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Abstract

In this thesis we study the spinor helicity formalism (SHF). This formalism is essentially

based on Weyl spinors, where we write the physical quantities appearing in scattering am-

plitudes in terms of these spinors. Here we study two distinct cases: massless particles and

massive ones and build the formalism for each case. After that, we apply SHF to study a few

scattering processes including different sides of techniques necessary to acquire.

We will also plot Feynman diagrams for scattering processes via the FeynArts package;

illustrate how the amplitudes for these processes are obtained by using the FeynCalc pack-

age and showcase the SpinorsExtras package(sub-package of S@M) via a simple example to

obtain the amplitudes in terms of spinor products.

Key Words: Spinor Helicity Formalism, Tree Level Amplitude, Scattering Amplitude.
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Abbreviation and Convention

Abbreviation
SM Standard Model

CSM Classical Standard Model

QCD Quantum ChromoDynamics

QED Quantum ElectroDynamics

EW ElectroWeak

GF Gauge Fixing

SHF Spinor Helicity Formalism

MHV Maximum Helicity V iolating

LHC Large Hadron Collider

LCD Light Cone Decomposition

SLCD Simultaneous Light Cone Decomposition

Convention

we used :

• The metric signature : (−1,1,1,1)
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Introduction

It is one of mankind’s greatest blessings that we are born curious. Curiosity can often lead

to amazing feats and one of the questions that stimulates one’s curiosity is: where are we in

this universe ? the development of this question over thousands of years took us to another

question : what are the laws under which this universe exists ? The objective behind this

question is to try and establish well funded theories that would make us understand the

laws of nature better. On that note, there is only two major theories that got us close to that

goal. The first being Einstein’s General Relativity [1] to describe the ample objects such as

planets, and the second being the standard model (SM) [2, 3, 4] which studies the smallest

fundamental objects.

When approaching the subject of particle physics, one must fully understand what he’s

stepping into. To talk about particle physics is to dive directly into the smallest particles

of matter and the ongoing interaction between them. The SM is a unison of two separate

theories: QCD (Quantum Chromo Dynamics) [5] and Electroweak theory (EW) [6].

The experimental side of particle physics is centered around measuring the number of

events occurring inside the collider which is given by the product of the scattering cross

section σevent and the luminosity L. Obtaining the differential cross section dσ
dΩ is a stepping

stone to obtain the number of events. This quantity is proportional to the square of the

amplitude of the processes occurring inside the collider :

dσ

dΩ
∝ |M |2 (1)

Throughout this thesis our interest resides in calculating the square of the scattering ampli-

tude. The classical method to calculate amplitudes is called "trace method"(it was developed

in the early 60’s). However with growing collision energies, multiple external leg processes

are more occurring which makes this method complicated and inadequate by computer and

just impossible to do by hand. This is because such processes contain a large amount of

terms. And not only does one have to carry out the calculation to obtain all the amplitudes

but also has to calculate the square of the sum of these amplitudes. Generally after carry-

ing out the heavy simplification we are left with a simple small expression because many

terms cancel each other out. A better alternative method for calculating amplitudes is called

1



CONTENTS 2

"Spinor Helicity Formalism" (SHF) [7, 8]. Our objectives for this thesis are:

• To study in detail the SHF and understand how to apply it in physical processes to

obtain the squared amplitudes.

• To present it in a comprehensible introductory manner which makes the thesis easy to

exploit.

This thesis will be organized as follows :

• Chapter 1 : we briefly present the SM and exhibit it’s lagrangian and explicitly write

down each term and briefly explain what it stands for.

• Chapter 2 : we construct the objects used to perform calculations in this formalism

by using Weyl spinors [9] and use an efficient notation to write the main physical

quantities appearing in amplitudes. We study two separate cases; massless case of

SHF which is how this formalism was originally introduced. However the experiment

enforces the extension of SHF to include massive particles.

• Chapter 3 : we apply SHF in a variety of examples each containing a different side

in order to cross over as much calculation techniques as possible. Such examples are

Bhabha scattering, pair annihilation process and Higgs production process which is a

three particle final state case.

• Finally we arrive to the conclusion of our work where we present the challenges we

overcame throughout this thesis along with perspectives for the near future.



Chapter 1

Standard Model

"A deep emotion

comes from true devotion

to the right notion

of spin in motion."

R.Gastmans

The SM is a theory initially introduced by Weinberg [10], Glashow [11] and Salam [12]

to describe the EW interaction for leptons. It was modified to include the strong nuclear

interaction by Glashow, Iliopoulos and Maiani [13]. It’s a quantum field theory which is

based on a local gauge symmetry of the group SU (3)c×SU (2)I ×U (1)Y , where the subscripts

c, I and Y denote the color charge, the weak isospin and the hypercharge respectively. The

SM stipulates that the main constituents of our universe are elementary fermions -leptons

and quarks that is- classified into three generations :

1st generation→














νe

e















L

, (νe , e)R ;















u

d















L

, (u,d)R

2nd generation→














νµ

µ















L

, (νµ,µ)R ;















c

s















L

, (c, s)R

3rd generation→














ντ

τ















L

, (ντ ,τ)R ;















t

b















L

, (t,b)R

(1.1)
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CHAPTER 1. STANDARD MODEL 4

The interactions among these particles are carried by bosonic messenger particles : glu-

ons ”g” for the color interaction -more commonly known as the strong nuclear interaction-,

photons ”γ” for the electromagnetic interaction, and the massive vector bosons ”Z” and

”W±” for the weak interaction.

This chapter consists of an overview of the SM lagrangian and the Feynman rules for

calculating amplitudes at tree level.

1.1 The Standard Model lagrangian

Technically the SM can be expressed in several different formulations, however, despite

the appearance, the lagrangian formulation is one of the easiest and most compact ways of

presenting the theory.

The classical SM (CSM) lagrangian is written as a sum of multiple terms [14], we have:

LC = Lgauge +LFermion +LHiggs +LYukawa (1.2)

We shall present all of these terms and pinpoint what each term stands for below.

1.1.1 Gauge Field lagrangian

The gauge group SU (3)c × SU (2)I ×U (1)Y has twelve generators: eight T αs ’s that form the

SU (3) algebra, three T a’s that form the SU (2) algebra, and a single Y that generates theU (1)

algebra. The generators T αs , T
a and Y satisfying the Lie brackets 1 :

[T αs ,T
β
s ] = if

αβλT λs , [T a,T b] = iǫabcT c , [Y,Y ] = 0

where ǫabc is totally anti-symmetric tensor and f αβλ are the structure constants of SU (3)[14].

Hence there are three independent constants in Lgauge : (gs) is the QCD gauge coupling

constant related to SU (3)c subgroup, (g) and (g ′) are respectively the SU (2)I and U (1)Y
gauge coupling constants.

Gauge field dynamics are governed by the gauge field lagrangian :

LGauge = −
1
4
GαµνG

αµν − 1
4
W a
µνW

aµν − 1
4
BµνB

µν (1.3)

where Gαµ νG
αµν , W a

µν and Bµν are the field strength for the strong interaction, the weak

1α, β and λ varying from 1 to 8, on the other hand a,b and c take the values from 1 to 3.
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interaction and the electromagnetic interaction respectively, and are given by :

Gαµν = ∂µG
α
ν −∂νGαµ + gsf αβλG

β
µG

λ
ν (1.4)

W a
µν = ∂µW

a
ν −∂νW a

µ + gǫ
abcW b

µW
c
ν (1.5)

Bµν = ∂µBν −∂νBµ (1.6)

Gαµ ,W
a
µ and Bµ are respectively the gluon fields, SU (2) and U (1) gauge fields.

1.1.2 Fermionic lagrangian

In order to determine the fermionic contribution to the SM lagrangian, we associate to every

fermion intervening in the theory a spinor (ψi), thus the fermionic contribution is accounted

for via the lagrangian LF [14], given by :

LF = i
3

∑

k=1

[

Ψ̄
k,l
L γµDl

L,µΨ
k,l
L + Ψ̄

k,l
R γµDl

R,µΨ
k,l
R + Ψ̄

k,q
L γµD

q
L,µΨ

k,q
L + Ψ̄

k,q
R γµD

q
R,µΨ

k,q
R

]

(1.7)

where the sum over (k) denotes a sum over the three generations of both leptons denoted by

(l) and quarks denoted by (q), the covariant derivatives are as follows :

Dl
L,µ =DΦ,µ = ∂µ − igW a

µT
a − ig ′YBµ

Dl
R,µ = ∂µ − ig ′YBµ

D
q
L,µ = ∂µ − igsGαµT αs − igW a

µT
a − ig ′YBµ

D
q
R,µ = ∂µ − igsGαµT αs − ig ′YBµ (1.8)

Written in this manner the fermionic lagrangian is invariant under the local gauge transfor-

mations of the SU (3)⊗ SU (2)⊗U (1) group. This lagrangian is also invariant under global

transformation of the PoincarÃľ group. It is important to point out that the fermionic la-

grangian does not include in an explicit way the mass terms because then the lagrangian

would not be gauge invariant, instead the mass of fermions must be introduced in a way

that preserves this property. The only way to do this is to introduce the mass via the Higgs

mechanism [14]. For this we need to introduce the Higgs lagrangian.
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1.1.3 Higgs lagrangian

In the SM the Higgs field is represented by a complex scalar isotopic doublet:

Φ =















ϕ†

υ+H+iϕZ√
2















(1.9)

The Higgs field lagrangian is introduced via the following lagrangian :

Ls = (DΦ,µΦ)†(DΦ,µ
Φ) +µ2Φ†Φ −λ(Φ†Φ)2 (1.10)

Φ is the isotopic doublet for the complex scalar field.

µ and λ are free parameters for the model.

1.1.4 Yukawa lagrangian

The fermions interact with the higgs field to acquire their mass. This interaction is embed-

ded in the SM via the Yukawa lagrangian [14].

LY =−
3

∑

k=1

[

λ
l,up
k Ψ̄

k,l
L (iσ2

Φ
∗)Ψk,l

R,up +λ
l,down
k Ψ̄

k,l
L ΦΨ

k,l
R,down + (h.c)

]

(1.11)

−
3

∑

k=1

[

λ
q,up
k Ψ̄

k,q
L (iσ2

Φ
∗)Ψ

k,q
R,up +λ

q,down
k Ψ̄

k,q
L ΦΨ

k,q
R,down + (h.c)

]

where : λ
l,up
k , λl,downk , λ

q,up
k and λ

q,down
k are the Yukawa coupling constants.

So the classical SM lagrangian is the sum of the previously mentioned terms

Lc = Lgauge +Lf ermion +LHiggs +LYukawa (1.12)

However since the SM is a quantum field theory so the fields must be quantified. This

procedure means that we must introduce a field operator for every field intervening and it

must be done in a way that preserves gauge invariance; this implies adding two new terms

to the CSM lagrangian.

The canonical quantization of a non abelian gauge field lagrangian yields an inconsis-

tency in the theory which is the fact that the time component of the gauge field Ĝa0 vanishes

which means that the conjugate momentum Π̂
a
0 will also vanish while the Lie brackets stip-
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ulate that :
[

Ĝa0(x),Π̂
a
0(y)

]

x0=y0
= iδ3(~x − ~y) (1.13)

The solution to this problem lies within ignoring the classical implications of gauge invari-

ance and adding a gauge fixing term given by :

LGF =
1

2ξG
(∂.Ga)2 (1.14)

However this creates an even bigger problem, the lagrangian is no longer gauge invariant.

