République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

Université Saad Dahleb Blida 1

Faculté de Technologie
Département de Génie Civil

Mémoire de projet de fin d'étude

Pour l'obtention du diplôme master en Génie Civil

Option: Structure

Thème:

ETUDE D'UN BATIMENT MULTIFONCTIONNEL EN BETON ARME (R+9+SSOL) CONTREVENTE PAR PORTIQUES ET VOILES

Présenté par :

Mr Mebkhouta Abderrahmane

Mr Sbahi Mohamed Amine

Devant les membres de ju	ıry:	
	U. Saad Dahleb-Blida	Examinateur
	U. Saad Dahleb-Blida	Examinateur
M ^{me} M.Berediafe Bourahla	U. Saad Dahleb-Blida	Promotrice

Promotion 2022

Remerciements

Ce mémoire aura été difficile à réaliser sans l'aide de plusieurs personnes à qui nous voudrions témoigner toute notre gratitude et notre reconnaissance.

Mais avant tout et en premier lieu, nous souhaitons rendre grâce à Dieu pour sa bienveillance, sa protection et son aide qui sont en abondance.

Nous voudrions remercier notre encadrant de mémoire M^{me} BEREDIAFE BOURAHLA, pour son sens d'orientation, sa patience et ses conseils judicieux.

Un très grand et particulier merci à nos parents, frères et sœurs qui nous ont aidés et supportés tout le long de ce chemin ce qui nous a permis d'en arriver là.

Mille mercis à nos amis et camarades pour leur présence et leur soutien incommensurable tout au long de ce parcours.

Pour finir, nous tenons à nous remercier mutuellement pour notre discipline, travail, dévouement et surtout La confiance que nous nous sommes accordés pour réaliser ce mémoire.

Encore une fois, merci à vous tous et que dieu vous bénissent et vous protège.

Je dédie ce mémoire à :
Mes parents :
Ma mère, qui a œuvré pour ma réussite, par son amour, son soutien, tous les sacrifices consentis et ses précieux conseils, pour toute son assistance et sa présence dans ma vie, reçois à travers ce travail aussi modeste soit - il, l'expression de mes sentiments et de mon éternelle gratitude.
Mon père, My idole qui peut être fier et trouver ici le résultat de longues années de sacrifices et de privations pour m'aider à avancer dans la vie. Puisse Dieu faire en sorte que ce travail porte son fruit ; merci pour les valeurs nobles, l'éducation et le soutien permanent venu de toi.
A mes très chers frères et mes sœur, et aussi a mes tantes et ma grand-mère ; que Dieu vous assistes, God bless you all.
A mon binôme, à mes chers collègues et à mes chères ami(e)s ; en témoignage de l'amitié qui nous unit et des souvenirs de tous les moments que nous avons passés ensemble, je vous dédie ce travail.
A mes professeurs, qui doivent voir dans ce travail le fruit d'un savoir bien acquis.
A mes chers amis Akram nouioua , A'Rahmi , Damso Vie_sur_nous.
A mon pays l'Algérie, et à tous mes frères et sœurs les musulmans dans le monde entier.
Mebkhouta Abderramane .

Je dédie ce mémoire à :
Mes parents :
Ma mère, qui a œuvré pour ma réussite, par son amour, son soutien, tous les sacrifices consentis et ses précieux conseils, pour toute son assistance et sa présence dans ma vie, reçois à travers ce travail aussi modeste soit - il, l'expression de mes sentiments et de mon éternelle gratitude.
Mon père, qui peut être fier et trouver ici le résultat de longues années de sacrifices et de privations pour m'aider à avancer dans la vie. Puisse Dieu faire en sorte que ce travail porte son fruit ; merci pour les valeurs nobles, l'éducation et le soutien permanent venu de toi.
A mes très chers frères et ma sœur, et aussi a mes tantes et mes grands parents ; que Dieu vous assistes, à tous les membres de ma famille, petits et grands.
A mon binôme, à mes chers collègues et à mes chères ami(e)s ; en témoignage de l'amitié qui nous unit et des souvenirs de tous les moments que nous avons passés ensemble, je vous dédie ce travail.
A mes professeurs, qui doivent voir dans ce travail le fruit d'un savoir bien acquis.
A mes chers amis Ouali, Adel, Salim, Anis, Sarah, Sch.
A mon pays l'Algérie, et à tous mes frères et sœurs les musulmans dans le monde entier.
Sbahi Mohamed Amine.

Résumé

Le but de cette étude est la conception d'une structure multiservice de R + 9 étages, de forme irrégulière composée aussi d'un sous-sol, qui est sera implanté dans la wilaya d'Blida, qui est classée dans la zone III selon le règlement parasismique Algérien (RPA 99 version 2003). La stabilité de l'ouvrage est assurée par les poutres, les poteaux et les voiles de contreventements.

L'étude et l'analyse de ce projet ont été établies par le logiciel (ETAPS V18). Le calcul des dimensions et du ferraillage de tous les éléments résistants sont conformes aux règles applicables en vigueurs à savoir (BAEL91 modifié 99, RPA99 version 2003). Le ferraillage des éléments porteurs (poteaux, poutres) a été mené par logiciel de ferraillage SOCOTEC.

ملخص

يهدف هذا المشروع إلى دراسة بناية متعددة الخدمات تتألف من طابق ارضي+9 طوابق, غير منتظم الشكل و يتكون من بدروم, تم انجازه بولاية البليدة المصنفة في المنطقة الزلزالية رقم 3 وفقًا للمركز الوطني للبحوث التطبيقية في هندسة مقاومة الزلازل (RPA version 2003). مقاومة و البناية استقر ار لكل الحمولات العمودية و الأفقية مضمونة بواسطة الروافد. الأعمدة و الجدر ان

مفاومه و البناية استفرار لكل الحمولات العمودية و الافقية مصمونة بواسطة الرواقد, الاعمدة و الجدرار المشكلة من مادة الخرسانة المسلحة.

الدراسة الحركية تمت باستعمال برنامج ألى (ETABS V18).

تحديد الأبعاد و التسليح كل العناصر المقاومة للبناية صمم طبق القوانين والمعايير المعمول بها

في الجزائر (RPA 99 version 2003, BAEL modifié 91 modifié 99).

تسليح المقاومة العناصر الأعمدة و تم العرض بواسطة برنامج (SOCOTEC).

Abstract

The aim of this study is the design of a multiservice structure of R+9 floors, irregularly shaped also composed of a basement, which's located in the wilaya of Blida, classified in zone III according to the Algerian seismic code (RPA 99 version 2003). The stability of the structure is ensured by the beams, the columns and walls. The study and the analysis of this project had been established by the software (ETAPS V18). The calculation of the dimensions and the reinforcement of all the elements of resistant comply with the applicable rules, namely (BAEL91 modified 99, RPA99 version 2003). The reinforcement of structural elements (columns, beams) was done by SOCOTEC reinforcement software.

LISTE DES FIGURES

Figure 1.1 : Dimension en plan	2
Figure I.2 : Dimension du bâtiment en élévation.	2
Figure I.3 : Essai Brésilien	5
Figure I.4 : Résistance du béton a la traction	5
Figure I.5 : Diagramme contraintes - déformations du béton à l'ELU	}
Figure I.6 : Diagramme contraintes - déformations du béton à l'ELS	
Figure I.7 : Diagramme contrainte - déformations de l'acier	9
Figure II.1: Détails d'un plancher à corps creux	3
Figure II.2: Détails d'un plancher à dalle pleine	1
Figure II.3 : Coupe verticale du plancher terrasse à corps creux	
Figure II.4: Coupe verticale du plancher terrasse à dalle pleine	5
Figure II.5: Coupe verticale du plancher courant à corps creux	7
Figure II.6 : Coupe verticale du plancher courant à dalle pleine	8
Figure II.7 : Constitution du mur extérieur)
Figure II.8 : Schéma de l'acrotère)
Figure II.9 : La section d'une poutre	3
Figure II.10 : Schéma du voile	1
Figure II.11 : Section réduite du poteau	7
Figure II.12 : Schéma statique de la descente de charge	8
Figure II.13 : Vue en plan des poteaux les plus sollicités)
Figure II.14 : Section du poteau le plus sollicité	9
Figure II.15 : Représentation de la surface reprise par le poteau de rive34	4
Figure III.1 : Section de calcul de l'acrotère	3
Figure III.2 : Ferraillage de l'acrotère	5
Figure III.3 : schéma d'un escalier de 2 volées	5
Figure III.4: Eléments d'un escalier	7
Figure III.5 : Schéma statique de volée	8
Figure III.6 : schéma statique de l'escalier	9
Figure III.7 : Schéma de ferraillage de l'escalier (volée 1 et 3)	4
Figure III.8: Dimensions d'une dalle	1
Figure III.9: Ferraillage de la dalle pleine	
Figure III.10: Corps Creux)
Figure III.11 : Schéma de poutrelle	0

Figure III.12 : Schéma statique de la Poutrelle à sept travées	65
Figure III.13 : Diagramme des moments fléchissant ELU	66
Figure III.14 : Diagramme des moments fléchissant ELS	66
Figure III.15: Diagramme des l'efforts tranchants a ELU	66
Figure III.16: Diagramme des l'efforts tranchants a ELS	66
Figure III.17: Ferraillage des poutrelles en Travée et en Appuis	74
Figure III.18: Ferraillage de la dalle de compression	75
Figure III.19 : Schéma statistique du balcon	75
Figure III.20 : Schéma de ferraillage des balcons	79
Figure IV.1 : Spectre de réponse. Figure IV.2 : Vue en 3D du modèle initial. Figure IV.3 : Vue en plan du modèle initial Figure IV.4 : Vue en plan du 2éme modèle. Figure IV.5 : Vue en plan du modèle final	84 84 86
Figure V.1 :Schémas de ferraillage des poteaux	
Figure V.3 : Arrêt des barres	
Figure V.4: Ferraillage de Poutre Principale	
Figure V.5 : Ferraillage de Poutre secondaire	
Figure V.7 : Schéma statique d'un voile	
Figure V.8 : Schéma d'un voile plein et disposition du ferraillage	127
Figure V.9 : Définition de l'élément mur	128
Figure V.10 : Dimension de voile	128
Figure V.11 : Niveaux de vérification	130
Figure V.12 : Discrétisation d'un voile en élément (maille) coque	133
Figure V.13 : Disposition des Armatures verticales dans les voiles	135
Figure V.14 : Voile 5(Zone I)	
Figure V.15: Voile 5(Zone II)	
Figure V.16: Voile 5(Zone III)	

Figure VI.1 : Semelles isolée sous poteaux	148
Figure VI.2 : Semelles filantes.	149
Figure VI.3 : répartition des charges pour les poteaux centraux	150
Figure VI.4 : répartition des charges pour les poteaux de rives	150
Figure VI.5 : répartition des charges pour les poteaux d'angles	150
Figure VI.6: Schéma des files des semelles filantes dans les deux sens	151
Figure VI.7: Schéma de ferraillage en appui	169
Figure VI.8 : Schéma de ferraillage en travée	169
Figure VI.9 : schéma de ferraillage voile périphérique sens x	173

LISTE DES TABLEAUX

Tableau I.1 : Caractéristiques des Aciers. 9
Tableau II.1 : Charge permanente du plancher terrasse (corps creux)15
Tableau II.2 : Charge permanente du plancher terrasse (dalle pleine)
Tableau II.3 : Charge permanente du plancher terrasse (corps creux)16
Tableau II.4 : Charge permanente du plancher terrasse (dalle pleine)17
Tableau II.5 : Charge permanente du plancher courant (corps creux)
Tableau II.6 : Charge permanente du plancher courant (Dalle pleine)
Tableau II.7 : Charge permanente du balcon
Tableau II.8 : Les charges permanentes sur des murs extérieurs à double cloison
Tableau II.9 : Dégression des surcharges pour poteau central
Tableau II.10 : Récapitulatif de la descente de charge pour poteau central
Tableau II.11 : Choix des sections de poteau central
Tableau II.12 : Choix des poteaux centraux avec vérification de l'effort normal réduit33
Tableau II.13 : Vérification de l'effort normal réduit avec augmentation des dimensions des
poteaux centraux34
Tableau II.14 : Dégression des surcharges des poteaux de rives
Tableau II.15 : Descente de charge du poteau de rive
Tableau II.16 : Choix des sections des poteaux de rives 37
Tableau II.17 : Choix des poteaux de rives avec vérification de l'effort normal réduit37
Tableau II.18 : Descente de charge du poteau de rive. 38
Tableau II.19 : Choix des sections des poteaux de rives
Tableau II.20 : Choix des poteaux de rives avec vérification de l'effort normal réduit40
Tableau II.21: Vérification de l'effort normal réduit avec augmentation des dimensions des
poteaux de rives41
Tableau II.22 : Tableau récapitulatif de la section des poteaux 41

Tableau III.1 Les vérifications de l'ELS
Tableau III.2 Charges Permanentes du Palier
Tableau III.3 : Charges Permanentes de la Paillasse. 49
Tableau III.4 : Résultats d'évaluation des charges d'escalier. 50
Tableau III.5 : Calcul des armatures 50
Tableau III.6 : Vérification de compression du béton 52
Tableau III.7 : Vérification de la flèche de l'escalier
Tableau III.8 : Ferraillage de la dalle pleine 55
Tableau III.9 : Vérification de CNF
Tableau III.10 : Vérification des contraintes à l'ELS. 57
Tableau III.11 : Calcul de la flèche.58
Tableau III.12 : : Récapitulation du calcul des sections d'armatures en travée
Tableau III.13 : Récapitulation du calcul des sections d'armatures sur appuis68
Tableau III.14 : Vérification de la contrainte de béton 70
Tableau III.15 Calcul de la flèche72
Tableau III.16 : Les combinaisons des charges 77
Tableau III.17: Efforts internes
Tableau III.18 : Ferraillage du balcon. 79
Tableau IV.1 : Facteur de qualité
Tableau IV.2 : Participation massique du modèle initial
Tableau IV.3 : Participation massique du avec voiles 86
Tableau IV.4 : Vérification des déplacements inter étages dans le sens X-X
Tableau IV.5 : Vérification des déplacements inter étages dans le sens Y-Y
Tableau IV.6 : Participation massique du modèle final
Tableau IV.7 : Vérification des déplacements inter étages dans le sens XX91
Tableau IV.8 : Vérification des déplacements inter étages dans le sens Y-Y91
Tableau IV.9 : Vérification du critère de l'effort normal réduit92
Tableau IV.10 : Vérification l'effet p- Δ inter étages sens (x-x)93
Tableau IV.11 : Vérification l'effet p-Δ inter étages sens (yy)93
Tableau IV.12 : Vérification des portiques sous l'effort tranchantd'étage

Tableau V.1 : Ferraillages des poteaux carrées situation durable (N ^{max} , M ^{corr})97
Tableau V.2 : Ferraillages des poteaux carrées situation durable (M ^{max} , N ^{corr})97
Tableau V.3 : Ferraillages des poteaux carrées situation durable (N ^{min} , M ^{corr})98
Tableau V.4 : Ferraillages des poteaux carrées situation accidentelle (N ^{max} , M ^{corr})98
Tableau V.5 : Ferraillages des poteaux carrées situation accidentelle (M ^{max} , N ^{corr})99
Tableau V.6 : Ferraillages des poteaux carrées situation accidentelle (N ^{min} , M ^{corr})99
Tableau V.7 : Ferraillages des poteaux carrées situation accidentelle (N ^{max} , M ^{corr})100
Tableau V.8 : Ferraillages des poteaux carrées situation accidentelle (M ^{max} , N ^{corr})100
Tableau V.9 : Ferraillages des poteaux carrées situation accidentelle (N^{\min}, M^{corn})101
Tableau V.10 : Choix des armatures des poteaux carrées 101
Tableau V.11 : Vérifications des contraintes pour les poteaux carrées
Tableau V.12 : Vérification des contraintes pour les poteaux carrées
Tableau V.13 : Vérification de la contrainte pour les poteaux carrés
Tableau V.14 : Vérification de la contrainte de cisaillement pour les poteaux carrés105
Tableau V.15 : Espacement maximales selon RPA99 des poteaux carrés
Tableau V.16 : Choix des armatures transversales pour les poteaux carrées
Tableau V.17: Ferraillage des poutres principales (situation durable)
Tableau V.18: Ferraillage des poutres principales (situation accidentelle)
Tableau V.19 : Ferraillage des poutres principales (situation accidentelle)
Tableau V.20 : Ferraillage des poutres secondaire (situation durable)
Tableau V.21: Ferraillage des poutres secondaire (situation accidentelle)
Tableau V.22 : Ferraillage des poutres secondaire (situation accidentelle)
Tableau V.23 : Choix des armatures pour les poutres principale
Tableau V.24 : Choix des armatures pour les poutres secondaire
Tableau V.25 : Vérification de la condition de non fragilité
Tableau V.26: Vérification des poutres principal à l'ELS
Tableau V.27 : Vérification des poutres secondaire à l'ELS. 117
Tableau V.28 : Vérification thermique des poutres principale a l'ELS118
Tableau V.29 : Vérification de la contrainte de cisaillement dans le poutre principale119
Tableau V.30 Vérification de la contrainte de cisaillement dans la poutre secondaire119
Tableau V.31 : Calcul des armatures transversales

Tableau V.32 : Tableau récapitulatif du calcul de la flèche	122
Tableau V.33 : Valeurs de (l _f /l)	128
Tableau V.34 : Calcul de σ _{ulim}	129
Tableau V.35: Aciers verticaux et horizontaux	131
Tableau V.36 Aciers transversaux	131
Tableau V.37 Calcul de σ_{ba} et σ_{bna} pour l'exemple	135
Tableau V.38 Calcul des armatures verticales de l'exemple	136
Tableau V.39 Caractéristiques des voiles	137
Tableau V.40 : Calcul des armatures verticales (V1)	138
Tableau V.41 : Calcul des armatures du voile (V2)	139
Tableau V.42 : Calcul des armatures du voile (V3)	140
Tableau V.43 : Calcul des armatures du voile (V4)	141
Tableau V.45 : Calcul des armatures du voile (V5)	141
Tableau V.46 : Calcul des armatures du voile (V6)	142
Tableau V.47 : Calcul des aciers de couture des voiles	143
Tableau V.48 : Calcul des aciers horizontaux des voiles	144
Tableau VI.1 : répartition pour les poteaux centraux ELS	151
Tableau VI.2: la répartition pour les poteaux rives ELS	154
Tableau VI.3 : la répartition pour les poteaux d'angles ELS	
Tableau VI.4 : Sections des semelles filantes sens X	156
Tableau VI.5 : Sections des semelles filantes sens Y	156
Tableau VI.6 : Choix de la hauteur h _t	158
Tableau VI.7 : Choix de hauteur de nervure h _N	159
Tableau VI.8 : Vérification au renversement	160
Tableau VI.9 : Vérification des contraintes à l'ELS sens X	160
Tableau VI.10 : Vérification de la contrainte à ELS sens Y	161
Tableau VI.11: Sections des semelles filantes a ELU sens X	161
Tableau VI.12: Sections des semelles filantes a ELU sens Y	162
Tableau VI.13 : vérification de la contrainte à ELU sens X	162
Tableau VI.14 : vérification de la contrainte à ELU sens Y	163
Tableau VI.15: Ferraillage pour les semelles sens X	164
Tableau VI.16: Ferraillage pour les semelles sens Y	164

Tableau VI.17: calcul des charger sens X	.166
Tableau VI.18: calcul des charger sens Y	.166
Tableau VI.19: Dimensionnement des armatures	.168
Tableau VI.20 : Vérification des contraintes a l'ELS	.168
Tableau VI.21 : Ferraillage du Voile Périphérique	.171
Tableau VI.22: Vérification des contraintes à l'ELS	.173
Tableau VI.23: augmentation de choix de section	.173
Tableau VI.24: Vérification des contraintes à l'ELS	.173

LISTE DES SYMBOLES

- A : Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement.
- A_s : Aire d'une section d'acier.
- A_t : Section d'armatures transversales.
- *B* : Aire d'une section de béton.
- ϕ : Diamètre des armatures, mode propre.
- φ : Angle de frottement.
- lacktriangle C: Cohésion.
- q : Capacité portante admissible.
- Q: Charge d'exploitation.
- σ_c : Contrainte de consolidation.
- C_c : Coefficient de compression.
- C_s : Coefficient de sur consolidation.
- K_t : Facteur de terrain.
- Z_0 : Paramètre de rugosité.
- Z_{min} : Hauteur minimale.
- C_r : Coefficient de rugosité.
- C_t : Coefficient de topographie.
- C_d : Coefficient dynamique.
- C_e : Coefficient d'exposition.
- C_{pe} : Coefficient de pression extérieure.
- C_{pi} : Coefficient de pression intérieure.
- C_p : Coefficient de pression nette.
- q_{dyn} : Pression dynamique.
- $q_{réf}$: Pression dynamique de référence.
- q_i : Pression dû au vent.
- F_{fr} : Force de frottement.
- *R* : Force résultante.
- γ_s : Coefficient de sécurité dans l'acier.
- γ_b : Coefficient de sécurité dans le béton.
- σ_s : Contrainte de traction de l'acier.
- σ_{bc} : Contrainte de compression du béton.

- σ_s : Contrainte de traction admissible de l'acier.
- σ_{bc} : Contrainte de compression admissible du béton.
- τ_u : Contrainte ultime de cisaillement.
- τ : Contrainte tangentielle.
- β : Coefficient de pondération.
- σ_{sol} : Contrainte du sol.
- σ_m : Contrainte moyenne.
- G: Charge permanente.
- ξ : Déformation relative.
- V_0 : Effort tranchant a la base.
- E.L.U: Etat limite ultime.
- *E.L.S* : Etat limite service.
- N_{ser} : Effort normal pondéré aux états limites de service.
- N_u : Effort normal pondéré aux états limites ultime.
- T_u : Effort tranchant ultime.
- T: Effort tranchant, Période.
- S_t : Espacement.
- λ : Elancement.
- *e* : Epaisseur, Indice des vides.
- N_q , N_γ , N_c : Facteurs de portance.
- F: Force concentrée.
- *f* : Flèche.
- \bar{f} : Flèche admissible.
- D: Fiche d'ancrage.
- *L* : Longueur ou portée.
- L_f : Longueur de flambement.
- I_p : Indice de plasticité.
- I_c : Indice de consistance.
- W: Teneur en eau, Poids total de la structure.
- S_r : Degré de saturation.
- γ_d : Poids volumique sèche.
- γ_h : Poids volumique humide.

- γ sat : Poids volumique saturé.
- W_{sat} : Teneur en eau saturé.
- W_L : Limite de liquidité.
- W_p : Limite de plasticité.
- d: Hauteur utile.
- F_e : Limite d'élasticité de l'acier.
- M_u : Moment à l'état limite ultime.
- M_{ser} : Moment à l'état limite de service.
- M_t : Moment en travée.
- M_a : Moment sur appuis.
- M_0 : Moment en travée d'une poutre reposant sur deux appuis libres, Moment a la base.
- *I* : Moment d'inertie.
- f_i : Flèche due aux charges instantanées.
- f_v : Flèche due aux charges de longue durée.
- I_{fi} : Moment d'inertie fictif pour les déformations instantanées.
- I_{fv} : Moment d'inertie fictif pour les déformations différées.
- \blacksquare *M* : Moment, Masse.
- E_{ij} : Module d'élasticité instantané.
- E_{vi} : Module d'élasticité différé.
- E_s : Module d'élasticité de l'acier.
- P: Rayon moyen.
- f_{c28} : Résistance caractéristique à la compression du béton à 28 jours d'âge.
- f_{t28} : Résistance caractéristique à la traction du béton à 28 jours d'âge.
- F_{cj} : Résistance caractéristique à la compression du béton à j jours d'âge.
- *K* : Coefficient de raideur de sol.
- S_c : Tassement œnométrique.
- S_c^T : Tassement total.
- S_c^{adm} : Tassement admissible.
- δ : Rapport de l'aire d'acier à l'aire de béton.
- *Y* : Position de l'axe neutre.
- I_0 : Moment d'inertie de la section totale homogène.

TABLE DES MATIERES

REMER	CIEMENTS		
DEDICA	CE		
RESUM	E		
LISTE D	ES SYMBOL	LES	
LISTE D	ES TABLEA	UX	
LISTE D	ES FIGURES	S	
TABLE :	DES MATIEI	RES	
PLANS			
INTROD	OUCTION		1
CHAPIT	TRE 01 : <i>PRE</i>	SENTATION DE L'OUVRAGE ET MATERIAUX	
I.1	Introduction		2
I.2	Présentation	de l'ouvrage	2
	I.2.1	Caractéristiques de l'ouvrage	2
	I.2.2	Caractéristiques géométriques	2
	I.2.3	Ossature	3
	I.2.4	Les Planchers	3
	I.2.5	Escaliers	3
	I.2.6	Terrasse	3
	I.2.7	Acrotère	4
	I.2.8	Murs extérieurs	4
	I.2.9	Murs intérieurs	4
	I.2.10	Ascenseurs	4
	I.2.11	Infrastructure	4
I.3	Caractéristiq	ues mécaniques des matériaux	4
	1.3.1	Béton	4
	1.3.2	Acier	6
I.4	Hypothèses d	le calcul aux états limites	7
CHAPIT	TRE 02 : <i>PRE</i>	DIMENSIONNEMENT DES ELEMENTS	
II.1	Introduction		9
11 2	Pré dimensio	nnement des nlanchers	C

	II.2.1	Pré dimensionnement des planchers	9		
II.3	Evalua	tion des charges permanentes et surcharges d'exploitation	10		
II.4	Pré dimensionnement des poutres				
II.5	Pré din	Pré dimensionnement des voiles			
II.6	Pré din	nensionnement des poteaux	15		
CHAPIT	TRE 03 :	FERRAILLAGE DES ELEMENTS SECONDAIRES			
III.1	Introdu	action	42		
III.2	Acrotè	re	42		
III.3	Escalie	r	46		
III.4	Dalle p	leine	54		
III.5	Planch	er à corps creux	59		
III.6	Balcon	s	75		
CHAPIT	TRE 04 :	ETUDE DYNAMIQUE EN ZONE SISMIQUE			
IV.1	Introdu	ection	57		
IV.2	Etude s	sismique	57		
	IV.2.1	Modélisation de rigidité	57		
	IV.2.2	Modélisation de la masse	57		
IV.3	Choix	de la méthode de calcul	58		
	IV.3.1	La méthode statique équivalente	58		
	IV.3.2	La méthode modale spectrale	58		
IV.4	Résulta	ats de l'analyse sismique	62		
	IV.4.1	Modèle initial	62		
	IV.4.2	Modèle final	63		
CHAPIT	TRE 05 :	FERRAILLAGE DES ELEMENTS PRINCIPAUX			
V.1	Introdu	action	95		
V.2	Ferraill	lage des poteaux :	95		
	V.2.1	Introduction	95		
	V.2.2	Combinaisons d'action	95		
	V.2.3	Recommandation selon RPA99 version 2003	96		
	V.2.4	Calcul de ferraillage	97		
	V.2.5	Choix des armatures	101		
	V.2.6	Vérification vis-à-vis de l'état limite de service	102		
	V.2.7	Vérification de l'effort tranchant	104		

	V.2.8	Ferraillage transversal des poteaux	105
	V.2.9	Longueur de recouvrement	107
	V.2.10	ferraillage des poteaux de sous-sol	108
	V.2.11	Schémas de ferraillage des poteaux	110
V.3	Ferraill	age des poutres	111
	V.3.1	Introduction	111
	V.3.2	Recommandations selon RPA99 version 2003	111
	V.3.3	Calcul de ferraillage	112
	V.3.4	Choix des armatures	115
	V.3.5	Vérification thermique	117
	V.3.6	Vérification de l'effort tranchant	119
	V.3.7	Calcul des armatures transversales	120
	V.3.8	Arrêt des barres	121
	V.3.9	Schémas de ferraillage des poutres	123
V.4	Ferraill	age des voiles	125
	V.4.1	Introduction	125
	V.4.2	Ferraillages des voiles	125
	V.4.3	Justifications sous sollicitations normales	128
	V.4.4	Aciers verticaux et horizontaux	131
	V.4.5	Aciers transversaux	131
	V.4.6	Cisaillement	132
	V.4.7	Procédure de ferraillage des trumeaux	132
	V.4.8	Exemple de calcul (voile V5)	135
	V.4.9	Présentations des résultats	138
	V.4.10	Schéma de ferraillages des voiles	145
CHAPIT	TRE 06 :	ETUDE DES ELEMENTS DE L'INFRASTRUCTURE	
VI.1	Introdu	ction	147
VI.2	Choix	de type de fondation	147
VI.3	Calcul	des fondations	147
VI.4	Semel	le isolée sous poteaux	148
VI.5	Semelle	e filante	149
	VI.5.1	calcul de la répartition des efforts normaux	151

	VI.5.2	Pré dimensionnement de la semelle filant	128
	VI.5.3	Vérification de la Stabilité du semelle	159
	VI.5.4	vérifications contraintes à ELS	160
	VI.5.5	Vérifications contraintes à ELU	161
	VI.5.6	Calcul le ferraillage de la semelle	163
	VI.5.7	Calcul le ferraillage de la nervure	165
VI.6		Etude du voile périphérique.	170
	VI.6.1	Introduction	170
	VI.6.2	Pré dimensionnement	170
	VI.6.3	Évaluation des Charges	170
	VI.6.4	Effort dans la Dalle	171

CONCLUSION

REFERENCES

ANNEXE

Introduction Générale

Parmi tout les phénomènes naturels qu'on connaît on trouve les séismes, se sont des secousses sismiques imprévisibles et d'une puissance variable qui constitue un danger pour l'humanité et qui sont capable de produire des dégâts matériels inconsidérables surtout sur les structures, et l'Algérie n'est pas à l' abri d'un tel phénomène, et la seule solution envisageable dans ce cas c'est la construction parasismique.

Avec l'ensemble de connaissances scientifiques, techniques et de mise en œuvre l'ingénieur est donc appelé à concevoir des structures dotées d'une bonne rigidité et d'une résistance suffisante de manière à sauver les vies humaines et limiter les dégâts matériels qui sont dus aux dommages subis par la structure, sans oublier l'aspect économique, esthétique et l'usage, et en prenant en considération les différents règlements de la conception.

Dans le cadre de ce projet, nous avons procédé au calcul d'un bâtiment en béton armé a usage multiple implanté en zone III de forte sismicité, comportant un RDC et 9 étages plus une terrasse inaccessible et un sous-sol, basée sur les règles et les méthodes des règlements suivants : **BAEL91 modifié 99, RPA99 V 2003, CBA99** ce travail sera mené selon les étapes suivantes :

En premier lieu dans ce chapitre nous allons faire une présentation complète du bâtiment, la définition des différents éléments et les caractéristiques des matériaux utilisé.

Pour toute étude d'une structure, le pré dimensionnement des éléments (poteaux, poutres et voiles....) se fait en première étape afin d'entamer l'étude dynamique ce qui est représenté dans le deuxième chapitre.

Le troisième chapitre traitre le calcul des éléments secondaires tel que : l'acrotère ; les escaliers ; le plancher etc.

Dans le quatrième chapitre nous nous intéressons à la modélisation de la structure en trois dimensions (3D) à l'aide de logiciel **ETABS18** et la détermination des modes de vibrations, en renforçant l'ossature par des voiles, on étudier ainsi le comportement de la structure jusqu'à la vérification des déplacements.

Pour que la structure résiste aux différentes sollicitations on doit calculer le ferraillage de ses éléments résistants (poteau, poutres et voiles), à partir des résultats finaux obtenus par l'étude dynamique tout en vérifiant les critères imposés par le **RPA99V2003** et le **BAEL91 modifié 99**, qui sera le cinquième chapitre.

Enfin, nous allons effectuer une étude de fondation suivie d'une conclusion générale et par des références bibliographiques.

I.1 Introduction

Ce chapitre comporte des descriptions générales concernant notre étude, telle que les dimensions de l'ouvrage et les éléments composantes de ce dernier, la classification de l'ouvrage selon RPA 99 version 2003, ainsi que les matériaux utilisés et ces caractéristiques, et les différentes principales hypothèses de calcule on béton armé.

I.2 Présentation de l'ouvrage

L'ouvrage faisant l'objet de cette présente étude est un bâtiment multifonctionnel qui regroupe, commerces et logements d'habitations,

L'ouvrage sera implanté à **Ouled Yaich** dans la wilaya **Blida**, selon le règlement parasismique algérien (RPA99 version2003) elle est classée comme étant une zone de forte sismicité (zone III).

Cet ouvrage est classé comme étant un ouvrage courant d'importance moyenne (**groupe 2**) [2] car sa hauteur ne dépasse pas **48 m**.

Le site est considéré comme meuble (S3).

I.2.1 Caractéristique de l'ouvrage

L'ouvrage en question a une forme irrégulière, il se compose de RDC+9 étages + un sous sol.

- Un sous-sol d'usage parking.
- RDC et 1ére étage d'usage commercial.
- 2éme étage jusqu'a au 9ème étages a usage d'habitation.
- Notre ouvrage comporte deux types de terrasses accessible et inaccessible.

I.2.2 Caractéristiques géométriques

a. Dimensions en élévation

-	Hauteur totale est de34.71 m
-	Hauteur du rez de chaussée est de5, 95 m
-	Hauteur de l'étage courant 1 ^{er} étage est
-	Hauteur de l'étage courant de 2eme au 9eme est3,06m
_	Hauteur de sous-sol est de3,74 m

b. Dimensions en plan

- Longueur totale (sens longitudinal)L = 31.08 m
- Largeur total (sens transversal)L= 61.70 m

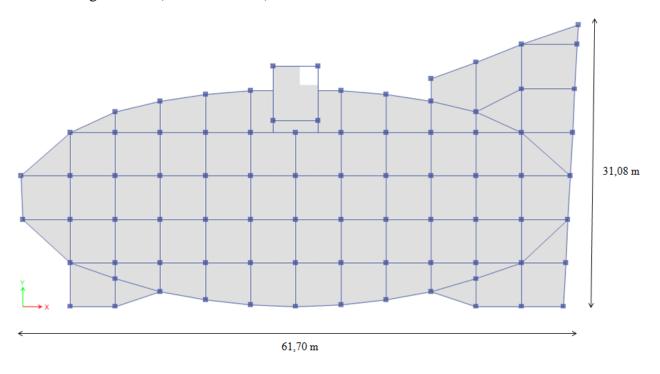


Figure. I.1: Dimensions du bâtiment en plan.

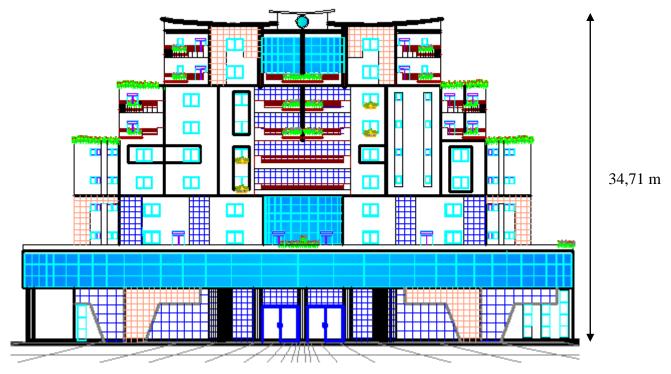


Figure. I.2: Dimension du bâtiment en élévation.

3

I.2.3 Ossature

Le bâtiment qui fait l'objet de notre étude est constitué par un système de contreventement de structures en portique par des voiles en béton armé suivant les deux sens selon le règlement parasismique algérien. [2]

I.2.4 Les Planchers

Les planchers sont des éléments plans dont l'épaisseur est faible par rapport à leurs dimensions.

Le rôle essentiel des planchers est d'assurer la transmission des charges verticales aux éléments porteurs de l'ossature (poteaux ou voiles).

Notre structure comporte deux types de planchers :

- Plancher en corps creux pour les panneaux de forme régulière.
- Plancher en dalle pleine pour les panneaux de forme irrégulière.

I.2.5 Escaliers:

Servent à relier les niveaux successifs et à faciliter les déplacements, réalisés en béton armé coulé sur place.

Deux types d'escalier ont été utilisés :

- Escalier à trois volées et deux paliers intermédiaire.
- Escalier à deux volées et un palier intermédiaire.

I.2.6 Maçonnerie:

Les murs de notre structure seront exécutés en brique creuse.

- Murs extérieurs : ils sont constitués d'une double cloison de 30cm d'épaisseur.

Brique creuse de 15 cm d'épaisseur pour la paroi externe du mur.

L'âme d'air de 5 cm d'épaisseur.

Brique creuse de 10 cm d'épaisseur pour la paroi interne du mur.

- **Murs intérieurs :** ils sont constitués par une cloison de 10 cm d'épaisseur qui sert à séparer deux services et une double cloison de 25 cm d'épaisseur qui sert à séparer deux logements voisins (une cloison de 10cm d'épaisseur pour la face externe et interne).

I.2.7 Revêtement

Le revêtement du bâtiment est constitué par :

- Un carrelage de 2cm pour les chambres, les couloirs et les escaliers.
- De l'enduit de plâtre pour les murs intérieurs et plafonds.

• Du mortier de ciment pour crépissages des façades extérieurs.

I.2.8 Ascenseurs

La structure comporte une cage d'ascenseur du sous-sol jusqu'au 9ème étage.

I.2.9 Infrastructure

Elle sera réalisée en béton armé coulée sur place, elle doit constituer un ensemble résistant et rigide capable de remplir les fonctions suivantes :

- Réaliser l'encastrement de la structure dans le sol.
- Limiter les tassements différentiels.
- Transmettre les charges horizontales (charges sismiques) et les charges verticales au sol d'assise de la structure.
- La catégorie de site S3: site meuble.

I.3 Définition des matériaux

I.3.1 Caractéristiques mécaniques des matériaux :

Les caractéristiques mécaniques des matériaux utilisés dans le calcul du bâtiment doivent être conformes aux règles techniques de construction et de calcul des ouvrages en béton armé (BAEL) et à la réglementation en vigueur en Algérie.

a. Ciment:

Le CEMIIb 42,5 est le liant le plus couramment utilisé actuellement.

b. Béton:

On appelle béton, le matériau constitué par le mélange, dans les proportions convenables, de ciment, granulats et eau. Le béton armé est le matériau obtenu on enrobant dans le béton des aciers disposés de manière à équilibrer les efforts de traction.

c. Granulats:

- Sable de dimension ($D_s \le 5$) mm
- Graviers de dimension ($3 \le D_g \le 25$) mm

d. Eau de gâcahge:

Elle met en réaction le ciment en provoquant son hydratation, elle doit être propre et dépourvue de tous produits pouvant nuire aux caractéristiques mécaniques du béton.

I.3.2 Résistance du béton

Le béton est caractérisé par sa résistance à la compression, et sa résistance à la traction, mesurée à " j" jours d'âge. [1]

a. Résistance du béton à la compression :

Le béton est caractérisé par sa résistance à la compression à «J» jours, généralement à 28 jours. Cette valeur est déterminée par des essais sur des éprouvettes cylindriques de 200 cm² de section et ayant une hauteur double de leur diamètre.

$$j \le 28 \text{ jours } \rightarrow f_{cj} = 0.685 \text{ fc}_{28} \log (j + 1)$$

$$j = 28 \text{ jours} \rightarrow fc_j = fc_{28}$$

$$j > 28 jours \rightarrow fc_i = 1.1 fc_{28}$$

Pour notre étude $fc_{28} = 30 \text{ MPa}.$

b. Résistance du béton à la traction :

La résistance à la traction est déterminée par plusieurs essais, parmi ces essais on peut citer :

- 1. Traction directe sur les cylindres précédents en collant des têtes de traction.
- 2. Traction par fendage en écrasant un cylindre de béton placé horizontalement entre les plateaux d'une presse (essai Brésilien).

