République Algérienne Démocratique Populaire

Ministère de l'enseignement supérieure et la recherche scientifique

UNIVERSITE SAAD DAHLEB BLIDA 1

Faculté des sciences

Spécialité : Chimie Organique

Titre

ETUDE STRUCTURALE DES FERRITES DE COBALT CoFe₂O₄ SYNTHETISEES AVEC DIFFERENTS AGENTS DE COMBUSTION

Présenté par le binôme

Aya ALI et

Ikram ABDESSELAMYENE

Devant le jury composé

Nachida BENSEMMANE	Présidente	MCB univ Blida 1	
Soufiane BENREKA	Examinateur	MAB univ Blida 1	
Ilyes BABA AHMED	Promoteur	MCB univ Tlemcen	
Abderrahmane MEZRAG	Co-promoteur	MCB univ Blida 1	
	Blida, juillet 2024		

Remerciements

À la fin de cette étude, Nous tenons tout d'abord à remercier **Allah**, le Tout-Puissant, qui nous a accordé la force et le courage nécessaires pour continuer nos études. Nous tenons à exprimer notre remerciement principalement envers notre promoteur **Baba Ahmed Ilyes** Docteur à l'université de TLEMCEN, notre co-promoteur **Mezrag Abderrahmane** Docteur à l'université de BLIDA.

Nous vous remercions sincèrement de nous avoir accompagnés, conseillés et critiqués en cas de besoin, et de leur disponibilité pour nous écouter et nous redonner confiance.

Nous tenons également à exprimer notre remerciement envers **Soufiane BENREKA** pour avoir accepté de faire examiner notre travail en tant qu'examinateurs et **Nachida BENSEMMANE** d'avoir accepté de présider le jury de ce mémoire.

Nous exprimons également notre remerciement envers les techniciens du laboratoire pavillon 5 de la faculté des sciences de l'université de Blida pour leur soutien.

Nous remercions le laboratoire de catalyse et de synthèse chimie organique LCSCO université de TLEMCEN de nous avoir effectué les analyses DRX de nos échantillons bien à vous.

Nous souhaitons exprimer notre profond remerciement envers tous les enseignants qui nous ont appris et qui, grâce à leurs compétences, nous ont soutenus dans nos études.

Sans oublier docteur **Ait yahia Ahmed** chef département de chimie à l'université de Blida pour son soutien et aide.

Enfin, nous exprimons notre remerciement envers tous ceux qui, de près ou de loin, ont apporté leur contribution à la réalisation de cette tâche.

Nédicace

Je présente ma gratitude à **ALLAH** le tout-puissant pour m'avoir accordé la santé, la patience, la force et la volonté nécessaires pour concrétiser ce mémoire.

A mes chers parents, ma mère et mon père, qui sont ma source de vie et mon amour, pour leur patience, leur soutien et leurs encouragements.

À ma cher sœur : **Kenza** et mes chères frères : **Abdelakram** et **Mohammed** qui sont une source d'espoir et de motivation.

À ma famille entière.

Je tiens à exprimer ma gratitude envers ma binômee Aya pour votre patience et votre dévouement à conclure ce mémoire.

À l'ensemble de ma promotion 2024 en chimie organique.

IKRAM

Nédicace

Je dédie ce travail

À mon père disparu Ahmed, j'éspère que, dans le monde qui lui appartient maintenant, il apprécie cet humble geste en signe de reconnaissance envers la porte d'une fille.

Que Dieu, le tout-puissant, l'ait en sa miséricorde sainte.

A ma maman Fatiha qui m'a soutenu et encouragé devant ces années d'étude qu'elle trouve ici le témoignage de ma profonde reconnaissance.

A mes frères et soeurs : Rima, Mohammed, Ahlem, Lamia, Wissem, Smail, Hichem.

A mes meilleurs amis : Mouna, Meriem, Manel.

A mon binôme : Ikram.

AYA

Liste des abréviations

- Ac : Acide citrique
- Amd : Amidon
- BC : Bande de conduction
- BV : Bande de valence
- CFC : Cubique a face centré
- CFO : ferrite de cobalt CoFe₂O₄
- D_{rAB} : Distance entre les premiers voisins A et B (nm)
- D : la taille moyenne des cristaux
- DRX : Diffraction des rayons X
- Ea : Energie d'activation
- EF : Niveau de fermis(V)
- Eg : Energie de Gap
- ev : électron volt
- Fd-3m : Groupe d'espace
- Fr : Fructose
- Gap : largeur de la bande interdite
- Gly : Glycine
- K : constante de vitesse
- λ : La longueur d'onde de rayonnement X
- Mal : Maltose
- MEB : Microscopie électronique à balayage
- NFO : ferrite de nikel(NiFe₂O₄)
- Oh : Octaédrique
- Sc : Saccharose

Sol-gel : Solution gélifié

T : Température

Td : Tétraédrique

Liste des figures

Figure 1.1 : Représentation des sites dans la structure spinelle
Figure 1.2 : Représentation de la structure spinelle inverse8
Figure 1.3 : Représentation simplifiée du diagramme de bande11
Figure 2.1 : l'appareille de diffraction des rayons X25
Figure 2.2 : l'appareille et schéma de microscopie électronique à balayage26
Figure 3.1 : structure nitrate de fer Fe (NO ₃) ₃ _9H ₂ O31
Figure 3.2 : Structure Nitrate de Cobalt Co (NO ₃) ₂ _6H ₂ O32
Figure 3.3 : Formation de sol-gel
Figure 3.4 : Diagramme du protocole thermique
Figure 3.5 : Broyage de l'échantillon
Figure 3.6 : l'augmentation de température de four en fonction de vitesse
Figure 3.7 : montre une partie de ce traitement
Figure 3.8 : La page d'origine37
Figure 3.9 : Diffractogramme de ferrite de cobalt avec glycine
Figure 3.10 : Diffractogramme de ferrite de cobalt avec acide citrique
Figure 3.11 : Diffractogramme de ferrite de cobalt avec fructose40
Figure 3.12 : Diffractogramme de ferrite de cobalt avec Saccharose
Figure 3.13 : Diffractogramme de ferrite de cobalt avec amidon42
Figure 3.14 : Diffractogramme de ferrite de cobalt avec maltose44
Figure 3.15 : superposition des diffractogrammes des six échantillons calcinés à 600°C45
Figure 3.16 : Diffractogramme de ferrite de cobalt avec glycine46
Figure 3.17 : Diffractogramme de ferrite de cobalt avec acide citrique47
Figure 3.18 : Diffractogramme de ferrite de cobalt avec Saccharose
Figure 3.19 : Diffractogramme de ferrite de cobalt avec amidon

