Linear
programming is crucial for optimizing resource allocation and management, offering solu-
tions to maximize profit, minimize costs, or reduce resource use [42] [13].

Linear programming are problems that can be expressed in standard form as:
find a vector:

x

that minimizes:
c⊺x

subject to:

Ax≤ b

and
x≥ 0

where the components of x are the variable to be determined, c and b are given vectors,
and A is a given matrix [4].

Linear programming problem formulated in standard form using nonnegative slack vari-
ables is given as follows [39]:

P = {x ∈ Rn : A1x≤ b1,A2x≥ b2,x≥ 0}

It can be represented as a polyhedral set in standard form by introducing nonnegative
slack variables s1 ≥ 0 and s2 ≥ 0, making the set:

P =
{
(x,s1,s2) ∈ Rn+|b1|+|b2| : A1x+ s1 = b1,A2x− s2 = b2,(x,s1,s2)≥ 0

}
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where |u| represents the cardinality of vector u [39]

Characteristics of LP problem:

Regardless of the way one defines linear programming, certain basic requirements are neces-
sary before this technique can be employed to distribution network problems. These include:

1. Well Defined Objective Function for Distribution Networks: A clearly defined ob-
jective must be stated, this may involve maximizing efficiency by optimizing resource
utilization, minimizing costs while using limited productive factors, or optimizing the
distribution of resources over a specific time period.

2. Alternative Courses of Action in Distribution Networks: There must be alternative
courses of action available. For instance, decisions could involve selecting between
various combinations of equipment and manpower, or allocating manufacturing ca-
pacity in specific ratios to produce different products.

3. Additivity of Resources and Activities in Distribution Networks: Additivity here
ensures that the total resources utilized across different activities equal the sum of re-
sources used by each individual activity, promoting efficient resource allocation with-
out interactions between activities.

4. Linearity of Objective Function and Constraints in Distribution Networks: Linear
programming necessitates that both the objective function and constraints governing it
should be linear. Without adherence to linearity, this technique cannot be effectively
applied.

5. Non-negativity of Decision Variables in Distribution Networks: In the context of
distribution networks, all decision variables should be non-negative as negative activi-
ties or variables are typically nonsensical.

6. Divisibility of Activities and Resources in Distribution Networks: Activities and
resources must be divisible, allowing for fractional quantities and ensuring continuous
resource utilization and output.

7. Finiteness of Activities and Resources in Distribution Networks: The optimal solu-
tion cannot be computed if there are infinitely many alternative activities and resource
restrictions. Typically, distribution network problems involve a finite number of activ-
ities and constraints.

8. Proportionality of Activity Levels to Resources in Distribution Networks: Propor-
tionality assumes linear relationships between activities and resources. For example,
doubling output requires doubling the necessary resources, implying constant resource
productivity and returns to scale.
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9. Single-valued Expectations in Distribution Networks: It means that resources, ac-
tivities, etc., are known with certainty, facilitating a deterministic programming model
for optimizing distribution networks

Linear Programming Methods

The linear programming problem can be solved using different methods, we will discuss the
two most important techniques called the graphical method and simplex method.

1. Simplex method: simplex method is one of the most popular methods to solve linear
programming problems. It is an iterative process to get the feasible optimal solution.
In this method, the value of the basic variable keeps transforming to obtain the maxi-
mum value for the objective function. The algorithm for linear programming simplex
method is provided below:

• Step 1: Establish a given problem. i.e write the inequality constraints and objec-
tive function.

• Step 2: Convert the given inequalities to equations by adding the slack variable
to each inequality expression.

• Step 3: Create the initial simplex tableau. Write the objective function at the
bottom row. Here, each inequality constraint appears in its own row. Now, we
can represent the problem in the form of an augmented matrix, which is called
the initial simplex tableau.

• Step 4: Identify the greatest negative entry in the bottom row, which helps to
identify the pivot column. The greatest negative entry in the bottom row defines
the largest coefficient in the objective function, which will help us to increase the
value of the objective function as fastest as possible.

• Step 5: Compute the quotients.To calculate the quotient, we need to divide the
entries in the far right column by the entries in the first column, excluding the
bottom row. The smallest quotient identifies the row. The row identified in this
step and the element identified in the step will be taken as the pivot element.

• Step 6: Carry out pivoting to make all other entries in column is zero.

• Step 7: If there are no negative entries in the bottom row, end the process. Oth-
erwise, start from step 4.

• Step 8: Finally, determine the solution associated with the final simplex tableau.

2. Graphical method: The graphical method is used to optimize the two-variable linear
programming. If the problem has two decision variables, a graphical method is the
best method to find the optimal solution. In this method, the set of inequalities are
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subjected to constraints. Then the inequalities are plotted in the XY plane. Once,
all the inequalities are plotted in the XY graph, the intersecting region will help to
decide the feasible region. The feasible region will provide the optimal solution as
well as explains what all values our model can take. Let us see an example here and
understand the concept of linear programming in a better way [13].

2.1.2 Non-Linear Programming

Nonlinear programming (NLP) is a mathematical optimization technique used to solve prob-
lems where the relationships between decision variables, constraints, and the objective func-
tion are nonlinear[31]. NLP problems can be more complex and challenging to solve than
linear programming (LP) problems, and they may require different algorithms, such as the
gradient method, the Newton method, or the penalty method [39]. NLP can be used to
model problems such as portfolio optimization, machine learning, engineering design, and
economics. To determine if a problem requires linear or nonlinear programming, one can
look at the mathematical expressions that define the problem. If the expressions involve
only linear terms, such as constants, coefficients, and variables, then the problem is linear.
If the expressions involve nonlinear terms, such as powers, roots, logarithms, trigonometric
functions, or products of variables, then the problem is nonlinear [31]. Sometimes, a non
linear problems can be converted to a linear problem by applying some transformations or
approximations[51].

This problem is nonlinear due to the presence of nonlinear functions in the definition
of the objective function f (x) or in the constraints gi(x) and hi(x). When these functions
contain components such as x2

i , sin(xi) or exi , they are not linear because they include terms
like powers, trigonometric functions, or exponential that cannot be represented by simple
linear equations.

Consider the following nonlinear programming problem:
Minimize

f (x)

subject to
gi(x)≤ 0 for i = 1, . . . ,m

hi(x) = 0 for i = 1, . . . , ℓ

x ∈ X,

where f ,g1, . . . ,gm,h1, . . . ,hℓ are functions defined on Rn,X is a subset of Rn, and x is
a vector of n components x1, . . . ,xn. The above problem must be solved for the values of the
variables x1, . . . ,xn that satisfy the restrictions and meanwhile minimize the function f [12].
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The function f is usually called the objective function, or the criterion function. Each
of the constraints gi(x) ≤ 0 for i = 1, . . . ,m is called an inequality constraint, and each of
the constraints hi(x) = 0 for i = 1, . . . , l is called an equality constraint, A vector x ∈ X
satisfying all the constraints is called a feasible solution to the problem. The collection of all
such solutions forms the feasible region [12].

The difference between LP and NLP

Linear programming is a method to achieve the best outcome in a mathematical model whose
requirements are represented by linear relationships whereas nonlinear programming is a
process of solving an optimization problem where the constraints or the objective functions
are nonlinear.

2.1.3 Integer Linear Programming

Integer programming is a mathematical optimization or feasibility program in which some or
all of the variables are restricted to be integers[35]. It is a subfield of discrete optimization,
and is used in various fields such as operations research, computer science and economics.
The problem can be formulated as follows:

maximize/minimize
c⊺x

subject to
Ax≤ b

x≥ 0

x ∈ Zn

where c ∈ Rn,A ∈ Rn×m and c ∈ Rm.

Integer programming has various applications, such as scheduling, resource allocation
and network design[38]. It is also used in combinatorial optimization problems, such as
the knapsack problem, the traveling salesman problem and the vertex cover problem[49].
These problems are known to be NP-hard, and integer programming provides a framework
for solving them optimally or approximately[35].

Algorithm for ILP

There are various methods to solve integer programming problems, including the branch-
and-bound method,branch-and-cut, and the cutting plane method[21].
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• Branch-and-Bound method: The branch-and-bound method is a systematic search
algorithm that explores the solution space by branching on integer variables and bound-
ing the objective function [21].

• The cutting plane method: The cutting plane method is a technique that adds valid
inequalities to the linear programming relaxation to cut off fractional solutions [21].

• Branch-and-Cut method:The Branch and Cut method is an optimization algorithm
used to solve integer linear programming (ILP) problems. It combines the Branch and
Bound algorithm with the use of cutting planes [48]. This method involves running a
branch and bound algorithm and using cutting planes to tighten the linear programming
relaxations. The Branch and Cut method is generally more efficient than the pure
Branch and Bound method, as the cutting planes help to reduce the size of the search
tree[48][44]. It has been successfully applied to solve a wide range of optimization
problems, including mixed-integer linear programs, submodular functions, large-scale
symmetric traveling salesman problems, and more[44][43].

Algorithm 1 Branch and Cut algorithm
1: Add the initial ILP to L, the list of active problems
2: Set x∗ = null and v∗ =−∞
3: while L is not empty do
4: Select and remove (dequeue) a problem from L
5: Solve the LP relaxation of the problem.
6: if the solution is infeasible then
7: Go back to Step 3 (while)
8: else
9: Denote the solution by x with objective value v.

10: if v≤ v∗ then
11: Go back to Step 3
12: end if
13: if x is integer then
14: Set v∗← v, x∗← x and go back to Step 3
15: end if
16: if desired, search for cutting planes that are violated by x then
17: If any are found, add them to the LP relaxation and return to Step 3.2
18: end if
19: Branch to partition the problem into new problems with restricted feasible re-

gions. Add these problems to L and go back to Step 3
20: end if
21: end while
22: Return x∗

where:

• L: List of active problems (ILP instances) being considered for solution.
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• x∗: Current optimal integer solution.

• v∗: Objective function value associated with x∗, the current optimal solution.

• x: Represents a feasible solution to the ILP problem.

• v: Objective function value associated with a feasible solution x.

Solving Linear Equations, Linear Programming, and Integer Linear Program-
ming: We review the hierarchical and methodological approach to solving linear equations,

Figure 2.1: The difference in time complexity of linear programs and integer linear programs
is highlighted by the dashed line.

linear programming, and integer linear programming, as illustrated in the Figure 2.1.

1. Linear Algebra: Linear algebra deals with solving linear equations using the Gaussian
elimination method.

• Gaussian Elimination Method: This method is used to transform a system of
linear equations into a triangular or echelon form, which simplifies the solution
of the system.

2. Linear Programming (LP): Linear programming aims to solve linear equations with
non-negative variables and linear inequalities. The methods used to solve linear pro-
gramming problems include:
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• Simplex Method: This method is very efficient and has polynomial time in av-
erage cases.

• Ellipsoid Method: Discovered by Khachiyan in 1979, this method is used to
examine solution points within a variable ellipsoid.

• Interior Point Method: Discovered by Karmarkar in 1984, it is one of the ef-
fective polynomial methods for solving linear programming problems.

Linear programming can be solved in deterministic polynomial time.

3. Integer Linear Programming (ILP): Integer linear programming aims to solve linear
equations with non-negative integer variables and linear inequalities in integers. This
problem is classified as NP-Complete, which means finding an efficient solution is a
significant challenge. The methods used to solve integer linear programming problems
include:

• Branch and Cut Method: This method is used to divide the problem into sub-
problems and solve them iteratively.

• Heuristic Methods: Such as Tabu Search, which are approximate methods aimed
at finding good solutions in a reasonable time.

2.1.4 Mixed Integer Linear Programming

Mixed-Integer linear programming (MILP) is an optimization problem in which some or all
of the variables are restricted to be integer. MILP problems consist of a linear objective func-
tion, linear constraints and integer restrictions on some or all of the variables [50]. MILP is
part of the broader scope of Mixed-Integer Nonlinear Programming (MINLP), which handles
both discrete and continuous variables with non-convex functions, presenting challenges in
optimization [46].

The general form of mixed integer linear programming is:

maximize c⊤x+d⊤y

subject to A1x+A2y≤ b

x ∈ Rnx
≥0, y ∈ Zny

≥0

where b ∈ Rm, c ∈ Rnx , d ∈ Rny , A1 ∈ Rm×nx , and A2 ∈ Rm×ny are given.
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Key Concepts of MILP

1. Decision Variables:

• Continuous Variables: These variables can take any real value within a given
range [39].

• Integer Variables: These variables are restricted to integer values [39].

• Binary Variables: A special case of integer variables that can only take values 0
or 1, often used to represent yes/no decisions [39].

2. Objective Function: The objective function in MILP is a linear function that we aim
to either maximize or minimize [39].

3. Constraints: Constraints in MILP are linear inequalities or equalities that the decision
variables must satisfy [39].

Formulation of MILP:

To formulate a MILP problem, follow these steps [39]:

• Define Decision Variables: Identify the variables that represent the decisions to be
made, specifying which are continuous, integer, or binary.

• Construct the Objective Function: Develop a linear objective function that reflects
the goal of the problem, whether it is to maximize profit, minimize cost, etc.