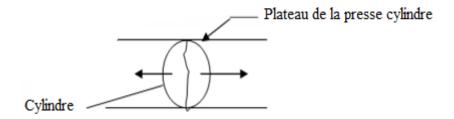


Figure I.3 : Essai Brésilien.

3. Traction par flexion:

à l'aide d'une éprouvette prismatique de coté « a » et de longueur « 4a » reposant sur deux appuis horizontaux et soumise à la flexion.

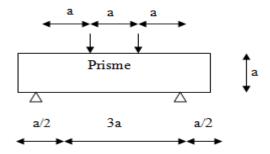


Figure. I.4: Résistance du béton a la traction.

La résistance à la traction est notée par « \mathbf{f}_{tj} », elle est définie par la relation :

$$f_{tj} = 0.6 + 0.06 f_{cj}(MPa)$$
 [1]

Pour le cas de notre structure on utilise le même dosage en béton avec une résistance caractéristique à la compression f_{c28} et a la traction f_{t28} telle que :

$$f_{c28} = 30 \text{ MPA}$$
 donc $f_{t28} = 2,4 \text{ MPA}$.

c. Module de déformation longitudinale :

Ce module est défini selon l'action des contraintes normales d'une longue durée ou courte durée.

- Module d'élasticité instantanée « Eij » :

Sous des contraintes normales d'une durée d'application inférieure à 24 heures, on admet, à défaut de mesures qu'à l'âge de j jours, le module de déformation longitudinale instantanée du béton Eij est égal à : Eij = $11000 \times \sqrt[3]{f_{cj}}$ (MPa) [1]

D'ou : $E_{i28} = 34179,55$ Mpa.

Module d'élasticité différé « Evj » :

Les déformations différées tiennent compte de retrait et du fluage, à défaut de mesures, on admet que sous contraintes se longue durée d'application le module de déformation différée du béton est : $E_{vj} = 3700 \times \sqrt[3]{fcj}$ (MPa) [1]

D'ou : $E_{v28} = 11496.76 \text{ MPa}$

d. Coefficient de Poisson

Le coefficient de Poisson exprime le rapport entre la déformation transversale et la déformation longitudinale.

$$v = \frac{Allongement\ relatif\ du\ cot\'e\ de\ la\ section}{raccourcissement\ relatif\ longitudinal}$$

• E.L.U: v = 0 calcul des sollicitations (béton fissuré)

• E.L.S: v = 0.2 calcul des déformations (béton non fissuré).

e. Les contraintes limites de calcul [1] :

- États Limites Ultime (ELU) :

La contrainte ultime de béton en compression σ_{bc} est donnée par la relation suivante :

$$f_{bu} = \frac{0.85 f_{c28}}{\gamma_b}$$
 [1]

Avec: γ_b :

Coefficient de sécurité pour le Béton, il est pris égal à : [1]

$$\gamma_b = \left\{ \begin{array}{c} 1{,}5{.....} \text{Situation durable.} \\ \\ 1{,}15{....} \text{Situation accidentelle.} \end{array} \right.$$

fc₂₈: Résistance caractéristique du béton à la compression à 28 jours.

0, 85 : Coefficient de minoration qui à pour objet de couvrir l'erreur faite en négligeant le fluage du béton.

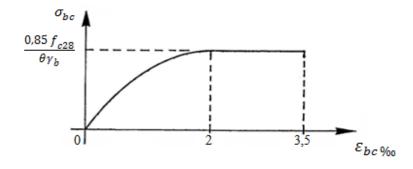


Figure I.5: Diagramme contrainte-déformation du béton à l'ELU. [1]

- Contrainte ultime de cisaillement :

La contrainte ultime de cisaillement vu est limitée par :

 τ = min {0.2fc₂₈/ γ _b; 5MPa}= 4MPa, dans le cas d'une fissuration peu nuisible ;

 $\tau = min \{0.15fc_{28}/\gamma_b; 4MPa\} = 3MPa$, dans le cas où la fissuration est préjudiciable où très préjudiciable.

États Limites de Service (ELS):

La contrainte limite du béton à l'état limite de service est : $\sigma_{bc} = 0.6 \times fc_{28}$

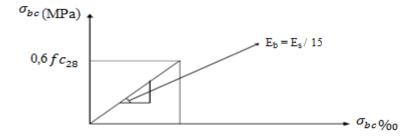


Figure I.6: Diagramme contrainte-déformation du béton à l'ELS. [1]

I.3.3 L'acier

Afin de remédier au problème de faible résistance du béton à la traction on intègre dans les pièces du béton des armatures pour reprendre ces efforts de traction.

Les armatures pour le béton armé sont constituées d'aciers qui se distinguent par leur nuance et leurs états de surface (barres lisses à haute adhérence).

a. Limite d'élasticité

La caractéristique la plus importante des aciers est la limite d'élasticité (f_e) cette valeur est donnée selon le BAEL99 dans le tableau suivant :

Туре	Désignation	Limite élastique (Mpa)	Allongement	Contrainte de Rupture (Mpa)	
Rond Lisse	FeE22	215	22	380 – 390	
	FeE24	235	25	410 – 490	

Tableau I.1: Caractéristiques des Aciers.

Barre à haute adhérence	FeE400	400	14	490
Fils très filés lisse	Ø > 6mm	500	14	580

a. Contrainte limite de l'acier

État Limite Ultime (ELU)

On adopte le diagramme contraintes- déformations suivant :

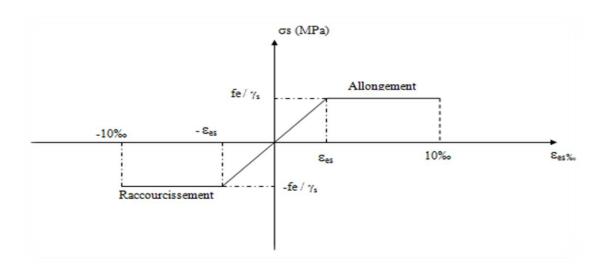


Figure I.7 : Diagramme contrainte-déformation de l'acier. [1]

Avec:

 \mathcal{E}_{S} : Déformation (allongement) relative de l'acier $\rightarrow \quad \mathcal{E}_{S} = \frac{\Delta L}{L} \quad \mathcal{E}_{S} = \frac{f_{e}}{E_{S} \gamma_{S}}$

 σ_s : Contrainte de l'acier : $\sigma_s = \frac{f_e}{\gamma_s}$

γ_s : Coefficient de sécurité de l'acier, il a pour valeur :

$$\gamma_s = \left\{ \begin{array}{c} 1{,}15{.}.....Situation durable.} \\ 1{,}00{.}.....Situation accidentelle.} \end{array} \right.$$

 E_S : Module d'élasticité longitudinal de l'acier, il est pris égal à : $E_S = 2.10^5 \,\mathrm{MPa}$.

 ε_S : Allongement relatif de l'acier : $\varepsilon_S = \Delta L/L$

État Limite Service (ELS):

C'est l'état où on fait les vérifications des contraintes par rapport aux cas appropriées :

• Fissuration peu nuisible : pas de vérification.

• Pour une fissuration préjudiciable :
$$\sigma_s = \zeta_s = Mi \left(\frac{2}{3} f_e, \text{max}(0.5 f_e; 110 \overline{\eta_{tj}}) \right)$$

• Pour une fissuration très préjudiciable:

$$\sigma_s = 0.8 \le 8 \times Mi \left(\frac{2}{3} f_e, \text{max}(0.5 f_e; 110 \overline{f_{ij}}) \right)$$
 $\eta = \text{Coefficient de fissuration tel}$ que: $\eta = 1,00 \text{ pour les}$ aciers ronds lisses.

1,60 pour les aciers à haute adhérence.

I.4. Hypothèses de calcul aux états limites

> Hypothèse de calcul à l'ELU:

H1: Conservation des sections planes (diagramme linéaire des déformations).

H2 : Il n'y a pas de glissement relatif entre les armatures d'acier et le béton.

H3: Le béton tendu est négligé dans le calcul.

H4 : Le raccourcissement unitaire du béton est limité à $\epsilon_{bc} = 3,5\%$ dans le cas de flexion simple ou composée et de 2 % dans le cas de compression simple.

H5: L'allongement unitaire de l'acier est limité à 10‰.

> Hypothèse de calcul à l'ELS :

H1: Conservation des sections planes.

H2: Glissement entre l'acier et le béton est négligeable.

H3: Le béton tendu est négligé dans le calcul.

H4 : Les contraintes de compressions du béton, et de leurs déformations élastiques :

$$\sigma_b = E_b \times \varepsilon_b$$

$$E_S \times \varepsilon_S$$

H5: Par convention le coefficient d'équivalence entre l'acier et le béton et : $\eta = \frac{E_s}{E_b} = 15$

Caractéristiques du sol d'assise

La capacité portante admissible du sol d'assise, obtenue par les investigations géotechniques est de 2,0 bars.

II.1. Introduction:

Après la présentation de l'ouvrage et les caractéristiques des matériaux nous verrons dans le présent chapitre le pré dimensionnement qui a pour but d'estimer approximativement les dimensions des différents éléments constituant notre structure en fonction des différentes charges agissants sur cette dernière et qui sont corrigés éventuellement au moment de l'étude, afin d'avoir une bonne résistance et une meilleure stabilité de l'ouvrage.

Pour ce faire des règlements en vigueur, notamment le BAEL 91 modifié 99 » et le RPA99 version 2003 » et le «CBA93 », recommandant ce qui est nécessaire pour un pré dimensionnement à la fois sécuritaire et économique.

II.2. Pré dimensionnement des éléments résistant :

II.2.1 Pré dimensionnement des planchers :

Dans notre structure, on utilise deux types de planchers :

a. Plancher en corps creux :

Le pré-dimensionnement ce fait a partir de la condition de rigité :

$$h_i \geq \frac{L}{2.25}$$

L : Longueur de la portée libre maximale de la grande travée dans le sens des poutrelles.

 h_t : Hauteur du plancher.

$$L = 480 - 30 = 450 \text{ cm}$$

$$L = 450 \ cm \longrightarrow h_t \ge \frac{450}{22.5} = 20 \ cm$$

Donc on adoptera des planchers à corps creux avec une hauteur de (16+5) = 21cm.

Avec:

16 cm: hauteur du corps creux.

5 cm : hauteur de la dalle de compression.

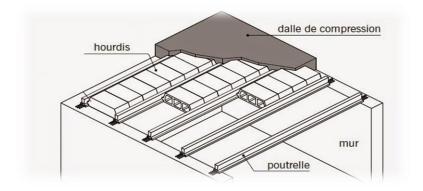


Figure II.1: Détails d'un plancher à corps creux.

b. Planchers à dalle pleine :

Ce type de plancher est le plus utilisé pour les bâtiments industriels et commerciales car ils subissent des surcharges d'exploitations importantes ($Q \ge 2,5 \text{ KN/m}^2$), c'est le cas pour les étages de RDC et 1^{ére} étage.

L'épaisseur des dalles dépend le plus souvent des conditions d'utilisation que des vérifications de résistance, on déduira donc l'épaisseur des dalles à partir des conditions suivantes :

> Résistance au feu

e = 7 cm Pour une heure de coupe-feu..

> Résistance à la flexion

Les conditions qui doivent être vérifiées selon le nombre des appuis sont les suivantes :

- Dalle reposant sur deux appuis : $\frac{lx}{35} \le e \le \frac{lx}{30}$

- Dalle reposant sur trois ou quatre appuis : $\frac{l_x}{50} \le e \le \frac{l_x}{40}$

Avec:

e: Epaisseur de la dalle pleine.

L_x: la portée mesurée entre nus des appuis du panneau le plus sollicité.

 $L_x = 5.00 \text{ m}$

La dalle repose sur quatre appuis

$$5/50 \le e \le 5/40$$

On aura donc : $10 \le e \le 12.5$ (cm).

e=11cm

> Isolation phonique :

D'après le CBA et pour assurer une bonne isolation phonique on optera pour une dalle d'épaisseur : e = 15 cm

D'après les conditions précédentes, l'épaisseur des dalles pleines :

$$e \ge Max (7; 11; 15) cm \implies e = 15 cm.$$

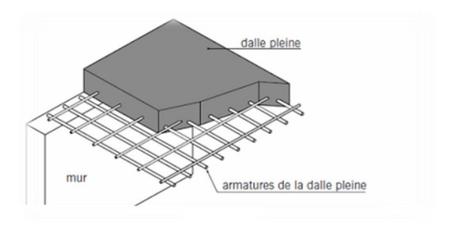


Figure II.2: Détails d'un plancher à dalle pleine.

II.3. Evaluation des charges et surcharges :

Cette étape consiste à déterminer les charges et les surcharges qui influent sur la résistance et la stabilité de notre ouvrage.

II.3.1 Charges permanentes:

II.3.1.1 Plancher terrasse inaccessible :

a) Dalle en corps creux:

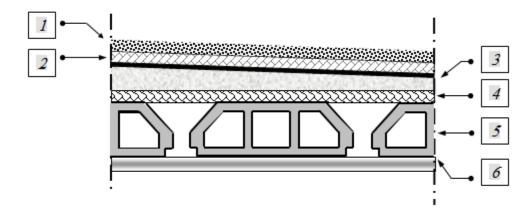


Figure II.3: Coupe verticale du plancher terrasse à corps creux.

Tableau II.1: Charge permanente du plancher terrasse (corps creux).

N^0	Composants	Epaisseur (m)	Poids volumique (KN/m³)	Poids surfacique (KN/m²)
1	Gravillon de protection	0,05	17	0,85
2	Etanchéité multicouche	0,02	6	0,12
3	Forme de pente	0,1	22	2,2
4	Isolation thermique (liège)	0,04	4	0,16
5	Plancher (16+5)	0,16+0,05	-	3,05
6	Enduit en plâtre	0,02	10	0,20
	Charge po	6,58		

b) Dalle pleine:

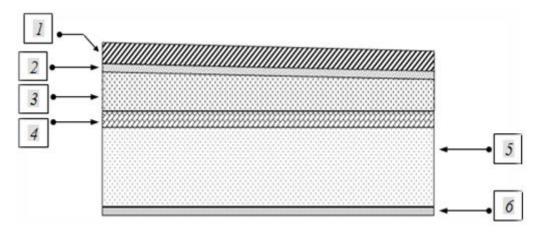


Figure II.4: Coupe verticale du plancher terrasse à dalle pleine.

Tableau II.2: Charge permanente du plancher terrasse (dalle pleine).

N^0	Composants	Epaisseur (m)	Poids volumique (KN/m³)	Poids surfacique (KN/m²)
1	Gravillon de protection	0,05	17	0,85
2	Etanchéité multicouche	0,02	6	0,12
3	Forme de pente	0,1	22	2,2
4	Isolation thermique (liège)	0,04	4	0,16
5	Dalle pleine	0,15	25	3,75
6 Enduit en plâtre		0,02		0,20
	Charge per	7,28		

II.3.1.2 Plancher terrasse accessible :

a)Corps creux:

Tableau II.3: Charge permanente du plancher terrasse (corps creux).

N^0	Composants	Epaisseur (m)	Poids volumique (KN/m³)	Poids surfacique (KN/m²)
1	Carrelage	0,02	20	0,40
2	Etanchéité multicouche	0,02	6	0,12
3	Forme de pente	0,1	22	2,2
4	Isolation thermique (liège)	0,04	4	0,16
5	Plancher (16+5)	0 ,16+0,05	-	3,05
6	Enduit en plâtre	0,02	10	0,20
	6,13			

b) Dalle pleine:

Tableau II.4: Charge permanente du plancher terrasse (dalle pleine).

N^0	Composants	Epaisseur (m)	Poids volumique (KN/m³)	Poids surfacique (KN/m²)		
1	Carrelage	0,02	20	0,40		
2	Etanchéité multicouche	0,02	6	0,12		
3	Forme de pente	0,1	22	2,2		
4	Isolation thermique (liège)	0,04	4	0,16		
5	Dalle pleine	0,15	25	3,75		
6	Enduit en plâtre	0,02	10	0,20		
	Charge permanente G					

II.3.1.2 Plancher de l'étage courant :

a) Dalle en corps creux :

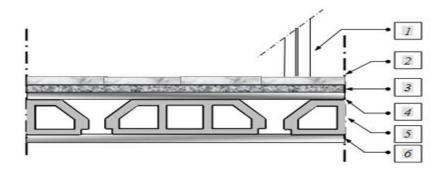


Figure II.5: Coupe verticale du plancher courant à corps creux.

Tableau II.5: Charge permanente du plancher courant (corps creux).

N^0	Composants	Epaisseur (m)	Poids volumique (KN/m ³)	Poids surfacique (KN/m ²)
1	Cloisons de distribution	0,10	-	1,00
2	Carrelage	0,02	20	0,40

3	Mortier de pose	0,02	20	0,40
4	Lit de sable	0,03	18	0,54
5	Plancher (16+5)	0,16+0,05	-	3,05
6	Enduit de plâtre	0,02	10	0,20
	Charge p	5,59		

b) Dalle pleine:

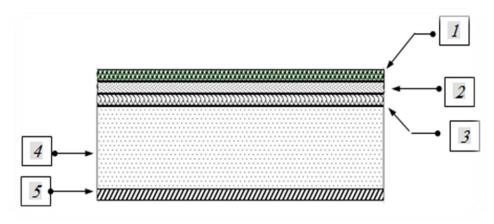


Figure II.6 : Coupe verticale du plancher courant à dalle pleine.

Tableau II.6: Charge permanente du plancher courant (Dalle pleine).

N ⁰	Composants	Epaisseur (m)	Poids volumique (KN/m ³)	Poids surfacique (KN/m²)
1	Cloisons légères	0,10	-	1,00
2	Carrelage	0,02	20	0,40
3	Mortier de pose	0,02	20	0,40
4	Lit de sable	0,02	18	0,36
5	Dalle pleine	0,15	25	3,75
6 Enduit de plâtre		0,02 10		0,20
	Charge 1	6,11		

c) Balcon:

Tableau II.7 : Charge permanente du balcon.

N^0	Composants	Epaisseur (m)	Poids volumique (KN/m³)	Poids surfacique (KN/m²)
1	Carrelage	0,02	20	0,40
2	Mortier de pose	0,02	20	0,40
3	Lit de sable	0,02	18	0,36
4	Dalle pleine	0,15	25	3,75
5	Enduit de ciment	0,02	18	0,36
	Charge	5,27		

d) Maçonnerie:

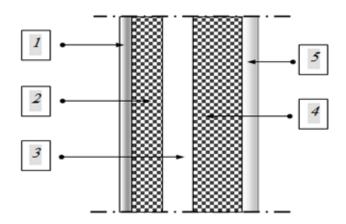


Figure II.7: Constitution du mur extérieur.

Tableau II.8: Les charges permanentes sur des murs extérieurs à double cloison.

N^0	Composants	Epaisseur (m)	Poids volumique (KN/m³)	Poids surfacique (KN/m²)
1	Enduit en plâtre	0,02	10	0,20
2	Brique creuse	0,10	9	0,90
3	Ame d'air	0,05	-	0
4	Brique creuse	0,15	9	1,35
5	Enduit en ciment	0,36		
	Charge	2,81		

e) Acrotère:

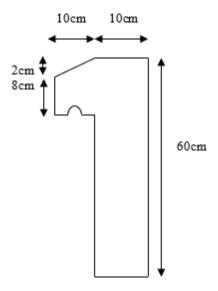


Figure II.8 : Schéma de l'acrotère.

Le poids propre de l'acrotère pour 1 ml est de $G_1 = \rho_b \times s$

 ρ_b : Le poids volumique du béton tel que $\rho_b = 30 \text{ KN/m}^3$

S : La surface transversale totale.

$$S = (0,10 \times 0,6) + (0,08 \times 0,10) + (0,1 \times \frac{0,02}{2}) = 0,069 \text{ m}.$$

D'où le poids propre de l'acrotère :

$$G_1 = 30 \times 0.069 = 2.07 \text{ KN/m}$$

Le poids des enduits au ciment (ep = 1,5 cm, ρ =18 KN/m³):

$$G_2 = \rho \times e \times P = 18 \times 0.015 \times (0.6 + 0.1 + 0.1019 + 0.08 + 0.1 + 0.5 + 0.1) = 0.43 \text{ KN/ml}$$

Le poids total de l'acrotère :

$$G = G_1 + G_2 = 2,5 \text{ KN/m}$$

II.3.2 Charges d'exploitation :

Vu la nature des planchers et leur usage, on distingue les charges d'exploitation :

-	Plancher terrasse (inaccessible)
-	Plancher terrasse (accessible)
-	Plancher à usage commerce
-	Plancher à usage habitation
-	Escaliers $Q = 2.5 \text{ KN/m}^2$
_	Balcon $Q = 3.5 \text{ KN/m}^2$

II.4. Pré dimensionnement des poutres :

Les poutres sont des éléments porteurs horizontaux en béton armé, leur pré dimensionnement se base sur les trois étapes suivantes :

- Détermination des dimensions (h, b) à partir des formules empiriques données par le B.A.E.L 91 modifié 99.
- Vérification des conditions imposées sur (h, b) par le Règlement Parasismique Algérien (RPA 99 version 2003).

Les trois étapes précédentes sont résumées dans ce qui suit :

• Selon le BAEL 91 modifié 99 :

- La hauteur h de la poutre doit être : $\frac{L}{15} \le h \le \frac{L}{10}$

- La longueur b de la poutre doit être : $0.3h \le b \le 0.7h$

Avec:

L : Portée maximale de la poutre

h: Hauteur de la poutre.

b : Largueur de la poutre.

• Selon le R.P.A 99 (version2003)

- La hauteur h de la poutre doit être : $h \ge 30cm$

- La largeur b de la poutre doit être : $b \ge 20cm$

- Le rapport hauteur largueur doit être : $\frac{h}{h} \le 4$

II.4.1 Exemple de calcul:

Poutres Principales 1 : $L_{max} = 500 - 30 = 470 \text{ cm}$

Selon BAEL91

$$\frac{470}{15} \le h \le \frac{470}{10}$$

D'où: $28 \le h \le 47$

on prend

h = 45 cm

$$0.3 \times 45 \le b \le 0.7 \times 45$$

D'où: $13.5 \le b \le 31.5$

on prend

b = 30 cm

Nous choisissons une poutre de : $b x h = 30 x 45 cm^2$

- Vérification selon le RPA99

$$b = 30 \text{ cm} \ge 20 \text{cm}$$

$$h = 45 \text{ cm} \ge 30 \text{cm}$$

⇒ les trois conditions dictées par le RPA99 sont vérifiées.

Poutres Principales 2 cage d'escalier :

$$L_{max} = 600 - 30 = 570 \text{ cm}$$

Selon BAEL91

$$\frac{570}{15} \le h \le \frac{570}{10}$$

D'où: $38 \le h \le 57$ on prend

h = 50 cm

$$0.3 \times 50 \le b \le 0.7 \times 50$$

D'où: $15 \le b \le 35$

on prend

b = 35 cm

Nous choisissons une poutre de : $b \times h = 35 \times 50 \text{ cm}^2$

- Vérification selon le RPA99

$$b = 35 \text{ cm} \ge 20 \text{cm}$$

 $b = 50 \text{ cm} \ge 30 \text{cm}$

 $h = 50 \text{ cm} \ge 30 \text{cm}$

⇒ les trois conditions dictées par le RPA99 sont vérifiées.

• Poutre secondaires :

L max =
$$480 - 30 = 450$$
 cm
 $\frac{450}{15} \le h \le \frac{450}{10}$
 $30 \le h \le 45$ cm $\implies h = 40$ cm
 $0.3 \times 40 \le b \le 0.7 \times 40$
 $13.5 \le b \le 31.5$ cm $\implies b = 30$ cm

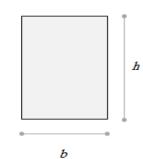
Nous choisissons une poutre de : $b \times h = 30 \times 40 \text{ cm}^2$

Vérification selon le RPA99

b = 30 cm ≥ 20cm
h = 40 cm ≥ 30cm

$$\frac{h}{b}$$
 = 1,25≤4

⇒les trois conditions dictées par le RPA99 sont vérifiées.


Conclusion:

Les dimensions finales des poutres sont :

Les poutres principales 1 : $(b \times h) = (30 \times 45) \text{ cm}^2$.

Les poutres principales 2 cage d'escalier : $(b \times h) = (35 \times 50) \text{ cm}^2$.

Les poutres secondaires : $(b \times h) = (30 \times 40) \text{ cm}^2$.

Figure II.9: La section d'une poutre.

II.5.Pré dimensionnement des voiles :

On appelle voiles, les murs réalisés en béton armé, ils sont conçus de façon à reprendre les charges et surcharges verticales, et assurent la stabilité de l'ouvrage vis-à-vis des charges horizontales (séisme). Pour leur pré dimensionnement, on s'est basé sur les recommandations du le RPA99 version 2003.

L'épaisseur minimale est de 15cm. De plus, l'épaisseur doit être déterminée en fonction de la hauteur libre d'étage h_e et des conditions de rigidité aux extrémités.

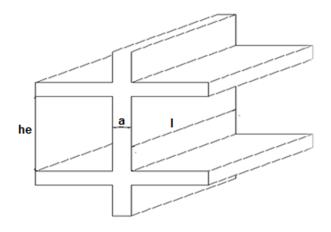


Figure II.10 : Schéma du voile.

Dans notre cas

$$a_{min}\!\geq\!\ max\bigg\{\ 15cm\ ;\ h_e/\ 20\ \bigg\}$$

Avec:

h_e: Hauteur libre d'étage.

a min: Epaisseur de voile.

$$\begin{array}{ll} \bullet & Pour \ RDC & h_e = (5,95 \ -0,45) = 5.5 \ m \\ & a_{min} \geq \ max & \left\{ \ 15 \ cm \ ; \ 27.5 cm \right\} & => \ \textbf{a}_{min} = \ \textbf{27.5} \ \textbf{cm}. \end{array}$$

• Pour les étages courants 2em 9em $h_e = (3,06 - 0,40) = 2,61 \text{ m}.$

$$a_{min} \ge max = \left\{15cm ; 13.05 cm\right\} = a_{min} = 15 cm$$

• Pour les étages 1^{er} $h_e = (4.08 - 0.50) = 3.63 \text{ m}.$

Conclusion:

On adopte pour épaisseur de : $a_{RDC} = 30 \text{ cm}$

$$a_{1\text{\'e}re\ \acute{e}tage} = 25 \text{ cm}$$

II.6. Pré dimensionnement des poteaux :

II.6.1.Principe:

Les poteaux sont des éléments structuraux verticaux destinés principalement à transmettre les charges verticales aux fondations, et à participer au contreventement total ou partiel des bâtiments.

Les poteaux sont pré dimensionnés en compression simple en choisissant 3 types de poteaux les plus sollicités de la structure. C'est-à-dire, un poteau central, deux poteaux de rive, Chaque type de poteau est affecté de la surface du plancher chargé lui revenant, et on utilisera un calcul basé sur la descente de charge. On appliquera la loi de dégression des charges d'exploitation.

II.6.2. Etapes de pré dimensionnement (calcul) :

- Calcul de la surface reprise par chaque poteau.
- Evaluation de l'effort normal ultime de la compression à chaque niveau.
- La section du poteau est alors calculée aux états limite ultime (ELU) vis-à-vis de la compression simple du poteau.
- La section du poteau obtenue doit vérifier les conditions minimales imposées par le «RPA99 version 2003».
- Vérification du critère de l'effort normal réduit.

II.6.3. Loi de dégression :

Chaque type de poteau est affecté de la surface du plancher chargé lui revenant et on utilisera un calcul basé sur la descente de charges, on appliquera la loi dégression des charges d'exploitations.

Soit Q_0 la charge d'exploitation sur le plancher terrasse couvrant le bâtiment, Q_1 , Q_2 , Q_3 , Q_n les charges d'exploitation respective des planchers des étages. 1, 2, 3, ...n numérotés à partir du sommet du bâtiment.

On adoptera pour le calcul des points d'appui les charges d'exploitation suivante :

- Sous toit ou terrasseQ₀
- ➤ Sous dernier étage (Étage 1)Q₀+ Q₁

> Sous étage immédiatement inférieur :

(Étage 2).....
$$Q_0+0.95$$
 (Q_1+Q_2)

(Étage 3).....
$$Q_0+0.90$$
 ($Q_1+Q_2+Q_3$)

(Étage 4).....
$$Q_0+0.85$$
 ($Q_1+Q_2+Q_3+Q_4$)

(Étage n).....
$$Q_0 + \frac{3+n}{2n} (Q_1 + Q_2 + Q_3 +Q_n)$$

Le coefficient $\frac{3+n}{2n}$ étant valable pour $n \ge 5$

Avec:

n: nombre d'étage.

 Q_0 : la structure d'exploitation sur la terrasse.

Q₁, Q₂,....., Q_n: les surcharges d'exploitation des planchers respectifs.

• Dimensionnement des poteaux :

Le pré dimensionnement est déterminé en supposant que les poteaux sont soumis à la compression simple par la formule suivante :

$$N_u = \alpha \left| \frac{Brf_{c28}}{0.9\gamma_b} + \frac{A_s fe}{\gamma_s} \right| \dots (1)$$

Avec:

 N_u : effort normal ultime (compression) = 1,35G+1,5Q;

 α : coefficient réducteur tenant compte de la stabilité $(\alpha = f(\lambda))$.

 λ : élancement d'EULER $\left(\lambda = \frac{l_f}{i}\right)$.

l_f: longueur de flambement;

i : rayon de giration $\left(i = \sqrt{\frac{I}{B}}\right)$.

I : moment d'inertie de la section par rapport à l'axe passant par son centre de gravité et

perpendiculaire au plan de flambement $\left(I = \frac{h\mathcal{B}}{12}\right)$.

B : surface de la section du béton

 γ_b : coefficient de sécurité pour le béton ($\gamma_b = 1,50$).....situation durable.

 γ_s : coefficient de sécurité pour l'acier (γ_s = 1,15).....situation durable.

fe : limite élastique de l'acier (fe = 500 MPa).

 f_{c28} : contrainte caractéristique du béton à 28 jours (f_{c28} = 30MPa).

A_s: section d'acier comprimée.

Br : section réduite d'un poteau, obtenue en réduisant de sa section réelle 1cm d'épaisseur sur tout son périphérique tel que :

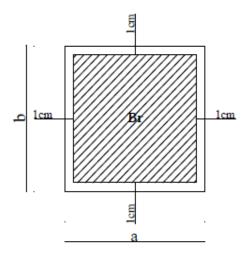


Figure II.11: Section réduite du poteau.

Selon le « BAEL 91 modifié 99 »

$$0,2\% \le \frac{A_{s}}{R} \le 5\%$$

On cherche à dimensionner le poteau de telle sorte que : $\frac{A_s}{B} = 1\%$

$$\bullet \quad a \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \qquad si \ \lambda = 50$$

•
$$a = 0.6 \left(\frac{50}{\lambda}\right)^2$$
 $si\ 50 < \lambda < 100$

Pour les poteaux, il est préférable de prendre $\lambda=35\rightarrow\alpha=0.70$?

On tire de l'équation (1) la valeur de Br:

$$Br \ge \frac{N_u}{a\left(\frac{f_{c28}}{0.9\gamma_b} + \frac{A_s}{B}\frac{fe}{\gamma_s}\right)} = 0.53N_u$$

➤ Le minimum requis par « RPA99 version 2003 »

Pour une zone sismique III

On doit avoir au minimum:

$$\begin{cases} *Mi(\alpha,b) \ge 30cm \\ *Mi(\alpha,b) > \frac{h_e}{20} \\ *\frac{1}{4} < \frac{a}{b} < 4 \end{cases}$$

Avec:

(a; b): dimensions de la section.

he: hauteur d'étage.

Schéma statique de la descente de charge :

_	
N 1	
N 2	
N 3	
N 4	
N 5	
N 6	
N 7	
N 8	
N 9	
RDC	

Figure II.12 : Schéma statique de la descente de charge.

• Calcul des poteaux :

Les poteaux les plus sollicités sont :

Poteau centrale ; Poteau de rive

II.6.4. Calcul de la décente de charge :

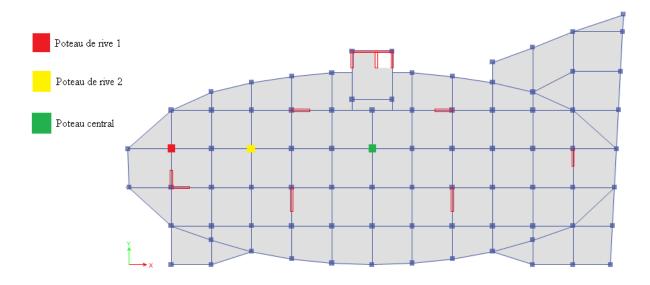


Figure II.13 : Vue en plan des poteaux les plus sollicités

1. Poteau central:

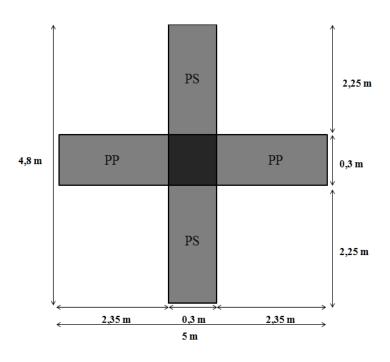


Figure II.14 : Section du poteau le plus sollicité.

La portée de la poutre principale de $30 \times 45 = 4.7 \text{ m}$ La portée de la poutre secondaire de $30 \times 40 = 4.5 \text{ m}$

La surface totale est : $S = 24 \text{ m}^2$

Surface à calculer : $S_G = (5-0.3)*(4.8-0.3) = 21.15 \text{ m}^2 \text{ et } S_O = (5*4.8) - (0.3^2) = 23.91 \text{ m}^2$

Calcul des différents poids :

Poids des poutres :

Poids des poutres principale : $G_P = 19.02 \text{ KN}$ Poids des poutres secondaire : $G_S = 18.20 \text{ KN}$.

Poids des poutres : $G_{PT} = 37.22 \text{ KN}$

Poids propre des poteaux :

Pour calculer le poids des poteaux on fixe les dimensions minimales exigées par le RPA 99 Modifier 2003 pour tous les poteaux de la structure $\begin{cases}
b = 30cm \\
h = 30cm
\end{cases}$

Poids du poteau du 1^{er} étage : $(4,08 - 0,45) \times 25 \times (0,3)^2 = 9.80$ kN

Poids du poteau rive : $(4 - 0.45) \times 25 \times (0.3)^2 = 9.58$ kN

Poids du poteau RDC : $(5.95 - 0.45) \times 25 \times (0.3)^2 = 14.85$ kN

Poids des poteaux des étages courants : $(3,06 - 0,45) \times 25 \times (0,3)^2 = 7kN$

Poids du poteau du sous-sol : $(3.74 - 0.45) \times 25 \times (0.3)^2 = 8.8 \text{kN}$

- Charge d'exploitation :

L'évolution de la charge d'exploitation sont traité sur le tableau suivant :

Tableau II.9 : Dégression des surcharges pour poteau central.

Niveau des planchers	$\begin{array}{c}Q_{i}\\(KN/m^{2})\end{array}$	Charge d'exploitation	∑ Charges d'exploitation
N 1	Q_0	1	Q_0
N 2	Q_1	1,5	Q ₀ + Q ₁
N 3	Q_2	1,5	Q ₀ +0,95(Q ₁ + Q ₂)
N 4	Q ₃	1,5	$Q_0+0,90(Q_1+Q_2+Q_3)$
N 5	Q4	1,5	$Q_0+0.85(Q_1+Q_2+Q_3+Q_4)$
N 6	Q 5	1,5	$Q_0+0.80(Q_1+\cdots\cdots+Q_5)$

N 7	Q ₆	1,5	$Q_0+0.75(Q_1+\cdots\cdots+Q_6)$
N 8	Q ₇	1,5	$Q_0+0,714(Q_1+\cdots\cdots+Q_7)$
N 9	Q ₈	5	$Q_0+0,687(Q_1+\cdots\cdots+Q_8)$
N _{RDC}	Q 9	5	$Q_0+0,667(Q_1+\cdots\cdots+Q_9)$

Tableau II.10 : Récapitulatif de la descente de charge pour poteau central.

Etages	Niveau	Désignation des éléments	G (KN)	Q (KN)
		Poids du plancher DP terrasse inaccessible	153.97	24
		Poids des poutres	37.22	
9 ^{ème} étage	N1	Poids du poteau de l'étage courant	7	
		Total	198.2	
		Venant de N1	198.2	59.87
		Poids du plancher corps creux étage courant	118.23	
8 ^{ème} étage	N2	Poids des poutres	37.22	
		Poids du poteau de l'étage courant	7	
		Total	360.65	
		Venant de N2	360.65	92.14
		Poids du plancher corps creux	118.23	
7 ^{ème} étage	N3	Poids des poutres X1	37.22	
		Poids du poteau de l'étage courant	7	
		Total	523.1	
		Venant de N3	523.1	120.84
6ème étage	N4	X1	162.45	
		Total	685.55	
		Venant de N4	685.55	145.94
5 ^{ème} étage	N5	X1	162.45	
		Total	848	
		Venant de N5	848	167.46
4 ^{ème} étage	N6	X1	162.45	
		Total	1010.45	
		Venant de N6	1010.45	185.39
3 ^{ème} étage	N7	X1	162.45	
		Total	1172.9	
		Venant de N7	1172.9	203.25
2 ^{ème} étage	N8	X1	162.45	
		Total	1335.35	
		Venant de N8	1335.35	278.61
1 ^{ére} étage	N9	Poids du plancher dalle pleine étage courant	129.23	
		Poids des poutres	37.22	
		Poids du poteau du 1ére étage	9.8	

		Total	1511.6	
		Vanant da NO	1511.6	350.93
		Venant de N9		330.93
		Poids du plancher dalle pleine étage courant	129.23	
RDC	N10	Poids des poutres	37.22	
		Poids du poteau du RDC	14.85	
		Total	1692.9	
Totale	Σ		1692.9	350.93

Choix de la section des poteaux centraux :

Tableau II.11: Choix des sections de poteau central.

Niveaux	N _G (KN)	N _Q (KN)	Nu (KN)	Br (cm ²)	$\sqrt{a*b}$ (cm)	RPA (cm ²)	Choix (cm)
Niveau 9	198.2	24	303.57	160.89	15,13	30*30	30*30
Niveau 8	360.65	59.87	576.68	305.64	19.49	30*30	30*30
Niveau 7	523.1	92.14	844.40	447.53	23.16	30*30	30*30
Niveau 6	685.55	120.84	1106.75	586.58	26.26	30*30	35*35
Niveau 5	848	145.94	1363.71	722.77	28.98	30*30	35*35
Niveau 4	1010.45	167.46	1615.3	856.11	31.41	30*30	40*40
Niveau 3	1172.9	185.39	1861.5	986.6	33.62	30*30	40*40
Niveau 2	1335.35	203.25	2107.6	1117.03	35.70	30*30	45*45
Niveau 1	1511.6	278.61	2458.58	1303.05	38.47	30*30	45*45
RDC	1692.9	350.93	2811.81	1490.26	40.73	30*30	45*45

Vérification du critère de l'effort normal réduit :

Outre les vérifications prescrites par le C.B.A et dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.3$$

Avec:

Bc: section de poteau.

Nd: G + Q

Les résultats sont regroupés dans les tableaux suivants :

Tableau II.12 : Choix des poteaux centraux avec vérification de l'effort normal réduit.