Figure 3.20 : Diffractogramme de ferrite de cobalt avec maltose50
Figure 3.21 : Diffractogramme de ferrite de cobalt avec fructose
Figure 3.22 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec la glycine calcinés à différents température
Figure 3.23 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec l'acide citrique calcinés à différents température
Figure 3.24 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec le Saccharose calcinés à différents température
Figure 3.25 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec l'amidon calcinés à différents température
Figure 3.26 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec le maltose calcinés à différents température
Figure 3.27 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec le fructose calcinés à différents température
Figure 3.28 : superposition des diffractogrammes des six échantillons calcinés à 900°C56
Figure 3.29 : cliché MEB de la poudre de CFO calcinée à 900°C avec une échelle de 1µm et un grossissement de 25000
Figure 3.30 : clichés MEB de la poudre de CFO calcinée à 900°C avec une échelle de 100 nm et un grossissement de 150.000

Liste des tableaux

Tableau 1.1 : Les différentes classes de spinelles
Tableau 1.2 : Les différentes classes de structure spinelles
Tableau 1.3 : Distances interatomiques dans les spinelles AB2O410
Tableau 1.4 : distribution cationique dans quelque ferrite spinelle
Tableau 1.5 : des exemples de cations forment des spinelles
Tableau 1.6 : Données cristallographiques des ferrites de cobalt
Tableau 3.1 : les masses calculées des agents de CoFe2O432
Tableau 3.2 : Le temps de formation de solution gélifié
Tableau 3.3 : le temps de séchage pour chaque solution
Tableau 3.4 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/Glycine)
Tableau 3.5 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/Acide citrique)
Tableau 3.6 : récapitulatif de la taille des cristallites en utilisant la méthode de DebyeScherrer de ferrite de cobalt (CFO/Fructose)
Tableau 3.7 : récapitulatif de la taille des cristallites en utilisant la méthode de DebyeScherrer de ferrite de cobalt (CFO/ Saccharose)
Tableau 3.8 : récapitulatif de la taille des cristallites en utilisant la méthode de DebyeScherrer de ferrite de cobalt (CFO/Amidon)
Tableau 3.9 : récapitulatif de la taille des cristallites en utilisant la méthode de DebyeScherrer de ferrite de cobalt (CFO/Maltose)44
Tableau 3.10 : les paramètres de maille et le groupe d'espace de composé ferrite de cobaltà température 900°C
Tableau 3.11 : Evolution de la taille moyenne45
Tableau 3.12 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/Glycine)

Tableau 3.13 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye
Scherrer de ferrite de cobalt (CFO/Acide citrique)48
Tableau 3.14 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye
Scherrer de ferrite de cobalt (CFO/saccharose)
Tableau 3.15 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye
Scherrer de ferrite de cobalt (CFO/Amidon)49
Tableau 3.16 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye
Scherrer de ferrite de cobalt (CFO/maltose)50
Tableau 3.17 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye
Scherrer de ferrite de cobalt (CFO/Fructose)
Tableau 3.18 : les paramètres de maille et le groupe d'espace de composé ferrite de cobalt
à température 900°C
Tableau 3.19 : Evolution de la taille moyenne
Tableau 3.20 : comparaison de la taille moyenne

Liste des matériaux

Remerciements
Dédicace
Liste des figures
Liste des tableaux
Liste des abréviations
Introduction générale1

Chapitre 1 : l'état de l'art

I. Historique5
II. La définition des spinelles5
III. La définition de ferrite de cobalt7
IV. Les différentes structures7
IV.1. Spinelles directs
IV.2. Spinelles inverses
IV.3. Spinelles mixtes
V. Propriétés des spinelles9
V.1. Propriétés optiques9
V.2. Propriétés électroniques
V.3. Propriétés magnétiques10
V.4. Propriétés optoélectroniques11
VI. Les Catalyseurs11
VI.1. Catalyseur hétérogène11
VI.2. Catalyseur homogène12
VII. Photo catalyse12
VIII. Les conditions de stabilité de la structure spinelle
Stæchiométrie12

IX. Stæchiométrie	13
X. Structure cristallographique	14
X.1. Définition d'un Cristal	14
XI. Le domaine d'application	15

I.	Introduction	20
II.	Les différentes méthodes synthèses de spinelle	20
a	. Les méthodes de préparation de spinelle par voie humide	20
1	. La méthode sol-gel	20
2	. La méthode Co précipitation,,,	21
3	. La méthode hydrothermale	22
4	. La méthode cryochimie	22
5	. La méthode auto-combustion	23
b	. Les méthodes de préparation de spinelle par voie sèche	23
La m	éthode microémulsion	23
ш	Las différentes méthodes de correctérisation de spinelle	24
III. III. 1	Les différentien des neurone X	24
111.1.	La diffraction des rayons X	24
III.2.	Microscopie électronique à balayage (MEB)	25
Cha	pitre 3 : partie expérimentale	
I.	Introduction	29
II.	Produits chimique utilisées pour la synthèse	29
III.	Mode opératoire	33
IV.	Analyse structurale	35
IV.1	Les analyses de diffraction par les rayons X	35
IV.1.	1 Logiciel X'pertHighScore	36
IV.1.	2 Raffinement de Rietveld	36