• Establish Constraints: Formulate the constraints that the decision variables must
satisfy. These constraints can include resource limitations, capacity restrictions, and
logical conditions.

Solving MILP:

1. Presolving Methods: Employed before the branch-and-cut process to simplify the
problem [39]. Presolving techniques include:

• Reducing Problem Size: Fixing variables and eliminating redundant constraints.

• Strengthening LP Relaxation: Tightening bounds and coefficients where the
LP relaxation of an integer programming problem min{c⊤x : x∈P∩Zn} with P=

{x ∈ Rn
+ : Ax ≤ b} is the linear programming problemmin{c⊤x : x ∈ P}. An LP

relaxation is indeed a relaxation, as it expands the feasible region by relaxing the
integrality constraints while keeping the objective function unchanged.

• Detecting Infeasibility and Redundancy: Using constraint activities to identify
and remove infeasible or redundant parts of the problem.
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These methods help in reducing the computational burden by making the problem
easier to solve.

2. Branch and Bound method: The Branch and Bound(B&B) method is an algorith-
mic technique for solving integer and combinatorial optimization problems, including
Mixed- Integer Linear Programming (MILP). Algorithm 2 is a step-by-step for the
Branch and Bound method

Algorithm 2 B&B algorithm for MILP
1: Initialize best solution← ∞ (for minimization problems)
2: Initialize queue with the root node
3: while queue is not empty do
4: current node← SELECT NODE(queue)
5: SOLVE RELAXATION(current node)
6: z← optimal value of relaxation
7: x∗← solution of relaxation
8: if z≥ best solution then
9: PRUNE(current node)

10: else
11: if x∗ is integer feasible then
12: best solution←min(best solution,z)
13: else
14: choose variable xi with fractional value in x∗

15: create left node with constraint xi ≤ ⌊x∗i ⌋
16: create right node with constraint xi ≥ ⌈x∗i ⌉
17: add left node and right node to queue
18: end if
19: end if
20: end while
21: return best solution

where z is the variable that holds the optimal solution value (in this case, for the relax-
ation problem) in each iteration of the algorithm, x∗ is the solution to the relaxation or
linearized problem at the current node.

3. Branch and Cut algorithm: The Branch and Cut algorithm is a powerful method used
to solve Mixed-Integer Linear Programming (MILP) problems. It combines elements
of branch and bound (to explore the solution space) with cutting planes (to strengthen
the linear relaxation of the problem) [39]. The algorithm 3 is a structured outline of
the Branch and Cut algorithm for MILP:
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Algorithm 3 Branch and Cut Algorithm for MILP
1: Initialize best solution← ∞ // For minimization problems
2: Initialize queue with the root node
3: while queue is not empty do
4: current node← select node from queue
5: Solve relaxation at current node to get z and x∗

6: if z≥ best solution then
7: Prune current node
8: else
9: if x∗ is integer feasible then

10: best solution←min(best solution,z)
11: else
12: Choose variable xi with fractional value in x∗

13: Create left node with constraint xi ≤ ⌊x∗i ⌋
14: Create right node with constraint xi ≥ ⌈x∗i ⌉
15: Add left node and right node to queue
16: end if
17: end if
18: end while
19: return best solution

where:

• xi is chosen based on its fractional value in x∗ when branching.

• x∗ is the current solution vector obtained from solving the relaxation.

• z is compared with best solution to determine whether to prune a node or update
the best solution found so far.

4. Heuristics: These are approximate methods used to find feasible solutions quickly
[39]. They can be used within the branch-and-bound framework to provide good start-
ing solutions or to improve bounds.

• Primal Heuristics: Such as diving heuristics and local searches, aim to find
feasible integer solutions by exploring the neighborhood of the LP relaxation
solutions.

• Large Neighborhood Search (LNS): A heuristic that explores large neighbor-
hoods of the current solution to find better solutions.

5. Decomposition Methods: Used for large-scale MILP problems by breaking them
down into smaller, more manageable subproblems [39].

• Dantzig-Wolfe Decomposition: Reformulates the problem to exploit its struc-
ture and solve it iteratively.
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• Benders Decomposition: Separates the problem into a master problem and sub-
problems, solving them iteratively and exchanging information between them
[39].

2.1.5 Mixed Integer Non-Linear Programming

Mixed-Integer Nonlinear Programming (MINLP) is a mathematical optimization technique
that combines the numerical difficulties of handling nonlinear functions with the challenge
of optimizing in the context of non-convex functions and discrete variables[26]. MINLP
problems are characterized by the presence of both continuous and integer variables, and
nonlinear relationships between these variables and the objective function. MINLP is used
to model complex real-world problems in various fields, such as engineering design, finance,
and logistics[26][5].

MINLP problems can be solved using various algorithms, including the modified Se-
quential quadratic programming (SQP) algorithm [22], which is used in the mixed integer
nonlinear solver h02da in the NAG Library[5]. This solver can handle both convex and non-
convex problems and is useful in scientific, engineering, and financial applications where
fully nonlinear models are needed[5].

Basic elements of MINLP methods

The basic concept underlying algorithms for solving (MINLP) is to generate and refine
bounds on its optimal solution value. Lower bounds are generated by solving a relaxation
of (MINLP), and upper bounds are provided by the value of a feasible solution to (MINLP).
Algorithms differ in the manner in which these bounds are generated and the sequence of
sub-problems that are solved to generate these bounds. However, algorithms share many
basic common elements[28], which are described next.

The general form of mixed integer nonlinear programming is:

maximize f (x,y) (2.1)

subject to

gi(x,y)≤ 0 ∀i ∈ {1, . . . ,m} (2.2)

h j(x,y) = 0 ∀ j ∈ {1, . . . , p} (2.3)

where f is the nonlinear objective function, gi and h j are the constraint functions, x are the
continuous variables and y are the integer variables.
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Key Concepts of MINLP

1. Decision Variables:

• Continuous Variables: These variables can take any real value within a given
range [39].

• Integer Variables: These variables are restricted to integer values [39].

• Binary Variables: A special case of integer variables that can only take values 0
or 1 [39].

2. Objective Function: The objective function in MINLP can be nonlinear, and the goal
is to either maximize or minimize it [39].

3. Constraints: Constraints in MINLP are nonlinear inequalities or equalities that the
decision variables must satisfy[39].

Formulation of MINLP

To formulate a MINLP problem [39], follow these steps:

• Define Decision Variables: Identify the variables that represent the decisions to be
made, specifying which are continuous, integer or binary.

• Construct the Objective Function: Develop a nonlinear objective function that re-
flects the goal of the problem.

• Establish Constraints: Formulate the constraints that the decision variables must
satisfy. These constraints can include nonlinear relationships, resource limitations and
logical conditions.

Solving MINLP:

1. Branch-and-Bound algorithm for nonlinear programming In NLP-BB, the lower
bounds come from solving the sub-problems (NLPR (lI,uI)). Initially, the bounds
(LI,UI) (the lower and upper bounds on the integer variables in (MINLP)) are used, so
the algorithm is initialized with a continuous relaxation whose solution value provides
a lower bound on zMINLP . The variable bounds are successively refined until the sub-
region can be fathomed. Continuing in this manner yields a tree L of sub-problems.
A node N of the search tree is characterized by the bounds enforced on its integer
variables: N def

= (ll,uI). Lower and upper bounds on the optimal solution value zL ≤
zMINLP ≤ zU are updated through the course of the algorithm. Algorithm 1 gives
pseudo-code for the NLP-BB algorithm for solving (MINLP) [28].
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Algorithm 4 The NLP Branch and Bound algorithm for solving MINLP
1: Initialize
2:

L ←{(LI,UI)} ,zU = ∞,x∗← NONE.

3: Terminate?
Is L = /0 ? If so, the solution x∗ is optimal.

4: Select Choose and delete a problem Ni =
(
li
I,u

i
I
)

from L .
5: Evaluate. Solve NLPR

(
li
I,u

i
I
)
. If the problem is infeasible, go to step 1(Initialize) , else

let zNLPR(li
I ,u

i
I)

be its optimal objective function value and x̂i be its optimal solution.
6: Prune.
7: if zNLPR

(
ℓi

l,u
i
I
)
≥ zU , go to step 1 then .

8: end if
9: if x̂i is fractional, go to step 5.

10: elselet zU ← zNLPR(li
I ,u

i
I)
,x∗← x̂i, and delete from L all problems with z j

L ≥ zU . Go to
step 1 then

11: end if
12: Divide. Divide the feasible region of Ni into a number of smaller feasible sub-regions,

creating nodes Ni1,Ni2 , . . . ,Nik . For each j = 1,2, . . . ,k, let zi j
L ← zN.PR(li

l ,u
i
i)

and add the

problem Ni j to L . Go to 1 .

where

• L : The list of sub-problems to be solved.

• (LI,UI): The lower and upper bounds of the feasible region for the solution.

• zU : The current value of the best known solution (upper bound).

• zL: The current value of the best known solution (lower bound).

• x∗: The variable that holds the current optimal solution.

• Ni: Represents a subproblem selected from the list L .

• (li
I,u

i
I): Tuple representing the lower and upper bounds of the feasible region for

a specific subproblem Ni.

• zNLPR: The optimal objective function value obtained when solving a nonlinear
programming problem (NLPR).

• zNLPR(li
I,u

i
I):: The optimal objective function value obtained from solving the

subproblem Ni with bounds (li
I,u

i
I).

• x̂i: The optimal solution obtained for the subproblem Ni.

• zi j
L : The optimal objective function value associated with subproblem Ni j after it

has been divided into smaller sub-regions.
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Branch-and-Bound Method: This method extends the branch-and-bound approach
to handle nonlinearities in the objective function and constraints [39]. Algorithm 5 is
Branch-and-Bound for MINLP Pseudocode.

Algorithm 5 Branch-and-Bound for MINLP Pseudocode
1: Initialize the root node with the original MINLP.
2: Solve the nonlinear programming (NLP) relaxation of the current node.
3: if the solution is integer and better than the current best then
4: Update the best solution.
5: end if
6: if the solution is not integer then
7: Select a variable to branch on.
8: Create two new nodes with additional constraints (branching).
9: end if

10: Prune nodes that cannot improve the current best solution.
11: Repeat until all nodes are processed.

2. Outer Approximation Method: This method solves a sequence of MILP subprob-
lems and NLP subproblems iteratively.

3. Generalized Benders Decomposition: This method decomposes the problem into a
master problem and subproblems, solving them iteratively and exchanging information
between them [39].

4. Heuristics: These are approximate methods used to find feasible solutions quickly.

• Primal Heuristics: Such as diving heuristics and local searches, aim to find
feasible integer solutions by exploring the neighborhood of the NLP relaxation
solutions.

• Large Neighborhood Search (LNS): A heuristic that explores large neighbor-
hoods of the current solution to find better solutions.

5. Hybrid Methods: Combining different optimization techniques to leverage their strengths
[39].

• Hybrid Branch-and-Cut and Outer Approximation: Integrating cutting planes
into the outer approximation framework.

• Metaheuristic-Guided Decomposition: Using metaheuristics like genetic algo-
rithms to guide the decomposition process.

2.1.6 Comparison between Optimization models

The differences between optimization models can be categorized in the following table:
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Aspect LP ILP MILP NLP
Variables Only continuous Only integer Mixed continu-

ous and integer
Continuous, can
include integer

Complexity Solvable in
polynomial time
using algorithms
like simplex or
interior point
methods[27] [33]

NP-hard, making
it computation-
ally intensive,
especially for
large instances
[47]

Generally harder
to solve than LP
due to the added
complexity of
discrete vari-
ables, but more
versatile than ILP

Most complex
due to nonlin-
earity, may have
multiple local
optima, making it
difficult to solve
globally [27][40]

Objective
Function and
Constraints

Linear Linear Linear Nonlinear

Flexibility Limited to lin-
ear problems with
continuous vari-
ables

Suitable for prob-
lems requiring in-
teger solutions

Can approximate
non-convex prob-
lems with arbi-
trary accuracy us-
ing binary vari-
ables [40]

High flexibility
for handling non-
linear problems

Solution
Quality

Provides opti-
mal solutions
efficiently but
may not handle
discrete decision
variables or
nonlinearity

Can provide
exact solutions
if solved opti-
mally but the
solution time
may increase
exponentially
with problem size

Can provide
exact or near-
optimal solutions
for a wide range
of optimization
problems with
discrete decisions

Can provide
high-quality
solutions for
problems where
linear approxi-
mations are not
sufficient

Applicability Suitable for
many practical
problems due to
its efficiency[27]
[33]

Suitable for op-
timization prob-
lems where deci-
sion variables are
required to be in-
teger values [47]

Popular choice
for energy system
optimization
problems[27]

Suitable for
problems with
nonlinear objec-
tive functions or
constraints
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Aspect LP ILP MILP NLP
Nonlinearity
Handling

Not applicable Not applicable More flexible,
can handle non-
convex problems
with the use of
binary variables
[40]

Designed to han-
dle nonlinearity

Presence
of Multiple
Local Optima

Single global op-
timum [40][27]

Single global op-
timum [40][27]

Single global op-
timum [40][27]

Multiple local op-
tima [40][27]

Table 2.1: the comparison between optimization models

To conclude this chapter dedicated to optimization models and methods, we have ex-
plored a range of essential approaches and tools for tackling complex decision and planning
problems. These optimization models offer powerful and effective solutions for maximizing
or minimizing objective functions while adhering to a set of constraints. This chapter serves
not only to introduce these essential concepts but also to provide a solid foundation for more
advanced analyses and practical applications to come.
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CHAPTER 3

MATHEMATICAL MODELING OF THE PROBLEM

In an electricity-dependent world, the efficient and reliable management of electrical net-
works is crucial. Electrical distribution networks must meet growing demands for capacity,
flexibility, and resilience against failures. The challenges posed by the integration of renew-
able energies, increasing demand, and the need to minimize service interruptions make the
planning and optimization of these networks more complex and essential.

