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Abstract

Most engineers and technicians seek to improve their products or production processes through

experimentation. Unfortunately, the strategies commonly used to conduct these

experiments are often costly, inefficient, and result in numerous difficult-to-exploit experiments.

For these reasons, many engineers and technicians turn to experimental design, particularly

Mixture Experimental Designs.

In this dissertation, a detailed study of mixture designs was given, and an software application

was developed by python programming language to handle mixture designs. This provides a

good understanding of the contribution of computer science to experimental design and the

assistance an experimenter can expect from it.

Key Words : Experimental designs, mixture designs, optimality criteria, D-optimality

criterion, exchange algorithms.
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 ملخص

 

 

 

يطمح معظم المهندسين والفنيين باستمرار إلى تحسين منتجاتهم أو عمليات الإنتاج من خلال 

التجارب. لكن للأسف، غالباً ما تكون الاستراتيجيات الشائعة المستخدمة لإجراء هذه التجارب 

 مكلفة وغير فعالة وتؤدي إلى العديد من التجارب الصعبة التطبيق.

العديد من المهندسين والفنيين إلى تصميم التجارب، وخاصة تصاميم خلط ولذلك يلجأ 

 المكونات.

تقُدم هذه الأطروحة دراسة تفصيلية لتصميمات خلط المكونات، كما تم تطوير تطبيق بايثون 

للتعامل مع هذه التصميمات. يوفر هذا التطبيق فهماً جيداً لمساهمة علوم الكمبيوتر في تصميم 

 ساعدة التي يمكن أن يتوقعها المجرب منه.التجارب والم

 

 التجريبية، تصاميم الخلطات، معايير الأمثلية، معيار الأمثلية مالتصامي المفتاحية:الكلمات 

Dخوارزميات التبادل ،. 
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Résumé

La plupart des ingénieurs et techniciens cherchent à améliorer leurs produits ou leurs processus
de production par l’expérimentation. Malheureusement, les stratégies couramment utilisées
pour mener ces
les expériences sont souvent coûteuses, inefficaces et donnent lieu à de nombreuses expériences
difficiles à exploiter. Pour ces raisons, de nombreux ingénieurs et techniciens se tournent vers
la conception expérimentale, notamment Modèles expérimentaux de mélanges.

Dans cette thèse, une étude détaillée des conceptions de mélanges a été menée et un
Python L’application a été développée pour gérer les conceptions de mélanges. Cela permet de
bien comprendre l’apport de l’informatique à la conception expérimentale et l’assistance d’un
expérimentateur peut en attendre

Mots clés: Plans expérimentaux, plans de mélange, critères d’optimalité, critère D-optimalité,
algorithmes d’échange.
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Introduction

The Methodology of Experimental Research (Design of Experiments Method) is useful to all

those who undertake scientific research or industrial studies. The use of experimental designs for

the empirical study of a response law poses particular problems for statisticians or researchers.

While they have little information about this law, they generally only have a very limited

sample of observations compared to the number of parameters of the models they can consider

for their analyses. Before any observation of the response, they must therefore specify not

only which models to use but also how to organize the experiments. Indeed, the quality of the

statistical analysis closely depends on the experimental design used to observe the response.

Furthermore, it is generally necessary to resort to combinatorial analysis to construct the

proposed experimental designs. To propose a solution that meets industrial objectives, it is

sometimes necessary to seek the missing information by conducting a set of experiments.

Important decisions made based on experimental results and the significant cost of experimen-

tation prohibit leaving the search for the solution to the problem solely to the experimenter’s

intuition. It is necessary to use a methodological approach that not only reduces the cost of

experimen 9alktation but also establishes an optimal organization of the experiments. The

purpose of the design of experiments method is to propose one or several strategies to solve

a particular problem posed by experimental research. In our work, the general principles of

constructing mixture experimental designs are presented based on the notion of experimental

space. The geometric representation of experimental points is very informative, but it is quickly

limited as the dimension of the space increases. This is why the matrix representation is used.

With the help of both geometric and matrix representations, the main mixture experimental

designs are described: Type I Mixture Designs, Type II Mixture Designs, and Type III Mixture

Designs.

1



INTRODUCTION

An application by using PYTHON has been established. It allows the construction of the

three designs mentioned above, provides the model, as well as the analysis and numerical results

enabling the successful validation of the mathematical model.

The thesis is composed of four chapters organized as follows:

The first chapter is devoted to the description of three mixture experimental designs that were

the subject of our application.

The second chapter is dedicated to the study of the D-optimality criterion, which is widely

used in experimentation to obtain a reliable prediction model.

The third chapter presents the different exchange methods to determine a subset of experimental

points from a given set based on the D-optimality criterion.

Finally, the description of the developed application is discussed in chapter four.
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Chapter 1
General notions on Mixture design (Type

I, Type II, Type III):

Mixture designs play a crucial role in experimental design when the variables xi represent

elements of a blend or mixture. The requirement that the mixture’s component parts total

up to 1 or 100 % applies to these designs, creating a distinct design area that differs from

traditional design settings [Mitchell (1974)].

In domains like food science, where one may wish to optimize a recipe for a specific food

product, these designs are invaluable. For instance, when creating a new line of dry cake

combinations, the amounts of modified cornstarch, sugar, malt dextrin, salt, sorbitol, and

emulsifiers may be critical factors.

In this chapter, we will introduce the three types of mixture experimental designs along

with examples to illustrate their applications. Each design type offers unique advantages and

considerations, which we will explore in detail.

Producing and evaluating various formulations with different ratios of these components

is the primary objective of mixture designs. Following preparation, a panel of experienced

sensory analysts and physicochemical experts can assess the goods to determine their quality

and effectiveness.

mixture designs offer a unique testing environment that must be carefully considered when

designing experiments. Unlike traditional design possibilities, they focus on blending components

that cannot be changed separately, resulting in a constrained design space.

1.1 History

With a limitless number of conceivable combinations, planning excellent mixing tests was a

challenge. Limited data and statistical methodologies were accessible to researchers. Still, with

better experimental designs and statistical analysis over the past few decades, improvement

3
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has been achieved. There is continuous research being done to determine priority mixes and

power trials properly. In order to improve formulations incorporating many components,

the idea of mixture design was developed. The first known occurrence of it dates back to

[Lehmann and Scheffé (1950)] works, where he introduced network architectures for polynomial

models. His studies serve as the foundation for further works, such as those of [Lambrakis (1968)],

who expanded Scheffé networks in numerous ways. However, he most recently established the

ultimate regulations in [Cornell (1843)] book.

1.2 Definition

A special kind of experimental design called mixture design is applied when the elements are

parts of a blend or mixture. This design uses the proportions of several mixed components as

independent variables. It is considered that the reaction in these tests is only dependent on the

relative amounts of the mixture’s elements or components, not on the mixture’s total volume.

1.3 Graphic representation of a mixture

1.3.1 Representation on a line segment if we have two components

The line segment can be understood as a mixture composition in the context of mixture design.

Assume that we have a mixture that consists of two components, A and B. Pure components

are represented by the endpoints A and B. All potential combinations of these elements are

represented by the line segment that runs between A and B.

We can experiment with different component proportions in the mixture by changing the

parameter (M).

For instance, we obtain a 50% mixing of components A and B when (M = 0.5).

Figure 1.1: Mixture representation for two constituents

Every point M in the AB segment represents a binary mixture.

In A, the constituent A is the only one in the mixture.

In B, the constituent B is the only one in the mixture.
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In M, x1 corresponds to A’s proposal and x2 corresponds to:

x1 =
MB

AB
et x2 =

MA

AB

1.3.2 Representation inside an equilateral triangle if we have three
components

The combination is ternary if k = 3. The figure indicates the variance in the mixture’s

composition. The equilateral triangle’s characteristics guarantee that, for every point M inside

the triangle, the total of the lengths Mx1+Mx2+Mx3 equals the length of the triangle’s side.

A ternary mixture can be represented by any point in the triangle ABC. As with the other

elements, pure constituent A will be represented at vertex A. The mixtures without component

A will be depicted on side BC. Point M represents the combination made up of x1 = 0.333 of

A, x2 = 0.167of B, and x3 = 0.5 of C.

Figure 1.2: Mixture representation for three constituents

1.3.3 Representation inside a regular tetrahedron if we have four
components

The mixture is quaternaire if k = 4. A point within a regular tétraèdre is used to represent it

in the figure 1.3.
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Figure 1.3: Mixture representation for four constituents

1.3.4 Representation inside a regular polyhedron if we have more
then four components

This hyperpolihedron is built in a space that is k - 1.

1.4 Mixture model

The vector of proportions of the k mixture components is represented by x = (x1, x2, ..., xk),

and the accompanying mean response is denoted by n(x). In factor space notation, a simplex

is represented by.

x = (x1, ..., xk) : xi ≥ 0, i = 1, 2, ..., k; and

k∑
i=1

xi = 1

Scheffé (1958) introduced the canonical forms of several models to show the n(x) mean response

function.

Linear :n(x) =
q∑

i=1

βixi

Quadratic :n(x) =
k∑

i=1

βixi +
k∑

i<j

βijxixj

Cubic :n(x) =
k∑

i=1

βixi +
k∑

i<j

βijxixj +
k∑

i<j<q

βijqxixjxq

Special Cubic :n(x) =
k∑

i=1

βixi +
k∑

i<j

βijxixj +
k∑

i<j<q

βijqxixjxq +
∑
i<j

βijxixj(xi − xj)
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1.5 Different types of mixture model

Mixture designs are essentially design layouts that indicate the masses corresponding to different

design points or vectors of type x of mixing proportions inside the simplex. A mixed design is

somewhat arbitrary in terms of the design points and their mass distribution. Generally, we

assign a mass distribution after evaluating a set of design points. A collection of design points is

also known, roughly speaking, as a mixing design. All of the collection’s design points have been

given positive masses, and it is implicitly understood that the underlying mass distribution will

be determined later. [Scheffé (1958)(1963)]introduced standard mixing designs in this respect.

As stated by [Sinha (2014)], Several scientists, including Cornell and Cavier, followed suit with

designs that contain vertex points. Among the most used types:

1.5.1 Type I mixture design: 0 ≤ xi ≤ 1

Type I plans are such that:
k∑

i=1

xi = 1

1.5.1.1 Scheffé networks

Scheffé observed that while taking combinations with k elements, we should take the xi in the

series

0,
1

n
,
2

n
, . . . ,

n

n

with integer n, there are as many combinations, as many mixtures different than coefficients

in the polynomial model of degree n with k constituents. The many combinations that are so

created make up the Scheffé network k, n. The graphic 1.4 shows a few common networks that

we have provided.
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Figure 1.4: Mixture representation for two constituents

1.5.1.2 The approach

The approach used in mixture designs is as follows:

• Creating a first-degree model hypothesis, executing the network Scheffé {k, 1} mixtures,

and computing the model’s coefficients.

• Making one or more mixes inside the domain will allow you to test the model’s validity.

Problem solved if validity is acknowledged,

• If the validity is rejected, formulate the second-degree model hypothesis, execute the

mixtures to finish the network {k, 2}, and determine the model’s coefficients. This is how

validity is tested.

1.5.1.3 .Example

The behavior of a combination of three components at low temperatures is of interest to us.

The cold resistance precision is ±0.5°C.

1.5.1.3.1 a) Linear Model Hypothesis: is:

y = a1x1 + a2x2 + a3x3

Points 1, 2, and 3 are part of the Scheffé network.
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Figure 1.5: Points 1, 2, and 3 will be used to establish the model, and point 4 will be used to
validate it

Table 1.1: The matrix of related experiences:
mixture x1 x2 x3 Cold resistance (°C)
1 1 0 0 -40.5
2 0 1 0 -12.5
3 0 0 1 -19
4 1/3 1/3 1/3 -26.9

The model is written as follows:

y = −40.5x1 − 12.5x2 − 19.0x3.

The specifics of the cold holding are of ±0.5. The mixture 4 at the domain’s center

experimental serves to verify the model’s validity.

• Amount determined using the model y4 = -24°C.

• Measured value: y4 = 26.9°C.

The difference between the measured value and the calculated value is significantly more than

the measure’s accuracy. The first-degree model is rejected. The model performs poorly because

26.9 -24 > 0.5°C.

1.5.1.3.2 b) Hypothesis of the Quadratic Model: As we write: :

y = a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3

The Scheffé network {3,2} is made up of the points 1, 2, 3, 5, 6, and 7 (Figure 1.6)
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Figure 1.6: Graphical representation of mixtures, points 4, 8, 9 and 10 are used for the validity
of the model.

Table 1.2: The tests that need to be performed are shown in the matrix below:
N° x1 x2 x3 y
1 1 0 0 -40.5
2 0 1 0 -12.5
3 0 0 1 -19
5 1/2 1/2 0 -28.6
6 0 1/2 1/2 -30.8
7 1/2 0 1/2 -18.5

These 6 tests allow you to write a system of 6 equations with 6 unknowns that is very easy

to solve. Subject to validity, we therefore have the model:

y = −40.5x1 − 12.5x2 − 19x3 − 8.4x1x2 + 45x1x3 − 60.2x2x3

We include four more points in the model above to validate it.

Table 1.3: We include four more points in the model above to validate it.
N° x1 x2 x3 Y measure Y calculated
4 1/3 1/3 1/3 -26.9 -26.6
8 2/3 1/6 1/6 -29.6 -23.9
9 1/6 2/3 1/6 -24.2 -24.6
10 1/6 1/6 2/3 -23.5 -23.4

Given the strong agreement between the computed and observed values inside the domain,

the validity of the quadratic model is established.
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1.5.2 Type II mixture design

Type II mixing designs guarantee that xi ≥ li. Constraints of type xi ≥ li are observed quite

frequently. For formulation, for example, we determine that a minimum content of i is needed

to provide the combination with an improved characteristic worthy of commercial interest.

1.5.2.1 Experimental field

Based on the following relationships, the domain of potential combinations (figure 1.7 ) is

created:

K∑
i

xi = 1, with : x1 ≥ l1, x2 ≥ l2 and x3 ≥ l3

Figure 1.7: The lower limits of all products define two zones: The prohibited zone (shaded
zone) and The authorized zone which has the same geometric shape as the initial domain

It is watched that on the off chance that
∑

i li < 1, the exploratory space decreases to a

homothetic figure of the initial space. If not, the space is not dynamic. Moreover, indeed within

the nonattendance of an upper restrain, one does exist. Within the case-corresponding figure

1.8, corresponding to the case:

x1 ≥ 0.15

x2 ≥ 0.25

x3 ≥ 0.10

It is obvious that the mixes’ concentrations of A and B are separately confined to 0.65, 0.75,
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and 0.6. The taking after rationale makes calculating these restrictions basic: When each other

fixing accomplishes its lower constrain, the constituent i reaches its upper limit Ui.

ui = 1−
∑
i ̸=j

lj

We find:

u1 = 1− (0.25 + 0.1) = 0.65

u2 = 1− (0.15 + 0.1) = 0.75

u3 = 1− (0.15 + 0.25) = 0.60

Figure 1.8: Location of the Scheffé network’s pseudo-pure bodies.

