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Abstract

The aim of this thesis is to explore a mathematical approach to modeling and optimizing

the energy consumption of household appliances. The approach is based on a Centralized

Home Energy Management System (HEMS) which schedules the use of home appliances

to coincide with a lower electricity tariff resulting in a reduced electricity bill. The stud-

ied problem is modeled as a combination of Linear Programming (LP) and Mixed Integer

Linear Programming (MILP) and solved using both free and commercial softwares. Nu-

merical results for simulated scenarios are provided to showcase the applicability of the

approach.

After studying this issue, we resorted to using methods to solve the integer linear pro-

gramming problem and finally presented a program that facilitates this work.

Keywords:

Home Energy Management System, Mixed Integer Linear Programming, Energy Mini-

mization, Home Appliances Scheduling.



Résumé

L’objectif de cette thèse est d’explorer une approche mathématique pour modéliser et

optimiser la consommation énergétique des appareils ménagers. L’approche repose sur un

système de gestion centralisée de l’énergie domestique (HEMS) qui planifie l’utilisation

des appareils ménagers pour coïncider avec un tarif d’électricité plus bas, entraînant une

réduction de la facture d’électricité.

Le problème étudié est modélisé comme une combinaison de la programmation linéaire

(PL) et de la programmation linéaire en nombres entiers mixtes et est résolu à l’aide de

logiciels gratuits et commerciaux. Des résultats numériques pour des scénarios simulés

sont fournis pour démontrer l’applicabilité de l’approche.

Après avoir étudié ce problème, nous avons utilisé des méthodes pour résoudre le prob-

lème de programmation linéaire en nombres entiers et enfin présenté un programme qui

facilite ce travail.

Keywords:

système de gestion centralisée de l’énergie domestique, programmation linéaire ,program-

mation linéaire en nombres entiers mixtes .
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General introduction

The domestic use of electricity has evolved dramatically over the decades, reflecting

technological, economic, and cultural changes. Today, electricity is ubiquitous in our daily

lives, and its use extends far beyond lighting and heating. It powers a multitude of devices

and systems that enhance our comfort, productivity, and well-being. However, this

ubiquity is accompanied by increasing energy consumption, posing significant challenges

in terms of sustainability and energy efficiency.

Modern households are equipped with an impressive array of electrical appliances:

refrigerators, washing machines, televisions, computers, air conditioning and heating

systems, not to mention the countless electronic gadgets that simplify and enrich our

lives.

A centralized Home Energy Management System (HEMS) aimed at minimizing con-

sumers electricity bills constitutes a central challenge for a company like the Distribution

Center Region, which is part of SONELGAZ, acronym for "National Company for Elec-

tricity and Gas", is a company responsible for the production, transportation, and distri-

bution of electricity and gas in Algeria. The company was established on July 28, 1969,

replacing the previous entity Electricity and Gas of Algeria (EGA), and was granted a

monopoly on the distribution and sale of natural gas in the country, as well as on the

production, distribution, import, and export of electricity. Previously organized as an

industrial group consisting of 39 subsidiaries and 5 joint venture companies engaged in

core businesses, works, and peripherals, the new organization approved in February 2017,

established SONELGAZ as an industrial group consisting of 16 subsidiaries. Its core busi-

15



ness subsidiaries are responsible for the production, transportation, and distribution of

electricity as well as the transportation and distribution of gas.

In order to acquire experience with the proposed problem, which is a centralized sys-

tem for managing domestic energy to minimize consumers’ electricity bills, we completed

a six-month internship at the Distribution Center Region at Blida. During this time, we

attempted to conduct a research study on the problem and the different state of the art

mathematical models.

This company faces several issues, most notably the problem of daily consumption of

household appliances. We observe that the average daily consumption has increased from

5.29 kwh in 2006 to 8.43 kwh in 2012. This trend can be attributed to various factors

such as population growth, urbanization, and increased use of electrical appliances. We

also notice that high-power appliances with long usage periods, such as the electric

oven (1800 w) and the electric heater (2700 w), significantly contribute to the total

annual consumption in kilowatt-hours (kwh) and Algerian dinars (DA). In particular, the

electric heater shows the highest consumption in terms of annual cost (3402 DA) despite

being used for only half an hour a day, highlighting its substantial impact on energy

consumption. On the other hand, less frequently used appliances, such as the microwave

and the hairdryer, despite their high power, have much lower annual energy consumption

and costs. The total indicates an annual consumption of 3349.5 kwh, costing 13,398 DA,

underscoring the importance of monitoring and managing the use of household appliances

to improve energy efficiency and reduce expenses.

In the first chapter, we discuss optimization models such as Linear Programming,

Mixed-Integer Linear Programming and others, which provide powerful tools to solve a

variety of problems, whether related to maximizing profits, minimizing costs, resource

allocation, or scheduling.

In the second chapter, we provide information on the Branch and Bound and Branch

and Cut methods,for solving different MIP and MILP optimization problems.

In chapter three, we focus on efficient energy consumption management in the con-

text of the ongoing global energy transition. The critical challenge posed by energy

management for consumers and electricity providers in a rapidly changing environment

are highlighted.

16



The importance of improving energy consumption is emphasized, pointing out the

benefits for both end-users and electricity providers. The need to find effective solutions

for managing energy demand in a smart and sustainable manner is underscored.

Specific strategies, models, or techniques used in the field of energy management

are introduced while providing insights into how optimization can contribute to address-

ing current challenges related to energy consumption and the transition towards more

sustainable and efficient energy systems.

In the fourth chapter,a MATLAB numerical implementation of the studied mathe-

matical model is provided, showing by simulation results a reductions in electricity bill

and peak power consumption. The algorithm allowed for dynamic scheduling of appli-

ances by solving an optimization problem at each time step, providing flexibility for the

user to operate non-thermal appliances at any time with minimal costs. Non-thermal

appliances were able to be turned off and rescheduled to periods of lower electricity prices

while adhering to the imposed timelines. In the last chapter, we conclude our thesis by

providing some suggestions on future work.

17



Chapter 1
Constrained optimization

1.1 Introduction

We will talk in this chapter about specific constrained optimization problems and every-

thing that revolves around linear programming (LP) applied to solving complex problems.

More advanced versions of (LP) through the presence of integer variables are also dis-

cussed. Conversely, incorporating integer variables enables the modeling of much more

complex and sophisticated systems. This capability is a key reason why integer pro-

gramming problems, particularly mixed-integer programming problems, are among the

most prevalent in practical applications.This chapter is mostely based on chapter (3,5)

of oliveira lecture notes [Oliveira].Please refers this lecture notes for farther information

and proofs.

1.2 Linear Programming(LP)

Also called linear optimization, is a method to achieve the best outcome (such as maxi-

mum profit or lowest cost) in a mathematical model whose requirements and objective are

represented by linear relationships. Linear programming is a special case of mathematical

programming (also known as mathematical optimization).

More formally, linear programming is a technique for the optimization of a linear

objective function, subject to linear equality and linear inequality constraints. Its feasible

18



CHAPTER 1. CONSTRAINED OPTIMIZATION

region is a convex polytope, which is a set defined as the intersection of finitely many half

spaces, each of which is defined by a linear inequality. Its objective function is a real-

valued affine (linear) function defined on this polytope. A linear programming algorithm

finds a point in the polytope where this function has the largest (or smallest) value if

such a point exists Wiese [2016]. Linear programs are problems that can be expressed in

standard form as

minCTx (1.1)

s.t. Ax = b (1.2)

x ∈ Rn
+ (1.3)

There are other general forms of LPs, for example the canonical one, including in-

equality constraints instead of equalities aix ≤≥ bi, i ∈ [1, n] .