IV.1.3 Logiciel origine
IV.1.4 Calcul de la taille cristallites
IV.1.5 Les analyses par la diffraction de rayons X calcinés à température 600°C38
IV.1.6 La comparaison de la taille moyenne entre les six échantillons calcinés à 600°C46
IV.1.7 Les analyses par la diffraction des rayons X calcinés à température 900 °C46
IV.1.8 La comparaison de la taille moyenne entre les six échantillons calcinés à 900°C53
IV.2 Analyse Morphologique MEB54
Conclusion générale
Références bibliographique
Résume

Introduction générale

Introduction générale

Introduction générale

Introduction

Les nanomatériaux sont caractérisés par la présence d'un assemblage de particules nanométriques. Ils présentent des caractéristiques spécifiques grâce à une concentration élevée d'atomes libres situés aux limites de leurs grains, ainsi qu'à leur taille et à leurs structures nanométriques, qui sont inférieures à 100nm. Seule la microscopie atomique, la microscopie à transmission électronique ou la diffraction de rayons X permettent de visualiser la taille des grains dans la gamme des nanomatériaux [1]. Ces derniers sont utilisés dans différents domaines tels que les absorbeurs de micro-ondes et la catalyse, les indicateurs, les circuits de transformateur, les équipements d'enregistrement les fluides magnétique et les capteurs [2].

Les spinelles sont des oxydes de formule générale AB_2O_4 , où les éléments A et B appartiennent généralement aux métaux de transition. Matériau $CoFe_2O_4$ est généralement considéré comme un composé spinelle inverse, la plupart des ions Co divalents occupant des sites cubique [3]. Les oxydes spinelles sont utilisés dans de nombreux domaines tels que la catalyse, les capteurs, les batteries, les pigments, les piles à combustible, les cellules solaires, les dispositifs de mémoire, des transformateurs [4].

Les matériaux ferrites spinelles de cobalt $CoFe_2O_4$ ont été largement synthétisés par différentes méthodes, Dans notre travail nous nous sommes intéressés à la synthèse des nanomatériaux de CFO de par différents agents de combustion par la méthode sol-gel ainsi que l'effet de la température de calcination sur la taille des particules de spinelle [5].

Notre mémoire se répartie en trois chapitre :

Le premier chapitre se focalise sur une étude bibliographie sur les spinelles en générale, et plus spécifiquement sur les ferrites de cobalt. Dans le même, nous décrivons les caractéristiques structurelles, optiques, électroniques, magnétiques et les applications de ces oxydes mixtes de type spinelles.

Le deuxième chapitre a été consacré les différentes méthodes de synthèse des spinelles ainsi que les techniques de caractérisation utilisées pour nos échantillons sont la diffraction de rayon X et le microscope électronique à balayage.

Dans le dernier chapitre nous aborderons les différentes étapes de la synthèse de la CFO, ainsi qu'une présentation et une discussion des résultats obtenus concernant les

Introduction générale

caractéristiques structurelles et morphologiques des spinelles. Nous terminons notre travail

par une conclusion générale.

Chapitre 1 :l'état de l'art

Chapitre 1 L'état de l'art

I. Historique

La première détermination de la structure du spinelle a été réalisée par Bragg et Nishikawa en 1915. Le nom "spinelle" trouve son origine dans le latin "SPINA", signifiant épine, en référence à la nature pointue et aux arêtes distinctes de ses cristaux. Les premiers spécimens de spinelle provenaient principalement du Sri Lanka. Certains spinelles rares du Sri Lanka peuvent présenter une variation de couleur allant du bleu violacé au pourpre [6].

II. La définition des spinelles

Les spinelles sont des oxydes de formule générale AB₂O₄, où les éléments A et B appartiennent généralement aux métaux de transition. Il existe des spinelles avec des cations A comme (Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sn), et B comme (Al, Ga, In, Ti, V, Cr, Mn, Fe, Co, Ni) [7]. La maille cubique conventionnelle d'un spinelle est composée de quatre mailles unitaires primitives, contenant 32 anions et 24 cations, formant un réseau cubique à faces centrées. Cette maille cubique comporte 96 sites interstitiels, mais dans les composés AB₂O₄, seuls 24 de ces sites sont occupés par des cations. Parmi les 64 espaces tétraédriques existants entre les anions, 8 sont occupés par des cations, tandis que les 16 cations restants occupent la moitié des 32 espaces octaédriques.

Dans la structure spinelle, les octaèdres partagent des arêtes entre eux, tandis que les tétraèdres partagent des sommets avec les octaèdres. Pour décrire efficacement la structure complexe d'un spinelle, il est courant d'utiliser des termes tels que les polyèdres de coordination autour des cations interstitiels. La manière dont ces polyèdres (tétraèdres T et octaèdres O) sont reliés entre eux peut impliquer le partage de sommets, d'arêtes ou de faces. Les anions occupent les sommets des polyèdres [8].

Figure 1.1 : Représentation des sites dans la structure spinelle[9].

La nature du cation (B) définit les trois catégories de spinelles. Les spinelles alumineuses (Al), les ferrifères (Fe) et les chromites (Cr) sont présentes dans la série, comme le montre le Tableau 1.1.

Tableau 1.1 : Les différ	entes classes de	e spinelle	s [10].
--------------------------	------------------	------------	---------

Spinelles ferrifères	Spinelles chromites
Magnétite	Chromite
$(FeFe_2O_4)$	$(FeCr_2O_4)$
Magnésioferrite	Magnésiochromite
$(MgFe_2O_4)$	(MgCr ₂ O ₄)
Jacobsite	Manganochromite
$(MnFe_2O_4)$	(MnCr ₂ O ₄)
Franklinite	Zincochromite
(ZnFe2O4)	(ZnCr2O4)
	Spinelles ferrifères Magnétite (FeFe ₂ O ₄) Magnésioferrite (MgFe ₂ O ₄) Jacobsite (MnFe ₂ O ₄) Franklinite (ZnFe2O4)