1.5.2.2 Calculation of the composition of experimental mixtures

The blends to be arranged are components of a reasonable domain-based Scheffé network,

whether or not it is centered. Given a Scheffé network with vertices A’, B’, C’,... the associated

mixtures are referred to as "pseudo pure bodies" (Figure 1.7). One can represent the composition

of a mixture M of the domain in terms of:

• Real pure constituents A, B, C, etc. Let’s use x1, x2, ..., xk to indicate the equivalent values.

The mixture’s true composition is represented by the xi.

• For pseudo-pure bodies, let the equivalent values be x′
1, x

′
2, . . . , x

′
k. The model may be

calculated with the help of the x′
i.
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The connection between the x′
i and the xi is:

x′
i =

xi − li
1− Σli

1.5.2.3 Example

The three components of a mixture must meet the following requirements: x1 ≥ 0.4 and

x2 ≥ 0.3, where:

l1 = 0.4

l2 = 0.3

l3 = 0

Now let’s find the makeup of the combinations shown in A’, B’, and C’ (Figure 1.9):

• In A’, we have:

x′ = 1, x2 = 0, x3 = 0

From where:

1 =
x1 − 0.4

1− 0.7
⇒ x1 = 0.7

0 =
x2 − 0.3

1− 0.7
⇒ x2 = 0.3

0 =
x3 − 0

1− 0.7
⇒ x3 = 0

• In B’, we have:

x′
1 = 0, x′

2 = 1, x′
3 = 0

From where

0 =
x1 − 0.4

1− 0.7
⇒ x1 = 0.4

1 =
x2 − 0.3

1− 0.7
⇒ x2 = 0.6

0 =
x3 − 0

1− 0.7
⇒ x3 = 0

• In C’, we have:

x′
1 = 0, x′

2 = 0, x′
3 = 1

0 =
x1 − 0.4

1− 0.7
⇒ x1 = 0.4
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1 =
x2 − 0.3

1− 0.7
⇒ x2 = 0.3

0 =
x3 − 0

1− 0.7
⇒ x3 = 0.3

Figure 1.9: Position of the pseudo bodies and other mixtures of the Scheffé network.

The linear model’s coefficients will be found at points 1, 2, and 3, and its validity will be

examined at point 7:

Table 1.4: Experimental plan to establish the first-degree model and test its validity
Points A’ B’ C’ Module Elasticity
1 1 0 0 14150
2 0 1 0 17550
3 0 0 1 6450
7 1/3 1/3 1/3 10850

Points 1,2 and 3 give:

a′1 =14150

a′2 =17550

a′3 = 6450

The model to be tested is written:

y = 14150x′
1 + 17550x′

2 + 6450x′
3

At point 7, the predicted value is y = 12717, which is 1867 points different from the observed

result. We reject the first-degree model. We finish with the centers of gravity, 8, 9, and 10, and
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the midpoints of the edges, points 4, 5, and 6, just as in the case of the type I mixing design

(Table 1.5).

Table 1.5: Mixtures for testing the quadratic model
Points A’ B’ C’ Module Elasticity
1 1 0 0 14150
2 0 1 0 17550
3 0 0 1 6450
4 0.5 0.5 0 15550
5 0 0.5 0.5 10400
6 0.5 0 0.5 8600
7 1/3 1/3 1/3 10850
8 0.667 0.167 0.167 12100
9 0.167 0.667 0.167 14250
10 0.167 0.167 0.667 8300

The six model coefficients may be obtained by completing the first six bridges. We find:

a′1 = 14150 a′12 = −1200

a′2 = 17550 a′13 = −6800

a′3 = 6450 a′23 = −6400

The quadratic model expressed as a function of pseudo pure bodies has the equation:

y = 14150x′
1 + 17550x′

2 + 6450x′
3 − 1200x′

1x
′
2 − 6800x′

1x
′
3 − 6400x′

2x
′
3

Points 7 to 10 are used to test the validity of the model, which translates into:

Table 1.6: Experimental plan to establish the first-degree model and test its validity
Points Elasticity module Calculated Module Gap
7 10850 11117 -267
8 12100 12367 -267
9 14250 14100 150
10 8300 8083 217

Any deviation is permissible. It is valid to use the quadratic model. It is best to write the

model in terms of the genuine compositions xi when employing it. We get:

y = 13623x1 + 27027x2 + 36343x3 − 16914x1x2 − 78732x1x3 − 71762x2x3
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1.5.3 Type III mixture design

Plans classified as type III are those in which li ≤ xi ≤ ui, where li and ui stand for the

constituent it’s lower and upper constraint, respectively. These are the most prevalent by far.

They have greater complexity as well.

1.5.3.1 The Principle approach

You need to have xi ≥ li to feel a significant effect of the constituent i on the properties of the

mixture, but you also need to have xi ≤ ui for cost reasons for example (Figure 1.10).

Figure 1.10: Domain of possible mixtures when there is a lower limit and an upper limit.

Adding double restrictions usually results in the experimental domain taking on a different

structure. It is evident that the domain’s form and vertex count are contingent upon the

restrictions li and ui. Scheffé networks are outdated and unusable. The next steps will be as

follows:

• Find the domain’s vertices, edges, faces, and so on; keep in mind that the domain is

always convex in shape.

• Form a set C of points that are probably going to be in the plan. These potential locations

are the vertices, the midpoints of the edges, the centers of the faces, etc. by comparison

with what we have seen thus far. The decision is based on the desired level of the model.

• Choose the N plan points from the C candidates using the maximal determinant criterion

or an equivalent criterion.
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1.5.3.2 Actual boundaries of the domain

The limits li and ui being fixed for each of the constituents, we must first check the validity of

the whole. Let’s ask:

L =
∑
i=1

li and U =
∑
i=1

ui

The domain can only exist if L < 1 and U > 1. Furthermore, we must see in Figure 1.10 that

upper limits may never be reached. To find the real upper limit of a constituent i, the upper

limit cannot exceed the quantity: 1−
∑

i ̸=j li. Subtracting li from both sides of the inequality:

ui ≤ 1−
∑
i ̸=j

li

We obtain :

ui − li ≤ 1− L

or:

Ri ≤ 1− L

A constituent’s limit needs to be adjusted if its concentration range Ri is greater than the

number 1− L.

It is simple to determine the domain’s vertices and their coordinates geometrically for mixtures

consisting of three ingredients. An algorithm is required beyond that. In the following example,

we explain how to apply the Snee and Marquardt [Snee and Marquardt (1974)] algorithm

to formulate a lubricant using four bases. The following table provides a summary of their

respective boundaries and domains:

Table 1.7: Experimental plan to establish the first-degree model and test its validity
Constituent li Ui Ri

1 0.25 0.45 0.20
2 0.00 0.20 0.20
3 0.20 0.45 0.25
4 0.00 0.15 0.15

Existence of the experimental domain: Let’s calculate the sum of the lower limit L =
∑

i=j li

and higher U =
∑

i=j ui. For that the experimental domain exists, we must have L < 1 and

U > 1

L = 0.25 + 0 + 0.20 + 0 = 0.45 < 1

U = 0.45 + 0.20 + 0.45 + 0.15 = 1.25 > 1

The experimental domain exists.
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1.5.3.3 Consistency of explicit constraints. cohérent domain

To do this, we will compare the ranges Ri = ui − li each constituent to

Rl = 1− L = 1−
3∑

i=1

li

(linear measurement of simplex A) and

Ru = U − 1 =
∑
i ̸=1

ui − 1

The lower and upper constraints or limits are denoted respectively by li and ui. Ranges of

constituents (or areas of constituent concentrations):

R1 = 0.45− 0.25 = 0.20

R2 = 0.20− 0.00 = 0.20

R3 = 0.45− 0.20 = 0.25

R4 = 0.15− 0.00 = 0.15

There is equality in the linear measurements of simplexes A and B.

Rl = 1− L = 1− 0.45 = 0.55

Ru = U − 1 = 1.25− 1 = 0.25

The top limit of the associated ingredient is incompatible if the extent Ri is more than the

number Rl. This higher restriction, known as the implicit constraint, needs to be changed with

the new one, ui = li + Rl. Since all of the Ri in our situation are smaller than Rl, there is no

need to adjust the upper limit. As a result, there is no need to adjust the boundaries because

the suggested experimental domain is coherent.

1.5.3.4 Algorithme of Snee and Marquardt

- Step 1: We classify the constituents in ascending order of their range of variation

R4 < R1 = R2 < R3

0.15 0.20 0.20 0.45

- Step 2:: We construct a complete factorial matrix 2k−1 = 23 with the first (k − 1)

constituting x4, x1 and x2, the lower constraint li corresponds to level -1 and the upper

constraint ui at level +1. We fill the column of the last constituting so as to respect the
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general constraint of mixtures
∑4

i=1 xi = 1 : Application to our example leads to the following

table:

Table 1.8: We include four more points in the model above to validate it.
Constituent x4 x1 x2 x3 0.20 < x3 < 0.45
1 0.00 0.25 0.00 0.75 Outside the domain
2 0.15 0.25 0.00 0.60 Outside the domain
3 0.00 0.45 0.00 0.55 Outside the domain
4 0.15 0.45 0.00 0.40
5 0.00 0.25 0.20 0.55 Outside the domain
6 0.15 0.25 0.20 0.40
7 0.00 0.45 0.20 0.35
8 0.15 0.45 0.20 0.20

- Step 3: Check if the concentrations of the last constituent satisfy the imposed constraints.

If yes, the corresponding line is a vertex of the domain. If not, the last constituent is brought

back to its closest limit. It is then necessary to readjust the sum of the concentrations to 1

by modifying one of the concentrations of the first k − 1 constituents. All possible solutions

correspond to new highs.

Line 1

On the first line of the table, the concentration x3 is reduced from 0.75 to 0.45. So 0.30 is to

be added either to x4, x1, or x2. No distribution can be accepted.

Line 2

The concentration x3 drops to 0.45 from 0.60. It is therefore necessary to add 0.15 to x4, x1,

or x2. We acquire the pair of vertices:

x4 = 0.15. x1 = 0.40, x2 = 0.00, x3 = 0.45,

x4 = 0.15. x1 = 0.25, x2 = 0.15, x3 = 0.45,

Line 3

The concentration x3 is now just 0.45 instead of 0.55. It is therefore necessary to add 0.10 to

x4, x1, or x2. We acquire the pair of vertices:

x4 = 0.10. x1 = 0.45, x2 = 0.00, x3 = 0.45,

x4 = 0.00. x1 = 0.45, x2 = 0.10, x3 = 0.45,
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Line 4

There is a decrease in the x3 concentration from 0.55 to 0.45. It is therefore necessary to

add 0.10 to x4, x1, or x2. We acquire the pair of vertices:

x4 = 0.10. x1 = 0.25, x2 = 0.20, x3 = 0.45,

x4 = 0.00. x1 = 0.25, x2 = 0.20, x3 = 0.45,

The following table compiles the coordinates of the polyhedron’s ten vertices. The measurements

of the octane number, which will be utilized to create the first-degree model, are given in the

last column.

Table 1.9: Vertices of the experimental domain and their composition.
Summit Aromatics A x1 Olefins B x2 Paraffins C x3 Oxygen D x4 Octane Number measured y
1 0.40 0 0.45 0.15 102.4
2 0.25 0.15 0.45 0.15 97.7
3 0.45 0 0.45 0.10 102.8
4 0.45 0.10 0.45 0 100.6
5 0.45 0 0.40 0.15 103.1
6 0.25 0.20 0.45 0.10 96.8
7 0.35 0.20 0.45 0 98.0
8 0.25 0.20 0.40 0.15 97.4
9 0.45 0.20 0.35 0 99.6
10 0.45 0.20 0.20 0.15 100.3

- Step 4: Search for the edges, their length and the composition of their center. After

the vertices, we must identify the edges, faces, etc., hyper faces and other boundaries of the

experimental domain. Depending on the number k of constituents, the domain is limited by:

- Edges (k = 3)

- Edges and faces (k = 4)

- Edges, faces, etc., hyper faces of dimension r = k − 2

All mixtures of a boundary of dimension r have in common the concentrations of p constituents,

p given by the relation: p = k − r − 1. Thus, mixtures located on the same edge (r = 1)have :

p = 4− 1− 1 = 2. The search for the boundaries of the domain is carried out from the summit

table. Starting from vertex1, we search the remainder of the table for vertices which have p

common values. We repeat the process with vertex 2. Only concentrations li are taken into

account Let’s apply the approach to our example.

Edges including vertex 1
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Vertex 1 has the composition: x1 = 0.40 , x2 = 0.00 ,x3 = 0.45, x4 = 0.15. Let’s find the

values: x3 = 0.45 and x4 = 0.15 on line 2 of the table:

x2 = 0 et x3 = 0.45, sur la ligne 3

x2 = 0 et x3 = 0.15, sur la ligne 5

We identified 3 edges of the domain, edges 1-2,1-3 and 1-5. The middle of the ridge 1-2 has the

composition:

x1 =
0.40 + 0.25

2
=

0.65

2
= 0.325,

x2 =
0 + 0.15

2
=

0.15

2
= 0.075,

x3 =
0.45 + 0.45

2
=

0.90

2
= 0.45,

x4 =
0.15 + 0.15

2
=

0.30

2
= 0.15.