Here the components of (x) are the variables to be determined, C ∈ Rn and b ∈ Rm

are given vectors, and A ∈ Rmxn is a given matrix. The function whose value is to be

maximized, is called the objective function.

A key point is that any linear programming problem can be converted to standard form

using nonnegative slack variables. For example, a feasibility set initially given by

P = {x ∈ Rn : A1x ≤ b1, A2x ≥ b2, x ≥ 0}

can be transformed into an equivalent standard-form polyhedral set. This involves intro-

ducing slack variables s1 ≥ 0 and s2 ≥ 0 so that

P = {(x, s1, s2) ∈ R(n+|b1|+|b2|) : A1x+ s1 = b1, A2x− s2 = b2, (x, s1, s2) ≥ 0},

where |u| denotes the cardinality of the vector u.

Theorem 1.1 (Linear independence and basic solution). Consider the constraints

Ax = b and x ≥ 0, with A having m linearly independent (LI) rows I = {1, . . . ,m}.

A vector x ∈ Rn is a basic solution if and only if Ax = b and there are indices

B(1), . . . , B(m) such that

(1) The columns AB(1), . . . , AB(m) of A are LI.

(2) For j ̸= B(1), . . . , B(m), we have xj = 0.

19



CHAPTER 1. CONSTRAINED OPTIMIZATION

1.2.1 Forming bases for standard-form linear programming

problems

Theorem 1.1 provides us with a way to develop a simple procedure to generate all basic

solutions of a linear programming problem in standard form.

1. Choose m LI columns AB(1), . . . , AB(m);

2. Let xj = 0 for all j /∈ {B(1), . . . , B(m)};

3. Solve the system Ax = b to obtain xB(1), . . . , xB(m).

1.2.2 Adjacent basic solutions

Let us begin by formally defining the concept of an adjacent basic solution.

Definition 1.2 (Adjacent basic solutions). Two basic solutions are adjacent if they

share n− 1 LI active constraints. Alternatively, two bases B1 and B2 are adjacent if all

but one of their columns are the same.

1.2.3 Redundancy and degeneracy

Theorem 1.3 (Redundant constraints). Let P = {x ∈ Rn : Ax = b, x ≥ 0}, where

A is mxn matrix with rows {ai}i∈I and I = {1, . . . ,m}. Suppose that (A) = k < m

and that the rows ai1 , . . . , aik are LI. Then P is the same set as Q = {x ∈ Rn : a⊤i1x =

bi1 , . . . , a
⊤
ik
x = bik , x ≥ 0} .

1.3 Optimality of extreme points

1.3.1 The existence of extreme points

First, we define the condition ensuring the existence of extreme points within a polyhedral

set. Without this condition, discovering an optimal solution becomes unfeasible.

Definition 1.4 (Existence of extreme points). A polyhedral set P ⊂ Rn contains a

line if it is non-empty and there exists a nonzero vector d ∈ Rn such that x+ λd ∈ P for

20



CHAPTER 1. CONSTRAINED OPTIMIZATION

all λ ∈ R.

Theorem 1.5 (Existence of extreme points). Let P = {x ∈ Rn : a⊤i x ≥ bi, i =

1, . . . ,m} ≠ ∅ be a polyhedral set. The following statements are equivalent:

(1) P contains at least one extreme point;

(2) P does not contain a line;

(3) There exist n linearly independent vectors among {ai}mi=1.

Theorem 1.6 (Optimality of extreme points). Let P = {x ∈ Rn : Ax ≥ b} be a

polyhedral set and c ∈ Rn. Consider the problem

z = min{c⊤x : x ∈ P}.

Suppose P contains at least one extreme point and there exists an optimal solution.

Then, there exists an optimal solution that is also an extreme point of P .

1.3.2 Finding optimal solutions

In practice, optimization methods typically iterate through the following steps:

1. Begin with an initial (often feasible) solution;

2. Locate a neighboring solution with improved value;

3. If none are found, revert to the best-known solution.

Definition 1.7 (Feasible directions). Let x ∈ P , where P ⊂ Rn is a polyhedral set.

A vector d ∈ Rn is a feasible direction at x if there exists θ > 0 for which x+ θd ∈ P .

1.3.3 Optimality conditions

Having identified promising directions for improvement, we have inadvertently estab-

lished a framework for assessing the optimality of a given basic feasible solution (BFS)

Theorem 1.8 (Optimality conditions)

Consider the problem P : min{c⊤x : Ax = b, x ≥ 0}. Let x be the BFS associated

with a basis B and let c denote the corresponding vector of reduced costs.
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(1) If c ≥ 0, then x is optimal.

(2) If x is optimal and nondegenerate, then c ≥ 0.

.

1.4 Mixed integer linear programming (MILP)

MILP is the name for the mathematical problem of minimizing a linear function over a

subset of Rn , that can be described by using only linear equalities and requiring a subset

of the variables to take only integer values. MILP evolved from Linear Programming

(LP), in the mid-sixties over the years, MILP has become a technology and reliable and

robust commercial codes for solving MILPs are available.

Mixed integer linear programming (MILP) is the state-of-the-art mathematical frame-

work for optimization of energy systems. The capability of solving rather large problems

that include time and space discretization is particularly relevant for planning the tran-

sition to a system where non-dispatchable energy sources are key. Here, one of the main

challenges is to realistically describe the technologies and the system boundaries: on the

one hand the linear modeling, and on the other the number of variables that can be

handled by the system call for a trade-off between level of details and computational

time Vielma [2015].

An integer programming problem is a mathematical optimization or feasibility prob-

lem where some or all of the variables are constrained to be integers. Often, this term

specifically refers to integer linear programming (ILP), where both the objective function

and the constraints (excluding the integer constraints) are linear. A notable special case

is 0–1 integer linear programming, where the variables are binary and only the constraints

need to be satisfied. We consider a mixed-integer linear programming (MILP) problem

of the general form:

minCTx (1.4)

s.t. Ax = b (1.5)

x ∈ Rn−p
+ ∪ Zp

+ (1.6)
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where A ∈ Rmxn, b ∈ Rm and C ∈ Rn In this form, we thus have n variables,

corresponding to the columns of the matrix A, and m equality constraints, aix = bi, i ∈

[1, n] ,corresponding to its row vectors ai, i ∈ [1, n]. The feasible region is completed by

the fact that the variables have to be non-negative, and that the last p of them have to

take integer values.

MILP is thus a non-convex optimization problem. In the spacial case of a purely

integer Linear Program (ILP), where (p = n), any feasible solution is thus a completely

integer vector. However, also when (p ≤ n), we will call a solution to (1.4) - (1.6),

i.e., a vector whose last p components only are integer values, an integer solution.

1.5 Duality

In mathematical optimization theory, duality or the duality principle is the principle

that optimization problems may be viewed from either of two perspectives, the primal

problem or the dual problem. If the primal is a minimization problem then the dual

is a maximization problem (and vice versa)., any feasible solution to the primal (mini-

mization) problem is at least as large as any feasible solution to the dual (maximization)

problem. Therefore, the solution to the primal is an upper bound to the solution of the

dual, and the solution of the dual is a lower bound to the solution of the primal, this fact

is called weak duality.

In general, the optimal values of the primal and dual problems need not be equal,

their difference is called the duality gap. For convex optimization problems, the duality

gap is zero under a constraint qualification condition. This fact is called strong duality

Güzelsoy et al. [2010].

Every linear program has associated with it another linear program called the dual.

A given linear program and its dual will be related in important ways. For example,

a feasible solution for one will provide a bound on the optimal objective function value

of the other. Also, if one has an optimal solution, then the other will have an optimal

solution as well and the objective function values of both will be the same. In particular,

if one problem has an optimal solution, then a “certificate” of optimality can be obtained

from the corresponding dual problem verifying the optimality.