Feynman found a solution in 1963 [15] which consisted of introducing new bosonic fields

which verify the fermionic Lie brackets called "ghosts". In 1967 Faddeev and Popov [16]

used path integrals to justify Feynman’s strange proposition, the second term added into

the lagrangian depends on these ghosts

Lghost = i(∂µχa1 )Dab
µ χ

b
2 (1.15)

where χa1, χ
b
2 are the Faddeev-Popov ghosts,Dab

µ = δab∂µ−gsf abcGcµ is the covariant derivative
while a,b and c are the adjoint representation indices.

Adding the gauge fixing term and the ghost term to the classical lagrangian breaks invariance

under local classical gauge transformations and extends the invariance to local ghost transforma-

tions, this extension is called the BRS transformations [17].

Eventually the quantized SM lagrangian will be the sum of the classical lagrangian and the

ghost term and the gauge fixing term [14] :

LSM = Lc +Lghost +LGF (1.16)

1.2 Feynman Rules

A Feynman diagram is a graphical representation for the quantum amplitudes of a given process,

composed of three elements external lines, internal lines and vertices. To each one of these ele-

ments we associate a mathematical expression dictated by the SM lagrangian, the product of these

expressions-with the appropriate order- will yield the amplitude of the depicted process. How one

tells which mathematical expression is the right one to use is answered by Feynman Rules. These

rules can be derived but we will just list the ones we will use throughout this thesis [18, 8].

In order to simplify the process we will classify Feynman rules by the sectors in which they

intervene -QCD and EW sectors that is- below :
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1.2.1 Feynman rules for the Electroweak theory

The EW sector Feynman rules intervening throughout this work are listed as follows

• Propagators

A photon propagator is represented with a wavy line:

µ ν

γ
−i

p2+iǫ
[gµν − (1− ξ)

pµpν
p2

]
(1.17)

where gµν is Minkowski’s spacetime metric and pµ is the photon 4-momentum .

We will mostly work in Feynman gauge, ξ = 1 :

µ ν

γ
−i

p2+iǫ
gµν

(1.18)

The same representation goes for the Z vector boson

µ ν

Z
−igµν

k2−M2
z +iǫ (1.19)

As for the Higgs boson and the rest of the other scalar particle :

−→p −igµν
k2−M2

H+iǫ (1.20)

A spinor propagator with mass m is a continuous line with an arrow:

−→p i(6p+m)
p2−m2+iǫ

δiji j
(1.21)

The arrow points to the right for a particle and to the left for an antiparticle, and the δij is added

to conserve flavor

• External lines

When a photon is an incoming or an outgoing particle it contributes by a polarisation vector ǫµ(p)
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and is represented graphically by :

ǫµ(p) (incoming)
(1.22)

ǫ∗µ(p) (outgoing)
(1.23)

As for fermions, we represent them by :

us(p)
(1.24)

ūs(p)
(1.25)

v̄s(p)
(1.26)

vs(p)
(1.27)

us(p) and vs(p) are spinors(for electron and positron respectively) satisfying the Dirac equation:

( 6p −m)us(p) = 0, us(p)( 6p −m) = 0 (1.28)

( 6p +m)vs(p) = 0, vs(p)( 6p +m) = 0 (1.29)

where s is an index numbering the two spin degrees of freedom of the spinor. The spinors us(p)

and vs(p) are defined by:

us(p) = us(p)†γ0 , vs(p) = vs(p)†γ0 (1.30)

• Vertices

Gauge couplings to fermions are as follows:2 :

i g
cosθW

γµ(g
f
V − g

f
Aγ5)

ψf

ψf

Zµ

(1.31)

ieQf γµ

ψf

ψf

Aµ

(1.32)

2Qf is the charge of the fermion, Qf = −1 for an electron.
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i g√
2
γµ

1−γ5
2

ψu,d

ψd,u

W±µ

(1.33)

Sometimes it is more useful to write these couplings in terms of the left and right projectors:

PL =
1−γ5
2

, PR =
1+γ5

2
(1.34)

we then get:

(g
f
V − g

f
Aγ5) = (g

f
LPL + g

f
RPR) = (g−γ− + g+γ+) (1.35)

Where : γ− = PL and γ+ = PR.

Higgs boson couplings

H

f

f

−i g2
mf
mW

(1.36)

H

W−ν

W+
µ

igmW gµν

(1.37)

H

Zν

Zµ
i g
cos(θW )mZgµν

(1.38)

1.2.2 QCD Feynman rules

In this part we list the rules used throughout this work for performing amplitude calculations in

color interactions. The gluon propagator looks similar to that of the photon’s with the addition of

the Kronecker delta coming from the color interaction.

−i
p2+iǫ

[gµν − (1− ξ)
pµpν
p2

]δabµ;aν;b
(1.39)
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The three-gluon vertex is given by the following formula :

gf abc [gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν]
ν;b

µ;a

ρ;c (1.40)

All momenta are taken to be incoming.

Remember that in this part we only mentioned Feynman rules used in chapter 3.



Chapter 2

Spinor Helicity Formalism

"The mere neglect,

of a mass effect

is quite suspect

and often not correct."

R.Gastmans

Scattering amplitudes are at the very center of high energy physics right at the intersection between

the SM and collider physics. Currently the main trends in collider physics are the ones specializing

in colliding Hadrons, this era started with the Tevatron. It is now residing at the Large Hadron

Collider (LHC) [19] at a collision energy of approximately 13 TeV designed to push the SM to its

limits and it has so far passed every test marvelously. However there are quite a few questions the

SM still fails to answer, in order to get closer to answering these questions higher energy collisions

are needed. The challenge here does not only lie in developing stronger colliders but also stronger

calculating techniques, if we are to collide hadrons at a higher energy scale then it is expected to

encounter multiple finite state particle processes. So here’s the rub, the standard go to method

when calculating scattering amplitudes is the trace evaluation method1 [20].

This method is extremely convenient and easy to handle when a process yields two particles

or even three. However the method gets increasingly difficult and somewhat uncomfortable, until

reaching a point at which this method is just unusable. This is mainly due to the fact that cal-

culating the square of an amplitude implies having to calculate the mix terms product, the result

1See appendix B

12
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eventually will be quite simple but the process is still a big mess. With these problems in mind, the

need for a more efficient formalism is urgent deal. Among the many promising formalisms, SHF is

the one that stands out the most [7]. The SHF is a relatively new method developed in the 1980s

[8] which eliminates the need to calculate mix terms, in other words it makes the square of a sum

equal to the sum of the squares.

In this chapter we will see how this formalism works. We will also showcase the standard

notation for this formalism and set the formulas we work with in both the massive and massless

cases.

2.1 Weyl Spinors

The first time P. Dirac wrote down his relativistic equation for spin half fermions, he had the

electron in mind, this paper was published in 1928 and was met with a mixture of reactions but

one thing is certain it was quite the breakthrough.

A year later H. Weyl showed that for a massless fermion a simpler equation with less degrees

of freedom would suffice; and as big a breakthrough the Dirac equation was, time showed that

Weyl’s work on massless fermion fields was a stepping stone for what was to come. We start from

the explicit Dirac equation and we take the m→ 0 limit to get :

i~
∂ψ

∂t
= −i~cαj∂jψ (2.1)

with the absence of mass, αj matrices are no longer required to be 4 dimensional and would satisfy

the equation with instead two dimensions only, thus we can just use Pauli matrices instead, as for

the left hand side of the equation the matrix σ0 = 1. By taking both members of the equation to

one side we find the Weyl equation :

σµp
µψ = 0 (2.2)

where

σ0 =















1 0

0 1















, σ1 =















0 1

1 0















, σ2 =















0 −i
i 0















, σ3 =















1 0

0 −1















(2.3)

2.1.1 Helicity, Chirality and Spin

Spin is a quantity which was first postulated by Ralph Kronig as an idea to W. Pauli and then

formally published, in late 1925, by S. Goudsmit and G. Uhlenbeck. Simply put, spin is the

intrinsic angular momentum of the particle, and like the name suggests it’s an intrinsic property

of a particle, meaning it can never change in value.

For a particle of momentum ~P and angular momentum ~J , helicity is defined as the projection
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of the intrinsic angular momentum ~S of the particle onto the momentum axis of said particle [18]

h =
2~S.~P

|~P |
(2.4)

the factor "2" is introduced so that the eigenvalues of h remain integer for any particle. For a

fermion obeying the Dirac equation -that is ~S = ~σ
2 - helicity can be written as :

h =
~σ.~P

|~P |
(2.5)

This operator clearly commutes with Dirac Hamiltonian. So this means that helicity is time in-

variant. Another interesting property is that helicity is invariant scalar under space rotations. As

for boosts though, helicity may well change sign for a particularly boosted observer.

The Dirac representation is a direct sum of the irreducible left and right unitary representations

of the Lorentz group:(12 ,0)⊕(0,
1
2 ). This makes a Dirac spinor a doublet of a left and a right handed

Weyl spinors:

ψ =















ψL

ψR















(2.6)

We define:

PL =
1−γ5
2

, PR =
1+γ5

2
(2.7)

as projection operators for the spinors. These projectors are said to be "left" and "right" handed

projection operators verifying P2
R = PR, P

2
L = PL and PR +PL = 1 and:

PR















ψL

ψR















=















0

ψR















, PL















ψL

ψR















=















ψL

0















(2.8)

Chirality is defined from a mathematical perspective as the eigenvalue of γ5 matrix given by :

γ5 = iγ0γ1γ2γ3 (2.9)

this matrix satisfies anti-commutation brackets with all Dirac matrices and γ†5 = γ5 along with

(γ5)
2 = 1 2. The γ5 matrix commutes only with products containing an even number of Dirac

matrices. So this means that γ5 will not commute with the Dirac Hamiltonian and consequently

for the massive case chirality is not time invariant.

If we look closer at helicity and chirality, we’d realize that these two are strangely related.

Helicity is conserved but not Lorentz invariant whereas chirality is Lorentz covariant but changes

in time and both of these short comings are due to the massive character of the particles. In the

2See appendix A.
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massless limit however, the difference between these two vanishes completely, helicity and chirality

become completely indistinguishable.

2.1.2 Notation for Weyl Spinors

We saw earlier that Weyl spinors belong to the irreducible representation of the Lorentz group, this

property makes these objects very useful in many contexts as they are somewhat seen as building

blocks for every field there is.