The compositions of the midpoints of edges 1–3 and 1–5 are obtained in the same way and have

respectively the values:

x1 = 0.425. x2 = 0, x3 = 0.425, x4 = 0.125,

x1 = 0.425. x2 = 0, x3 = 0.425, x4 = 0.15,

Edges starting from vertex 2

Vertex 2 has the composition: x1 = 0.25 , x2 = 0.15, x3 = 0.45 , x4 = 0.15. We find the

values:x1 = 0.25, x3 = 0.45 on line 6 and the values x1 = 0.25, x4 = 0.15 on line 8. We have

identified the two edges 2 - 6 and 2 - 8 whose center compositions are respectively:

x1 = 0.25. x2 = 0.175, x3 = 0.45, x4 = 0.125,

x1 = 0.25. x2 = 0.175, x3 = 0.425, x4 = 0.15,

Edges starting from vertex 3

Vertex 3 has the composition:x1 = 0.45 , x2 = 0 , x3 = 0.45 , x4 = 10. We find the values:x1 =

0.45, x3 = 0.45 on line 4 and the values x1 = 0.45, x2 = 0 on line 5. We have identified the edges
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3- 4 and 3-5 starting from vertex 3 and whose midpoints have respectively the composition:

x1 = 0.45. x2 = 0.05, x3 = 0.45, x4 = 0.05,

x1 = 0.45. x2 = 0, x3 = 0.425, x4 = 0.125,

Edges starting from vertex 4

Vertex 4 has the composition: x1 = 0.45, x2 = 0.1 , x3 = 0.45,x4 = 0.We find the value

x3 = 0.45, x4 = 0 on line 7 and the values x1 = 0.45, x4 = 0 on line 9. We have identified edges

4-7 and 4-9 whose midpoints have respectively the composition:

x1 = 0.40, x2 = 0.15, x3 = 0.45, x4 = 0

x1 = 0.45. x2 = 0.15, x3 = 0.40, x4 = 0.

Edges starting from vertex 5

Summit 5 has the following composition:

x1 = 0.45. x2 = 0, x3 = 0.40, x4 = 0.15

We find the value: x1 = 0.45 , x4 = 0.15 on line 10 We have identified the edge 5 -10 whose

middle has the composition:

x1 = 0.45. x2 = 0.10, x3 = 0.30, x4 = 0.15

Edges starting from vertex 6

Vertex 6 has the composition: x1 = 0.25 , x2 = 0.20 , x3 = 0.45 , x4 = 0.10. We find the values

x2 = 0.20 , x3 = 0.45 on line 7 and the values x1 = 0.25 , x2 = 0.20 on line 8. We have detected

the edges 6 – 7 and 6 – 8 whose backgrounds have respectively the composition:

x1 = 0.30, x2 = 0.20, x3 = 0.45, x4 = 0.05

x1 = 0.25. x2 = 0.20, x3 = 0.425, x4 = 0.125

Edges starting from vertex 7

Vertex 7 has the composition: x1 = 0.35 , x2 = 0.20 , x3 = 0.45 x4 = 0. We find the

valuesx2 = 0.20 , x4 = 0 on line 9. We have just detected the edge 7 – 9 whose composition of

its middle is:

x1 = 0.40, x2 = 0.20, x3 = 0.40, x4 = 0
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Edges starting from vertex 8

Vertex 8 has the composition: x1 = 0.25 , x2 = 0.20 ; x3 = 0.40 , x4 = 0.15. We find the

values x2 = 0.20 , x4 = 0.15 on line 10. We have just detected the edge 8 –10 whose middle

composition is:

x1 = 0.35, x2 = 0.20, x3 = 0.30, x4 = 0.15

Edges starting from vertex 9

Vertex 9 has the composition: x1 = 0.45 , x2 = 0.20 , x3 = 0.35 x4 = 0. We find the values

x1 = 0.45 , x2 = 0.20 on line 10. We have just detected the edge 9 -10 whose middle composition

is:

x1 = 0.45, x2 = 0.20, x3 = 0.275, x4 = 0.075

In total the domain has 15 edges listed in the following table:

Table 1.10: We include four more points in the model above to validate it.
Edges x1 x2 x3 x4

1– 2 0.325 0.075 0.45 0.15
1– 3 0.425 0 0.45 0.125
1– 5 0.425 0 0.425 0.15
2 – 6 0.25 0.175 0.45 0.125
2 – 8 0.25 0.175 0.425 0.15
3 – 4 0.45 0.05 0.45 0.05
3 – 5 0.45 0 0.425 0.125
4 – 7 0.40 0.15 0.45 0
4 – 9 0.45 0.15 0.40 0
5 –10 0.45 0.10 0.30 0.15
6 – 7 0.30 0.20 0.45 0.05
6 – 8 0.25 0.20 0.425 0.125
7 – 9 0.40 0.20 0.40 0
8 –10 0.35 0.20 0.30 0.15
9 –10 0.45 0.20 0.275 0.075

- Step 5: Search for faces and the composition of their center. The faces have the dimension

r = 2 The faces which constitute the boundaries of the domain therefore have in common the

concentrations of p = k − r − 1 = 1 constituents. The search for faces is always done from the

vertex composition table.

Faces including vertex1:

Vertex 1 has the composition: x1 = 0.40 , x2 = 0 , x3 = 0.45 , x4 = 0.15, vertices 3 and 5

23



CHAPTER 1:General Notions on Mixture Design (Type I, Type II, Type III)

define with vertex 1 a face characterized by the common concentration x2 = 0 of constituent B

and whose center has the composition:

x1 =
0.40 + 0.45 + 0.40

3
=

1.25

3
= 0.4167,

x3 =
0.45 + 0.45 + 0.40

3
=

1.30

3
= 0.4333,

x4 =
0.15 + 0.10 + 0.15

3
=

0.40

3
= 0.1333.

Likewise, face 1– 2 – 3 – 4 – 6 – 7 is characterized by the common concentration x3 = 0.45 of

constituent C and face 1– 2 – 5 – 8 –10 by x4 = 0.15 of constituent D. The centers respectively

have the value:

x1 = 0.3583, x2 = 0.1083, x3 = 0.45, x4 = 0.0833

x1 = 0.36, x2 = 0.11, x3 = 0.38, x4 = 0.15

Faces including vertex 2 ,3, 4, 6 Using the same procedure, we will successively identify the

faces 2 – 6 – 8, 3 – 4 – 5 – 9 –10, 4 – 7 – 9 and 6 – 7 – 8 – 9 –10 whose characterization and

the composition of the centers are reported in the following table. We get a total of 7 faces:

Table 1.11: Faces of the experimental domain and composition of their center.
Face Center of faces Characterization
1– 3 – 5 0.4333 0 0.4333 0.1333 B = 0
1– 2 – 3 – 4 – 6 – 7 0.3583 0.1083 0.45 0.0833 C = 0.45
1– 2 – 5 – 8 –10 0.36 0.11 0.38 0.15 D = 0.15
2 – 6 – 8 0.25 0.1833 0.4333 0.1333 A = 0.25
3 – 4 – 5 – 9 –10 0.45 0.10 0.37 0.08 A = 0.45
4 – 7 – 9 0.4167 0.1667 0.4167 0 D = 0
6 – 7 – 8 – 9 –10 0.35 0.20 0.37 0.08 B = 0.20

- Step 6:Composition of the center of gravity G

x1 = 0.375x2 = 0.125 x3 = 0.405 x4 = 0.095
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Figure 1.11: Domain of possible mixtures when there is a lower limit l and an upper limit u.
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Chapter 2
Optimality criterion D

In the field of experimental design, the D-optimality criterion plays a crucial role in the design

and evaluation of experimental plans. This criterion, also known as the D-optimality criterion, is

used to assess the quality of experimental plans in terms of precision and efficiency. Essentially,

it aims to minimize the variance of estimates of the parameters of the underlying statistical

model, thereby obtaining more precise and reliable estimates.

In this chapter, we will delve deep into the D-optimality criterion and its significance in the

design of experimental plans. We will examine its fundamental principles, practical applications,

and implications for experimental research. Additionally, we will discuss the advantages and

limitations associated with the use of this criterion, as well as commonly used methods for

optimizing experimental plans based on this criterion.

2.1 Basic Concepts of Optimality

Objective Function: In mixture design, the objective function defines the target for optimization,

whether it involves maximizing the response variable or minimizing variability. It typically

mirrors the desired properties or traits of the mixture under scrutiny.

• Constraints: Constraints in mixture design delineate the restrictions or limits on the

proportions of components within the mixture. These constraints often stipulate upper

and lower bounds on component proportions and ensure that the proportions sum to

unity. They are vital for ensuring the practicality and feasibility of the resulting mixture.

• Optimal Mixture: The optimal mixture represents the blend of component proportions

that satisfies the objective function while adhering to the specified constraints. It epitomizes

the most desirable mixture composition in terms of achieving the desired response variable

or properties.
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• Local Optima vs. Global Optima: Similar to other optimization challenges, mixture

design may yield multiple optimal solutions. A local optimum denotes a solution that is

optimal within a specific region of the solution space but may not be globally optimal.

In contrast, a global optimum signifies the best solution across the entire solution space,

embodying the overall optimal mixture composition.

• Optimization Algorithms: Optimization algorithms are computational methodologies

employed to explore and identify optimal mixture compositions. These algorithms navigate

the solution space of component proportions, evaluating potential mixtures based on

the objective function and constraints. Common optimization algorithms utilized in

mixture design include simplex optimization, gradient-based approaches, and evolutionary

algorithms.

• Sensitivity Analysis: Sensitivity analysis in mixture design assesses the robustness of

the optimal mixture to variations in input parameters or constraints. It aids in pinpointing

critical factors influencing the optimality of the mixture composition and provides insights

into the stability and reliability of the optimal solution.

In summary, achieving optimality in mixture design involves identifying the best combination

of component proportions to fulfill the desired properties or characteristics of the mixture while

considering imposed constraints and trade-offs. By carefully balancing these factors, optimal

mixture compositions can be determined to meet specific objectives across various applications,

including product formulation, process optimization, and experimental design.

2.2 The D-Optimal Approach

A D-optimal design is a computer-aided design that incorporates the best subset of all possible

experiments. A predetermined number of design runs and a predetermined criterion are used

in a selection process to determine which design is the best.

2.2.1 Candidate Set

All theoretically and practically feasible experiments are contained in a matrix known as the

candidate set, in which "each row represents an experiment and each column a variable"

[de Aguiar et al. (1995)] . This so-called matrix of candidate points is represented by ξN and

consists of N rows.

The candidate set for a straightforward investigation with two factors 1 and 2 has two columns

and four rows. Since we only take into account the two experiments where the factors have a
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minimum or maximum value, we obtain four rows. Although it isn’t taken into account in this

fundamental example, choosing different experiments can be helpful in certain situations. The

candidate set is displayed in the extended notation in equation 2.3.

ξ4 =


−1 −1

−1 1

1 −1

1 1

 (2.1)

2.2.2 Design Matrix

An n xp matrix with p coefficients is the basis of the design matrix X. The experimenter can

select the number of rows n, which indicates how many experiments are included in the design.

It is simple to construct the design matrix given a model and a candidate matrix. Based on

the terms in the model, each column contains a combination of the candidate set factors. The

matrix is sometimes referred to as the model matrix, but most of the time, the term refers to a

n xp matrix that has the model-dependent rows for each candidate [de Aguiar et al. (1995)] .

For a basic example with n = 4 design runs, we utilize the model from equation 2.4 and the

previously mentioned candidate set .

y = β0 + β1x1 + β2x2 + ε (2.2)

As a result, all of the candidates from are used in the design of the model matrix, which has

four rows and four columns. Typically, only a small portion of the model matrix is present in

the candidate set, which has far more experiments.

X =


1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

1 1 1 1

 (2.3)

There are only ones in the first column of X because it represents the constant term β0.

The model terms (2,1) and (2,2) , which are drawn from the candidate set ξ4, represent the

factors under investigation in columns two and three. An interaction between the two factors

is represented by the final column of X. Therefore, we must multiply the two candidate set

columns. A larger candidate set expands the pool of potential EN subsets, necessitating the use

of specific criteria in the design matrix selection process. According to [de Aguiar et al. (1995)]
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, the optimal combination of these points is referred to as optimal, and the corresponding design

matrix is known as the optimal design matrix tX. In section 2.3, we address the various criteria.

2.2.3 Information and Dispersion Matrix

In order to select the optimal design using the criteria that will be discussed later, two additional

types of matrices must be defined. The so-called information matrix tXX is the first one. The

design matrix X’ and X itself are multiplied by their transpose to create this matrix. The

inverse matrix of this computation is the dispersion matrix (tXX)−1 [de Aguiar et al. (1995)].

The least-squares estimate for an assumed model provides the context for these equations. An

example using matrix notation:

y = Xβ + ε

has the optimal collection of coefficients based on the least squares provided by :

β̂ = (X ′X)−1X ′y. (2.4)

[Box et al. (1978)] and [Wu and Hamada (2000)] provide more details on the least square

estimator.

2.3 Key Features of Optimal Designs

• Efficiency: Optimal designs excel in resource utilization, demanding a minimal number

of experimental runs to achieve the desired precision in parameter estimation.

• Precision: Optimal designs provide accurate estimates of model parameters by strategically

allocating experimental runs to areas within the experimental space where information is

most pertinent.

• Robustness: Optimal designs exhibit resilience to variations in underlying model assumptions,

ensuring dependable estimates even in the presence of noise or inaccuracies in the model.

• Balance: Optimal designs often strike a delicate balance between exploring the entire

experimental space and focusing on specific areas of interest, ensuring comprehensive

coverage while maximizing information retrieval.

• Criterion Optimization: Optimal designs are developed based on specific optimization

criteria, such as D-optimality, A-optimality, or E-optimality, which assess the quality of

the design in terms of precision, efficiency, or other pertinent factors.
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2.4 D-optimal design

D-optimal design is a concept in experimental design that is used to select the most efficient

design for an experiment, particularly when classical symmetrical designs are not suitable. It

is one of several criteria that can be used to determine the optimality of a design.

In conclusion, while designing experiments, mixed designs provide a distinctive test area

that has to be taken into account. In contrast to more conventional design possibilities, they

concentrate on a blending of components that cannot be changed separately, producing a limited

design zone.

2.4.1 Principle of D-optimal design

Selecting the most effective selection of experimental points to elicit as much information as

possible from a study is at the heart of the D-optimal design principle. It accomplishes this by

optimizing parameter estimate precision inside a pre-established model. Here is a summary of

the salient features:

• Maximizing Information Matrix Determinant: The goal of D-optimal design is to

maximize the information matrix’s determinant (|tXX|). The link between the desired

estimate of the model parameters and the design points (X) is captured in this matrix.

Smaller variances for the estimated parameters are indicative of a more informative design,

as indicated by a higher determinant.

• Minimizing Generalized Variance: To put it another way, the goal of D-optimal

design is to reduce the total amount of uncertainty surrounding the model’s predicted

parameters. It guarantees greater coverage of the experimental region and lowers the

generalized variance of the estimates by strategically dispersing the experimental locations.

• Model-Dependent: D-optimal designs, in contrast to certain classical designs, are

customized for a particular model. Before the design can be created, the experimenter

must specify the model they wish to fit the data to. This makes it possible for the

algorithm to select locations that are most useful for determining the parameters in that

specific model.