	Etages	N _d (KN)	a*b (cm²)	B _c (cm ²)	ν	Observation
	9 ^{ème} étage	222.2	30*30	900	0.08	Vérifiée
	8 ^{ème} étage	420.52	30*30	900	0.16	Vérifiée
	7 ^{ème} étage	615.24	30*30	1225	0.22	Vérifiée
Poteau	6ème étage	806.39	35*35	1225	0,21	Vérifiée
Totcad	5 ^{ème} étage	993.94	35*35	1600	0,27	Vérifiée
	4 ^{ème} étage	1177.91	40*40	1600	0,24	Vérifiée
	3 ^{ème} étage	1358.29	40*40	2025	0,28	Vérifiée
	2 ^{ème} étage	1538.6	45*45	2025	0,25	Vérifiée
	1 ^{ére} étage	1790.21	45*45	2025	0,29	Vérifiée
	RDC	2043.83	45*45	2025	0,33	Non vérifiée

La condition de l'effort normal réduit n'est pas vérifiée dans un étage il faut donc augmenter les dimensions des poteaux déjà existants.

Tableau II.13 : Vérification de l'effort normal réduit avec augmentation des dimensions des poteaux centraux.

	Etages	$N_d(KN)$	a*b (cm ²)	B_c (cm ²)	ν	Observation
	9 ^{ème} étage	222.2	35*35	1225	0.06	Vérifiée
	8 ^{ème} étage	420.52	35*35	1225	0.11	Vérifiée
	7 ^{ème} étage	615.24	40*40	1600	0.12	Vérifiée
	6 ^{ème} étage	806.39	40*40	1600	0.16	Vérifiée
Poteau	5 ^{ème} étage	993.94	45*45	2025	0.16	Vérifiée
	4 ^{ème} étage	1177.91	45*45	2025	0.19	Vérifiée

3 ^{ème} étage	1358.29	45*45	2025	0.22	Vérifiée
2 ^{ème} étage	1538.6	50*50	2500	0.21	Vérifiée
1 ^{ére} étage	1790.21	50*50	2500	0.24	Vérifiée
RDC	2043.83	50*50	2500	0.27	Vérifiée

La même procédure de pré dimensionnement a était faite pour le poteau de rive

2. Poteau de rive :

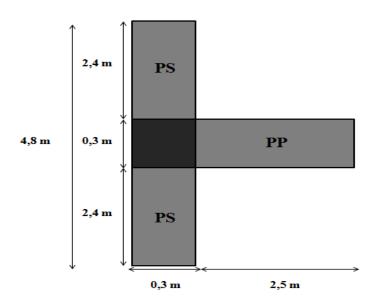


Figure II.15 : Représentation de la surface reprise par le poteau de rive.

Surface à calculer : $S_{G1} = 10.575 \text{ m}^2$; $S_{G2} = 22.08 \text{ m}^2$

$$S_{Q1}=11.91~\mathrm{m^2}$$
 ; $S_{Q2}=24.90~\mathrm{m^2}$

La portée de la poutre principale = 2.5 m

La portée de la poutre secondaire = 4.8 m

Calcul des différents poids :

• Poids des poutres :

Etage courant:

Poids de la poutre principale : $G_P = 10.12$ KN.

Poids de la poutre secondaire : $G_S = 19.44 \text{ KN}$

Poids des poutres : G_{PT} = 29.56 KN

Poids des poteaux :

Poids du poteau du 1^{er} étage : $(4,08 - 0,45) \times 25 \times (0,3)^2 = 9.80$ kN

Poids du poteau rive : $(4 - 0.45) \times 25 \times (0.3)^2 = 9.58$ kN

Poids du poteau RDC : $(5.95 - 0.45) \times 25 \times (0.3)^2 = 14.85$ kN

Poids des poteaux des étages courants : $(3,06 - 0,45) \times 25 \times (0,3)^2 = 7kN$

Poids du poteau du S.S : $(3.74 - 0.45) \times 25 \times (0.3)^2 = 8.8$ kN

• Poids des murs :

 $(2\text{éme et 9}\text{éme }\text{étage}): 2.81 \times (4.8-0,3) \times (3.06-0.45) = 33 \text{ KN}$

• Charge d'exploitation :

L'évolution de la charge d'exploitation sont traité sur le tableau suivant :

Tableau II.14 : Dégression des surcharges des poteaux de rives.

Niveau des planchers	Qi (KN/m²)	Charge d'exploitation	∑ Charges d'exploitation	Qi (KN/m²)
N5	Q_0	1,5	Q_0	17.87
N4	Q ₁	1.5	Q ₀ + Q ₁	35.73
N3	Q_2	1.5	$Q_0+0,95(Q_1+Q_2)$	51.81
N 2	Q_3	1.5	$Q_0+0,90(Q_1+Q_2+Q_3)$	66.1
N 1	Q4	5	Q ₀ +0,85(Q ₁ +Q ₂ +Q ₃ + Q ₄)	169.25
RDC	Q ₅	5	Q ₀ +0,80(Q ₁ +·····+ Q ₅)	259.94

Tableau récapitulatif de la descente de charge pour le poteau rive :

Tableau II.15 : Descente de charge du poteau de rive.

Etages	Niveau	Désignation des éléments	G (KN)	Q (KN)	
		Poids du plancher CC terrasse accessible	73.81		
		Poids des poutres	29.55		
5 ^{ème} étage	N5	Poids du poteau de l'étage courant	7	17.87	
		Poids du mur	33		
		Total	143.36		
		Venant de N5	143.36		
		Poids du plancher corps creux étage courant	59.11		
4 ^{ème} étage	N4	Poids des poutres	29.55	35.73	
i ciage		Poids du poteau de l'étage courant	7	33.73	
		Poids du mur	33		
		Total	272.02		
		Venant de N4	272.02		
		Poids du plancher corps creux étage courant	59.11		
3 ^{ème} étage	N3	Poids des poutres	29.55	51.81	
3 chage		Poids du poteau de l'étage courant	7		
		Poids de mur	33		
		Total	400.68		
		Venant de N3	400.68		
		Poids du plancher corps creux étage courant	59.11		
2 ^{ème} étage	N 2	Poids des poutres	29.55	66.1	
2 01450	1,2	Poids du poteau de l'étage courant	7		
		Poids du mur	33		
		Total	529.34		
		Venant de N2	529.34		
,		Poids du plancher DP étage courant + DP T.accessible	152.24		
1 ^{ére} étage	N 1	Poids des poutres	37,25	169.25	
		Poids du poteau du 1ére étage	9,8		
		Total	728.63		
		Venant de N1	728.63		
		Poids du plancher dalle pleine étage courant	134.91		
RDC	RDC	Poids des poutres	37,25	259.94	
		Poids du poteau RDC	14.85	 	
		Total	915.64		
Totale	Σ		915.64	259.94	

Choix de la section des poteaux de rives :

Tableau II.16: Choix des sections des poteaux de rives.

Etages	N _G (KN)	N _Q (KN)	N _U (KN)	B _R (cm ²)	$\sqrt{a*b}$ (cm)	RPA (cm)	CHOIX (cm)
5 ^{ème} étage	143.36	17.87	220.34	116.78	13,10	30*30	30*30

4 ^{ème} étage	272.02	35.73	420.82	223.03	16,99	30*30	30*30
3 ^{ème} étage	400.68	51.81	618.63	327.87	20,11	30*30	35*35
2 ^{ème} étage	529.34	66.1	813.76	431.29	22.77	30*30	35*35
1 ^{ére} étage	728.63	169.25	1237.53	655.89	27.68	30*30	40*40
RDC	915.64	259.94	1626.02	861.79	31.36	30*30	40*40

Vérification du critère de l'effort normal réduit :

Les résultats sont regroupés dans les tableaux suivants :

Tableau II.17 : Choix des poteaux de rives avec vérification de l'effort normal réduit.

Etages	Nd (KN)	B (cm)	B_c (cm ²)	ν	Observation
5 ^{ème} étage	161.23	30*30	900	0.05	Vérifiée
4 ^{ème} étage	307.75	30*30	900	0.11	Vérifiée
3 ^{ème} étage	452.49	35*35	1225	0.12	Vérifiée
2 ^{ème} étage	595.44	35*35	1225	0.16	Vérifiée
1 ^{ére} étage	897.88	40*40	1600	0.19	Vérifiée
RDC	1175.58	40*40	1600	0.24	Vérifiée

Poteau de rive 2 :

Surface à calculer : $S_{G1}=10.575~\mathrm{m^2}$; $S_{G2}=21.15~\mathrm{m^2}$

$$S_{Q1}=23.91~\mathrm{m^2}$$
 ; $S_{Q2}=11.91~\mathrm{m^2}$; $S_{Q2}=12~\mathrm{m^2}$

Poids des poutres 9+8éme Etage = 29.56 KN Poids des poutres étage courant = 37.22 KN

• **Poids de l'acrotère :** 2,5 x 4,8 = 12 KN

• **Poids du mur**: $2.81 \times (4.8 - 0.3) \times (4 - 0.45) = 44.89 \text{ KN}$

Tableau récapitulatif de la descente de charge pour le poteau de rive :

Tableau II.18 : Descente de charge du poteau de rive.

Etages	Niveau	Désignation des éléments	G (KN)	Q (KN)
9 ^{ème} étage	N1	Poids du plancher dalle pleine terrasse inaccessible Poids des poutres Poids du poteau de rive Poids de l'acrotère	77 29.56 9.58 12	12

		Poids du mur	44.89	
		Total	173.03	
		Venant de N1	173.03	29.87
		Poids du plancher corps creux étage courant	59.11	
8 ^{ème} étage	N2	Poids des poutres	29.56	
		Poids du poteau de l'étage courant	7	
		Poids du mur	33	
		Total	301.7	
		Venant de N2	301.7	63,04
		Poids du plancher CC étage courant + CC T.accessi	132.93	
7 ^{ème}	N3	Poids des poutres	37.22	
étage		Poids du poteau de l'étage courant	7	
		Total	478.85	
		Venant de N3	478.85	92.64
6 ^{ème} étage	N4	Poids du plancher corps creux étage courant	118,23	
		Poids des poutres	37,22	
		Poids du poteau de l'étage courant	7	
		Total	641.3	
		Venant de N4	641.3	118,64
5 ^{ème} étage	N5	Poids du plancher corps creux étage courant	118,23	110,01
e cage	110	Poids des poutres	37,22	
		Poids du poteau de l'étage courant	7	
		Total	803.75	
		Venant de N5	803.75	141,06
4 ^{ème} étage	N6	Poids du plancher corps creux étage courant	118,23	111,00
· cuigo	1,0	Poids des poutres	37,22	
		Poids du poteau de l'étage courant	7	
		Total	966.2	
		Venant de N6	966.2	159,89
3 ^{ème} étage	N7	Poids du plancher corps creux étage courant	118,23	137,07
3 ctage	117	Poids des poutres	37,22	
		Poids du poteau de l'étage courant	7	
		Total	1128.65	
		Venant de N7	1128.65	178,4
2 ^{ème} étage	N8	Poids du plancher corps creux étage courant	118,23	170,4
2 ctage	110	Poids des poutres	37,22	
		Poids du poteau de l'étage courant	7	
		Total	1291.1	
		Vanant da Nº		254.24
1 ére 🚜 👡	NO	Venant de N8 Poids du plancher dalle pleine étage courant	1291.1	254,24
1 ^{ére} étage	N9	Poids des poutres	130,07	
		Poids du poteau de l'étage courant	37,22	
		Total	9,80	
			1468.19	

		Venant de N9	1468.19	326,93
		Poids du plancher dalle pleine étage courant	130,07	
RDC	N10	Poids des poutres	37,22	
		Poids du poteau de l'étage courant	14,85	
		Total	1650.33	
Totale	Σ		1650.33	326,93

Choix de la section des poteaux de rives :

Tableau II.19: Choix des sections des poteaux de rives.

Niveaux	N _G (KN)	N _Q (KN)	N _u (KN)	Br (cm ²)	$\sqrt{a*b}$ (cm)	RPA (cm ²)	Choix (cm)
Niveau 9	173.03		251.59	133.34	14,13	30*30	30*30
Niveau 8	301.7	29	452.1	239.61	17.53	30*30	30*30
Niveau 7	478.85	63	741.01	392.74	21.82	30*30	30*30
Niveau 6	641.3	92	1004.72	532.50	25.10	30*30	35*35
Niveau 5	803.75	118,64	1263.02	669.40	27.95	30*30	35*35
Niveau 4	966.2	141,06	1515.96	803.46	30.48	30*30	40*40
Niveau 3	1128.65	159,89	1763.51	934.66	32.77	30*30	40*40
Niveau 2	1291.1	178,4	2010.59	1065.61	34.90	30*30	45*45
Niveau 1	1468.19	254,24	2363.42	1252.61	37.74	30*30	45*45
RDC	1650.33	326,93	2718.34	1440.72	40.08	30*30	45*45

Vérification du critère de l'effort normal réduit :

Outre les vérifications prescrites par le C.B.A et dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.3$$

Avec:

Bc: section de poteau.

Nd: G + Q

Les résultats sont regroupés dans les tableaux suivants :

Tableau II.20: Choix des poteaux de rives avec vérification de l'effort normal réduit.

Poteau	Etages	N _d (KN)	a*b (cm ²)	B_c (cm ²)	ν	Observation
	9 ^{ème} étage	185.03	30*30	900	0.07	Vérifiée
	8 ^{ème} étage	331.57	30*30	900	0.12	Vérifiée
	7 ^{ème} étage	541.89	30*30	900	0.20	Vérifiée
	6ème étage	733.94	35*35	1225	0.20	Vérifiée
	5 ^{ème} étage	922.39	35*35	1225	0.25	Vérifiée
	4 ^{ème} étage	1107.26	40*40	1600	0.23	Vérifiée
	3 ^{ème} étage	1288.54	40*40	1600	0.27	Vérifiée
	2 ^{ème} étage	1469.5	45*45	2025	0.24	Vérifiée
	1 ^{ére} étage	1722.43	45*45	2025	0.28	Vérifiée
	RDC	1977.26	45*45	2025	0.32	Non vérifiée

La condition de l'effort normal réduit n'est pas vérifiée dans un étage il faut donc augmenter les dimensions des poteaux déjà existants.

Tableau II.21 : Vérification de l'effort normal réduit avec augmentation des dimensions des poteaux de rives.

Poteau	Etages	N _d (KN)	a*b (cm ²)	B_c (cm ²)	ν	Observation
	9 ^{ème} étage	185.03	35*35	1225	0.05	Vérifiée
	8 ^{ème} étage	331.57	35*35	1225	0.09	Vérifiée
	7 ^{ème} étage	541.89	40*40	1600	0.11	Vérifiée
	6 ^{ème} étage	733.94	40*40	1600	0.15	Vérifiée
	5 ^{ème} étage	922.39	45*45	2025	0.15	Vérifiée
	4 ^{ème} étage	1107.26	45*45	2025	0.18	Vérifiée
	3 ^{ème} étage	1288.54	45*45	2025	0.21	Vérifiée
	2 ^{ème} étage	1469.5	50*50	2500	0.20	Vérifiée
	1 ^{ére} étage	1722.43	50*50	2500	0.23	Vérifiée
	RDC	1977.26	50*50	2500	0.26	Vérifiée

Choix final de la section des poteaux :

Après les calculs et la vérification on a adopté ce choix :

Tableau II.22 : Tableau récapitulatif de la section des poteaux

Etagos	Choix final du poteau	Choix final du poteau
Etages	de rive cm²	central cm ²
9 ^{eme} étage	35*35	35*35
8 ^{eme} étage	35*35	35*35
7 ^{eme} étage	40*40	40*40
6 ^{eme} étage	40*40	40*40
5 ^{eme} étage	45*45	45*45
4 ^{eme} étage	45*45	45*45
3 ^{eme} étage	45*45	45*45
2 ^{eme} étage	50*50	50*50
1 ^{er} étage	50*50	50*50
RDC	50*50	50*50

III.1 Introduction:

Dans ce chapitre on procède au ferraillage des éléments secondaires tel que : des dalles, des escaliers et l'acrotère.

III.2 L'acrotère:

L'acrotère est un élément secondaire de sécurité entourant la terrasse qui forme une paroi contre toute chute, elle sera calculée comme une console encastrée au niveau du plancher terrasse.

III.2.1 Evaluation des charges :

- ➤ Charges permanentes : Le poids total de l'acrotère G=2,5 kN/m
- ➤ Charge d'exploitation : La charge d'exploitation de la main courante : Q=1,0KN/m
- L'action des forces horizontales Qh; (Fp): D'après RPA 99 version 2003, les forces horizontales de calcul Fp agissant sur les éléments non structuraux et les équipements ancrés à la structure sont calculées suivant la formule :

$$F_p = 4A. C_P. W_P.....(6.2.3)$$
 [3]

Avec:

A : Coefficient d'accélération de zone obtenu dans le **Tableau** (4.1) [3]

Pour la zone III et le groupe d'usage 2 $\dots [A=0,25]$.

 C_p : Facteur de la force horizontale..... [$C_p = 0.8$].

 W_p : Poids de l'acrotère...... [W_p =2,5 kN].

$$F_p = 4 \times 0.25 \times 0.8 \times 2.5 = 2kN$$

$$Q_n = \max(1.5Q ; F_P)$$

$$F_P = 2kN$$

$$1.5Q = 1,50kN$$

$$\Rightarrow Q_h = 2kN$$

Donc pour une bande de 1m de largeur : G=2,5 kN/ml et $Q_h=2$ KN/ml

III.2.2 Ferraillage de l'acrotère :

h=10cm; b=100cm; f_{c28} =30MPa; σ_{bc} =17MPa; c=c'=2 cm; f_{e} =500Mpa

a) Calcul des efforts :

E.L.U:

$$Nu = 1,35 \times G = 1,35 \times 2, 61 = 3,37 \text{ kN}$$

$$Mu = 1, 5 \times Fp \times h = 1,5 \times 2 \times 0,6 = 1,8 \text{kN.m}$$

$$Tu = 1,5 \times FP = 1,5 \times 2 = 3 \text{ kN}$$

E.L.S:

$$Nser = G = 2.5kN$$

Mser = FP
$$\times$$
 h = 2 \times 0,6 =1,2kN.m

$$Tser = FP = 2kN$$

L'acrotère est sollicité en flexion composée, le calcul s'effectuera à l'ELU

$$M_u = 1.8 \text{ kN.m}$$
; $T_u = 3 \text{kN}$; $N_u = 3.37 \text{ kN}$

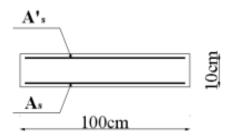


Figure III.1 : Section de calcul de l'acrotère.

a) Armatures principales:

a. Calcul de l'excentricité :

$$e = \frac{M_u}{N_u} = \frac{1.8}{3.37} \times 10 = 53.41 cm$$

$$\frac{h}{2}$$
 - c' = $\frac{10}{2}$ - 2 = 3cm

⇒Section partiellement comprimée (SPC).

1. Calcul du moment fictif Mf:

$$M_f = M_u + N_u(\frac{h}{2} - c') = 1.8 + 3.37(\frac{10}{2} - 2) \times 10^{-2} = 1.9kN.m$$

2. Calcul des armatures :

$$A_{sf} = \frac{M_f}{Z\sigma_s}$$
 $A_s = A_{sf} - \frac{N_u}{\sigma_s}$ $\mu = \frac{M_f}{bd^2\sigma_{bc}} = 0.0137$

$$Donc: \left\{ \begin{array}{c} A_{s1} = 0cm2 \\ A_{s2} = 0.4810cm2 \end{array} \right.$$

b. Vérification de la section d'acier selon BAEL 91 modifié 99 :

Il faut vérifier A_s avec la section minimale imposée par la règle du millième et par la règle de non fragilité :

$$A_s^{min} = Max \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{t28}}{fe} \right\} \rightarrow A_s^{min} = \{1cm^2; 0,86cm^2\} = 1cm^2$$

Donc: on opte finalement pour $4T8 = 2 \text{ cm}^2$

Avec un espacement : $S_t = \frac{100}{5} = 2,01cm$

L'espacement des armatures principales doit vérifier la condition suivante :

$$S \le 2h$$
; 25} $\to 20 \le 20$; 25} $\Rightarrow 0k$

c. Armatures de répartitions :

La section des armatures de répartition découle de celle des armatures principales.

$$A_r \ge \frac{A_s}{4} \Rightarrow A_r \ge \frac{1.7}{4} = 0.5cm^2$$

On a choisi 4T8 avec un espacement $S_t = \frac{60-4}{3} = 18,66$ cm, On prend S= 18 cm

III.2.3 Vérification à l'E.L.S:

Tableau III.1: Les vérifications de l'ELS

a) Contra	b) Contrainte de l'acier :			
σ_{bc} $ar{\sigma}_{bc}$		$\sigma_{\scriptscriptstyle S}'$	$\sigma_{_S}$	$ar{\sigma}_{\scriptscriptstyle S}$
0,68 <i>MPa</i>	0,68MPa 18MPa		1,29 <i>MPa</i>	250 <i>MPa</i>
О	OK			

III.2.4 Vérification de l'effort tranchant :

D'après le BAEL 91 modifié 99 on doit vérifier que :

$$\tau_u = \frac{T_u}{bd} \le \bar{\tau}_u$$

$$Min\{0,1f_{c28};4MPa\} = 3MPa \rightarrow \tau_u = \frac{2,748 \times 10^3}{80.10^3} = 0,0343MPa < \bar{\tau}_u \cdot \cdot \cdot \cdot \cdot OK$$

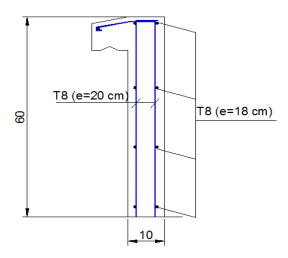


Figure III.2 : Ferraillage de l'acrotère.

III.3 L'escalier:

III.3.1. Introduction:

L'escalier est un élément secondaire de la construction, mais il a une grande importance dans la structure, il permis d'accéder d'un niveau à un autre .Ils sont calculés en flexion simple.

III.3.2. Hypothèses de calcul:

- La fissuration est peu préjudiciable.
- ➤ Le ferraillage de l'escalier se fera à l'ELU, en flexion simple pour une bande de 1m de largeur.

III.3.3. Les type des escaliers :

On a les mêmes types des escaliers (escalier à deux volées et deux palier intermédiaires) donc on a calculé un seul escalier

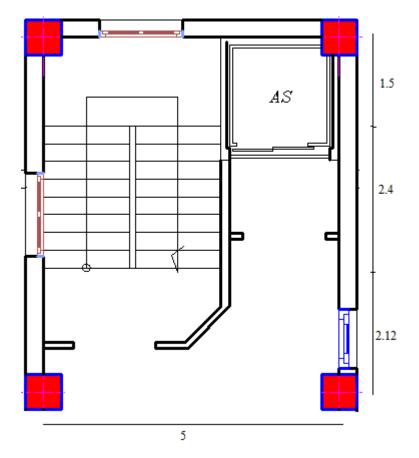


Figure III.3: schéma d'un escalier de 2 volées.

III.3.4. Calcul de ferraillage:

a) Volée 1 et 2:

Pour une réalisation idéale et confortable on doit avoir 2h + g = 64On obtient, le nombre des marches et leur dimension par les relations suivantes :

- 2h+g=64(1)
- . n×h=H(2)
- (n-1) g = L....(3)

Avec:

- n : Le nombre des contre marches.
- (n-1): Le nombre des marches.

En remplaçant (2) et (3) dans (1), on obtient :

$$64n^2$$
-n $(64+2H+L) + 2H=0$

Avec:

n : La racine de l'équation

Les valeurs de H et L

H = 153cm; L = 240cm

 $64n^2 - 610n + 360 = 0$

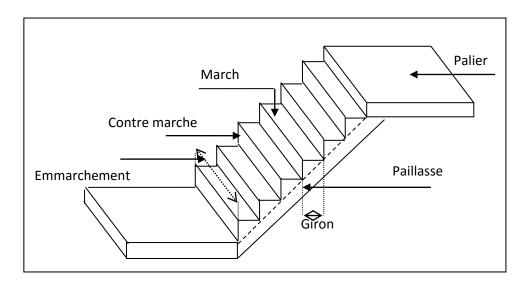


Figure III.4 : Eléments d'un escalier

• Solution

 $n_1 = 0,53...$ refusée. $n_2 = 9$

Donc on prend:

Le nombre de contre marchen=9.

Le nombre des marchesn-1=8.

b) L'épaisseur de la paillasse :

$$\frac{l}{30} \le e \le \frac{l}{20}$$

$$l = 1.5 + 1.8 + \sqrt{1.53^2 + 2.4^2} = 6.14m$$

On prend donc l'épaisseur e=20 cm

Angle d'inclinaison de la paillasse :

$$tg\alpha = \frac{1,53}{2,4} = 0,63 \Rightarrow \alpha = 32,51^{\circ}$$

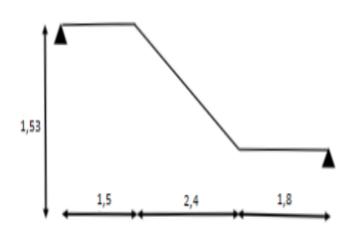


Figure III.5: Schéma statique de volée.

$$h = \frac{H}{n} = \frac{1,53}{9} = 0,17 \text{ m} = 17 \text{ cm}$$

$$g = \frac{L}{n-1} = \frac{2,4}{8} = 0,3 \text{ m} = 30 \text{ cm}$$

• Vérification de l'équation de < BLONDEL>

N.B: Cette épaisseur sera prise en considération une fois que toutes les vérifications soient satisfaites.

III.5.3. Evaluation des charges

a) Palier:

Charges permanentes

Tableau III.2: Charges Permanentes du Palier.

Matière	Épaisseur (cm)	ρ□(kN/m³)	ρ□(kN/m²)
1- carrelage	2	20	0,4
2- Mortier de pose	2	20	0,4
3- Lit de sable	3	18	0,54
4- Dalle pleine	20	25	5

5- Enduit en ciment	2	18	0,36
		$\Sigma = \mathbf{G}$	6,7 kN/m ²

Charge d'exploitation : $Q_{escalier} = 2,50 \text{ kN/m}^2$

b) Paillasse:

Charge permanentes:

Poids propre de la paillasse
$$=$$
 $\left(\frac{25 \times 0,20}{\cos 32,2}\right) = \dots 5,90 \text{ kN/m}^2$
Poids propre de la marche $=\frac{25 \times 0,17}{2} = \dots 2,12 \text{ kN/m}^2$.

Tableau III.3 : Charges Permanentes de la Paillasse.

Matière	Épaisseur (cm)	ρ□(kN/m³)	ρ□(kN/m²)
1- carrelage	2	20	0,4
2- Mortier de pose	2	20	0,4
3- Lit de sable	3	18	0,54
4- Enduit en ciment	2	18	0,36
5-Poids propre de la paillasse	-	-	5,9
6- Poids propre de la marche	-	-	2,12
7- Poids propre du Garde- corps	2	-	0,6
		$\sum = \mathbf{G}$	10,32 kN/m ²

• Charge d'exploitation :

 $Q_{escalier} = 2,50 \text{ kN/m}^2$

Evaluation des charges :

Tableau III.4: Résultats d'évaluation des charges d'escalier

Le paillasse (Q1)				Le palier (Q2)			
G	Q	q (KN/ml)		G	Q	q (KN/ml)	
(kN/m^2)	(kN/m ²)	ELU	ELS	(kN/m ²)	(kN/m ²)	ELU	ELS
10,51	2,5	17,93	13,01	7,9	2,5	14,41	10,4

On a: $L_1=1,8 \text{ m}$ $L_2=2,84 \text{ m}$ Figure.III.6: schéma statique de l'escalier.

$$L_3=1,5 \text{ m}$$

> Calcul de Ferraillage :

Le calcul se fait pour une section de dimension (b x h) Tel que : b=100 cm ; h=20 cm

•
$$f_{c28}$$
 = 30MPa ; f_{bc} = 17MPa ; f_{t28} = 2,40MPa ; γ_b = 1,5 ; d = 0,9 h = 18 cm σ_s = 434,78MPa ; γ_s = 1,15 ; f_e = 500 Mpa

ELU:

- En appuis : $Ma = 0.5 \times Mu = 0.5 \times 75.57 = 37.78 \text{kN.m}$
- En travée : $Mt = 0.85 \times Mu = 0.85 \times 75.57 = 64.23 \text{ kN.m}$

Tableau III.5: Calcul des armatures.

	M _u (kNm)	μ	$\mu < \mu_R$	A' _s (cm ²)	α	Z (cm)	A_s^{cal}/ml (cm ²)	Choix	A _s ^{adp} /ml (cm ²)
Appui	37,78	0,069	Oui	0	0,0889	173 ,6	5,01	6T12	6,78
Travée	64,23	0,117	Oui	0	0,155	168,8	8,75	6T14	9,24

Espacement:

➤ En travée :esp $\leq \frac{100}{5} = 25cm$ On prend : esp=25 cm. ➤ Sur appui :esp $\leq \frac{100}{5} = 25cm$ On prend : esp=25 cm.

Armature de répartition :

En travée : $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} ... \Rightarrow 2,31 cm^2/ml \le A_r \le 4,62 cm^2/ml$

Le choix est de 4T10=3,14m² avec S_t=25 cm

Sur appui $: \frac{A_s}{4} \le A_r \le \frac{A_s}{2} ... \Rightarrow 1,7cm^2/ml \le A_r \le 3,39cm^2/ml$

Le choix est de 4T10=3,14 cm² avec S_t=25cm

Vérification de la Condition de non fragilité :

$$A_s \ge A_s^{min} = 0.23bd \frac{f_{t28}}{fe} = 1.99 \text{cm}^2$$

- **En travée** : $A_s = 9.24cm^2$ $A_s^{min} = 1.99cm^2$ok
- **Sur appui** : $A_s = 6.78cm^2$ $A_s^{min} = 1.99cm^2$ok

Vérification de l'Effort tranchant :

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$(A.5.2.2) [1]

$$\overline{\tau} = Min(0.2fc_{28}/\gamma_b; 5MPa) = 4MPa...$$
 (Fissuration peu préjudiciable)

$$\tau = \frac{T_u^{\text{max}}}{bd} = \frac{53 \times 10^{\circ}3}{180 \times 1000} = 0.28 MPa < 4 MPa$$
vérifie

Influence de l'effort tranchant au voisinage des appuis (vérification de l'ancrage) :

Les armatures longitudinales tendues inférieures doivent être ancrées au-delà de l'appui, pour équilibrer l'effort de traction.

$$ightharpoonup$$
 Si : $T_u - \frac{M_u}{0.9d} = \langle 0 \Rightarrow \text{les armatures ne sont soumises à aucun effort de traction.}$

Si:
$$T_u - \frac{M_u}{0.9d} \rangle 0 \Rightarrow$$
 il faut satisfaire la condition suivante : $A_s \ge \left[\frac{T_u - \frac{M_u}{0.9d}}{\sigma_s} \right]$
 $M_{vv} = 75.57 \times 10^6$

$$T_u - \frac{M_u}{0.9d} = 53 \times 10^3 - \frac{75,57 \times 10^6}{0.9 \times 180} = -415,481 \, Kn \, \langle \, 0 \, \rangle$$

Les armatures ne sont soumises à aucun effort de traction.

Vérification des armatures transversales :

$$\tau = \frac{T_u^{max}}{bd} = 0.28 < 0.05 f_{c28} = 1.5 \dots$$
 vérifie

Donc les armatures transversales ne sont pas nécessaires.

Vérification à l'ELS:

La fissuration est considérée comme peu nuisible, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

Vérification des contraintes du béton :

Avec : n=15 ; c'=2cm ; d=18 cm ; b=100cm ;
$$A'_s$$
=0

On doit vérifier que :
$$\sigma_{bc} = \frac{M_{ser}}{I}y \le \overline{\sigma}_{bc} = 0.6f_{c28} = 18MP$$

En appuis:

$$Ma = 0.5 \times M_{ser} = 0.5 \times 54.39 = 27.19 \text{kN.m}$$

En travée :

$$Mt = 0.85 \times M_{ser} = 0.85 \times 54.39 = 46.23 \text{ KN.m}$$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

Tableau III.6 : Vérification de compression du béton.

	M _{ser} (kNm)	$A_s(cm^2)$	Y(cm)	I(cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$	Vérification
Appui	27,19	6,78	5,12	21345	6,52	18	Vérifiée
Travée	46,23	9,24	5,81	27133	9,9	18	Vérifiée

Vérification de la flèche :

Les résultats sont récapitulés dans ce tableau :

•
$$\frac{h}{L} \ge \frac{1}{20} \frac{Mt}{M}$$
 $\rightarrow \frac{20}{614} = 0.0325 \le 0.0499 \dots \dots non verifiée$

•
$$\frac{Ax}{bd} \le \frac{e}{fe}$$
 \rightarrow 0.0051 < 0.0084 verifiée

•
$$\frac{h}{L} \ge \frac{1}{16} \to 0.0325 \ge 0.0625 \dots \dots non \ verifiée$$
.

Deux conditions ne sont pas vérifiées, donc il est nécessaire de calculer la flèche

Flèche totale : $\Delta f_T = f_v - f_i \le f$

Avec:
$$\begin{cases} f_i = \frac{M_{ser}L^2}{10E_iI_{fi}} \\ f_v = \frac{M_{ser}L^2}{10E_vI_{fv}} \\ f = \frac{L}{1000} + 0.5 \end{cases}$$
 L=6,14m > 5m.

• Moment d'inertie de la section homogène I₀ :

$$I_0 = \frac{b\hat{h}}{12} + 154 \left(\frac{h}{2} - d\right)^2 + 154 \left(\frac{h}{2} - d'\right)^2$$

$$I_{fi} = \frac{1, II_0}{1 + \lambda_i \mu}$$
; $I_{fv} = \frac{1, II_0}{1 + \lambda_i \mu}$ Moment d'inertie fictive.

Avec:

$$\begin{cases} \lambda_{t} = \frac{0.05f_{t28}}{\delta(2 + \frac{3l_{0}}{b})} \\ \lambda_{v} = \frac{0.02f_{t28}}{\delta(2 + \frac{3l_{0}}{b})} \end{cases}; \begin{cases} \delta = \frac{A_{s}}{l_{0}d} \\ \mu = 1 - \frac{1.75f_{t28}}{4\delta\sigma_{s} + f_{t28}} \\ \sigma_{s} = \frac{M_{ser}}{A_{s}d} \end{cases}$$

 $E_i=34180MPa$; $E_v=11497MPa$

Tableau III.7: Vérification de la flèche de l'escalier.

M _{ser} (KNm)	As (cm ²)	δ	σ _s (MPa)	λ_{i}	$\lambda_{\rm v}$	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	I _{fv} (cm ⁴)
27,19	6,78	0,00377	223	5,575	2,23	0,326	73175,46	28538,95	46576,63

Donc:

$$\begin{cases} f_i = 11,16\text{mm} \\ f_v = 20,34\text{mm} \end{cases} \Rightarrow \Delta f_T = f_v - f_i = 9,17\text{mm}$$

 $\bar{f} = 12.28 \text{mm}$

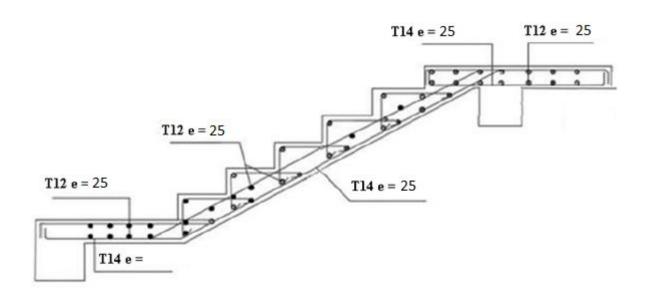


Figure III.7: Schéma de ferraillage de l'escalier (volée 1 et 3).

III.4 Dalle Pleine:

Dans notre structure, on a cité l'exemple du panneau le plus sollicité :

III.4.1 Evaluation des charges :

Tableau III.7: Calcul des sollicitations de dalle pleine.

I es charge	es (KN /m²)	Q (KN/m ²)				
Les charge	cs (Kry/m)	Combinaison				
G (kN/m ²)	$Q (kN/m^2)$	ELU	ELS			
6,11	5	15,75	11,11			

$$\rho = \frac{L_{\chi}}{L_{y}} = \frac{4.8}{5.41} = 0.83 > 0.4$$

$$\mu_x = 0.0466$$

$$\mu_y = 0.7635$$

$$M_x = \mu_x q_u L_x^2 = 16,91 \, kNm$$

$$M_{\nu} = \mu_{\nu} M_{\chi} = 12,91 \, kNm$$

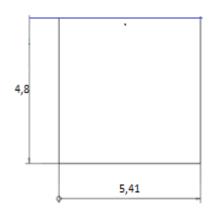


Figure III.8: Dimensions d'une dalle.

III.4.2 Ferraillage de la dalle :

b=100cm ; h=15cm ; d=13,5cm ; f_e=500MPa ; f_{c28}=30MPa ; f_{t28}=2,4MPa ; $\sigma_s{=}434,78\text{MPa} \; ; \; \bar{\sigma}_{bc} = 17 \; \text{MPa}$

Tableau III.8 : Ferraillage de la dalle pleine.

	Sens	Mu	μ	As'	α	Z(cm)	$\mathbf{A_s^{cal}}$	Choix	$\mathbf{A_s}^{\mathrm{adp}}$	Esp
		(kNm)	F -	(cm ²)		(-)	(cm ²)		(cm ²)	(cm)
Travée	X-X	14,37	0,046	0	0,059	13,17	2,95	4T10	3,14	32
	у-у	10,97	0,035	0	0,045	13,25	2,24	5T8	2,51	32
Appuis	X-X	8,45	0,027	0	0,035	13,31	1,46	4T8	2,01	32
PP	у-у	3,15	·,027	,	0,000	10,01	1,10	.10	_,01	52

a) Espacement:

- Travée:

Sens
$$x-x$$
: $esp = \frac{100-4\times1}{3} = 32cm < Min(3h; 33cm) = 33cm.....Vérifiée$

Sens y-y:
$$esp = \frac{100-5x0,8}{3} = 32cm < Min(3h, 33cm) = 33cm.....Vérifiée$$

- Appuis:

Sens
$$x-x$$
: $esp = \frac{100-4\times0,8}{3} = 32cm < Min(3h,33cm) = 33cm.....Vérifiée$

Sens y-y:
$$esp = \frac{100-4\times0.8}{3} = 32cm < Min(3h, 45cm) = 33cm.....Vérifiée$$

b) Condition de non fragilité

$$\begin{cases} A_x \ge \rho_0 \frac{(3-\rho)}{2} bh = 1,26cm^2 \\ A_y \ge \rho_0 bh = 1,2cm^2 \end{cases}$$
 (Dalle rectangulaire $\rho < 1$).....(*B.7.4*) [1]

Avec :
$$\begin{cases} \rho_0 = 8x10^{-4} \dots \dots pour \ les \ barres \ a \ haute \ adhérence \ . \\ \rho = \frac{L_x}{L_y} = 0,89 \end{cases}$$

Tableau III.9: Vérification de CNF.

	Travée	Appui	Vérifie
X-X	$A_x = 3,14cm^2 > A_s^{min^2}$	$A_{\scriptscriptstyle X} = 2,01cm^2 > A_{\scriptscriptstyle S}^{min^2}$	Oui
y-y	$A_y = 2.51cm^2 > A_s^{min^2}$	$A_y = 2,01cm^2 > A_s^{min^2}$	Oui

c) Calcul des armatures transversales

Les armatures transversales ne sont pas nécessaires si la condition ci-dessous est vérifiée :

$$\tau_u = \frac{T_u^{max}}{b\bar{d}_{u_{C28}}}.....(A.5.2.2)[1]$$

$$T_x = \frac{q_u L_x L_y}{2L_x + L_y} = \frac{15,75 \times 4,8 \times 5,41}{2 \times 4.8 + 5.41} = 27,24kN$$

$$T_y = \frac{q_u L_x}{3} = \frac{15,75 \times 4,8}{3} = 25,2kN$$

$$T_u^{max(T_x;T_y)} = 27,24KN$$

$$\tau_u = \frac{27,24 \times 10^3}{1000 \times 135} = 0,201 MPa < \bar{\tau}_u = 3 MPa....V\acute{e}rifi\acute{e}e$$

Donc l'armature transversale n'est pas nécessaire.