Chapitre 1 : l'état de l'art

III. La définition de ferrite de cobalt

La ferrite de cobalt CoFe2O4 est un matériau magnétique très important, qui a couvert un large éventail d'applications, notamment les dispositifs électroniques, les Ferro fluides, les dispositifs à micro-ondes à libération magnétique. La structure de la ferrite de cobalt spinelle CoFe2O4 C'est une structure cubique à faces centrées avec une cellule unitaire de grande taille contenant huit unités de formule. Il existe deux types de réseaux pour l'occupation des cations : les sites A et B ont une coordination tétraédrique et octaédrique, respectivement. Dans la structure spinelle normale, le Co est un atome divalent qui occupe les sites tétraédriques A, tandis que le Fe est un atome trivalent qui occupe les sites octaédriques B. Lorsque les sites A sont occupés par des ions Fe, tandis que les sites B sont également peuplés par des ions Co et Fe, la structure spinelle est appelée "type inverse". Le matériau CoFe2O4 est généralement considéré comme un composé spinelle inverse, la plupart des ions Co divalents occupant des sites octaédriques. Cela signifie que les cations Co et Fe se répartissent sur les deux sites. Étant donné que l'interaction FeA-FeB est normalement différente de l'interaction CoA²⁺-FeB³⁺, la variation de la distribution des cations sur les sites A et B dans le spinelle entraîne des propriétés magnétiques différentes de ces oxydes, même si la composition chimique du composé ne change pas.

Les matériaux ferrites spinelles de cobalt CoFe2O4 ont été synthétisés par différentes méthodes. Dans la plupart des cas, la variation des propriétés magnétiques a été obtenue en raison de la distribution différente des cations Co et Fe sur les sites A et B. Les études sur la distribution des cations Co et Fe sur les sites A et B ont donc été réalisées à l'aide de ces méthodes. Il est donc important d'étudier la répartition des cations Co et Fe sur les sites A et B dans la ferrite de cobalt spinelle CoFe₂O₄ [11].

IV. Les différentes structures

Il existe trois types de structures spinelles : Spinelles Directes, Inverses, Mixtes (intermédiaires).

IV.1. Spinelles directs

En général, on représente la distribution des cations dans les spinelles par $[A]_T [B_2]_O O_4$, où les cations divalents occupent les sites tétraédriques et les cations trivalents occupent les sites octaédriques. Cette configuration est appelée distribution normale, et le spinelle est qualifié de normal ou direct dans ce contexte. Des exemples bien connus de spinelles directs incluent la ferrite de cobalt (COFe₂O₄) et la ferrite de cuivre (CuFe₂ O₄) [12].

IV.2. Spinelles inverses

La deuxième distribution extrême des cations est $[B]_T [AB]_O O_4$, où les positions tétraédriques sont occupées par la moitié des ions trivalents et les positions octaédriques sont occupées par les ions trivalents et divalents. Est un spinelle inverse [13].

Figure 1.2 : Représentation de la structure spinelle inverse [14].

IV.3. Spinelles mixtes

La distribution intermédiaire est définie par le degré d'inversion cationique $[A_{1-\delta} B_{\delta}]_T$ $[A_{\delta}B_{2-\delta}]O_4$, où δ représente le degré d'inversion, variant de 0 pour le spinelle normal ou direct à 1 pour le spinelle inverse ou indirect. Ce paramètre est étroitement lié au processus de fabrication des spinelles. La structure résultante, appelée spinelle mixte ou intermédiaire, permet aux cations divalents et trivalents d'occuper à la fois les sites tétraédriques et octaédriques. Cette flexibilité génère une gamme étendue de compositions Chapitre 1 :l'état de l'art

chimiques et de propriétés. La présence de cations différents dans les sites tétraédriques et octaédriques peut altérer les propriétés du spinelle mixte, notamment la conductivité électrique, les propriétés magnétiques, la couleur, ainsi que d'autres caractéristiques physiques et optiques. Cette diversité offre des avantages en termes d'adaptabilité des propriétés du matériau en fonction de ses applications. Contrairement au spinelle normal (direct) et au spinelle inverse (indirect), où les cations occupent exclusivement les sites tétraédriques ou octaédriques, le spinelle mixte présente une répartition plus équilibrée entre ces sites. La Figure 1.3 illustre un exemple de chaque type de structure spinelle : un spinelle normal (MgAl₂O₄), un spinelle inverse (NiFe₂O₄), et un spinelle mixte ou complexe (CuAl₂O₄) [15].

Tableau 1.2 :	Les différentes	classes de	structure	spinelles	[10].
---------------	-----------------	------------	-----------	-----------	-------

Spinelles normales	Spinelles mixtes	Spinelles inverses
(Mg)[Cr ₂]O ₄	$(Mg_{0.9}Fe_{0.1})[Mg_{0.1}Fe_{1.9}]O_4$	(Fe ₂)[NiFe2]O ₄
(Mn)[Al ₂]O ₄	$(Co_{0.21}Fe_{0.79})[Co_{0.79}Fe_{1.21}]O_4$	(Fe ₂)[CuFe2]O ₄

V. Propriétés des spinelles

V.1. Propriétés optiques

Les spinelles sont des matériaux qui sont à la fois transparents dans le domaine visible et moyen infrarouge ($0.2 - 6 \mu m$). En plus d'être optiquement isotropes, leur indice de réfraction varie de 1,712 à 1,736.

Les spinelles sont allo chromatiques, ce qui signifie qu'elles sont colorées en petites quantités par des ions métalliques (éléments de transition), qui vont modifier la couleur en fonction de leur concentration dans le spinelle [16].

- Cr³⁺ (en interaction octaédrique) : couleur rouge, rose.
- Fe³⁺ (en interaction octaédrique) : de couleur verte.
- Fe²⁺ (en coordination tétraédrique) : couleurs bleues, violettes.

V.2. Propriétés électroniques

Le mécanisme de sauts d'électrons entre les cations occupant des sites cristallographiques similaires permet de conduire électroniquement les spinelles. En termes de distance entre les sites, les transferts électroniques sont principalement effectués par voie électronique [17].