So now we’re going to construct a concise notation for products and contractions of Weyl

spinors, we will denote the left handed Weyl spinors with a normal Greek letter, while the right

handed ones will be a tilded Greek letter, that is :

• ψα represents the left handed spinors

• ψ̃α̇ represents the right handed spinors.

where α,α̇=1,2. We now introduce the 2× 2 totally anti symmetric tensor:

εαβ = −εαβ =














0 1

−1 0















(2.10)

One can always use the matrices to verify that εαβεβγ = δ
γ
α . This tensor is to be seen -function

wise- as the gµν of Weyl spinors, however we must be careful with raising and lowering indexes as

:

ψαχα = εαβεαγψβχ
γ = −εβαεαγψβχγ = −δβγψβχγ = −ψγχγ (2.11)

In addition to making manipulations much simpler, this tensor helps us define the Weyl inner

products:

• Left handed inner product is given by :

ψχ = ψαχα = ψαε
αβχβ = −χβεαβψα = χβε

βαψα = −χαψα = −χψ (2.12)

• Right handed inner product is given by :

ψ̃χ̃ = ψ̃α̇χ̃α̇ = −χ̃α̇ψ̃α̇ = −χ̃α̇ψ̃α̇ = −χ̃ψ̃ (2.13)

The next thing to introduce is the matrices intervening in the Weyl representation. The Dirac

γ matrices are replaced by Pauli matrices σµ = (1, −→σ ) and σ̄µ = (1,−−→σ ). Now that all of these

changes took place, let’s review the kinetic term of the Dirac lagrangian ψ = (λ,χ) is:

Lkin = iψ̄ /∂ψ = iλ†σ̄µ∂µλ+ iχ̃
†σµ∂µχ̃ (2.14)
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using the spinors with their component indexes, the lagrangian takes the form :

Lkin = iλ̃α̇ σ̄
µ
α̇α∂µλ

α + iχασ
µ
αα̇ ∂µχ̃

α̇ (2.15)

with λ̃ ≡ λ† and χ ≡ χ̃†.
Finally we write two very useful formulas :

gµν σ
µ
αα̇ σ

ν
ββ̇

= 2εαβεα̇β̇ (2.16)

εαβ εα̇β̇ σ
µββ̇ = σ̄

µ
α̇α (2.17)

2.2 Massless case

Originally, the SHF was introduced for the study of massless initial state particle processes [21],

where many multiple finite state particle amplitudes were derived. In this section we’re going to

illustrate the original SHF.

2.2.1 A simpler more convenient notation

Let p and q be two four-momentum, while λ and χ their corresponding spinors. We define the

notation:

|p〉α̇ = λ̃α̇ , 〈q|α̇ = χ̃α̇

|p]α = λα , [q|α = χα (2.18)

so next we rewrite the inner products in terms of helicity spinors:

〈pq〉 = 〈p|α̇ |q〉α̇ = λ̃α̇χ̃
α̇ = εα̇β̇λ̃α̇χ̃β̇ = −λ̃β̇χ̃β̇ (2.19)

(2.20)

[pq] = [p|α |q]α = λαχα = εαβλ
αχβ = −λβχβ

Here, the notation 〈pq〉 is simply an abbreviation for the contraction of dotted spinor indices, while

[pq] is for the undotted spinor indices. Whether the spinors are left or right handed is determined

by the shape of the brackets, angled brackets are left handed helicity spinors and squared brackets

are right handed helicity spinors, these spinor products satisfy :

〈pq〉 = −〈qp〉 , [pq] = −[qp] (2.21)
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they are anti-symmetric, on the other side there are no 〈pq]-brackets, because the indices cannot
contract directly to form a Lorentz scalar, and as a particular result:

〈pp〉 = [pp] = 0 (2.22)

and for real momenta we have:

[p|α = (|p〉α̇)∗ , 〈p|α̇ = (|p]α)∗

[pq]∗ = 〈qp〉 (2.23)

These formulas help us deduce many simplifications while calculating amplitudes.

2.2.2 Vectors

The SHF’s strength comes from the fact that spin-1 particles transform in the (12 ,
1
2 ) Lorentz rep-

resentation. This allows us to write the 4-momentum of any particle as bispinors

pµ→ pαα̇ = pµσ
µ
αα̇ =















−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3















(2.24)

more generally we have 4 relations :

pαα̇ = (σµ)αα̇pµ , p
α̇α = σ̄µα̇αpµ , p

µ =
1
2
σµα̇αpαα̇ , p

µ =
1
2
σ̄µαα̇p

α̇α (2.25)

which provide an easy conversion from the 4 vector representation to the (12 ,
1
2) Lorentz repre-

sentation and vice versa. In the case of lightlike momenta like massless gauge theories, we have

det(pα̇α) = 0, which is a very important constraint that is key to many simplifications to come.

It’s pretty obvious that the 2× 2 matrices can be written as an outer product :

pαα̇ = −λαλ̃α̇ , pα̇α = −λ̃α̇λα (2.26)

since the determinant is nil, the product of two massless vectors pαα̇ = −λαλ̃α̇ and
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qαα̇ = −χαχ̃α̇, gives :

p.q =
(1
2
σµα̇αpαα̇

)(1
2
σ
β̇β
µ qββ̇

)

=
1
4
σµα̇ασ

β̇β
µ pαα̇qββ̇

= −1
2
εα̇β̇εαβλαλ̃

α̇χβχ̃
β̇

= −1
2
〈pq〉[qp] (2.27)

in order to find this result we used (2.16). The same formula is derived via another method in

appendix C.

Eventually one realizes that spinor inner product are just square roots of factor lorentzian

inner products up to a phase factor. Thus we can just use the bracket notation for spinors related

to a particular momentum be it boson or fermion, that is :

〈pq〉 = i
√

2p.qeiφ , [qp] = i
√

2p.qe−iφ (2.28)

and the bispinors take a more intuitive form in Dirac notation :

pα̇α = −|p〉[p|, |pαα̇ = −|p]〈p| (2.29)

2.2.3 Dirac spinors

We can now proceed with the next step, which is expressing massless Dirac spinors in the Weyl

basis. Dirac spinors are four component spinors, so we can express them in terms of spinor helicity

notation as follows:

u−(p) = v+(p) =















|p]α
0















, ū+(p) = v̄−(p) =
(

[p|α 0
)

(2.30)

u+(p) = v−(p) =















0

|p〉α̇















, ū−(p) = v̄+(p) =
(

0 〈p|α̇
)

where the subscript ± indicates the helicity.
TheWeyl representation is useful when dealing with massless particles. We defined the gamma

matrices in the Weyl basis as follows:

γ
µ
αα̇ =















0 σ
µ
αα̇

σ̄µα̇α 0















(2.31)
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so we can write :

/p = pµγ
µ =















0 pµσ
µ
αα̇

pµσ̄
µα̇α 0















=















0 pαα̇

pα̇α 0















(2.32)

The Dirac 4-spinors satisfy a spin completeness relation, for m = 0 we have :

∑

s=±
us(p)ūs(p) =

∑

s=±
vs(p)v̄s(p) = −/p (2.33)

This relation can be expressed in SHF as follows:

− /p = |p〉[p|+ |p]〈p| (2.34)

For a process with n external particles, the momentum conservation
∑n
i=1 p

µ
i = 0 encoded in spinor

notation 3 is :
n

∑

q=1

〈pq〉[qp] = 0 (2.35)

The following relations are obtained by using Eq (2.16):

[pγµq] = 〈pγµq〉 = 0 (2.36)

and the Gorden identity

〈pγµq] = 〈pσµq] = [qσ̄µp〉 = [qγµp〉 (2.37)

Finally, Fierz rearrangement :

〈pγµq]〈rγµs] = 2〈pr〉[qs] . (2.38)

The difference between manipulating heavy Dirac spinors and Weyl spinors is clearly visible now.

The most important advantage of this method is that we do not need to find explicit representations

for the angle and square spinors; we can simply work abstractly with |p〉 and |p] and later relate

the results to the momentum vectors, these twistors are the pillars of what we call the "spinor

helicity formalism".

2.2.4 Polarization vectors

When dealing with scattering processes containing bosonic external lines, there’s always polariza-

tion vectors showing up in the amplitude formula. So the idea remains the same which is writing

the polarization vectors in terms of helicity spinor products.

3consider all particles outgoing.
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As seen in [21] the polarization vectors ǫ
µ
λ can be written in spinor helicity notation as follows:

ǫ
µ
+(k,q) = −

〈qγµk]√
2〈qk〉

, ǫµ−(k,q) = −
〈kγµq]√
2[qk]

(2.39)

In the two previous expressions, q denotes an arbitrary massless reference momentum. For every

polarization vector in an amplitude, an arbitrary massless reference momentum can be chosen,

and must not be aligned with kµ -that is q.k , 0-. The two polarization vectors are related by

complex conjugation:

(ǫ
µ
±)
∗ = −ǫµ∓ (2.40)

The square of the amplitudes we calculate must be in accord with results found by other meth-

ods, for this to be possible the new polarization vectors must satisfy a few properties such as

normalization and completeness relation. Below we’re going to demonstrate the completeness re-

lation, the rest of the properties will be mentioned in Appendix C.

The polarization vectors obey the standard completeness relation [22]

∑

λ=±
ǫ
µ
λ(k,q)ǫ

ν
λ(k,q)

∗ = ǫ
µ
+(k,q)ǫ

ν
+(k,q)

∗ + ǫµ−(k,q)ǫ
ν
−(k,q)

∗

= −〈qγ
µk]〈kγνq]

2〈qk〉〈qk〉∗ −
〈kγµq]〈qγνk]
2[qk][qk]∗

= −〈qγ
µk]〈kγνq]

2〈qk〉[kq] − 〈kγ
µq]〈qγνk]

2[qk]〈kq〉

=
1

4kq
(〈qγµk]〈kγνq] + 〈kγµq]〈qγνk])

=
1

4kq
[Tr(γµ 6kγνγ− 6q) + Tr(γµ 6qγνγ+ 6k)]

=
1

4kq
Tr(γµ 6qγν 6k) = −gµν +

qµkν + qνkµ

kq
(2.41)

where (2.27), (C.13) and (A.8) were used.

The slashed polarization vectors can also be written in terms of spinor products as follows:

/ǫ+(k,q) =

√
2

〈qk〉 (|k]〈q|+ |q〉[k|) , /ǫ−(k,q) =

√
2

[qk]
(|k〉[q|+ |q]〈k|) (2.42)
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2.3 Massive case

However if one wants to approach reality, then massive initial state processes must be taken into

account, especially if we are to study the EW SM and QCD with massive quarks. In this section

we’re going to build massive helicity spinors [23] and use them to derive the amplitudes the same

way we did in the massless case.

2.3.1 Light cone decomposition (LCD)

The idea that comes to mind is simple, since the SHF is built in a way to deal with massless fields

then we must build the massive fields from massless building blocks. So which fields can be used

as building blocks and are indeed massless ? the answer is Weyl spinors.

The technique used for the construction of the massive fields is called Light Cone Decomposi-

tion (LCD) [24] we start off by writing the lightlike momentum rµ as: (rµ = pµ −αqµ). Now rµ

being lightlike means by definition that r2 = 0, so we have:

0 = (pµ −αqµ)(pµ −αqµ) = p2 − 2αpµqµ

=⇒ α =
p2

2p.q
(2.43)

where q2 = 0 and p2 = −m2. Thus the massive 4-momentum is given by :

pµ = rµ +
p2qµ

2r.q
(2.44)

2.3.2 Massive Dirac spinors

Let’s consider the positive and negative energy solutions of the Dirac equation. Keep in mind we’re

writing these solutions in the form of 2 two-dimensional Weyl spinors, that is 4

us =















λa

χ̃ȧ















(2.45)

The Dirac equation is explicitly written as :

(/p +m)us(p) =















m pαα̇

pα̇α m





























λa

χ̃ȧ















= 0 (2.46)

4s = ±
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which yields the following system :

pαȧχ̃
ȧ +mλa = 0

pȧαλa +mχ̃
ȧ = 0 . (2.47)

Let’s apply the LCD to express the massive bispinors pαα̇ and pα̇α in terms of massless bispinors

(rαα̇ ,qαα̇):

pαα̇ = rαα̇ +ωqαα̇

pα̇α = r α̇α +ωqα̇α (2.48)

where ω = p2

2r.q = −
m2

2r.q and using (2.29) we get :

paȧ = −|r]a〈r |ȧ −ω|q]a〈q|ȧ
pȧa = −|r〉ȧ[r |a −ω|q〉ȧ[q|a (2.49)

inserting (2.49) in (2.47) we get :

(|r]a〈r |ȧ +ω|q]a〈q|ȧ)χ̃ȧ =mλa
(|r〉ȧ[r |a +ω|q〉ȧ[q|a)λa =mχ̃ȧ (2.50)

The solutions for the two last equations are as follows:

u+ =















m
[rq] |q]a
|r〉ȧ















, u− =















|r]a
m
〈rq〉 |q〉ȧ















(2.51)

with λa =
m
[rq] |q]a , χ̃

ȧ = |r〉ȧ for the positive energy solution u+ and λa = |r]a , χ̃ȧ = m
〈rq〉 |q〉ȧ for

the negative energy solution u− .