III.4.3 Vérification à l'ELS:

Evaluation des sollicitations à l'ELS :

$$\rho = \frac{L_x}{L_y} = \frac{4.8}{5.41} = 0.83 > 0.4$$

$$\mu_x = 0.0466$$

$$\mu_{\nu} = 0.7635$$

$$M_x = \mu_x q_u L_x^2 = 11,92 \ kNm$$

$$M_{\nu} = \mu_{\nu} M_{x} = 9,10 \ kNm$$

• Moments en travées :

$$M_{tx} = 0.85 M_x = 10.13 kNm$$

$$M_{ty}=0.85M_{y}=7.74kNm$$

- Moments sur appuis :

$$M_{ax} \approx M_{ay} = 0.5 M_x = 5.96 kNm$$

a) Vérification des contraintes :

1. Vérification des contraintes des armatures

La fissuration étant peu nuisible, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

Tableau III.10: Vérification des contraintes à l'ELS.

	Sens	M _{ser} (kNm)	A _s (cm ²)	Y (cm)	I(cm ⁴)	σ _{bc} (MPA)	$\overline{\sigma}_{bc}$	$\sigma_{bc} \leq \bar{\sigma}_{bc}$
Travée	X-X	10,13	3,14	3,44	7980,54	5,49	18	Vérifié
Travee	у-у	7,74	2,51	2,56	4167,59	4,93	18	Verific
Annuis	X-X	5,96	2,01	2,56	4167,59	4,60	18	Vérifié
Appuis	у-у	3,70	2,01 2,30		1107,37	1,00	18	Verme

2. Vérification de la flèche :

On peut se dispenser du calcul des flèches si les conditions suivantes sont vérifiées en même temps : **Sens x-x :**

•
$$\frac{h}{Lx} \ge \frac{1}{20} \frac{Mt}{Mx}$$
 $\rightarrow \frac{15}{480} = 0.0312 \ge 0.076 \dots \dots non verifiée$

•
$$\frac{Ax}{bd} \le \frac{e}{fe}$$
 \rightarrow 0.0029 < 0.004 verifiée

•
$$\frac{h}{Lx} \ge \frac{1}{27} \ a \ \frac{1}{35} \to 0.0312 \ge 0.037 \ a \ 0.0285 \dots \dots non \ verifiée$$
.

Sens y-y:

•
$$\frac{h}{Ly} \ge \frac{1}{20} \frac{Mt}{My}$$
 $\rightarrow \frac{15}{541} = 0.0277 \ge 0.0422 \dots \dots non \ verifi\'ee$

•
$$\frac{Ax}{bd} \le \frac{e}{fe}$$
 \rightarrow 0.00185 < 0.005 verifiée

•
$$\frac{h}{Ly} \ge \frac{1}{27} \ a \ \frac{1}{35} \to 0.0277 \ge 0.037 \ a \ 0.0285 \dots \dots non \ verifiée$$
.

La vérification de la flèche est nécessaire.

Les résultats sont présentés dans le tableau suivant :

Tableau III.11 : Calcul de la flèche.

M _{ser} (kNm)	As (cm ²)	Σ	$\sigma_{\rm s}$	λi	$\lambda_{\rm v}$	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	I _{fv} (cm ⁴)
16,91	3,14	0,0023	399	10,31	4,12	0,312	29820,6	7760,58	14319,73

Donc:
$$\Delta f_T = f_v - f_i \le f$$

$$f_i = 14,68$$
mm

$$f_{v} = 23,66$$
mm

Flèche totale : $\Delta f_T = f_v - f_i \le \bar{f}$.

$$\bar{f} = \frac{480}{500} = 0,98cm$$

$$\Delta f_T = f_v - fi = 0.898cm \le \bar{f} = 0.96 cm \dots vérifiée$$

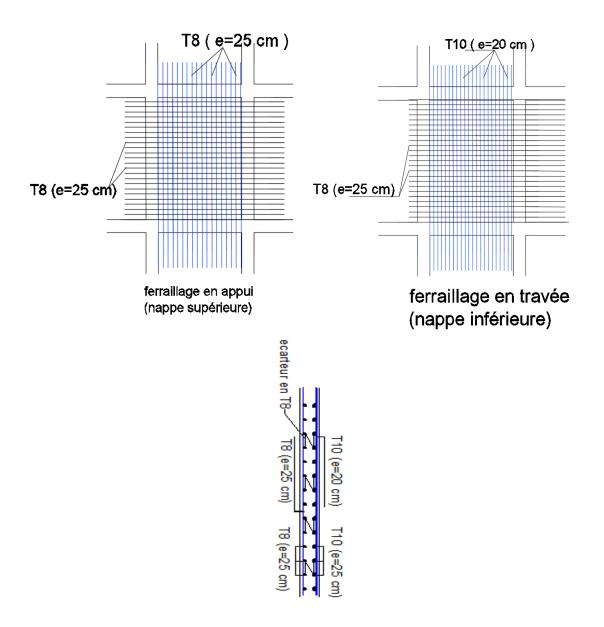


Figure III.9 : Ferraillage de la dalle pleine.

III.5 Plancher à corps creux :

III.5.1 Pré dimensionnement des poutrelles :

Notre bâtiment comporte deux types de planchers constitués d'éléments porteurs (poutrelles) et d'éléments de remplissage (corps creux) de dimension (16x20x65) cm³ avec une dalle de compression de 5cm d'épaisseur.

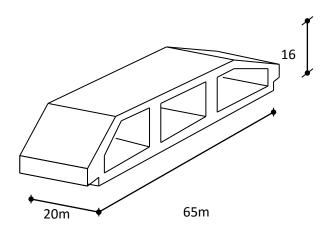
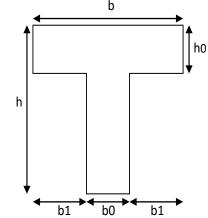


Figure III.10: Corps Creux.

III.5.2 Etude des poutrelles :

Les poutrelles sont des sections en (T) en béton armé, elles servent à transmettre les charges réparties ou concentrées vers les poutres principales, Elles sont disposées suivant le plus grand nombre d'appuis.


$$b_0 = (0.4 \text{ à } 0.6) * h_t$$

Avec:

ht: Hauteur du plancher.

h₀: Hauteur du la dalle de compression.

$$b_1 \leq \min\left(\frac{L_X}{2}; \frac{L_Y}{10}\right)$$

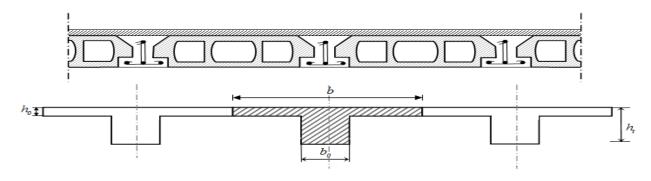


Figure III.11: Schéma de poutrelle.

Tel que:

 L_X : Distance entre nus d'appuis des poutrelles.

 L_Y : Distance entre nus d'appuis des poutres secondaires.

$$b = 2*b1 + b_0$$

 $b_0 = (0,4; 0,6) * h = (8,4; 12,6) \text{ cm. On a adopter } b_0 = 12 \text{ cm.}$

Soit: $b_0=12$ cm.

$$b_1 = \frac{b - b_0}{2} \le min(\frac{l_x}{2}, \frac{l_y}{10}) \Rightarrow b \le 2. min(\frac{l_x}{2}, \frac{l_y}{10}) + b_0$$

$$L_x = 65 - 12 = 53$$
cm.

$$L_{\nu} = 480 - 30 = 450$$
cm.

$$b_1 = min\left(\frac{53}{2}; \frac{450}{10}\right) = 26.5cm. \Rightarrow b = 2 \times 26.5 + 12 = 65cm.$$

Soit: b=65cm.

III.5.3 Calcul des poutrelles :

Le calcul des poutrelles se fait en deux étapes :

- Avant le coulage de la dalle de compression.
- Après le coulage de la table de compression

* 1ère étape : Avant le coulage de la table de compression :

- Poutrelle de travée L=4.8 m
- On considère que la poutrelle est simplement appuyée à ses extrémités, elle supporte :
- Son poids propre.
- Poids du corps creux.
- Charge d'exploitation due à l'ouvrier $Q=1kN/m^2$.

III.5.4 Calcul des moments :

Étant donné que les poutrelles étudiées se présentent comme des poutres continues sur plusieurs appuis, leurs études se feront selon l'une des méthodes suivantes :

a. Méthode forfaitaire :

Le règlement BAEL 91 propose une méthode simplifiée dite méthode forfaitaire ; cette méthode n'est applicable que si les quatre «04 » conditions suivantes sont remplies :

1)- La charge d'exploitation est dite modérée c'est-à-dire $Q \le (5KN/m2; 2G)$.

$$-EC \rightarrow Q \le (5; 2x5,59) \rightarrow vérifié$$

-Terrasse \rightarrow Q \leq (5; 2x6.58) \rightarrow vérifié

- 2)- Les moments d'inertie des sections transversales sont les même dans les différentes travées. → vérifié
- 3)- Les portées successives des travées sont dans un rapport compris entre :

$$0.8 \le \frac{li}{li+1} \le 1.25 \longrightarrow \text{v\'erifi\'e}$$

4)- Fissuration considérée comme non préjudiciable.

Donc : la méthode forfaitaire est applicable.

Exposé de la méthode :

$$\bullet \ \alpha = \frac{Q}{G+Q}$$

•
$$M_t \ge Max\{1,05M_0; (1+0,3\alpha)M_0\} - \frac{M_w - M_e}{2}$$

$$\bullet \ M_t \geq \begin{cases} (1+0.3\alpha)\frac{M_0}{2}.....Trav\'{e}\ interm\'{e}diaire\\ (1.2+0.3\alpha)\frac{M_0}{2}.....Trav\'{e}\ de\ rive \end{cases}$$

Avec:

M₀: La valeur minimale du moment fléchissant dans chaque travée (moment isostatique).

(M_w; M_e) : Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

M_t: Le moment maximal en travée dans la travée considérée.

Moment sur appuis :

- $M=0,2M_0...$ appuis de rive
- $M=0,6M_0...$ pour une poutre à deux travées
- M=0,5M₀...pour les appuis voisins des appuis de rives d'une poutre à plus de deux travées
- M=0,4M₀.....pour les autres appuis intermédiaires d'une poutre à plus de deux travées

b. Méthode de CAQUOT:

Cette méthode est appliquée lorsque l'une des conditions de la méthode forfaitaire n'est pas vérifiée.

Elle est basée sur la méthode des poutres continues.

Exposé de la méthode :

> Moment sur appuis :

 $M_a = 0.15 M_0$ Appuis de rive.

$$M_a = \frac{q_w l_w''^3 + q_e l_e'^3}{8.5(l_w' + l_e')}$$
 Appuis intermédiaires.

Avec:
$$M_0 = \frac{ql^2}{8}$$

> Moment en travée :
$$M_t(x) = -\frac{qx^2}{2} + \left(\frac{ql}{2} + \frac{M_e - M_w}{l}\right)x + M_w$$

Avec:

- M_0 : la valeur maximale du moment fléchissant dans chaque travée (moment isostatique);
- $(M_w; M_e)$: les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée;
- q_w : charge répartie à gauche de l'appuis considérée;
- q_e : charge répartie à droite de l'appuis considérée.

On calcul, de chaque coté de l'appuis, les longueurs de travées fictives " l'_w " à gauche et " l'_e "à droite, avec :

- *l'=l....*pour une travée de rive
- *l'=0,81....*pour une travée intermédiaire

Où « l » représente la portée de la travée libre.

Effort tranchant:

$$\begin{cases} T_{\mathrm{w}} = \frac{\mathrm{ql}}{2} + \frac{(M_{\mathrm{e}} - M_{\mathrm{w}})}{l} \\ T_{\mathrm{e}} = -\frac{\mathrm{ql}}{2} + \frac{(M_{\mathrm{e}} - M_{\mathrm{w}})}{l} \end{cases}$$

Avec:

- Tw: effort tranchant à gauche de l'appui considéré,
- T_e: effort tranchant à droite de l'appui considéré.

c. Méthode des éléments finis « ETABS »

Dans notre cas on a opté pour la méthode de l'élément finis ou les moments, et les efforts tranchants seront calculés A l'laide du logiciel ETABS

. Etapes de calcul des poutrelles :

* 1ère étape : Avant le coulage de la table de compression :

- Poutrelle de travée *L*=4,93 m
- On considère que la poutrelle est simplement appuyée à ses extrémités, elle supporte :
- Son poids propre.
- Poids du corps creux.
- Charge d'exploitation due à l'ouvrier $Q=1kN/m^2$.

Evaluation des charges :

• Charges permanentes:

1-Poids propre de la poutrelle.................0,12x0, 05x25= 0,15kN/ml

$$\Sigma G = 1.97 \text{kN/ml}$$

• Charges d'exploitation :

$$Q = 1 \times 0.65 = 0.65 \text{ kN/ml}$$

Combinaison des charges :

E.L.U:
$$q_u = 1,35G + 1,5Q = 3,64kN/ml$$

E.L.S :
$$q_{ser} = G + Q = 2,62kN/ml$$

A Calcul des moments :

$$M_u = \frac{q_u l^2}{8} = \frac{3.64 (4.8)^2}{8} = 1.048 kNm$$

$$M_{ser} = \frac{q_{se}I^2}{8} = \frac{2.62(4.8)^2}{8} = 7.45 Nn$$

❖ Ferraillage:

La poutre est sollicitée à la flexion simple à l'E.L.U Mu=10,48 kNm; b=12cm; d=4,5cm;

$$\sigma_{bc}=18Mpa$$

D'après l'organigramme de la flexion simple on a:

$$\mu = \frac{M_u}{bd^2\sigma_{bc}} = 2,53 > \mu_R = 0,371 \Rightarrow A_s' \neq 0$$

Donc, les armatures de compression sont nécessaires, mais il est impossible de les placer du point de vue pratique car la section du béton est trop faible. On prévoit donc des étaiements pour aider la poutrelle à supporter les charges qui lui reviennent avant et lors du coulage sans qu'elle fléchisse.

* 2ème étape : Après le coulage de la table de compression :

Après le coulage et durcissement du béton de la dalle de compression, la poutrelle travaillera comme une poutrelle en "Té"

III.5.5 Evaluation des charges revenantes aux poutrelles :

Plancher terrasse:

> Charge permanentes:

G=5,59x0,65=3,63kN/ml.

> Surcharges d'exploitation :

Q=1x0,65=0,65kN/ml.

Plancher courant:

> Charge permanente:

G=5,59x0,65=3,63kN/ml.

> Surcharge d'exploitation :

Q=1,5x0,65=0,975kN/ml.

Combinaison des charges :

> Plancher terrasse :

E.L.U: $q_u=1,35G+1,5Q=5,87kN/ml$.

E.L.S : $q_{ser} = G + Q = 4.28 kN/ml$.

> Plancher courant :

E.L.U: $q_u=1,35G+1,5Q=6,36kN/ml$.

E.L.S: $q_{ser} = G + Q = 4,60 \text{kN/ml}$.

Conclusion:

Le plancher de l'étage courant est le plus sollicité.

> Calcul des efforts internes :

Poutrelle à six travées :

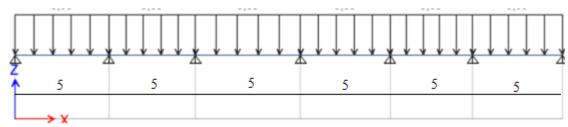


Figure.III.12 : Schéma statique de la Poutrelle à sept travées.

Méthode : élément finis (ETABS)

Récapitulation des moments sur appuis et en travées, Effort tranchant de la poutrelle. (5m-5m-5m-5m-5m).

Diagrammes des moments fléchissant :

ELU:

Figure.III.13 :Diagramme des moments fléchissant ELU

ELS:

Figure.III.14: Diagramme des moments fléchissant ELS

Diagrammes des efforts tranchants :

ELU:

Figure.III.15: Diagramme des l'efforts tranchants a ELU

ELS:

Figure.III.16: Diagramme des l'efforts tranchants a ELS

> Calcul du ferraillage :

On considère pour le ferraillage le type de poutrelle le plus défavorable c'est-à-dire qui a le moment le plus grand en travée et sur appuis, et le calcul se fait à l'ELU en flexion simple.

Les efforts maximaux sur appuis et en travée sont :

E.L.U :
$$M_{tu}^{max} = 13,05 \text{kNm}$$

$$M_{au}^{max}=17,55kNm$$

$$T_u^{max} = 20,23 \text{ kN}$$

E.L.S:
$$M_{tser}^{max}$$
=9,61kNm

$$T_s^{max} = 14,91 \text{ kN}$$

> Ferraillage en travée :

h=21 cm; h₀=5cm; b=65cm; b₀=12cm; d=0,9h=18,9cm; σ_{bc} =17MPa; fe=500MPa; f_{c28} =30MPa; f_{t28} =2,4MPa

Le calcul des sections en forme de "Té" s'effectue différemment selon que l'axe neutre est dans la table ou dans la nervure.

- Si $M_u < M_{tab}$: l'axe neutre est dans la table de compression.
- Si $M_u > M_{tab}$: l'axe neutre est dans la table ou dans la nervure.

$$M_{tab} = bh0\sigma_{bc}\left(d - \frac{h0}{2}\right) = 90,61kNm$$

On a: M_{tu}<M_{tab}

Alors : l'axe neutre est dans la table de compression.

Comme le béton tendu n'intervient pas dans les calculs de résistance, on conduit le calcul comme si la section était rectangulaire de largeur constante égale à la largeur de la table «b».

Donc, la section étudiée est assimilée à une section rectangulaire (bxh) en flexion simple.

D'après l'organigramme donnant le ferraillage d'une section soumise à la flexion, on aura :

Tableau.III.12: Récapitulation du calcul des sections d'armatures en travée.

M _{tu} (kNm)	μ	μ<μ _R	A _s '(cm ²)	α	Z(cm)	μ<0,186	$\zeta_{\rm s}$	σ _s (MPa)	A _s (cm ²)
13,05	0,033	Oui	0	0,041	18,57	Oui	10‰	435	1,61

Condition de non fragilité :

$$A_s^{\text{min}} \ge 0.23 d \frac{f_{t28}}{fe} = 1.35 \text{ cm}^2$$

$$A_s=Max\{1,35cm^2;1,61cm^2\}=1,61cm^2$$

Choix: $3T10 (A_s=2,36 \text{ cm}^2)$

> Ferraillage sur appuis :

On a: $M_{au}^{max}=17,17kNm < M_{tab}=84,80kNm$

 \Rightarrow L'axe neutre est dans la table de compression, et la section étudiée est assimilée à une section rectangulaire (b₀xh) en flexion simple.

Tableau.III.13 : Récapitulation du calcul des sections d'armatures sur appuis.

M _{Ua} (kNm)	μ	μ<μ _R	A s'(cm ²)	α	Z(cm)	μ<0,186	ζs	σ _s (MPa)	A _s (cm ²)
17,55	0,0444	Oui	0	0,056	18,49	oui	10‰	435	2,18

Condition de non fragilité :

$$A_s^{\text{min}} \ge 0.23 b_0 d \frac{f_{t28}}{fe} = 0.25 \text{ cm}^2$$

$$A_s=2,18cm^2>A_s^{min}=0,25cm^2$$

> Vérifications :

Effort tranchant:

Pour l'effort tranchant, la vérification du cisaillement se fera dans le cas le plus défavorable c'est-à-dire : T_u^{max}=20,23 kN.

On doit vérifier que : $\tau_u \leq \bar{\tau}_u$

Tel que:

$$ar{ au}_u = Min\left\{0,2rac{f_{cj}}{\gamma_b};5MPa
ight\} = 4MPa.$$
 Fissuration préjudiciable $au_u = rac{T_u^{max}}{b_0ar{a}_u} = 0,89 < ar{ au}_u = 4MPa.$ vérifiée

Au voisinage des appuis :

- Appuis de rives :
- Vérification de la compression du béton :

$$\sigma_{b} = \frac{T_{u}}{0.9b_{0}d} \le 0.4 \frac{f_{c28}}{\gamma_{b}}$$

Avec: T_u=13,21 kN (appuis de rive)

$$\sigma_b = \frac{13,21 \times 10^3}{0,9x120x189} = 0,647MPa < 0,4 \frac{f_{c28}}{\gamma_b} = 8MPa....V$$
érifiée

• Vérification des armatures longitudinales :

$$A_s = 2,26cm^2 \ge \frac{T_u}{\frac{fe}{\gamma_s}} = 0,30cm^2....V\acute{e}rifi\acute{e}e$$

- Appuis intermédiaires :
- Vérification de la contrainte de compression :

Avec : T_u=17,01 kN (appuis de intermédiaires)

$$\sigma_b = \frac{T_u^{max}}{0.9b_0 d \frac{f_{c28}}{\gamma_b}} = \frac{17.01 \times 10^3}{0.9x120x189} = 1,25 \text{ MPa} < 0,4 \frac{f_{c28}}{\gamma_b} = 8MPa....V\acute{e}rifi\acute{e}e$$

Vérification des armatures longitudinales:

Vérification à l'E.L.S :

La fissuration étant préjudiciable, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

➤ Vérification des contraintes du béton :Soit "y" la distance du centre de gravité de la section homogène (par lequel passe l'axe neutre) à la fibre la plus comprimé.

La section étant soumise à un moment M_{ser} , la contrainte à une distance "y" de l'axe neutre :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

D'après l'organigramme de la vérification d'une section rectangulaire à l'ELS, on doit vérifier que : $\sigma_{bc} \leq \bar{\sigma}_{bc} = 0.6 f_{c28} = 18 MPa$

• Détermination de l'axe neutre

On suppose que l'axe neutre se trouve dans la table de compression :

$$\frac{b}{2}y^2 + n(A_s + A_s')y - n(A_s \cdot d + A_s' \cdot c') = 0$$

Avec :
$$n = \frac{E_s}{E_b} = 15$$
; b=65cm (travée); b₀=12cm (appuis); c=c'=2cm

Y : est la solution de l'équation du deuxième degré suivante, puis on calcule le moment d'inertie :

$$\begin{cases} by^2 + 30(A_s + A_s')y - 30(dA_s + c'A_s') = 0\\ I = \frac{b}{3}y^3 + 15A_s(d - y)^2 + 15A_s'(y - c')^2 \end{cases}$$

Si $y < h_0 \Rightarrow$ l'hypothèse est vérifiée

Si $y > h_0 \Rightarrow$ la distance "y" et le moment d'inertie "I" se Calculent par les formules qui suivent :

$$\begin{cases} b_0 y^2 + [2(b - b_0)h_0 + 30(A_s - A_s')]y - [(b - b_0)h_0^2 + 30(dA_s + c'A_s')] = 0 \\ I = \frac{b_0}{3}y^3 + \frac{(b - b_0)h_0^3}{12} + (b - b_0)h_0\left(y - \frac{h_0}{2}\right)^2 + 15[A_s(d - y)^2 + A_s'(y - d')^2] \end{cases}$$

Tableau III.14: Vérification de la contrainte de béton.

	M _{ser} (kNm)	A _s (cm ²)	Y(cm)	I(cm ⁴)	σ _{bc} (MPa)	$ar{\sigma}_{bc}$	Vérification
Travée	12,93	2,36	4,98	8612,22	6,37	18	Vérifiée
Appuis	9,61	2,26	4,70	8211,32	4,73	18	Vérifiée

√ Vérification de la flèche

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées :

Les conditions à vérifier :

$$\bullet \frac{h}{L} \ge \frac{1}{16}$$

$$\bullet \frac{A_{t}}{b_{0}d} \le \frac{4,2}{fe}$$

$$\bullet \frac{h}{L} \ge \frac{M_{t}}{10M_{0}}$$

Avec:

 $h=\!21cm\;;\;b_0\!\!=\!12cm\;;\;d\!\!=\!18,\!9cm\;;\;L\!\!=\!\!4,\!8\;m\;;\;M_{tser}\!\!=\!12,\!93kNm\;;\;A_s\!\!=\!\!2,\!36cm^2\;;\;fe\!\!=\!\!500MPa.$

Alors:

$$\frac{h}{L} = 0,043 < 0,0625.....non \ vérifiée$$

$$\frac{A_s}{b_0 d} = 0,010 > 0,0084....non \ vérifiée$$

$$\frac{h}{L} = 0,043 < 0,099....non \ vérifiée$$

Alors:

Puisque les (03) conditions ne sont pas vérifiées, il est nécessaire de calculer la flèche.

Flèche totale : $\Delta f_T = f_v - f_i \le \bar{f}$.

Tel que :
$$\bar{f} = 0.5 + \frac{L}{1000} \quad Si \quad L \ge 5.00 \ m$$

$$\bar{f} = \frac{L}{500} \quad Si \quad L < 5.00 \ m$$

Donc : $\bar{f} = \frac{480}{500} = 0.96 \ cm$

f_i: La flèche due aux charges instantanées.

f_v: La flèche due aux charges de longues durée.

Position de l'axe neutre « y₁ »:

$$y_1 = \frac{bh_0 \frac{h_0}{2} + (h - h_0)b_0 \left(\frac{h - h_0}{2} + h_0\right) + 15A_s d}{bh_0 + (h - h_0)b_0 + 15A_s}$$

- Moment d'inertie de la section totale homogène « I₀ »:

$$I_0 = \frac{b}{3}y_1^3 + \frac{b_0}{3}(h - y_1)^3 - \frac{(b - b_0)}{3}(y_1 - h_0)^3 + 15A_s(d - y_1)^2$$

- Calcul des moments d'inerties fictifs [3] :

$$I_{fi} = \frac{1,1I_0}{1 + \lambda_i \mu}$$
 ; $I_{fv} = \frac{I_0}{1 + \lambda_v \mu}$

Avec:

$$\lambda_i = \frac{0.05 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b_0}\right)}$$
.....Pour la déformation instantanée.

$$\lambda_v = \frac{0.02 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
.....Pour la déformation différée.

$$\delta = \frac{A_s}{b_0 d}$$
: Pourcentage des armatures.

$$\mu = 1 - \frac{1,75 f_{t28}}{4 \delta \sigma_s + f_{t28}}$$

 σ_s : Contrainte de traction dans l'armature correspondant au cas de charge étudiée.

$$\sigma_S = \frac{M_{ser}}{A_S d}$$
 Les résultats sont récapitulés dans ce tableau :

Tableau III.15 : Calcul de la flèche.

Mse	$\mathbf{A}_{\mathbf{s}}$	Y 1		$\sigma_{\rm s}$				Io	$\mathbf{I}_{ ext{fi}}$	$\mathbf{I_{fv}}$
(kNn) (cm ²)	(cm)	Δ	(MPa)	λί	$\lambda_{\rm v}$	μ	(cm ⁴)	(cm ⁴)	(cm ⁴)

12,93	2,36	7,20	0,002	289.88	12.49	4.99	0,83	22614,19	5096.16	10241.85

Calcul des modules de déformation :

$$E_i = 11000(f_{c28})^{\frac{1}{3}} = 34179,55MPa$$

 $E_v = 3700(f_{c28})^{\frac{1}{3}} = 11496,76MPa$

- Calcul de la flèche due aux déformations instantanées :

$$f_i = \frac{M_{ser}l^2}{10E_iI_{fi}} = 0.17$$
cm (L = 4.8m)

- Calcul de la flèche due aux déformations différées :

$$\begin{split} f_v &= \frac{M_{ser}l^2}{10E_vI_{fv}} = 0,\!298cm \\ \Delta f_T &= f_v - f_i = 0,\!128cm < \overline{f} = 0,\!96cm.....v\'erifi\'ee \end{split}$$

-Calcul des armatures transversales et l'espacement

L'acier choisi pour les armatures transversales est de type rond lisse de nuance

$$(fe=235MPa)$$

Selon le «BAEL 91 modifié 99»:

$$\begin{cases} \bullet \frac{A_{t}}{b_{0}S_{t}} \geq \frac{\tau_{u} - 0.3f_{tj}K}{0.8fe} & K=1 \text{ ArtA } 5.1.23 \\ \bullet S_{t} \leq Mil(0.9d;40m) & ArtA 5.1.22 \\ \bullet \frac{A_{t}fe}{b_{0}S_{t}} \geq Ma(x\frac{\tau_{u}}{2};0.4MPd) & ArtA 5.1.22 \end{cases}$$

• **RPA 99 version 2003 :** A 7.5.2.2

Avec:

$$\varphi_t \leq Min\left(\frac{\mathrm{h}}{35}; \varphi_l; \frac{b_0}{10}\right)$$

 \mathcal{O}_l : Diamètre minimum des armatures longitudinales.

 $\emptyset_t \leq Min (0,6cm; 1cm; 1,2cm)$

On adopte :Ø_t=6mm

Donc:

• Selon le «BAEL 91 modifié 99»:
$$\begin{cases} \bullet \frac{A_t}{S_t} \geq 0.0009cm \\ \bullet S_t \leq 17.01cm \\ \bullet \frac{A_t}{S_t} \geq 0.4cm \end{cases}$$
• Selon le «RPA 99 version 2003»:
$$\begin{cases} \bullet \frac{A_t}{S_t} \geq 0.036cm \\ \bullet S_t \leq 5,25cm.....Zone \ nodale \\ \bullet S_t \leq 10,5cm.....Zone \ courante \end{cases}$$

• Choix des armatures :

On adopte : $A_t = 2T6 = 0,57cm^2$

Choix des espacements:

$$\begin{split} \frac{A_t}{S_t} &\geq 0.036 \Rightarrow S_t \leq 15.83 \text{cm} \\ \text{Donc:} \begin{cases} S_t &= 5 \text{cm}. & \text{Zone nodale} \\ S_t &= 10 \text{cm}. & \text{Zone courante} \end{cases} \end{split}$$

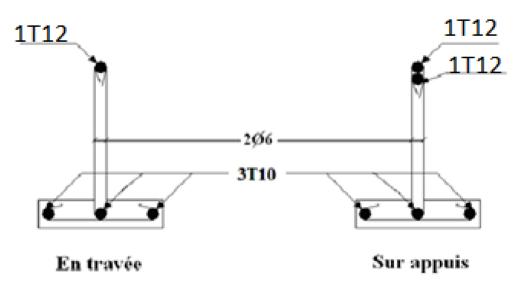


Figure. III.17: Ferraillage des poutrelles en Travée et en Appuis.

III.5.6 Ferraillage de la table de compression :

Le ferraillage de la dalle de compression doit se faire par un quadrillage dont les dimensions des mailles ne doivent pas dépasser :

20 cm : dans le sens parallèle aux poutrelles.

30 cm : dans le sens perpendiculaire aux poutrelles.

Si:
$$\begin{cases} 50 \le L \le 80 \text{cm} \Rightarrow A_1 = \frac{4L}{\text{fe}} \\ L \le 50 \text{cm} \Rightarrow A_2 = \frac{200}{\text{fe}} \end{cases}$$
 selon le C.B.A 93 (art.6.8.4.2.3)

Avec:

L: distance entre axes des poutrelles

A₁: armatures perpendiculaires aux poutrelles

A₂: armatures parallèles aux poutrelles

Tel que:

L=65cm; Fe=235MPa (acier rond lisse)

Donc on obtient : $A_1 = 1,11 \text{cm}2/\text{ml}$.

On prend : **5T6=1,41cm**²

$$S_t = \frac{100}{5} = 20cm$$

• Armatures de répartition : $A_2 = \frac{A_1}{2} = 0.705 \text{cm}^2$

Soit: **5T6=1,41cm²** St=20cm.

Pour le ferraillage de la dalle de compression, on adopte un treillis soudé dont la dimension des mailles est égale à **20**cm suivant les deux sens.

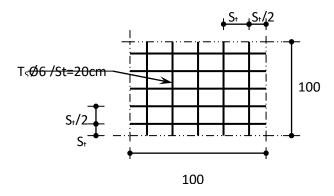


Figure III.18 : Ferraillage de la dalle de compression.

III.6 Etude des balcons :

III.6.1 Introduction:

Le bâtiment étudié comporte un seul type de balcon, et se calcul comme une console en dalle pleine encastrée à une extrémité et libre à l'autre, soumise à :

- Un poids propre.
- La surcharge d'exploitation.
- Charge concentrée à son extrémité libre dûe au poids du garde-corps.

Le calcul se fait pour une bande de 1 m de largeur.

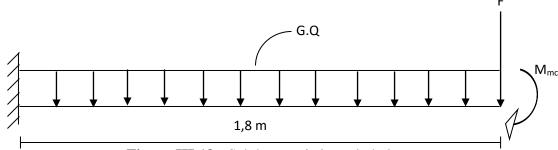


Figure III.19 : Schéma statistique du balcon

III.6.2 Calcul des charges sollicitant le balcon :

a. Charges permanentes et surcharges d'exploitation :

• Charge permanente:

$$\sum G = 5,47 \text{kN/m}^2$$

Pour une bande de 1m:

$$G \times 1m = 5,47 \times 1 = 5,47 \text{ KN/m}$$

• Charge d'exploitation :

Q = 3.5 kN/m, pour une bande de 1m.

• Charge concentrée :

- Enduit au ciment :	0,36 kN/m ²	
- Maçonnerie (ép=10cm) :	0,90 kN/m ²	
- Enduit au ciment :	0,36 kN/m ²	_

 $F = 1,62 \text{ kN/m}^2$

Pour une bande de 1m, F = 1,62 kN/m

• Moment due à la main courante :

$$M_{mc} = 1x1,41 = 1,62 \text{ kNm}$$

b. Combinaisons des charges :

Tableau III.16: Les combinaisons des charges

	ELU	ELS
q (kN/m)	12,63	8,97
F(kN)	2,19	1,62

c. Calcul des efforts internes :

Le diagramme du moment fléchissant et de l'effort tranchent seront déterminer par les formules de la R.D.M suivantes :

$$M(x) = -\left[Fx + \frac{qx^2}{2}\right] + M_{mc} \tag{1}$$

$$T(x) = -[F + qx].$$

Tableau III.17: Efforts internes

	ELU	ELS
M (kNm)	22,99	16,04
T (kN)	24,93	17,77

III.6.3 Calcul du ferraillage :

a. Armatures principales:

Le calcul se fait en flexion simple, pour une bande de 1m de largeur, pour une section rectangulaire $(bxh)=(100x15)cm^2$

Les données : f_{c28} = 30 MPa, f_{t28} = 2,4 MPa, f_{bc} =18 MPa, d=13,5 cm, fe= 500 MPa

Tableau III.18: Ferraillage du balcon

MU (kN.m)	μ	μ<μ _r	A's (cm ²)	α	Z (cm)	As (cm ²)	Le choix	As (cm ²)	ESP (cm)
22,99	0,089	oui	0	0,117	12,86	5,14	5T12	5,65	20

b. Armatures de répartition :

$$\frac{\mathrm{As}}{4} \le Ar \le \frac{\mathrm{As}}{2} \to 1,69cm \le Ar \le 3,39cm$$

On adopte:6**T8/ml** =3,02 cm² avec: S_t =20cm.

III.6.4 Vérifications:

a. Condition de non fragilité:

$$A_{s}^{\min} \ge 0.23b_0 d \frac{f_{t28}}{fe} = 0.27cm^2$$

$$A_s=6,79 \text{ cm}^2>A_s^{min}=0,27\text{cm}^2$$

b. Vérification de l'effort tranchant :

On doit vérifier que: $\tau_u \leq \overline{\tau}_u$ Avec:

$$\tau_u = Min(0.15f_{c28}; 4MPd=4MPa)$$
 (Fissuration préjudiciable).

$$\tau_u = \frac{T}{bd} = \frac{24,83 \times 10^3}{1000 \times 135} = 0,18 \, MPa < T = 4MPa \cdots vérifie$$

Vérification des contraintes:

On considère que la fissuration est préjudiciable.

• Position de l'axe neutre "y":

$$\frac{b}{2}y^2 + nA_s'(y-c') - nA_s(d-y) = 0$$

• Moment d'inertie "I":

$$I = \frac{b}{3}y^3 + nA_s'(y - c')^2 + nA_s(d - y)^2$$

Avec: n=15; $\eta=1.6(H.A)$; c'=1.5cm; d=13.5cm; b=100cm; $A'_s=0$

On doit vérifier que:

$$\left\{ \sigma_{\!\! bc} = \frac{M_{\!\! ser}}{I} y \le \sigma_{\!\! bc} = 0,6 f_{c2c} \text{ 18}^{-1} \text{ MPa} \right\}$$

Tableau III.19: Vérification des contraintes

M _{ser} (kNm)	$\mathbf{A_s}$	Y	I	$\sigma_{ m bc}$	$\sigma < \overline{\sigma}$
	(cm ²)	(cm)	(cm ⁴)	(mPa)	$\sigma_{\!bc} \leq \! \overline{\sigma}_{\!bc}$
16,04	5,65	4,32	11271	6,15	vérifiée

d. Vérification de la flèche :

La vérification de la flèche n'est pas nécessaire si les trois conditions citées ci-dessous sont vérifiées simultanément :

$$\frac{h}{L} = 0,083 \ge 0,0625.... vérifiée$$

$$\frac{A_s}{b} = 0,0050 < 0,0084.... vérifiée$$

$$\frac{h}{L} = 0,083 \ge 0,0697.... vérifiée$$

Donc la vérification de la flèche n'est pas nécessaire.

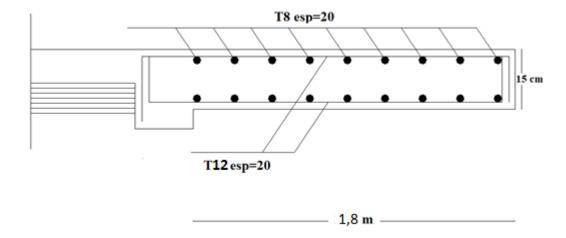


Figure III.20: Schéma de ferraillage des balcons

IV.1 INTRODUCTION:

Le but de ce chapitre est de définir un modèle de structure qui vérifie les conditions et critères de sécurités imposées par les règles parasismiques Algériennes *RPA 99 Version* 2003.

La modélisation de notre structure a été effectuée à l'aide du logiciel *ETABS V.18* qui est un logiciel de calcul automatique des structures.

IV.2 ETUDE SISMIQUE:

IV.2.1 Modélisation de rigidité :

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément linéaire type poutre (frame) à deux nœuds, chaque nœud possède 6 degrés de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Chaque voile est modélisé par un élément surfacique type Shell à quatre nœuds.
- tous les planchers nous avons attribués une contrainte de type diaphragme ce qui correspond à des planchers infiniment rigides dans leur plan.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

IV.2.2. Modélisation de la masse :

- La charge des planchers est supposée uniformément répartie sur toute la surface du plancher. La masse est calculée par l'équation $(G+\beta Q)$ imposée par le **RPA99 version 2003** avec $(\beta=0,2)$ pour un bâtiment à usage **bureaux.** (Mass source).
- La masse volumique attribuée aux matériaux constituant les poteaux et les poutres est prise égale à celle du béton à savoir 2,5t/m3.
- La charge de l'acrotère des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).
- La charge des escaliers a été répartie au niveau des planchers délimitant la cage d'escalier (par plancher).