Entre les cations présents dans les emplacements octaédriques.

Effectivement, il y a une distance plus courte entre deux sites octaédriques que celle entre deux sites tétraédriques ou deux sites de nature différente. Les distances intersites dans les spinelles sont données dans le Tableau 1.3.

La position idéale n'est jamais presque réalisée, les valeurs de u pour la majorité des spinelles connus se situe entre 0.375 et 0.395 pour une symétrie en 43m, et entre 0.25 et 0.26 pour une symétrie en 3m[18].

Les distances interatomiques sont données en fonction du paramètre de maille a et du paramètre u comme indique dans le Tableau 1.3 [10]

Td — O	$a \begin{bmatrix} 3 & (u - (1/8)) \end{bmatrix}_{\frac{1}{2}}^{\frac{1}{2}}$
Oh — O	$a\left[(3u^2-2u+(3/8)\right]\frac{1}{2}$
Td— Td	$\frac{a\sqrt{3}}{4}$
Oh — Oh	$\frac{a\sqrt{2}}{4}$
Oh — Td	$\frac{a\sqrt{11}}{8}$

Tableau 1.3 : Distances interatomiques dans les spinelles AB₂O₄ [10].

V.3. Propriétés magnétiques

En dessous d'une température critique, on peut observer le ferrimagnétisme dans les spinelles lorsque les sites Td et Oh sont occupés par des cations métalliques ayant un moment magnétique. Les caractéristiques magnétiques de ces matériaux varient en fonction. Des cations différents et de leur distribution parmi les sites. Les études de Néel ont largement exploré le ferrimagnétisme des ferrites [19].

Selon L. Néel, la théorie du ferrimagnétisme des spinelles repose principalement sur des interactions spin-spin entre les ions métalliques des sites Oh et les ions des sites Td (interactions AB). Les échanges AA ou BB se produisent.

Les interactions AB sont peu importantes, ce qui signifie qu'à 0 °K, les moments des cations dans les sites A et B sont antiparallèles [20].

V.4. Propriétés optoélectroniques

La structure des bandes des oxydes de type spinelle (OMT), tout comme la majorité des oxydes de métaux de transition, est directement liée à leurs propriétés optoélectroniques.

En général, la bande de valence (BV) se compose principalement d'orbitales d'oxygène pleines (orbitales 2p6), tandis que la bande de conduction (BC) est principalement composée d'orbitales du cation 3d vides, en fonction de la valeur de la bande interdite, comme indique dans la Figure 1.3 [10].

Figure 1.3 : Représentation simplifiée du diagramme de bande [10].

VI. Les Catalyseurs

Un catalyseur est une substance qui augmente la vitesse d'une réaction chimique sans changer sa quantité ou sa composition chimique.

Lorsqu'un processus chimique impliquant un catalyseur produit la même quantité de catalyseur que celle qui a été ajoutée au début de la réaction. L'industrie dépend des catalyseurs. Ils réduisent l'énergie d'activation et accélèrent la vitesse de la réaction.

VI.1. Catalyseur hétérogène

La réaction se produit sur des sites à surface actifs car un catalyseur hétérogène est dans une phase différente des réactifs. La majorité des catalyseurs hétérogènes sont généralement en phase solide et ne sont pas utilisés dans la réaction. En catalyse hétérogène, au moins un réactif est adsorbé à la surface du catalyseur sur des sites actifs.

Exemple :

$$N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$$

VI.2. Catalyseur homogène

Un catalyseur homogène est un catalyseur qui se trouve dans la même phase que les réactifs. La catalyse homogène implique souvent un catalyseur aqueux et des réactifs aqueux, mais ce n'est pas toujours le cas. Parfois, le catalyseur et les réactifs sont en phase gazeuse.

Exemple :

$$SO_{3 (g)} + H_2O_{(L)} \longrightarrow H_2SO_{4 (aq)}$$

VII. Photo catalyse

La photo catalyse est une technologie d'oxydation avancée, qui repose sur l'activation d'un semi-conducteur par la lumière. Les matériaux susceptibles de provoquer ces réactions sont souvent à base de dioxyde de titane. Après avoir exposé le principe de la photo catalyse, une présentation détaillée des applications environnementales est conduite. Celles pour le traitement de l'eau couvrent les polluants inorganiques et organiques.

La désinfection par photo catalyse est un domaine très exploré, même si la compréhension des mécanismes d'action contre les micro-organismes doit être approfondie. Les applications pour le traitement de l'air concernent l'élimination des oxydes d'azote et le traitement des composés Organiques volatils pour l'air intérieur. Enfin les propriétés autonettoyantes de surface recouvertes de dioxyde de titane sont rappelées [21].

VIII. Les conditions de stabilité de la structure spinelle

Sont soumises à divers facteurs cruciaux, comprenant la taille et la charge des cations, la symétrie de la structure cristalline, ainsi que les interactions entre les ions. Pour qu'une

structure spinelle se forme, ces éléments doivent être soigneusement équilibrés. Il convient de souligner que la stabilité de la structure spinelle peut également être affectée par des paramètres environnementaux tels que la température, la pression et la présence d'impuretés. Des variations dans ces conditions externes peuvent induire des modifications substantielles dans la structure spinelle, influençant ainsi ses propriétés physiques et chimiques.

En résumé, la formation et la stabilité de la structure spinelle sont déterminées par un équilibre délicat entre les caractéristiques des cations, la symétrie cristalline et les interactions ioniques, et ces conditions peuvent être modifiées par des facteurs externes tels que la température, la pression et la présence d'impuretés [22].

Ferrite	spinelle	Paramètre de maille	Densité (g /Cm 3)
ZnFe ₂ O ₄	Direct	(A)	5.53
CuFe ₂ O ₄	direct	8.44	5.42
CoFe ₂ O ₄	inverse	8.37	5.29
NiFe ₂ O ₄	inverse	8.39	5.38
Fe ₃ O ₄	inverse	8.33	5.24
(Mn1_	mixte	8.40	5.00
	mixte	8.51	4.52
		8.36	

Tableau 1.4 : distribution cationique dans quelque ferrite spinelle [10].