To address the question posed in the first chapter, we present this study in this chapter
which aims to provide a comprehensive theoretical and practical framework for understand-
ing existing work and developing a mathematical model for the planning of electrical distri-
bution networks. It explores the fundamental concepts of distribution networks, resilience,
and risk aversion, as well as mathematical modeling and optimization techniques. The goal
is to enable readers to grasp the underlying principles of electrical network planning, under-
stand scalability challenges, and implement effective optimization algorithms to address the
problems encountered in this field.

3.1 Fundamental Concepts of Distribution Networks

3.1.1 Distribution Network Planning

Distribution network planning is a strategic process aimed at designing an efficient and cost-
effective distribution network to meet customer demand. This process is essential to ensure
that the electrical infrastructure can meet future needs while optimizing costs and minimiz-
ing environmental impacts [36][37]. The accompanying figure 3.1 represents an electrical
distribution network that includes several switches and circuit breakers, illustrating a prac-
tical example of such a network. The network consists of six points numbered from 1 to 6,
which represent different locations in the electrical network where loads or power sources
are connected. The horizontal and vertical lines in the diagram represent wires that connect
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these points together, with each line carrying a specific electrical current denoted by the sym-
bols I2, I3, I4, I5, and I6. Circuit breakers, represented by the symbols B1 to B5, are devices
used to protect the electrical circuit from overcurrents, each connected between two points
allowing electrical current to pass through. The arrows in the image indicate the direction of
the electrical current flowing through each point. For instance, the downward arrow at point
2 shows that the current I2 flows downwards from point 2. The connections between points
are as follows: Point 1 is connected to point 2 via breaker B1 with current I2; Point 2 to point
3 via breaker B2 with current I3; Point 3 to point 4 via breaker B3 with current I4; Point 4
to point 5 via breaker B4 with current I5; and Point 3 to point 6 via breaker B5 with current
I6. This detailed representation highlights the critical components and their interconnections
within an electrical distribution network, emphasizing the importance of strategic planning
in ensuring the network’s efficiency and reliability.

Figure 3.1: Single line diagram of distribution network

Objectives and Considerations of Distribution Network Planning

1. Reliability and Continuity of Service:

• Minimize service interruptions and guarantee stable power supply for all con-
sumers.

• Integrate alternative paths and redundant equipment to prevent widespread out-
ages and ensure rapid recovery after disruptions.

2. Economic Efficiency:

• Minimize investment and operating costs, while maximizing economic benefits.
This includes optimizing resources to achieve the best value for money.

• Use existing infrastructure efficiently while planning new investments strategi-
cally to maximize their utility and lifespan.
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3. Quality of Electricity:

• Ensure voltage and frequency levels remain within specified limits to protect end-
user equipment and ensure optimal performance.

• Minimize harmonics, voltage variations and other disturbances which can affect
the quality of the electricity supplied.

4. Flexibility and Adaptability:

• Effectively integrate renewable energy sources, taking into account their variabil-
ity and intermittency.

• Plan for the future integration of emerging technologies such as smart grids, elec-
tric vehicles and energy storage systems.

5. Security and Compliance:

• Ensure compliance with local, national and international regulations regarding
performance and safety.

• Ensure safe operations for personnel and the public, including protection against
voltage surges, short circuits and other electrical hazards.

Typical Constraints

1. Power Flow Constraints: Power flow constraints are essential to ensure the safe and
reliable operation of the distribution network. These constraints limit the amount of
power that can be transported over distribution lines without exceeding the thermal
capacities of conductors. Proper management of power flow is crucial to prevent over-
heating and potential damage to the infrastructure [36][37].

2. Management Techniques: Techniques such as active network management and the
use of advanced control devices help optimize power flows and avoid overloads. Real-
time monitoring and dynamic adjustment of power flows ensure that the network op-
erates within safe limits [36][37].

3. Voltage and Current Limits: Voltage and current limits must be maintained to ensure
power quality and avoid damage to electrical equipment. Fluctuations in voltage can
affect the performance of appliances and disrupt customer satisfaction. Maintaining
stable voltage and current levels is crucial for the overall reliability of the distribution
network [36][37].

4. Technological Solutions: The installation of voltage regulators, automatic tap chang-
ers and demand management systems allows for precise control of voltage levels.
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These technologies help maintain a consistent power supply and prevent issues related
to voltage sags or surges [36][37].

5. Capacity Constraints: The capacities of distribution lines, substations, and other
equipment must be sufficient to meet the projected peak demand. Planning must ac-
count for future growth to prevent potential overloads and ensure that the network can
handle maximum load conditions without failures.

6. Predictive Approaches: Using advanced forecasting models helps anticipate future
demand and plan necessary investments to expand network capacity. This includes
upgrading existing infrastructure and building new facilities to accommodate load
growth.

7. Operational Constraints: Operational constraints involve the management of dis-
tributed energy resources (DER) and energy storage systems. These constraints in-
clude technical limitations and the need for rapid response to demand fluctuations.
Effective operation of DER and storage systems is crucial for balancing supply and
demand in real-time.

8. Smart Management: Adopting smart grid technologies enables more efficient and
responsive management of operational constraints. Smart grids integrate advanced
sensors, communication networks and data analytic to enhance the coordination and
control of DER and storage systems[36][37].

9. Budget and Cost Constraints: Budget and cost constraints are critical factors in
distribution network planning. Planners must optimize investments to achieve the best
return on investment while staying within budgetary limits. Cost-effective solutions
are necessary to ensure the financial sustainability of the distribution network.

10. Financing Strategies: Innovative financing strategies, such as public-private partner-
ships and performance-based incentives, can provide the necessary resources for net-
work expansion and modernization projects. Effective budget management and cost
control measures ensure that projects are completed on time and within budget[36][37].

The ultimate goal of distribution network planning is to develop a plan adaptable to
changing business conditions while meeting customer service requirements in a cost-effective
and environmentally responsible manner. By integrating the latest technological advance-
ments and considering economic and environmental factors, planners can create robust and
sustainable networks.
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Evolution of Energy System Planning with Renewable Integration and Smart Tech-
nologies

Incorporating traditional methods into modern energy planning frameworks is crucial for en-
suring the sustainability, resilience,and efficiency of energy systems. Traditional approaches
, such as demand forecasting, capacity planning, reliability studies, and cost optimization,
have historically served as foundational pillars in energy planning strategies[36][37].

1. Demand Forecast:

• Using historical electricity consumption data to predict future needs.

• Taking into account economic, demographic and industrial factors to estimate
demand growth.

2. Capacity Planning:

• Provide safety margins to ensure that the network can meet the maximum ex-
pected demand.

• Reinforcement of distribution lines, transformers and substations to meet grow-
ing demand.

3. Reliability Studies:

• Analysis of outage scenarios to ensure that the network can withstand individual
equipment outages without significant loss of service.

• Use of measurements for the evaluation of the reliability and performance of the
electrical system.

4. Cost Optimization:

• Evaluation of investment projects based on their long-term profitability.

• Allocation of financial resources optimally to maintain and improve the network.

By integrating traditional methods 3.1.1 with modern technologies, energy planners can
develop comprehensive strategies that optimize resource utilization, enhance grid reliability,
and mitigate environmental impacts. This holistic approach fosters sustainable energy sys-
tems capable of meeting present and future energy demands[36][37].

These modern methodologies, prominent examples encompass:

1. Integration with Solar Energy: Incorporating solar energy technologies, such as
building-integrated photo voltaic (BIPV) and advancements in solar thermal systems,
diversifies the energy mix and reduces reliance on fossil fuels.
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2. Adoption of Modular Architecture and Data Management: Leveraging modular IT
and data architectures facilitates the seamless integration of renewable energy sources
and smart technologies. This enables real-time monitoring, control, and optimization
of energy usage, enhancing system flexibility and scalability.

3. Integration with Artificial Intelligence and Machine Learning: Harnessing the
power of artificial intelligence (AI) and machine learning (ML) algorithms optimizes
energy production, distribution, and consumption patterns. AI-driven analyses of vast
datasets improve predictive capabilities, enabling proactive management of energy re-
sources and grid stability.

4. Implementation of Energy Storage Solutions: Deploying energy storage technolo-
gies, such as batteries and pumped hydro, addresses intermittency issues associated
with renewable energy sources. Energy storage systems enhance grid resilience by
storing excess energy during periods of low demand for use during peak hours,ensuring
a reliable energy supply.

3.1.2 Fundamentals of risk management

Definition:

The definition of risk in The oxford English Dictionary[19] is as follows:”a chance or pos-
sibility of danger, loss, injury or other adverse consequences” and ”at risk” is defined as
”exposed to danger.” In this context, risk denotes negative outcomes. Nevertheless, taking a
risk can lead to a positive result. Another perspective is that risk is associated with uncer-
tainty regarding the outcome [23]. And thus, risk management can be defined as: the process
of identifying, evaluating, and prioritizing risks, followed by the coordinated and econom-
ical application of resources to minimize, monitor, and control the probability or impact of
unfortunate events or to maximize the realization of opportunities[11][24]. It involves an-
ticipating what might not go to plan and putting in place actions to reduce uncertainty to a
tolerable level[11].

The main steps of risk management include[11][24]:

1. Risk identification: Analyzing activities, processes, and environments to identify po-
tential risks from various sources, both internal and external.

2. Risk analysis and assessment: Establishing the probability of a risk event occurring
and its potential impact. Risks are then evaluated and ranked according to prominence
and consequence.

3. Risk mitigation and monitoring: Developing and implementing methods and options
to reduce threats, such as risk avoidance, transfer, sharing, or reduction. Continuous
monitoring and adaptation of the risk management process is crucial.
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Effective risk management helps organizations protect their assets, promote a risk-aware
culture, support strategic decision-making, and increase the likelihood of business continuity
and success[24][29]. It is a fundamental discipline for enterprises operating in complex and
rapidly evolving business environments[29].

Resilience and Reliability

Concept of Resilience in Electrical Distribution Networks: The resilience of electrical
distribution networks refers to their ability to withstand, quickly recover from, and adapt to
major disruptions such as natural disasters, technical failures, or intentional attacks. Key
resilience indicators include robustness, recovery time, recovery cost, and adaptive capacity.

1. Resilience Indicators:

• Robustness: Measures the network’s ability to resist initial disruptions without
failure. This can be evaluated by the reliability of system components and the
redundancy of infrastructure. For example, reinforced structures and redundant
lines can enhance the network’s robustness.

• Recovery Time: Represents the duration required to restore service after a dis-
ruption. Networks with effective planning and management can significantly
reduce recovery time. Techniques such as automatic reconfiguration and the use
of microgrids can help minimize downtime.

• Recovery Cost: Includes the financial costs of repairing and restoring service
after a disruption. This encompasses the replacement of damaged equipment,
labor costs, and economic losses due to service interruptions.

• Adaptive Capacity: Refers to the network’s ability to evolve and adapt to new
conditions and threats. This includes integrating new technologies such as re-
newable energy sources and energy storage systems, as well as improving man-
agement and maintenance practices.

2. Strategies to Improve Resilience:

• Investment in Infrastructure: Strengthening existing infrastructure and build-
ing new, more resilient infrastructure to withstand natural disasters and other
threats. This includes installing underground cables in storm-prone areas and
constructing more robust substations.

• Energy Storage Technologies: Integrating energy storage systems to ensure
continuous power supply during disruptions and facilitate quick recovery. Bat-
teries and other storage systems can provide backup power and stabilize the grid.
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• Micro-grids and Decentralized Systems: Developing micro-grids capable of
operating independently during main grid outages. Micro-grids can be quickly
restored and continue to provide electricity to critical areas.

• Advanced Planning and Management: Using modeling and simulation tools to
anticipate potential disruptions and develop contingency plans. Proactive plan-
ning can identify vulnerabilities and enable preventive measures to enhance re-
silience.

• Policy and Regulatory Reforms: Implementing policies and regulations that
promote investments in resilience and encourage the adoption of resilient tech-
nologies. Financial incentives and subsidies can support these efforts.