23



CHAPTER 1. CONSTRAINED OPTIMIZATION

The theory related to the relationship between a linear program and its dual is

called duality theory, and has important consequences for optimization and is not only

of theoretical, but of practical importance as well. This chapter will develop and explore

the implications and economic interpretations of duality theory and its role in optimal

algorithm design and sensitivity analysis. With the development of duality theory, a

variant of the simplex method called the dual simplex method is developed which can

enhance the computation of optimal solutions of linear programs that are modifications

of an existing problem Klamroth et al. [2004].

1.6 Formulating duals

1.6.1 Motivation

Let us establish the notation to be used in the upcoming chapters. As previously defined,

let c ∈ Rn, b ∈ Rm, A ∈ Rmxn, and P represent the standard form linear programming

problem:

(P ) : min c⊤x

s.t :Ax = b

x ≥ 0,

which we will refer to as the primal problem. In mathematical programming, a constraint

is said to be relaxed if it is removed from the set of constraints. Considering this, let us

examine a relaxed version of P , where Ax = b is replaced with a violation penalty term

p⊤(b−Ax). This leads to the following problem:

g(p) = min
x≥0

{
c⊤x+ p⊤(b−Ax)

}
,

which eliminates explicit equality constraints and represents them implicitly through a

penalty term. This term penalises constraint infeasibility, guiding the relaxed problem’s

solution towards that of P . Since our primary goal is to solve P , we are interested in

determining the values (or prices) p ∈ Rm that make P and g(p) equivalent.
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Let x be the optimal solution to P . Note that for any p ∈ Rm, we have:

g(p) = min
x≥0

{
c⊤x+ p⊤(b−Ax)

}
≤ c⊤x+ p⊤(b−Ax) = c⊤x,

meaning that g(p) serves as a lower bound on the optimal value c⊤x. This inequality is

true because, although x is optimal for P , it might not be optimal for g(p) for a given p.

The equality on the right results from x ∈ P , meaning the feasibility of x ensures that

Ax = b.

Table 1.1 provides a summary which allows one to identify the resulting formulation

of the dual problem based on the primal formulation, in particular regarding its type

(minimisation or maximisation), constraint types and variable domains. To convert a

Primal (dual) Dual (primal)

minimise maximise

Independent terms Obj. function coef.

Obj. function coef. Independent terms

i-th row of constraint coef. i-th column of constraint coef.

i-th column of constraint coef. i-th row of constraint coef.

Constraints Variables

≥ 0 ≥ 0

≤ 0 ≤ 0

= 0 ∈ R

Variables Constraints

≥ 0 ≤ 0

≤ 0 ≥ 0

∈ R = 0

Table 1.1: Primal-dual conversion table

minimisation primal problem into a maximisation dual, the table should be read from

left to right. In this case, the independent terms (b) become the objective function

coefficients, and greater or equal constraints turn into nonnegative variables, among other
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changes. Conversely, if the primal problem is a maximisation problem, the table should

be read from right to left. For instance, less-or-equal-than constraints in the primal would

become nonnegative variables in the dual, and so forth. With some practice, one can

become familiar with this table, which is a valuable tool for deriving dual formulations

from primal problems .

It is important to note that the conversion of primal problems into duals is symmetric.

This means that by reapplying the rules in Table 1.1, one can revert the obtained dual

back to the original primal problem. This property of linear programming problems is

known as being self dual. Additionally, equivalent reformulations in the primal problem

result in equivalent duals. Specifically, transformations such as replacing variables x ∈ R

with x+ − x−, where x+, x− ≥ 0, introducing nonnegative slack variables, or removing

redundant constraints, all lead to equivalent duals.

1.7 Duality theory

1.7.1 Weak duality

Weak duality pertains to the bounding property of dual feasible solutions, as stated in

the Theorem 1.9 .

Theorem 1.9 (Weak duality). Let x be a feasible solution to (P ) : {c⊤x : Ax = b, x ≥

0} and p be a feasible solution to (D) : {p⊤b : p⊤A ≤ c⊤}, the dual problem of P . Then

c⊤x ≥ p⊤b.

Corollary 1.10 (Consequences of weak duality). The following implications derive

directly from Theorem (1.9):

(1) If the optimal value of P is −∞ (i.e., P is unbounded), then D must be infeasible.

(2) If the optimal value of D is ∞ (i.e., D is unbounded), then P must be infeasible.

(3) Let x and p be feasible solutions to P and D, respectively. If p⊤b = c⊤x, then x

is optimal for P and p is optimal for D. Oliveira
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1.7.2 Strong duality

This bounding property can act as a verification of optimality when the values coincide.

This idea is referred to as strong duality, a fundamental characteristic of linear program-

ming problems, formally stated in Theorem 1.11.

Theorem 1.11 (Strong duality). If (P ) : min
{
c⊤x : Ax = b, x ≥ 0

}
has an optimal

solution, then its dual (D) : max
{
p⊤b : p⊤A ≤ c⊤

}
also has an optimal solution, and

their optimal values are equal.

1.7.3 Complementary slackness

One point that must be noticed is that, for the constraints that are not active at the

optimal point x . That is, we have that

p⊤b =
∑
i∈I

pibi =
∑
i∈I

pi(a
⊤
i x) = c⊤x,

which again implies the optimality of p (cf. Corollary 1.10 (3)). This geometrical insight

leads to another key result for linear programming duality, which is the notion of com-

plementary slackness

Theorem 1.12 (Complementary slackness). Let x be a feasible solution for

(P ) : {c⊤x : Ax = b, x ≥ 0}

and p be a feasible solution for

(D) : {p⊤b : p⊤A ≤ c⊤}.

The vectors x and p are optimal solutions to P and D, respectively, if and only if

pi(a
⊤
i x− bi) = 0,∀i ∈ I, and (cj − p⊤Aj)xj = 0, ∀j ∈ J .

1.7.4 Dual feasibility and optimality

Combining the preceding discussions, the conditions for a primal-dual pair (x, p) to be

optimal for their respective primal (P ) and dual (D) problems are given by
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a⊤i x ≥ bi, ∀i ∈ I (primal feasibility) (1.7)

pi = 0, ∀i /∈ I0 (complementary conditions) (1.8)∑
i∈I

p⊤i ai = c (dual feasibility I) (1.9)

pi ≥ 0, (dual feasibility II) (1.10)

where I0 = {i ∈ I | a⊤i x = bi} denotes the set of active constraints.

1.8 Conclusion

In this chapter, we explored linear programming (LP), mixed-integer linear programming

(MILP), and Duality with its components Motivation for Duality and Forming the Dual

Problem and Weak and Strong Duality Theory, These approaches allowed us to effectively

and accurately model various aspects of Constrained optimization.

28



Chapter 2
Solving constrained optimization

problems

2.1 Introduction

This chapter is devoted to the resolutions of constrained optimization problems, espe-

cially in the context of Mixed-Integer Linear Programming (MILP), has seen signifi-

cant advancements with the development of sophisticated algorithms such as branch and

bound (separation and evaluation) and branch and cut (separation and cutting). These

techniques are particularly effective for addressing complex MILP problems where an

exhaustive search of all possible solutions is impractical due to the exponential growth

of the search space.This chapter primarily draws from chapters (4, 9, 10, and 11) of

Oliveira lecture notes Oliveira. For additional details and proofs, please refer to these

lecture notes.

2.2 Calculating step sizes

Consider the linear programming problem P in its standard form

(P ) : min{c⊤x : Ax = b, x ≥ 0}.
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Using the concepts defined in Chapter 1, solving P with the simplex method involves

these steps:

1. Begin with a nondegenerate basic feasible solution (BFS).

2. Identify a negative reduced cost component cj . If c ≥ 0, the current solution is

optimal.