The equation (2.46) admits 2 solution, the same goes for anti-spinors v± and ū± and v̄±. So we

have a total of 8 solutions given by :

u−(p) = |r] +
m

〈rq〉 |q〉 , u+(p) =
m

[rq]
|q] + |r〉

v+(p) = |r]−
m

〈rq〉 |q〉 , v−(p) = −
m

[rq]
|q] + |r〉

ū−(p) =
m

[qr]
[q|+ 〈r | , ū+(p) = [r |+ m

〈qr〉〈q|

v̄+(p) = −
m

[qr]
[q|+ 〈r | , v̄−(p) = [r | − m

〈qr〉〈q| (2.52)
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2.3.3 Massive gauge bosons

The final brick in this particular wall is the massive polarization vectors, the only thing we need

to do now is to write them down in terms of spinor notation, and proceed to applications

ǫ
µ
+(k) =

〈qγµr]√
2〈rq〉

, ǫµ−(k) =
〈rγµq]√
2[qr]

(2.53)

and the longitudinal mode is given via LCD by

ǫ
µ
0(k) =

1
m
rµ +

m
2r.q

qµ (2.54)

encoding the last equation in spinor notation, the longitudinal mode becomes:

ǫ
µ
0(k) =

1
2m
〈rγµr] + m

4r.q
〈qγµq] (2.55)

with:

〈rγµr] = 2rµ , 〈qγµr] = 2qµ (2.56)



Chapter 3

Application

"It’s nevertheless

an endless mess

before one can asses

nature’s inventiveness."

R.Gastmans

Now that we saw how to construct all the physical quantities in terms of SHF, it is time to see

how to use the SHF to calculate the square of the amplitudes in a few examples.

In this chapter we’re going to start with a simple two body Higgs decay, we move on then

to treat Bhabha scattering, after that we study a case containing polarization vectors and the

example we chose is an electron-positron annihilation process. We then study the case of a slightly

complicated process occurring at the LHC, which is the Higgs production process. Finally we study

a case of gluon scattering process in QCD.

3.1 2-body Higgs decay

For the sake of keeping calculations simple we start off with a simple two-body Higgs decay

H(p1)

f (p3)

f (p2)

24
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Figure 3.1: Feynman diagram for h(p1)→ f (p2)f̄ (p3)

Where f and f̄ are a fermion and an anti fermion.

The amplitude for this process can be derived from Feynman rules and is given by :

Mλ2λ3 =
mf
υ
ūλ2(p2)vλ3(p3) (3.1)

where p21 = −m2
h, p

2
2 = p23 = −m2

f and λ is an index which represents the helicity of the particles.

In the massive case. We shall use simultaneous light cone decomposition (SLCD) to express the

massive momenta p2 and p3 in terms of massless momenta (r2,q2,r3, q3). The massive momenta

take the form: :

p2 = r2 −
m2
f

2r2q2
q2

p3 = r3 −
m3
f

2r3q3
q3 (3.2)

We can choose r2 = q3 and r3 = q2. We have one Feynman diagram with 2 fermionic external

lines, each particle has two helicity states λ = ±. It appears we would need to compute 4 amplitude

M+−, M−+, M−− and M++, but using SLCD to fix massless momenta reduces the number of non

vanishing amplitudes. In this case M−+ and M+− vanish. The nonzero amplitudes are M−− and

M++ while the first is linked to the second by complex conjugation, that is :

M++ =M∗−− (3.3)

So we have only one amplitude to compute:

M−− =
mf
υ
ū−(2)v−(3) =

mf
υ

(

mf
[q2q3]

[q2|+ 〈q3|
)(

−
mf

[q2q3]
|q3] + |q2〉

)

=
mf
υ















−
m2
f

[q2q3][q2q3]
[q2q3] + 〈q3q2〉















=
mf

υ[q2q3]
(sq2q3 −m

2
f ) (3.4)

as we stated in chapter 2 the 〈pq]-brackets vanish. And for the second non vanishing amplitude

we use complexe conjugation to obtain :

M++ =M∗−− =
mf

υ〈q3q2〉
(sq2q3 −m

2
f ) (3.5)
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Finally the averaged squared amplitude is :

〈|M |2〉 = 2|M−−|2 = 2
m2
f

υ2sq2q3
(sq2q3 −m

2
f )

2 (3.6)

The mathematica code below contains the code for calculating the amplitude for the two body

Higgs decay process via the SpinorsExtras package [25] which coincides with the result we ob-

tained.

1 << Spinors ‘

2 Needs [ " Sp inor sEx t r a s ‘ " ]

3 Dec l a r eLVec to r [ p1 , p2 , p3 ]

4 MP[p1 , p1 ] ^= −mH^2;
5 MP[p2 , p2 ] ^= −mf^2;

6 MP[p3 , p3 ] ^= −mf^2;

7 ( *MP[ r1 , r1 ]^=MP[ r2 , r2 ]^=0;* )

8 $Assumptions = mH > 0 && mf > 0

9 A[ { p3_ , +1} , { p2_ , −1}] := −mf / v Spba [SpM[p3 , 1] , SpM[p2 , +1]]

10 A[ { p3_ , −1} , { p2_ , +1}] := −mf / v Spab [SpM[p3 , 1] , SpM[p2 , +1]]

11 A[ { p3_ , −1} , { p2_ , −1}] := −mf / v Spaa [SpM[p3 , 1] , SpM[p2 , +1]]

12 A[ { p3_ , +1} , { p2_ , +1}] := −mf / v Spbb [SpM[p3 , 1] , SpM[p2 , +1]]

13 d i a g s = {A[ { p3 , +1} , { p2 , −1}] , A[ { p3 , −1} , { p2 , +1}] ,

14 A[ { p3 , −1} , { p2 , −1}] , A[ { p3 , +1} , { p2 , +1}] }

15 diagsLCD1 = LightConeDecompose [ d iags , p2 ] / / Re f in e

16 subs = { SpAssoc [ p2 ] −> SpRef [ p3 ] , SpAssoc [ p3 ] −> SpRef [ p2 ] }

17 diagsLCD = % / . subs / / S imp l i f y

18 subs2 = { SpRef [ p3 ] −> Sp [3 ] , SpRef [ p2 ] −> Sp [ 2 ] }

19 f i n = diagsLCD / . subs2 / / S imp l i f y / / Toge ther / / ConvertSpinorsToS

This code was inserted in order to provide an example on how to use the SpinorsExtras extension

of S@M package [26] in order to calculate scattering amplitudes.

3.2 Bhabha scattering

It’s the process e−e+→ e−e+ which yields two diagrams [27]

p1

p2

p3

p4

e−

e+

e−

e+

e−

e+

e−

e+
−
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Figure 3.2: Feynman diagrams for Bhabha scattering

corresponding to the amplitudes :

M1(λ1λ2;λ3λ4) =
e2

t
ūλ3(p3)γ

µuλ1(p1)v̄λ2(p2)γµvλ4(p4)

M2(λ1λ2;λ3λ4) = −
e2

s
v̄λ2(p2)γ

µuλ1(p1)ūλ3(p3)γµvλ4(p4) (3.7)

where s = −(p1 + p2)2 and t = (p1 − p3)2 are the Mandelstam invariants and the λi represent

the fermion helicities.

We have 2 Feynman diagrams each with 4 external lines, each particle has two helicity states

λ = ±. The first thing to notice is that the amplitude is zero if two external fermion lines that meet

at a vertex have the same helicity. This is because we get zero if we sandwich the product of an odd

number of gammamatrices between two twistors of the same helicity, explicitly 〈pγµq〉 = [pγµq] =

0. We will get a nonzero result for the tree-level amplitude only if two of the helicities are positive,

and two are negative. This means from 16 possible helicity amplitudesM(λ1λ2;λ3λ4) only 6 give

a non zero tree level amplitude : M(++;++),M(+−;+−),M(+−;−+),M(−−;−−),M(−+,−+),M(−+;+−).
Moreover, the first three are linked to the last three by complex conjugation, thus :

M(++;++)∗ =M(−−;−−), M(+−;+−)∗ =M(−+,−+), M(+−;−+)∗ =M(−+;+−)

So we have only three amplitudes to compute.

We use SLCD to express the massive momenta p1,p2,p3 and p4 in terms of massless momenta

ri and qi (i = 1, ...,4) :

pi = ri −
m2

2riqi
qi (3.8)

with p2i = −m2 (i = 1, ...,4) and r2i = q2i = 0. Using SLCD to fix the massless momenta will be

crucial to reduce the number of helicity amplitudes, let us initiate withM1 and set:

r1 = q3 r3 = q1 r2 = q4 r4 = q2

So the nonzero helicity amplitudes forM1 areM(++;++),M(+−;+−),M(−−;−−) quadand M(−+,−+)

M1(++,++) =
e2

t
ū+(p3)γ

µu+(p1)v̄+(p2)γµv+(p4)

=
e2

t

[(

[r3|+
m

〈q3r3〉
〈q3|

)

γµ
(

(
m

[r1q1]
|q1] + |r1〉

)(

− m

[q2r2]
[q2|+ 〈r2|

)

γµ

(

|r4]−
m

〈r4q4〉
|q4〉

)]

=
e2

t

[(

[q1|+
m

〈q3q1〉
〈q3|

)

γµ
(

m

[q3q1]
|q1] + |q3〉

)(

− m

[q2q4]
[q2|+ 〈q4|

)

γµ

(

|q2]−
m

〈q2q4〉
|q4〉

)]
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=
e2

t

[(

[q1γ
µq3〉+

m2

〈q3q1〉[q3q1]
〈q3γµq1]

)(

m2

[q2q4]〈q2q4〉
[q2γµq4〉+ 〈q4γµq2]

)]

=
e2

t
〈q3γµq1]〈q4γµq2]

[

1− m
2

s24
+

m4

s13s24
− m

2

s13

]

(3.9)

using Fierz rearrangement we find :

M1(++,++) = 2
e2

t
〈q3q4〉[q1q2]

[

1+
m4 − (s13 + s24)m2

s13s24

]

(3.10)

Using relations (2.36), (2.38), we proceed in the same way and we get :

M1(+−;+−) = 2
e2

t
〈q3q2〉[q1q4]

[

1+
m4 − (s13 + s24)m2

s13s24

]

(3.11)

M1(−+;−+) = 2
e2

t
〈q1q4〉[q3q2]

[

1+
m4 − (s13 + s24)m2

s13s24

]

(3.12)

M1(−−;−−) = 2
e2

t
〈q1q2〉[q3q4]

[

1+
m4 − (s13 + s24)m2

s13s24

]

(3.13)

The SLCD procedure forM2 diagram is set by imposing :

r1 = q2 r3 = q4 r2 = q1 r4 = q3

A similar development to the one above easily yields

M2(+−;+−) = −
e2

s
v̄−(p2)γ

µu+(p1)ū+(p3)γµv−(p4)

= −2e
2

s
〈q2q3〉[q1q4]