• Here’s an analogy: picture yourself thoroughly mapping out a brand-new landscape.

D-optimal design might be compared to carefully selecting observation sites to provide the

best possible image of the topography’s features. Instead of concentrating on a specific

location, you can make a map that is more precise by extending across valleys, peaks,

and slopes.
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• Additional Points: Computer algorithms are frequently used to create D-optimal

designs. For a given model, these algorithms look for the set of points that maximizes the

determinant of the information matrix.While D-optimal designs are highly precise, they

may not always be orthogonal (meaning factors are independent). This can lead to some

correlation between the estimated effects.

2.4.2 The need for D-optimal designs

2.4.2.1 Irregular Experimental Regions

The variables under investigation define the experimental region. The area’s form is determined

by the quantity, kind, and overall arrangement of all the components. The best method for

illustrating the area is to use a straightforward plot. [Eriksson et al. (2000)].

There are no limitations on the problem formulation in any of these domains. A constraint

would be something like not being able to conduct experiments in a certain area of the region.

An illustration of a quadratic design with a constraint in the upper right corner may be found

in Figure 2.1’s middle column. Since this corner is not examined, a standard design is not

appropriate. This may be because the experimenter wishes to avoid certain factor combinations

or because external influences hinder further investigation of this corner [Eriksson et al. (2000)].

The uneven experimental region shown in Figure 2.1 can be handled in two different ways. The

simplest would be to reduce the area till it possesses a quadratic form once more, but this would

cause distortion to the entire study and is not advised. The development of a computer-aided

D-optimal design is a more efficient method. As demonstrated by the bottom right square of

the four-in

In Figure 2.1, the D-optimal algorithm chooses two points on the border of the constraint

instead of the excluded corner. This increases the number of design runs but is essential to deal

with the complexity of the constricted experimental region. In addition to this, the center-point

is manipulated [Eriksson et al. (2000)].

An erratic experimental region can also be a feature of mixture design. A design containing the

three factors A, B, and C is depicted by the triangle in Figure 2.1. All of the triangle’s corners

are normally attainable, however in this case, the factors are limited. A limitation for mixing

factors is when the lower and upper bounds deviate from 0 and 1 [Eriksson et al. (2000)].
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Figure 2.1: Examples for Irregular Experimental Regions:

2.4.2.2 Inclusion of Already Performed Experiments

Sometimes an experimenter wishes to include the results of a particular number of trials he

has already conducted into his ongoing research. The experiments cannot be included into

traditional designs. These additional runs can be included into the design and taken into

consideration during the creation process by using D-optimal designs. [Eriksson et al. (2000)].

2.4.2.3 The use of qualitative factors

A qualitative factor lacks a continuous scale and only has discrete values. The number of runs

for a typical design sharply increases if the number of these discrete phases exceeds two. An

investigation with two qualitative and one quantitative element is depicted in Figure 2.2. To

solve this problem using three and four discrete values for each of the two qualitative elements,

a full factorial design would require 4*3*2=24 design runs.

Only twelve experiments remain in the design runs when using the D-optimal technique. To

ensure a balanced design throughout the entire experimental zone, these experiments—represented

as filled circles in figure 2.2—were selected. Every level of a qualitative element in a balanced

design has an equal number of runs [Eriksson et al. (2000)].
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Figure 2.2: Design With Multi-Level Qualitative Factors

2.4.2.4 Reducing the number of experiments

The more elements there are in the classical designs, the less efficient they are. Examples

of the minimum number of runs for a D-optimal design, a fractional factorial, and a complete

factorial are shown in Table 2.1. When compared to classical designs with an increasing number

of components, the required runs for a D-optimal design are always less and do not increase as

quickly [Umetrics (2006)].

Table 2.1: Experimental plan to establish the first-degree model and test its validity
Factors Full Factorial Fractional Factorial D-Optimal
5 32 16 16
6 64 32 28
7 128 64 35
8 256 64 43
9 512 128 52

2.4.2.5 Fitting of special regression models

D-optimal designs allow for many modifications to be made to the underlying model. Equation

2.5 demonstrates that if the experimenter is aware that a certain term is not crucial to the

answer, they can eliminate it. This permits lowering the number of runs without having a

major affect on the inquiry.

y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + ϵ (2.5)

The inclusion of a single higher-order term is the second potential model alteration. When

using classical designs, one can only make complete model changes, such as switching from an
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interaction to a quadratic model. On the other hand, independent model terms can be added to

D-optimal designs. An illustration of a linear model with an extra interaction term is provided

by the following equation.

y = β0 + β1x1 + β2x2 + β3x3 + β23x23 + ϵ (2.6)

2.4.3 Example of using a D-optimal design

This example, which comes from [Eriksson et al. (2000)] , employs a geometric demonstration

of the D-optimal technique using an investigation involving two elements, x1 and x2 Three levels

of analysis are performed on the two factors: -1, 0 and 1. Table 2.2 lists the corresponding

candidate set.

Table 2.2: Candidate Set for Two Factors with Three Levels.
Nr 1 2 3 4 5 6 7 8 9
x1 -1 -1 -1 0 0 0 1 1 1
x2 -1 0 1 -1 0 1 -1 0 1

If the candidate set were shown using matrix notation, the matrix ξ9 would have N = 9

experiments and two columns for each factor. Plotting the nine choices from ξ9 over the

experimental region is shown in Figure 2.3. Out of this candidate set, we have 9!/(3!6!) = 84

potential subsets when considering a design with only three design runs. In this instance, we

assess four potential design.

Figure 2.3: Distribution of the Candidate Set.

Matrices and assess them using the D-criterion. Figure 2.4 illustrates the experimental

region with the associated candidates, and Equation 2.7 shows the four selected subsets in the
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matrix notation.

ξ3A =


−1 −1

0 0

1 1

 , ξ3B =


0 −1

−1 0

0 1

 , ξ3C =


−1 −1

1 0

0 1

 , ξ3D =


−1 −1

1 −1

−1 1

 (2.7)

Figure 2.4: Distribution of the Design Matrix.

In order to determine which of these designs is optimum, we must first choose a model. In

order to keep the example as simple as possible, we pick the following linear model:

y = B0 +B1x1 +B2x2 + ϵ (2.8)

Comparing the designs depending on the D-criterion is only possible if we calculate the determinants

of the information matrix(X tX) for each of the four designs. In this example, we only show the

calculation for the subset ξ3B, but the principle will be the same for all. First, we have to create

the model depending design matrix X and its transpose X t. With the linear model, we have a

simple design matrix that contains the constant B0 in the first column and the two factors in

the following columns. The calculation of the information matrix is simple the multiplication

of these both matrices.

(tXBXB) =


1 1 1

0 −1 0

−1 0 1

 ∗


1 0 −1

1 −1 0

1 0 1

 =


3 −1 0

−1 1 0

0 0 2

 (2.9)

The determinant of this information matrix needs to be calculated next. It is recommended

to apply the Sarrus rule for for n ≤ 3 . As seen in Figure 2.5, the matrix needs to be expanded

in order to multiply the values and determine the subsequent diagonals from higher left to

bottom right. The outcomes are totaled, and the diagonals from higher right to lower left are
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calculated in the same way. The matrix’s determinant is the difference between the two sums.

This arithmetic is demonstrated for the information matrix above in Equation 2.19. Table 2.3

shows the remaining factors.

|X ′
BXB| = ((3 ·1)+((−1) ·0 ·0)+(0 ·(−1) ·0))−((0 ·1 ·0)+(0 ·0 ·3)+(2 ·(−1) ·(−1))) = 4 (2.10)

Figure 2.5: Rule of Sarrus for the Calculation of a Determinant.

It is clear from a comparison of the investigation’s results that design3d is the best D-optimal

design because it has the highest determinant. All of the chosen candidates for are situated at

the edges of the experimental area. With a determinant of 16, all designs that examine three

of the four potential corners are equally good as the one that was chosen. These designs also

cover the most area over the experimental region, as Figure 2.4 illustrates.

Table 2.3: Determinants of Different Designs.
Design Determinant
E3A 0
E3B 4
E3C 9
E3D 16

36



Chapter 3
D-Optimal Design as a Computer

Algorithm

In this chapter, we present various exchange algorithms designed to extract an optimal subset

from a given set of experiments, based on the D-optimality criterion. These algorithms optimize

the selection of experiments to maximize the precision and efficiency of the parameter estimates

in the model.

3.1 Exchange Algorithms

Chapter 2 describes the basic principles and criteria for constructing D-optimal designs, but

does not explain the selection process itself. Due to the complexity of D-optimal designs and

the huge number of possible trial combinations, computer algorithms are used in the selection

process. This thesis deals only with so-called exchange algorithms. Figure 3.1 summarizes the

basic steps that must be taken before such a permutation algorithm can be used.

Figure 3.1: Flow chart ofthe D-Optimal Process

The permutation algorithm selects the optimal design matrix X by changing one or more

points from the generated baseline and repeats that permutation until the best matrix appears
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to be found. Algorithms can be divided into two groups, where the 1st-order algorithm

adds and removes points sequentially, and the 2nd-order algorithm performs the exchange

through a simultaneous addition and removal process [Meyer and Nachtsheim (1995)]. We now

explain and evaluate six different algorithms that are generally applicable but differ in the

computational time used and the quality or efficiency of the plans produced.

3.1.1 General Permutation

Procedure to start the selection, we need to create an initial design with n trials in the design

matrix Xn. The goal of the permutation algorithm is to remove or add points to this design

matrix and determine its effect. to change Referring to Section 2.2, we call the data matrix

X t
nXn and use the following equation for the prediction variance of one candidate

X : d(χx) = χ′
x ∗ (X ′

nXn)
−1 ∗ χx (3.1)

Adding a new experiment x to the design matrix X creates a new matrix Xn+1 and as

by [de Aguiar et al. (1995)] showed that the relationship between these two matrices can be

expressed using information matrices. Equation 3.2 shows this relationship with the added use

of one candidate x, and its transpose.

(X ′
n+1Xn+1) = (X ′

nXn) + (χ′
j ∗ χj) (3.2)

Furthermore, the effect of the exchange may be to update the determinant of the new matrix

without calculating it in the usual way. In this case, the determinant increases in proportion

to the variance of the added point prediction

|X ′
n+1Xn+1| = |X ′

nXn| ∗ (1 + d(χj)) (3.3)

Experiment X: Elimination of Matrix The design is based on the same basic factors and is given

by the following equations:

|X ′
n−1Xn−1| = |X ′

nXn| − (χi ∗ χ′
i) (3.4)

|X ′
n−1Xn−1| = |X ′

nXn| ∗ (1− d(χi)) (3.5)

Added and removed from candidate set the selection of points is different for each algorithm

and is discussed in the following sections [de Aguiar et al. (1995)] .
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3.1.2 DETMAX algorithm

The DETMAX algorithm was published by Mitchell (1974) and is a typical 1st-order algorithm.

Based on a random initial design of n runs, the algorithm tries to improve the determinant of

the information matrix by adding or removing a point. The included experiment χj is the one

with the largest variance of the prediction d(χj). As Equation 3.3 shows, this experiment leads

to a maximum of the determinant. The deleted point χj is the point with the smallest predictive

variance because changing this point decreases the determinant. If a point is added or removed

first, it will be randomly selected. Such an exchange process results in a determinant greater

than or equal to the previous one.

That algorithm would be the Wynn-Mitchell algorithm of 1972, but [Mitchell (1974)] modified

this approach to provide more flexibility and allow project excursions. In this case, the excursion

means that an n+1-point model cannot immediately be reduced to an n-point model, but can

become an n+ 2-point model. Therefore, it may be possible to replace more than one point of

the original design in a single iteration. Mitchell (1974) definedk = 6 like the limit of excursions.

Given a model that currently has the best n points, the algorithm adds or removes a maximum

of kpoints until the orbital limit is reached. The size of the generated patterns varies fromn−k

to n+k. If no improvement in the determinant is found during this study, all generated models

are stored in list F, which contains failure plans. This set F is used for the next expedition,

which considers two different rules defined by [Mitchell (1974)] :

If D is the current model at any point of the excursion, the continuation rules are:

(i) If the number of points in D is greater than n, subtract a point if D is not in F, and

otherwise add a point.

(ii) If the number of points in D is less than n, add a point. if D is not in F and subtract a

point otherwise.

The following listing 3.1 shows the use of these search rules and depicts the flow of the algorithm

in simple and abstract programming notation.
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Algorithm 1 DETMAX algorithm by Mitchell (1974)
1: Create random design with desired number of points

Input
2: while excursion limit is not reached do
3: if number of candidates equals number of desired runs then
4: Randomize between adding or deleting a point
5: else if number of candidates is bigger than number of desired runs then
6: if new design is not inside set of failure designs then
7: Delete candidate with lowest variance of prediction
8: else
9: Add candidate with highest variance of prediction

10: end if
11: else if number of candidates is smaller than number of desired runs then
12: if new design is not inside set of failure designs then
13: Add candidate with highest variance of prediction
14: else
15: Delete candidate with lowest variance of prediction
16: end if
17: end if
18: if no improvement of the determinant is found then
19: Save design to list of failure designs
20: else
21: Clear list of failure designs
22: end if
23: end while

Output

For an empty set of failed plans F, the algorithm simply adds and subtracts the points

as described in the first paragraph of this section. Based on the failure plans of previous

iterations, the algorithm always progresses towards the n-point design, unless the F design has

already failed. Then it reverses direction ([Mitchell (1974)] . If the study improves the design,

the failure plans of F are removed and a new beginning is made [de Aguiar et al. (1995)] ,

[Mitchell (1974)]

3.1.3 Fedorov’s algorithm

[Fedorov (1972)] algorithm is a simultaneous change method that always preserves the desired

model size n without bias. After generating a random starting pattern, the algorithm selects

point χi from among the design candidates that should be eliminated by point χj. Adding and

removing a point is done in one step and can be called a real exchange. The effect of such

information exchange can be demonstrated using a data matrix. In relation to equations 3.2

and 3.4, the exchange point is the simultaneous addition and subtraction.
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(X ′
new −Xnew) = (X ′

oldXold)− (χ′
i ∗ χi) + (χ′

j ∗ χj) (3.6)

Unlike the general exchange in Section 3.1.1, [Fedorov (1972)] considered the interaction of two

candidate variance functions to calculate a new determinant. Instead of adding and subtracting

the variance of the two-point forecast according to formulas 3.3 and 3.5, he defined the so-called

"delta" function that changes the determinant of a matrix as follows:

|X ′
newXnew| = |X ′

oldXold| ∗ (1 + ∆(χi, χj)) (3.7)

Calculating the value for the pair χi and χj uses A and the variance of the scores and the

prediction of a combined variance function called d(χi, χj).