IV.3 CHOIX DE LA METHODE DE CALCUL:

Le choix des méthodes de calcul et la modélisation de la structure ont comme objectif de prévoir aux mieux le comportement réel de l'ouvrage.

Les règles parasismiques Algériennes (*RPA99 version 2003*) propose trois méthodes de calcul des sollicitations.

IV.3.1 La méthode statique équivalente :

Concernant l'ouvrage faisant l'objet de cette étude, les conditions d'application de la méthode statique équivalente n'étant pas remplies vue l'irrégularité de la structure et la

hauteur dépassant 17m (*art : 4.1.2 des RPA99 2003 version 2003*), donc nous utiliserons la méthode d'analyse modale spectrale.

IV.3.2 La méthode modale spectrale :

a) Analyse spectrale:

1. Utilisation des spectres de réponse :

La pratique actuelle la plus répondue consiste à définir le chargement sismique par un spectre de réponse.

L'action sismique est représentée par un spectre de calcul suivant :

$$\frac{s_a}{g} = \begin{cases}
1,25A \left(1 + \frac{T}{T_1}(2,5\eta_R^Q - 1)\right) & 0 \le T \le T1 \\
2,5\eta \left(1,25A\right)_R^Q & T1 \le T \le T2....(4.13)
\end{cases}$$

$$\frac{s_a}{g} = \begin{cases}
2,5\eta \left(1,25A\right)_R^Q \left(\frac{T^2}{T}\right)^{\frac{2}{3}} & T2 \le T \le 3,0s \\
2,5\eta \left(1,25A\right)_R^Q \left(\frac{T^2}{T}\right)^{\frac{2}{3}} \left(\frac{3}{T}\right)^{\frac{5}{3}} & T \ge 3,0s
\end{cases}$$

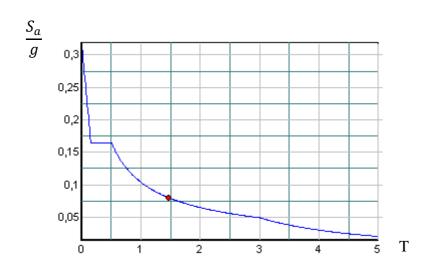


Figure IV.1 : Spectre de réponse

g : accélération de la pesanteur.

A : coefficient d'accélération de zone.

 η : facteur de correction d'amortissement.

 ${\bf R}$: Coefficient de comportement de la structure. Il est fonction du système de contreventement.

T1, T2 : Périodes caractéristiques associées à la catégorie de site.

Q : Facteur de qualité.

2. Résultante des forces sismiques de calcul

L'une des premières vérifications préconisées par le *RPA99 version 2003* est relative à la résultante des forces sismiques.

En effet la résultante des forces sismiques à la base « Vt » obtenue par combinaison des valeurs modales ne doit pas être inférieur à 80% de la résultante des forces sismiques déterminer par la méthode statique équivalente « V » pour une valeur de la période fondamentale donnée par la formule empirique appropriée. Si Vt < 0.8V, il faut augmenter tous les paramètres de la réponse (forces, déplacements, moments,) dans le rapport : $r = \frac{0.8*V}{V_t}$

3. Calcul de la force sismique par la méthode statique équivalente :

Cette force V appliquée à la base de la structure doit être calculée successivement dans les deux directions horizontales par la formule suivante :

$$V = \frac{A*D*Q}{R} * W(4.1)$$

Avec:

• A : coefficient d'accélération de zone.

Groupe d'usage : 2
Zone sismique : III

• D: facteur d'amplification dynamique moyen

Ce facteur est fonction de la catégorie du site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

$$-D = \begin{cases} 2.5\eta & 0 \le T \le T2 \\ 2.5\eta \left(\frac{T^2}{T}\right)^{2/3} & T2 \le T \le 3.0s....(4.2) \\ 2.5\eta \left(\frac{T^2}{3.0}\right)^{2/3} \left(\frac{3.0}{T}\right)^{5/3} & T \ge 3.0s \end{cases}$$

T1, T2 : périodes caractéristiques associée a la catégorie du site est donnée dans le tableau

4.7 des RPA99/version 2003.

Catégorie
$$S_3$$
 Site meuble : $T_1 = 0.15 \text{ sec}$; $T_2 = 0.50 \text{ sec}$

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7....(4.3)$$

Avec :
$$\xi = 7\% \rightarrow \eta = 0.8819$$

• Estimation de la période fondamentale de la structure (T)

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculées par des méthodes analytiques ou numériques.

Les formules empiriques à utiliser selon les (arts 4.2.3 RPA99 version 2003) sont :

$$T = \min(T = C_t * h_N^{3/4}; T = 0.09 \frac{h_N}{\sqrt{D}})$$

$$C_t = 0.05$$

 h_N :

Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

D : Est la dimension du bâtiment mesurée à sa base dans la direction de calcul considéré $T_{analytique} = 1,106s$

$$T = \min(T = C_t * h_N^{3/4}; T = 0.09 \frac{h_N}{\sqrt{D}})$$

$$C_t = 0.05$$
 ; $h_N = 34.71 \, m$

$$\rightarrow T = C_T \times hn^{3/4} = 0.05 \times (34.71)^{3/4} = 0.715 \text{ sec}$$
, dans les deux directions.

$$D_x = 61,7 m$$

$$D_y = 31,08 \, m$$

-Suivant la direction (x-x)
$$T_x = 0.09 \frac{34.71}{\sqrt{61.7}} = 0.398 \text{ sec}$$

-Suivant la direction (y-y)
$$T_y = 0.09 \frac{34.71}{\sqrt{31.08}} = 0.56 \text{ sec}$$

Sens (x-x):
$$Tx = \min(0.715; 0.398) = 0.398 \text{ sec}$$
; $1.3*Tx = 0.517 \text{ sec}$

Sens (y-y):
$$Ty = \min(0.715; 0.56) = 0.56 \text{ sec}$$
; $1,3*Ty = 0,728 \text{ sec}$

Le choix de la période de calcule de l'effort tranchant à la base est limite comme suit :

$$T = \begin{cases} T_{analitique} & si & T_{analitique} \leq 1,3 * T_{empirique} \\ 1,3 * T_{empirique} & si & T_{analitique} \geq 1,3 * T_{empirique} \end{cases}$$

• R : coefficient de comportement

Le coefficient de comportement dépend du système de contreventement. Sa valeur unique est donnée par le tableau (4.3) (RPA 99 version 2003).

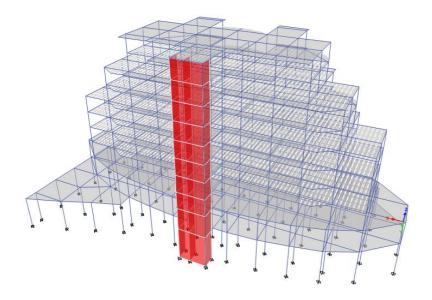
Pour le cas de notre bâtiment, le système de contreventement choisi est un système portiques voiles avec interaction (R=5).

• Q : facteur de qualité :

La valeur de Q déterminée par la formule : $Q = 1 + \sum_{1}^{6} P_{q}$

 P_q : est la pénalité à retenir selon que le critère de qualité ${\bf q}$ "est satisfait ou non ". Sa valeur est donnée par **le tableau 4.4** (RPA 99 version 2003).

Tableau IV.1 : Facteur de qualité


Critère q	Observée (o/n)	Q // xx	Observée (o/n)	Q // yy
Conditions minimales sur les files de contreventement	non	0.05	non	0.05
Redondance en plan	oui	0.00	oui	0.00
Régularité en plan	non	0.05	non	0.05
Régularité en élévation	non	0.05	non	0.05
Contrôle de la qualité des matériaux	oui	0.00	oui	0.00
Contrôle de la qualité de l'exécution	oui	0.00	oui	0.00

Sens
$$X - X : Q = 1 + (0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0) = 1.15$$
.

Sens
$$Y - Y : Q = 1 + (0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0) = 1.15$$
.

IV.4 Résultats de l'analyse sismique :

IV.4.1 Modèle initial:

Figure IV.2 : Vue en 3D du modèle initial

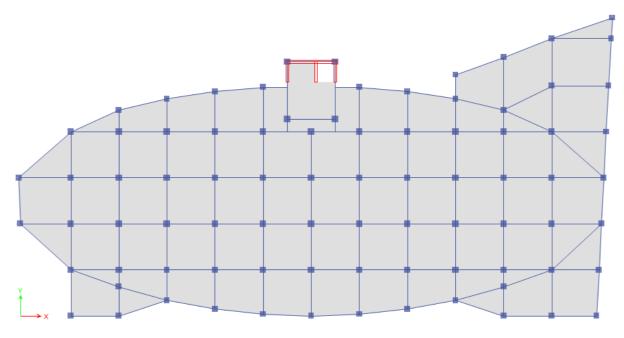


Figure IV.3 : Vue en plan du modèle initial

a-Caractéristiques dynamiques propres :

Tableau IV.2 : Participation massique du modèle initial

Mode	Périodes(s)	UX(%)	UY(%)	SumUX	SumUY
1	1,053	0,0915	0,5491	0,0915	0,5491
2	1,033	0,4135	0,1246	0,505	0,6737
3	0,693	0,1413	0,0002	0,6464	0,6739
4	0,457	0,107	0,0001	0,7533	0,674
5	0,394	0,0002	0,1809	0,7536	0,8549
6	0,297	0,0233	0,0007	0,7769	0,8556
7	0,217	0,1395	0,0004	0,9164	0,856
8	0,21	0,0002	0,083	0,9166	0,9389
9	0,207	0,005	0,00001833	0,9216	0,939
10	0,14	0,0045	0,0004	0,9261	0,9394
11	0,124	0,0003	0,0305	0,9263	0,9699
12	0,115	0,0004	0,00003265	0,9267	0,9699

Constatation:

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T = 1,053 sec.
- La participation massique dépasse le seuil des 90% à partir du 8ème mode.
- Le 1^{er} mode est une translation suivant Y-Y.
- Le 2^{ème} mode est un mode de torsion.
- Le 3^{ème} mode est une translation suivant X-X.

Dans le but d'avoir des translations pour les deux premiers modes, on va rajouter des voiles et augmenter la section des poteaux.

.

IV.4.2 2éme Modèle:

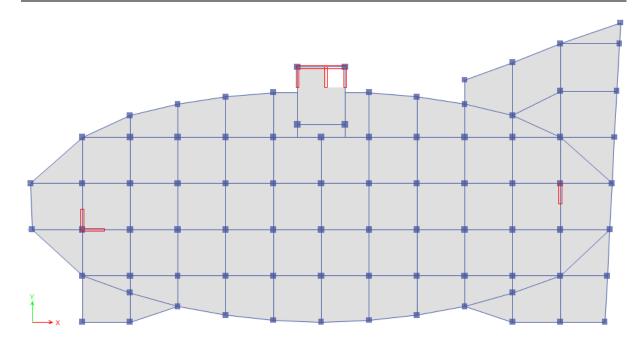


Figure IV.4 : Vue en plan du 2éme modèle.

a-Caractéristiques dynamiques propres :

Tableau IV.3: Participation massique du modèle avec voiles.

Mode	Périodes(s)	UX(%)	UY(%)	SumUX	SumUY
1	1,106	0,0087	0,6518	0,0087	0,6518
2	1,013	0,5159	0,0099	0,5246	0,6617
3	0,701	0,1165	0,0000727	0,641	0,6617
4	0,436	0,0907	0,002	0,7318	0,6637
5	0,396	0,0007	0,1772	0,7325	0,841
6	0,269	0,051	0,0002	0,7835	0,8411
7	0,217	0,1239	0,0001	0,9074	0,8412
8	0,208	0,000003015	0,086	0,9074	0,9273
9	0,188	0,0076	0,0013	0,915	0,9286
10	0,126	0,0078	0,0065	0,9228	0,9351
11	0,12	0,0022	0,0262	0,925	0,9613
12	0,11	0,0461	0,00001266	0,9711	0,9613

Constatation:

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T = 1,106 sec.
- La participation massique dépasse le seuil des 90% à partir du 8ème mode.
- Le 1^{er} mode est une translation suivant Y-Y.
- Le 2^{ème} mode est une translation suivant X-X.
- Le 3^{ème} mode est une translation suivant X-X.

b) Vérification de l'effort tranchant a la base :

Sens (x-x): Tanalytique > 1,3*Tempirique, donc on prend 1,3*Tempirique T = 0,517 sec

Sens (y-y): Tanalytique > 1,3*Tempirique, donc on prend 1,3*Tempirique T = 0,728 sec

Calcul de D:

$$(\mathbf{x}-\mathbf{x}): 0 < 0.517 < 3.0s$$
; $Dx = 2.5\eta (T2/T)^{2/3} = 2.5*0.8819*(0.5/0.517)^{2/3} = 2.156$

$$(y-y)$$
: T2 < 0.728 < 3.0s ; $Dy = 2.5\eta (T2/T)^{2/3} = 2.5*0.8819*(0.5/0.728)^{2/3} = 1.716$

$$Vx = \frac{A*Dx*Q}{R} * W = \frac{0.25*2.156*1.15}{5} * 76892.86 = 9532.41 \text{ KN}$$

$$Vy = \frac{A*Dy*Q}{R} * W = \frac{0.25*1.716*1.15}{5} *76892.86 = 7587.02 \text{ KN}$$

c) Résultantes des forces sismigues :

D'après le fichier des résultants d'ETABS V18 on a : W=76892,86 KN

$$F_1 = V_x^t = 7323,47 \ KN$$

$$F_2 = V_v^t = 5625,01 \ KN$$

Ce qui donne :
$$V_t^x = 5209,31 \, KN < 0.8 * V^x = 7625,83 \, KN$$

 $V_t^y = 5855,72 \, KN < 0.8 * V^y = 6069,62 \, KN$

La condition est non vérifiée.

$$r_x = \frac{0.8*V^x}{V_t^x} = 1.04 > 1$$
 $r_y = \frac{0.8*V^y}{V_t^y} = 1.07 > 1$

d) Vérification des déplacements inter étage :

L'une des vérifications préconisées par le (*RPA 99 version 2003*), concerne les déplacements latéraux inter étages.

En effet, selon (art 5.10 de RPA 99 version 2003) l'inégalité ci-dessous doit nécessairement être vérifiée :

$$\Delta_K^x \leq \overline{\Delta}$$
 et $\Delta_K^y \leq \overline{\Delta}$

Avec: $\overline{\Delta}=0.01h_e$

Ou : h_e représente la hauteur d'étage

$$\begin{split} \delta_K^x &= R r_x \delta_{eK}^x \quad \text{et} \quad \delta_K^y = R r_y \delta_{eK}^y \quad \text{si} \quad r_x \ \text{et} \ r_y > 1 \\ \text{Avec}: \quad \delta_K^x &= R_x \delta_{eK}^x \quad \text{et} \quad \delta_K^y = R_y \delta_{eK}^y \quad \text{si} \quad r_x \ \text{et} \ r_y < 1 \\ \Delta_K^x &= \delta_K^x - \delta_{K-1}^x \quad \text{et} \quad \Delta_K^y = \delta_K^y - \delta_{K-1}^y \end{split}$$

 Δ_K^x : Correspond au déplacement relatif au niveau K par rapport au niveau K-1.

 δ^x_{eK} : Est le déplacement horizontal dû aux forces sismiques au niveau K.

Les résultats sont regroupés dans le tableau suivant :

Tableau IV.4: Vérification des déplacements inter étages dans le sens X-X

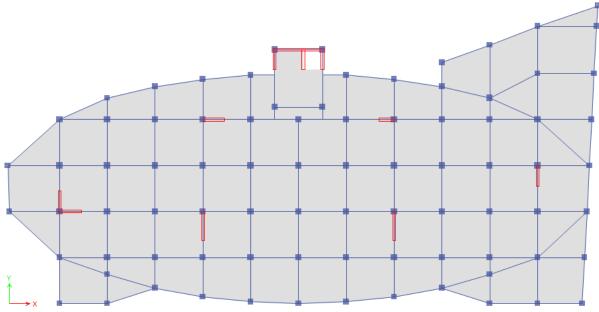

			Dans le	e sens X-X		
Niveaux	$\delta_{ek}(cm)$	$\delta_k(cm)$	$\delta_{k-1}(cm)$	Δ_k (cm)	$\Delta(cm)$	Observation
RDC	0,383	1,9916	0	1,99	5,95	vérifiée
Etage 1	0,862	4,4824	1,9916	2,49	4,08	vérifiée
Etage 2	1,303	6,7756	4,4824	2,29	3,06	vérifiée
Etage 3	1,839	9,5628	6,7756	2,79	3,06	vérifiée
Etage 4	2,426	12,6152	9,5628	3,05	3,06	vérifiée
Etage 5	2,98	15,496	12,6152	2,88	3,06	vérifiée
Etage 6	3,629	18,8708	15,496	3,37	3,06	non vérifiée
Etage 7	4,138	21,5176	18,8708	2,65	3,06	vérifiée
Etage 8	4,675	24,31	21,5176	2,79	3,06	vérifiée
Etage 9	4,975	25,87	24,31	1,56	3,06	vérifiée

Tableau IV.5: Vérification des déplacements inter étages dans le sens Y-Y

	Dans le sens Y-Y								
Niveaux	$\delta_{ek}(cm)$	$\delta_k(cm)$	$\delta_{k-1}(cm)$	Δ_k (cm)	$\overline{\Delta}(cm)$	Observation			
RDC	0,369	1,97415	0	1,97	5,95	vérifiée			
Etage 1	0,87	4,6545	1,97415	2,68	4,08	vérifiée			
Etage 2	1,336	7,1476	4,6545	2,49	3,06	vérifiée			

Etage 3	1,849	9,89215	7,1476	2,74	3,06	vérifiée
Etage 4	2,378	12,7223	9,89215	2,83	3,06	vérifiée
Etage 5	2,892	15,4722	12,7223	2,75	3,06	vérifiée
Etage 6	3,405	18,21675	15,4722	2,74	3,06	vérifiée
Etage 7	3,884	20,7794	18,21675	2,56	3,06	vérifiée
Etage 8	4,34	23,219	20,7794	2,44	3,06	vérifiée
Etage 9	4,763	25,48205	23,219	2,26	3,06	vérifiée

Le déplacement ne vérifie pas suivant le sens X-X, donc il faut rajouter des voiles et

augmenter les sections des poteaux.

IV.4.3 Modèle final:

Après avoir testé plusieurs modèles on opte pour le modèle final représente sur la figure cidessus :

Figure IV.5 : Vue en plan du modèle final

a- Caractéristiques dynamiques propres :

Tableau IV.6 : Participation massique du modèle final.

Mode	Périodes(s)	UX(%)	UY(%)	SumUX	SumUY
1	0,947	0,083	0,5439	0,083	0,5439
2	0,934	0,4338	0,0993	0,5168	0,6432
3	0,644	0,117	0,0001	0,6338	0,6432
4	0,379	0,1123	0,0000265	0,7461	0,6433

5	0,321	0,00004882	0,1949	0,7461	0,8381
6	0,219	0,0371	0,000007598	0,7832	0,8381
7	0,204	0,1203	0,0004	0,9035	0,8385
8	0,16	0,0001	0,0896	0,9037	0,9281
9	0,139	0,0109	0,0003	0,9146	0,9284
10	0,103	0,045	0,0005	0,9595	0,9289
11	0,093	0,0057	0,0192	0,9653	0,9481
12	0,089	0,0042	0,0154	0,9695	0,9636

Constatation:

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T = 0.947 sec.
- La participation massique dépasse le seuil des 90% à partir du 8^{ème} mode.
- Le 1^{er} mode est une translation suivant Y-Y.
- Le 2^{ème} mode est une translation suivant X-X.
- Le 3^{ème} mode est une translation suivant X-X.

b) Vérification de l'effort tranchant a la base :

On a gardé les mêmes résultats que l'étude précédente.

Calcul de D:

$$\begin{aligned} & (\mathbf{x} - \mathbf{x}) : 0 < 0.517 < 3.0s & ; Dx = 2.5 \eta (T2/T)^{2/3} = 2.5 *0.8819 * (0.5/0.517)^{2/3} = 2.156 \\ & (\mathbf{y} - \mathbf{y}) : T2 < 0.728 < 3.0s & ; Dy = 2.5 \eta (T2/T)^{2/3} = 2.5 *0.8819 * (0.5/0.728)^{2/3} = 1.716 \\ & Vx = \frac{A * Dx * Q}{R} * W = \frac{0.25 * 2.156 * 1.15}{5} * 81557.19 = 10110.64 \text{ KN} \\ & Vy = \frac{A * Dy * Q}{R} * W = \frac{0.25 * 1.716 * 1.15}{5} * 81557.19 = 8047.25 \text{ KN} \end{aligned}$$

c) Résultantes des forces sismiques :

D'après le fichier des résultants d'**ETABS V18** on a : W=81557,19 KN
$$F_1 = V_x^t = 5209,31 \ KN$$

$$F_2 = V_y^t = 5855,72 \ KN$$

Ce qui donne :
$$V_t^x = 5209,31 \, KN < 0.8 * V^x = 8088,51 \, KN$$

 $V_t^y = 5855,72 \, KN < 0.8 * V^y = 6437,79 \, KN$

La condition est non vérifiée.

$$r_x = \frac{0.8*V^x}{V_t^x} = 1.55 > 1$$
 $r_y = \frac{0.8*V^y}{V_t^y} = 1.09 > 1$

d) Vérification des déplacements inter étage :

L'une des vérifications préconisées par le (*RPA 99 version 2003*), concerne les déplacements latéraux inter étages.

En effet, selon (art 5.10 de RPA 99 version 2003) l'inégalité ci-dessous doit nécessairement être vérifiée :

$$\Delta_K^x \leq \overline{\Delta}$$
 et $\Delta_K^y \leq \overline{\Delta}$

Avec :
$$\overline{\Delta}$$
=0,01 h_e Ou : h_e représente la hauteur d'étage

$$\operatorname{Avec}: \left\{ \begin{array}{lll} \delta_K^x = \operatorname{Rr}_x \delta_{eK}^x & \operatorname{et} & \delta_K^y = \operatorname{Rr}_y \delta_{eK}^y & \operatorname{si} & r_x & \operatorname{et} & r_y > 1 \\ \\ \delta_K^x = \operatorname{R}_x \delta_{eK}^x & \operatorname{et} & \delta_K^y = \operatorname{R}_y \delta_{eK}^y & \operatorname{si} & r_x & \operatorname{et} & r_y < 1 \\ \\ \Delta_K^x = \delta_K^x - \delta_{K-1}^x & \operatorname{et} & \Delta_K^y = \delta_K^y - \delta_{K-1}^y \end{array} \right.$$

 Δ_K^x : Correspond au déplacement relatif au niveau K par rapport au niveau K-1.

 δ^x_{eK} : Est le déplacement horizontal dû aux forces sismiques au niveau K.

Les résultats sont regroupés dans le tableau suivant :

Tableau IV.7: Vérification des déplacements inter étages dans le sens X-X

			Dans le	e sens X-X		
Niveaux	$\delta_{ek}(cm)$	$\delta_k(cm)$	$\delta_{k-1}(cm)$	Δ_k (cm)	$\Delta(cm)$	Observation
RDC	0,216	1,674	0	1,67	5,95	vérifiée
Etage 1	0,501	3,88275	1,674	2,21	4,08	vérifiée
Etage 2	0,756	5,859	3,88275	1,98	3,06	vérifiée
Etage 3	1,063	8,23825	5,859	2,38	3,06	vérifiée
Etage 4	1,404	10,881	8,23825	2,64	3,06	vérifiée
Etage 5	1,731	13,41525	10,881	2,53	3,06	vérifiée
Etage 6	2,104	16,306	13,41525	2,89	3,06	vérifiée
Etage 7	2,419	18,74725	16,306	2,44	3,06	vérifiée
Etage 8	2,711	21,01025	18,74725	2,26	3,06	vérifiée
Etage 9	2,907	22,52925	21,01025	1,52	3,06	vérifiée

Dans le sens Y-Y Niveaux $\delta_k(cm)$ $\Delta(cm)$ Observation $\delta_{ek}(cm)$ $\delta_{k-1}(cm)$ Δ_k (cm) 0,251 1,36795 0 1,37 5,95 vérifiée RDC 0,609 3,31905 1,36795 1,95 4,08 vérifiée Etage 1 0,946 3,31905 1,84 5,1557 3,06 vérifiée Etage 2 3,06 1,32 7,194 5,1557 2,04 vérifiée Etage 3 3,06 1,715 9,34675 7,194 2,15 vérifiée Etage 4 3,06 2,11 11,4995 9,34675 2,15 vérifiée Etage 5 3,06 2,512 13,6904 11,4995 2,19 vérifiée Etage 6 3,06 2,898 15,7941 13,6904 2,10 vérifiée Etage 7 3,06 3,268 17,8106 15,7941 2,02 vérifiée Etage 8 3,06 3,617 19,71265 17,8106 1,90 vérifiée Etage 9

Tableau IV.8: Vérification des déplacements inter étages dans le sens Y-Y

e) Vérification du critère de l'effort normal réduit :

L'effort normal de compression de calcul sous sollicitations dues au séisme est limité par la

Condition suivante :
$$v = \frac{N_d}{B_c * f_{c28}} \le 0.30$$
 $N_d = G + Q \pm E$ (art 7.1.3.3)

N : l'effort normal de compression s'exerçant sur la section du poteau.

B: l'aire de la section transversale du poteau.

Fc28: 30,00 Mpa

Tableau IV.9: Vérification du critère de l'effort normal réduit

Niveaux	La se	ction adoptée	(cm²)	M (VNI)	ν	Observation	
Miveaux	b (cm)	h (cm)	Aire (cm)	$N_d(KN)$	V	Observation	
RDC	65	65	4225	3316,46	0,262	vérifiée	
Etage 1	65	65	4225	2735,36	0,216	vérifiée	
Etage 2	60	60	3600	2374,17	0,220	vérifiée	
Etage 3	60	60	3600	1998,66	0,185	vérifiée	
Etage 4	50	50	2500	1630,02	0,217	vérifiée	
Etage 5	50	50	2500	1263,08	0,168	vérifiée	
Etage 6	40	40	1600	922,30	0,192	vérifiée	
Etage 7	40	40	1600	644,89	0,134	vérifiée	
Etage 8	35	35	1225	432,29	0,118	vérifiée	
Etage 9	35	35	1225	244,62	0,067	vérifiée	

Remarque:

- Les déplacements relatifs inter étages sont inférieurs à la limite imposée par le «RPA99 version 2003».
- Les efforts normaux réduits sont inférieurs à la limite imposée par le « RPA99 version2003 ».

f) Justification vis-à-vis de l'effet P- Δ (les effets du second ordre) :

Les effets de second ordre (l'effet $P-\Delta$) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

Avec :
$$\theta = \frac{P_k * \Delta_k}{V_k * h_k} \le 0,1$$
 (5.6)

 P_k : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau K .

$$P_k = \sum_{i=k}^{n} (W_{Gi} + \beta W_{Qi})$$
 (4.5)

Tableau IV.10: Vérification l'effet p- Δ inter étages sens (x-x)

Etages	Hk(m)	Δx (cm)	Vx(KN)	PK(KN)	θx	Vérification
Etage 9	3,06	1,52	1289,72	4974,59	0,02	vérifiée
Etage 8	3,06	2,26	2145,28	9076,04	0,032	vérifiée
Etage 7	3,06	2,44	3112,37	14756,32	0,038	vérifiée
Etage 6	3,96	2,89	3953,12	20607,31	0,039	vérifiée
Etage 5	3,06	2,53	4724,91	27583,2	0,049	vérifiée
Etage 4	3,06	2,64	5389,58	34459	0,056	vérifiée
Etage 3	3,06	2,38	5953,29	41542,06	0,055	vérifiée
Etage 2	3,06	1,98	6452,22	48625,12	0,049	vérifiée
Etage 1	4,08	2,21	7249	61711,2	0,047	vérifiée
RDC	5,95	1,67	8074,34	79980,28	0,028	vérifiée

Tableau IV.11: Vérification l'effet p- Δ inter étages sens (y-y)

Etages	Hk(m)	Δy(cm)	Vy(KN)	PK(KN)	θу	Vérification
Etage 9	3,06	1,9	1215,36	4974,59	0,026	vérifiée
Etage 8	3,06	2,02	1915,78	9076,04	0,032	vérifiée
Etage 7	3,06	2,1	2641,92	14756,32	0,039	vérifiée
Etage 6	3,06	2,19	3243,05	20607,31	0,046	vérifiée
Etage 5	3,06	2,15	3821	27583,2	0,051	vérifiée
Etage 4	3,06	2,15	4344,2	34459	0,056	vérifiée
Etage 3	3,06	2,04	4813,45	41542,06	0,058	vérifiée
Etage 2	3,06	1,84	5227,3	48625,12	0,056	vérifiée
Etage 1	4,08	1,95	5831,84	61711,2	0,051	vérifiée
RDC	5,95	1,37	6382,88	79980,28	0,029	vérifiée

g) Justification du choix du coefficient de comportement :

Dans le système de contreventement de structure Mixte portiques/voiles avec interaction (Système 4.a) ainsi définie par le [2], Les voiles de contreventement doivent reprendre au plus 20% des sollicitations dues aux charges verticales.

Les charges horizontales sont reprises conjointement par les voiles et les portiques Proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux.

Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant d'étage.

Pourcentage des sollicitations dues aux charges verticales reprises par les voiles :

L'effort normal total à la base de la structure P Tot = 93155,24 KN

L'effort normal à la base repris par les voiles P voiles = 15227,54 KN

P voiles / P Tot = 16,34% < 20%

Pourcentage des sollicitations dues aux charges horizontales reprises par les portiques et voiles.

Etages	$V_{x tot} (KN)$	$V_{x port}$ (KN)	$V_{port}\%$	$V_{y tot}$ (KN)	$V_{y port}$ (KN)	$V_{port}\%$	Condition	Observation
Etage 9	1289,72	1160,53	89,98	1215,36	918,29	75,55	25	Vérifié
Etage 8	2145,28	1157,62	53,96	1915,78	818,41	42,71	25	Vérifié
Etage 7	3112,37	2367,98	76,07	2641,92	1628,91	61,65	25	Vérifié
Etage 6	3953,12	2242,18	56,71	3243,05	1392,95	42,95	25	Vérifié
Etage 5	4724,91	3541,23	74,94	3821	2623,53	68,66	25	Vérifié
Etage 4	5389,58	3029,29	56,20	4344,2	2074,89	47,76	25	Vérifié
Etage 3	5953,29	3902,88	65,55	4813,45	2766,74	57,47	25	Vérifié
Etage 2	6452,22	3598,89	55,77	5227,3	2712,88	51,89	25	Vérifié
Etage 1	7249	4143,93	57,16	5831,84	3555,82	60,97	25	Vérifié
RDC	8074,34	2312,77	28,64	6382,88	1619,68	25,37	25	Vérifié

Tableau IV.12: Vérification des portiques sous l'effort tranchant d'étage

Conclusion:

Etant donné que :

Les voiles de contreventement reprennent moins de 20% des sollicitations dues aux charges verticales.

Les portiques prennent, outre les sollicitations dues aux charges verticales, plus de 25 % de l'effort tranchant dans chaque étage.

Alors, le choix du coefficient de comportement global de la structure (R=5) est justifié.

V.1 Introduction

Le ferraillage des éléments résistant doit être conforme aux règlements en vigueur en l'occurrence du CBA 93 et des RPA99 version 2003.

Notre structure est composée essentiellement de trois éléments structuraux à savoir :

- 1. poteaux
- 2. poutres
- 3. voiles

V.2 Ferraillage des poteaux

V.2.1 Introduction

Les poteaux sont des éléments structuraux verticaux, ils constituent des points d'appuis pour les poutres et jouent un rôle très important dans la transmission des efforts vers les fondations. Les sections des poteaux sont soumises à la flexion composée (M, N), compression "N", et à un moment fléchissant "M".

Une section soumise à la flexion composée peut être l'un des trois cas suivants :

- Section entièrement tendue SET.
- Section entièrement comprimée SEC.
- Section partiellement comprimée SPC.

Les armatures sont obtenues à l'état limite ultime (E.L.U) sous l'effet des sollicitations les plus défavorables et dans les situations suivantes :

a. Situation durable:

- **Béton**: $\gamma_b=1.5$; $f_{c28}=30MPa$; $\sigma_{bc}=17MPa$
- **Acier**: $\gamma_s=1,15$; Nuance FeE500; $\sigma_s=435MPa$

b. Situation accidentelle:

- **Béton**: $\gamma_b=1,15$; $f_{c28}=30MPa$
- **Acier:** $\gamma_s=1,00$; Nuance FeE500; $\sigma_s=500$ MPa

V.2.2 Combinaison d'action

En fonction du type de sollicitations, nous distinguons les différentes combinaisons suivantes :

a. Selon CBA 93:

Situation durable : **ELU** : 1,35G+1,5Q

ELS: G+Q

b. Selon RPA 99:

Situation accidentelle: G+Q+E

 $0.8G\pm E$

A partir de ces combinaisons, on distingue les cas suivants :

- 1- Effort normal maximal et le moment correspondant (N^{max}, M^{corr})
- 2- Le moment maximum et l'effort correspondant (M^{max,} N^{corr})
- 3- Effort normal minimal et le moment correspondant (N^{min}, M^{corr})

V.2.3 Recommandation selon RPA99 version 2003:

D'après les **RPA99 version 2003**, pour une zone sismique III, les armatures longitudinales doivent être à haute adhérence, droites et sans crochet.

• Leur pourcentage est limité par:

$$*0.9\% < \frac{A_{3}}{B} < 4\%$$

Zone courante (Z.C)

$$*0,9\% < \frac{A_{5}}{B} < 6\%$$

Zone de recouvrement (Z.R)

Avec:

A_s: La section d'acier.

B : Section du béton [cm²].

- Le diamètre minimal est de 12mm.
- La longueur minimale de 50Ø en zone de recouvrement.
- La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 20cm.
- Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales.

Les tableaux suivants regroupent tous les résultats des efforts ainsi que la section d'armature calculée en utilisant les différentes combinaisons

N.B: On utilise Le logiciel de SOCOTEC pour le ferraillage des sections.

V.2.4 Calcul de ferraillage :

1. Situation durable:

• Combinaison : **1,35G+1,5Q**

a. (N^{max}, M^{corr}) :

Tableau V.1 : Ferraillages des poteaux en situation durable (N^{max}, M^{corr})

	Sections	N ^{max}	M ^{corr}		As/coté	Asmin
Niveaux	(cm ²)	(kN)	(kN.m)	solicitation	(cm ²)	(cm ²)
RDC-1 ^{er}	65*65	-2969	-0,82	SEC	0	38,02
2eme-3eme	60*60	-2124,29	-5,05	SEC	0	32,4
4eme-5eme	50*50	-1587,91	-6,678	SEC	0	22,5
6éme-7eme	40*40	-1080,68	-9,85	SEC	0	14,4
8éme-9éme	35*35	-576,17	1,21	SEC	0	11,02

b. (M^{max}, N^{corr}) :

Tableau V.2 : Ferraillages des poteaux en situation durable ($M^{\text{max}}, N^{\text{corr}}$)

Niveaux	Sections (cm ²)	N ^{corr} (kN,m)	M ^{max} (kN)	solicitation	As/coté (cm²)	Asmin (cm ²)
RDC-1 ^{er}	65*65	-712,15	81,95	SEC	0	38,02
2eme-3eme	60*60	-458,74	-58,82	SEC	0	32,4
4eme-5eme	50*50	-152,8	-65,48	SEC	0	22,5
6éme-7eme	40*40	-96,46	-67,72	SEC	0	14,4

8éme-9éme 35*3:	-184,23	-42,16	SEC	0	11,02	
-----------------	---------	--------	-----	---	-------	--

c. (N^{min}, M^{corr}) :

Tableau V.3 : Ferraillages des poteaux en situation durable ($N^{\text{min}},\,M^{\text{corr}}$)

Niveaux	Sections (cm ²)	N ^{min} (kN)	M ^{corr} (kN.m)	solicitation	As/coté (cm²)	Asmin (cm ²)
RDC-1 ^{er}	65*65	-588,83	-18,22	SEC	0	38,02
2eme-3eme	60*60	-320,39	38,20	SEC	0.46	32,4
4eme-5eme	50*50	-97	42,47	SEC	0.94	22,5
6éme-7eme	40*40	-93,84	66,27	SEC	3,15	14,4
8éme-9éme	35*35	-32,84	-11,07	SEC	0	11,02

2. Situation accidentelle

• Combinaison : **G**+**Q**+**E**

a. (N^{max}, M^{corr}) :

 $\textbf{Tableau V.4:} \ \text{Ferraillages des poteaux carr\'ees situation accidentelle } (N^{\text{max}}, \, M^{\text{corr}})$

Niveaux	Sections (cm ²)	N ^{max} (kN)	M ^{corr} (kN.m)	solicitation	As/coté (cm²)	Asmin (cm ²)
RDC-1 ^{er}	65*65	-3134,11	-126,75	SEC	0	38,02
2eme-3eme	60*60	-2374,17	-185,76	SEC	0	32,4
4eme-5eme	50*50	-1630,01	-100,34	SEC	0	22,5
6éme-7eme	40*40	-922,30	-58,57	SEC	0	14,4
8éme-9éme	35*35	-429,84	-56,39	SEC	0	11,02

b. (M^{max}, N^{corr}) :

 $\textbf{Tableau V.5:} \ Ferraillages \ des \ poteaux \ carr\'ees \ situation \ accidentelle \ (M^{max,} N^{corr})$

Niveaux	Sections (cm ²)	N ^{corr} (kN,m)	M ^{max} (kN)	solicitation	As/coté (cm²)	Asmin (cm ²)
RDC-1 ^{er}	65*65	-1433,78	-321,83	SEC	0	38,02
2eme-3eme	60*60	-1030,30	-305,44	SPC	1,24	32,4
4eme-5eme	50*50	-416,61	-232,17	SEC	6.28	22,5
6éme-7eme	40*40	-265,38	164,25	SEC	6,91	14,4
8éme-9éme	35*35	-74,97	-118,19	SPC	6,32	11,02

c. (N^{min}, M^{corr}) :

Tableau V.6 : Ferraillages des poteaux carrées situation accidentelle (N^{\min} , M^{corn})

Niveaux	Sections (cm ²)	N ^{min} (kN)	M ^{corr} (kN.m)	solicitation	As/coté (cm²)	Asmin (cm ²)
RDC-1 ^{er}	65*65	318,75	248,19	SEC	11,32	38,02
2eme-3eme	60*60	314,63	201,31	SEC	10,33	32,4
4eme-5eme	50*50	86	110,14	SEC	5,61	22,5
6éme-7eme	40*40	3	80,57	SPC	4,46	14,4
8éme-9éme	35*35	20,87	52,81	SPC	3,56	11,02

• Combinaison : **0,8G+E**:

a. (N^{max}, M^{corr}) :

 $\textbf{Tableau V.7:} Ferraillages \ des \ poteaux \ carr\'ees \ situation \ accidentelle \ (N^{max},M^{corr})$

	Sections	Nmax	Mcorr		As/coté	Asmin
Niveaux	(cm ²)	(kN)	(kN.m)	solicitation	(cm ²)	(cm ²)
RDC-1 ^{er}	65*65	-2651,60	-130,27	SEC	0	38,02
2eme-3eme	60*60	-2060,92	-187,33	SEC	0	32,4
4eme-5eme	50*50	-1393,99	-100,51	SEC	0	22,5
6éme-7eme	40*40	-783,09	-60,62	SEC	0	14,4
8éme-9éme	35*35	-327,34	-43,75	SEC	0	11,02

b. (M^{max}, N^{corr}) :

 $\textbf{Tableau V.8:} \ \text{Ferraillages des poteaux carr\'ees situation accidentelle } (M^{\text{max},} N^{\text{corr}})$

	Sections	Ncorr	M ^{max}		As/coté	Asmin
Niveaux	(cm ²)	(kN,m)	(kN)	solicitation	(cm ²)	(cm ²)
RDC-1 ^{er}	65*65	-1109	-299,68	SEC	0	38,02
2eme-3eme	60*60	-765,11	-293,65	SPC	3.16	32,4
4eme-5eme	50*50	-297,19	-217,56	SEC	7.71	22,5
6éme-7eme	40*40	-168,31	160,34	SEC	7.53	14,4
8éme-9éme	35*35	-46,29	105,87	SPC	6.01	11,02

c. (N^{min}, M^{corr}) :

 $\textbf{Tableau V.9:} \ Ferraillages \ des \ poteaux \ carr\'ees \ situation \ accidentelle \ (N^{min}, \ M^{corr})$

Niveaux	Sections (cm ²)	N ^{min} (kN)	M ^{corr} (kN.m)	solicitation	As/coté (cm²)	Asmin (cm ²)
RDC-1 ^{er}	65*65	698,99	136,27	SPC	11.53	38,02
2eme-3eme	60*60	469,01	149,50	SPC	10.1	32,4
4eme-5eme	50*50	322,02	109,98	SPC	8,03	22,5
6éme-7eme	40*40	142,21	78,52	SPC	5.46	14,4
8éme-9éme	35*35	70,175	51,56	SPC	3.63	11,02

Les résultats sont récapitulés dans le tableau suivant :

V.2.5. Choix des armatures :

Tableau V.10 : Choix des armatures des poteaux carrées

Niveaux	Sections (cm ²)	As ^{cal} /coté (cm ²)	As ^{min} (cm ²)	As ^{max} ZC	As ^{max} ZR	Choix des armatures	As ^{adop} (cm ²)
				(cm ²)	(cm ²)		
RDC-1 ^{er}	65*65	11.53	38,02	144	216	4T25+8T20	44,77
2eme-3eme	60*60	10.33	32,4	121	181,5	12T20	37,7
4eme-5eme	50*50	8.03	22,5	100	150	12T16	24,13
6éme-7eme	40*40	7.53	14,4	81	121,5	12T16	24,13
8éme-9éme	35*35	6.32	11,02	64	96	4T16+8T14	20,35

V.2.6. Vérification vis-à-vis de l'état limite de service :

Les contraintes sont calculées à l'état limite de service sous (M_{ser}, N_{ser}) (annexe, organigramme), puis elles sont comparées aux contraintes admissible données par :

•Béton: On doit vérifier que:

$$\sigma_{bc} = \frac{M^{Ser}}{I} \cdot y \leq \overline{\sigma_{bc}}$$

$$\sigma_s = 0.6 f c 2.8 = 1.8 MPc$$

• Acier: Fissuration peu nuisible....... Pas de vérification.