3. Proceed in the feasible direction d = (dB, dN ), where dj = 1, dN\{j} = 0, and

dB = −B−1Aj .

2.3 Moving between adjacent bases

Once the optimal step size θ is determined, we transition to a new BFS x.

Theorem 2.1 (Adjacent bases) Consider Aj as the column of the matrix A related to

the chosen nonbasic variable with index j ∈ IN .where AB(i) is its corresponding column

in A. Then:

(1) The columns AB(i) and Aj are linearly independent, implying that B is a basic

matrix.

(2) The vector x = x+ θd represents a BFS corresponding to B.

Theorem 2.2(Convergence of the simplex method) Assume that P has at least

one feasible solution and that all BFS are nondegenerate. Then, the simplex method

terminates after finitely many iterations, resulting in one of these outcomes:

(1) The basis B and the associated BFS are optimal; or

(2) There exists a direction d such that Ad = 0, d ≥ 0, and c⊤d < 0, leading to an

optimal value of −∞.

.
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Algorithm 1 Simplex method Oliveira
1: initialise. Initial basis B, associated BFS x, and reduced costs c.

2: while cj < 0 for some j ∈ IN do

3: Choose some j for which cj < 0. Calculate u = B−1Aj.

4: if u ≤ 0 then

5: return z = −∞.

6: else

7: θ = mini∈IB :ui>0{
xB(i)

ui
} and l = argmini∈IB :ui>0{

xB(i)

ui
}

8: Set xj = θ and xB = x− θu. Form new basis IB = IB \ {l} ∪ {j}.
9: Calculate cj = cj − c⊤BB

−1Aj for all j ∈ IN .

10: end if

11: end while

12: return optimal basis IB and optimal solution x.

The matrix B consists the current basis matrix, consisting of the columns of A

corresponding to the basic variables. x is the current basic feasible solution (BFS), c the

vector of reduced costs, IN the set of indices of the non-basic variables, u the direction

vector, calculated as u = B−1Aj , z The objective function value. θ is The step length,

calculated as θ = mini∈IB ,ui>0{xB(i)
ui
}, xB The current values of the basic variables, IB

The set of indices of the basic variables, cj the cost coefficient for the j variable, cB the

cost coefficients for the basic variables, Aj the j column of the matrix A.

2.4 Relaxations

Consider an integer programming problem expressed as

z = min
x
{c⊤x : x ∈ X ⊆ Zn}.

Most methods for proving optimality rely on bounding the optimal solution. This involves

constructing an increasing sequence of lower bounds

z1 < z2 < · · · < zs ≤ z

31



CHAPTER 2. SOLVING CONSTRAINED OPTIMIZATION PROBLEMS

and a decreasing sequence of upper bounds

z1 > z2 > · · · > zt ≥ z

to achieve the tightest possible lower (z ≤ z) and upper (z ≥ z) bounds.

Definition 2.1 (Relaxation) A problem

(RP ) : zRP = min{c⊤x : x ∈ X ⊆ Rn}

is a relaxation of the problem

(P ) : z = min{c⊤x : x ∈ X ⊆ Rn}

if X ⊆ X and c⊤x ≤ c⊤x for all x ∈ X.

Proposition 2.3. If RP is a relaxation of P , then zRP serves as a dual bound for z.

Proposition 2.4. The following statements hold:

1. If the relaxation RP is infeasible, then P is also infeasible.

2. Let x∗ be an optimal solution for RP . If x∗ ∈ X and c⊤x∗ = c⊤x∗, then x∗ is also

an optimal solution for P .

2.4.1 Linear programming relaxation

In the context of solving (mixed-)integer programming problems, we use the concept of

linear programming (LP) relaxations. Although we briefly discussed this in the previous

chapter, we will now provide a precise definition.

Definition 2.5 (Linear programming (LP)relaxation) The LP relaxation of an

integer programming problem min{c⊤x : x ∈ P ∩ Zn} with P = {x ∈ Rn
+ : Ax ≤ b} is

the linear programming problem min{c⊤x : x ∈ P}.

Proposition 2.6. Let P1 and P2 be formulations of the integer programming problem

min
x
{c⊤x : x ∈ X} with X = P1 ∩ Zn = P2 ∩ Zn.

Assume P1 is a tighter formulation than P2 (i.e., P1 ⊂ P2).

Let ziLP = min{c⊤x : x ∈ Pi} for i = 1, 2. Then z1LP ≥ z2LP for any cost vector c.
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2.5 Branch and bound method

The working principle behind this strategy is based on Proposition (2.7).

Proposition 2.7 Let K = {1, . . . , |K|} and
⋃

k∈K Sk = S be a decomposition of S.

Let zk = max .x{cTx : x ∈ Sk} for all k ∈ K. Then

z = max
k∈K
{zk}.

2.5.1 Bounding in enumerative trees

The main principle behind pruning branches in enumerative search trees is summarized

in Proposition (2.8).

Proposition 2.8 Consider the problem P and let S =
⋃

k∈K Sk be a decomposition

of S into smaller sets. Let zk = max .x{cTx : x ∈ Sk} for k ∈ K, and let zk (zk) be an

upper (lower) bound on zk. Then

z = max
k∈K
{zk} and z = max

k∈K
{zk}.

2.5.2 Linear-programming-based branch-and-bound

Branch-and-bound refers to methods that solve relaxations of subproblems and use

bounding information to prune branches in the enumerative search tree preemptively

as shown in (Algorithm(2)).
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Algorithm 2 LP-relaxation-based branch-and-bound Oliveira
1: initialise. L ← {S}, z ← −∞, x← −∞
2: while L ≠ ∅ do

3: select problem Si from L. L ← L \ {Si}.
4: solve LP relaxation of Si over Pi, obtaining ziLP and xi

LP . zi ← ziLP .

5: if Si = ∅ then return to step(2).

6: else if zi ≤ z then return to step (2).

7: else if xi
LP ∈ Zn then z ← max{z, zi}, x← xi

LP ; and return to step (2).

8: end if

9: select a fractional component xj and create subproblems Si1 and Si2 with

formulations Pi1 and Pi2, respectively, such that

Pi1 = Pi ∪ {xj ≤ ⌊xj⌋} and Pi2 = Pi ∪ {xj ≥ ⌈xj⌉}.

10: L ← L ∪ {Si1, Si2}.
11: end while

12: return (x, z).

L the list of subproblems to be solved. S the initial problem, z the current lower

bound on the optimal value, z the current upper bound on the optimal value, Si the

selected subproblem from the list L , Pi the feasible region associated with subproblem Si

, ziLP the optimal value of the LP relaxation of subproblem Si , x∗iLP the optimal solution

of the LP relaxation of subproblem Si , Zn the set of integer vectors of dimension n,xj

the selected fractional component of the solution x∗iLP , Si1, Si2 the subproblems created

by branching on xj , Pi1, Pi2 the feasible regions associated with subproblems Si1 and Si2,

respectively. ⌊xj⌋ the greatest integer less than or equal to xj , ⌈xj⌉ the smallest integer

greater than or equal to xj .
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2.6 Valid inequalities

Cutting-plane methods work by iteratively approximating the set of inequalities Ãx ≤ b̃

through the addition of constraints to the formulation P of IP . These added constraints

are known as valid inequalities, which we define more precisely in Definition

Definition 2.9 (Valid inequality) An inequality π⊤x ≤ π0 is valid for X ⊂ Rn if

π⊤x ≤ π0 holds for all x ∈ X.

2.7 The Chvátal-Gomory procedure

To establish a systematic procedure for generating valid inequalities in the context of

solving integer programming problems, we will use a two-step process.