∆(χi, χj) = d(χ)− [d(χi)d(χj)− (d(χi, χj))
2]− d(χi) (3.8)

d(χi, χj) = χ′
i ∗ (χ′

nχn)
−1 ∗ χj = χ′

j ∗ (χ′
nχn)

−1 ∗ χi (3.9)

The main idea of Fyodorov’s algorithm is to calculate the value of ∆ for all possible pairs

(χi, χj) and choose the one with the maximum value . The point is χi taken from the currently

selected model, and χj can be taken either from the remaining points or from the entire set of

candidates. Considering only the remaining points is called an exhaustive search, which avoids

overlapping points in the design. With an incomplete search, it is possible to select an exam

that must be taken twice. As shown in Equation 3.7, the points with the largest value of ∆

increase the determinant the most. If more than one pair with the same ∆- value is found,

the algorithm randomly chooses from among them. If pairs with a positive ∆- value are found,

the algorithm exchanges points and updates the information and variance matrix. Sometimes

the algorithm finds pairs that increase the determinant so little that no significant difference is

achieved. To avoid these pair-change algorithms, [Fedorov (1972)] defined an input threshold

and broke the algorithm when the maximum value of ∆ is less than the input, where 10−6

is the common value of the input [de Aguiar et al. (1995)] , [Fedorov (1972)] . The general

description of the algorithm is given in the "Algorithm 2".
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Algorithm 2 Fedorov Algorithm (1972)
1: Create random design with desired number of points

Input
2: while couples with positive delta are found do
3: for design point χi to design point χn do
4: Calculate variance of prediction d(χi) for this design point
5: for support point χj to support point χN do
6: Calculate variance of prediction d(χj) for this support point
7: end for
8: Calculate variance function d(χi, χj) for this couple
9: Calculate delta function ∆(χi, χj) for this couple

10: Check if maximum delta and save couple
11: end for
12: if maximum delta is positive then
13: if more than one couple with same maximum delta then
14: Select couple randomly
15: end if
16: Exchange selected point χi with χj

17: Update information and dispersion matrix
18: Reset maximum delta
19: end if
20: end while

Output

3.1.4 Modified Fedorov Algorithm

[Cook and Nachtsheim (1980)] compared different algorithms for creating an accurate D-optimal

model and devised their own algorithm based on the basic Fedorov algorithm of 1972. The

normal Fedorov algorithm calculates the ∆ values of all possible exchange pairs during one

iteration, but uses only one of the values to make the exchange. This calculation is expensive

to use. In a modified version by [Cook and Nachtsheim (1980)], each iteration of the standard

algorithm is divided into [n] steps, one for each design support at the beginning of the iteration."

Ordered design matrix, the algorithm. starts at the first supportχi and calculates the values of

∆ for all possible pairs in it at a fixed reference point. Once the best replacement for that point is

found, the design is updated and the next support point is proposed to replace. In other words,

one iteration of the standard Fedorov algorithm is modified to vary up to n design points if the

determinant should increase ([Cook and Nachtsheim (1980)] , [Atkinson and Donev (1989)] .

This behavior is illustrated in the "Algorithm 3".

The difference between the two approaches can be explained with a simple example. Given

a desired model with n = 5 trials and a candidate set with N = 20 trials, n ∗N = 100 possible

pairs can be offered for exchange. Each iteration of Fedorov’s algorithm calculates these 100

∆ - values for all possible pairs and uses only one of them to switch. In contrast, the modified
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version of the algorithm starts from the first drawing point and calculates only 20 ∆-values

for possible pairs including that point. After that, the exchange takes place and the variance

matrix must be updated. The algorithm continues to the next design point and recalculates the

20 ∆-values. In general, both algorithms compute 100 values in one iteration, but the modified

version exchanges up to 5 points during this operation.

A study by [Atkinson and Donev (1989)] and the data presented in the following Section

3.3 show that the modified approach can be twice as fast as the standard Fedorov.

Algorithm 3 Modified Fedorov Algorithm by Cook & Nachtsheim (1980)
1: Create random design with desired number of points

Input
2: while couples with positive delta are found do
3: for design point χi to design point χn do
4: Calculate variance of prediction d(χi) for this design point
5: for support point χi to support point χN do
6: Calculate variance of prediction d(χj) for this support point
7: end for
8: Calculate variance function d(χi, χj) for this couple
9: Calculate delta function ∆(χi, χj) for this couple

10: Select couple with maximum delta
11: end for
12: if maximum delta is positive then
13: if more than one couple with same maximum delta then
14: Select couple randomly
15: end if
16: Exchange selected point χi with χj

17: Update information and dispersion matrix
18: Reset maximum delta
19: end if
20: end while

Output

Algorithm and creates design with a comparable efficiency. The additional time needed

to update the dispersion matrix after each exchange is adjusted by the profit of the multiple

exchanges.

3.1.5 k-Exchange algorithm

Comparing the standard Fedorov (1972) algorithm and Mitchell’s DETMAX (1974), Johnson

and Nachtsheim (1983, p. 274) found that the points selected for deletion by Fedorov’s

algorithm are normal not those with the lowest predicted variance, but "the frequency of deleted

points can be characterized as biased towards the lower variance classes". Simply put, instead

of considering all candidates or only the candidates with the smallest predictive variance, the
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set of k points with the smallest variance should be selected. Similar to the modified Fedorov

algorithm, the iteration is now divided into k steps. At each of these k steps, the values of ∆

are computed and the corresponding pair is exchanged if the determinant should be increased

[Johnson and Nachtsheim (1983)]).

Similarity to the algorithms described above can be detected when we define k. value For

k = 1, the algorithm is similar to the Wynn-Mitchell algorithm in Section 3.1.2, and for k

= n it becomes a modified Fedorov algorithm [Cook and Nachtsheim (1980)] . Choosing the

value of K is difficult and largely depends on the problem. A common value, also suggested

by [Johnson and Nachtsheim (1983)], is k=3 or k=4. [Meyer and Nachtsheim (1995)] later

proposed to choose a value with the following condition:

k ≤ n

4
(3.10)

Algorithm 4 Modified Fedorov Algorithm by Cook & Nachtsheim (1983)
1: Create random design with desired number of points

Input
2: while couples with positive delta are found do
3: Calculate variance of prediction d(χi) for all design points
4: select k design points with lowest variance of predection
5: for design point χi to design point χk do
6: Calculate variance of prediction d(χi) for this design point
7: for support point χi to support point χN do
8: Calculate variance of prediction d(χj) for this support point
9: Calculate variance function d(χi, χj) for this couple

10: Calculate delta function ∆(χi, χj) for this couple
11: Select couple with maximum delta
12: end for
13: if maximum delta is positive then
14: if more than one couple with same maximum delta then
15: Select couple randomly
16: end if
17: Exchange selected point χi with χj

18: Update information and dispersion matrix
19: Reset maximum delta
20: end if
21: end for
22: end while

Output

Continuing the example with n = 5 and N = 20, k-swap speeds up the selection process by

reducing the total number of calculated ∆-values. Similar to the modified Fedorov procedure,

each iteration of the basic Fedorov algorithm is divided into ∆- calculations for each design
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point. However, depending on the specified k−value, the algorithm only considers a few design

points. When k = 3, the k-swap algorithm calculates 20 ∆-values three times and makes up

to three swaps. This approach has higher computational efficiency compared to the modified

Fedorov procedure. Especially for a large dataset with a large n value, defining the value of

k has an impact. The quality of the design is not always as good as the standard Fedorov

algorithm, but considering the required computation time, the algorithm gives good results. A

detailed analysis of the effectiveness and quality of the plans is presented in section 3.3.

3.1.6 kl-Exchange Algorithm

The kl-exchange algorithm, a variant of the original Fedorov algorithm introduced in 1972, is a

typical rank-2 algorithm developed by Atkinson and Donev in 1989. This method streamlines

the process by narrowing down the selection of support and exchange points before computing

the ∆-values for all potential pairs. It mirrors the k-exchange procedure in its utilization of k

points with the least variance in prediction. Furthermore, it exclusively considers candidates

with the highest prediction variance among the support points. Settingk = n and l = Naligns

the algorithm with the standard Fedorov procedure, while initiating it with k < n and I < N

reduces the number of computed ∆-values, thus accelerating the algorithm. Similar to the

conventional Fedorov approach, the kl-exchange identifies points with the highest ∆-value and

executes a single exchange. Despite its name, the kl-exchange is distinct from the k-exchange

by [Cook and Nachtsheim (1980)], relying instead on the fundamental Fedorov algorithm and

refraining from multiple exchanges within a single iteration. The sole similarity lies in the shared

concept of selecting points with the lowest prediction variance. [Atkinson and Donev (1989)]

proposed two alterations to this algorithm. The first modification resembles the essence of the

modified Fedorov algorithm by [Cook and Nachtsheim (1980)], enabling multiple exchanges per

iteration. When l = 1 is selected, this modified kl-exchange transforms into either the modified

Fedorov algorithm with kn or the k-exchange with k < n. The second modification alters the

selection criteria for the k and I points, opting for random selection from the design and support

points instead of variance-dependent choices [Atkinson and Donev (1989)].The "Algorithm 5"

showcases the basic version of the algorithm without any adjustments.
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Algorithm 5 kl-Exchange Algorithm by [Atkinson and Donev (1989)].
1: Create random design with desired number of points

Input
2: while couples with positive delta are found do
3: Calculate variance of prediction d(χi) for all design points
4: Select k design points with lowest variance of prediction
5: Calculate variance of prediction d(χj) for all support points
6: Select support points with highest variance of prediction
7: for design point χ1 to design point χk do
8: Calculate variance of prediction d(χi) for this design point
9: for support point χ1 to support point χl do

10: Calculate variance of prediction d(χj) for this support point
11: Calculate variance function d(χi, χj) for this couple
12: Calculate delta function ∆(χi, χj) for this couple
13: Check if maximum delta and save couple
14: end for
15: end for
16: if maximum delta is positive then
17: if more than one couple with same maximum delta then
18: Select couple randomly
19: end if
20: Exchange selected point χi with χj

21: Update information and dispersion matrix
22: Reset maximum delta
23: end if
24: end while

Output

Compared with the ordinary Fedorov calculation, the kl-exchange decreases the sum of

calculated ∆-values between each cycle. Our case with n = 5, N = 20 and k = 1 = 3 leads to

the calculation of as it were k ∗ 1 = 3 ∗ 3 = 9 ∆-values. Compared with the 100 couples of the

ordinary Fedorov calculation, this kl-approach speeds up the calculation in an viable way. In

fact, we got to watch that the sum of performed emphasess of the kl-exchange can be higher

because not all couples are considered for an trade, and so the calculation needs to perform

more circles. But in common, the kl-exchange calculation makes plans exceptionally quick and

in most cases gives satisfactory comes about considering the D-optimality.

3.1.7 Modified kl-Exchange Algorithm

Based on the past encounters of the company metrics AB and the information picked up amid

the usage prepare of diverse calculations, a adjusted adaptation of the kl-exchange calculation

is created within the display proposal. The primary straightforward alter within the calculation

is to amplify the k-value in the event that the k chosen focuses have the same change of forecast

and a comparative (k + 1) the steem exists. Employing a arbitrary selection if more than k
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candidates have the same change can moreover be a arrangement but isn’t as foolproof as this

one. The moment adjustment tries to avoid the kl-exchange calculation from trading a few

couples which are not the leading choice by decreasing the list of bolster focuses. Beginning

with l = N focuses within the pool of conceivable back focuses, the calculation expels focuses

depending on diverse criteria. By and large, an trade ought to as it were be performed on

the off chance that the fluctuation of forecast d(χj) of the bolster point χj, is higher than the

change of expectation d(χi) of the evacuated plan point χi. A moment measure to decrease

the list of bolster point is created subordinate on the normal change of forecast from the final

cycle. As it were the bolster focuses with the next change of expectation than the normal

change are considered. In this case, the normal fluctuation of expectation is calculated with

the utilize of all conceivable candidates. On the off chance that the calculation does not discover

a most extreme ∆-value among these conceivable best support points, the remaining support

points are checked. The total calculation is appeared in the "Algorithm 6".in This calculation

is troublesome to compare to the past approaches since the sum of design and back point

considered for an trade is problem-dependent. We don’t have settled values for I and k and the

criteria for the determination of the focuses can change amid the method. But in common, the

altered kl-exchange is comparable to the typical kl-exchange, considering the computational

efficiency. The calculations require a few more time since we now and then alter the fluctuation

criteria and calculate the ∆-values once more to discover the leading trade. But in general,

the calculation is comparable to the typical kl-exchange. But considering the quality of the

produced plans, this calculation leads to superior results and in most cases too beats the k-

exchange method. Of course, the comes about don’t have the same quality as the plans made

with the Fedorov calculation. But with an allowable computing time, we make great D-optimal

designs. In common, the comparison of the quality of the plans is troublesome since most of

the calculations have distinctive quality and shortcomings but ought to be appropriate for all

issue details. This issue is examined in detail in section 3.3.
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Algorithm 6 Modified kl-Exchange Algorithm
1: Create random design with desired number of points

Input
2: while couples with positive delta are found do
3: Calculate variance of prediction d(χi) for all design points
4: if more than k design points have same lowest variance of prediction then
5: Extend given k
6: end if
7: Select k design points with lowest variance of prediction
8: Calculate variance of prediction d(χj) for all support points
9: Calculate average variance of prediction over whole candidate set

10: Select support points with higher variance of prediction than the average value
11: for design point χ1 to design point χk do
12: Calculate variance of prediction d(χi) for this design point
13: for support point χ1 to support point χl do
14: Calculate variance of prediction d(χj) for this support point
15: if variance of the support point is higher than the variance of the design point then
16: Calculate variance function d(χi, χj) for this couple
17: Calculate delta function ∆(χi, χj) for this couple
18: Check if maximum delta and save couple
19: if maximum delta is negative then
20: Select N − l support points that have not been checked
21: for design point χ1 to design point χk do
22: Calculate variance of prediction d(χi) for this design point
23: for support point χ1 to support point χN−1 do
24: Calculate variance of prediction d(χj) for this support point
25: Calculate variance function d(χ1, χj) for this couple
26: Calculate delta function ∆(χi, χj) for this couple
27: Check if maximum delta and save couple
28: end for
29: end for
30: if maximum delta is positive then
31: if more than one couple with same maximum delta then
32: Select couple randomly
33: end if
34: Exchange selected point χi with χj

35: Update information and dispersion matrix
36: Reset maximum delta
37: end if
38: end if
39: end if
40: end for
41: end for
42: end while

Output
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3.2 Generation of the Start Design

Another strategy to build D-optimal plans was created by [Dykstra (1971)]some time recently

the common trade calculations from segment 3.1 were utilized. Rather than starting with a

plan with the required measure n, [Dykstra (1971)] begun with an purge plan and included

consecutively the plan focuses with the most elevated change of forecast to maximize the

determinant. This arrangement gives destitute comes about considering the productivity of

the plan. But the approach can be utilized as a quick strategy for producing a beginning

plan for other trade calculations. Compared with a randomized beginning plan, a successively

chosen one diminishes the number of emphasess of an calculation since the focuses within the

plan are as of now a preselection.