[

1+
m4 + (s12 + s34)m

2

s12s34

]

(3.14)

M2(−+;−+) = −2
e2

s
〈q1q4〉[q2q3]

[

1+
m4 + (s12 + s34)m

2

s12s34

]

(3.15)

M2(+−;−+) = −2
e2

s
〈q2q4〉[q1q3]

[

1+
m4 + (s12 + s34)m

2

s12s34

]

(3.16)

M2(−+;+−) = −2
e2

s
〈q1q3〉[q2q4]

[

1+
m4 + (s12 + s34)m

2

s12s34

]

(3.17)

taking into account m→ 0 and q→ p we get :

M(+−;+−) =M1(+−;+−) +M2(+−,+−)

= 2e2
[

〈32〉[14]
t

− 〈23〉[14]
s

]

(3.18)
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M(++;++) =M1(++;++) = 2
e2

t
〈34〉[12] (3.19)

M(+−;−+) =M2(+−;−+) = −2
e2

s
〈13〉[24] (3.20)

The rest of the amplitudes is obtained by complex conjugation :

M(−+;−+) =M(+−;+−)∗

M(−−;−−) =M(++;++)∗

M(−+;+−) =M(+−;−+)∗ (3.21)

The sum of the squares of the non zero amplitudes yields :

〈|M |2〉 = 1
4

[

2|M(+−;+−)|2 +2|M(++;++)|2 +2|M(+−;−+)|2
]

= 2e4
[s23s14 + s12s34

t2
+
s23s14 + s24s13

s2
+
s23s14
st

]

inducing Mandelstam variables :

s23 = −2p2p3 = s14 = −u = t + s, s12 = −2p1p2 = s34 = s, s13 = −2p1p3 = s24 = t

Our final result found is given by the following formula :

〈|M |2〉 = 2e4
[

(t + s)2 + s2

t2
+
(t + s)2 + t2

s2
+2

(t + s)2

st

]

(3.22)

We will re-derive this result in Appendix B by using the trace evaluation method.

3.3 The process e−e+→ γγ

In the previous section we only considered gauge bosons in the internal lines. What happens if we

have gauge bosons in the external lines? In this section we will show how to use the SHF in the

case of amplitudes containing external line gauge bosons :

p1

p2

k1

k2

p1

p2

k1

k2

Figure 3.3: Feynman diagrams for e−e+→ γγ
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In this case the corresponding amplitudes are given by:

M1 =
e2

t
v̄(p2)ǫ

µ(k2)γµ( 6p1 − 6k1)ǫµ(k1)γµu(p1)

(3.23)

M2 =
e2

u
v̄(p2)ǫ

µ(k1)γµ( 6p1 − 6k2)ǫµ(k2)γµu(p1)

Respectivly forM1 we choose q1 = k1 and q2 = k2 and forM2 the reversed choice, that is, q1 = k2
and q2 = k1

We notice from the beginning that there is a simplification to be made, the ǫµ(ki ,pi ).pi (i, j =

1;2) vanishes because of our choice of reference vectors. Using the compact notation s(pi ,pj ) =

〈pipj〉, the non vanishing helicity amplitudes are as follows :

M1(++;−−) =
e2

t

(

− m

[k2r2]
[k2|+ 〈r2|

)( √
2

[p2k2]
(|k2〉[p2|+ |p2]〈k2|)

)

(|k1〉[k1|+ |k1]〈k1|)
( √

2
[p1k1]

(|k1〉[p1|+ |p1]〈k1|)
)(

m

[r1k1]
|k1] + |r1〉

)

= −2me
2

t

[k2p2]〈k2k1〉[k1p1]〈k1r1〉
[k2r2][p2k2][p1k1]

= −2me
2

t
〈k2k1〉〈k1r1〉

[k2r2]

M(++,−−) =M1(++,−−) +M2(++,−−) = −2me2
[

s(k2,k1)s(k1r1)
s∗(r2,k2)t

+
s(k1,k2)s(k2r2)
s∗(r1,k1)u

]

M(+−;−−) =M1(+−,−−) +M2(+−,−−) = −2e2s∗(p2, r2)s(k1,k2)
[

s(k2, r1)
s∗(k1,p2)u

− s(k1, r1)
s∗(k2,p2)t

]

M(+−;−+) =M1(+−;−+) = −2
e2

t

s∗(k2, r2)s(p2,k1)s(k1, r1)

s(p2,k2)

M(+−;+−) =M2(+−;+−) = 2
e2

u

s∗(k1, r1)s(p2,k2)s
∗(p1,k2)s(k2, r1)

s(p2,k1)s∗(k1,p1)
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As usual we use the advantage that the helicity amplitudes are complexe conjugate of each other :

M(−−;++) =M(++,−−)∗ , M(−+;++) =M(+−,−−)∗

M(−+;+−) =M(+−,−+)∗ , M(−+;−+) =M(+−,+−)∗ (3.24)

by taking into account the limit m→ 0 and ri → pi with i = 1,2

M(+−,−+) = 2e2
s(p2,k1)s

∗(k2,p2)
t

, M(−+,+−) = 2e2
s(p2,k2)s

∗(k1,p2)
t

M(+−,+−) = 2e2
s(p2,k2)s

∗(k1,p2)

u
, M(−+,−+) = 2e2

s(p2,k1)s
∗(k2,p2)

u
(3.25)

the sum over the square of the amplitudes yields :

∑

λi

|M(λ1λ2;λ3λ4)|2 = 2|M(+−;−+)|2 +2|M(+−;+−)|2

= 2
[

4e2
sp2k1sp2k2

t2
+4e2

sp2k2sp2k1
u2

]

= 8e2
u2 + t2

ut
(3.26)

with:

sp2k2 = −2p2k2 = −2p1k1 = t , sp2k1 = −2p2k1 = −2p1k2 = u (3.27)

3.4 The Higgs production process

Among the many processes for the Higgs productions we’re going to study the example e−(p1)e+(p2)→
Z(q1)Z(q2)H(k). We start by noticing that, in the limit of neglecting the electron mass we have

the following Feynman four diagrams for this process at tree level [28] :

p1

p2

q1

q2

p1

p2

q1

q2
1) 2)

k k

p1

p2

q1

q2

p1

p2

q1

q2
3)

k
k

4)
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Figure 3.4: Tree level Feynman diagrams for e−e+→ ZZH

These diagrams correspond to the following amplitudes:

Mi =

(

g

cos(θW )

)

v̄(p2)Γiu(p1) (3.28)

where θW is Weinberg’s angle and :

Γ1 = ǫµ(q1)ǫν (q2)γ
ν(gV − gAγ5)(−/p2 + /q2)γ

µ(gV − gAγ5)
1

De(1)Dz(1)

Γ2 = ǫµ(q1)ǫν (q2)γ
ν(gV − gAγ5)(/p1 − /q1)γ

µ(gV − gAγ5)
1

De(2)Dz(2)

Γ3 = ǫµ(q1)ǫµ(q2)γ
µ(gV − gAγ5)(/p1 − /q2)γ

ν(gV − gAγ5)
1

De(3)Dz(3)

Γ4 = ǫµ(q1)ǫµ(q2)γ
µ(gV − gAγ5)(−/p2 + /q1)γ

ν(gV − gAγ5)
1

De(4)Dz(4)
(3.29)

where the denominators of the propagators are :

De(1) = (−p2 + q2)2 ; De(2) = (p1 − q1)2 (3.30)

De(3) = (p1 − q2)2 ; De(4) = (−p2 + q1)2 (3.31)

DZ (1) =DZ (3) = (q1 + k)
2 −M2

Z + iMZΓZ (3.32)

DZ (2) =DZ (4) = (q2 + k)
2 −MZ + iM

2
ZΓZ (3.33)

while gV and gA are the vectorial and axial coupling constant respectively.

In order to avoid carrying the propagators which do not interfere in this computation we re-

place them by the constant Ci :

M1(λ1,λ2;σ1,σ2) = C1v̄λ2(p2)/ǫσ2(q2)(g−γ− + g+γ+)(−/p2 + /q2)/ǫσ1(q1)(g−γ− + g+γ+)uλ1(p1)

M2(λ1,λ2;σ1,σ2) = C2v̄λ2(p2)/ǫσ2(q2)(g−γ− + g+γ+)(/p1 − /q1)/ǫσ1(q1)(g−γ− + g+γ+)uλ1(p1)

M3(λ1,λ2;σ1,σ2) = C3v̄λ2(p2)/ǫσ1(q1)(g−γ− + g+γ+)(/p1 − /q2)/ǫσ2(q2)(g−γ− + g+γ+)uλ1(p1)

M4(λ1,λ2;σ1,σ2) = C4v̄λ2(p2)/ǫσ1(q1)(g−γ− + g+γ+)(−/p2 + /q1)/ǫσ2(q2)(g−γ− + g+γ+)uλ1(p1)
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with :

Ci =

(

g

cos(θW )

)

MZ

De(i)Dz(i)
, (i = 1,2,3,4)

(3.34)

g− = gA + gV , g+ = gA − gV .

We introduced in chapter 2 the powerful spinor helicity notation for massive gauge bosons; so

we use LCD to express massive momenta q1 and q2 in terms of massless momenta. The massive

momenta take the form:

q1 = r1 −
M2
Z

2r1.w1
w1 , q2 = r2 −

M2
Z

2r2.w2
w2 (3.35)

We choose forM1 r1 = p1 and r2 = p2, so the polarization vectors take the form :

/ǫ+(qj ) =

√
2

〈wjpj〉
{

|pj ]〈wj |+ |wj〉[pj |
}

, /ǫ−(qj ) =

√
2

[pjwj ]

{

|wj ]〈pj |+ |pj〉[wj |
}

/ǫ0(qj ) =
1
Mz

/pj +
Mz

2rj .wj
/wj , (j = 1,2) . (3.36)

Note that for this special example:

[p2|/ǫ+(q2) = 0 , 〈p2|/ǫ−(q2) = 0

/ǫ+(q1)|p1] = 0 , /ǫ−(q1)|p1〉 = 0

γ+|p〉 = |p〉 , 〈p|γ+ = 〈p| , γ−|p] = |p] , [p|γ− = [p| (3.37)

Using SLCD to fix the massless momenta will be crucial to reduce forM1 the number of Helicity

Amplitudes (HAs), to only 4 non vanishing HAs. There areM1(−+,−+),M1(+−,+−),M1(−+,0+)
andM1(+−,0−)

M1(−+,−+) = 2C1g
2
−M

2
Z
〈p1w1〉
〈p2w2〉

, M1(−+,0+) =
C1g

2
−M

3
Z√

2

〈w2w1〉
〈p1w1〉〈p2w2〉

M1(+−,+−) = 2C1g
2
+M

2
Z
[p1w1]

[p2w2]
, M1(+−,0−) =

C1g
2
+M

3
Z√

2

[w1w2]
[w1p1][w2p2]

(3.38)

the same choices taken inM1 are repeated forM2 while forM3 and M4 we take r1 = p2, r2 = p1,
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so the only non vanishing amplitudes are :

M2(−+,−+) = 2C2g
2
−M

2
Z
[p2w1]

[p1w1]
, M2(+−,+0) = −

C2g
2
+M

3
Z√

2

〈w1w2〉
〈p1w1〉〈p2w2〉

M2(+−,+−) = 2C2g
2
+M

2
Z
〈p2w1〉
〈p1w1〉

, M2(−+,−0) = −
C2g

2
−M

3
Z√

2

[w2w1]
[w1p1][w2p2]