Proposition 2.10 (Valid inequalities for polyhedral sets) An inequality π⊤x ≤ π0
is valid for P = {x ∈ Rn : Ax ≤ b, x ≥ 0}, if and only if P ̸= ∅ and there exists u ≥ 0

such that u⊤A ≥ π and u⊤b ≤ π0.

Proposition 2.11 (Valid inequalities for integer sets) Let X = {y ∈ Z1 : y ≤ b}.

The inequality y ≤ ⌊b⌋ is valid for X.

Definition 2.12 (Chvátal-Gomory procedure) Consider the integer set X = P ∩Zn

where P = {x ∈ Rn
+ : Ax ≤ b}, A is an mxn matrix with columns {A1, . . . , An} and

u ∈ Rm
+ .

The Chvátal-Gomory procedure consists of the following set of steps to generate valid

inequalities for X:

1.
∑n

j=1 u
⊤Ajxj ≤ u⊤b is valid for P as u ≥ 0;

2.
∑n

j=1⌊u⊤Aj⌋xj ≤ u⊤b is valid for P as x ≥ 0;

3.
∑n

j=1⌊u⊤Aj⌋xj ≤ ⌊u⊤b⌋ is valid for X as ⌊u⊤b⌋ is integer.

Theorem 2.13 Any inequality that holds for the set X can be derived by executing the

Chvátal-Gomory process a finite number of times.
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2.8 The cutting-plane method

In any scenario where we have a collection of inequalities and a procedure for solving the

separation problem, we can formulate a general cutting-plane method. This is outlined

in algorithm 3 the rationale for utilizing cutting-plane techniques.

Algorithm 3 Cutting-plane algorithm Oliveira

1: initialise. let F ⊆ {(π, π0) : π
⊤x ≤ π0 is valid for X}. k = 0.

2: while xk
LP /∈ Zn do

3: solve the LP relaxation over P , obtaining the optimal objective value zkLP

and optimal solution xk
LP .

4: if xk
LP /∈ Zn then find (πk, πk

0) ∈ F such that πk⊤xk
LP > πk

0 .

5: else

6: return (xk
LP , z

k
LP ).

7: end if

8: P ← P ∪ {πk⊤x ≤ πk
0}. k = k + 1.

9: end while

10: return (xk
LP , z

k
LP ).

F set of valid inequalities {(π, π0) : π⊤x ≤ π0 is valid for X}, X set of all feasible

integer solutions, xkLP optimal solution to the linear programming (LP) relaxation at

iteration k. zkLP optimal objective value of the LP relaxation at iteration k. k iteration

counter.(πk, πk0 ) a valid inequality from the set F used to cut off the current LP solution

xkLP if it is not integral. P the feasible region of the problem defined by the current set

of constraints.

2.9 Modern mixed-integer linear programming solvers

In this context, we will explore some of the key features common to most professional-

grade mixed-integer programming (MIP) solvers. It will become evident that MIP solvers

are composed of a complex array of techniques developed over the past few decades.
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Continuous enhancement and the development of new techniques have led to performance

improvements surpassing those achieved by hardware advancements alone. This is a

dynamic and exciting research area, with new features being regularly proposed and

integrated into these solvers with frequent updates.

The main distinction between MIP solver implementations lies in the specific “tricks”

and techniques they employ. Often, the details of these techniques are not fully disclosed,

as high-performing solvers are commercial products protected by trade secrets. Fortu-

nately, some open-source options (such as CBC and HiGHS) and free-to-use alternatives

(such as SCIP) are available ,(CBC,HiGHS and SCIP are mathematical programming

solvers used to solve optimization problems) though they do not yet match the perfor-

mance of commercial implementations Oliveira.

We will focus on the most important techniques that constitute a professional-grade

MIP solver implementation. Most MIP solvers offer substantial tuning capabilities and

on-off toggling of these techniques. Therefore, understanding the most crucial techniques

and their functions can be beneficial for configuring MIP solvers to meet specific needs.

Most MIP solvers implement a method called branch-and-cut, which combines the

linear-programming (LP)-based branch-and-bound method and cutting-plane method

(discussed this previously) employed at the root node (or the first subproblem LP relax-

ation) and potentially at later nodes as well. Figure (2.1) shows the typical flowchart of

a MIP solver algorithm. The initial phase consists of preprocessing, known as presolve.

Here, the problem formulation is analyzed to identify and remove redundant constraints

or “loose” variables. More advanced techniques may be used to infer the optimal value

of some variables through logic or to tighten their bounds. For simpler problems, the

presolve phase might return an optimal solution or certify that the problem is infeasible

or unbounded.

Subsequently, the main solution loop begins, similar to the branch-and-bound method.

A node selection method is used, and the LP relaxation is solved. Then, branching is

applied, and the process continues until an optimal solution is found.

The primary difference, however, is the inclusion of the extra cuts and heuristics

phases. Along with the presolve, these phases likely vary the most between MIP solver

implementations. The cut phase involves applying a cutting-plane method to the current
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LP relaxation to either obtain an integer solution (pruning the branch by optimality) or

strengthen the LP relaxation formulation. Each solver uses its own set of cuts during

this phase, often employing a collection of them simultaneously. The heuristics phase is

combined to find primal feasible solutions from the LP relaxations (possibly augmented

by cuts) so that primal bounds (integer and feasible solution values) can be obtained and

shared across the search tree, promoting pruning by bound. Oliveira

Start Presolve

ReturnNode selection

LP Relaxation

Cuts

Branching

Heuristics

Figure 2.1: The flowchart of a typical MIP solver. The nodes represent phases of

the algorithm

2.10 Conclusion

In this chapter, we presented the methods of simplex,branch and bound and branch and

cut in mixed integer linear programming.
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Chapter 3
Modeling Home Energy Management

System (HEMS)

3.1 Introduction

In the context of the ongoing global energy transition, the efficient management of energy

consumption has become a critical challenge for both consumers and electricity providers.

The increasing penetration of renewable energy sources, such as solar and wind energy,

into the electrical grid introduces significant variability and unpredictability in energy

supply. Consequently, there is a growing need for advanced energy management strate-

gies that can optimize energy consumption, reduce costs, and ensure the reliability of

electrical systems. One promising approach to address these challenges is the application

of predictive control in scheduling household appliances and Home Energy Management

Systems (HEMS). The mathematical model presented in our thesis is heavily based on

the work of Nagpal et al. [2020].

3.2 Description of the Problematic

This study introduces an HEMS architecture aimed at reducing peak power consumption

and electricity costs through automated appliance scheduling. It relies on bi-directional
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communication with the power grid for real-time data exchange. The system operates

in two modes based on whether appliances are thermal or non-thermal, using linear pro-

gramming for optimization. It maintains peak power consumption within specified limits

set by the utility. The scheduling algorithm adapts in real-time, and users set deadlines

for non-thermal appliances, receiving warnings if deadlines are too short Halvgaard et al.

[2012b].

Figure 3.1: System architecture of HEMS, MILP = mixed-integer-linear-

programming.

• The figure shows how the HEMS integrates weather data, electricity prices, and

appliance characteristics into a centralized system that uses predictive control

and optimization to manage household energy consumption efficiently. The MILP

framework allows the system to handle the complexity of scheduling different types

of appliances under various constraints, achieving significant reductions in energy

costs and peak power consumption while maintaining user comfort , mode 1 and

mode 2 refer to two different modes of operation for the home energy management

system (HEMS) based on load category (thermal/non-thermal).Mode 1 a mix of

thermal and non-thermal appliances are operated together.Mode 2 only the ther-

mal appliances are activated.The capacity profile in this context likely refers to the

maximum power consumption allowed for the appliances at any given time. The

double-sided arrow typically represents a bidirectional communication link between
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the HEMS and the power grid, enabling data exchange and control signals between

the two entities.