Reliability: On the other hand, focuses on routine failures and is generally evaluated us-
ing classical reliability indices(SAIDI – SAIFI – CAIDI – MAIFI 3.1.2). These indices are
designed to capture common outages and are often used for ex-post evaluation. The tradi-
tional methodologies used by the industry to plan improvements in distribution systems do
not account for the risk associated with HILP (High-Impact, Low-Probability) events, which
are much less predictable and far more impactful than routine events.

HILP Events: HILP events are incidents that, although rare, have extremely serious
consequences on energy systems. Here are some typical characteristics and examples of
HILP events:

Characteristics of HILP Events:

1. Low probability: These events rarely occur, making their prediction and modeling
difficult.

2. High impact: When they occur, they can cause significant damage to infrastructures,
widespread service disruptions, and significant economic costs.

3. Complexity of management: The unpredictable nature and severity of these events
require robust and flexible approaches for resilience and recovery.

Examples of HILP Events:

1. Natural disasters:

• Earthquakes.

• Hurricanes and severe wind storms.

• Major floods.

• Wildfires.
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2. Technological and industrial incidents:

• Major power grid failures (blackouts).

• Explosions or accidents at critical facilities.

3. Cyberattacks:

• Coordinated attacks against critical energy infrastructures.

4. Pandemics:

• Large-scale epidemics affecting human resources and infrastructure operations.

Importance of considering HILP Events: HILP events present unique challenges
for planning and managing energy systems. Considering these events in planning processes
is crucial for several reasons:

1. Preparedness and resilience:

• Developing infrastructures capable of withstanding extreme events and quickly
recovering after their occurrence.

• Integrating resilience strategies into the design and operation of energy systems.

2. Investment and planning:

• Justifying investments in long-term resilience measures by demonstrating the
benefits in terms of risk reduction.

• Using stochastic optimization techniques to account for the uncertainty and vari-
ability of HILP events in investment decisions.

3. Policy and regulation:

• Collaborating with regulators to develop standards and guidelines that account
for HILP risks.

• Educating stakeholders on the need for resilient investments and the long-term
benefits for the security and reliability of energy systems.

To bridge the gap between resilience and reliability, it is necessary to develop analytical
methodologies that support utilities investment decisions. These methodologies must be able
to capture the benefits of long-term risk mitigation and demonstrate to regulators the added
value in terms of resilience of various investment options.
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types of risk in distribution grid

The types of risk management approaches can be categorized as follows:

1. Risk-Averse Investment Plans: Three distinct levels of risk aversion in investment
strategies are identified: risk-neutral (λ = 0), medium risk aversion (λ = 0.5), and
high risk aversion (λ = 1). These strategies vary in their approach to minimizing the
Conditional Value at Risk (CVaR) associated with the cost of load loss. The highest
level of risk aversion focuses exclusively on reducing CVaR[36].

2. Incorporation of Risk-Based Objectives: Integrating risk-based objectives in plan-
ning processes is emphasized as crucial. This integration addresses both routine fail-
ures related to reliability and extreme events related to resilience. Traditional risk-
neutral metrics, such as Expected Energy Not Served (EENS), are insufficient for cap-
turing the impacts of High-Impact Low-Probability (HILP) events, highlighting the
need for risk-aversion strategies[36].

3. Consideration of Reliability and Resilience: The proposed methodology allows
planners to assign different levels of importance to reliability and resilience according
to their risk aversion. This approach includes investments in both line segments and
storage devices, providing a comprehensive risk management strategy for large-scale
distribution systems[36].

Traditional metrics and limitations

Traditional metrics for risk management in distributions networks expansion planning are
essential for ensuring that the grid can meet future demands while minimizing potential
risk. These metrics typically cover various aspects of reliability, economic performance and
system robustness.

A selection of traditional metrics:

1. Expected Energy Not Supplied (EENS):

This metric quantifies the anticipated amount of energy that will not be delivered to
customers due to system failures or inadequacies. It is crucial for evaluating the relia-
bility and resilience of the distribution grid, ensuring that necessary improvements can
be made to minimize disruptions.

2. Loss of Load Probability (LOLP):

The LOLP represents the probability that the system’s demand will exceed the avail-
able supply capacity at any given time. This measure is essential for assessing the
adequacy of the system’s capacity to meet consumer demand, helping to identify po-
tential areas of vulnerability.
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3. Loss of Load Expectation (LOLE):

LOLE indicates the expected number of hours or days in a specific period during which
the load surpasses the available capacity. This metric provides valuable insights into
the frequency of potential supply shortfalls, aiding in strategic planning to enhance
grid reliability.

4. System Average Interruption Frequency Index (SAIFI):

SAIFI measures the average number of interruptions a customer would experience over
a set period. This index is key to understanding the reliability of the distribution system
from the customer’s perspective, highlighting areas where service improvements are
needed.

5. System Average Interruption Duration Index (SAIDI):

SAIDI calculates the total duration of interruptions for the average customer over a
specified period. It is a vital measure of system reliability, reflecting the average out-
age duration customers face and indicating where infrastructure enhancements may be
necessary.

6. Customer Average Interruption Duration Index (CAIDI):

CAIDI measures the average time required to restore service to customers per inter-
ruption. This index focuses on the efficiency of the utility in restoring service after an
outage, emphasizing the importance of rapid response and repair times.

7. Frequency of Interruptions:

This metric counts the number of times service is interrupted over a certain period,
helping utilities identify areas with frequent service disruptions and prioritize mainte-
nance and upgrades accordingly.

8. Duration of Interruptions:

The total time that service is interrupted during a given period is measured by this met-
ric, assisting in evaluating the impact of outages on customers and informing strategies
to reduce interruption durations.

9. Cost-Benefit Analysis (CBA):

CBA is a financial assessment that compares the costs of expanding the distribution
grid to the benefits gained, such as reduced outages and increased capacity. It ensures
economic viability and helps prioritize investments based on their expected returns.

10. Net Present Value (NPV):
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NPV calculates the present value of cash inflows minus the present value of cash out-
flows over the lifecycle of a grid expansion project. This measure determines the
overall value and financial feasibility of the project, guiding investment decisions.

11. Internal Rate of Return (IRR):

IRR is the discount rate that makes the NPV of an expansion project zero. It is used to
evaluate the profitability of an investment, indicating the potential returns relative to
the cost of the project.

12. Risk of Cascading Failures:

This metric assesses the probability and impact of a failure in one part of the grid
causing subsequent failures in other parts. Understanding this risk helps in designing
a more robust and resilient distribution network.

13. Reliability Index (RI):

RI is a composite measure of system reliability that often incorporates factors like
SAIFI, SAIDI, and CAIDI. It provides a comprehensive overview of the system’s reli-
ability performance, guiding improvements and strategic planning.

14. Capital and Operational Expenditure (CapEx and OpEx):

These metrics measure the investment required for infrastructure expansion and the
ongoing costs of operating and maintaining the expanded grid. Ensuring that financial
resources are used efficiently and effectively is crucial for sustainable grid develop-
ment.

Role of risk management

The role of risk management in electricity distribution networks is essential to assess, an-
ticipate and manage risks linked to the reliability and resilience of the network. Risk man-
agement aims to identify potential risks, assess their probability and impact, and implement
strategies to mitigate them. In the context of electricity distribution networks, risk manage-
ment makes it possible to take into account extreme low probability events (HILP) such as
natural disasters, which can have a major impact on the network. By integrating risk-based
metrics, such as CVaR (Conditional Value at Risk), into the planning of the expansion of dis-
tribution networks, risk management makes it possible to better anticipate and manage these
extreme events, thus strengthening the resilience of the network and ensuring its reliability
in the face of various failure scenarios.
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3.2 Risk Aversion

Risk aversion in distribution network expansion refers to a strategy that considers uncertain-
ties such as load demand variations and extreme weather events like hurricanes when plan-
ning network upgrades. This approach aims to enhance resilience by strategically placing
distributed generation (DG) units, reinforcing existing lines, and implementing operational
measures like DG rescheduling and load curtailment. By incorporating risk assessment into
expansion planning, utilities can optimize investments in new line segments and storage de-
vices to mitigate the impact of high-impact low-probability events while improving overall
reliability [8].

In the context of distribution grid planning, risk aversion plays a critical role in decision-
making processes. Planners must consider variability in electricity demand due to factors like
population growth, economic changes, and technological advancements (e.g., increased use
of electric vehicles). Renewable energy sources, such as solar and wind, introduce variability
in supply due to their intermittent nature [2].

Ensuring that the grid remains reliable under various conditions, including peak demand
and extreme weather events, is paramount. Planners need to account for the potential failure
of grid components and the cascading effects that such failures might have [3].

Regulatory and environmental concerns must also be considered. Regulations regarding
emissions, land use, and other environmental impacts can introduce uncertainties in project
timelines and costs. Compliance with regulatory requirements can pose significant chal-
lenges [7].

Economic considerations include cost overruns, changes in funding, and fluctuations in
energy prices. Investment decisions must balance upfront costs against long-term operational
savings and benefits [1].

Additionally, a risk-averse strategy for the optimal placement and sizing of photovoltaic
inverters in distribution networks under uncertainties like solar irradiance and load variations
has been proposed, highlighting the importance of considering risk measures in decision-
making processes [6].

3.2.1 Implementation Strategies

Implementing risk-averse strategies in distribution network planning involves considering
high-impact, low-probability (HILP) events, uncertainty in load demand and renewable en-
ergy generation, and balancing risk with reliability. Strategies include system hardening,
investing in smart grid technologies, distributed generation (DG) placement, line harden-
ing, DG rescheduling, topology reconfiguration, microgrid forming, and priority-based load
curtailment [37] [9]. The proposed risk-averse approaches utilize stochastic optimization
frameworks, information-gap decision theory (IGDT), the ε− constraint method, and fuzzy
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decision-making to find robust solutions against uncertainties, optimize hardening schemes
within budget constraints, and achieve resilience in distribution networks [37]. These strate-
gies aim to enhance grid resilience by explicitly incorporating risks of extreme weather
events, modeling HILP event impacts, and providing flexibility to analyze trade-offs between
risk-neutral and risk-averse planning strategies.

Advanced analytic and modeling involve utilizing advanced simulation and forecast-
ing tools to model various risk scenarios and their potential impacts on the grid [20]. Grid
modernization includes investing in smart grid technologies that enhance monitoring, con-
trol, and automation capabilities, allowing for more responsive and adaptive grid manage-
ment [17]. Diversification of energy sources entails integrating a mix of traditional and
renewable energy sources to spread risk and enhance supply reliability [41]. Stakeholder en-
gagement is crucial, involving engaging with stakeholders to understand their concerns and
incorporate their insights into risk management strategies [52]. Regular reviews and updates
involve continuously reviewing and updating risk management plans to reflect new informa-
tion, technologies, and evolving risks [18]. In summary, risk aversion is a crucial aspect of
distribution grid planning that helps ensure reliability, economic stability, regulatory com-
pliance, and long-term sustainability. By adopting a risk-averse approach, utilities can better
navigate uncertainties and deliver consistent, reliable electricity to end-users[32].

3.2.2 Types of risk averse

1. Risk-Neutral Plan (λ = 0): The ”Risk-Neutral Plan” (λ = 0) is a network man-
agement approach focused on minimizing costs without considering extreme failure
scenarios. This method primarily addresses routine outages.

Failure Modeling:

• Routine Outages: The plan concentrates on frequent, low-severity outages. Rare
and catastrophic events are not significantly accounted for. Failure management
relies on average failure scenarios, reducing investment costs in resilience infras-
tructure.

• Single Failure State: Each outage scenario is simplified to a single failure state,
easing modeling but potentially underestimating impacts of more complex and
extreme outages.

• Power Flow Constraints: Managed in a simplified manner, without using com-
plex optimal power flow (OPF) models for each failure state. The system is
assumed to handle outages while maintaining acceptable load flow limits.
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Value of Lost Load (VoLL) The VoLL is used to evaluate costs associated with
outages. Here are the specific values observed in the documents for this plan:

• VoLL of 1.50$/kWh:

(a) Annual average unserved energy: 6.09 MWh

(b) CVaR1% of annual unserved energy: 17.05 MWh

(c) Worst-case scenario of annual unserved energy: 23.21 MWh

• VoLL of 5.00$/kWh:

(a) Annual average unserved energy: 4.18 MWh

(b) CVaR1% of annual unserved energy: 14.05 MWh

(c) Worst-case scenario of annual unserved energy: 22.49 MWh

Investment Strategy

• Minimal Investments: Investments are minimized, focusing on immediate needs
and routine outages. This includes mainly maintenance and minor network im-
provements. There are no significant investments in resilience infrastructure
against extreme events.

• No Preparation for Extreme Events: Since the plan does not account for extreme
scenarios, there are no substantial expenditures for energy storage systems or
strengthening infrastructure for natural disasters.

2. Medium Risk Aversion Plan (λ = 0.5): The ”Medium Risk Aversion Plan” (λ = 0.5)
is a network management approach that considers both routine outages and more ex-
treme failure scenarios. This allows for a better balance of costs and risks by investing
more in network resilience.

Failure Modeling

• Inclusion of Extreme Scenarios: Unlike the risk-neutral plan, this plan includes
extreme outage scenarios. Rare but potentially catastrophic events are considered
in planning.