(3.39)

and

M3(+−,−+) = 2C3g
2
+M

2
Z
〈p2w2〉[w2p2]
〈p2w1〉[w1p2]

, M3(−+,0−) = −
C3g

2
−M

3
Z√

2

[w1w2]
[w1p2][w2p1]

M3(−+,+−) = 2C3g
2
−M

2
Z
[p2w2]〈w2p2〉
[p2w1]〈w1p2〉

, M3(+−,0+) = −
C3g

2
+M

3
Z√

2

〈w2w1〉
〈p2w1〉〈p1w2〉

(3.40)

thus

M4(+−,−+) = −2C4g
2
+M

2
Z
[p1w1]
[p2w1]

, M4(−+,+0) =
C4g

2
−M

3
Z√

2

〈w2w1〉
〈p1w2〉〈w1p2〉

M4(−+,+−) = −2C4g
2
−M

2
Z
〈p1w1〉
〈p2w1〉

, M4(+−,−0) =
C4g

2
+M

3
Z√

2

[w1w2]
[w2p1][p2w1]

(3.41)

Finally the square of the amplitudes

〈|M |2〉 = 1
4

∑

λ1λ2

∑

σ1σ2

|M(λ1λ2;σ1σ2)|2

=
1
4
(4|M(+−;+−)|2 +4|M(+−;−+)|2 +2|M(−+;0+)|2

+2|M(−+;−0)|2 +2|M(−+;0−)|2 +2|M(−+;+0)|2) (3.42)

3.5 Two gluon final state scattering process

In this section we study the example of gluon scattering, the Feynman diagrams and the corre-

sponding amplitudes [18] for gg→ gg are as follows:

ǫ2;b

ǫ1;a

ǫ3;c

ǫ4;d

iMs = = −ig
2
s
s f abef cde

[

(ǫ1.ǫ2)(p1 − p2)µ +2ǫ
µ
2(p2.ǫ1)− 2ǫ

µ
1(p1.ǫ2)

]

×
[

(ǫ3.ǫ4)(p3 − p4)µ +2ǫ
µ
4(p4.ǫ3)− 2ǫ

µ
3(p3.ǫ4)

]
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ǫ2;b

ǫ1;a

ǫ3;c

ǫ4;d

iMt = = −ig
2
s
s f adef cbe

[

(ǫ1.ǫ4)(p1 − p4)µ +2ǫ
µ
4(p4.ǫ1)− 2ǫ

µ
1(p1.ǫ4)

]

×
[

(ǫ3.ǫ2)(p3 − p2)µ +2ǫ
µ
2(p2.ǫ3)− 2ǫ

µ
3(p3.ǫ2)

]

ǫ2;b

ǫ1;a

ǫ3;c

ǫ4;d

iMu = = −ig
2
s
s f acef bde

[

(ǫ1.ǫ3)(p1 − p3)µ +2ǫ
µ
3(p3.ǫ1)− 2ǫ

µ
1(p1.ǫ3)

]

×
[

(ǫ2.ǫ4)(p2 − p4)µ +2ǫ
µ
4(p4.ǫ2)− 2ǫ

µ
2(p2.ǫ4)

]

where f abc are the SU (3) gauge symmetry structure constant. Recall that the polarizations are

orthogonal ǫ±i .ǫ
±
j = 0. However, every term in the s,u and t channel amplitudes has some ǫi .ǫj

factor. Therefore Mα(++;++) = Mα(−−;−−) = 0 1, we conclude that the tree-level amplitudes

M(++;++) andM(−−;−−) scattering vanish identically.

This result is actually quite general: Amplitude with all positive (or all negative) helicities

vanish at tree level in QCD, for any number of legs.

What about having one negative helicity ? Call the momentum of the negative helicity gluon

p
µ
1 . Now choose the reference vector for the p

µ
i,1 polarization to be p1 that is ǫµ(pi,1,p1). In this

case, we still have ǫ±i .ǫ
±
j = 0 for i , j, but we also now have :

ǫ
µ
+(pi,1,p1)ǫ−µ(p1, r) =

〈p1γµpi]〈p1γµr]
2〈p1pi〉[rp1]

=
〈p1p1〉[pir]
〈p1pi〉[rp1]

= 0 (3.43)

So every possible polarization contraction still must vanish. This work for any number of gluon

greater than three.

Summarizing: Amplitudes with all but one positive (or all but one negative) helicity

vanish at tree-level for any number of external legs greater than three. No vanishing

amplitude will have at least two negative and two positive (in general 2 negative and

(n − 2) positive) helicities 2. Those with exactly two negative or exactly (n − 2) positive
helicities are called maximum helicity violating (MHV) amplitudes [18, 29].

Now let us work out the square of the amplitude for gg → gg , we already know that

only the MHV amplitude are non-vanishing. We will actually only have to compute one

1α denotes the different channels of the 2 gluon scattering .
2n represent the number of external particles.
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MHV amplitudeM(−−,++), with other related by crossing symmetry.

We take all momenta incoming, so we have:

s = −(p1 + p2)2 , t = −(p1 + p4)2 , u = −(p1 + p3)2 .

We choose the reference momentum for ǫµ(p1, r1) and ǫ
µ(p2, r2) to be r1 = r2 = p4 and the

reference momentum for ǫµ(p3, r3) and ǫ
µ(p4, r4) to be p1. Then the only polarization con-

traction that does not vanish is ǫ(p2,p4).ǫ(p3,p1), and ǫ(pi , r).pi = 0. All of these reduce

vastly the calculation.

Let startwith s-channel, for the (−−;++) helicity. Only the contraction ǫ(p2,p4).ǫ(p3,p1)

survive, so there is only one term:

Ms(−−;++) =
4g2s
s
f abef cde [ǫ−(p2,p4).ǫ+(p3,p1)] [p2.ǫ−(p1,p4)] [p3.ǫ+(p4,p1)] . (3.44)

To proceed, we use the spinor helicity notation of polarization vectors which was intro-

duced in chapter 2. The products like [ǫ−(p2,p4).ǫ+(p3,p1)] are encoded in spinor notation

as follows

ǫ−(p2,p4).ǫ+(p3,p1) =
〈2γµ4]〈1γµ3]
2〈13〉[42] =

〈21〉[43]
〈13〉[42] . (3.45)

For p2.ǫ−(p1,p4)we have3 :

p2ǫ−(p1,p4) = −
〈2γµ2]〈1γµ4]

2
√
2[41]

=
〈21〉[42]√

2[41]
. (3.46)

Finally, the product p3.ǫ+(p4,p1) becomes:

p3.ǫ+(p4,p1) = −
〈3γµ3]〈1γµ4]

2
√
2〈14〉

=
[43]〈31〉√
2〈14〉

. (3.47)

By inserting (3.45),(3.46) and (3.47) in (3.44) we get :

Ms(−−;++) = 2g2s f
abef cde

〈21〉[34]2
[21][14]〈14〉 . (3.48)

Now we put every thing in terms of 〈.〉 by using the momentum conservation, we have:

(p1 + p2)
2 = (p3 + p4)

2⇒ 〈12〉[21]〈34〉[43] = 1

(p1 + p4)
2 = (p2 + p3)

2⇒ 〈14〉[41]〈23〉[32] = 1 (3.49)

3Recall that 2p
µ
i = 〈piγµpi ] = 〈iγµi].
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and we know that
∑4
k=1〈ik〉[kj] = 0, with (i = 1, j = 3) that:

〈12〉[23] + 〈14〉[43] = 0⇒ 〈12〉[23]〈14〉[43] = −1 . (3.50)

Put these two last relation in (3.5) we can simplify the result as

Ms(−−;++) = −2g2s f abef cde
(

〈21〉[34]2
[21][14]〈14〉

)(

〈12〉[21]
〈34〉[43]

)(

〈14〉[41]
〈23〉[32]

)(

〈12〉[23]
〈14〉[43]

)

= 2g2s f
abef cde

〈12〉3
〈34〉〈23〉〈14〉 . (3.51)

Next, we multiply the numerator and denominator by 〈12〉 to get :

Ms(−−;++) = −2g2s f abef cde
〈12〉4

〈12〉〈34〉〈23〉〈14〉 (3.52)

This is our final and simplest expression forMs(−−;++) .
Then, we move on to the t-channel diagram, which is 2↔ 4 and b↔ d from the s-channel.

With our polarization choice, ǫ(p1,p4).p4 = ǫ(p4,p1).p1 = 0 and therefore :

Mt(−−;++) = 0 (3.53)

Finally, consider the u-channel amplitude, which is 2 ↔ 3, b ↔ c from the s-channel. This

does not vanish but gives:

Mu(−−;++) =
4g2s
u
f acef bde [ǫ+(p3,p1).ǫ−(p2,p4)] [p3.ǫ−(p1,p4)] [p2.ǫ+(p4,p1)]

= 2g2s f
acef bde

1
〈13〉[31]

(

〈21〉[34]
〈13〉[24]

)(

〈13〉[34]
[14]

)(

〈21〉[42]
〈14〉

)

(3.54)

After some simplifications, the final result is :

Mu(−−;++) = −2g2s f acef bde
〈21〉4

〈14〉〈42〉〈23〉〈31〉 (3.55)

so, the total matrix elementM =Ms +Mt +Mu is

M(−−;++) = −2g2s
[

f abef cde
〈12〉4

〈12〉〈34〉〈23〉〈14〉 + f
acef bde

〈21〉4
〈14〉〈42〉〈23〉〈31〉

]

(3.56)
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to get the square of the HA’s, we have to perform the color sums[18], we have :

(f abef cde)2 =N2(N2 − 1) (3.57)

(f abef cde)(f acef bde) =
1
2
N2(N2 − 1) (3.58)

and

∣

∣

∣

∣

∣

∣

〈12〉4
〈12〉〈34〉〈23〉〈14〉

∣

∣

∣

∣

∣

∣

2

=
s2

t2
,

∣

∣

∣

∣

∣

∣

〈21〉4
〈14〉〈42〉〈23〉〈31〉

∣

∣

∣

∣

∣

∣

2

=
s4

t2u2
(3.59)

[12]4

[12][34][23][14]
〈21〉4

〈14〉〈42〉〈23〉〈31〉 =
s3

t2u
(3.60)

so that :

∑

colors

|M(−−;++)|2 = 4g4s N
2(N2 − 1)s4

[ 1

t2s2
+

1

t2u2
+

1

u2s2

]

(3.61)

With this answer, it is not hard to compute the full |M |2. Since only the MHV amplitude do not

vanish, they’re all given by some crossing symmetry of this result. For exampleM(−+;−+) is given
by M(−−;++) after interchanging s with u. There are six types of two positive and two negative

helicities (−−,++) and (++,−−) yield a factor s4, (−+;−+) and (+−;+−) yield t4, (−+;+−) and
(+−;−+) yield u4. The helicity sums is therefore :

∑

colors,helicities

|M |2 = 4g4s N
2(N2 − 1)(s4 + t4 +u4)

[ 1

t2s2
+

1

t2u2
+

1

u2s2

]

(3.62)



Conclusion

In this thesis, we were interested in SHF for calculating scattering amplitudes in the SM of ele-

mentary particles in both electroweak and QCD sectors.

We studied the structure of SHF where we defined the main notions and tools which the for-

malism is built upon. We also constructed the physical quantities appearing in scattering ampli-

tudes such as 4-vectors, Dirac spinors and polarization vectors in the massless case by using Weyl

spinors. We then generalized the formalism to deal with massive particles with the intermediate

of LCD and SLCD techniques.