IX. Stœchiométrie

La plupart des spinelles d'oxyde simples présentent une structure AB_2O_4 , avec les cations A et B qui doivent avoir les charges formelles nécessaires pour atteindre la neutralité électrique [10].

$$QA+2QB+4QO = 0$$

Chapitre 1 : l'état de l'art

Lorsque les charges des cations A et B sont Q_A et Q_B , les anions O sont Q_O (-2 pour l'oxyde spinelle). Le tableau 1.5 présente plusieurs cations qui sont des spinelles [23].

Si

A = 2 et B = 3 (ce qui représente une spinelle de 2-3).

A = 4 et B = 2 (ce qui représente une spinelle 4-2).

Tableau 1.5 : des exemples de cations forment des spinelles [10].

Valence	+2	+3	+4
Les Eléments	Mg	Al	Ge
	Mn	Ga	Sn

X. Structure cristallographique

X.1. Définition d'un Cristal

Un cristal est une structure solide qui présente une disposition régulière et ordonnée d'atomes. Ces structures peuvent être ioniques, atomiques (comme dans les métaux), covalentes (comme le graphite et le diamant), ou moléculaires (comme dans le CO_2 solide et H₂O solide) [23].

Malgré une composition chimique identique, un matériau peut manquer d'ordre à longue distance, donnant lieu à un solide amorphe [24].

Les cristaux, ou solides cristallisés, sont classés en fonction de la nature de la liaison chimique assurant la cohésion des atomes, ions ou molécules dans leur structure. On distingue principalement les cristaux métalliques (par exemple, Na, Fe, Cu), les cristaux ioniques (comme CsCl, NaCl), les cristaux covalents (comme le graphite et le diamant) et les cristaux moléculaires (comme CO_2 solide et H₂O solide) [25].

Tableau 1.6 : Données cristallographiques des ferrites de cobalt

Données cristallographiques (CoFe2O4)

Système cristallin	cubique à faces centrées
Groupe spatial	Fd-3m
Paramètre de maille (nm)	0.8392
Distances entre les premiers voisins A et B (nm)	r _{AB} =0.3473
	r _{BB} =0.2962
	r _{AA} =0.3625

XI. Le domaine d'application

Aujourd'hui ;les applications de ces matériaux sont bien plus étendues et ne se limitent plu s à l'industrie de l'éclairage. Ces applications peuvent se classer en plusieurs parties distinctes.

- Les céramiques poly cristallines transparentes sont principalement utilisées dans le domaine militaire. Il existe de nombreuses applications : dômes de missiles, blindage transparent, fenêtres de caméras, fenêtres de visée, etc. On cherche des caractéristiques mécaniques spécifiques (résistance à l'usure, résistance à l'impact). Effectivement, en prenant l'exemple d'un dôme, il représente la partie la plus essentielle d'un missile. Cela vise à préserver les détecteurs qui traquent les cibles à prendre en charge. En plus de la clarté des radiations électromagnétiques dans le domaine souhaité (principalement dans les zones infrarouges moyen et lointain).

Il est essentiel qu'un dôme de missile puisse faire face aux conditions les plus extrêmes : des environnements spécifiques (comme les impacts de sable, d'eau ou de glace), des chocs thermiques.

Le dôme s'échauffe en raison du frottement dans l'air.

- On peut également utiliser des spinelles transparentes dans le domaine de la joaillerie et de l'horlogerie de luxe, où il n'est nécessaire que la transparence dans le domaine de la lumière visible.

- Les ferrites sont largement utilisées dans les appareils à micro-ondes, les câbles magnétiques, etc.

Chapitre 1 :l'état de l'art

- Il a récemment été constaté que certains oxydes spinelles de métaux de transition à base de fer peuvent être utilisés sous forme de couches minces comme matériau sensible pour des dispositifs de détection de l'infrarouge et de le convertir en chaleur avec une grande efficacité.

La famille AB2O4 est l'un des composés cristallins les plus captivants qui peuvent être utilisés comme catalyseurs ou capteurs de gaz non polluants [26].

Conclusion

Dans ce chapitre nous avons présenté l'état de l'art du spinelle par sa structure cristallographique, ses propriétés et aussi les domaines d'application.

Chapitre 2

Les méthodes expérimentales de synthèse et de caractérisation.

I. Introduction :

Ce chapitre présente les différentes méthodes de synthèses des spinelles ainsi que les techniques de caractérisations utilisées pour l'identification de notre matériau.

II. Les différentes méthodes synthèses de spinelle

Il existe deux types de synthèses sont

a. Les méthodes de préparation de spinelle par voie humide

Dans de nombreux domaines, la méthode de préparation par voie humide, également appelée méthode de chimie douce, est utilisée pour préparer des échantillons, des matériaux ou des composés chimiques. Cette technique consiste à dissoudre une substance dans un solvant ou une solution, souvent via des réactions chimiques pour synthétiser le produit désiré. La préparation par voie humide peut être utilisée pour préparer des solutions de sels ou d'acides pour des expériences de laboratoire, pour synthétiser des composés complexes ou pour purifier des produits chimiques. Les réactions sont souvent effectuées pendant une période d'agitation afin d'accélérer la dissolution des réactifs et de garantir qu'ils sont répartis de manière uniforme. Plusieurs techniques sont spécifiquement développées, y compris [26]

1. La méthode sol-gel

1. a Historique

Ebelmen a été le premier à réaliser la polymérisation sol-gel, en décrivant dès 1845 « la transformation en verre solide de l'acide silicique exposé à l'air humide ». Le processus solgel a été créé, mais il a fallu environ un siècle pour que l'industrie reprenne cette idée. Verrière. Au cours des années 1930, la société allemande Schott Glaswerke a introduit pour la première fois le processus de polymérisation sol-gel dans le but de produire des récipients en verre, puis des rétroviseurs. En 1939, on a déposé le tout premier brevet solgel[27].