• Risk Weighting: Modeling includes equal weighting between the expected value
of lost load and Conditional Value at Risk (CVaR). This helps evaluate not only
average outage costs but also costs in worst-case scenarios.

• Complex Power Flow Constraints: Power flow constraints are managed more
sophisticated, including optimized models for each failure state. This allows for
better preparation and response to outages.
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Value of Lost Load (VoLL) The VoLL for the medium risk aversion plan shows a
reduction in outage impacts due to additional investments:

• VoLL of 1.50$/kWh:

(a) Annual average unserved energy: Reduced compared to the risk-neutral plan

(b) CVaR1% of annual unserved energy: Reduced

(c) Worst-case scenario of annual unserved energy: Reduced

• VoLL of 5.00$/kWh:

(a) Annual average unserved energy: Reduced compared to the risk-neutral plan

(b) CVaR1% of annual unserved energy: Reduced

(c) Worst-case scenario of annual unserved energy: Reduced

Investment Strategy

• Moderate Investments: Investments are higher than in the risk-neutral plan, in-
cluding substantial network improvements and energy storage systems. These in-
vestments aim to strengthen resilience against both frequent and extreme outages[36].

• Preparation for Extreme Events: A significant portion of investments is directed
towards preparing for rare but severe events, such as natural disasters. This in-
cludes reinforcing critical infrastructure and adding storage capacity to handle
peak loads and prolonged interruptions[36].

Resilience and Reliability: The moderate risk aversion plan improves network re-
silience and reliability by considering a wide range of failure scenarios. Additional
investments allow for better management of routine outages and an effective response
to extreme events, reducing the likelihood of prolonged and costly outages[36].

3. High Risk Aversion Plan (λ = 1): The ”High Risk Aversion Plan” is a network
management strategy that emphasizes minimizing the impacts of extreme outages by
investing significantly in resilience and disaster preparedness.

Failure Modeling:

• Extreme Outage Scenarios: This plan includes detailed modeling of extreme out-
age scenarios. This involves a rigorous consideration of rare but severe events,
such as natural disasters, cyberattacks, or other large-scale incidents.

• Maximum Risk Weighting: The weighting is heavily focused on Conditional
Value at Risk (CVaR), meaning investment and management decisions are made
with the worst-case scenarios in mind. This reduces the risk of extreme losses.
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• Optimized Power Flow Constraints: Power flow models are optimized for each
failure state, ensuring the network can respond effectively even under intense
stress conditions. Detailed simulations are used to predict and manage power
flow constraints in critical situations.

Value of Lost Load (VoLL): VoLL values for the high risk aversion plan show sig-
nificant reductions in impacts due to massive resilience investments:

• VoLL of 1.50$/kWh:

(a) Average annual unserved energy: Reduced compared to risk-neutral and
moderate risk aversion plans

(b) CVaR1% of annual unserved energy: Significantly reduced

(c) Worst-case scenario of annual unserved energy: Substantially mitigated

• VoLL of 5.00$/kWh:

(a) Average annual unserved energy: Reduced compared to risk-neutral and
moderate risk aversion plans.

(b) CVaR1% of annual unserved energy: Significantly reduced.

(c) Worst-case scenario of annual unserved energy: Substantially mitigated.

Investment Strategy:

• Significant Investments: Investments are considerable, including advanced tech-
nologies for network resilience, large-scale energy storage systems, and the rein-
forcement of critical infrastructure to withstand extreme events.

• Maximum Preparation for Extreme Events: A large portion of investments is
dedicated to preparation and response for rare but severe events. This includes
developing detailed contingency plans, implementing robust backup systems, and
continuously improving infrastructure.

• Resilience Technologies: Investments include the adoption of advanced tech-
nologies such as real-time energy management systems, smart grids, and ad-
vanced protection devices to minimize outage impacts.

Resilience and Reliability: The high risk aversion plan aims to maximize network
resilience and reliability. Substantial investments and detailed preparations signifi-
cantly reduce the risks associated with outages, ensuring continuity of service even
under the most extreme conditions.
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3.2.3 Techniques for measuring risk aversion

Techniques for measuring risk aversion, play a crucial role in managing financial and opera-
tional risks, particularly in network planning. These metrics provide a quantitative basis for
understanding and mitigating potential losses, ensuring that strategic decisions are informed
by a comprehensive risk assessment. Among these techniques are[36]:

1. Value at Risk (VaR):

• Definition: VaR is a measure of exposure to financial or operational risk. It
represents the maximum amount that can be lost with a certain probability (e.g.,
95%) within a given time frame (e.g., one day).

• Calculation VaR is calculated by determining the maximum amount that can be
lost with a certain probability. For example, if the probability is 95%, VaR is the
maximum amount that can be lost with a 95% probability.

• Application: In the context of distribution network planning, VaR is used to
assess exposure to the risk of network disruption. For example, VaR can be used
to determine the maximum amount that can be lost in the event of a network
disruption with a certain probability.

2. Conditional Value at Risk (CVaR):

• Definition: CVaR is a measure of exposure to financial or operational risk that
considers not only the probability but also the magnitude of the risk. It represents
the maximum amount that can be lost with a certain probability (e.g., 95%) within
a given time frame (e.g., one day), taking into account the magnitude of the risk.

• Calculation: CVaR is calculated by determining the maximum amount that can
be lost with a certain probability, taking into account the magnitude of the risk.
For example, if the probability is 95%, CVaR is the maximum amount that can
be lost with a 95% probability, considering the magnitude of the risk.

• Application: In the context of distribution network planning, CVaR is used to
assess exposure to the risk of network disruption, considering not only the prob-
ability but also the magnitude of the risk. For example, CVaR can be used to
determine the maximum amount that can be lost in the event of a network dis-
ruption with a certain probability, taking into account the magnitude of the risk.

3.3 Mathematical Formulation

Based on the provided code snippets and the context of optimization and network modeling,
here is a detailed list of sets, indexes, variables, and parameters:
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3.3.1 Sets and Indexes

1. Sets:

• Lc: Set of candidate lines.

• H: Set of batteries.

• D: Set of typical days.

• Nload: Set of loads (buses).

• T : Set of time periods.

• S: Set of scenarios.

• ΨN : Set of indexes of all nodes of the distribution grid.

• ΨSS: Set of indexes of nodes that are substations of the distribution grid.

• Ω: Set of indexes of failure scenarios.

• Ωresilience: Set of indexes of failure scenarios associated with resilience.

• Ωroutine: Set of indexes of routine failure scenarios.

• C: Set of indexes of failure states.

2. Indexes:

• l: Index of lines.

• h: Index of batteries.

• d: Index of typical days.

• n: Index of loads (buses).

• t: Index of time periods.

• s: Index of scenarios.

• g: Index of generators.

• s: Index of storage units.

• c: Index of failure state.

• e: Index of the islands formed under a contingency state.

• j: Index of investment decision.

• t0: Index of the first time period of a day type.
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3.3.2 Variables

• Ctotal: Total cost.

• Cline: Line cost.

• Cbattery: Battery cost.

• Cimbalance: Imbalance cost.

• Creduction charge: Load shedding and island operation cost.

• CCVaR: Conditional Value at Risk cost.

• cfix,l: Fixed cost for line l.

• xfix,l: Binary variable indicating whether line l is installed.

• csd fix,h: Fixed cost for battery h.

• csd var,h: Variable cost for battery h.

• xsd,h: Decision variable for battery h.

• xsd var,h: Decision variable for variable cost of battery h.

• pin max,h: Maximum input capacity of battery h.

• wd: Weight for day d.

• p f : Penalty factor.

• cimb: Imbalance cost.

• δ−n,t,d: Negative imbalance variable for load n at time t on day d.

• δ+
n,t,d: Positive imbalance variable for load n at time t on day d.

• λ : Weighting parameter.

• sprob,s: Probability of scenario s.

• ltds,t,d,s: Load shedding for time t, day d, and scenario s.

• φcvar,t,d,s: Scenario variable for CVaR.

• Pg,t : Power generated by generator g at time t.

• Ss,t : Power supplied from storage s at time t.
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• Dt : Demand at time t.

• xg: Binary variable indicating investment in generator g.

• ys: Binary variable indicating investment in storage s.

• ∆+
n,t,d: Positive imbalance in bus n at time period t of day type d.

• ∆−n,t,d: Negative imbalance in bus n at time period t of day type d.

• ζt,d: CVaR auxiliary variable representing the value at risk at time period t of day type
d.

• ψCVaR,t,d,s: CVaR auxiliary variable.

• fl,t,d: Flow in line l at time period t of day type d.

• gTr,n,t,d: Injection via substation n at time period t of day type d.

• L†
t,d,s: Load shedding at time period t of day type d of scenario s.

• L j,e,c: Load shedding in island e for relevant investment j under failure state c.

• pin,h,t,d: Charging of storage device h at time period t of day type d.

• pout,h,t,d: Discharging of storage device h at time period t of day type d.

3.3.3 Parameters

• αcvar: Confidence level for CVaR.

• cfix,l: Fixed cost for line l.

• csd fix,h: Fixed cost for battery h.

• csd var,h: Variable cost for battery h.

• pin max,h: Maximum input capacity of battery h.

• wd: Weight for day d.

• p f : Penalty factor.

• cimb: Imbalance cost.

• λ : Weighting parameter.

• sprob,s: Probability of scenario s.

• ReserveMargin: Predefined percentage to ensure reliability.
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• Cinv,g: Investment cost of generator g.

• Cinv,s: Investment cost of storage s.

• Budget: Budget for investments.

• αCVaR: CVaR parameter.

• δ : Number of hours in a time period t.

• η : Round trip efficiency of batteries.

• ρ: Probability of scenario s.

• CImb: Cost of imbalance.

• CL,fix,l: Fixed investment cost of candidate line l.

• CSD,fix,h: Fixed investment cost of candidate storage device h.

• CSD,var,h: Variable investment cost of candidate storage device h.

• Dpeak,i: Peak demand of bus i.

• Dn,t,d: Demand of bus n at time period t of typical day d.

3.3.4 Scenario-Based Approach

Using Scenarios to Capture Uncertainty in Demand and Outages: The scenario-based
approach is a method used to model and manage uncertainty in complex systems such as
electricity distribution networks. This method involves creating different possible scenarios
that represent potential variations in key parameters, such as electricity demand and network
outages.

1. Capturing Uncertainty in Demand

• Variation in Demand: Scenarios can represent different trajectories of electric-
ity demand growth, taking into account factors such as demographic changes, the
adoption of new technologies (like electric vehicles and smart appliances), and
changes in consumer behavior.

• Historical Data and Projections: Use historical data and future projections to
create scenarios that cover a range of possibilities, from low to extremely high
demand.

2. Capturing Uncertainty in Outages
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• Types of Outages: Include various types of outages in the scenarios, such as
those caused by extreme weather events, equipment failures, or cyberattacks.

• Frequency and Duration: Model the frequency and duration of outages to re-
flect the uncertainties and variabilities observed in historical data and risk assess-
ments.

Methods for Generating and Selecting Representative Scenarios

1. Generating Scenarios:

• Historical Data Analysis: Use historical data on demand and outages to identify
trends and patterns. This information can be used to generate plausible future
scenarios[36].

• Stochastic Models: Develop stochastic models that incorporate probability dis-
tributions for key variables (e.g., electricity demand, outages). These models can
generate a large number of possible scenarios[36].

• Monte Carlo Simulation: Utilize Monte Carlo simulation techniques to explore
a wide range of scenarios by varying random parameters according to their prob-
ability distributions[36].

2. Selecting Representative Scenarios

• Clustering: Apply clustering techniques to group similar scenarios and select a
representative number of scenarios that capture the diversity of possible futures.
For example, algorithms like k-means can be used to cluster scenarios into ho-
mogeneous groups[36].

• Dimensionality Reduction: Use dimensionality reduction methods, such as prin-
cipal component analysis (PCA), to identify scenarios that explain most of the
variability in the data[36].

• Selection Criteria: Define selection criteria based on planning objectives and
acceptable risks. Criteria may include coverage of extreme cases, representation
of average cases, and consideration of high-impact scenarios[36].

How are Outage Scenarios Modeled in Distribution Networks The modeling of break-
down scenarios in distribution networks is done as follows:

1. Considering (Routine Failures) and High Impact Low Probability (HILP Events):
Scenarios include both routine failures and rare but high-impact events, such as natural
disasters.
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2. Generating Failure Scenarios from Historical Data: Failure scenarios are generated
from historical data on network reliability, considering different levels of severity.

3. Modeling Network State in Scenarios: A binary variable ylmtd is used to represent
the state of the network (whether line l is available or not) for each scenario node m,
hour t, and day d. This variable reflects line failures due to routine failures and rare
events.

4. Transition Probabilities Between Scenarios: Each failure scenario is associated with
a transition probability π ′md which reflects the likelihood of reaching this scenario. Sce-
narios associated with rare but high-impact events (HILP) have much lower transition
probabilities.