Arriving at the 3rd chapter we successfully used SHF to calculate squares of amplitudes for a

variety of examples such as Bhabha scattering, pair annihilation process and Higgs disintegration.

However the crown jewel of our work was calculating the scattering amplitudes for the Higgs

production process where we managed to reduce the number of amplitudes we had to calculate

from 144 to only 16 via an effective choice of reference vectors. This result is a clear proof of the

strength of this formalism.

The main challenge we encountered throughout this thesis was getting familiar with the many

conventions existing in the literature of this formalism. We had to manipulate our way through

different choices of metrics and notations to reconcile a few of the existing conventions. We were

able to transit from one convention to another and obtain the same result of the squared amplitude.

The next challenge was implementing the formalism in Mathematica as we had a hard time

finding an example for calculating scattering amplitudes. So we created a simple example which

shows how to use the SpinorsExtras package to obtain the scattering amplitude in terms of massive

spinor products.

The main objectives for future reference is reconciling the FeynCalc and S@M packages. Achiev-

ing this objective would be a huge exploit for the high energy physics community since it updates

the powerful FeynCalc package to use the SHF method. Further development of the SHF to extend

it for the study of complex momenta is also an objective we intend to achieve. Of course eventually

the biggest challenge will be using the SHF to tackle the problem at the frontiers of particle physics

namely radiative corrections and loop calculations.
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Appendix A

Dirac matrices

The conventions in this thesis have been therefore taken from Srednicki’s QFT text book which is

the "mostly plus" metric [21]

gµν = (−1,1,1,1) (A.1)

It is useful to note that :

gµνg
µν = 4 (A.2)

The chirality matrix defined as :

γ5 = iγ
0γ1γ2γ3 (A.3)

obeys :

γ2
5 = 1 ,

{

γ5,γµ
}

= 0 (A.4)

Recall the fundamental anticommutator relation for the Dirac matrices :

{γµ,γν } = γµγν +γνγµ = −2gµν (A.5)

Some traces over the Dirac matrices and chirality matrix are:

Tr(1) = 4, T r(γ5) = T r(γ5γ
µγν) = 0 (A.6)

T r(γµγν) = −4gµν , T r(γ5γ
µγνγργσ ) = −4iεµνρσ (A.7)

T r(γµγνγργσ ) = 4(gµνgρσ − gµρgνσ + gµσgν) (A.8)

T r(odd number of Dirac matrices) = 0 (A.9)

where εµνρσ is the Levi-Civita tensor, verifying:

ε0123 = ε3210 = 1 , ε0123 = −ε1023 (A.10)
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Trace method

Now that we have used SHF to reach the square of the amplitude for some processes we’re going to

go over the trace evaluation method for the Bhabha scattering process. The square of the amplitude

in the trace method is the average over all initial spin configurations i, and sum over all final spin

configurations f:

〈|M |2〉 ≡ average over initial spins, sum over f inal spins. (B.1)

For Bhabha scattering, we have

M1 =
e2

t
ū(p3)γ

µu(p1)v̄(p2)γµv(p4)

M2 = −
e2

s
v̄(p2)γ

µu(p1)ū(p3)γµv(p4) (B.2)

Summing over final states and averaging over initial states:

1
4

∑

spin

|M |2 = 1
4

∑

spin

|M1|2 + |M2|2 +M1M
†
2 +M2M

†
1 (B.3)

To calculate |M |2 we need to find the complex conjugate of the amplitude. To get this, we first

recall that:

γ†µγ0 = γ0γµ and γ†0 = γ0 (B.4)

So

(

ū(pa)γµu(pb)
)†

=
(

u(pa)
†γ0γµu(pb)

)†
= u(pb)

†γ†µγ
†
0u(pa)

= u(pb)
†γ†µγ0u(pa) = ū(pb)γµu(pa) (B.5)
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in this part we’re only going to compute |M1|2, so we can writeM†1 as :

M†1 =
e2

t
v̄(p4)γνv(p2)ū(p1)γ

νu(p3) (B.6)

and therefore :

|M1|2 =
e4

t2
[ū(p3)γ

µu(p1)] [v̄(p2)γµv(p4)] [v̄(p4)γνv(p2)] [ū(p1)γ
νu(p3)] (B.7)

The reason we wrote the square of the amplitude this way is to show that it is only a product of the

numbers written in brackets. Thus |M1|2 could also be written by permutation of the brackets :

|M1|2 =
e4

t2
[ū(p3)γ

µu(p1)] [ū(p1)γ
νu(p3)] [v̄(p2)γµv(p4)] [v̄(p4)γνv(p2)] (B.8)

which shows that |M1|2 is the contraction of the two tensors, one depending only on the initial

states, and other depending only on the final state.

The spin sum can be performed with Dirac trace, we are ready now to sum over the spin of

particles, using the completeness relation1 :

∑

spin

usα(p)ū
s
β(p) =

∑

spin

ūsβ(p)u
s
α(p) = −/pαβ (B.9)

using these relations :

∑

s

∑

s′

[

ūs(p3)γ
µus

′
(p1)

] [

ūs
′
(p1)γ

νus(p3)
]

=
∑

s

ūsβ(p3)γ
µ
βρ(−/p1)ρσγνσαusα(p3)

= (−/p3)αβγ
µ
βρ(−/p1)ρσγνσα

= Tr
(

/p3γ
µ
/p1γ

ν
)

(B.10)

which is a simple expression we can evaluate using γ-matrix properties 2 :

1
4

∑

spin

|M1|2 =
e4

4t2
Tr

(

/p3γ
µ
/p1γ

ν
)

Tr
(

/p2γµ /p4γν
)

=
2e4

t2
[(2p1p4)(2p2p3) + (2p1p2)(2p3p4)] (B.11)

(A.8) and (A.2) were used. We can simplify this by making the connection with Mandelstam

1Note that in this special example m = 0
2Recall that Tr denotes the trace of the matrix (the sum of its diagonal elements) Tr(A) =

∑

i Aii .
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variables:

s = −(p1 + p2)2 = −(p3 + p4)2 = −2p1p2 = −2p3p4
t = (p1 − p3)2 = (p2 − p4)2 = −2p1p3 = −2p2p4
u = (p1 − p4)2 = (p2 − p3)2 = −2p1p4 = −2p2p3
u + s + t = 0 (B.12)

After some algebraic manipulations, the result is :

1
4

∑

spin

|M1|2 = 2e4
s2 + (t + s)2

t2
(B.13)

The same thing withM2 and the mix product. Finally we get :

1
4

∑

spin

|M |2 = 2e4
[

(t + s)2 + s2

t2
+
(t + s)2 + t2

s2
+2

(t + s)2

st

]

(B.14)



Appendix C

Spinor Helicity

In chapter 2, the SHF was introduced. We list here a set of identities involving spinor products

and the spinor representation for polarization vectors. Useful references are [21, 29].

C.1 Spinor product

The solutions of the massless Dirac equation, are denoted by the Dirac bra-ket notation

u−(p) = v+(p) = |p] , u+(p) = v−(p) = |p〉

ū−(p) = v̄+(p) = 〈p| , ū+(p) = v̄−(p) = [p| (C.1)

where us(p) and vs(p) (s = ±) respectively stand for the positive and negative energy solutions

to the massless Dirac equation /pus(p) = /pvs(p) = 0. The spinor products can be constracted as

follows

〈ij〉 = ū−(pi )u+(pj ) [ij] = ū+(pi )u−(pj ) (C.2)

Spinor product are antisymmetric

〈ij〉 = −〈ji〉 , [ij] = −[ji] (C.3)

and thus

〈ii〉 = [ii] = 0 , 〈ij] = [ij〉 = 0 (C.4)

When calculating amplitudes, we will need the complex conjugate of spinor products

〈ij〉∗ = [ji] (C.5)

44



APPENDIX C. SPINOR HELICITY 45

so

〈ij〉[ji] = 〈ij〉〈ij〉∗ = |〈ij〉|2 (C.6)

The spinor completeness relation with m = 0 read u+ū+ + u−ū− = −/p, this can be written in SHN

as

− /p = |p〉[p|+ |p]〈p| (C.7)

We obtain the following identities by using the projection operators γ±

γ+ /p = −|p〉[p| , γ− /p = −|p]〈p| (C.8)

These allow us to derive a connection to the most prevalent kinematic notation

〈ij〉[ji] = −〈iγ+ /pj i] = −Tr
(

γ+ /pj i]〈i
)

= Tr
(

γ+ /pjγ− /pi
)

= p
µ
i p

ν
j Tr

(

γ+γµγ−γν
)

= p
µ
i p

ν
j Tr

(

γµγ−γν
)

= 2p
µ
i p

ν
j gµν

= −2pipj = sij (C.9)

Other useful relation are the Gorden identity

[iγµi〉 = Tr
(

γµi〉[i
)

= −Tr
(

γµγ+ /pi
)

= −pνi Tr
(

γµγ+γν
)

= −2pνi gµν
= 2piµ (C.10)

Fierz rearrangement is expressed by :

〈iγµj]〈kγµl] = 2〈ik〉[jl] (C.11)

The next important identity is the momentum conservation. If a set of momenta are conserved
∑n
i=1p

µ
i = 0, in helicity spinors it becomes:

n
∑

j=1

〈ij〉[jk] = 0 (C.12)
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Another useful relation is that

〈iγµj]〈jγµi] = Tr(γµj]〈jγν i]〈i) = Tr
(

γµγ− /pjγ
νγ− /pi

)

= Tr
(

γµ /pjγ
νγ− /pi

)

[jγµi〉[iγν j〉 = Tr
(

γµ /pjγ
νγ+ /pi

)

(C.13)

C.2 Polarization vectors

If we want to apply the SHF to the processes containing bosonic external line, we need to write

polarization vectors in terms of spinor notation

ǫ
µ
+(k,q) = −

〈qγµk]√
2〈qk〉

, ǫµ−(k,q) = −
〈kγµq]√
2[qk]

(C.14)

q is an arbitrary massless reference momuntum, the contraction with γµ is :

/ǫ+(k,q) = −
〈qγµk]γµ√

2〈qk〉
=

√
2
〈qk〉(|k]〈q|+ |q〉[k|)

/ǫ−(k,q) = −
〈kγµq]γµ√

2[qk]
=

√
2

[qk]
(|k〉[q|+ |q]〈k|) (C.15)

with

〈qγµk]γµ = −2(|k]〈q|+ |q〉[k|) (C.16)

The polarization vectors have some interesting properties. sing the definition (C.14) and (C.15),

we could simply obtain the following important relation :

(ǫ
µ
±)
∗ = −ǫµ∓

ǫ+(k,q).ǫ−(k,q) = −1
ǫ±(k,q).ǫ∓(k,q

′) = 0 ; if q = q′

ǫ±(k,q).q = 0

/ǫ+(k,q)|q〉 ∼ 〈qq〉 = 0

[q|/ǫ−(k,q) ∼ [qq] = 0 (C.17)



Appendix D

Input for FeynCalc

In this section we’re going to implement the Bhabha scattering and pair annihilation processes

in mathematica via FeynCalc [30, 31, 32] using the trace method to determine the square of the

amplitude, then we’re going to implement Bhabha scattering process again in FeynCalc but this

time by using SHF to determine the amplitude:

D.1 Input for traces method

Bhabha scattering :

1 << FeynCalc ‘

2 M1 = e ^2/ t SpinorUBar [ p3 , 0 ] .GA[mu] . SpinorU [ p1 , 0] SpinorVBar [ p2 ,

3 0 ] .GA[mu] . SpinorV [ p4 , 0]