Fissuration préjudiciable...
$$\sigma_s = \zeta_s = Mi \left(\frac{2}{3} f_e, \text{max}(0.5 f_e; 110 \overline{\eta_{tj}}) \right)$$

Fissuration très préjudiciable......
$$\overline{\sigma}_s = 0.8\zeta_s$$

Avec : $\eta=1,6$ pour les aciers H.A

Dans notre cas la fissuration est considérée préjudiciable, donc σ_s =250MPa.

Les résultats sont récapitulés dans les tableaux suivants :

a.
$$(N^{max}, M^{corr})$$
:

Tableau V.11 : Vérifications des contraintes pour les poteaux carrées

Niveaux	Sections (cm ²)	N _{ser} max (kN)	M _{ser} corr (kN.m)	A_s^{adp} (cm^2)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	σ _{bc} (MPa) sup	$\overline{\phi}_{bc}$ (MPa)	Vérification
RDC-1 ^{er}	65*65	-2152,59	-0,6	44,77	70.3	250	4.67	18	OK
2eme-3eme	60*60	-1544,21	-3,69	37,7	59.6	250	3.96	18	OK
4eme-5eme	50*50	-1154,91	-4,89	24,13	65,8	250	4.4	18	OK
6éme-7eme	40*40	-787,11	-7,16	24,13	70.7	250	4.77	18	OK
8éme-9éme	35*35	-420,15	0.85	20,35	45.9	250	3.07	18	OK

b. (M^{max}, N^{corr}) :

Tableau V.12: Vérification des contraintes pour les poteaux carrées

Niveaux	Sections (cm2)	N _{ser} corr (kN)	M _{ser} mas (kN.m)	A ^{cdp} (cm²)	σs (MPa)	$\overline{\sigma}_s$ (MPa)	σbc (MPa) sup	$\overline{\phi}_{bc}$ (MPa)	Vérification
RDC-1 ^{er}	65*65	-521,39	58,40	44,77	31,4	250	2,61	18	OK
2eme-3eme	60*60	-334,60	-42,53	37,7	25,5	250	1,78	18	OK
4eme-5eme	50*50	-111,47	-47,41	24,13	75,4	250	3,09	18	OK
6éme-7eme	40*40	-70,44	-49,28	24,13	61,6	250	5,07	18	OK
8éme-9éme	35*35	-135,21	-30,6	20,35	78	250	5,1	18	OK

c. (M^{corr} , N^{min}):

Tableau V.13 : Vérification des contraintes pour les poteaux carrées

Niveaux	Sections (cm2)	Nmin _{ser} (kN)	Mcorr _{se} r (kN.m)	A ^{cdp} (cm²)	σs (MPa)	$\overline{\sigma}_s$ (MPa)	σbc (MPa) sup	$\overline{\phi}_{bc}$ (MPa)	Vérification
RDC-1 ^{er}	65*65	-429,12	-13,14	44,77	17,2	250	1.17	18	OK
2eme-3eme	60*60	-234,64	27,75	37,7	17,2	250	1.2	18	OK
4eme-5eme	50*50	-70,99	30,87	24,13	49,8	250	2,01	18	OK
6éme-7eme	40*40	-68,55	48,23	24,13	60,3	250	4.96	18	OK
8éme-9éme	35*35	-24,22	-7,99	20,35	27	250	1.31	18	OK

V.2.7 VERIFICATION De L'effort Tranchant :

a. Vérification de la contrainte de cisaillement

Le calcul de la contrainte de cisaillement se fait au niveau de l'axe neutre. La contrainte de cisaillement est exprimée en fonction de l'effort tranchant à l'état limite ultime par :

Il faut vérifier que : $\tau_u = \frac{T_u}{bd} \le \tau_u$Poteaux carré

$$\tau_u = \frac{T_u}{R^2 \sqrt{2}} \le \tau_u$$
..... Poteaux circulaire

Où τ_u : contrainte de cisaillement

T_u : effort tranchant à l'état limite ultime de la section étudiée

b : la largeur de la section étudiée

d: la hauteur utile

R: Rayon de la section du poteau.

La contrainte de cisaillement est limitée par une contrainte admissible $\overline{\tau_u}$ égale à :

Selon le BAEL 91

$$\tau_u = Min(0.13f_{c28},5MP)$$
Fissuration peu nuisible.

$$\tau_u = Min(0,10f_{c28},4MP)$$
.....Fissuration préjudiciable et très préjudiciable.

Selon RPA99 ver.03

$$\tau_u = \rho_d f_{c28}$$

 ρ_d =0,075.....si l'élancement $\lambda \ge 5$

 $\rho_d \!\!=\!\! 0,\!040.....$ si l'élancement $\lambda \! < \! 5$

Avec:

λ: L'élancement du poteau ($λ = \frac{\sqrt{12} \times l_f}{a}$)

i: Rayon de giration.

I : Moment d'inertie de la section du poteau dans la direction considérée.

B : Section du poteau.

L_f: Longueur de flambement.

Poteaux carrés:

Tableau V.14 : Vérification de la contrainte de cisaillement pour les poteaux carrés

Niveaux	Section (cm ²)	Tu (kN)	τ _u (MPa)	λ	ρa	$ au_u^{RPA}$ $(MP)_a$	$ar{ au}_u^{BAEL}$ $(MP)_a$	Vérification
DDC 1er	65*65	125.05	0.25	22,15	0.075	2.25	2	OW
RDC-1 ^{er}	65*65	-135,05	0,35	15,22	0,075	2,25	3	OK
2eme-3eme	60*60	169,56	0,52	12,36	0,04	2,25	3	OK
4eme-5eme	50*50	-164,68	0,73	14,84	0,04	2,25	3	OK
6éme-7eme	40*40	111,16	0,77	18,55	0,075	2,25	3	OK
8éme-9éme	35*35	77,28	0,7	21,2	0,075	2,25	3	OK

V.2.8 Ferraillage transversal des poteaux :

Les armatures transversales sont déterminées à partir des formules du **CBA 93** et celles des **RPA99 version 2003**, elles sont données comme suit :

- Selon CBA 93:

$$\begin{cases} S_{t} \leq Mil(0.9d;40cm) \\ \varphi_{t} \leq Mil(\frac{h}{35};\frac{b}{10};\varphi_{t}) \\ \frac{A_{t}f_{e}}{bS_{t}} \geq Ma(\frac{\tau_{u}}{2};0.4MPd) \end{cases}$$

At: Section d'armatures transversales.

b: Largeur de la section droite.

h: Hauteur de la section droite.

S_t: Espacement des armatures transversales.

 \emptyset_t : Diamètre des armatures transversales.

 \emptyset_1 : Diamètre des armatures longitudinales.

Selon les RPA99 version 2003:

$$\frac{A_t}{S_t} = \frac{\rho_a T_u}{h f_e}$$

Avec:

At: Section d'armatures transversales.

S_t: Espacement des armatures transversales.

T_u: Effort tranchant à l'ELU.

f_e: Contrainte limite élastique de l'acier d'armatures transversales.

h: Hauteur totale de la section brute.

 ρ_a : Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.

$$\rho_a$$
=2,5.....si λ_g ≥5

$$\rho_a = 3,75.....$$
si $\lambda_g < 5$

 λ_g : Espacement géométrique.

• L'espacement des armatures transversales est déterminé comme suit :

 $S_t \leq 10cm$Zone nodale (zone III).

$$S_t \leq Mi(\frac{b}{2}; \frac{h}{2}; 10\phi)$$
.....Zone courante (zone III).

Ø₁: Diamètre minimal des armatures longitudinales du poteau.

• La quantité d'armatures transversales minimale $\frac{A_t}{Sh}$ en (%) est donnée comme suite :

$$\begin{cases} 0,3\%.....si\,\lambda_{g} \geq 5 \\ 0,8\%....si\,\lambda_{g} \leq 3 \\ \text{Interpolation entre les valeurs } \text{ limites précédentes } si\,3 \leq \lambda_{g} \leq 5 \end{cases}$$

$$\lambda_{\mathrm{g}}$$
 : L'élancement géométrique du poteau $\left(\lambda_{\mathrm{g}}=\frac{L_{\mathrm{f}}}{a}\right)$

a : Dimension de la section droite du poteau.

L_f: Longueur du flambement du poteau.

Pour les armatures transversales f_e=500MPa (FeE500).

Le tableau suivant rassemble les résultats des espacements maximums des poteaux :

 S_t (cm) **Section** $\mathbf{Ø}_{\mathbf{l}}$ **Niveaux Barres** Zone Zone (cm^2) (mm) nodale courante 20 10 20 RDC-1er 65*65 4T25+8T20 20 10 16 2eme-3eme 60*60 12T20 16 10 16 4eme-5eme 50*50 12T16 16 10 16 6éme-7eme 40*40 12T16 10 14 8éme-9éme 35*35 4T16+8T14 14

Tableau V.15: Espacement maximales selon RPA99 des poteaux carrés

Le choix des armatures transversales est regroupé dans le tableau suivant :

Tableau V.16 : Choix des armatures transversales pour les poteaux carrées

Niveaux	Section	$\mathbf{L}_{\mathbf{f}}$	$\lambda_{ m g}$	ρa	Tumax	Zone	St	Atcal	Choix	Asadp
1 (1 / 04421	(cm ²)	(m)	(%)	Pa	(kN)	Zone	(cm)	(cm ²)	CHOIA	(cm ²)
						N	10	1,03	CTT 1 0	4.771
RDC-1 ^{er}	65x65	4,16	6,4	2,5	125.05	11	10	1,55	6T10	4,71
KDC-1	03803	2,85	4,39	3,75	-135,05	С	20	2,07		
							20	3,11	6T10	4,71
24 24	60x60	2,85	4,75	3,75	160.56	N	10	2,11	6T10	4,71
2éme-3éme	0000	2,63	4,73	3,73	169,56	С	16	3,39	6T10	4,71
Jáma Sáma	50x50	2,14	4,28	3,75	16460	N	10	2,47	6T10	4,71
4éme-5éme	SOMSO	2,11	1,20	3,73	-164,68	С	16	3,95	6T10	4,71
Cin. 7(40x40	2,14	5,35	2,5	111.16	N	10	1,38	4T10	3,14
6éme-7éme	IOATO	2,1 !	3,33	2,5	111,16	С	16	2,22	4T10	3,14
8éme-9éme	35x35	2,14	6,11	2,5	77,28	N	10	1,1	4T10	3,14
35mc / 5mc		_,	5,11	_,=	,_3	С	14	1,54	4T10	3,14

V.2.9 Longueur de recouvrement

La longueur minimale de recouvrement est de : L_r =50 $\not O_l$ en zone III Pour :

- Ø=20mm.....L_r=100cm
- Ø=16mm.....L_r=80cm

• Ø=14mm....L_r=70cm

V.2.10 Ferraillage des poteaux de sous-sol:

Les poteaux de l'infrastructure sont supposés travailler à la compression simple, la section d'armature longitudinale sera donnée par :

$$A_{s} \ge \left[\frac{N_{u}}{\alpha} - \frac{B_{T} \cdot f_{c28}}{0.9 \gamma_{b}} \right] \frac{\gamma_{s}}{f_{e}} \quad \dots \qquad [1]$$

Avec:

- N_u: Effort normal de compression simple pondéré.
- γ_b : Coefficient de sécurité du béton $\Rightarrow \gamma_b = 1,5$ situation durable ou transitoire
- γ_{s} : Coefficient de sécurité de l'acier $\Longrightarrow \gamma_{s} = 1,15$ situation durable ou transitoire
- α : Coefficient de réduction en fonction de λ

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2} \frac{\lambda}{35} \end{cases} \text{ Pour } \lambda < 50$$

$$\alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 \text{ Pour } 50 \le \lambda \le 70$$

- Poteau carré $\lambda = \frac{L_f}{i}$
- L_f : longueur de flambement, on prend $L_f = 0.7L_0$
- i: rayon de giration de la section du béton seul avec : $i = \sqrt{\frac{I}{B}}$
- f_{c28} : contrainte de compression du béton à 28 jours f_{C28} = 30 MPa
- f_e : contrainte limite élastique des aciers $f_e = 500 \text{ MPa}$
- B_r: la section réduite d'un poteau obtenue en déduisant de la section réelle 1cm
 d'épaisseur sur tout sa périphérie tel que :
- Poteau carré...... $B_r = (a-0.02)^2 [m^2]$.

a. Calcul de l'effort normal pondéré :

Prenons le poteau le plus sollicité dont l'effort normal est :

 $N_u(RDC) = 2152,59 \text{ KN}$

- Poids du plancher...... 6,11 * 23,91 = 146,09 KN
- Poids du poteau..... $(0.6)^2*(3.74-0.45)*30=36.07KN$

$$G = 222,41 \text{ KN}$$

Surcharge d'exploitation : Q=5x23,91 = 119,55KN

$$N_{u1}=1,35G+1,5Q=479,57$$
 KN

Donc l'effort normal total revenant aux poteaux de sous-sol : $N_{u \text{ (ss)}} = N_{u(RDC)} + N_{u1} = 2632,16 \text{ KN}$ Le sous-sol est de section carré $B = 65x65 \text{ cm}^2$

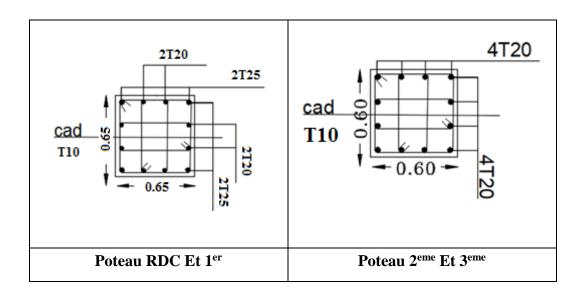
$$i = \frac{a}{\sqrt{12}} = 17,32cm$$

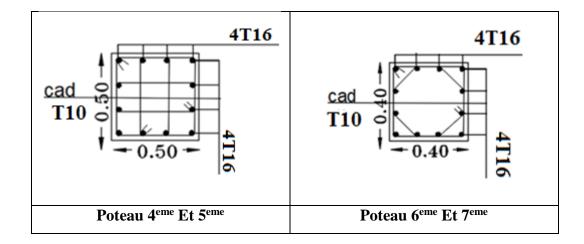
$$\lambda = \frac{0.7 \times 3,7410^{6}}{17,32} = 15,11 \le 50$$

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^{2}} = 0,825 - B_{r} = (0,65 - 0,02)^{2} = 3969$$

D'où:

$$A_{s} \ge \frac{1.15}{500} \times \left(\frac{2632,32 \times 10^{3}}{0.825} - \frac{3969 \times 10^{2}}{0.9} \times \frac{30}{1.5}\right)$$


$$A_{5} \ge -125,16$$
cm²


Le calcul en compression simple du poteau le plus sollicité au niveau du sous-sol sous un effort normal à la base égal à **2643,26 kN** a donné une section inférieure à celle exigée par les **RPA99 ver2003** (As_{min} =38,02 cm²); notre choix est la même section d'armature des poteaux du RDC, soit :

$$As = 8T20 + 4T25 = 44.77 \text{ cm}^2$$

V.2.11 Schéma de ferraillage des poteaux :

• Poteaux carrées :

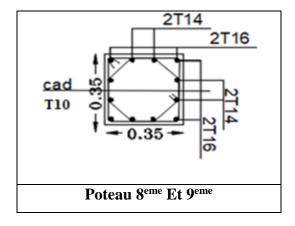


Figure V.1Schémas de ferraillage des poteaux

V.3 Ferraillage des poutres

V.3.1 Introduction

Les poutres sont des éléments structuraux horizontaux qui permettent de transférer les charges aux poteaux, elles sont sollicitées par des moments de flexion et des efforts tranchants.

Le ferraillage des poutres est donné par l'organigramme de la flexion simple (voir annexe).

On fait le calcul pour les situations suivantes :

a. Selon CBA 93:

Situation durable

- E.L.U: 1.35 G + 1.5 Q
- E.L.S : G + Q

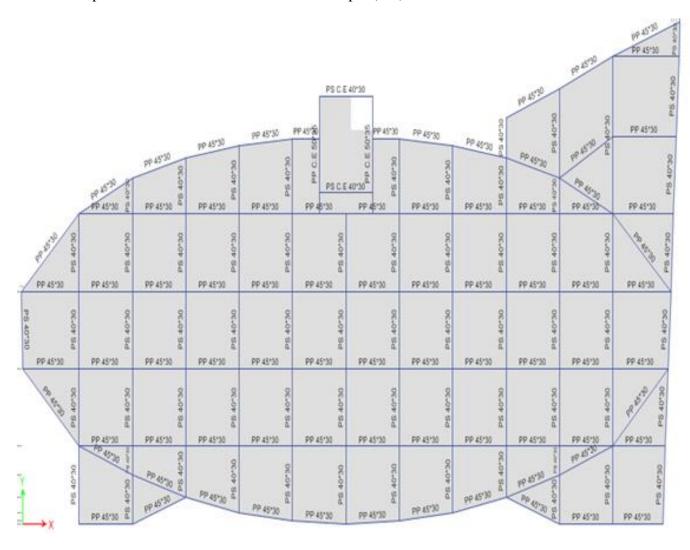
b. Selon RPA 99

Situation accidentelle

- $0.8 \text{ G} \pm \text{E}$
- $G + Q \pm E$

V.3.2 Recommandations selon RPA99 version 2003

- 1- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section.
- 2- Le pourcentage total maximum des aciers longitudinaux est de :
 - 4% en zone courante.
 - 6% en zone de recouvrement.
- 3- La longueur minimale de recouvrement est de 50Ø en zone III.
- 4- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°.
- 5- La quantité d'armatures A_t , est donnée par : $A_t = 0.003 \times S_t \times b$
 - b : largeur de la poutre.
 - S_t: espacement de deux cadres consécutifs,


V.3.3 Calcul de ferraillage

Pour le cas de notre structure, les efforts sont déterminés par le logiciel ETABS V.18 On dispose 4 types de poutres :

- Poutre principale (Sens porteur):
 PP1 30×45 (cm²) PP2 35×50 (cm²)
- Poutre secondaire (Sens non porteur): PS1 30×40 (cm²) PS2 30×40 (cm²)

Les tableaux suivants regroupent tous les résultats des efforts ainsi que les sections d'armatures calculées par le logiciel (**SOCOTEC**) pour chaque type de poutres sous les différentes combinaisons de charge.

- Les poutres seront calculées à la flexion simple (F.S).

Figure V.2 : Disposition des Poutres.

Les résultats sont regroupés dans les tableaux suivants :

1. Les poutres principales :

a. Situation durable: 1.35G+1.5Q

Tableau V.17 : Ferraillage des poutres Principales (situation durable)

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)
Etage courant	30x45	Travée	75,84	4,29
		Appui	-114,8	6,67
Etage courant	35x50	Travée	1.64	0.08
Ziago courant	33430	Appui	-132,94	6,8
Terrasse	30x45	Travée	51,37	2,86
Torrasso	20112	Appui	-85,78	4,89

b. Situation accidentelle : G+Q+E

Tableau V.18 : Ferraillage des poutres principales (situation durable)

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)
Etage courant	30x45	Travée	125,05	6,18
		Appui	-189,51	9,64
Etage courant	35x50	Travée	70,28	3,01
Luge courain		Appui	-221,86	9,93
Terrasse	30x45	Travée	63,20	3,05
10114550		Appui	-143,20	7,13

c. Situation accidentelle : 0.8 G + E

Tableau V.19: Ferraillage des poutres principale (situation durable

d. Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A_s (cm ²)
Etage courant	30x45	Travée	130,35	6,46
		Appui	-170,87	8,61
Etage courant	35x50	Travée	95,07	4.1
Luge courum	33A30	Appui	-190,73	8.50

Terrasse	30x45	Travée	62,64	3,02
Terrusse	30/13	Appui	-125,75	6,22

2. Les poutres secondaires :

a. Situation durable: 1.35G+1.5Q

Tableau V.20 : Ferraillage des poutres secondaires (situation durable)

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)
Etage courant CE		Travée	14,79	0,92
	30x40	Appui	-17,94	1.11
Etage courant	30x40	Travée	47,8	3,04
Etage courant	201110	Appui	-67,89	4,39
Terrasse	30x40	Travée	38,32	2,42
10114550	20110	Appui	-89,56	5,9

b. Situation accidentelle : G+Q+E

Tableau V.21 : Ferraillage des poutres secondaire (situation accidentelle)

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)
Etage courant CE	30x40	Travée	46,73	2,5
		Appui	-71,32	4
Etage courant	30x40	Travée	99,22	5,56
	001110	Appui	-126,60	7,21
Terrasse	30x40	Travée	36,61	1,99
= ====	2 3 2 1 0	Appui	-141,32	8,11

c. Situation accidentelle: 0.8 G + E

Tableau V.22 : Ferraillage des poutres secondaire (situation accidentelle)

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)
Etage courant CE	30x40	Travée	51,59	2,82
		Appui	-66,46	3,66
Etage courant	30x40	Travée	101,43	5,69
		Appui	-122,09	6,93
Terrasse	30x40	Travée	36,57	1,58
Torrusse	20110	Appui	-121,16	6,88

V.3.4 Choix des armatures :

Le ferraillage final adopté est donné par le tableau suivant :

1. les poutres principales :

Tableau V.23: Choix des armatures pour les poutres principales

Niveaux	Section (cm ²)	Position	M ^{max} (KNm)	A_s^{max} (ZC) (cm ²)	A_s^{max} (ZR) (cm ²)	Amin SRP, (cm ²)	A ^{cal} (cm ²)	Choix des armatures	A ^{adp} (cm ²)
Etage courant	35x50	Travée	95,07	48	72	8,75	4,1	3T16	6,03
		Appui	-221,86				9,93	6T16	12,06
Etage courant	30x45	Travée	130,35	48	72	6,75	6,46	5T14	7,7
Liage courant	30143	Appui	-189,51	10	12	0,73	9,64	6T16	12,06
Terrasse	30x45	Travée	63,20	48	72	6,75	3,05	3T16	6,03
10114550	30113	Appui	-143,20	10	, 2	0,73	7,13	3T16+2T12	8,29

2. Les poutres secondaires :

Tableau V.24: Choix des armatures pour les poutres secondaires

Niveaux	Section (cm ²)	Position	M ^{max} (KN.m)	$\begin{array}{c} A_s^{\text{max}} \\ (\text{ZC}) \\ (\text{cm}^2) \end{array}$	A_s^{max} (ZR) (cm ²)	$A_{SRP_{\lambda}}^{\min}$ (cm ²)	A ^{cal} (cm ²)	Choix des armatures	A_s^{adp} (cm ²)
Etage courant	30x40	Travée	51,59	48	72	6	2,82	5T16	10.05
		Appui	-71,32				4	6T16	12,04
Etage courant	30x40	Travée	101,43	48	72	6	5,69	5T14	7,7
Luge courant	30210	Appui	-126,60	10	72		7,21	6T14	9,24
Terrasse	30x40	Travée	38,32	48	72	6	2,42	3T16	6,03
_ 551 W 00 0		Appui	-141,32		. –		8,11	5T16	10,05

V.3.4.2 Condition de non fragilité :

$$A_{s} \ge A_{s}^{\min} = 0.23bd \frac{f_{t28}}{f_{e}}$$
 [1]

Avec:

 $f_{t28}=2.4MPa$; $f_e=500Mpa$

Section (cm2)	A_s^{mir} (cm2)	Vérification
30x45	6,75	Vérifiée
30x40	6	Vérifiée
35x50	8,75	Vérifiée

Tableau V.25 : Vérification de la condition de non fragilité

V.3.4.3 Vérification vis à vis de l'ELS:

Le règlement **CBA93** exige une vérification par une étude thermique pour toute structure ayant des dimensions en plan supérieures a 25m

On doit vérifier que :
$$\begin{cases} \sigma_{bc} = \frac{M_{ser}}{I} \ y + \frac{N}{A} < \bar{\sigma}_{bc} = 18Mpa \\ \sigma_{s} = 15 \frac{M_{ser}}{I} (d - y) + \frac{N}{A} \le \bar{\sigma}_{s} = 250Mpa \end{cases}$$

1. Les poutres principales :

Tableau V.26: Vérification des poutres principales à l'ELS

Niveaux	Position	M _{ser} (KN.m)	σ _{bc} (MP a)	<i>Ō_{bc}</i> (MPa)	σ _s (MPa)	$\overline{\mathcal{O}}_{s}$ (MPa)	Vérification
Etage courant	Travée	1,21	1,2	18	4,63	215,6	OK
(35*50)	Appui	-96,84	6,64		190,4		
Etage courant	Travée	55,04	5,41	18	206,2	215.6	OK
(30*45)	Appui	-82,94	6,99	10	185,2	213.0	OK
Terrasse	Travée	37,62	3,46	18	125,3	215.6	OK
(30*45)	Appui	-62,86	6,16	10	199,8	213.0	OK

2. Les poutres secondaires

Tableau V.27: Vérification des poutres secondaire à l'ELS

Niveaux	Position	M _{ser} (KN.m)	σ _{bc} (MPa)	(MPa)	σ _s (MPa)	(MPa)	Vérification
Etage courant	Travée	51,59	6,58		155.8		
	Appui	-71,31	7,28	18	181	215.6	OK
Etage courant	Travée	33,80	4.02	18	144,1	215.6	OK
nage courant	Appui	-49,34	5.54	10	189,4	210.0	
Terrasse	Travée	28,01	3.57	18	135,5	215.6	OK
	Appui	-65,32	7,12		197,3	210.0	

V.3.5 Vérification thermique :

Le règlement **CBA93** exige une vérification par une étude thermique pour toute structure ayant des dimensions en plan supérieures a 25m.

Sous m'effet de la variation de la température, l'allongement ou le rétrécissement de l'élément est donné par la formule suivante :

$$\Delta L = \propto l_0 \Delta T \dots (1)$$

$$\delta = \frac{\Delta L}{l_0} \dots (2)$$

On substitue l'équation (2) dans l'équation (1), on obtient :

$$\delta = \alpha \Delta T \dots (3)$$

La contrainte est évaluée par la loi de Hooke qui est valable dans le domaine élastique

Son expression est : $\sigma = E.\delta$ (4)

On remplace les paramètres de l'équation (3) dans l'équation (4) on obtient :

$$\sigma = E. \propto \Delta T....(5)$$

Avec:

L : Variation de la longueur de l'élément.

 ΔT : Variation de la température ($\Delta T = 20c$

 \propto : Coefficient de dilatation thermique ($\propto = 10^{-5}$)

l₀: Longueur de la poutre.

 σ : Contrainte thermique.

E: Module de Young (E=34179,55MPa)

Donc:

$$\sigma t = 34179,55.10^{-5}.20 = 6,83MPa$$

Remarque:

Le calcul a été effectué sur les poutres de l'extrémité (poutre de rives), les plus exposées à la variation de température.

1. Poutres principale 30x45

Tableau V.28: Vérification des poutres principale l'ELS

Niveaux	Position	M _{ser} (KN.m)	σ _{bc+} σt (MPa)	(MP a)	σ _s (MPa)	σ_s (MPa)	Vérification
Etage courant	Travée	15,69	8,37	18	58,7	215.6	OK
Etage Courain	Appui	-19,54	8,48	10	55,7	213.0	OK

V.3.6 Vérification de l'effort tranchant :

a. Vérification de la contrainte de cisaillement

Il faut vérifier que :
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$$

Avec:

T_u: l'effort tranchant maximum.

b: Largeur de la section de la poutre.

d: Hauteur utile.

$$\mathcal{T} = \text{Min} (0.10 f_{c28} | 4MPa) = 3MPa$$

(Fissuration préjudiciable). Selon le BAEL 91 modifié 99

CE: Cage d'escalier; EC: Etage courant

1. Les poutres principales :

Tableau V.29 : Vérification de la contrainte de cisaillement dans les poutres principales

Niveaux	Section (cm ²)	T _u max(kN)	τ _u (MPa)	T _u (MPa)	Vérification
Etage	30x45 EC	-123,94	1,02	3	OK
courant	35x50 CE	188,95	1,19	3	OK
terrasse	30x40	100,05	0,92	3	OK

2. La poutre secondaire :

Tableau V.30 : Vérification de la contrainte de cisaillement dans les poutres secondaire

Niveaux	Section (cm ²)	T _u maz(kN)	τ _u (MPa)	τ _u (MPa)	Vérification
Etage	30x40 EC	-133,01	1,23	3	OK

Courant	30x40 CE	-62,75	0,58	3	OK
Terrasse	30x40	-97,16	0,89	3	OK

V.3.7.1 Calcul des armatures transversales :

L'acier choisi pour les armatures transversales est de type haute adhérence et nuance FeE500 ($f_e=500MPa$).

Avec:
$$\phi \le Mi \left(\frac{h}{35}; \phi; \frac{b}{10} \right) = 1,43 \text{ m}$$

On prend: Øt=10mm

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau V.31: Calcul des armatures transversales

Sens	Section	T _u (kN)	$T_u(kN)$ $\tau_u(MPa)$		RP	PA99		ndp m)	A _t	Choix
	(cm ²)			St(cm) St(cm)ZC St(cm)ZN		S _t (cm)ZN	ZN	ZC	(cm ²)	
Principales	35x50 30x45	188,95 123,94	1,52 1,02	40 36,45	25 22,5	12,5 11,25	10	20 20	1.05 0.9	4T8
Secondaire	30x40 30x40	100,05 133,01	0.92 1,23	32,4 32,4	20 20	10 9.6	10 10	15 15	0.9 0,9	4T8

V.3.7.2 Recouvrement des armatures longitudinales :

 L_r =50Ø (zone III). L_r : Longueur de recouvrement.

On a:

a.
$$\emptyset=16$$
mm.....L_r=80cm

V.3.7.3 Arrêt des barres :

Armatures inférieures : $h \le \frac{L}{10}$

Avec : L=Max (L gauche ; L droite)

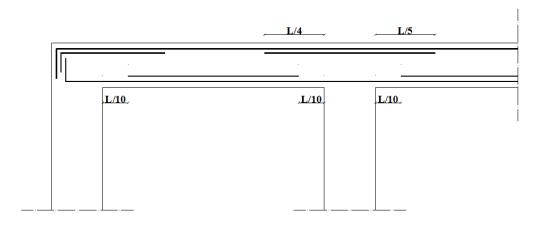


Figure V.3 : Arrêt des barres

V.3.7.4 Vérification de la flèche :

Flèche totale : $\Delta f_T = f_v - f_i \le f_{adm}$. Tel que :

Poutre porteuse (30x45) EC : $f_{adm} = \frac{500}{1000} + 0.5 = 1$

Poutre porteuse (35x50) CE : $f_{adm} = \frac{600}{1000} + 0.5 = 1.1$

Poutre non porteuse (30x40): $f_{adm} = \frac{480}{1000} + 0.5 = 0.98$

Poutre non porteuse (30x40) CE : $f_{adm} = \frac{500}{1000} + 0.5 = 1$

f_i: La flèche due aux charges instantanées.

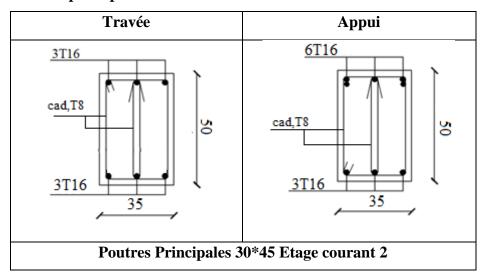
f_v: La flèche due aux charges de longues durée.

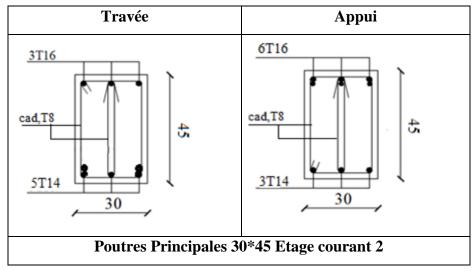
- Calcul de la flèche due aux déformations différées

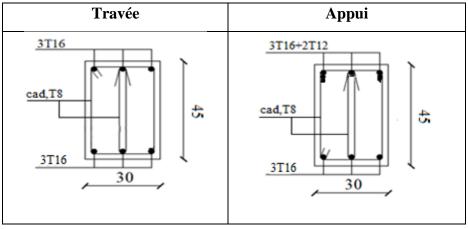
$$f_v = \frac{M_{ser}l^2}{10E_vI_{fv}}$$

- Calcul de la flèche due aux déformations instantanées

$$f_i = \frac{M_{ser}l^2}{10E_iI_{fi}}$$

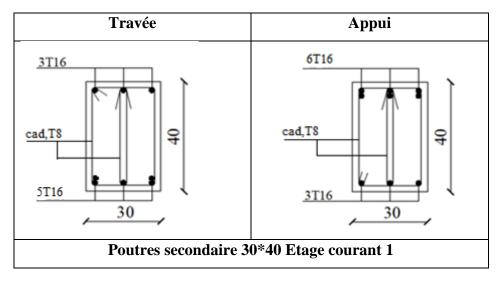

Les résultats sont récapitulés dans ce tableau :

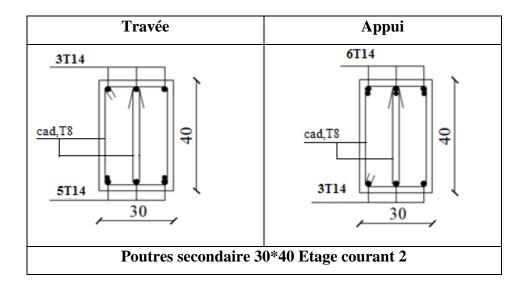

Tableau V.32 : Tableau récapitulatif du calcul de la flèche


Cas	Section (cm ²)	M _{ser} (kNm)	A _s (cm ²)	$f_i(mm)$	$f_{v}(mn)$	i)∆f(mm	$f_{adm}(m)$	n) Vérification
Poutre Porteuse 2	35x50	1,21	8,29	3,85	7,5	3,64	10.2	ОК
Poutre Porteuse 1	30x45	55,04	6.03	4.31	8.49	4.14	4.91	ok
Poutre non Porteuse 2	30x40	51,59	4,52	2.9	4.72	2.53	4.9	ok
Poutre non Porteuse1	30x40	33,80	2,26	4,01	7,76	3,75	9,3	OK

V.3.9 Schéma de ferraillage des poutres :

1. Poutres principale:





Poutres Principales 30*45 terrasse

Figure V.4 : Ferraillage de Poutre Principale

2. Poutres Secondaire:

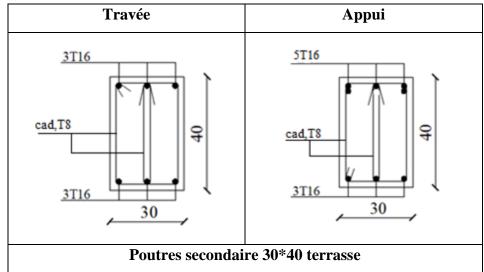


Figure V.5:

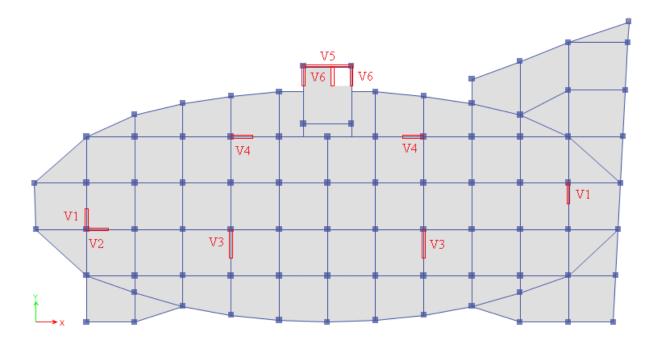
Ferraillage de Poutre secondaire

V.4. Ferraillages des voiles :

V.4.1. Introduction:

Les voiles et murs sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur, généralement verticaux et chargés dans leur plan.

Ces éléments peuvent être :


- En maçonnerie non armée ou armée. Auxquels on réservera le nom de murs.
- En béton armé ou non armé. Et appelés voile.
 On utilise aussi l'expression murs en béton banché pour désigner les voiles en béton non armé. Une banche et un outil de coffrage de grande surface.

On va traiter l'étude des voiles par la méthode des contrainte :

Pour le ferraillage des trumeaux, le calcul et la disposition des aciers verticaux et les aciers horizontaux est conformément aux règlements **B.A.E.L 91** et **RPA 99**.

V.4.2. Ferraillages des voiles :

Le ferraillage de ces voiles est déterminé par la méthode des contraintes.

Figure V.6 : Disposition des voiles.

> Procédure de ferraillage des trumeaux :

Le modèle le plus simple d'un voile est celui d'une console parfaitement encastrée à la base. La figure suivante montre l'exemple d'un élément de section rectangulaire, soumis à une charge verticale N et une charge horizontale V en tête.

Figure V.7 : Schéma statique d'un voile.

Le voile est donc sollicité par un effort normal N et un effort tranchant V constant sur toute la hauteur, et un moment fléchissant qui est maximal dans la section d'encastrement.