5. Considering the Impact of Failures in the Objective Function: The model aims
to minimize a convex combination of the expected value and the CVaR (Conditional
Value at Risk) of operational costs, including the energy not supplied due to failures.
This allows capturing the impact of rare but high-impact events, in addition to routine
failures.

3.3.5 Objective Function

Theoretical Formulation The overall objective function Ctotal is defined as the sum of the
following costs:

• Fixed line costs Cline

• Fixed and variable battery costs Cbattery

• Imbalance costs Cimbalance

• Load shedding and island operation costs Creduction charge

• Conditional Value at Risk (CVaR) costs CCVaR

Thus, the objective function is as follows:

Ctotal =Cline +Cbattery +Cimbalance +Creduction charge +CCVaR (3.1)

Cost Components

1. Line Costs Cline The fixed line costs are calculated as follows:

Cline = ∑
l∈Lc

cfix,l · xfix,l (3.2)
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where cfix,l is the fixed cost for line l and xfix,l is the binary variable indicating whether
line l is installed.

2. Battery Costs Cbattery

Battery costs include both fixed and variable costs:

Cbattery = ∑
h∈H

(csd fix,h · xsd,h + csd var,h · xsd var,h · pin max,h) (3.3)

where csd fix,h and csd var,h are the fixed and variable costs for battery h, respectively,
xsd,h and xsd var,h are decision variables, and pin max,h is the maximum input capacity of
battery h.

3. Imbalance Costs Cimbalance

Imbalance costs are calculated as follows:

Cimbalance = ∑
d∈D

wd · p f · cimb · ∑
n∈Nload

∑
t∈T

(δ−n,t,d +δ+
n,t,d) (3.4)

where wd is the weight for day d, p f is a penalty factor, cimb is the imbalance cost, and
δ−n,t,d and δ+

n,t,d are the imbalance variables for load n at time t and day d.

4. Load Shedding and Island Operation Costs Creduction charge,

These costs are calculated as follows:

Creduction charge = (1−λ ) · p f · cimb · ∑
d∈D

wd ·∑
t∈T

∑
s∈S

sprob,s · ltds,t,d,s (3.5)

where λ is a weighting parameter, sprob,s is the probability of scenario s, and ltds,t,d,s is
the load shedding for time t, day d, and scenario s.

5. CVaR Costs CCVaR

CVaR-related costs are formulated as follows:

CCVaR = λ · p f · cimb · ∑
d∈D

wd ·∑
t∈T

(
ζt,d +∑

s∈S

sprob,s

1−αcvar
·φcvar,t,d,s

)
(3.6)

where αcvar is the confidence level for CVaR, ζt,d is an auxiliary variable, and φcvar,t,d,s

is a scenario variable.

In summary, the objective function Ctotal aims to minimize the total costs associated
with the management and optimization of the system by integrating several specific cost
components. This formulation allows for comprehensive and optimized modeling of the
system’s associated costs.
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3.3.6 Constraints

The constraints of the model typically include the following elements:

1. Power Balance Constraints These constraints ensure that supply meets demand at all
times:

∑
g

Pg,t +∑
s

Ss,t = Dt ∀t

where:

• Pg,t is the power generated by generator g at time t.

• Ss,t is the power supplied from storage s at time t.

• Dt is the demand at time t.

2. Capacity Constraints These constraints impose limits on generation, storage, and
transmission capacities:

Pg,t ≤ Pmax
g ∀g,∀t

Ss,t ≤ Smax
s ∀s,∀t

where:

• Pmax
g is the maximum capacity of generator g.

• Smax
s is the maximum capacity of storage s.

3. Operational Constraints These constraints include minimum and maximum genera-
tion levels, ramp rates, etc.:

Pmin
g ≤ Pg,t ≤ Pmax

g ∀g,∀t

|Pg,t−Pg,t−1| ≤ Rampg ∀g,∀t

where:

• Pmin
g is the minimum generation level of generator g.

• Rampg is the ramp rate of generator g.
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4. Reliability Constraints These constraints ensure the reliability and stability of the
system under various scenarios:

∑
g

Pg,t +∑
s

Ss,t ≥ (1+Reserve Margin)×Dt ∀t

where:

• Reserve Margin is a predefined percentage to ensure reliability.

5. Investment Constraints These constraints limit investments in new infrastructure
based on budget or other criteria:

∑
g

Cinv
g × xg +∑

s
Cinv

s × ys ≤ Budget

where:

• Cinv
g is the investment cost of generator g.

• xg is a binary variable indicating investment in generator g.

• Cinv
s is the investment cost of storage s.

• ys is a binary variable indicating investment in storage s.

3.3.7 Scalability Methodologies

1. Large-Scale Model Scalability Challenges:

• Algorithmic Complexity: Large-scale models can exhibit high algorithmic com-
plexity, meaning that computation time significantly increases with problem size.
This can make obtaining solutions within reasonable timeframes challenging.

• Memory Consumption: Large models may require significant memory to be
solved, which can pose resource management issues, especially on machines with
limited memory capacities.

• Balance Between Accuracy and Speed: Obtaining precise solutions for large-
scale models can be extremely costly in terms of computation time. Finding a
balance between solution accuracy and the time required to obtain them is a key
challenge.

• Adaptability to Changes: Large-scale models often need to be readjusted to ac-
count for new data or parameter changes. Ensuring that the model can be quickly
updated without compromising existing performance is an additional challenge.
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• Algorithm Scalability: Algorithms used to solve models must be able to adapt to
increasingly large datasets without sacrificing efficiency. Some algorithms may
not be sufficiently scalable to effectively handle large-scale problems.

2. Model Complexity Reduction Techniques:

• Scenario Decomposition: This approach involves dividing the model into smaller
sub- problems, each corresponding to a specific scenario. By solving these sub-
problems sequentially or in parallel, the overall model complexity can be re-
duced.

• Scenario Aggregation: Instead of considering each scenario individually, similar
scenarios can be grouped or aggregated, reducing the total number of scenarios
to be considered. This simplifies the overall model while retaining important
problem characteristics.

3. Heuristic Approaches for Timely Solutions:

• Meta-heuristics: Meta-heuristics, such as genetic algorithms, simulated anneal-
ing, or ant colony algorithms, provide approximate but often high-quality solu-
tions within reasonable time-frames for large-scale problems.

• Cutting Plane Techniques: Cutting plane techniques, such as Gomory cuts or
Chvátal Gomory cuts, can be used to reduce the effective size of the model by
adding constraints that eliminate certain non-optimal solutions.

• Approximate Solution Methods: Instead of seeking the optimal solution, these
methods aim to find a satisfactory solution within a reasonable time-frame using
efficient search strategies, such as local search or tabu search.

3.3.8 Optimizing Electrical Distribution Networks

The setting takes place within an electrical distribution network, encompassing various com-
ponents such as transmission lines and transformers. This network is subject to various
constraints and objectives, including notably operational cost reduction and ensuring power
supply reliability. To address this complex issue, we used a developed Python script based
on the ’Pyomo’ library dedicated to modeling and optimization solving,which can be sum-
marized in the next plan 3.2:
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INITIALIZATION

DATA READING AND PREPARATION

Definition of the optimization model (variables, objective function, and model constraints)

Formulation of the optimization problem (in the form of MILP)

Choice of solvers

Solving the optimization problem

Calculation of Objective Metrics

Analysis of results (investments, costs, etc.)

Figure 3.2: Investment Optimization Process Flowchart

This script starts by initializing a logging system using the ’logging’ module, recording
messages in a specified file. Then, it imports the required modules, including ’pandas’ for
data manipulation, as well as ’Solver Factory’ from Pyomo allowing for the instantiation of
optimization solvers. Two main functions are defined: ’main()’ and ’run investment()’. The
’main()’ function acts as an entry point, where data is read from a specific directory via the
’read data alternative()’ function. The ’run investment()’ function constructs and solves the
optimization model using a class called ’Expansion Planning’. After solving the model, the
results (objective costs and found solutions) are saved in a journal file as well as in CSV files
to facilitate access and visualization.
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Why We Chose MIlP Over Other Methods? Choosing MIlP over other methods is due
to several reasons that make it particularly suitable for planning the expansion of distribution
power grids, especially when considering risk and resilience:

• Handling Discrete and Continuous Decisions: MIP allows for both discrete (binary/integer)
and continuous decision variables, which is essential for accurately modeling invest-
ment decisions (such as whether to install new lines) and operational variables (like
power flows).

• Complex Constraint Modeling: MIP can model a wide range of constraints, including
those on power flow, capacities, and voltages. This flexibility is crucial for representing
the physical and operational limits of the power grid accurately.

• Global Optimality: MIP finds globally optimal solutions, which is important in invest-
ment planning to ensure cost-effectiveness and reliability. Suboptimal decisions can
lead to higher costs or reduced system performance.

• Integration of Risk Measures: MIP effectively incorporates advanced risk measures
such as Conditional Value at Risk (CVaR). This enables the model to handle uncer-
tainties and provide robust solutions that enhance system resilience.

• Scalability and Efficiency: Advances in optimization algorithms and computational
power have made MIP capable of solving large-scale problems efficiently, making
it suitable for complex grid expansion scenarios involving numerous variables and
constraints.

• Industry Acceptance: MIP is widely used and accepted in the industry for various op-
timization problems, ensuring that the methods and solutions are aligned with industry
standards and practices.

Comparison with Other Methods

• Linear Programming (LP): Suitable for continuous variables but cannot handle discrete
decisions necessary for investment planning.

• Nonlinear Programming (NLP): Can model nonlinear relationships but may struggle
with global optimality and increased problem complexity.

MIP is chosen for its ability to handle the complexity of grid expansion planning, model
a variety of constraints, achieve global optimality, integrate risk measures, and its broad
acceptance in the industry.
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Methodology Used in the selection of candidate branches

1. Scenario Analysis: The article uses a scenario-based approach to determine the candi-
date branches. Scenarios are defined to represent different load conditions and outages
in the distribution network.

2. Stochastic Modeling: Stochastic modeling is employed to account for uncertainty in
demand and outages. This modeling helps identify the network branches that are criti-
cal for maintaining network reliability and robustness under various outage scenarios.

3. Mixed-Integer Linear Programming (MILP): A MILP model is formulated to optimize
network expansion. The model includes binary investment variables for each candidate
branch. The model’s solutions determine which branches are selected for expansion
based on their impact on reducing imbalance costs and improving network resilience.

4. Capacity and Flow Constraints: Line capacity and power flow constraints are incorpo-
rated into the model to ensure that the selected candidate branches effectively improve
network performance.

Graphical visualization: After solving the electrical network optimization problem, a cru-
cial step is to visualize the obtained results. For this purpose, the code use a data set repre-
senting the network’s topology, including transmission lines, substations, and loads, stored in
specific CSV files (’branches.csv’, ’substations.csv’, ’loads.csv’), read using the ’pandas’ li-
brary. These data are then used to instantiate the ’Network’ class, defined in the ’network.py’
file, responsible for creating and visualizing the electrical network. By calling the ’visual-
ize()’ method of this class, we generate a graphical representation of the electrical network,
using the ’matplotlib’ library. This visual representation provides an overview of the net-
work’s changes after optimization, thus revealing the improvements made and the system’s
efficiency. Finally, the graph is displayed using ’plt.show()’.

Modeling provides us with a powerful means to understand, analyze, and solve com-
plex problems across various domains. It allows us to simplify reality while preserving the
essentials, thus facilitating decision-making and strategic planning. By encapsulating inter-
actions between variables and identifying causal relationships, it enables us to predict the
consequences of different actions and strategies. This chapter serves as a cornerstone of our
journey, laying the necessary groundwork for in-depth analysis and effective solution formu-
lation. By understanding the underlying mechanisms of problems, we are better equipped to
propose strategic interventions and make informed decisions.
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CHAPTER 4

CASE STUDY

In this chapter, we apply the Monte Carlo simulation method for planning network expansion
with risk consideration.

We will study two cases of an electrical distribution system consisting of 54 buses [10].
We use this system to illustrate the method of planning the expansion of distribution networks
while taking into account the risks of failures and the costs associated with investments.

Figure 4.1: 54 Bus System
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This figure4.1 illustrates an electrical distribution network with various nodes (or buses),
lines (or branches), and substations. Here is a detailed explanation of the elements in the
figure:

1. Nodes (Buses):

The nodes, represented by numbered circles from 1 to 54, are the points where electric-
ity is consumed or redistributed. Each node can represent a load, a connection point,
or a substation.

Example: Node 1 is connected to line L2 and node 9.

Some nodes have multiple connections, indicating their importance in the network
structure.

Example: Node 8 has several connected lines (L10, L12, L13), making it a crucial
connection point.

2. Substations:

Substations are represented by squares and are numbered 51, 52, 53, and 54. They play
a crucial role in voltage transformation and electricity distribution across the network.

Example: Substation 51 is connected to node 1 via line L3.

They are strategically placed to optimize electricity distribution. They transform and
regulate voltage before distributing electricity to connected nodes.

Example: Substation 54 serves several nodes, including nodes 54, 21, and 22 via lines
L34, L36, and L35.