[Galil and Kiefer (1980)] used the idea of a sequential start design for [Mitchell (1974)]

DETMAX algorithm and changed the start design to contain some random points in the

beginning. Thereafter, the design is sequentially filled with the best support points. The

number of the t random points was defined by [Galil and Kiefer (1980)] to be ’considerable

smaller than k for moderate k [...]’. [Atkinson and Donev (1989)] referred to this topic by

using a sequential start design for the ki-exchange algorithm. They defined the number of

random selected points t as a randomly chosen integer with the following condition:

0 ≤ t ≤ min([
1

2
P ], N − 1) (3.11)

.

where 1
2
P denotes the integer part of the fraction and p is the number of used factors.

3.3 Comparison of Exchange Algorithms

Generally, a comparison of the calculations should be done depending on two fundamental

criteria. The primary one is the utilized computing time to form a D-optimal plan, and the

moment one is the quality of the plan. This quality or productivity of the plan can be assessed

by the criteria taken from section 2.3. In this investigation we utilize the D-Optimality or

its analog, the determinant to assess the ideal plans. Comparing other criteria, just like the

condition number or the G-Efficiency, can lead to other comes about than the ones appeared

in this segment. The base for the given information in this comparison is an examination of

the four calculations implemented at Umetrics AB. The case ponder was performed with an

interaction demonstrate with 5, 7 or 9 components. The program MO is utilized to make the

specified plans and calculates their productivity, the logarithm of the determinant. Amid the
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calculation of 10 plans for each demonstrate and calculation, the computing time is measured

and the cruel esteem is calculated. The collected information can be found in table 3.1.

Table 3.1: Comparison of Different Algorithms.
5 factors 7 factors 9 factors
time/ms log(Det) time/ms log(Det) time/ms log(Det)

Fedrov 21.9 20.47 424.8 43.74 6887.2 75.33
mod.Fedrov 21.8 20.47 286.7 43.74 3535.4 75.36
k.exchange 10.9 20.47 84.6 43.71 669.2 74.83
mod.kl-exchange 20.3 20.47 126.6 43.72 931.7 74.99

Referring to the description of the algorithms in Section 3.1, we show that some modifications

reduce the number of calculations before making the exchange. For example, Fedorov’s algorithm

calculates the value of ∆ for all possible pairs and makes only one exchange depending on this

data. Due to several factors, this approach is very expensive to use. A modified version of

[Cook and Nachtsheim (1980)] reduces the number of calculations by making up to n exchanges

during each iteration and speeds up the algorithm by using more than one value. Table 3.1

shows that the average computation time of the modified Fedorov algorithm can be up to

50% faster than the standard 1972 algorithm. Especially for large input data, the difference

between the two algorithms becomes apparent. Other algorithms, such as the k-exchange of

[Johnson and Nachtsheim (1983)] or a modified kl-exchange, are much faster for generating

D-optimal models and can be used for a wide variety of factors. For example, k-swap can

process the interaction model with nine factors in Table 3.1 ten times faster than the basic

Fedorov procedure. Mitchell’s algorithm was not applied in this thesis but was studied and

compared by [Johnson and Nachtsheim (1983)]. The evaluated data from different models and

factor settings showed that the computation time of the DETMAX algorithm is comparable to

the standard k-swap.However, the fast algorithm is not suitable if the generated model lacks

the desired quality or D-optimality . Therefore, we have to compare algorithms according to

time consumption and the quality of the design created. At this stage, it should be understood

that the measurement data in Table 3.1 are difficult to evaluate. All algorithms can stay at the

so-called local optimum and stop the switching process even if the best model has not yet been

found. As the factors or model terms increase, so does the number of local optima. Therefore,

most D-optimal models are different, even if they rely on the same algorithm. In addition,

features randomly selected during the selection process affect the final result. Table 3.1 shows

only the best design performance of the ten generated options. In general, it is recommended

to create more than one template and choose the best possible one among the templates. The

determinant of the information matrix (X’X) for a small test, as in Table 3.1 with five factors,

50



CHAPTER 3:D-Optimal Design as a Computer Algorithm

has the same value for all algorithms. In this case, it doesn’t matter which algorithm is used,

they all create at least one model out of ten with the same efficiency. As the number of factors

increases or the model becomes more complex, Fedorov and modified Fedorov usually produce

the best models, but the choice of the best algorithm is usually problem-specific. For example,

the modified kl exchange produces better models than Fedorov or modified Fedorov in some

cases, or is at least comparable. This algorithm is indeed much faster than Fedorov’s version

and should be preferred.

The conclusions in the previous paragraph are based on the data presented in Table 3.1

and other random samples. They are all based on versions of the algorithms implemented

in the MODDE software. Therefore, this data is only an indicator that gives assumptions

about which algorithm to use according to different goals. Furthermore, only four implemented

algorithms are considered. The literature does not compare all algorithms under the same test

conditions. Therefore, the selection of four algorithms is based on two different comparisons.

First of all. by [Cook and Nachtsheim (1980)] and analyzed Mitchell’s DETMAX (1974), the

Fedorov procedure, the modified Fedorov procedure, the Wynn-Mitchell algorithm, and some

other trivial algorithms. The article states that the best models are generated using Fedorov

or modified Fedorov, but if fast generation is more important, the Wynn-Mitchell algorithm

should be used.

Another evaluation was done by [Johnson and Nachtsheim (1983)] and compared the Fedorov

algorithm, the modified Fedorov algorithm, the k-swap procedure, DETMAX and the Wynn-

Mitchell algorithm. The result of this work is the advice of the authors to use the Wynn-Mitchell

algorithm or its rough equivalent procedure, k-swap. Based on these findings and individual

publications of the algorithms, the four algorithms presented in Table 3.1 are implemented in

MODDE. Our small case study agrees with the advice of [Johnson and Nachtsheim (1983)] and

[Cook and Nachtsheim (1980)], but a separate complexity analysis comparing all algorithms

against the same criteria is required for a reliable comparison. from various problem formulas.

However, such studies are outside the scope of this thesis.

In general, finding the optimal combination of computing time and the efficiency of the

generated design is a complex topic and cannot be concluded with strict advice on which

algorithm to use. In short, the modified Fedorov algorithm is similar to the standard Fedorov

procedure in terms of design quality, but requires less computation time. In fact, both algorithms

require a lot of computation when the input data becomes large. Therefore, the modified

Fedorov algorithm of [Cook and Nachtsheim (1980)] should be used for small models. In larger

models, a simple k-transform or a modified kl-transform is recommended. The generated plans
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are slightly worse in some cases, but in terms of calculation time, this is the best choice. If the

experimenter wants to generate accurate D-optimal designs and has the ability to evaluate the

problem formulation with different algorithms and parameters, this is the recommended way

to find the optimal design.

In general, we do not recommend building an exact D-optimal model, because choosing the

right model is difficult and must be handled carefully. To return to Section 2.8, we repeat

the same case study of Table 3.1 using the Bayesian variant and try to confirm the above

results. The addition of possible conditions makes the plans more model-dependent, and thus

the efficiency of the plans is slightly below that of the standard D-optimization process in Table

3.1. A comparison of both studies shows that the outstanding values follow the same regularity

and prove the proposals to choose the right algorithm.

Table 3.2: Comparison of Different Algorithms (Bayesian Modification).
5 factors 7 factors 9 factors
time/ms log(Det) time/ms log(Det) time/ms log(Det)

Fedrov 51.6 19.46 798.8 43.41 11343.4 74.6
mod.Fedrov 35.8 19.46 295.6 43.41 4303.0 74.77
k.exchange 21.9 19.46 129.5 43.16 915.5 74.32
mod.kl-exchange 31.3 19.46 215.7 42.71 1394.4 74.43
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The construction of experimental designs is facilitated by the use of specific software. The

interpretation of experimental designs requires numerous calculations and numerous graphs. In

this chapter, we present our software designed to simplify and improve the design of mixture

plans for any number of components. Our software offers a comprehensive suite of features to

enable you:

• Flexible Component Handling:Easily define components, their properties, and any

relevant constraints.

• Powerful Optimization EngineUncover the ideal combination of components that

yield your desired mixture characteristics

• Intuitive User Interface:Navigate effortlessly through the software’s functions to streamline

your workflow.

• Advanced Visualization Tools:Generate insightful graphs that visually represent the

relationships between component ratios and mixture behavior.

• Detailed Reports:Generate comprehensive reports documenting your design process,

results, and recommendations.

4.1 Benefits of Utilizing Our Software

By leveraging our software, you can achieve:

• Streamlined Design Process:Effortlessly define your mixture requirements and explore

different scenarios.

• Reduced Complexity: Manage mixtures with any number of components efficiently.
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• Data-Driven Decisions: Gain valuable insights through intuitive visualizations, guiding

you towards optimal formulations.

• Enhanced Efficiency: Automate calculations and generate reports, freeing up your

time for analysis and interpretation.

4.2 Learning Made Easy

Our software goes beyond just functionality, providing valuable learning resources:

• Pre-loaded Examples:Explore practical examples demonstrating how to utilize the

software for diverse mixture design problems.

• Interactive Tutorials: Gain hands-on experience through interactive tutorials that

guide you through the software’s features

4.3 Beyond This Chapter

This chapter will provide a comprehensive foundation of mixture design principles. We’ll explore

key concepts, the theoretical framework, and most importantly, showcase the capabilities of our

software through practical examples demonstrating its versatility for mixtures with any number

of components. By the end, you’ll be well-equipped to confidently design optimal mixtures for

your specific needs, regardless of complexity.

4.4 Environment and Work Tools

we have used the laptop:

• Processor: 11th Gen Intel(R) Core(TM) i5-1145G7 @ 2.60GHz 1.50 GHz

• RAM: 8GB.

• System: 64-bit system, x64 processor.

We carried out our experiments using:

• Python 3.6: which is an open source object-oriented programming language [Lutz,

2013].

• We developed our models and carried out the experiments using the GPU and CPU

computing resources provided by Google Colaboratory [Bisong, 2019]. More commonly
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known as "Google Colab" or simply "Colab" which is a free service hosted by Google,

based on the Jupyter environment, for teaching and research on machine learning.

In addition, the machine learning process was carried out using a set of Python packages

such as:

• Scikit-learn: which is a machine learning library that offers a wide variety of algorithms.

• Flask: which is a small and lightweight Python web framework that provides useful tools

and features to make it easier to create Python web applications. It offers developers some

flexibility and is a more accessible framework for developers as you can quickly create a

web application using a single Python file.

• Pandas: is an open-source data analysis and manipulation library for Python. It provides

data structures and functions needed to work with structured data seamlessly, particularly

useful for data cleaning, transformation, and analysis.

• NumPy: is a fundamental library for numerical computing in Python. It provides

support for arrays, matrices, and many mathematical functions to operate on these data

structures efficiently.

Other libraries were invoked during our experiments, including Numpy, Pandas, Matplotlib.

4.5 Startup

• Selection screen: This interface element allows users to choose from a predefined set of

options.

• Type selection:The available options correspond to different categories, such as product

types, service types, or data categories.

• Input field:This screen element functions as an input field where users provide their

selection by clicking on their desired option.

To launch our web application on port 5003, navigate to the following URL: http://127.0.0.1

(localhost). To access on the application, simply click on http://127.0.0.1:5003, which will

direct you to the home page (Figure 4.1). This page serves as the entry point to our web

application and features a ’Start’ button, allowing users to commence their interaction with

the application.
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Figure 4.1: Home page of the application

This interface given by (Figure 4.2) features a selection screen where users are prompted to
choose from three options: Type 1, Type 2, and Type 3. Centrally aligned buttons make it
easy for users to interact and proceed with their selection. Every step features a ’Back’ button
that takes the users to the previous one

Figure 4.2: Type selection

We will describe the use of the application web by relying on the following example :

4.6 Example 1 of the Type I(Linear)

Consider the example given in chapter 1 section 5

Our focus is on examining the low-temperature behavior of a ternary mixture, with a required

precision of 0.5°C for the cold hold. We have analyzed various mixture design plans to develop

first, second, and third-degree models. These plans incorporate experimental points situated at

the vertices, along the edges, and at the center of the study domain. In this particular example,

we investigate a type 1 mixture design, which assumes no interactions between the components.
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4.6.1 Hypothesis of a First-Degree Model

The first-degree model assumes that the response depends linearly on the proportions of the

components. The mathematical expression of this model is:

Y = b1X1 + b2X2 + b3X3

1. Y is the response (cold hold)

2. b1, b2, and b3 are the model coefficients

3. X1, X2, and X3 are the proportions of the components

Table 4.1: The matrix of related experiences:
mixture x1 x2 x3 Cold resistance (°C)
1 1 0 0 -40.5
2 0 1 0 -12.5
3 0 0 1 -19

• Model Equation

y = −40.5x1 − 12.5x2 − 19.0x3.

• Model Validation The validity of the first-degree model is tested with a new experiment.

Table 4.2: The matrix of related experiences:
mixture x1 x2 x3 Cold resistance (°C)
4 1/3 1/3 1/3 -26.9

• Observed Response The observed response is Yobs = -26.9.

• Calculated Response The calculated response is ycalc = -24.

• Results Since the error is greater than the precision (0.5°C), the test is not verified, and

the first-degree model is not validated.

4.6.2 Description of the web application interfaces For Type I Linear

The picture (Figure 4.3) allow to choose the type.
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Figure 4.3: Chosen type 1

After choosing a Type (Type 1, Type 2, Type 3) this interface (Figure 4.4) :allows users

to select a the number of constituents for the selected type, ranging from 3 to 7. The user’s

current selection is displayed below the type options, confirming their choice.

Figure 4.4: Chosen a three constituents

After choosing a Type (Type 1, Type 2, Type 3) and then selecting the number of constituents

(ranging from 3 to 7) for the chosen type. Additionally, the user can choose between two options:

Linear or Quadratic option.