Le ferraillage classique du voile en béton armé est composé :

- D'armatures verticales concentrées aux deux extremités du voile (de pourcentage ρ_{V0}) et d'armatures verticales uniformément reparies (de pourcentage ρ_{V})
- D'armatures horizontales, parallèles aux faces du murs, elles aussi uniformément réparties et de pourcentage ρ_H
- Les armatures transversales (epingles) (perpendiculaires aux parement du voile).

Les armatures verticales extrêmes sont soumises à d'importantes forces de traction et de compression, créant ainsi un couple capable d'équilibrer le moment appliqué. À la base du voile, sur une hauteur critique des cadres sont disposés autour de ces armatures afin d'organiser la ductilité de ces zones.

En fin, les armatures de l'âme horizontale et verticale ont le rôle d'assurer la résistante à l'effort tranchant.

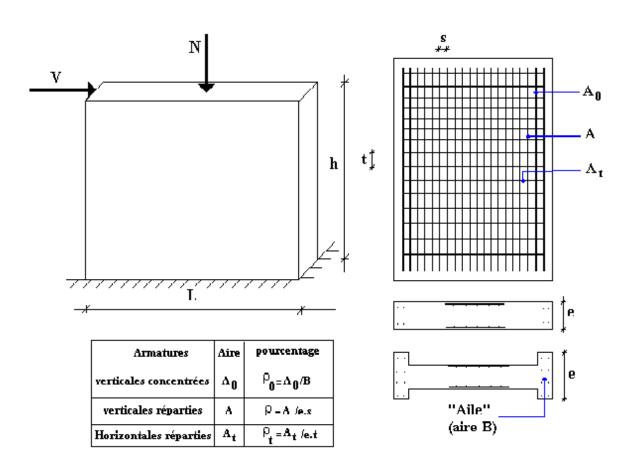


Figure V.8: Schéma d'un voile plein et disposition du ferraillage.

V.4.3. Justifications sous sollicitations normales:

Conditions d'application:

La longueur d du mur : $d \ge 5a$

L'épaisseur a du mur :

 $a \ge 10$ cm pour les murs intérieurs.

 $a \ge 12$ cm pour les murs exterieurs comportant une protection.

 $a \ge 15$ cm pour les murs exterieurs dont la résistance à la pénétration de l'eau peut être affectée par la fissuration du béton.

L'élancement mécanique λ : $\lambda \leq 80$

Le raidisseur d'extêmité r: $r \ge 3a$

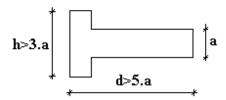


Figure V.9 : Définition de l'élément mur.

a) Longueur de flambement: (murs non raidi latéralement)

Soit:

1 : la hauteur libre du mur.

 $l_{\rm f}$: la longueur libre de flambement d'un mur non raidi.

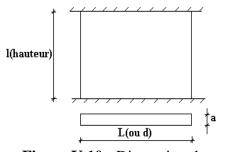


Figure V.10 : Dimension de voile.

Lorsqu'un mur n'est pas raidi latéralement par des murs en retour, la longueur libre de flambement l_f déduit de la hauteur libre du mur l, en fonction de ses liaisons avec le plancher.

Les valeurs du rapport $\binom{l_f}{l}$ sont données par le tableau suivant :

Tableau V.33: Valeurs de (l_f/l).

Liaisons du mur		Mur armé verticalement	Mur non armé verticalement
Mur encastré en	Il existe un plancher de part et d'autre	0,80	0,85
tête et en pied	Il existe un plancher d'un seul côté	0,85	0,90
Mur articulé en tête e	et en pied	1,00	1,00

L'élancement mécanique λ se déduit de la longueur libre de flambement par la relation :

$$\lambda = \frac{l_f \sqrt{12}}{a}$$

b) Effort de compression en ELU:

Soit:

l_f: longueur de flambement calculée en (b).

a : épaisseur du voile.

d: longueur du voile.

f_{c28}: résistance caractéristique du béton à 28 jours.

f_e: limite élastique de l'acier.

 $\gamma_b = 1.5$ (sauf combinaison accidentelles pour lesquelles $\gamma_b = 1.15$)

 $\gamma_s = 1,15$ (sauf pour combinaison accidentelles pour lesquelles $\gamma_s = 1$)

Nota:

Les valeurs de α données par le tableau ci dessous sont valables dans le cas ou plus de la moitié des charges est appliquée après 90 jours .

	Notation	Unités	Voile armée verticalement	Voile non armé verticalement	
Elancement	λ	/	$\frac{l_f\sqrt{12}}{a}$		
Section réduite	Br	M^2	d((a-0,02)	
Pour λ≤ 50 Pour 50 ≤λ≤80	α	/	$\frac{0,85}{1 + 0,2\left(\frac{\lambda}{35}\right)^2}$ $0,6\left(\frac{50}{\lambda}\right)^2$	$\frac{0,65}{1+0,2\left(\frac{\lambda}{30}\right)^2}$	
Effort limite ELU	$N_{\mathrm{u\ lim}}$	kN	$\alpha \left[\frac{B_r f_{c28}}{0.9 \gamma_b} + \frac{A_s f}{\gamma_s} \right]$	$\frac{c}{e}$ $\alpha \left[\frac{B_r f_{c28}}{0.9\gamma_b}\right]$	
Contraintes limites	σ	kPa	$\sigma_{ba} = \frac{N_{ulim}}{ad}$	$\sigma_{bna} = \frac{N_{ulim}}{ad}$	

Tableau V.34 : Calcul de σ_{ulim} .

Remarque:

La contrainte limite vaut $\sigma_{ulim} = \frac{N_{ulim}}{ad}$ que nous appelions σ_{bna} ou σ_{ba} suivant que le béton est non armé ou armé.

c) Niveaux de vérification :

On vérifie le voile à deux niveaux différents :

Niveau I-I à mi-hauteur d'étage : $\sigma_u \leq \sigma_{ulim}$

Niveau II-II sous le plancher haut : $\sigma_u \leq \frac{\sigma_{ulim}}{\alpha}$

En cas de traction, on négligera le béton tendu.



Figure V.11: Niveaux de vérification.

d) Aciers minimaux:

Si $\sigma_u^c < \sigma_{bna}$ on n'a pas besoin d'armatures comprimées, on prendra alors les valeurs minimales données par le tableau suivant : (σ_u^c est la contrainte de compression ultime calculée).

L'épaisseur du voile est désignée par la lettre « a ».

V.4.4. Aciers verticaux et horizontaux :

La section d'armatures correspondant au pourcentage ρ_v doit être répartie par moitié sur chacune des faces de la bande de mur considérée.

La section des armatures horizontales parallèles aux faces du mur doit être répartie par moitié sur chacune des faces d'une façon uniforme sur la totalité de la longueur du mur ou de l'élément de mur limité par des ouvertures.

Tableau V.35: Aciers verticaux et horizontaux.

	Aciers verticaux	Aciers horizontaux
Espacement maximal entre axes	S _t ≤ min (0,33m; 2a)	S _t ≤ 0,33m
Acier minimal Pourcentage minimal	$A_{sv} \ge \rho_v \ da$ ρ_v $= Max \left[0,001; 0,0015 \frac{400\theta}{f_e} \left(\frac{3\sigma_u}{\sigma_{ulim}} \right) \right] $ par moitié sur chaque face $Avec : \theta = 1,4 \text{ pour un voile de rive}$ $\theta = 1 \text{ pour un voile intermédiaire}$	$\rho_{H} = \frac{A_{H}}{100a}$ $\geq Max \left[\frac{2\rho_{vMax}}{3}; 0,001 \right]$ $\rho_{vmax} = \text{le pourcentage vertical de la}$ bande la plus armée

V.4.5. Aciers transversaux :

Seuls les aciers verticaux (de diamètre \emptyset_l) pris en compte dans le calcul de $N_{u \ lim}$ sont à maintenir par des armatures transversales (de diamètre \emptyset_t).

	Nombres d'armatures transversales	Diamètre ϕ_t
$\varphi_l \le 12$ mm	4 épingles par m ² de voile	8mm
$12\text{mm} < \varphi_l \le 20\text{mm}$	Reprendre toutes les barres verticales	8mm
20 mm $< \varphi_l$	Espacement $\leq 15\varphi_l$	8mm

Tableau V.36: Aciers transversaux.

V.4.6. Cisaillement:

Aucune vérification à l'effort tranchant ultime n'est exigée en compression si le cisaillement est inférieur à $0.05f_{c28}$ (il faudra donc vérifier que $S_{12} \le 0.05f_{c28}$).

V.4.7. Procédure de ferraillage des trumeaux :

V.4.7.1. Introduction:

Pour le ferraillage des trumeaux, on devra calculer et disposer les aciers verticaux et les aciers horizontaux conformément aux règlements **B.A.E.L 91** et **RPA** 99.

L'apparition de logiciels modernes d'analyse de structure, utilisant la méthode des éléments finis pour modéliser et analyser les structures a considérablement aidé l'étude du comportement globale de la structure mais aussi, l'obtention directe des efforts et des contraintes (dans les voiles) en tout point de la structure facilite, après une bonne interprétation des résultats du modèle retenue, l'adoption d'un bon ferraillage (ou ferraillage adéquat).

V.4.7.2. Méthode simplifiée basée sur les contraintes :

Comme déjà dit, les voiles du Bâtiment sont sollicités en flexion composée.

Les contraintes normales engendrées (σ) peuvent être soit des contraintes de compression ou de traction.

Zone comprimée :

Si σ <0 \rightarrow compression

Dans ce cas le Voile n'est pas armé à la compression, on prend :

As= Max (Min BAEL; Min RPA).

Zone tendue:

Si $\sigma > 0 \rightarrow$ traction

Lorsqu' une partie (zone) du voile est tendue, la contrainte de traction (moyenne) σ_m vaut :

$$\sigma_m = \frac{FT}{(e \times lm)}$$

Avec:

F_T: force de traction.

e : épaisseur du voile.

l_m: longueur de la section considérée (ici maille).

Cette contrainte entraîne une section d'acier As tel que :

$$\frac{As}{S} = \frac{\sigma m. \gamma s}{fe}. \Delta s = Av$$

Où
$$\Delta s = e \times l_m$$

 $\frac{As}{S}$ Est répartie sur S, cette quantité d'acier sera repartie en deux nappes (une sur chaque face du voile).

Rappelons que les voiles ont été modélisés par des éléments coques (Shell) à 4 nœuds.

Un maillage horizontal et vertical (voir figure ci après) de chaque voile est nécessaire pour approcher les valeurs réelles des contraintes.

Le rapport (a/b) des dimensions de la maille est choisi proche de l'unité.

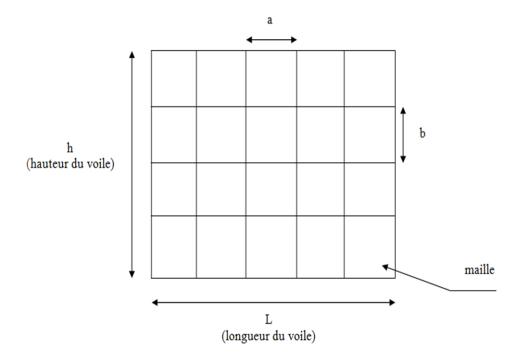


Figure V.12: Discrétisation d'un voile en élément (maille) coque.

La lecture des contraintes moyennes (de traction ou de compression) se fait directement au milieu de chaque maille dont le ferraillage est calculé par l'équation (1) dans le cas de la traction.

V.4.7.3. Aciers horizontaux :

$$A_{h1} = \frac{\overline{\tau}_u \ b_0 \ S_t}{0.8(0.8f_e)} = \frac{1.4 \ \tau_u \ a \ S_t}{0.8f_e} 1,25$$

 $\tau_u = S_{12}$ Est donnée par l'inter face graphique de l'Etabs2018.

 S_t : Espacement maximal trouvé pour A_v

 $b_0 = a$ (épaisseur du trumeau)

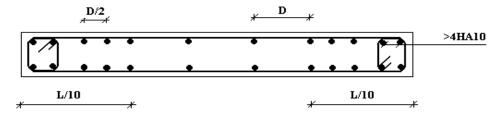
$$A_{h2} = \frac{2}{3} A_v$$
, $A_v = \{\text{section d'acier vertical de la Maille la plus armé}\}$

$$A_h \geq Max(A_{h1}, A_{h2})$$

V.4.7.4. Préconisation du règlement parasismique algérien (RPA99 version2003) :

a) Aciers verticaux:

Lorsqu'une partie du voile est tendue sous l'action des forces verticales et horizontales, l'effort de traction doit être pris en totalité par les armatures, le pourcentage minimum des armatures verticales sur toute la zone tendue est de 0,15%.


Il est possible de concentrer des armatures de traction à l'extrémité du voile ou du trumeau, la section totale d'armatures verticales de la zone tendue devant rester au moins égale à 0,15 % de la section horizontale du béton tendu.

Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.

Si les efforts importants de compressions agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux.

Les barres verticales du dernier niveau doivent être munies de crochets (jonction par recouvrement).

A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile. Cet espacement d'extrémité doit être au plus égal à 15cm.

Disposition des Armatures verticales das les voiles

Figure V.13: Disposition des Armatures verticales dans les voiles.

b) Aciers horizontaux :

Les barres horizontales doivent être munies de crochets à 135° ayant une longueur de 10φ. Dans le cas où il existerait des talons de rigidité, les barres horizontales devront être ancrées sans crochets si les dimensions des talons permettent la réalisation d'un ancrage droit.

> Règles communes :

Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :

Globalement dans la section du voile 0,15%

En zone courante 0,10%

L'espacement des barres horizontales et verticales doit être inférieur à la plus petite des deux valeurs suivantes : $S \le \begin{cases} 1,5a \\ 30cm \end{cases}$

Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré.

Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.

Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.

Les longueurs de recouvrement doivent être égales à :

 40ϕ pour les barres situées dans les zones où le renversement du signe des efforts est possible.

20φ pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.

Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A = 1,1 \frac{\overline{V}}{f_e}$$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

V.4.8 Exemple de calcul (voile V5):

Soit le voile de longueur L = 5 m et l'épaisseur

RDC
$$e = 0.30 \text{ m}$$

1ér étage e=0.25 m

e=0.2 m (étage courant)

 $h_{RDC} = 5,96$ $h_e = 3,06$ m (hauteur d'étage courant)

Le voile est découpé en 6 mailles horizontales de même longueur L^i =0,83m et de section. $S_i = L^{i*}(a)$.

a) Contraintes limites:

Pour une hauteur d'étage d'où la hauteur libre est égale à :

$$H_{RDC} = 5,96 - 0,50 = 5,46m$$

$$h_e=3,06-0,50=2,56m$$
 (0,50 cm : hauteur de la poutre)

Tableau V.37 : Calcul de σ_{ba} et σ_{bna} pour l'exemple.

	Unité	Béton non armé	Béton armé		
Longueur de flambement l _f	М	0,85 x 5,46 = 4,64	0,80 x 5,46 = 4,36		
Elancement λ	/	$\frac{l_f\sqrt{12}}{0,20} = 80,36$	$\frac{l_f\sqrt{12}}{0,20} = 75,51$		
Coefficient α	/	0,26	0,23		
Section réduite $B_r (par ml)$ $Avec d = 0.863m$	М	d(a-0,02) = 0.83(0.20 - 0.02) = 0.19	d(a-0,02) = 0.83(0.30 - 0.02) = 0.23		
Contraintes limites $\sigma = \frac{N_{ulim}}{a \ d}$ Avec d = 0,863m	MPa	$\sigma_{bna} = 0.26 \left[\frac{0.19x30}{0.9x1,15x0,20x0,863} \right]$ $\sigma_{bna} = 5.75MPa$	$\sigma_{ba} = \frac{0.23}{0.83 \times 0.20} \left(\frac{0.23 \times 30}{0.9 \times 1.15} + 1.66.10^{-4} \times \frac{500}{1} \right)$ $\sigma_{ba} = 6.234 MPa$		

Maile (ou élément de voile)	1	2	3	4	5	6
Dimensions (m ²) (a*l ⁱ) = S_j	0,249	0,249	0,249	0,249	0,249	0,249
Contrainte moyenne par bande $\sigma_j(MPa)$	3,54	2,34	0,37	0,29	2,13	3,45
Force de traction $F_t(MN) = \sigma_j S_j$	0.881	0,583	0.092	0.072	0,53	0,859
Section d'acier (cm²) $A_s = \frac{F_t}{\sigma_s} \text{ (Situation accidentelle } \gamma_s = 1\text{)}$	17,62	11,66	1,84	1.44	10,6	17,18
Aciers minimaux (cm²) 1. Selon BAEL : 0,1%S _{béton} 2. Selon RPA99 : 0,15%S _{béton}	2,49 3,73	2,49 3,73	2,49 3,73	2,49 3,73	2,49 3,73	2,49 3,73
Choix	2×4T14 2x2T14	2x4T14	2x3T10	2x3T10	2x4T14	2x4T14 2x2T14
$A_{ m \scriptscriptstyle V}$ adopté	18,84	12,32	4,71	4,71	12,32	18,48
S _i : espacement (Cm)	10	20	20	20	20	10
S≤ (1,5a,30cm), S≤30 cm	Vérifiés	Vérifiés	Vérifiés	Vérifiés	Vérifiés	Vérifiés

Tableau V.38 : Calcul des armatures verticales de l'exemple.

b) Aciers horizontaux :

$$A_{h1} = \frac{\bar{\tau}_u. a. S_t}{(0.8 f_e)0.8}$$
$$\bar{\tau}_u = 1.4 \tau_u = 1.4 S_{12}$$

$$S_{t min} = 30 cm$$

$$A_{h1} = \frac{1,4 (2,64) (300) (300) 10^{-2}}{(0,8) (500) (0,8)} = 6,93cm^2$$

$$A_{h2} = \frac{2}{3} A_V$$
; $A_v = \{\text{section d'acier vertical de la Maille la plus armé}\}$

$$A_{h2} = \frac{2}{3} (18,84) = 12,32 \, cm^2$$

$$A_{hmin} = A(0.15\%) = \frac{0.15}{100}(30)(83) = 3.73cm^2$$

D'où:

$$A_h = Max(A_{h1}, A_{h2}, A_h^{min^2})$$

Soit : $2x2T20 = 12,57 \text{ cm}^2$

Avec : $S_t = \frac{830}{4} = 207,5mm$

On prend : S_t = 207,5 mm < $S_{t \, min}$ = 300 mm...... Vérifié

V.4.9. Présentations des résultats :

Tableau V.39 : Caractéristiques des voiles.

	e (cm) 2 ^{Eme} -9 ^{eme}	e (cm) 1 ^{ER}	e (cm) RDC	L _{voile} (m)	L _i (m)
Voile 1	20	25	30	2,15	0,716
Voile 2	20	25	30	2,3	0,766
Voile 3	20	25	30	3	1
Voile 4	20	25	30	2,2	0,733
Voile 5	20	25	30	5	0,83
Voile 6	20	25	30	2,08	1,04

Nota:

Les valeurs des contraintes dans les voiles données dans les tableaux ci-après correspondent à la combinaison de charge 0.8G+E .

- Zone I \Rightarrow RDC,
- Zone II $\Rightarrow 1^{er}$
- Zone III \Rightarrow , 2^{eme} $3^{\text{éme}}$, $4^{\text{éme}}$, $5^{\text{éme}}$, $6^{\text{ème}}$, $7^{\text{éme}}$, $8^{\text{ème}}$, $9^{\text{ème}}$

V.4.9.1Armature verticale de traction :

➤ Voile V1:

Tableau V.40 : Calcul des armatures du voile (V1).

Hauteur	Maille	Si	σ_{j}	Ft	A_s	A _{smin} (c	Le choix	Avadopté	Esp
(m)	Maine	(m^2)	(MPa)	(MN)	(cm ²)	m^2)	Le choix	(cm ²)	Esp
	1	0,215	2,34	0,5	10	3,225	2x5T16	32,42	8
ZONE I			·				2x4T14		16
ZONET	2	0,215	4,12	0,90	17,71	3,225	2x6T14	18,48	16
	3	0,215	7,42	1,59	31,8	3,225	2x5T16	32,42	16

							2x4T14		8
	1	0,179	1,3	0,23	4,6	2,685	2x2T14	15,21	8
	1		1,3	0,23	1,0		2x4T12		16
ZONE II	2	0,179	2,32	0,41	8,2	2,658	2x4T12	9,04	16
	3	0,179	4,14	0,74	14,8	2,658	2x2T14	15,21	16
	3		4,14	0,74	17,0		2x4T12		8
	1	0,143	1,23	0,17	3,4	2,14	2x2T10	7,85	8
	1	0,143	1,23	0,17	3,4		2x3T10	,	16
ZONE III	2	0,143	1,62	0,23	4,6	2,14	2x3T10	4,71	16
	3	0,143	2,45	0,35	7	2,14	2x2T10	7,85	16
	3	0,143	2,73	0,33	,		2x3T10		8

➤ Voile V2:

Tableau V.41 : Calcul des armatures du voile (V2).

Hauteur	Maille	S_{i}	σ_{j}	Ft	A_s	A _{smin} (c	Le choix	Avadopté	Esp
(m)	Manie	(m^2)	(MPa)	(MN)	(cm ²)	m^2)	Le choix	(cm ²)	Lsp
	1	0,229	2,45	0,56	11,2	3,43	2x5T16 2x5T14	35,5	8 16
ZONE I	2	0,229	4,13	0,92	18,4	3,43	2x6T14	18,48	16
	3	0,229	7,4	1,69	33,6	3,43	2x5T16 2x5T14	35,5	8
ZONE II	1	0,192	1,46	0,28	5,6	2,88	2x4T14 2x3T12	19,1	8
	2	0,192	2,55	0,48	9,6	2,88	2x5T12	11,3	16

	3	0,192	4,52	0,86	17,2	2,88	2x4T14 2x3T12	19,1	16 8
	1	0,153	1,34	0,2	4	2,29	2x2T10	9,42	8
	1		,-	- 7			2x4T10		16
ZONE III	2	0,153	1,86	0,28	5,6	2,29	2x4T10	6,28	16
	3	0,153	2,83	0,43	8,6	2,29	2x2T10	9,42	16
	J		, ,	,	,		2x4T10		8

➤ Voile V3:

Tableau V.42 : Calcul des armatures du voile (V3).

~:11 ~ I	S_{i}	$\sigma_{\rm j}$	F_t	A_s	$A_{smin}(c$	T a alaaiss	Avadopté	T
aille	(m^2)	(MPa)	(MN)	(cm ²)	m^2)	Le choix	(cm ²)	Esp
1	0.3	0.6	0.18	3.6	4	2x3T10	9.44	10
	0,0	3,3	0,10	2,0		2x3T10	2,	20
2	0,3	0,2	0,06	1,2	4	2x3T10	4,71	20
2	0.3	1.45	0.42	, 1	1	2x3T10	0 44	20
3	0,3	1,46	0,43	8,76		2x3T10	9,44	10
	0.25	1.04	,	,	3 75	2x3T10	9.44	10
1	0,23	-1,26	/	/	5,75	2x3T10) , 11	20
2	0,25	-0,96	/	/	3,75	2x3T10	4,71	20
						2v3T10		20
3	0,25	0,12	0,03	0,6	3,75		9,44	10
						2x3T10		10
1	0.2	0.00	,	,	3	2x3T10	9.44	10
1 0,2	-0,08	/	/	J	2x3T10	7, 44	20	
	1 2 3 1 2	(m²) 1 0,3 2 0,3 3 0,3 1 0,25 2 0,25 3 0,25	(m²) (MPa) 1 0,3 0,6 2 0,3 0,2 3 0,3 1,46 1 0,25 -1,26 2 0,25 -0,96 3 0,25 0,12	(m²) (MPa) (MN) 1 0,3 0,6 0,18 2 0,3 0,2 0,06 3 0,3 1,46 0,43 1 0,25 -1,26 / 2 0,25 -0,96 / 3 0,25 0,12 0,03	(m²) (MPa) (MN) (cm²) 1 0,3 0,6 0,18 3,6 2 0,3 0,2 0,06 1,2 3 0,3 1,46 0,43 8,76 1 0,25 -1,26 / / 2 0,25 -0,96 / / 3 0,25 0,12 0,03 0,6	(m²) (MPa) (MN) (cm²) m²) 1 0,3 0,6 0,18 3,6 4 2 0,3 0,2 0,06 1,2 4 3 0,3 1,46 0,43 8,76 4 1 0,25 -1,26 / / 3,75 2 0,25 -0,96 / / 3,75 3 0,25 0,12 0,03 0,6 3,75	(m²) (MPa) (MN) (cm²) m²) 1 0,3 0,6 0,18 3,6 4 2x3T10 2 0,3 0,2 0,06 1,2 4 2x3T10 3 0,3 1,46 0,43 8,76 4 2x3T10 1 0,25 -1,26 / / 3,75 2x3T10 2 0,25 -0,96 / / 3,75 2x3T10 3 0,25 0,12 0,03 0,6 3,75 2x3T10 1 0,2 -0,08 / / 3 2x3T10	(m²) (MPa) (MN) (cm²) m²) (cm²) 1 0,3 0,6 0,18 3,6 4 2x3T10 2x3T10 2x3T10 9,44 2 0,3 0,2 0,06 1,2 4 2x3T10 2x3T10 2x3T10 9,44 3 0,3 1,46 0,43 8,76 4 2x3T10 2x3T10 2x3T10 9,44 1 0,25 -1,26 / / 3,75 2x3T10 2x3T10 2x3T10 9,44 2 0,25 -0,96 / / 3,75 2x3T10 2x3T10 2x3T10 9,44 3 0,25 0,12 0,03 0,6 3,75 2x3T10 2x3T10 9,44 1 0,2 -0,08 / / 3 2x3T10 2x3T10 9,44

2	0,2	0,3	0,06	1,2	3	2x3T10	4,71	20
2	0,2	1,74	0,348	6,96	3	2x3T10	9,44	20
3		1,74	0,540	0,90		2x3T10	ŕ	10

➤ Voile V4:

Tableau V.43 : Calcul des armatures du voile (V4).

Hauteur	Mailla	S_i	σ_{j}	F _t	A_s	A _{smin} (c	I a alaaiss	Avadopté	Ear
(m)	Maille	(m^2)	(MPa)	(MN)	(cm ²)	m^2)	Le choix	(cm ²)	Esp
	1	0,219	1,1	0,24	4,8	3,28	2x3T12	11,5	10
	1	0,219	1,1	0,24	4,0	,	2x3T10	11,3	20
ZONE I	2	0,219	0,4	0,087	1,75	3,28	2x3T10	4,71	20
	3	0,219	2,35	0,51	10,2	3,28	2x3T12	11,5	20
	3	0,219	2,33	0,51	10,2	,	2x3T10	11,5	10
	1	0,183	-1,27	0	0	2,74	2x3T10	9,44	10
	1	0,105	-1,27	U		ŕ	2x3T10	7,44	20
ZONE II	2	0,183	-1,18	0	0	2,74	2x3T10	4,71	20
	3	0,183	0,29	0,05	1,06	2,74	2x3T10	9,44	20
	3	0,105	0,27	0,03	1,00	ŕ	2x3T10	7,44	10
	1	0,146	-0,7	0	0	2,19	2x3T10	9,44	10
	1	0,140	-0,7	U		ŕ	2x3T10	7,44	20
ZONE III	2	0,146	-0,46	0	0	2,19	2x 3T10	4,71	20
	3	0,146	0,73	0,11	2,13	2,19	2x3T10	9,44	20
	3	0,170	0,73	0,11	2,13		2x3T10	7,77	10

➤ Voile V5:

Tableau V.45 : Calcul des armatures du voile (V5).

Hauteur	Mailla	S_{i}	σ_{j}	F_t	A_s	A _{smin}	T a ala aiss	Avadopté	Ear
(m)	Maille	(m^2)	(MPa)	(MN)	(cm ²)	(cm ²)	Le choix	(cm ²)	Esp
	1	0,249	3,54	0,881	17,62	3,73	2x4T14	18,48	10
	1	0,219	3,31	0,001	17,02	3,73	2x2T14	10,10	20
	2	0,249	2,34	0,583	11,66	3,73	2x4T14	12,32	20
ZONE I	3	0,249	0,37	0,092	1,84	3,73	2x3T10	4,71	20
ZONE I	4	0,249	0,29	0,072	1,44	3,73	2x3T10	4,71	20
	5	0,249	2,13	0,53	10,6	3,73	2x4T14	12,32	20
	6	0,249	3,45	0,859	17,18	3,73	2x4T14	18,48	20
	U	0,249	3,43	0,039	17,10	3,73	2x2T14	10,40	10
	1	0,207	2,85	0589	11,78	3,10	2x3T12	13,56	10
	1	0,207	2,63	0309	11,70	3,10	2x3T12	13,30	20
	2	0,207	1,8	0373	7,46	3,10	2x5T10	7,86	20
ZONE II	3	0,207	0,17	0,035	0,7	3,10	2x3T10	4,71	20
Zonzn	4	0,207	0,1	0,021	0,42	3,10	2x3T10	4,71	20
	5	0,207	1,55	0,321	6,42	3,10	2x5T10	7,86	20
	6	0,207	2,54	0,526	10,52	3,10	2x3T12	13,56	20
	U	0,207	2,54	0,520	10,32	3,10	2x3T12	13,30	10
	1	0,166	1,05	0,174	3,48	2,49	2x3T10	6,3	10
	1	0,100	1,03	0,174	3,40	2,47	2x1T10	0,5	20
	2	0,166	0,6	0,182	1,99	2,49	2x4T10	6,28	20
ZONE III	3	0,166	-0,11	/	/	2,49	2x3T10	4,71	20
	4	0,166	-0.17	/	/	2,49	2x3T10	4,71	20
	5	0,166	0,44	0,073	1,46	2,49	2x4T10	6,28	20
	6	0,166	0,88	0,264	2.02	2.40	2x3T10	6.2	20
	6	0,100	0,00	0,204	2,92	2,49	2x1T10	6,3	10

> Voile V6:

Tableau V.46 : Calcul des armatures du voile (V6).

Hauteur (m)	Maille	S_i (m^2)	σ _j (MPa)	F _t (MN)	A_s (cm ²)	A _{smin} (c m ²)	Le choix	$A_{Vadopt\acute{e}}$ (cm^2)	Esp
ZONE I	1	0,312	5	1,56	31,2	4,68	2x5T16 2x4T14	32,42	7 14
ZONET	2	0,312	4,91	1,53	30,6	4,68	2x5T16 2x4T14	32,42	7
ZONE II	1	0,26	3,4	0,88	17,6	3,9	2x4T14 2x2T14	18,48	7
ZONETI	2	0,26	3,15	0,82	16,4	3,9	2x4T14 2x2T14	18,48	7
ZONE III	1	0,208	1,65	0.34	6,8	3,12	2x2T10 2x3T10	7,85	7 14
2011211	2	0,208	1,47	0,30	6	3,12	2x2T10 2x3T10	7,85	14 7

V.4.9.2 Armature de joint de bétonnage (acier de couture) :

 $S_{12} = \tau_u$ désigne la contrainte moyenne tangentielle (c.à.d. valeur au milieu de la maile).

Tableau V47 : Calcul des aciers de couture des voiles.

Hauteur (m)	Zone	S ₁₂ (Mpa)	A _{vj} ^{cal} (cm ²)	Choix de Ferraillage	Av adopté (cm ²⁾
	1	1,5	9,92	2x5T12	11,3
V1	2	0,71	3,91	2x3T10	4,72
	3	0,58	2,55	2x2T10	3,16
	1	1,85	13,09	2x6T12	13,56
V2	2	1,01	5,95	2x4T10	6,32
	3	0,89	4,19	2x3T10	4,72

	1	0,55	5,08	2x4T10	6,32
V3	2	0,22	1,69	2x3T10	4,72
	3	0,41	2,52	2x3T10	4,72
	1	1,08	7,3	2x4T12	9,04
V4	2	0,54	3,04	2x3T10	4,72
	3	0,42	1,9	2x3T10	4,72
	1	2,64	2,03	2x3T10	4,72
V5	2	2,39	1,53	2x3T10	4,72
	3	1,26	0,65	2x3T10	4,72
116	1	0,7	6,72	2x3T12	6,78
V6	2	0,6	4,8	2x4T10	6,32
	3	0,4	2,56	2x3T10	4,72

V.4.9.3 Aciers horizontaux :

Tableau V.48: Calcul des aciers horizontaux des voiles.

Voile	Niveaux	$ar{ au}_u$ (Mpa)	A_{h1} (cm ²)	A_{h2} (cm ²)	A_h^{min} (cm ²)	A_h (cm ²)	Choix	$A_h^{adopt\acute{e}}$ (cm ²)	S _t (cm)
		(Mpa)	(CIII)	(cm)	(CIII)	(CIII)		(CIII)	(CIII)
	ZONE I	2,1	3,15	21,47	3,22	21,47	2x 6T16	24,12	20
V1	ZONE II	0,99	1,23	10,14	2,68	10,14	2x 5T12	11,3	20
	ZONE III	0,81	0,81	5,23	2,14	5,23	2x 4T10	6,32	20
	ZONE I	2,59	3,88	23,66	3,44	23,66	2x 6T16	24,12	20
V2	ZONE II	1,41	1,76	12,73	2,87	12,73	2x 5T14	15,4	20
	ZONE III	1,24	1,24	6,28	2,29	6,28	2x 4T10	6,32	20
	ZONE I	0,77	1,44	6,29	4,5	6,29	2x 4T10	6,32	20
V3	ZONE II	0,30	0,47	6,29	3,75	6,29	2x 4T10	6,32	20
	ZONE III	0,57	0,71	6,29	3	6,29	2x 5T10	7,85	20

	ZONE I	1,51	2,83	7,66	3,47	7,66	2x 5T10	7,85	20
V4	ZONE II	0,756	1,18	6,29	2 ,90	6,29	2 x 4T10	6,32	20
	ZONE III	0,588	0,74	6,29	2,31	6,29	2 x 4T10	6,32	20
	ZONE I	3,696	6,93	12,32	3,73	12,32	2 x 5T14	15,4	20
V5	ZONE II	3,346	5,22	9,04	3,11	9,04	2 x 6T10	9,42	20
	ZONE III	1,764	2,20	4,2	2,49	4,2	2 x 4T10	6,32	20
	ZONE I	0,63	0,98	21,42	4,68	21,42	2 x 6T16	24,12	20
V6	ZONE II	0,84	0,91	12,32	3,9	12,32	2 x 5T14	15,4	20
	ZONE III	0,56	0,49	5,23	3,12	5,23	2 x 4T10	6,32	20

> Armature verticale de compression :

Le voile n'est pas armé à la compression, on prend la section minimale

 $\rho_v = Max \{ min BAEL ; min RPA 99 \}$

- Selon le **BAEL**: $\rho_v = 0,10\%$ [1].
- Selon le **RPA 99 :** ρ **v**=0,15% [3].

V.4.10 Schéma de ferraillages des voiles :

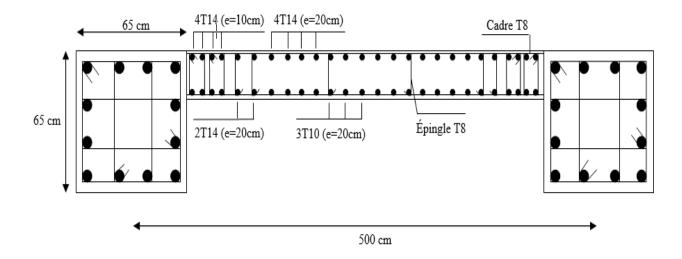


Figure V.14: Voile 5(Zone I).

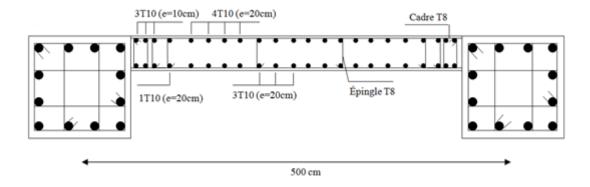


Figure V.15: Voile 5 (Zone II).

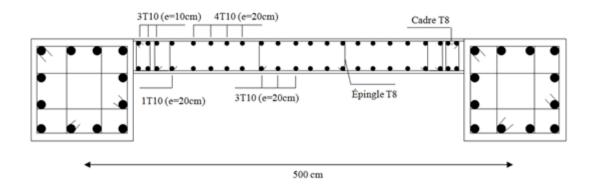


Figure V.16: Voile 5 (Zone III).

V1.1 Introduction

Les fondations sont des éléments qui sont directement en contact avec le sol, elles assurent ainsi la transmission des charges de la superstructure à ce dernier. Donc elles constituent la partie essentielle de l'ouvrage.

Il existe plusieurs types de fondation :

Fondation superficielle:

- Semelles isolée
- Semelle filante sous mur
- Semelle filante sous poteaux
- Semelle filante croisées
- Radier général

Fondation profonde (semelle sur pieux)

VI.2 Choix du type de fondations

Il y a plusieurs facteurs qui rentrent en jeu, on peut citer

- Contrainte du sol σ_{sol}
- La classification du sol
- Les efforts transmis à la base

L'étude géotechnique du site d'implantation de notre ouvrage, a donné une contrainte admissible égale à 2 bars

VI.3 Calcul des fondations

On suppose que l'effort normal prévenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

On doit vérifier la condition suivante : $\frac{N}{S} \le \sigma_{sol} \Longrightarrow S \ge \frac{N}{\sigma_{sol}}$

Avec:

- σ_{sol} : Contrainte du sol.
- N : Effort normal appliqué sur la fondation.

- S : Surface de la fondation.

V.I.4 Semelle isolée sous poteaux :

1. Calcul les dimensions A, B:

On adoptera une semelle homothétique, c'est-à-dire le rapporte de A sur B est égale au

rapport a sur :
$$\frac{A}{B} = \frac{a}{b}$$

$$A = \frac{a \times B}{b} B = \frac{A \times b}{a}$$

Pour les poteaux carrés a = b donc $A = B \Longrightarrow S = B^2$

$$\sigma_{cal} \leq \overline{\sigma_{sol}}$$

Avec:

$$\overline{\sigma_{sol}} = 2 \; bar = 200 \; KN/m^2$$

$$\sigma_{cal} = \frac{N}{S} = \frac{N}{A \times B} = \frac{N}{B^2}$$

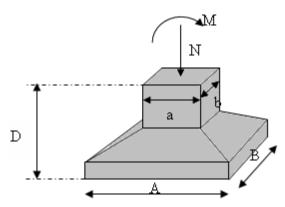


Figure VI.1 Semelles isolée sous poteaux

Avec:

N : Effort normal appliqué sur la fondation.

S: Surface de la fondation.

Selon logiciel ETABS

Nser = 2632,16 kN

$$\frac{2632,16}{B^2} \le 200$$

$$B \ge \sqrt{\frac{2632,16}{200}} = 3,62 \text{ m}.$$

2. Vérification de l'interférence entre deux semelles

Il faut vérifie que $L_{\text{min}} \ge 1,5 \times B$

Avec: L min est l'entre axe minimum entre deux poteaux.

B: Largeur maximum de la semelle (B =4.8 m).

On $L_{min} = 4.8 \text{ m} < 1.5 \times 3.62 = 5.43 \text{ m}$

La condition non vérifié.

• Conclusion

On remarque qu'il y a chevauchement des semelles, on passe alors a l'étude des semelles filants.

VI.5 Semelle filante

L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux qui se trouve dans la même ligne.