3.3 System Architecture

3.3.1 Load Categorization

The load categorization in the Home Energy Management System (HEMS) is divided

into two main types based on the dynamics of the appliances:

• Thermal Load

– Examples: Heat pumps, room heaters, water heaters, refrigerators.

– Dynamics: Includes temperature as a system state.

• Non-Thermal Load

– Examples: Washing machines, clothes dryers, dishwashers.

– Characteristics:

– Preemptive: Can be paused or interrupted as needed.

– Fixed Duration: Operates for a fixed time to complete tasks.

– Deadline: Must complete tasks by a user-defined deadline.

3.3.2 System Layout

The system layout of the Home Energy Management System (HEMS) presented in the

Figure3.1 includes the following components:

• Forecaster: This component is responsible for making predictions about external

weather conditions and heat gains due to solar irradiance in the house. Data-driven

prediction techniques are commonly used based on historical data
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• Predictive MILP Controller: The key component of the HEMS and operates in

two modes based on electrical load categories. It solves different mathematical

optimization problems in each mode using predictions from the forecaster about

weather conditions. The controller receives electricity prices and consumption-

capacity profiles from the smart-grid operator via smart-meter communication.

3.4 Appliance Dynamics Modeling and Setup

3.4.1 State-Space Model

The scheduling algorithm requires mathematical modeling of appliances into a discrete

linear state-space representation. This model encapsulates control inputs, outputs, state

variables, and external disturbances and is written as in Equation(3.1).

xk+1 = Axk +Buk + Edk (3.1)

yk = Cxk.

• x ∈ Rn is the state vector

• u ∈ Rm is the control vector

• y ∈ Rp is called the output vector

• d ∈ Rr is called the disturbance vector

• A ∈ Rnxn is the state matrix

• B ∈ Rnxm is the control matrix

• C ∈ Rpxn is the output matrix

• E ∈ Rrxn is the disturbance matrix

• k denotes the time instant.
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3.4.2 Thermal Load Appliances Modeling

The house uses a water source heat pump for indoor heating via floor heating pipes and

a solar water heater system for hot water. Both systems’ performance depends on solar

irradiance and ambient temperature.

• Heat pump:a reduced order model of a residential building equipped with a heat-

pump is developed in Halvgaard et al. [2012b] Staino et al. [2016] using the heat

balance equations:

Cp,r Ṫr = (UA)fr(Tf − Tr)− (UA)ra(Tr − Ta) + (1− p)ϕs (3.2)

Cp,f Ṫf = (UA)wf (Tw − Tf )− (UA)fr(Tf − Tr) + pϕs

Cp,w Ṫw = ηWc − (UA)wf (TW − Tf ).

– Cp,r , Cp,f and Cp,w are thermal capacities for the room, floor, and water,

respectively.

– Tr , Tf and Tw are the temperatures of the room, floor, and water, respec-

tively.

– Tr represents a variable that is a derivative with respect to time. Therefore,

Tr is a temperature variable that changes over time, and Ṫr its derivative

represents the rate of change of temperature with respect to time.

– (UA)fr , (UA)wf and (UA)ra are heat transfer coefficients between different

components.

– η is the efficiency of the heat pump compressor.

– Equation (3.2) discretized with appropriate sample time using zero-order-hold

model.

– Converted into state-space representation as shown in Equation (3.1).
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– The first sub-equation in Equation (3.2) describes the indoor environment’s

thermal dynamics of the building, depending on floor temperature Tf , am-

bient temperature Ta, and solar gains ϕs .

– The second sub-equation represents heat transfer between the floor and the

underfloor heating system.

– The last sub-equation relates the floor temperature Tf to the work done W

by the compressor.

– These equations describe the heat balance within the building. The first

equation captures the thermal dynamics of the indoor environment, the sec-

ond equation represents the heat transfer between the floor and the heating

system, and the third equation relates the water temperature to the work

done by the compressor.

Following that, a state-space model for the heat pump is established, we get

x =
[
Tr Tf Tw

]T
, u =Wc,

d =
[
Ta ϕs

]T
, and y = Tr.

• Solar water tank:

CtṪt = ηhPh + ϕs −Qc − (UA)t(Tt − Ti) (3.3)

– Equation (3.3) captures the thermal dynamics of the tank.

– It is a function of:

∗ Inlet water temperature Ti.

∗ Power consumption of the heating element Ph.

∗ Solar gains ϕs.

After discretization and rewriting Equation (3.3) in state-space representation, we

get x = y = Tt, u = Ph, and d =
[
Qc ϕs Ti

]T
.
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3.4.3 Non-Thermal Load Appliances Modeling

The dynamics of a non-thermal load appliance are modeled using the following equation:

ζk+1 = ζk + ψk, (3.4)

• ζ is the variable that tracks the duration for which the appliance has run.

• ψ is a binary integer variable (ψ ∈ {0,1}) indicating the operational status of the

appliance at time k (1 if running, 0 if halted).

This model can be represented in the state-space form, where:

• x = y = ζ

• u = ψ

Whenever ψ is 1, the appliance consumes a certain amount of power.

3.5 Problem Formulation of Thermal Appliances

In this section, the task of scheduling appliances is formulated as an MILP. The appro-

priate constraints associated with the appliances are also described. The objective of

the program is to reduce the total electricity cost and peak power consumption at the

same time. As mentioned previously, an MPC (is an advanced method of control that

emerges from application in process industry in late 70s and early 80s Carlos E. García †)

framework is applied to operate the appliances.Nagpal et al. [2020] At each time step an

MILP is formulated with a prediction horizon of N time steps ahead from the current

time step.

3.5.1 Energy Cost

The electricity cost associated with the energy consumption of thermal appliances is

expressed mathematically as:

JP =
∑
k∈N

∑
i∈P

ckuk,i (3.5)

where
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• N is the prediction horizon, representing the set of future time steps.

• P denotes the set of thermal appliances.

• ck is the real-time electricity price at kth time step.

• uk,i represents the power consumption of the ith thermal appliance at the time

step k.

3.5.2 Comfort Zone Constraints

The user’s preference is to maintain the temperature of the building or water tank within

a specified comfort zone. These constraints can be imposed as:

yk,min,i ≤ yk,i ≤ yk,max,i, k ∈ N , i ∈ P, (3.6)

where

• ymax,i and ymin,i are upper and lower bound on the temperature of the ith thermal

appliance.

3.5.3 Maximum Power Consumption Constraint

Each thermal appliance is assumed to have a maximum and minimum power consump-

tion limit at each time step, ensuring that the power consumed does not exceed certain

thresholds. This constraint can be expressed as:

umin,i ≤ uk,i ≤ umax,i k ∈ N , i ∈ P, (3.7)

where

• umin,i and umax,i represent the upper and lower bound on the power consumption

of ith thermal appliance.
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3.6 Problem Formulation of Non-Thermal Appli-

ances

3.6.1 Energy Cost

The energy cost associated with non-thermal appliances is similar to that of thermal

appliances. It can be represented mathematically as follows:

JQ =
∑
k∈N

∑
j∈Q

ckPk,jψk,j ψ = {0, 1}. (3.8)

• JQ is the total energy cost for operating the activated non-thermal appliances.

• ck is the real-time electricity price at kth time step.

• Pk,j is the power consumed by the jth non-thermal appliance at the kth time step.

• ψk,j is a binary variable associated with the jth non-thermal appliance at the kth

time step, indicating whether the appliance is ON (ψ=1) or OFF (ψ=0).