3. Lines (Branches):

The lines (branches) connect the nodes and can be existing (solid lines) or proposed
(dashed lines). Each line has a unique number for easy identification.

• Solid Lines: Represent existing lines.

Example: Line L1 connects nodes 2 and 9.

• Dashed Lines: Indicate candidate lines for addition.

Example: Line L14 is a candidate line between nodes 9 and 17.

The dashed lines represent redundancy and expansion options for the network.
Adding these lines could improve the network’s resilience and capacity.

Example: Line L65 could provide a new connection between nodes 11 and 15, thereby
improving the network’s flexibility.

4. Line Numbers (L):
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Each line is numbered (L1 to L72) for precise identification and to facilitate network
analysis.

Example: Line L10 connects nodes 7 and 8.

Load Distribution:

The figure shows how loads are distributed across the network, with several nodes
aligned along certain main branches.

Example: Nodes 3, 4, 5, and 6 are aligned along the same main branch (L3, L4, L6,
L7), showing a linear distribution of electricity.

4.1 Data Used

The data is structured into several CSV files, each containing specific information about
different aspects of the electrical network [10]. Here is a detailed description of columns and
data types for each category:

1. Branches and Branch Candidates :

Branches In the context of electrical systems, ”branches” refer to the connections or
pathways that allow the flow of electric current between different nodes (or buses) in
the network

Branch candidates are transmission lines that could be added to a power grid to
improve its capacity, reliability, or efficiency. Each candidate is evaluated based on
several criteria.

Branches and branch candidates describe existing and potential transmission lines in
the network.

• from bus: The starting point (node) of the branch in the grid.

• to bus: The ending point (node) of the branch.

• max ka: The maximum current (in kilo amperes) the branch can carry, indicating
its capacity.

• Z ohm km: The impedance per kilometer, affecting how much voltage drop and
power loss occurs along the line.

• r len km: The physical length of the branch in kilometers.

• c fix usd: The fixed cost associated with constructing the branch, given in US
dollars.
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• OH: Indicates whether the branch is an overhead line (1 if true) or underground
(0 if false).

• lifetime: The expected operational lifespan of the branch in years.

2. Substations:

These data provide information about substations, each associated with an electrical
node and specific transmission capacity.

• substation index: Unique identifier for each substation.

• bus: Identifier of the electrical node associated with the substation.

• g tr max kw: Maximum transmission capacity (in kilowatts).

3. Loads:

Loads describe electrical demand connected to different nodes of the network.

• Bus: Node number to which the load is connected.

• peakDemand: Peak electricity demand over a specific period.

• nCustomers: Number of customers connected to the network or electrical station.

4. Hourly profiles: this data can be used to analyze temporal patterns of energy con-
sumption and the associated costs throughout the day. It can help in:Understanding
how energy demand changes throughout the day, Planning energy costs and managing
budgets, Making operational decisions based on variable energy costs.

• type:

– demand profile: Describes the energy demand profile throughout the day.

– costs dol kWh: Describes the cost of energy per kilowatt-hour throughout
the day.

– battery soc: Represents the state of charge of the battery throughout the day.

• day: The specific day to which the data pertains. It can represent different days
of the week or consecutive days.

• t0 to t23: Each column represents a specific hour of the day. The values in these
columns represent either the energy demand or the energy cost for that hour.

• day weights: weighs the day to represent scenarios over a year.

5. Events List:

Events include incidents related to branches and substations, allowing analysis of event
frequency and duration.
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• frequency: Frequency of the event occurrence.

• duration: Duration of the event.

• Branches: Numbers of branches involved in the event.

• substations: Associated substations (if available).

6. Coordinates:

Coordinates provide information about nodes and their locations in a two-dimensional
space.

• bus: Node number.

• Longitude (x): East or west distance from the Greenwich Meridian.

• Latitude (y): North or south distance from the Equator.

7. Days:

Days record information about weighting or specific measures over a series of days.

• days: Day number from a starting point (day 0).

• weight: Weighting or specific measure recorded each day.

8. General Parameters:3.3.5

General parameters are used in optimization analyses.

• lambda: Weighting factor or compromise coefficient in optimization problems.

• alpha cvar: Confidence level for Conditional Value at Risk (CVaR).

• pf: Power factor, measuring the efficiency of electrical energy use.

• c imb usd kwh: Cost of imbalance in USD per kWh.

• bigM: Large constant used in mathematical optimization models.

• sbase mva: Base power in mega-volt-amperes (MVA).

• vbase kv: Base voltage in kilovolts (kV).

• discount rate: Discount rate used to discount future cash flows to their present
value.

9. Storage Candidates:

It contains information about energy storage options

• H: Storage candidate identifier.

• bus: Identifier of the electrical bus associated with the storage candidate.

• p in max kw: Maximum input power (kilowatts).
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• p out max kw: Maximum output power (kilowatts).

• s charge: Charging capacity.

• eff: Efficiency.

• c SD fix usd: Fixed storage cost (in USD).

• c SD var usd kwh: Variable storage cost per kilowatt-hour (in USD).

• sd max: Maximum storage capacity.

• lifetime: Storage system’s lifetime (in years).

4.2 Case Studies

4.2.1 Case 1

The system consists of:

• 50 load nodes.

• 1 substation.

• 53 branches (existing lines).

• 19 branch candidates (candidate lines).

• 4 storage candidates (candidates nodes for the installation of storage devices).

4.2.2 Case 2

The system consists of:

• 50 load nodes.

• 4 substations.

• 50 branches (existing lines).

• 22 branch candidate (candidate lines).

• 4 storage candidates (candidates nodes for the installation of storage devices).

The figure 4.2 and 4.3 are initial configuration of the network for case 1 4.2.1 and case
2 4.2.2.
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4.3 Optimization Model

The optimal model used in this study is based on MILP, developed using the Python code
framework discussed in the previous chapter. Focused on optimizing the expansion of the
energy distribution network by considering risk and resilience factors. The main objective of
the model is to minimize:

• Investment Costs: This includes costs associated with installing new lines (line inv)
and energy storage devices (storage inv), aiming to meet increasing demand and en-
sure system reliability.

The model incorporates several constraints and specific variables, including:

• Power Flow Constraints: Ensure that power flows through the network remain within
stability limits, even under failure conditions simulated by scenario-based analyses
(scenarios time).

• Installation constraints: Limitations on installing new transmission lines (candi-
date branches), and energy storage solutions (candidates storage), considering physi-
cal limitations and budget constraints.

• Capacity Constraints: Boundaries on the capacity of energy storage devices (ca-
pacity) and transmission lines (f max ka), ensuring operational feasibility and grid
performance.

• Voltage Constraints: Maintain voltage levels (v min, v max) across different nodes
(bus), crucial for protecting equipment and ensuring customer satisfaction.

• Decision Variables: Include decisions on where and when to install new lines (line inv)
and energy storage devices (storage inv), optimizing infrastructure investments based
on anticipated demand growth and reliability improvements.

Cases variables Linear Constraints
Case 1 69392 102968
Case 2 64959 93635

Table 4.1: Comparison of Case Studies: Variables and Constraints

4.4 Result and Analysis

All these results are obtained from the same environment, which consists of a 64-bit system
with an Intel Atom N2600 processor running at 1.60 GHz, 2.00 GB of RAM, and a device
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ID of 6E8A5C4F-0EDB-416F-96C9-3EAB799E0DCB, along with a product ID of 00330-
50000-00000-AAOEM. This device does not support touch or stylus input for its display.
These specifications ensure consistent and reliable performance measurements and compu-
tational tasks.

4.4.1 Optimization using Cplex solver

Cplex solver

CPLEX, developed by IBM, stands as a cornerstone in optimization technology, renowned
for its versatility and efficiency in tackling complex decision-making challenges across var-
ious industries. This optimization solver excels in solving linear programming (LP), mixed-
integer linear programming (MILP), quadratic programming (QP), and other mathematical
models with precision and speed. It leverages advanced algorithms such as simplex, interior-
point, and barrier methods, coupled with heuristic techniques and cutting-edge strategies like
cutting planes and efficient branching, ensuring rapid convergence and high-quality solutions
even for large-scale problems [25].

Applications:

• Logistics and Supply Chain: Optimize transportation routes, scheduling, and inventory
management.

• Finance: Asset allocation, portfolio optimization, risk management.

• Energy and Utilities: Grid optimization, resource allocation, demand forecasting.

• Manufacturing: Production planning, facility layout, supply chain integration.

Cplex results

To solve our optimization model, we used the IBM ILOG CPLEX Optimizer 22.1.0.0. The
following sections 4.2 summarize the steps and results obtained during the evaluation and
optimization processes for the two cases:
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details Case 1 Case 2
Solution Time 239.24 sec 106.22 sec

Number of Iterations 17193 2359
Nodes explored 41 0

Battery Costs (bat costs) 30493.25 31602.29
CVaR Costs (cvar costs) 398866.13 77763.51

Imbalance Costs (imb costs) 0.00 0.00
Line Costs (line costs) 416012.92 419317.52

Load Shedding Island Costs (load shedding island costs) 19943.30 3888.18
Total Objective Cost (obj) 655910.89 491745.65

Table 4.2: Table of CPLEX Optimization Results for Case 1 and Case 2

1. Solution Time:

• Case 1:239.24 sec

• Case 2:106.22

The solution time is significantly shorter for case 2. The presence of 4 substations in
case 2 compared to one in case 1 could simplify the optimization problem by reducing
the complexity of energy supply paths, allowing the solver to find an optimal solution
more quickly.

2. Number of Iterations:

• case 1:17193

• case 2 :2359

Case 1 requires a much higher number of iterations. This could be due to the more con-
strained network configuration with only one sub-station requiring more computations
to optimize energy flows and system stability.

3. Number of Nodes Explored:

• Case 1: 41

• Case 2: 0

The solver has to explore additional nodes in case 1, indicating a more exhaustive and
complex search, whereas in case 2, the solver found a solution without needing to
explore additional nodes, suggesting a more direct and less complex solution.

4. Battery Costs (bat costs):

• Case 1: 30493.25

• Case 2: 31602.29
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Battery costs are slightly higher in case 2, due to different optimization of storage
device placement to meet network requirements with more substations.

5. CvaR Costs (cvar costs):

• case 1: 398866.13

• case 2: 77763.51

Cvar costs are significantly higher in case 1 compared to case 2. This indicates the in
case 1, potential risk scenarios beyond a certain probability threshold lead to much
higher costs. The difference could be attributed to the network structure and risk
management capability in each case. Case 2, with more substations and candidate
branches, likely offers better resilience against failures, thus reducing costs associated
with risks.

6. Imbalance Costs (imb costs):

• case 1: 0.00

• case 2: 0.00

Imbalance costs are often used in energy management models or other systems where
it‘s crucial to balance supply and demand, or maintain certain quantities in a specific
equilibrium. If imbalance costs are zero, it could indicate that your model has found
a solution where all balance constraints have been meet met, and therefore, no costs
have been incurred to correct imbalances.

7. Line Costs (line costs):

• case 1 : 416012.92

• case 2 : 419317.52

Line costs are slightly higher in case 2. This increase is attributed to the need to install
or upgrade more lines to accommodate the configuration with four substations instead
of one. The increase in the number of candidate branches in case 2 (22 compared to 19
in case 1)could also contribute to these additional costs. Despite the higher line costs,
this configuration likely allows for better distribution and greater network resilience.

8. Load Shedding Island Costs (load shedding island costs):

• case 1 : 19943.30

• case 2: 3888.18
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Load shedding island costs are much higher in case 1 compared to case 2. This sug-
gests that case 1 requires more load shedding to maintain network stability, which can
be attributed to a less optimized and resilient configuration. Case 2, with its four sub-
stations and additional candidates branches, is better equipped to manage overload or
failure conditions without needing load shedding as frequently.

9. Total Objective Cost (obj):

• case 1 : 655910.89

• case 2: 491745.65

The total objective cost is significantly higher in case 1 compared to case 2. This
indicates that the optimization model for case 1 resulted in higher operational and in-
vestment costs compared to case 2. This difference can be attributed to several factors,
including difference in network configuration, the number of substations and candi-
date branches, as well as how costs associated with batteries, risk (cvar), lines and
load shedding islands are managed and optimized.

4.4.2 Optimization using CBC solver

CBC solver

The CBC (Coin-or Branch and Cut) solver is a robust, open-source optimization tool de-
veloped as part of the COIN-OR (Computational Infrastructure for Operations Research)
project. It is specifically designed to solve Mixed-Integer Linear Programming (MILP) prob-
lems. As an open-source alternative to commercial solvers, CBC provides researchers and
practitioners with a cost-effective and flexible solution for complex optimization tasks [15].

Features:

• Free and open-source, offering great flexibility and customization.

• Less performant than commercial solvers for very large instances.

• Easily integrates with other open-source tools and modeling libraries like PuLP.

Applications:

• Ideal for researchers and Educators: The open-source nature of CBC makes it an ideal
tool for academic research and teaching.

• budget-constrained organizations: For organizations that need robust optimization ca-
pabilities but cannot afford expensive commercial solvers, CBC offers a compelling
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alternative. It is particularly beneficial for nonprofits, startups, and small businesses
that need to optimize resources efficiently.