Figure 4.5: Chosen a linear model
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This interface (Figure 4.6) displays the "Linear Option," showing a table with columns X1,

X2, and X3, each containing binary values and Testing vector values of X1, X2, and X3. Below

the table, there are buttons and input fields labeled Y, Y TEST, ERROR Rate, and Submit

button, as well as size indicators for the Y and Y TEST inputs.

Figure 4.6: Enter the values for type 1

This picture shows the values of Y and Y TEST and the Eroor Rate of our example

Figure 4.7: Values have been entred for type 1

4.6.3 Display Linear Results

First, the application display the mathematical model

Figure 4.8: Mathematical model
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Second ,the application display the difference between y test and y calculated and compare

it with the error rate

Figure 4.9: Table displaying results of Y calculated

Third, the application display linear model refused

Figure 4.10: Results Of the linear model

The Results of the first degree of Type 1 summarized in ( Figure 4.11 ).

Figure 4.11: Results Of the First-Degree of Type 1
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4.7 Example 2 of the Type I (Quadratic)

Consider the example 1.5.1.3.2

4.7.1 Hypothesis of the Quadratic Model

The second-degree model assumes that the response quadratic on the proportions of the components.

The mathematical expression of this model is:

y = a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3

1. Y is the response (cold hold)

2. a1, a2,a3 ,a12, a13, and a23 are the model coefficients

3. X1, X2,X3,X12, X13,X23 are the proportions of the components

Table 4.3: The tests that need to be performed are shown in the matrix below:
N° x1 x2 x3 y
1 1 0 0 -40.5
2 0 1 0 -12.5
3 0 0 1 -19
5 1/2 1/2 0 -28.6
6 0 1/2 1/2 -30.8
7 1/2 0 1/2 -18.5

• Model Equation

y = −40.5x1 − 12.5x2 − 19x3 − 8.4x1x2 + 45x1x3 − 60.2x2x3

• Model Validation The validity of the first-degree model is tested with a new experiment.

Table 4.4: The matrix of related experiences
N° x1 x2 x3 Y measure
4 1/3 1/3 1/3 -26.9
8 2/3 1/6 1/6 -29.6
9 1/6 2/3 1/6 -24.2
10 1/6 1/6 2/3 -23.5

• Observed Response The observed response are
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Table 4.5: Y calculated For the model
Y calculated
-26.6
-23.9
-24.6
-23.4

4.7.2 Description of the web application interfaces For TYPE I Quadratic

After choosing a Type (Type I, Type II, Type III) and then selecting the number of constituents

(ranging from 3 to 7) for the chosen type. Additionally, the user can choose between two options:

Linear or Quadratic option.

We will choose Quadratic Option

Figure 4.12: Chosen a quadratic model

This interface (Figure 4.13) displays the "Quadratic Option," showing a table with columns

X1, X2, and X3, each containing binary values and Testing vector values of X1, X2, and X3.

Below the table, there are buttons and input fields labeled Y, Y TEST, ERROR Rate, and

Submit button, as well as size indicators for the Y and Y TEST inputs.

Figure 4.13: Values have been entred for type I
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4.7.3 Display Quadratic Results

First,the application display the mathematical model.

Figure 4.14: Mathematical model

Second ,the application display the difference between y test and y calculated and compare

it with the error rate.

Figure 4.15: Table displaying results of Y calculated

Third, the application display Quadratic model accepted.

Figure 4.16: Results Of the Quadratic model
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The Results of the second degree of Type 1 summarized in ( Figure 4.17 ).

Figure 4.17: Results Of the First-Degree of Type 1

4.8 Example 3 of the type III

Consider the example of 1.5.3 of Type III mixture design.

4.8.1 Hypothesis of a Type III mixture design

Table 4.6: Experimental plan to establish the first-degree model and test its validity
Constituent li Ui Ri

1 0.25 0.45 0.20
2 0.00 0.20 0.20
3 0.20 0.45 0.25
4 0.00 0.15 0.15
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We will passe to our application

First selecting the type III

Figure 4.18: Chosen type III

Second Choose four constituent for our four plasticizes (A, B, C and D)

Figure 4.19: Chosen type III for four constituents

Third ,put the value’s lower and upper respecting the dimension then click submit to take

it to the display

Figure 4.20: Enter the values for type III
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4.8.2 Display

This picture represent ’STEP 1’ how to classify the constituents in ascending order

Figure 4.21: STEP 1 classify the constituents in ascending order in type III

This picture represent ’STEP 2’ how constructing a complete factorial matrix.

Figure 4.22: STEP 2 constructing a complete factorial matrix in type III

This picture represent ’STEP 3’ the Check if the concentrations of the last constituent

satisfy the imposed constrain
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Figure 4.23: STEP 3 verify final component meets requirement.

This picture represent ’STEP 4’ find the edges in type III

Figure 4.24: STEP 4 find edges
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This picture represent ’STEP 5’ how we find the faces in type III

Figure 4.25: STEP 5 find faces

This picture represent ’STEP 6’ Composition of the center of gravity G

Figure 4.26: STEP 6 Composition of the center of gravity G

This picture represent the resulting graph

Figure 4.27: The Graph generated using Edges and Faces calculated

68



CHAPTER 4:Testing and Results

4.9 Example 4 Optimality criteria D

After selecting Type 3, the interface displays the following steps: 1, 2, 3, 4, 5, 6. Then, the

user is prompted to choose whether they want to calculate the optimal D criteria (figure 4.28).

Figure 4.28: Selecting D-optimal step

Two radio buttons are presented for this purpose. If the user selects "Yes," an input text

field appears where they can enter the value of ’n,’ representing the number of lines (figure

4.29).

Figure 4.29: chosen and confirming the value of n

The Optimally Criteria D is represented in (Figure 4.30)

Figure 4.30: D-optimal points
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4.10 Example 5

We are interested in the cold behavior of a mixture of three constituents. The precision

regarding cold resistance is ±0.05.

1. Using a Type I mixture design, specify the steps to execute such a plan, and then provide

the study domain.

2. Determine the first-degree model if the responses at the domain vertices are given by: A

(1 0 0) → -40.5; B (0 1 0) → -12.5; C (0 0 1) → -19 and the response at the center is

-26.9.

3. Study the validity of the model determined in question 2.

4. If the first-degree model is not valid, determine the second-degree model. Points given

for this purpose are: D (0.5 0.5 0) → -28.6; E (0 0.5 0.5) → -30.8; F (0.5 0 0.5) → -18.5.

5. Study the validation of the model using the points: G (0.667 0.167 0.167) → -29.6; H

(0.167 0.667 0.167) → -24.2; I (0.167 0.167 0.667) → -23.5.

Provide the study domain, specifying the location of all points A, B, C, D, E, F, G, H, and I.

4.10.1 Solution

1. The approach to use is:

2. Assume a first-degree model and perform mixtures according to the Scheffé lattice k,1,

then calculate the model coefficients.

3. Test the validation of the model by performing one or more mixtures within the domain.

If validation is accepted, the problem is resolved.

4. If validation is not accepted, assume a second-degree model and perform mixtures to

complete the Scheffé lattice k, 2, then calculate the model coefficients. Validation is

tested as above
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Study Domain

Figure 4.31: Study domain

The model is written :

Y = b1X1 + b2X2 + b3X3

Table 4.7: The tests that need to be performed are shown in the matrix below:
Point x1 x2 x3 cold storage
A 1 0 0 -40.5
B 0 1 0 -12.5
C 0 0 1 -19
D 1/3 1/3 1/3 -26.9

The three points A, B, and C allow us to write a system of 3 equations with 3 unknowns:

−40.5 = b1 ∗ 1 + b2 ∗ 0 + b3 ∗ 0

−12.5 = b1 ∗ 0 + b2 ∗ 1 + b3 ∗ 0

−19.0 = b1 ∗ 0 + b2 ∗ 0 + b3 ∗ 1

Obviously, the model is written :

Y = −40.5X1 +−12.5X2 +−19.0X3

Model validation

1. For the calculated value of cold resistance : y=-24

2. For the observed value of cold resistance: y=-26.9

The difference between the observed and calculated values is significantly greater than the

precision of 0.05. Therefore, the first-degree model is rejected
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Hypothesis of the second-degree model

The model is written as::

y = a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3

The Scheffé network is composed of points A, B, C, E, F, and G. The table below represents

the complementary trials:

Table 4.8: The tests that need to be performed are shown in the matrix below:
Point x1 x2 x3 cold storage
E 0.5 0.5 0 -28.6
F 0.5 0 0.5 -3.8
G 0 0.5 0.5 -18.5

These 6 trials allow us to write a system of 6 equations.:

a1 = −40.5

a2 = −12.5

a3 = −19

a12 = 4a1 − 5a2 − 2a3 = −8.4

a13 = 4a1 − 2a2 − 2a3 = 45

a23 = 4a1 − 2a2 − 2a3 = −60.2

Table 4.9: The tests that need to be performed are shown in the matrix below:
Point x1 x2 x3 Observed cold resistance Calculated cold resistance Difference
G 2/3 1/6 1/6 -29.6 -26.9 0.3
H 1/6 2/3 1/6 -24.2 -29.9 0.4
I 1/6 1/6 2/3 -23.5 -24.6 0.1

With a precision of 0.5, the model is accepted.
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4.11 Example 6

We are studying a mixture of four components whose proportions are constrained by the

following limits expressed as percentages:

10 ≤ x1 ≤ 90

10 ≤ x2 ≤ 50

10 ≤ x3 ≤ 30

0 ≤ x4 ≤ 5

1. Show the existence of the experimental domain.

2. Provide the coherent experimental domain.

3. By applying the Snee and Marquardt algorithm, determine:

(a) The vertices of the experimental domain.

(b) The edges and the composition of their midpoint.

(c) The faces and the composition of their center.

(d) The composition of the centroid of the experimental domain.

4.11.1 Solution

1. To ensure the experimental domain can exist, it is sufficient that the conditions L =∑
li < 100 and U =

∑
ui > 100 both conditions are satisfied (where ℓi and ui denote
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the lower and upper limits of constituent i).

If either of the two previous conditions is not satisfied, then the domain does not exist. We

have L= 10+10+10+0=30 <100 and U=90+50+30+5=175>100. With both conditions

verified, the experimental domain exists..

2. The proposed limits of the mixture components and the corresponding domain di are

represented in the following table:

Table 4.10: The tests that need to be performed are shown in the matrix below:
Constituent li% Ui% Di%
A 10 90 80
B 10 50 40
C 10 30 20
D 0 5 5

Actual upper limit

We should have
di ≤ 100− L

If the concentration domain di of a constituent exceeds the quantity 100-L=70, its upper limit

must be adjusted. For constituent A, we have dA = 80 which exceeds 70 by 10. The upper

limit of constituent A must be reduced accordingly and becomes 90-10=80.

Actual lower limit

We should have

di ≤ U − 100

Every time the range of a constituent exceeds the quantity 100-U=75, its lower limit must

be adjusted. For constituent A, we have dA=80>75. dA exceeds the quantity 100-U by 80-

75=5.The lower limit must be increased by this amount, thus becoming 10+5=15.

Coherent experimental domain:

15 ≤ x1 ≤ 80

10 ≤ x2 ≤ 50

10 ≤ x3 ≤ 30

0 ≤ x4 ≤ 5
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3. Snee and Marquardt Algorithm

a) Vertices of the experimental domain

1. The k = 4 constituents A,B,C and D with concentrations x1, x2, x3andx4∗ respectively , are

arranged in increasing order of their domains, namely:

D , C , B , A

2. We construct with the k − 1 = 4− 1 = 3 first constituents, a 23 full factorial design. where

li corresponds to the level -1 and ui to the level +1. We fill the column of the last constituent

in a way that respects the general constraint of mixtures
∑

xi = 100. Applying this to our

example leads to the following table:

Mix number D C B A
1 0 10 10 80
2 5 10 10 75
3 0 30 10 60
4 5 30 10 55
5 0 10 50 40
6 5 10 50 35
7 0 30 50 20
8 5 30 50 15

For the coherent domain, we have L=35 et U=165 Therefore :

100− L = 65

U − 100 = 65

3. All constraints of constituent A satisfy the constraints of the coherent domain or actual

domain. No constraints of constituent A need to be modified. Therefore, the table below

represents the 8 vertices of the experimental domain.

Mix number A B C D
1 80 10 10 0
2 75 10 10 5
3 60 10 30 0
4 55 10 30 5
5 40 50 10 0
6 35 50 10 5
7 20 50 30 0
8 15 50 30 5
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b) Edges and the composition of their midpoint

After identifying the vertices, we need to identify the edges, faces, hyper faces, and other

boundaries of the domain. Depending on the number k of constituents, the domain is bounded

by:

4. Edges(k = 3)

5. Edges and faces(k = 4)

6. . . .

- edges, faces, ... hyper faces of dimension r = k − 2

All mixtures on a boundary of dimension r share the concentrations of p constituents, where p

is determined by the relationship:

p = k − r − 1

In our case k = 4, hence r = 4− 2 = 2 Therefore, the domain is bounded only by edges and 2

dimensional faces. he search for the boundaries of the domain is conducted based on the table

of vertices (table 2).

To search for the edges, we take r = 1 hence p = k − r − 1 = 4− 1− 1 = 2

7. Edges starting from vertex 1. Vertex 1 has the composition:

A = 80, B = 10, C = 10, D = 0

We find the values:

B = 10 and C = 10 on line 2 of table 2

B = 10 et D = 0 on line 3

C = 10 D = 0 on line 5

We have identified the 2 edges 1-2,1-3, 1-5

The midpoint of edge 1-2 and 1-3 respectively has the composition:

A = (80 + 75)/2 = 77, 5 B = 10 C = 10 D = 2, 5

A = (80 = 60)/2 = 70 B = 10 C = 20 D = 0
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8. Edges starting from vertex 2. Vertex 2 has the composition

A = 75, B = 10, C = 10, D = 5

We find the values:

B = 10, D = 5, on line 4

We have identified edge 2-4.