3.6.2 Deadline Constraint

Each non-thermal appliance must complete its task within a user-defined deadline, which

must be longer than the appliance’s running time. This is ensured by the equation

Ωj ≤ (ej − bj) j ∈ Q, (3.9)

where

• Ωj is the running time

• ej is the deadline

• bj is the start time

The Home Energy Management System (HEMS) enforces this by scheduling the appliance

to start at the next time slot and warning the user if the deadline is too short.
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3.6.3 Start-Up Cost

The non-thermal appliance start-up cost is represented by the equation:

Js =
∑
k∈N

∑
j∈Q

γjψk,j (3.10)

where

• Js is the total start-up cost of non-thermal appliances.

• γj refers to the start-up cost of the jth non-thermal appliance

3.6.4 Operation Time Constraint

To complete the assigned task, non-thermal appliances must operate for a fixed duration

Ω This requirement can be expressed with the following constraint:

ej∑
k=bj

ψk,j = Ωj j ∈ Q, ψ = {0, 1}. (3.11)

The constraint in Equation (3.11) guarantees that the appliance operates for its entire

duration between its activation time and its deadline. Nagpal et al. [2020]

3.6.5 Total Capacity Constraint

The Total Capacity Constraint limits the maximum total power consumption by all

appliances at each time step and is represented by the equation:

∑
i∈P

uk,i +
∑
j∈Q

Pk,jψk,j ≤ Ck, k ∈ N , i ∈ P, j ∈ Q, ψ ∈ {0, 1} (3.12)

Ck represents the maximum power available for consumption at time step k. This capac-

ity constraint is set by the utility company and can vary over time based on electricity

demand and grid operational costs. This is a hard constraint, meaning that if it is not

met, the optimization problem will stop, which is undesirable. To address this, a soft

constraint on total capacity is introduced in the next subsection.
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3.7 Soft Constraints

Soft Constraints are introduced to allow for some violation of relevant constraints in

the optimization problem. Slack variables are used to enable compromise between op-

timal scheduling and constraint violation.Nagpal et al. [2020] The Soft Constraints are

represented by the following equations:

yk,min,i ≤ yk,i + vk,i k ∈ N , i ∈ P, (3.13)

yk,max,i ≥ yk,i − vk,i k ∈ N , i ∈ P, (3.14)∑
i∈P

uk,i +
∑
j∈Q

pk,jψk,j ≤ Ck −wk k ∈ N , i ∈ P, j ∈ Q. (3.15)

where

• v and w are slack variables introduced to allow for constraint violation.

3.8 Scheduling Algorithm

Upon activation, the (HEMS) first verifies the status of non-thermal appliances by check-

ing their activation flags, which indicate either 1 (on) or 0 (off). The HEMS then deter-

mines its mode of operation based on these activation flags.

3.8.1 Non-Thermal

In the scheduling algorithm for (HEMS), Mode 1 can be mathematically represented as

follows:

min
u,v,w

JP + JQ + JS +
∑
k∈N

(βw(wk) +
∑
i∈P

αv,i(vk,i)) (3.16)

subject to

umin,i ≤ uk,i ≤ umax,i k ∈ N , i ∈ P (3.17)
ej∑

k=bj

ψk,j = Ωj , j ∈ Q, ψ = {0, 1}, (3.18)

yk,min,i ≤ yk,i + vk,i k ∈ N , i ∈ P (3.19)
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yk,max,i ≥ yk,i − vk,i k ∈ N , i ∈ P (3.20)∑
i∈P

uk,i +
∑
j∈Q

Pk,jψk,j ≤ Ck −wk k ∈ N , i ∈ P, j ∈ Q. (3.21)

Here

• αv(v) ≥ 0 and βw(w) ≥ 0 are convex penalty cost functions associated with the

slack variables v and w .

3.8.2 Thermal

In the scheduling algorithm for Home Energy Management Systems (HEMS), Mode 2

can be mathematically represented as follows:

min JP , (3.22)

subject to

umin,i ≤ uk,i ≤ umax,i k ∈ N , i ∈ P (3.23)

yk,min,i ≤ yk,i + vk,i k ∈ N , i ∈ P (3.24)

yk,max,i ≥ yk,i − vk,i k ∈ N , i ∈ P (3.25)∑
i∈P

uk,i ≤ Ck −wk k ∈ N , i ∈ P (3.26)

• In both modes and at each time step, a control decision policy {u∗
k}Nk=1 is obtained

for next N time steps by solving the formulated optimization. MILP and only the

first control input {u∗
1} which will be applied to the system and while rest of the

control inputs {u∗
k}Nk=2 are discarded.

3.9 Conclusion

In this chapter, we discussed modeling our problem and the main concepts and theories

related to household energy management.
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Chapter 4
Numerical results

4.1 Introduction

In this chapter, we discuss some numerical evaluations of our problem while providing

some analysis on the results obtained.Using MATLAB 2021b combined with the YALMIP

package Lofberg [2004], CPLEX, MOSEK and INTLINPROG solvers Lofberg [2004],

several numerical case studies were conducted.

4.2 Simulation Studies

4.2.1 Simulation Setup

• Thermal Appliances:Heat pumps and solar water heaters are considered.Table(4.1)

contains the values of the parameters used in modeling of thermal appliances as

described in reference [Halvgaard et al. [2012b], Halvgaard et al. [2012a]] such as

desired indoor air temperature (18◦C, 22◦C) and water temperature range (50◦C,

70◦C) are specified. Maximum power consumption for the heat pump is 1 KW,

and for the water heater, it is 2 KW. Daily water withdrawal demand profiles are

generated using the dwhcalc toolbox Jordan and Vajen [2005].
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Table 4.1: Thermal appliance parameters.

Parameter Value Unit Parameter Value Unit

Cp,f 3315 KJ/◦C (UA)fr 624 KJ/◦Ch

Cp,r 810 KJ/◦C (UA)fr 28 KJ/◦Ch

Cp,w 836 KJ/◦C (UA)wf 28 KJ/◦Ch

Ct 3881 KJ/◦C (UA)wf 29,84 KJ/◦Ch

η 3 - p 0,2 -

ηh 1 -

• Non-Thermal Appliances:a washing machine and a dishwasher are included.These

appliances are activated at random times each day with random deadlines.We used

in case 2 the data from table (4.2).

We have made some modifications and additions to this program, notably by

adding an air conditioner, which is a non-thermal device.We have also adjusted

the operating time and the rated power for both the washing machine and the

dishwasher.We used the data in table (4.3) in both cases 1 and 3 :

Table 4.2: Non-thermal appliance parameters.

Appliance Running Time (Ω) Rated-Power (P)

Washing machine 2h 3KW

Dishwasher 2.5h 4KW

Table 4.3: Non-thermal appliance parameters after adjustments.

Appliance Running Time (Ω) Rated-Power (P)

Washing machine 1.5h 2 KW

Dishwasher 1.5h 2 KW

air conditioner 2h 3 KW
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• Data Sources: Ambient temperature and solar radiation data are sourced from

ASHRAE IWEC weather data files for Dublin, IrelandStaino et al. [2016] Electric-

ity prices are taken from the wholesale Danish Energy Market Ma and Jørgensen.

4.2.2 Simulation Details

• Implementation: The setup is simulated over a 7-day period with a 15 minute

slots prediction horizon. The problems are are solved using multiple solvers such as

INTLINPROG ,MOSEK and CPLEX Lofberg [2004] integrated with the YALMIP

toolboxLofberg [2004] .Table (4.4) shows the number of constraints and optimiza-

tion methods associated with each mode.

Table 4.4: Non-thermal appliance parameters.