1. b Définition de terme sol-gel

Le terme sol-gel est une contraction des mots « solution gélification ». Il s'agit d'une solution colloïdale composée d'un cation métallique (M) et d'un carbone (C) liés à un groupe organique alkyl (OR)n. Ces molécules sont responsables de la formation de germes et de la croissance de ces germes, ce qui entraîne la formation d'un gel [28].

1. c Les étapes de synthèse

La méthode repose sur la fabrication d'un gel en polymérisant les précurseurs moléculaires en solution en ajoutant un agent chélatant, en agitation et en chauffant à 80°C jusqu'à ce qu'il se forme. Par la suite, on séche lentement le gel obtenu dans une étuve pendant une nuit à 110°C, puis on le calcine afin de créer la structure d'oxyde. Les polyphosphates et les acides carboxyliques, tels que l'acide citrique, sont les agents chélatants les plus fréquemment employés. En ce qui concerne les précurseurs, on utilise soit des alkoxydes métalliques, soit des sels métalliques tels que les chlorures et les nitrates [29].

1. d Les bénéfices et les désavantages de la méthode sol-gel

Les bénéfices de cette méthode sont nombreux, on peut citer les principaux bénéfices suivants :

- Facilité du processus et rapidité de réalisation.
- Gestion simplifiée : grâce à la viscosité des sols et des gels, il est possible de fabriquer directement des matériaux dans différentes formes : couche mince, fibres, poudres fines et matériaux massifs.
- Cette méthode permet de gérer de manière efficace la taille des particules et la distribution homogène des particules.
- Cette méthode est effectuée à des températures inférieures à celles des autres méthodes.
- Une grande pureté et une plus grande uniformité du matériau.

Ensuite, on mentionne les principaux désavantages suivants :

- Les précurseurs d'alcoxyde ont un coût très élevé.
- Gestion d'une quantité considérable de solvants.
- Produits à faible rendement et de faible densité.
- Les composés organiques, tels que les résidus de carbone et d'autres composés, présentent des dangers pour la santé [30].

2. La méthode Co précipitation

La méthode de Co-précipitation offre la possibilité d'obtenir des produits de précurseurs en précipitant simultanément deux cations M et M' : (M étant un alcalin / un alcalino-terreux et M' un métal de transition). En règle générale, une fois que les deux solutions contenant les cations métalliques ont été mélangées, il est essentiel de mesurer le pH afin de suivre

l'évolution des précipitations. Une fois que les masses d'oxydes métalliques adéquates ont été dissoutes, les solutions sont mélangées progressivement puis diluées. La réaction se produit soit à froid, soit à chaud, avec un pH spécifique. Après les étapes de décantation, de rinçage et de filtration, toutes les espèces ont été précipitées à un pH basique sous forme d'oxalate ou d'hydroxyde. Après ces étapes, le précipité a été soumis à un lavage pour éliminer les impuretés organiques. Ensuite, on procède au séchage du produit afin d'éliminer le solvant, puis on le broie afin de réduire la taille des grains des poudres. En fin de compte, le précipité doit être calciné afin d'atteindre la phase souhaitée[29].

3. La méthode hydrothermale

Le processus de synthèse hydrothermale consiste à utiliser des réactions en phase homogène ou hétérogène dans un milieu aqueux à température et pression élevées afin de cristalliser directement les matériaux céramiques anhydres à partir de solutions. On peut voir cette approche comme une méthode de fabrication de monocristaux.

L'autoclave est utilisé pour la croissance cristalline. L'avantage de la méthode hydrothermale par rapport aux autres méthodes de croissance cristalline réside dans sa capacité à générer une phase cristalline sans nécessiter de calcination. La méthode hydrothermale utilise de l'eau sous pression et à une température supérieure à celle de l'ébullition normale afin d'accélérer la réaction entre les solides. L'eau liquide ou la vapeur joue le rôle d'un milieu de transmission de pression [29].

4. La méthode cryochimie

Ce processus de séchage, également appelé lyophilisation ou séchage par congélation, consiste à combiner la congélation et la sublimation afin de retirer l'eau d'un matériau sans altérer sa structure. On fait fréquemment appel à cette technique afin de préparer des échantillons pour la microscopie électronique à haute résolution ou pour la caractérisation des matériaux.

En suivant ces étapes, il est possible de préparer un oxyde spinelle en utilisant la méthode cryochimique

Pour préparer la solution, il est nécessaire de dissoudre les précurseurs de l'oxyde dans un solvant adéquat afin d'obtenir une solution uniforme.

La congélation consiste à congeler rapidement la solution à une température extrêmement basse (généralement comprise entre -80°C et -196°C) afin de créer un solide poreux.

Le solide congelé est placé sous vide et chauffé lentement afin que la glace se transforme directement de l'état solide en gaz (sublimation), sans passer par l'état liquide.

L'eau est évacuée de la matrice solide par ce processus, ce qui génère des pores au sein du matériau.

Le processus de traitement thermique consiste à chauffer le matériau déshydraté à une température élevée (de préférence entre 700°C et 1000°C) afin de stimuler une réaction chimique entre les précurseurs et de créer la structure spinelle.

Grâce à la technique cryochimique, il est envisageable d'obtenir des oxydes spinels de grande pureté, avec une répartition uniforme des pores dans le matériau. Cela peut rendre les matériaux plus performants, comme leur conductivité électrique ou leur capacité d'échange ionique, et simplifier leur utilisation dans différentes applications, comme les catalyseurs, les batteries et les mesures[29].