We have identified the 2 edges from vertex 3. Vertex 3 has the composition:

A = 60, B = 10, C = 30, D = 0

We find the values:

B = 10 C = 30 on line 4

C = 30 D = 0 on line 7

We have identified the 2 edges 3-4, 3-7

9. Edges starting from vertex 4. Vertex 4 has the composition

A = 55, B = 10, C = 30, D = 5

We find the values:

C = 30 D = 5 on line 8

We have identified edge 4-8

10. Edges starting from vertex 5. Vertex 4 has the composition

A = 40, B = 50, C = 10, D = 0

We find the values:

77



CHAPTER 4:Testing and Results

B = 50 C = 10 on line 6

B = 50 D = 0 on line 7

We have identified edge 5-6, 5-7

11. Edges starting from vertex 6. Vertex 6 has the composition

A = 35, B = 50, C = 10, D = 5

We find the values:

B = 50 D = 5 on line 8

We have identified edge 6-8

12. Edges starting from vertex 7. Vertex 7 has

A = 20, B = 50, C = 30, D = 0

We find the values:

B = 50 C = 30 on line 8

We have identified edge 7-8

Domain Edges A B C D
1 80 10 10 0
2 75 10 10 5
3 60 10 30 0
4 55 10 30 5
5 40 50 10 0
6 35 50 10 5
7 20 50 30 0
8 15 50 30 5

c) Faces and the composition of their center

With the values k = 4, r = 2 then p = 4− 2− 1 = 1
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13. Faces containing vertex 1:

A = 80, B = 10, C = 10, D = 0

Vertices 2, 3, and 4 define with vertex 1 a face characterized by B=10, and its center has the

composition:

A = (80 + 75 + 60 + 55)/4 = 67, 5, B = 10, C = (10 + 10 + 30 + 30)/4 = 20, D = 2, 5

The face 1-2-5-6 is characterized by C=10.

The face 1-3-5-7 is characterized by D=0.

14. Faces containing vertex 2

We find the faces:

2− 3− 4 characterized by B = 10

2− 5− 6 characterized by C = 10

2-4-6-8 characterized by D=5

15. Faces containing vertex 3

We find the faces:

3− 4− 7− 8 characterized by = 30

3− 5− 7 characterized by D = 0

16. Faces containing vertex 4

We find the faces:

4− 7− 8 characterized by C = 30

4− 6− 8 characterized by D = 5

17. Face containing vertex 5

We find the face:
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5− 6− 7− 8 characterized by B = 50

18. Face containing vertex 6:

We find the face:

6− 7− 8 characterized by B = 50

Some faces are repeated two or more times.

For example, faces 1-2-5-6 and 2-5-6, both characterized by C=10, the first counted from vertex

1 and the second from vertex 2. Ultimately, all distinct faces are represented in the following

table:

Domain Faces A B C D Caracter
1-2-3-4 67,5 10 20 2,5 B=10
1-2-5-6 57,5 30 10 2,5 C=10
1-3-5-7 53,75 30 20 0 D=0
2-4-6-8 45 30 20 5 D=5
3-4-7-8 37,5 30 30 2,5 C=30
5-6-7-8 27,5 50 20 2,5 B=50

4.12 Example 7

To model (establishing a quadratic model) and simulate the behavior of a system (a product

with 3 constituents), the following set of individual constraints is provided:

0, 2 ≤ x1 ≤ 0, 6

0, 1 ≤ x2 ≤ 0, 6

0, 1 ≤ x3 ≤ 0, 5

1. Study the existence of the experimental domain

Verify the consistency of the individual constraints. To do this, we will compare the

range Ri = bi − ai of each constituent i (where ai and bi denote respectively the lower

constraint and the upper constraint of the constituent i) to Ra = 1−
∑3

i=1 ai, the linear

measurement of simplex A, and Rb =
∑3

i=1 bi − 1, the linear measurement of simplex B.

2. Specify the coherent experimental domain.

3. By applying the Snee and Marquardt algorithm, determine the composition of each vertex.
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4. Provide all edges and the composition of their midpoint.

5. Give the composition of the center of gravity of the study domain.

6. What is the set C of experimental points that can be candidates for establishing mathematical

models (linear, quadratic, or cubic models)?

4.12.1 Solution

0, 2 ≤ x1 ≤ 0, 6

0, 1 ≤ x2 ≤ 0, 6

0, 1 ≤ x3 ≤ 0, 5

1.Existence of the experimental domain

L =
3∑

i=1

ai = 0.2 + 0.1 + 0.1 = 0.4 < 1

U =
3∑

i=1

bi = 0.6 + 0.6 + 0.5 = 1.7 > 1

Since L<1 and U>1 the experimental domain exists.

2. Verification of the consistency of individual

constraints Ranges of constituents (or concentration domains of constituents):

R1 = 0.6− 0.2 = 0.4

R2 = 0.6− 0.1 = 0, 5

R3 = 0.5− 0.1 = 0.4

Ra = 1− L = 1− 0.4 = 0.6

Rb = U − 1 = 1.7− 1 = 0.7

1. If the range Ri exceeds the quantity Ra, then the upper limit of the corresponding constituent

is incompatible and must be corrected and replaced by the new upper constraint, known as the

implicit constraint:

bi = ai +Ra.

In our case, no upper limit needs to be corrected since all Ri are less than Ra

2. The range Ri exceeds the quantity Rb ., If the range exceeds the quantity, then the lower
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limit of the corresponding constituent is incompatible and must be corrected and replaced by

the new implicit lower constraint:

ai = bi +Rb

In our case, no lower limit needs to be corrected since all Ri are less than Rb

3. Coherent experimental domain

The coherent experimental domain and the corresponding implicit ranges are therefore:

0.2 ≤ x1 ≤ 0.6 R1 = 0.4

0.1 ≤ x2 ≤ 0.6 R2 = 0.5

0.1 ≤ x3 ≤ 0.5 R3 = 0.4

The measurements of simplex A and B remain the same.: Ra = 0.6 Rb = 0.7

4. Composition of the vertices of the polygon

Constituent ai bi ri
1 0.2 0.6 0.4
2 0.1 0.6 0.5
3 0.1 0.5 0.4

The experimental domain formed by the set of coherent constraints has 6 vertices. To determine

the composition x1, x2, x3 To determine the composition of each vertex of the convex polygon

forming the experimental domain, we apply the Snee and Marquardt (or MacLean and

Anderson) algorithm. The different steps of this method are as follows:

Step 1: The q=3 constituents are classified in increasing order of their domains

R1 = R3 = 0.4 R2 = 0.5

R1 R3 R2

Step 2: Construct with the q-1=2 first constituents a 2-level full factorial design. Corresponding

to level -1 and to level +1. Fill the column of the last constituent in a way that respects the

general constraint of mixtures xi = 1. Applying this to our example leads to the following table

:
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Constituent x1 x2 x3 0.1≤ x2 ≤ 0.6
1 0.2 0.1 0.7 out of domain
2 0.6 0.1 0.3
3 0.2 0.5 0.3
4 0.6 0.5 0.1 out of domain

1. Step 3: Verify if the concentrations of the last constituent satisfy the imposed constraints.

If yes, the corresponding row is a vertex of the domain. If not, adjust the last constituent to

its nearest limit. Then, readjust the sum of concentrations to 1 by modifying one of the

concentrations of the q-1 first constituents. All possible solutions correspond to new vertices

Lines 2 and 3 For rows 2 and 3, we find the vertices:

x1 = 0.6, x3 = 0.1, x2 = 0.3

x1 = 0.2, x3 = 0.5, x2 = 0.3

Line 1

On the first row of the table, the concentration x2 is brought back from 0.7 to 0.6 . Thus 0.1

is to be added either to x1 or to x3 . This leads us to the two vertices :

x1 = 0.3, x3 = 0.1, x2 = 0.6

x1 = 0.2, x3 = 0.2, x2 = 0.6

Line 4

On line 4, the concentration x2 is adjusted to 0.1 . Therefore 0.2 can be subtracted either from

x1 or x3. This leads us to the two vertices:

x1 = 0.4, x3 = 0.5, x2 = 0.1

x1 = 0.6, x3 = 0.3, x2 = 0.1

Vertex x1 x2 x3

1 0.6 0.3 0.1
2 0.2 0.3 0.5
3 0.3 0.6 0.1
4 0.2 0.6 0.2
5 0.4 0.1 0.5
6 0.6 0.1 0.3

By arranging the vertices in a clockwise direction, we obtain the following final table (see

figure):
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Composition of the 6 vertices

Vertex x1 x2 x3

1 0.6 0.3 0.1
2 0.2 0.1 0.3
3 0.4 0.1 0.5
4 0.2 0.3 0.5
5 0.2 0.6 0.2
6 0.3 0.6 0.1

Polygon edges and the composition of their midpoint

All mixtures on a boundary of dimension share the concentrations of p constituents, p being

given by the relation:

p = q − r − 1

Thus, the mixtures located on the same edge (r = 1) have p = 3 − 1 − 1 = 1 common

concentrations. The search for edges in the domain is done starting from vertex 1, where we

look in the rest of the table for vertices that share with it p = 1 common values. We repeat the

process with vertices 2, 3, 4, and 5. After identifying the vertices of an edge, we calculate the

compositions of their midpoint by averaging the concentrations of the corresponding vertices.

Edges involving vertex 1

The vertex 1 has the composition:

x1 = 0.6, x2 = 0.3, x3 = 0.1
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We find the values x1 = 0.6 on line 2 and x3 = 0.1 on line 6. We have identified two edges of

the domain starting from vertex 1: the edges 1 − 2 and 1 − 6. The midpoint of each of these

two edges has the following composition, respectively:

x1 = 0.6 x2 = 0.2 x3 = 0.2

x1 = 0.45 x2 = 0.45 x3 = 0.1

Edge starting from vertex 2

The vertex 2 has the composition:

x1 = 0.6, x2 = 0.1, x3 = 0.3

We find the values x1 = 0.1 on the line 3. We have identified the edge 2 − 3 whose midpoint

has the composition:

x1 = 0.5, x2 = 0.1, x3 = 0.4

Edge starting from vertex 3

The vertex 3 has the composition:

x1 = 0.4, x2 = 0.1, x3 = 0.5

We find the values x3 = 0.5 on the line 4. We have identified the edge 3 − 4 whose midpoint

has the composition:

x1 = 0.3, x2 = 0.2, x3 = 0.5

Edge starting from vertex 4

The vertex 4 has the composition:

x1 = 0.2, x2 = 0.3, x3 = 0.5

We find the values x1 = 0.2 on the line 5. We have identified the edge 4 − 5 whose midpoint

has the composition:

x1 = 0.2, x2 = 0.45, x3 = 0.35

Edge starting from vertex 5

The vertex 5 has the composition:

x1 = 0.2, x2 = 0.6, x3 = 0.2
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We find the values x2 = 0.6 on the line 6. We have identified the edge 5 − 6 whose midpoint

has the composition:

x1 = 0.25, x2 = 0.6, x3 = 0.15

In total, the domain has 6 edges listed in the following table:

Edges and the composition of their midpoint

Edge x1 x2 x3

1-2 x1 = 0.6 x2 = 0.2 x3 = 0.2
1-6 x1 = 0.45 x2 = 0.45 x3 = 0.1
2-3 x1 = 0.5 x2 = 0.1 x3 = 0.4
3-4 x1 = 0.3 x2 = 0.2 x3 = 0.5
4-5 x1 = 0.2 x2 = 0.45 x3 = 0.35
5-6 x1 = 0.25 x2 = 0.6 x3 = 0.15

Center of Gravity Composition of the Study Domain

The composition of the center of gravity G is obtained by calculating the average of the

compositions of the 6 vertices. The result is:

x1 = 0.3833, x2 = 0.3333, x3 = 0.2833

Set C of candidate points

The introduction of double constraints generally modifies the shape of the experimental domain.

We observe that the shape of the domain and the number of vertices depend on the limits li

and ui. Scheffé networks are no longer usable. The approach will therefore consist of:

• Identifying the vertices, then the edges, faces, ..., in general, the boundaries of the domain,

knowing that it is always convex in shape.

• Creating a set C of candidate points likely to appear in the design. By analogy with

what we have seen for Scheffé networks, these candidate points are vertices, midpoints of

edges, centers of faces, ... The choice depends on the degree of the model being sought.

• Selecting from C candidates the n points in the design based on the criterion of maximum

determinant or an equivalent criterion.

For our example, set C consists of vertices, midpoints of edges, and the barycenter (or center

of gravity), which constitutes the center of the only face of the domain since we have a ternary

system. Set C is presented in the following table:
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Set C of Candidate Points

N° x1 x2 x3

Mixtures 1 0.6 0.3 0.1
for 2 0.6 0.1 0.3
the 3 0.4 0.1 0.5
first 4 0.2 0.3 0.5
degree 5 0.2 0.6 0.2

6 0.3 0.6 0.1

Mixtures 7 0.6 0.2 0.2
for 8 0.45 0.45 0.1
model 9 0.5 0.1 0.4
quadratic 10 0.3 0.2 0.5

11 0.2 0.45 0.35
12 0.25 0.6 0.15

centroid 13 0.3833 0.3333 0.2833

This selection allows:

• Calculating the first-degree model using 6 vertices and using the other 6 mixtures and

the centroid to test the validity of this model.

• Using the remaining mixtures to estimate, if necessary, the coefficients of the second-

degree model, with the centroid still serving as a test point.
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Conclusion

The Methodology of Experimental Research, also known as experimental design, is a mathematical

discipline within inferential statistics. The theory of experimental design methods is still

evolving and has gained significant importance due to the availability of specialized software.

The work proposed to us had two main objectives:

Firstly, to study mixture experimental designs, which are widely used in the pharmaceutical

industry as well as in many other fields. Secondly, to develop our own application. This will

allow us not only to avoid tedious calculations but also to process and analyze any practical

experiment in chemical, pharmaceutical, agronomic, physical domains, etc. Developing specific

software for mixture designs would be very interesting.

Our research has shown that the use of experimental design methodology is crucial for

optimizing experimental processes and ensuring reliable and interpret able results. By using

geometric and matrix representations, we have provided a comprehensive overview of the main

types of mixture designs: Type I Mixture Designs, Type II Mixture Designs, and Type III

Mixture Designs. Additionally, we have developed a by using python software application to

facilitate the construction and analysis of these designs, providing a practical tool for validating

mathematical models.

the Methodology of Experimental Research plays an indispensable role in various scientific

and industrial fields. By focusing on mixture experimental designs, we have addressed a critical

need in industries such as pharmaceuticals, chemicals, agronomy, and beyond. Our work

demonstrates not only the theoretical importance of these designs but also offers practical

solutions through the development of an software application.

In the future, the creation of specialized software for mixture designs could further streamline

and enhance the experimental process across multiple sectors. The oil and natural gas industry,

in particular, stands to benefit significantly from such advancements, given the complexity and

scale of their experimental needs. The ongoing development of experimental design theory

and its practical applications holds great promise for future innovations and efficiencies in

experimental research.
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