Mode Number of Constraints Optimization Problem

Mode 1 (WM) 7003 MILP

Mode 1 (DW) 7003 MILP

Mode 1 (AC) 7003 MILP

Mode 1 (WM and DW) 7290 MILP

Mode 1 (WM and AC) 7290 MILP

Mode 1 (DW and AC) 7290 MILP

Mode 1 (WM and DW and AC) 8140 MILP

Mode 2 6716 LP

– WM:washing machine , DW:dishwasher , AC: air conditioner.

• Capacity Constraint: A maximum capacity constraint of 4 kw is imposed on the

total power consumption of all appliances.

4.3 Results and Discussion

Case 1: We present the results only if devices non-thermal are used:
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• This Figure 4.1 shows the power consumption of a washing machine over the week

(72 hours). The power consumption values are consistently higher than other con-

sumption values. Figure 4.2 displays power consumption data for the dishwasher,

and Figure 4.3 shows power consumption data for the air conditioner. All Figures

provide insights into energy usage patterns for these household appliances.

Figure 4.1: power consumption of

washing machine

Figure 4.2: power consumption of

dishwasher

Figure 4.3: power consumption of air

conditioner

• Figure 4.4 represents the total power consumption over time.The x-axis is labeled

(Time [Hours]) ranging from 0 to 168 hours.The y-axis represents Power Consump-

tion [KW].The solid blue bars indicate actual total power consumption values for

all three appliances. There’s a dashed horizontal line representing a capacity con-
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straint set at 4 KW.

Figure 4.4: Total power consumption

Case 2: In this scenario, we are providing results of a combination of 2 thermal devices

and two non-thermal appliances as used in the original work of Nagpal et al. [2020].

• Figure(4.5) illustrates the changes in indoor air temperature with HEMS and Fig-

ure (4.6) the power consumption of the heat pump with HEMS needed to maintain

that temperature. Throughout the simulation, the indoor temperature remains

within the specified comfort zone limits, and the power consumption constraint of

the heat pump is consistently met.
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Figure 4.5: Room temperature
Figure 4.6: power consumption of

heat pump

Figure 4.7: tank water temperature
Figure 4.8: power consumption of

water heater

• Figure (4.7) depicts the fluctuation of water temperature in the tank with HEMS

and Figure(4.8) corresponding power consumption of the water heater with HEMS.

Initially, the water temperature is set at 20°C (as shown in Figure 4.7). Over time,

the temperature gradually rises over the next few hours and then remains within

the specified range. This explains why the power consumption of the water heater

is higher at the beginning of the simulation period, as illustrated in Figure (4.8).

• Power consumption profiles of the washing machine and dishwasher are displayed

in Figures (4.9) and Figures (4.10) respectively.These appliances are intermittently
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interrupted during operation to minimize electricity costs and adhere to capacity

constraints. Importantly, the Home Energy Management System (HEMS) oper-

ates without prior knowledge of when washing or dishwashing requests will occur.

Requests are generated randomly to assess the HEMS’s ability to handle immediate

demand scenarios.

Figure 4.9: power consumption of washing ma-

chine

Figure 4.10: power consumption of dishwasher

• In Figure (4.11), the advantages of employing HEMS are evident, showcasing the
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total power consumption of all household appliances. Initially, Figure (4.12) illus-

trates that the total power consumption exceeds the 6 KW capacity limit.

Figure 4.11: Total power consumption

Case 3: In this case we model a scenario similar to case 2 with the addition of a third

non-thermal appliance, i.e. the air conditioner. The parameters related to the appliances

operation times and power consumptions are modified as presented in Table [4.2] :

• The two presented graphs are titled room temperature Figure (4.12) and heat

pump energy consumption Figure (4.13). The line on the graph starts slightly

above 21°C, drops sharply to just below 19°C within the first few hours, then

fluctuates slightly while generally trending downward Figure (4.12). The bars

on Figures (4.13) represent different energy consumption values at different times

hours of the 7 days.
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Figure 4.12: Room temperature
Figure 4.13: power consumption of

heat pump

• The graphs show the water temperature in the tank in degrees Celsius over time

(in hours) (Figure 4.14) and the energy consumption in kilowatts (kW) of the water

heater (Figure 4.15). The temperature fluctuates around 60 degrees Celsius. A

constant constraint is set at approximately 50 degrees Celsius (Figure 4.14). The

consumption varies considerably over time, with peaks followed by periods of no

consumption. A constant constraint is set at approximately 2 KW (Figure 4.15).

Figure 4.14: tank water temperature
Figure 4.15: power consumption of

water heater

• Figure 4.16 shows energy consumption peaks at different times. This suggests

that the washing machine is used at specific times of the day or over a period of
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several days. Figure 4.17 presents similar patterns, but for the dishwasher. The

peaks likely indicate the times when the dishwasher is running. Figure 4.18 also

shows peaks, but this time for the air conditioner. Understanding these peaks can

help adjust the temperature more efficiently, thereby reducing the electricity bill.

In summary, these graphs provide insight into the energy consumption habits of

household appliances.

Figure 4.16: power consumption of

wahing machine

Figure 4.17: power consumption of

dishwasher

Figure 4.18: power consumption of

air conditioner

• Figure 4.19, titled Total Energy Consumption, shows the trend of electricity con-

sumption over time. The solid blue line represents the actual energy consumption

over time, while the dashed black line represents the maximum available capacity.
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Figure 4.19: Total power consumption

• This table (4.5) presents the performances of different solvers for each case. The

elapsed time and total cost are indicated for each case.INTLINPROG is optimal

for scenarios involving only non-thermal devices due to its low cost and moderate

elapsed time.CPLEX offers the best balance for mixed device scenarios, providing

the fastest solution time and reasonable cost. MOSEK is not recommended due to

its high elapsed time and cost, making it the least efficient option.Overall, CPLEX

is the most versatile and efficient solver for a mixed device environment, while

INTLINPROG is preferable for non-thermal-only applications.
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Table 4.5: the performances of different solvers.

Case Solver Elapsed time(s) Total cost

1 INTLINPROG 226,24 1,7137

2 CPLEX 180,51 3,2327

3 MOSEK 65415,28 7,9561

4.4 Conclusion

To reduce the household electricity bill using the HEMS system, we find that these

results are satisfactory and can reduce electricity consumption.An existing program has

been used for case 2 and modified accordingly in case 1 and case 3.In future work,we

could compare all three solvers in all three cases.
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General conclusion

In this thesis, we explored the potential of Home Energy Management Systems (HEMS)

to reduce household electricity consumption. In particular, we implemented optimiza-

tion techniques based on linear programming (LP),mixed-integer linear programming

(MILP)constraints. These approaches allowed us to effectively and accurately model

various aspects of the energy management problem.

To solve the optimization models, we used advanced methods such as branch and

bound and branch and cut. These methods proved particularly effective in handling

the inherent complexities of our problem, including nonlinear constraints and discrete

variables. By applying these techniques, we were able to develop optimized solutions

that minimize energy consumption while respecting the comfort and usage constraints of

household electrical appliances.

Our results show that the use of HEMS, combined with sophisticated optimization

techniques, enables significant energy savings for households. The simulations and tests

carried out confirm that our approach effectively reduces electricity bills while maintain-

ing user comfort levels. Furthermore, the resolution methods employed, such as branch

and bound and branch and cut, demonstrated their robustness and efficiency in managing

the complex constraints of the problem.

In conclusion, this work makes a significant contribution to research on domestic

energy management. It demonstrates that HEMS, when combined with advanced op-

timization techniques, represent a promising solution for reducing household electricity

consumption. The results obtained are encouraging and pave the way for practical ap-
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plications and future research in this field. We hope that this study will encourage wider

adoption of HEMS and continuous optimization of domestic energy management methods

for a more sustainable and energy-efficient future .
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