• Prototype Development: CBC is often used in the development phase of optimization
projects. Its flexibility and ease of integration allow developers to build and test models
before potentially transitioning to commercial solvers for production-scale problems
if higher performance is required.

CBC results:

details Case 1 Case 2
Solution Time 884.10 sec 3819.55sec

Number of Iterations 11961 22721
Node explored 0 85

Battery Costs (bat costs) 30493.25 31602.29
CvaR Costs (cvar costs) 398816.14 77763.51

Imbalance Costs (imb costs) 0.00 0.00
Line Costs (line costs) 416012.92 419317.52

Load Shedding Island Costs (load shedding island costs) 19943.31 3888.18
Total Objective Cost (obj) 655910.9 491745.65

Table 4.3: Table of CBC Optimization Results for Case 1 and Case 2

1. Solution Time:

• Case 1 : 884.10 sec

• Case 2: 3819.55sec

the solution time is significantly longer for Case 2 with CBC, suggesting increased
complexity for CBC to deal with a system with more substations and candidate branches.

2. Number of Iterations:

• Case 1 : 11961

• Case 2: 22721

For CBC, Case 2 requires many more iterations, reflecting the increased difficulty for
the solver to converge to an optimal solution with a more complex setup.

3. Nodes Explored:

• Case 1 :0

• Case 2 :85
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CBC, explores many more nodes for Case 2, suggesting extensive exploration of the
search space due to the complexity added by the additional substations and candidate
branches.

4. Costs: The presence of multiple substations in Case 2 improves the resilience and
flexibility of the system, thereby reducing total cost.

4.5 Comparative analysis between Cplex & CBC :

Case 1 Case 2
Metrics CPLEX CBC CPLEX CBC
Solution Time 239.24 sec 884.10 sec 106.22 sec 3819.55 sec
Number of Iterations 17193 11961 2359 22721
Node explored 41 0 0 85
Battery Costs 30493.25 30493.25 31602.29 31602.29
CVaR Costs 398866.14 398816.14 77763.51 77763.51
Imbalance Costs 0.00 0.00 0.00 0.00
Line Costs 416012.92 416012.92 419317.52 419317.52
Load Shedding Island Costs 19943.31 19943.31 3888.18 3888.18
Total Objective Cost (obj) 655910.9 655910.9 491745.65 491745.65

Table 4.4: Comparison table of metrics for cases 1 and 2 using CPLEX and CBC

1. Comparison in terms of difference (Solution time- Number of iterations -Node
explored): The difference between the two solvers results from the following reasons:

Different Algorithms:

• CPLEX: Uses advanced and optimized algorithms to solve MILP problems, such
as the simplex algo- rithm, the interior point algorithm, and advanced techniques
like branching and cutting planes.

• CBC: As an open-source solver, it may not benefit from the same levels of algo-
rithmic optimzation.

Heuristics and Optimization Techniques:

• CPLEX: Integrates advanced heuristics, pre-processing techniques, and local
search methods that ac- celerate convergence to the optimal solution.

• CBC: May not have these features at such a sophisticated level, resulting in
longer computation times.
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Tree Search Approach:

• CPLEX: Uses a very thorough branch-and-bound search method. It explores
more nodes to ensure that no potentially better solution is missed. This thor-
ough exploration helps reduce the search space more rigorously and guarantees
an optimal solution.

• CBC: Might adopt a more restricted or heuristic strategy in node exploration,
reducing the total num- ber of nodes explored. This approach can speed up the
resolution time but at the cost of less exhaus- tive exploration.

Cutting Techniques:

• CPLEX: Implements advanced and often more numerous cutting techniques,
which add new nodes to the decision tree. These cuts help refine the lower and
upper bounds and explore more potential scenarios but also increase the number
of nodes explored.

• CBC: May use fewer or less aggressive cutting techniques, which limits the num-
ber of nodes added and explored in the decision tree.

Commercial vs Open Source:

• CPLEX: Is a commercial product developed by IBM, benefiting from many
years of research, develop- ment, and continuous optimization.

• CBC: As an open-source solution, is developed by a community and may not
have the same resources for continuous improvements.

2. Comparison in terms of equality (costs):

• The mathematical model of the optimization problem is well formulated, with
clearly defined constraints and objectives.

• In MILP problems, if the model exhibits convex or quasi-convex properties, the
optimal solutions will be identical regardless of the solver used. Both solvers will
converge to the same optimal solution due to the nature of the problem.

• The problem does not have equivalent alternative solutions (i.e., multiple optimal
solutions with the same costs). This means there is a unique optimal solution that
optimally satisfies all constraints.

• Modern solvers like CPLEX and CBC are designed to operate with high nu-
merical precision. Even though the solving methods may vary, the accuracy of
calculations ensures that the final computed costs remain identical.
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• Both solvers apply methods to explore the solution space and converge to op-
timality. Although the number of iterations and explored nodes may vary, the
algorithms guarantee convergence to the same optimal costs.
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4.6 Final configuration of the network

Figure
4.4:Finalconfiguration
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Figure
4.5:Finalconfiguration
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The figures 4.4 and 4.5 are final configuration of the network for case 1 4.2.1 and case 24.2.2.

4.6.1 Graphical interpretation:

both solvers produced similar results for each case we studied. Here is a detailed description
of the graphs obtained for the 2 cases:

• Branches (in black): Existing lines that connect different nodes in the network.

• Substations (in blue): Critical points in the network, acting as distribution centers for
energy.

• Nodes (in black): Connection points where multiple branches meet.

• Storage candidates (in orange): Potential locations for installing storage capacities.

• Candidates for new lines (in red): Potential locations for new lines to enhance network
distribution.

4.6.2 Branch Candidates Selection Process:

• Identification of Critical Branches: Branches that are identified as critical for different
fault scenarios and load conditions are selected as candidates.

• Investment Optimization: The MILP model optimizes investments in candidate branches
by minimizing investment costs and maximizing network reliability.

• Scenario Evaluation: Each candidate branch is evaluated under various scenarios to
determine its potential impact on network resilience.

4.6.3 Why did the model choose primary branches within invested
branches?

Choosing primary branches within invested branches is a strategic decision that relates to
risk management, efficiency, and business continuity. Here are some reasons for this choice:

• preserving stability and security of the core network during expansion which reduces
the risk of negatively impacting the network.

• minimizing the impact of failures.

• preserve the quality of services and products and the organization’s credibility.

• reducing costs and financial risks associated with expansion.

• facilitate network management and control over charges.
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what happens if we choose branch candidate randomly?

Choosing candidate branches randomly for expanding an electrical distribution network can
have several negative impacts on the network’s operation and performance.

1. Reduced Network Efficiency :

• Under utilization of Resources: Randomly selected branches may not match the
actual needs of the network, leading to under utilization of available resources.

• Improper Optimization: Critical network points requiring upgrades might be
overlooked, while resources could be wasted on less important segments.

2. Reliability and Stability Issues :

• Increased Vulnerabilities: Without strategic analysis, new branches may not en-
hance network redundancy and resilience, making the system more vulnerable to
outages.

• Distribution Instability: Poor planning can result in uneven load distribution,
creating over- load or under utilization points.

3. Increased Costs :

• Inefficient Investments: Financial resources might be allocated to branches that
do not significantly improve the network, thereby increasing costs without pro-
portional benefits.

• Maintenance and Repair Costs: Improperly positioned new branches could re-
quire more frequent maintenance and repairs, increasing operational costs.

4. Performance and Service Quality Issues:

• Degraded Service Quality: End-users may experience voltage fluctuations and
service interruptions if new branches are not optimized to meet demand.

• Load Management Challenges: Random placement can complicate electricity
flow and load management, reducing overall network efficiency.

5. Environmental and Regulatory Impact :

• Non-compliance with Regulations: New branches must adhere to local standards
and regulations. Random selection may lead to violations and potential sanctions.

• Environmental Impact: Suboptimal planning can result in negative environmental
impacts, such as habitat destruction or excessive resource consumption.

93



Deduction: In this context, case 2 appears to be more convergent for both solvers, as it
achieves shorter solution times with fewer iterations, and in the case of CPLEX, without
node exploration. This suggests enhanced efficiency in converging towards the optimal or
near-optimal solution for case 2 compared to case 1 in both solvers.

4.7 Monte Carlo Simulation

Monte Carlo simulations are a class of computational algorithms that rely on repeated ran-
dom sampling to obtain numerical results. The central idea is to use randomness to solve
problems that might be deterministic in principle. This technique is widely used in various
fields such as finance, engineering, supply chain management, and scientific research.

Key Concepts of Monte Carlo Simulations

• Random Sampling: The process involves generating random variables to simulate
the process or system being studied.

• Repetition: The simulation runs many iterations (or trials) to approximate the desired
quantity.

• Probability Distribution: The random variables are often drawn from specific prob-
ability distributions relevant to the problem.

4.7.1 Results with Cplex Solver

After running the program with Cplex solver 10 times for case 2, we obtained the following
results 4.5:

Simulations Solution
Time

Battery
Costs

CVaR
Costs

Imb
Costs

Line
Costs

Load
Shed-
ding

obj

Sim 1 106.22 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 2 67.17 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 3 61.77 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 4 91.53 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 5 55.56 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 6 46.13 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 7 46.94 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 8 47.30 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 9 47.66 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 10 53 31602.29 77763.51 0.0 419317.52 3888.18 491745.65
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Table 4.5: Results with Cplex Solver

• The variance in solution time stems from the stochastic nature of optimization and the
complexity of the model. Each Monte Carlo simulation introduces random variations
in input data or simulation conditions, which can influence how the CPLEX solver
processes the problem and converges towards an optimal solution.

• However, the fact that the costs, including the total objective cost (obj), remain identi-
cal to the first simulation underscores that the model quickly achieves a stable solution
in terms of costs. This is encouraging as it indicates robust results that are resilient to
the variations introduced by Monte Carlo in this context.

4.7.2 Results with CBC Solver

For CBC solver, we could only perform 2 simulations for case 2 due to:

• Longer Computation Time: The CBC solver typically exhibits longer computation
times compared to CPLEX. If each simulation of Monte Carlo requires significant
time to converge towards a solution, this could limit the number of simulations that
can be executed.

• Computational Resources: The capabilities of the computing infrastructure, including
available memory and processing capacity, can also constrain the number of simu-
lations feasible with the CBC solver. Limited resources may restrict the ability to
perform a large number of Monte Carlo simulation.

And below are results 4.6 :

Simulations Solution
Time

Battery
Costs

CVaR
Costs

Imb
Costs

Line
Costs

Load
Shed-
ding

obj

Sim 1 3819.55sec 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Sim 2 4218.88sec 31602.29 77763.51 0.0 419317.52 3888.18 491745.65

Table 4.6: Results with CBC Solver

Increased Solution Time:

1. Algorithmic Complexity: The solver deals with more complex scenarios or searches
for optimal solutions in a larger or more complex solution space.
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2. Resource Utilization: As each iteration progresses, the solver might consume more
computational resources (e.g., memory, CPU cycles), leading to longer times for sub-
sequent iterations. This could be due to accumulated overheads or the need for more
extensive computations to handle slightly varied problem.

In conclusion, a range of current studies has been explored in the field of electric net-
work expansion planning with a focus on risk management. The introduction of the data
used and presentation of several case studies were followed by the introduction of an opti-
mal model to achieve specific objectives and the analysis of expected results and outputs.
Additionally, a comprehensive comparison was provided between the use of Cplex and CBC
software, highlighting their capabilities and multiple uses in this context. The final network
configuration was reviewed, providing a visual interpretation of the achieved results, along
with an explanation of the process of selecting network branches and the reasons behind
choosing the primary branches. Finally, a Monte Carlo simulation was conducted and the
results analyzed using both Cplex and CBC software. This study represents a significant con-
tribution to exploring the field of electric power network expansion planning with a focus on
risk management, opening new avenues for future research and development.
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CONCLUSION

To conclude, with rapid advancements in technology and the increasing complexities of elec-
tricity networks, there is a growing interest in developing improvement models for invest-
ment planning in this field. As energy demands rise and sustainability challenges become
more pronounced, mathematical and analytical models play a crucial role in achieving sus-
tainable growth objectives and delivering energy services more efficiently and sustainably.

Looking ahead, future research is expected to focus on advancements in smart grid tech-
nology and big data analytics. These developments will enhance the models’ capability to
effectively handle and analyze large datasets, supporting informed planning and improve-
ment decisions. Addressing these future challenges will necessitate the development of ro-
bust risk management strategies to mitigate potential negative impacts from uncontrollable
variables.Furthermore, a comprehensive approach integrating technical, economic, and envi-
ronmental considerations in the planning and operation of energy networks will be essential.
This approach aims to promote sustainability and stability in meeting future energy demands.

In summary, this outlook underscores the increasing challenges and opportunities in the
field of planning and enhancing electricity distribution networks. It emphasizes the impor-
tance of ongoing innovation and development to meet the requirements of the modern and
future era.
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