4 M2 = − e ^2/ s SpinorVBar [ p2 , 0 ] .GA[mu] . SpinorU [ p1 , 0] SpinorUBar [ p3 , 0 ] .GA[

5 mu] . SpinorV [ p4 , 0]

6 MTotal = M1 + M2

7 MTotalC = ComplexConjugate [MTotal ] / . mu −> muC

8 MsAvg1 = 1/4 FermionSpinSum[MTotal MTotalC ] / . DiracTrace −> Tr / /

9 Contrac t / / S imp l i f y

10 MsAvg1 / / InputForm

11 MsAvg2 = MsAvg1 / / FCE

12 MsAvg2 / / InputForm

13 on s h e l l = {SP [ p1 , p2 ] −> −s / 2 , SP [ p3 , p4 ] −> −s / 2 , SP [ p1 , p3 ] −> − t / 2 ,

14 SP [ p2 , p4 ] −> − t / 2 , SP [ p1 , p4 ] −> −u /2 , SP [ p2 , p3 ] −> −u /2 }
15 MsAvg3 = MsAvg2 / . o n s h e l l / / S imp l i f y

16 MsAvg = MsAvg3 / . u −> (− s − t )

Pair Annihilation :

1 << FeynCalc ‘

47
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2 dm[mu_] := DiracMatr ix [mu]

3 ds [ p_ ] := Di racS l a sh [ p ]

4 sp [ p_ , q_ ] := Sca l a rProduc t [ p , q ]

5 prop [ p_ , m_] := ds [ p ] + m

6 Line1 := prop [ p2 , −m] . dm[mu] . prop [ p1 − k1 , m] . dm[nu ] . prop [ p1 , m] . dm[

7 nu ] . prop [ p1 − k1 , m] . dm[mu]

8 Line2 := prop [ p2 , −m] . dm[mu] . prop [ p1 − k2 , m] . dm[nu ] . prop [ p1 , m] . dm[

9 nu ] . prop [ p1 − k2 , m] . dm[mu]

10 Line12 := prop [ p2 , −m] . dm[nu ] . prop [ p1 − k1 , m] . dm[mu] . prop [ p1 , m] . dm[nu ] . prop [

11 p1 − k2 , m] . dm[mu]

12 Line21 := prop [ p2 , −m] . dm[mu] . prop [ p1 − k2 , m] . dm[nu ] . prop [ p1 , m] . dm[mu] . prop [

13 p1 − k1 , m] . dm[nu]

14 ans1 = S imp l i f y [ Contrac t [ Tr [ Line1 ] ] / t ^2]

15 ans2 = S imp l i f y [ Contrac t [ Tr [ Line2 ] ] / u^2]

16 ans21 = S imp l i f y [ Contrac t [ Tr [ Line21 ] ] / ( t u ) ]

17 ans = e^4 ( ans1 + ans2 + ans12 + ans21 )

18 on s h e l l = { sp [ p1 , p1 ] −> m^2 , sp [ p2 , p2 ] −> m^2 , sp [ k1 , k1 ] −> 0 ,

19 sp [ k2 , k2 ] −> 0}

20 r e s = ans / . o n s h e l l

21 r e s = r e s / . m −> 0

22 k in = { sp [ p1 , p2 ] −> s /2 , sp [ p1 , k1 ] −> − t / 2 , sp [ p1 , k2 ] −> −u /2 ,

23 sp [ p2 , k1 ] −> −u /2 , sp [ p2 , k2 ] −> − t / 2 , sp [ k1 , k2 ] −> s / 2 }

24 aux = Expand [ r e s / . k in ]

25 Pr in t [ " \ ! \ ( \ * Underscr ip tBox [\ ( \ [ Sum]\ ) , \

26 \( s p i n s \) ] \ ) |M\ !\ ( \ * Super s c r i p tBox [ \ ( | \ ) , \ (2\) ] \ ) = " , aux ]

27 f i n a l = aux / . s −> (−u − t ) / / S imp l i f y

D.2 Input for helicity amplitude method

Bhabha scattering with SHF

1 << FeynCalc ‘

2 dp [ s_ ] := (1 + s DiracMatr ix [ 5 ] ) /2

3 U[ p_ , s_ ] := dp [ s ] . Sp inor [ p , 0]

4 UBar [ p_ , s_ ] := SpinorUBar [ p , 0] . dp[− s ]
5 UBar [ p_ , s_ ] := SpinorUBar [ p , 0] . dp[− s ]
6 Myds[ p_ ] := U[p , 1] UBar [p , 1] + U[p , −1] UBar [p , −1]
7 GammaGamma[ p_ , q_ , s_ ] := 2 ( U[ q , s ] UBar [ p , s ] ) + 2 ( U[ p , −s ] UBar [ q , −s ]

)

8 d e l t a [ s1_ , s2_ ] := I f [ s1 == s2 , 1 , 0]

9 M1[ s1_ , s2_ , s3_ , s4_ ] := d e l t a [ s1 , s2 ] UBar [ p3 , s3 ] . GammaGamma[ p2 , p1 , s1 ] .

U[ p4 , s4 ]
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10 r e s1 [ s1_ , s2_ , s3_ , s4_ ] := Di racS imp l i f y [ DotS impl i f y [M1[ s1 , s2 , s3 , s4 ] ] ] / s

11 M2[ s1_ , s2_ , s3_ , s4_ ] := d e l t a [ s1 , s3 ] UBar [ p2 , s2 ] . GammaGamma[ p3 , p1 , s1 ] .

U[ p4 , s4 ]

12 r e s2 [ s1_ , s2_ , s3_ , s4_ ] := −DiracS imp l i f y [ DotS impl i f y [M2[ s1 , s2 , s3 , s4 ] ] ] / t

13 v l i s t = { p1 , p2 , p3 , p4 }

14 simp1 = Tab l e [ Sp inor [ v l i s t [ [ i ] ] , 0] . Sp inor [ v l i s t [ [ j ] ] , 0] −>
15 sp [ v l i s t [ [ i ] ] , v l i s t [ [ j ] ] ] + spc [ v l i s t [ [ j ] ] , v l i s t [ [ i ] ] ] , { i , 1 ,

16 4} , { j , 1 , 4 } ] / . { sp [ p_ , p_ ] −> 0 , spc [ q_ , q_ ] −> 0}

17 simp2 = Tab l e [ Sp inor [ v l i s t [ [ i ] ] , 0] . DiracMatr ix [5 ] .

18 Spinor [ v l i s t [ [ j ] ] , 0] −> −sp [ v l i s t [ [ i ] ] , v l i s t [ [ j ] ] ] +

19 spc [ v l i s t [ [ j ] ] , v l i s t [ [ i ] ] ] , { i , 1 , 4} , { j , 1 ,

20 4} ] / . { sp [ p_ , p_ ] −> 0 , spc [ q_ , q_ ] −> 0}

21 simp = F l a t t en [ { simp1 , simp2 } ] ;

22 M[ s1_ , s2_ , s3_ , s4_ ] := Expand [ r e s1 [ s1 , s2 , s3 , s4 ] + r e s2 [ s1 , s2 , s3 , s4 ] / .

simp ]
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Feynman diagrams with axodrow4j and

FenyArts

In this section we show how to use axodraw4j and FeynArts [33] package, illustrated with an

example. JaxoDraw is a JAVA program for drawing Feynman diagrams, it has a simple interface

allowing all actions to be carried out in a simple manner, in addition to it’s simple interface the

program allows us to import the work done to multiple programs and allows us to save the work

done under many extensions such as XML and EPS

The basics of using axodraw4j are shown in the following LaTex document :

1 \ beg in { c e n t e r }

2 \ f c o l o r b o x { whi te } { whi te } {

3 \ beg in { p i c t u r e } (400 ,70) (0 , 0 )

4 \SetWidth { 1 . 0 }

5 \ Se tCo l o r { Black }

6 \Line [ arrow , arrowpos =0.5 , ar rowlength =5 , arrowwidth =2 , a r r ow in s e t =0.2](100 ,65)

(130 ,40)

7 \Line [ arrow , arrowpos =0.5 , ar rowlength =5 , arrowwidth =2 , a r r ow in s e t =0.2](130 ,40)

(100 ,15)

8 \Photon (130 ,40) (160 ,40) {4 } {4 }

9 \Text (180 ,30) [ l b ] { $ i \ f r a c { g } { \ s q r t { 2 } } \ gamma_{\mu}\ f r a c {1−\gamma_ { 5 } } { 2 } $ }

10 \Text (115 ,55) [ l b ] { $\ p s i _ {u , d } $ }

11 \Text (115 ,15) [ l b ] { $\ p s i _ { d , u } $ }

12 \Text (155 ,45) [ l b ] {$W_{\mu}^{\pm} $ }

13 \end { p i c t u r e }

14 }

15 \end { c e n t e r }

After compiling we obtain the following figure

50
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i g√
2
γµ

1−γ5
2

ψu,d

ψd,u

W±µ

The prevalent rules preparation of a document are :

• Insert the following

1 \ usepackage { axodraw4j }

in the preamble of the .tex file

• put the axodraw4j object you want to insert inside a picture environment

1 \ f c o l o r b o x { whi te } { whi te } {

2 \ beg in { p i c t u r e } ( x , y ) (0 , 0 )

3 . . . . . . . .

4 \end { p i c t u r e } }

here x and y denote the size of the box that is to be inserted in the document and that contains the

graph, and (0,0) is the origin.

FeynArts is a Mathematica package for the generation and visualization of Feynman diagrams

and amplitudes. throughout this thesis we used it along with FeynCalc to confirm our results,

here’s an example of how it works on the Mathematica program : We start off wih Bhabha scatter-

ing example where we see how to obtain Feynman diagram via FeynArts package:

1 $LoadFeynArts = True

2 t o p l 1 = Cr e a t eTopo l o g i e s [0 , 2 −> 2 ] ;

3 diag1 = I n s e r t F i e l d s [

4 poo , {F [2 , { 1 } ] , −F[2 , { 1 } ] } −> {F [2 , { 1 } ] , −F[2 , { 1 } ] } ,

5 I n s e r t i o n L e v e l −> { P a r t i c l e s } , E x c l u d eP a r t i c l e s −> {S , V[ 2 ] } ] ;

6 Paint [ diag1 ]

We start off by loading FeynArts package with the first command, we then create the topology

where the numbers inside the box are respectively the number of loops, the number of particles in

the initial state and the number of particles in the final state. After that we use the "InsertFields"

command to choose the process with special strings each for a specific particle.
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The examples below are respectively for electron-positron annihilation process and two gluon

scattering process.

1 t o l p2 = Cr e a t eTopo l o g i e s [0 , 2 −> 2 ] ;

2 diag2 = I n s e r t F i e l d s [ ass , { F [2 , { 1 } ] , −F[2 , { 1 } ] } −> {V[1 ] , V[ 1 ] } ,

3 I n s e r t i o n L e v e l −> { P a r t i c l e s } , Model −> {SM} ,

4 Ex c l u d eP a r t i c l e s −> {S } ] ;

5 Paint [ diag2 ]

1 top3 = Cr ea t eTopo l o g i e s [0 , 2 −> 2]

2 diag3 = I n s e r t F i e l d s [ gluon , {V[5 ] , V[ 5 ] } −> {V[5 ] , V[ 5 ] } ,

3 Model −> "SMQCD" , I n s e r t i o n L e v e l −> { P a r t i c l e s } ]

4 Paint [ diag3 ]
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