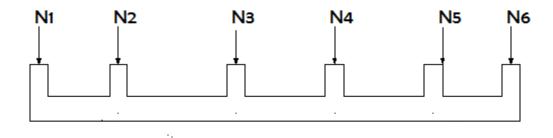


Figure V1.2 : Semelles filantes

On doit vérifier que :
$$S_{seml} \ge \frac{N_{ser}}{\overline{\sigma_{sol}}}$$

Tel que:

- $N = \sum N_i$ de chaque fil de poteaux.
- $S = B \times L$
- B : Largeur de la semelle.
- L : Longueur du fil considéré.

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$
 Selon BAEL91

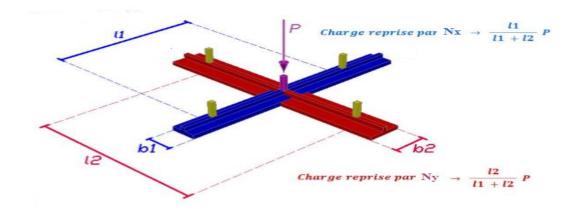


Figure.VI.3: répartition des charges pour les poteaux centraux

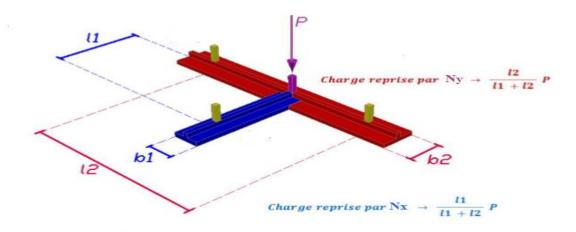


Figure.VII.4: répartition des charges pour les poteaux de rives

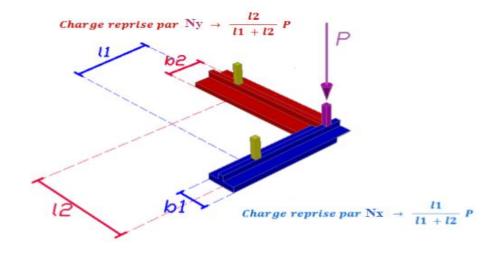


Figure.VII.5: répartition des charges pour les poteaux d'angles

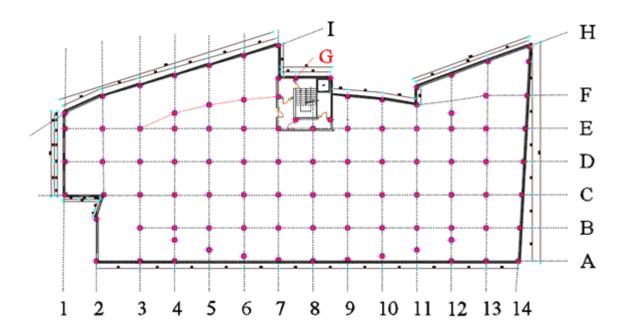


Figure.VII.6 : Schéma des files des semelles filantes dans les deux sens

VI.5.1.calcul de la répartition des efforts normaux dans sens x-x y-y a ELS -Exemple

Le poteau le plus sollicité P =3944,07 kN

$$l_1 = 5 \text{ m}$$
; $l_2 = 4.8 \text{m}$

$$N_{(10-G)x} = \frac{5}{4.8+5} x 3944,07 = 0,48x3944,07 = 2011,47Kn$$

$$N_{(10-G)y} = \frac{4,8}{5+4,8} x3944,07 = 0,51 * 3944,07 = 1893,15Kn$$

• Les poteaux centraux :

Tableua.VI.1 répartition pour les poteaux centraux ELS

	Centrale						
	Sens x-x %	Sens y-y %	Nx	Ny			
N _{B-13}	0,48	0,51	417,76	443,87			
N _{C-13}	0,48	0,51	548,2	582,4			
N _{D-13}	0,48	0,51	973,8	1034,66			

N _{E-13}	0,48	0,51	606,04	643 ,9
N _{F-13}	0,48	0,51	330,9	351,57
N _{B-12}	0,66	0,31	328,65	154,36
N _{B-12}	0,60	0,40	298,61	199
N _{C-12}	0,48	0,51	889,7	936,09
N _{D-12}	0,48	0,51	889,7	945,35
N _{E-12}	0,48	0,51	929,7	987,83
N _{F-12}	0,56	0,43	836,9	642,61
N _{B-11}	0,54	0,45	902,82	752,35
$N_{\mathrm{C-1}I}$	0,48	0,51	1064,75	1131,3
N _{D-11}	0,48	0,51	1103,6	1172,57
N _{E-11}	0,48	0,51	1044,28	1109,55
N _{B-10}	0,47	0,52	804,85	890,47
N _{C-10}	0,48	0,51	1932,4	2043,61
N _{D-10}	0,48	0,51	1126,13	1196,52
N _{E-10}	0,48	0,51	778,44	827,09
N_{B-9}	0,48	0,51	1088,26	1156,28
N _{C-9}	0.48	0,51	1151,26	1223,21
$N_{\mathrm{D-9}}$	0,48	0,51	1169,7	1242,8
$N_{\mathrm{E-9}}$	0,48	0,51	902,14	958,52
$N_{\mathrm{B-8}}$	0,48	0,51	1092,72	1161,02
N _{C-8}	0,48	0,51	1193,1	1267,67
N _{D-8}	0,48	0,51	1185 ,54	1259,63
N _{E-8}	0,40	0,58	681,66	988,41
N _{B-7}	0,48	0,51	1088,68	1156,73
N _{C-7}	0,48	0,51	1153,75	1225,86
$N_{\mathrm{D-7}}$	0,48	0,51	1167,96	1240,96
$N_{\mathrm{E-7}}$	0,48	0,51	868,73	923,02
N_{G-7}	0,62	0,37	323,16	192,85

$N_{\mathrm{B-6}}$	0,47	0,52	821,59	909
N _{C-6}	0,48	0,51	1891,23	2009,43
N _{D-6}	0,48	0,51	1121,76	1191,88
N _{E-6}	0,48	0,51	677,32	719,65
N _{G-6}	0,48	0,51	337,23	358,31
N _{B-5}	0,54	0,45	881,09	734,24
N _{C-5}	0,48	0,51	1069,88	1136,75
$N_{\mathrm{D-5}}$	0,48	0,51	1102	1170,2
$N_{\mathrm{E-5}}$	0,48	0,51	1035,95	1100
N_{G-5}	0,46	0,53	296,34	341,43
N _{B-4}	0,66	0,31	329,82	154,91
N _{B-4}	0,60	0,40	299,8	199,8
N _{C-4}	0,48	0,51	500,22	531,48
N_{D-4}	0,48	0,51	771,48	819,19
N _{E-4}	0,56	0,43	1085,93	1027,76
N_{G-4}	0,56	0,43	836,64	642,42
N _{B-3}	0,48	0,51	393,61	418,22
N _{C-3}	0,48	0,51	707,12	751,32
$N_{\mathrm{D-3}}$	0,48	0,51	604,93	642,74
$N_{\mathrm{E-3}}$	0,51	0,48	605,23	569,63
$N_{\mathrm{D-2}}$	0,48	0,51	346,34	367,9
N _{E-2}	0,48	0,51	168,57	179,11

• Les poteaux des rives

Tableua.VI.2 la répartition pour les poteaux rives ELS

		riv	e	
	Sens x-x %	Sens y-y %	Nx	Ny
$N_{\mathrm{D-1}}$	0,36	0,64	77,78	138,29
$N_{\mathrm{E-1}}$	0,43	0,56	71,03	92,08
N_{I-2}	0,40	0,60	91,95	137,92
<i>N</i> _{A-3}	0,70	0,29	162,16	67,71
N_{I-3}	0,67	0,32	215,56	103,46
N_{A-4}	0,62	0,37	155,46	93,28
N_{I-4}	0,76	0,23	197,74	59,32
<i>N</i> _{A-5}	0,64	0,35	145,69	78,67
N _{A-5}	0,76	0,23	385,80	116,75
N_{A-6}	0,71	0,28	367,80	147,12
N_{I-6}	0,62	0,37	158,01	94,80
N_{A-7}	0,67	0,32	368,37	175,94
N_{G-7}	0,23	0,76	41,49	137,69
N _{A-8}	0,67	0,32	376,18	179,67
N _{G-8}	0,54	0,45	875,10	729,25
N _{A-9}	0,67	0,32	368,73	176,11
$N_{\mathrm{F-9}}$	0,61	0,38	313,04	200,00
N _{A-10}	0,71	0,28	364,68	143,81

	1	1	1	1
$N_{\mathrm{F-10}}$	0,69	0,30	354,41	154,09
N _{A-11}	0,75	0,24	378,02	120,96
N _{A-12}	0,76	0,23	193,38	58,52
N _{H-12}	0,65	0,34	249,80	130,66
N _{A-13}	0,66	0,33	227,35	113,67
N _{H-13}	0,70	0,29	308,15	127,66
$N_{\mathrm{B-14}}$	0,67	0,32	225,93	107,90
N _{C-14}	0,66	0,33	379,96	189,98
$N_{\mathrm{D-14}}$	0,65	0,34	384,76	201,25
N _{E-14}	0,63	0,36	241,91	133,98
N _{F-14}	0,62	0,37	253,44	151,24
N _{H-14}	0,61	0,38	202,33	126,04

• Les poteaux d'angles

Tableua.VI.3 la répartition pour les poteaux d'angles ELS

	Angle			
	Sens x-x %	Sens y-y %	Nx	Ny
N _{C-1}	0,53	0,46	71,90	61,74
N_{I-1}	0,72	0,27	68,52	26,18
N_{A-2}	0,51	0,48	92,67	88,26
N_{I-7}	0,52	0,47	57,97	52,85

$N_{\mathrm{F-8}}$	0,45	0,54	736,61	883,94
N _{H-11}	0,67	0,32	135,71	64,02
N _{H-14}	0,74	0,25	162,99	57,04
N _{A-14}	0,49	0,50	69,77	71,86
A-14	-,	2,20	,,,,	,00

• Les charges qui reviennent pour chaque fille ELS

Tableua.VI.4 Sections des semelles filantes sens X

Files	N (kN)	L(m)	B(m)	B ^{choisie} (m)	S (m ²)
A	3177,59	61,45	0,25	1	61,45
В	9066,77	61,69	0,73	1	61,69
C	12553,47	66,49	0,94	1	66,49
D	12025,47	66,74	0,9	1	66,74
E	9696,84	66,9	0,72	1	66,9
F	2845,3	26,42	0,5	1	26,42
G	2709,9	18,21	0,74	1	18,21
Н	1058,98	17,84	0,29	1	17,84
I	1175,55	32,84	0,32	1	32,84
J	1634,08	5	0.9	1	5
	L	1	1		423,58

Tableua.VI.5 Sections des semelles filantes sens Y

Files	N (kN)	L(m)	B(m)	B ^{choisie} (m)	S (m ²)
1	318,29	10,9	0,14	0,9	9,81
2	773,18	23,84	0,16	0,9	24,74
3	2553,08	25,46	0,5	0,9	22,91

3528,16	26,91	0,65	0,9	24,21
4678,04	28,53	0,80	0,9	25,67
5430,19	29,8	0,9	0,9	26,82
5105,9	31,28	1,03	1,4	43,79
7736,32	26,5	1,22	1.4	37,1
4956,91	23,84	1,03	1,4	33,37
6365,14	23,4	1,36	1,4	32,76
4350,75	25,15	0,81	0,9	22,63
4054,42	26,97	0,75	0,9	24,27
3297,73	28,93	0,56	0,9	26,03
1039,29	31,12	0,19	0,9	28
		1		382,1
	4678,04 5430,19 5105,9 7736,32 4956,91 6365,14 4350,75 4054,42 3297,73	4678,04 28,53 5430,19 29,8 5105,9 31,28 7736,32 26,5 4956,91 23,84 6365,14 23,4 4350,75 25,15 4054,42 26,97 3297,73 28,93	4678,04 28,53 0,80 5430,19 29,8 0,9 5105,9 31,28 1,03 7736,32 26,5 1,22 4956,91 23,84 1,03 6365,14 23,4 1,36 4350,75 25,15 0,81 4054,42 26,97 0,75 3297,73 28,93 0,56	4678,04 28,53 0,80 0,9 5430,19 29,8 0,9 0,9 5105,9 31,28 1,03 1,4 7736,32 26,5 1,22 1.4 4956,91 23,84 1,03 1,4 6365,14 23,4 1,36 1,4 4350,75 25,15 0,81 0,9 4054,42 26,97 0,75 0,9 3297,73 28,93 0,56 0,9

Ss	Sb	%
796,29	1702	47,04

Conclusion:

La surface totale de la semelle ne dépasse pas 50% de la surface d'emprise du bâtiment.

VI.5.2 Pré dimensionnement de la semelle filant

• La hauteur « ht »

La hauteur de la semelle est : $h_t > d + 0.05$

Pour satisfaire la condition de l'inclinaison de 45° de la bielle moyenne, la hauteur utile vaut :

$$h_1 = \frac{B - b}{4} + 5cm^{\frac{100 - 65}{4}} + 5 = 11,25cm = 25 cm$$

Avec:

b = 0.65m pour les poteaux.

On adopte : $h_t = 0.65m$

Tableua.VI.6 Choix de la hauteur ht

B(m)	h _t (cm)
0,9	25
1	25
1,4	30

• Dimensionnement de la poutre de libage

✓ Condition forfaitaire

$$\frac{Lmax}{15} \le h \le \frac{Lmax}{10} \implies \frac{6.4}{15} = 0.49m \le h \le \frac{6.4}{10} = 0.60m$$

Donc: h = 0.6m

• Condition de rigidité des semelles

Les semelles filantes ou continues sous poteaux sont soumises à des contraintes linéaires

réparties, pour cela elles doivent être suffisamment rigides pour ne pas se comporter comme une poutre sur un sol élastique, on doit alors vérifier la condition suivante vis à vis de la longueur élastique :

$$L_{\text{max}} \leq \frac{\pi}{2} L_{\text{e}} + a$$

- L_{max} : longueur max entre axe des poteaux.
- E: Module d'élasticité du béton (prendre en moyenne E=20000MPa).
- K: Coefficient de raideur du sol (5MPa/m \leq K \leq 120MPa/m).

On pourra par exemple adopter pour K les valeurs suivantes :

- K=5 [MPa/m]→pour un très mauvais sol.
- K=40 [MPa/m] → pour un sol de densité moyenne. (la valeur prise dans notre cas)
- $K=120 [MPa/m] \rightarrow pour un très bon sol.$

- I: moment d'inertie de la semelle ;
$$I = \frac{b h_N^3}{12}$$

• Calcul hauteur de nervure h_N :

$$h_N \ge \left(\frac{48KBl^4}{Eb\pi^4}\right)^{1/3}$$

$$I = \frac{b \times h_t^3}{12} \Rightarrow h_t \ge \sqrt[3]{\frac{48 \times K \times b \times L_{max}^4}{\pi^4 \times E \times bn}} \rightarrow I = \frac{b \times h_t^3}{12}$$

$$h_n \ge \sqrt[3]{\frac{48 \times 40 \times 0.9 \times 6.4^4}{\pi^4 \times 20000 \times 0.65}}$$

Tableua.VI.7 Choix de hauteur de nervure h_N

Sens	$\mathbf{b}_{\mathbf{sf}}(\mathbf{m})$	h _t (m)	b _n (m)	h _n Choix (m)
X-X	1	0.25	65	1,4
Y-Y	0,9	0.25	65	1,4
Y-Y	1,4	0.30	65	1,6

V.5.3 Vérification de la Stabilité du semelle :

• Vérification au renversement :

Selon [1] (Art.10.1.5),quel que soit le type de fondation (superficielle ou profonde) nous devons vérifier que l'excentrement des forces verticales gravitaires et des forces sismiques reste à l'intérieur de la moitié du centrale de la base des éléments de fondation résistant au reversement.

$$e_0 = \frac{Mr}{Nr} \le \frac{B}{4}$$
 Avec : Mr = V₀h + M₀

Nr Mr Mr sens remarque \overline{Nr} 7,77 X-X 133924,53 196734,29 1,46 Vérifie Y-Y 133394,13 217426,09 1,62 15,4 Vérifie

Tableua.VI.8 Vérification au renversement

VI.5.4 Vérifications contraintes à ELS

Vérification des Contraintes

On doit vérifier que :
$$\sigma_{ser} = \frac{N_{ser}}{S_{semelle}} \le \overline{\sigma}_{sol}$$

$$\frac{129801,24}{731,1} = 177,54 \text{ KN/m}^2 \le \sigma_{sol} = 200 \text{ KN/m}^2 \rightarrow \text{ condition vérifiée.}$$

Tableua.VI.9 Vérification de la contrainte à ELS sens X

Files	N (kN)	S (m ²)	$\sigma (kN/m^2)$	$\sigma_{\rm sol}$	Résultat
A	3177,59	61,45	51,71	200	Vérifiée
В	9066,77	61,69	146,97	200	Vérifiée
С	12553,47	66,49	188,8	200	Vérifiée
D	12025,47	66,74	180,18	200	Vérifiée
E	9696,84	66,9	144,94	200	Vérifiée
F	2845,3	26,42	107,7	200	Vérifiée
G	2709,9	18,21	148,81	200	Vérifiée
Н	1058,98	17,84	59,35	200	Vérifiée
I	1175,55	32,84	35,79	200	Vérifiée

Tableua.VI.10 Vérification de la contrainte à ELS sens Y

Files	N (kN)	S (m ²)	$\sigma (kN/m^2)$	σ _{sol}	Résultat
1	318,29	9,81	32,44	200	Vérifiée
2	773,18	24,74	31,25	200	Vérifiée
3	2553,08	22,91	111,14	200	Vérifiée
4	3528,16	24,21	145,73	200	Vérifiée
5	4678,04	25,67	182,23	200	Vérifiée
6	5430,19	26,82	199,32	200	Vérifiée
7	5105,9	43,79	116,59	200	Vérifiée
8	6469,59	37,1	174,38	200	Vérifiée
9	4956,91	33,37	148,54	200	Vérifiée
10	6365,14	32,76	194,29	200	Vérifiée
11	4350,75	22,63	192,25	200	Vérifiée
12	4054,42	24,27	167,05	200	Vérifiée
13	3297,73	26,03	126,68	200	Vérifiée
14	1039,29	28	37,11	200	Vérifiée

VI.5.5. Vérifications contraintes à ELU

Les mêmes étapes pour les résultats a l'ELU

Tableua.VI.11 Sections des semelles filantes a ELU sens X

Files	N (kN)	L(m)	B ^{choisie} (m)	S (m ²)
A	3023,31	61,45	0,9	55,30
В	12670,96	61,69	1,3	80,19
С	17051,78	66,49	1,3	86,43
D	16171,78	66,74	1,3	86,76
E	13482,27	66,9	1,3	66,9
F	3843,01	26,42	0,9	23,77
G	4143,8	18,21	1,3	23,67
Н	1246,09	17,84	0,9	23,19
I	2068,92	32,84	0,9	29,55

Tableua.VI.12 Sections des semelles filantes sens Y

Files	N (kN)	L(m)	B ^{choisie} (m)	S (m ²)
1	405	10,9	0.9	9,81
2	984,1	23,84	0,9	21,45
3	4687,47	25,46	0,9	22,91
4	4739,9	26,91	0,9	24,21
5	6479,15	28,53	1,3	37,08
6	7498,8	29,8	1,3	38,74
7	7295,16	31,28	1,3	40,66
8	8714,07	26,5	1,7	45,05
9	6804,2	23,84	1,7	40,42
10	7247,15	23,4	1,7	39,78
11	5926,22	25,15	1,3	32,65
12	5454,9	26,97	1,3	35,06
13	4568,09	28,93	0,9	26,03
14	1476,85	31,12	0,9	28

Tableua.VI.13 vérification de la contrainte à ELU sens X

Files	N (kN)	S (m ²)	$\sigma (kN/m^2)$	$1,5\sigma_{sol}$	Résultat
A	3023,31	55,30	54,67	300	Vérifiée
В	12670,96	80,19	158,01	300	Vérifiée
С	17051,78	86,43	197,29	300	Vérifiée
D	16171,78	86,76	186,39	300	Vérifiée
E	13482,27	66,9	201,52	300	Vérifiée
F	3843,01	23,77	161,67	300	Vérifiée
G	4143,8	23,67	175,06	300	Vérifiée
Н	1246,09	23,19	53,73	300	Vérifiée
I	2068,92	29,55	70,01	300	Vérifiée

Tableua.VI.14 vérification de la contrainte à ELU sens Y

Files	N (kN)	S (m ²)	$\sigma (kN/m^2)$	$1,5\sigma_{sol}$	Résultat
1	405	9,81	41,28	300	Vérifiée
2	984,1	21,45	45,87	300	Vérifiée
3	4687,47	22,91	204,60	300	Vérifiée
4	4739,9	24,21	195,78	300	Vérifiée
5	6479,15	37,08	174,73	300	Vérifiée
6	7498,8	38,74	193,56	300	Vérifiée
7	7295,16	40,66	179,41	300	Vérifiée
8	8714,07	45,05	193,43	300	Vérifiée
9	6804,2	40,42	168,33	300	Vérifiée
10	7247,15	39,78	182,18	300	Vérifiée
11	5926,22	32,65	181,50	300	Vérifiée
12	5454,9	35,06	155,58	300	Vérifiée
13	4568,09	26,03	210,06	300	Vérifiée
14	1476,85	28	54,74	300	Vérifiée

VI.5.6. Calcul le ferraillage de la semelle

> Exemple de calcul « A »

On applique la méthode des bielles :

$$f_{c28}{=}30MPa~;~f_{t28}{=}2,4MPa~;~\sigma_{bc}{=}18MPa~;~f_{e}{=}500MPa~;~\sigma_{s}{=}435MPa~;~b=65cm~;~h{=}30cm$$

$$d{=}0,9h~{=}27cm$$

À l'état limite ultime :

$$Nu = \sum N_{if} 3023, 31kN$$

$$P_u = \frac{Nu}{L_{sf}} = \frac{3023,31}{61,45} = 49,19 \ kN/ml$$

$$A_{s} = \frac{P_{u} (B - b)}{8d \times \sigma_{st}}$$

Avec:

$$\sigma_{st} = \frac{f_e}{\gamma_s} = 435 \, MPa$$

$$d = 0.27 \text{ m}$$

$$A_s = \frac{49,19 (0,9-0,65)}{8 \times 0,27 \times 435 \times 10^3} = 0,002 cm^2$$

Choix 4T12
$$\longrightarrow$$
 A_S = 4,52 cm² avec : e = 25 cm

$$A_s^{min} = 0.23bd \frac{f_{t28}}{f_e} = 1.93cm^2$$

Tableua.VI.15 Ferraillage pour les semelles sens X

Files	New y (IzN)	P _u (kN/m)	Asmin	Choix	As	St	Ar(cm ²)	
riies	Nelu (kN)	Fu(KIN/III)	(cm ²)	CHOIX	(cm ²)			
A	3023,31	49,19	1,93	4T12	4,52	25	3,14	25
В	12670,96	221,6	1,93	4T12	4,52	25	3,14	25
С	17051,78	256,44	1,93	4T12	4,52	25	3,14	25
D	16171,78	242,31	1,93	4T12	4,52	25	3,14	25
E	13482,27	201,52	1,93	4T12	4,52	25	3,14	25
F	3843,01	145,45	1,93	4T12	4,52	25	3,14	25
G	4143,8	227,55	1,93	4T12	4,52	25	3,14	25
Н	1246,09	69,84	1,93	4T12	4,52	25	3,14	25
I	2068,92	63	1,93	4T12	4,52	25	3,14	25

Tableua.VI.16 Ferraillage pour les semelles sens Y

Files	Nelu (kN)	Pu(kN/m)	Asmin (mm ²)	Choix	As (mm ²)	st	Ar(cm ²)	st
1	405	37,15	1,93	4T12	4,52	25	3,14	25
2	984,1	41,27	1,93	4T12	4,52	25	3,14	25
3	4687,47	184,11	19,3	4T12	4,52	25	3,14	25
4	4739,9	176,13	1,93	4T12	4,52	25	3,14	25

5	6479,15	227,76	1,93	4T12	4,52	25	3,14	25
6	7498,8	251,63	1,93	4T12	4,52	25	3,14	25
7	7295,16	233,22	1,93	4T12	4,52	25	3,14	25
8	8714,07	328,83	1,93	4T12	4,52	25	3,14	25
9	6804,2	285,41	1,93	4T12	4,52	25	3,14	25
10	7247,15	309,7	1,93	4T12	4,52	25	3,14	25
11	5926,22	235,63	1,93	4T12	4,52	25	3,14	25
12	5454,9	188,55	1,93	4T12	4,52	25	3,14	25
13	4568,09	157,90	1,93	4T12	4,52	25	3,14	25
14	1476,85	47,78	1,93	4T12	4,52	25	3,14	25

a Armatures de répartition

$$Ar \ge \frac{A_s \times B}{4} = \frac{4,52 \times 1,7}{4} = 1,91 \text{ cm}^2$$

Choix 4T10
$$\longrightarrow$$
 A_S =3,14 cm²

VI.5.7. Calcul le Ferraillage de la nervure

Tableua.VI.17 calcul des charger sens X

Files	N _{ELU} (kN)	q _u (kN/m)
A	3023,31	49,19
В	12670,96	221,6
С	17051,78	256,44
D	16171,78	242,31
E	13482,27	201,52
F	3843,01	145,45
G	4143,8	227,55
Н	1246,09	69,84
I	2068,92	63

Tableua.VI.18 calcul des charger sens Y

Files	N _{ELU} (kN)	q _u (kN/m)
1	405	37,15
2	984,1	41,27
3	4687,47	184,11
4	4739,9	176,13
5	6479,15	227,76
6	7498,8	251,63
7	7295,16	233,22
8	8714,07	328,83
9	6804,2	285,41
10	7247,15	309,7
11	5926,22	235,63
12	5454,9	188,55
13	4568,09	157,9
14	1476,85	47,78

Comme les charges revenant sont presque égales alors on prend la poutre la plus sollicité :

• Ferraillage longitudinal

$$q_u = 328,83 \text{ kN/m}$$

$$M_0\!=ql^2\,/8$$

En travée $M_t = 0.85 M_0$

Sur appui $M_a = 0.5 M_0$

Pour la grande travée (L = 5m, nervure 65×130)

 $M_0 = 1027,\!59 \; kN.m \; ; M_t \!\! = 873,\!43 kN.m \; \; ; \; M_a \!\! = 513,\!79 \; kN.m \; \; ; \; b = 65 \; cm \; ; \; d = \!117 \; cm$

a- Travée

$$\mu_u = \frac{M_t}{b.d^2.f_{bc}}$$

$$\mu_u = \frac{873,43 \times 10^6}{650 \times 1170^2 \times 17} = 0,057$$

$$\mu_u = 0.062 < \mu_R = 0.391$$

$$a = 1,25(1 - \sqrt{1 - 2\mu}) = 0,074$$

$$Z = d (1 - 0.4 \times \alpha) = 113,53 \text{ cm}$$

$$A_{s} = \frac{M_{t}}{z.\sigma_{s}}$$

$$A_s = \frac{873,43 \times 10^3}{113.53 \times 435} = 17,68 \text{ cm}^2$$

$$A_{s \text{ min}} = 0.23 \text{bd} \frac{Ft28}{Fe} = 8.39 \text{cm}^2$$

Donc on prend 12T16

24,13cm²

b- Appui

$$\mu_{\rm u} = \frac{513,79 \times 10^6}{650 \times 1170^2 \times 17} = 0.03$$

$$\mu_{\rm m} = 0.03 < \mu_{\rm R} = 0.391$$

$$a = 1,25\left(1 - \sqrt{1 - 2\mu}\right) = 0,038$$

$$Z = d(1 - 0.4 \times \alpha) = 115,22 \text{ cm}$$

$$A_{s} = \frac{M_{a}}{z.\sigma_{s}}$$

$$A_s = \frac{513,79 \times 10^3}{115,22 \times 435} = 10,25 \text{ cm}^2$$

Donc on prend 6T16 \longrightarrow $A = 12,06 \text{ cm}^2$

Condition de non fragilité

$$A_s^{min}=0.23bd\frac{f_{t28}}{f_e}=8.39cm^2\leq 10.39cm^2.....$$
 Vérifiée

Tableua.VI.19 Dimensionnement des armatures.

	A _s ^{cal} (cm ²)	Choix	$A_s^{adp}(cm^2)$
Travée	17.68	10T16	24,13
Appui	10.25	6T16	12,06

• Vérification des contraintes a l'ELS

Tableua.VI.20 Vérification des contraintes a l'ELS

	Mser	As(cm ²)	σbc	$oldsymbol{\sigma}_{\!bc}$	σs	σ_{s}	Vérification
Travée	463,19	24,13	3,14	18	162,8	200	OK
Appuis	272,46	12,06	2,61	18	187,5	200	OK

Vérification de la contrainte tangentielle du béton :

On doit vérifier que : $\tau_u \prec \tau_u = Mi(0,1f_{c28};4MP) = 3MPc$

Avec:

$$\tau_u = \frac{T_u}{bd}$$

$$T_{\rm u} = \frac{q_{\rm u}L}{2} = \frac{328,83 \times 6,4}{2} = 1052,25 \text{ KN}$$

$$\tau_u =$$
 1,05 Mpa < 3Mpa vérifiée

• Ferraillage transversale

$$\begin{aligned} *\frac{A_{t}}{b_{0}S_{t}} \geq & \frac{\tau_{u} - 0.3f_{tj}K}{0.8f_{e}} & (K=1pasterepristebétonna)ge \\ *S_{t} \leq & Mit(0.9d;40m) = 40m \\ *\frac{A_{t}f_{e}}{b_{0}S_{t}} \geq & Ma\left(x\frac{\tau_{u}}{2};0.4MPa\right) = 0.4MPa \end{aligned}$$

• RPA99 version 2003

*
$$\frac{A_{t}}{S_{t}} \ge 0.003b_{0}$$
* $S_{t} \le Min\left(\frac{h}{4};12\phi\right) = 30cm$Zonenodale
* $S_{t} \le \frac{h}{2} = 70cm$Zonecourante

Avec:

$$\varphi \leq M n \left(\frac{h}{35}; \varphi; \frac{b}{10}\right) = 2.5cm$$

Fe=500MPa ; $\tau_u\!\!=\!\!1,\!05\text{Mpa}$; $f_{t28}\!\!=\!\!2,\!4\text{Mpa}$; b=65cm ; d=117cm

On trouve:

 S_t = 15cm.....Zone nodale.

 $S_t = 25cm$Zone courante.

 $A_t \ge 4,50 \text{ cm}^2$

On prend: 4T12=4,52 cm²

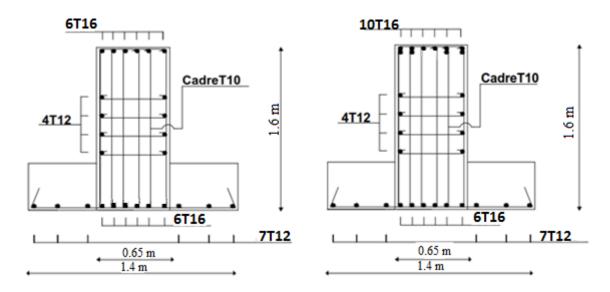


figure.VI.7: Ferraillage en appuis

figure.VI.8 :Ferraillage en travée

VI.6. Etude du voile périphérique :

VI.6.1.Introduction:

Notre structure comporte un voile périphérique qui s'élève du niveau de fondation jusqu'au niveau du plancher de RDC.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec les planchers du RDC, le sous sol et les fondations.

VI.6.2. Pré dimensionnement :

Pour le pré dimensionnement du voile périphérique, on se réfère aux prescriptions du RPA99 version 2003, qui stipule d'après l'article 10.1.2.

- Les ossatures au-dessous du niveau de base comportent un voile périphérique continu entre le niveau de fondation et le niveau de base
- Ce voile doit avoir les caractéristiques minimales ci-dessous :

Epaisseur e≥15cm

- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0,1%B dans les deux sens (horizontal et vertical).
- Les ouvertures dans ce voile ne doivent pas réduire sa rigidité d'une manière importante.
- La longueur de recouvrement est de 50Ø avec disposition d'équerres de renforcement dans les angles.

Avec: B=20 cm (Section du voile).

VI.6.3. Évaluation des Charges :

On considère le voile comme une dalle pleine reposant sur 4 appuis et qui supporte les charges horizontales dues aux poussées des terres. On considère le tronçon le plus défavorable.

Les charges et surcharges prise uniformément répartie sur une bande de 1m se situe à la base du voile (cas le plus défavorable).

BAEL91 modifié 99, la charge de poussées des terres est données par :

$$Q = A. \gamma_d. h$$

Avec:

Q = Contrainte à la base sur une bande de 1m.

A= Coefficient de poussée =
$$tg^2$$
. $\left[\left(\frac{\pi}{4}\right) - \left(\frac{\varphi}{2}\right)\right]$

 γ_h = Poids spécifique des terres (γ_h =20,5kN/m3).

 φ : Angle de frottement interne du remblai = 27,8°.

$$A = 0.542$$

Donc:

$$Q = 41,65 \text{ KN/ml} => Qu = 56.22 \text{ KN/ml}$$

VI.6.4.Effort dans la Dalle :

 $\frac{L_x}{L_y}$ = 0,56 > 0,4 La dalle travaille dans les deux sens.

$$\mu x = 0.088$$
; $\mu y = 0.25$

$$Mx = ux.Pu.L2x = 53.55 \text{ Kn.m}$$

$$My = uy.Mx = 13.39 \text{ Kn.m}$$

• Moment en travée :

$$Mtx = 0.75Mx = 40.16 \text{ KNm}$$

$$Mty = 0.75My = 10.04 \text{ KNm}$$

• Moment sur appuis :

$$Max = May = 0.5Mx = 26.78kNm$$

> Calcul du Ferraillage :

b=100cm; h=20cm; d=18cm; σbc=17MPA

Les résultats du ferraillage sont regroupés dans le tableau suivant :

Tableau VI.21: Ferraillage du Voile Périphérique

	Sens	$M_u(KNm)$	u	$A_s'(\text{cm}^2)$	α	Z(cm)	$A_s^{cal}(cm^2)$	Choix	A_s^{adp} (cm ²)	Esp (cm)
	X-X	40,16	0,12	0	0,17	12,6	7,35	7T12	7,92	15
Travée	у-у	10,04	0,03	0	0,004	17,39	1,73	6T10	4,71	15
Appuis	x-x y-y	26,78	0,086	0	0,11	12,8	4,77	5T12	5,65	15

a. Condition de Non Fragilité :

$$Asmin = 0.23.b.d. (ftj/fe) = 2.2cm^2..... Vérifier$$

b. condition exigées par le RPA99/version 2003 :

Le RPA99 préconise un pourcentage minimum de 0,1% de la section dans les deux sens et sera disposé en deux nappes.

$$Asmin = 0.1\% \times 100 \times 20 = 2 \text{ cm}^2....\text{Vérifier}$$

c. Vérification de l'Effort Tranchant :

On doit vérifier que :

$$\tau u = \frac{T_u}{hd} \le \tau u' = 0.05 f c_{28} = 1.5 MPA$$

$$Tx = \frac{Pu.Lx.Ly}{2Lx+Ly} = 86,65KN$$

$$Ty = \frac{Pu.Lx}{3} = 61,65KN$$

$$Tu^{Max} = \max(Tx; Ty) = 86,65KN$$

$$\tau u = 0.64 < 1.5 => V\acute{e}rifier$$

d. Vérification à l'ELS:

• Evaluation des sollicitations à l'ELS :

$$Qser = 41.65 \text{ KN/ml}$$

 $\mu x = 0.0923$
 $\mu y = 0.4254$
 $Mx = ux. Qs. L_x^2 = 41.61 \text{ Kn.m}$
 $My = uy. Mx = 17.7 \text{ Kn.m}$

• Moment en travée :

$$Mtx = 0.75.Mx = 31.21kNm$$

 $Mty = 0.75.My = 13.27kNm$

• Moment sur appuis :

$$Max = May = 0.5.Mx = 20.8kN$$

Vérification des contraints:

Il faut vérifier que : $\sigma bc \le : \sigma bc = 0.6 \text{ fc} 28 = 18 \text{ MPa}$

Le tableau suivant récapitule les résultats trouvés :

Chapitre VI Etude de fondation

Tableau VI.22 : Vérification des contraintes à l'ELS

	Sens	$M_{ser}(KNm)$	A_s (cm ²)	σbc (MPa)	σbc (MPa)	σs (MPa)	σs (MPa)	Vérification
Travée	X-X	31,21	7,92	10,1	18	350,5	250	Non
Travee	у-у	13,27	4,65	5,4	18	229,1	250	Oui
Appuis	x-x y-y	20,81	5,65	7,31	18	301,2	250	Non

La contrainte d'acier n'est pas vérifiée donc on augmente la section d'acier :

Tableau VI.23: augmentation de choix de section

	Sens	Choix	As ^{adp} (cm ²)	S_t (cm)	
Travée	X-X	7T14	10,78	15	
Travee	у-у	6T10	4,71	15	
Appuis	X-X	7T12	7,92	15	
Appuis	у-у	/112	1,92	13	

Tableau VI.24: Vérification des contraintes à l'ELS

	Sens	$M_{ser}(KNm)$	A_s (cm ²)	σbc (MPa)	σbc (MPa)	σs (MPa)	σs (MPa)	Vérification
Tuorráo	X-X	31,21	10,78	8,83	18	242,7	250	Oui
Travée	у-у	13,27	4,71	5,4	18	229,1	250	Oui
Annuic	X-X	20,81	7,92	6,53	18	217,5	250	Oui
Appuis	у-у	20,81	1,92	0,33	10	217,3	230	Oui

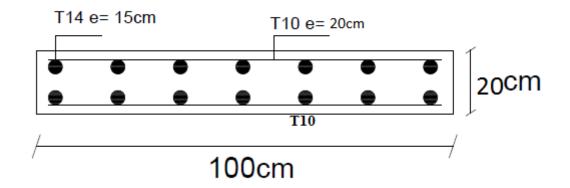


Figure VI.9 : schéma de ferraillage voile périphérique sens x

Conclusion Générale

L'étude de ce projet nous a permis, d'appliquer toutes nos connaissances acquises durant le cursus universitaire ainsi que de les approfondir d'avantage concernant le domaine du bâtiment tout en respectant la règlementation en vigueur. L'analyse de la structure d'un ouvrage est une étape très importante qui permet de faire une bonne conception parasismique au moindre coût.

Les points importants tirés de cette étude sont :

- Nous avons approfondi nos connaissances en matière d'application des règlements et de certaines méthodes tel que : BEAL91, RPA99 (version 2003), DTR CBA.93.
- ❖ Le pré dimensionnement est une étape nécessaire, du fait qu'il nous permet d'avoir les dimensions des éléments structuraux, pour débuter notre étude.
- Ce projet nous a permis d'acquérir des connaissances nouvelles sur la pratique des logiciels comme ETABS V18, SOCOTEC, SAP2000.
- ❖ L'analyse dynamique représente une étape déterminante et primordiale dans la conception parasismique des structures, en effet, elle permet de donner une vision proche de la réalité de son comportement.
- ❖ Pour le contreventement et la disposition des voiles, on a constaté que leur bonne disposition est plus importante que le nombre de voile à placer dans une structure.
- ❖ Ce travail nous a permis d'améliorer et d'enrichir nos connaissances acquises, de faire une étude complète d'une structure complexe et toucher ainsi aux différents calculs qu'un ingénieur en génie civil est appelé à faire.

D'après l'étude qu'on a faite, il convient de souligner que pour la conception parasismique, il est très important que l'ingénieur et l'architecte travaillent en étroite collaboration dès le début du projet pour éviter toutes les conceptions insuffisantes et pour arriver à une sécurité réalisée sans surcoût important.