5. La méthode auto-combustion

L'auto-combustion est une méthode de synthèse chimique qui ne requiert pas de calcination. Au moyen de cette approche, les précurseurs sont décomposés thermiquement dans une flamme qui se forme lors de la combustion d'un combustible et d'un carburant. En général, l'oxygène ou l'air sont employés comme carburant et le méthane (CH₄) est sélectionné comme carburant, qui peut être remplacé par d'autres carburants comme l'acétylène ou l'éthylène[31].

b. Les méthodes de préparation de spinelle par voie sèche

La méthode microémulsion

Cette méthode offre la possibilité de préparer des nanoparticules métalliques avec des dimensions équivalentes (5 nm < diamètre de la particule < 50 nm). L'eau, l'huile et un tensioactif constituent un système appelé microémulsion. Selon cette méthode, on transforme un sel métallique en précipité inorganique afin de produire des catalyseurs sous forme de nanoparticules. Deux voies différentes peuvent être utilisées pour préparer les catalyseurs selon cette méthode :

Par l'association de deux solutions de microémulsions, l'une contenant le précurseur métallique et l'autre contenant l'agent précipitant (ou réducteur) Par l'ajout direct de l'agent précipitant (ou réducteur) à la microémulsion contenant le précurseur métallique [26].

III. Les différentes méthodes de caractérisation de spinelle

III.1. La diffraction des rayons X

La diffraction des rayons X implique l'application d'une longueur d'onde des rayons X $(0.1 < \lambda < 10$ nm) sur un échantillon argileux, qu'il soit orienté ou non. Le cristal, lorsque le rayonnement entre, absorbe une partie de l'énergie et excite les atomes, entraînant des émissions de radiations dans toutes les directions. Les plans atomiques en phase produisent des radiations qui créent un faisceau cohérent qui peut être repéré. La loi de Bragg exprime la condition pour que les radiations soient en phase[31].

✓ Principe de DRX :

On peut définir les corps cristallins comme des ensembles de plans réticulaires ayant une densité variable. Plus d'atomes sont présents dans certains plans en fonction de la composition chimique du minéral. Des distances spécifiques (d) sont utilisées pour séparer ces plans réticulaires en fonction de la nature du cristal ou du minéral en question. Une sélection judicieuse de trois ou quatre distances réticulaires permet de reconstruire le réseau cristallin du minéral.

Si la longueur d'onde du rayonnement est suffisamment faible, il est possible d'obtenir des diffractions par les plans réticulaires (de la même manière que les rayons lumineux sont diffractés par les petites fentes d'un réseau optique). La réfraction devient d'autant plus intense lorsque le plan est « dense », c'est-à-dire rempli d'atomes [27].

✓ Loi de Bragg : $n \lambda = 2 d \sin \theta$

Le nombre n'est un nombre entier qui correspond à l'ordre de réflexion.

 λ est la longueur d'onde du rayonnement utilisé.

d est la distance entre les plans réticulaires en Angström.

 θ représente l'angle d'impact du rayon.

Figure 2.1 :l'appareille de diffraction des rayons X [33]

III.2. Microscopie électronique à balayage (MEB) :

L'analyse par microscopie électronique à balayage (MEB) permet d'obtenir des données sur la structure, la taille des cristaux et la composition chimique d'un objet solide. Elle est utilisée dans les domaines de la biologie, de la chimie, de la médecine, de la géologie, du métal et de la mécanique[33].

✓ Principe :

✓ L'échantillon subit un bombardement d'électrons d'énergie d'environ 5 à 30 Kev. L'impact entraîne l'émission des rayons X spécifiques aux éléments qui composent l'échantillon. L'émission a lieu dans une "poire" de taille d'environ un micromètre et à deux répercussions :

La résolution spatiale de l'analyse est d'environ μ m, tandis que la profondeur analysée est d'environ micron, ce qui peut poser des difficultés spécifiques pour l'analyse de petites particules ou de films minces.

✓ Il est crucial de sélectionner une tension d'accélération adaptée aux éléments que l'on souhaite analyser, en fonction des conditions expérimentales. Le calcul complexe permet de déterminer les quantités respectives des différents éléments analysés [35].

Figure 2.2 : L'appareille et schéma de microscopie électronique à balayage [37]

Conclusion

Ce chapitre a fait l'objet des méthodes de synthèse des spinelles par voies humide et sèche et en fin celle que nous avons choisis pour la synthèse de nos matériaux, ainsi que les techniques de caractérisations qui ont été utilisées afin d'identifier le produit final.
Chapitre III :

Partie expérimentale.

I. Introduction

Dans ce chapitre nous expliquons en détail les conditions expérimentales utilisées pour préparer les échantillons (ferrite de cobalt $CoFe_2O_4$) : qui ont préparées par la méthode de synthèse de voie liquide qui est la technique de sol gel auto combustion, ces catalyseurs sont synthétisés à base des (Nitrate de cobalt hydraté, Nitrate de fer hydraté).

Pour analyser les échantillons préparés nous avons utilisé deux techniques de caractérisations telles que la diffraction des rayons X (DRX), et la microscopie électronique à balayage.

La (DRX) a été exploitée pour examiner les échantillons (CoFe₂O₄ / glycine), (CoFe₂O₄ / Acide citrique), (CoFe₂O₄/Saccharose), (CoFe₂O₄/fructose), (CoFe₂O₄/Maltose), (CoFe₂O₄/Amidon) à différentes températures ,permettant l'identification des phases cristallographique, d'affiner les paramètres cristallins et d'indexer les pics correspondant aux plans cristallins (hkl) nous avons également examiné d'autres paramètres tels que la largeur à mi-hauteur (FWHM) des pics et la taille des cristallins.

Enfin on termine par l'analyse microscopie électronique à balayage (MEB), qu'est une analyse morphologique de la surface des échantillons (la taille et la forme, l'orientation et la distribution des grains, la porosité etc...).

Produits	Propriétés
Nitrate de fer	Masse molaire : 403,999 g / mol
Fe (NO ₃) ₃ _9H ₂ O	La densité : 1,68 g / cm3
	Point de fusion : 47,2 ° C
Construction of the second sec	Point d'ébullition : 125 ° C
	Solubilité dans l'eau 1,5 g / ml
	Solubilité l'eau ; l'éthanol ; l'acétone.
	Susceptibilité magnétique (χ) + 15 200,0 • 10–6
	cm3/ mol
	Apparence : cristaux violet clair inondé.

II. Les produits chimique utilisées pour la synthèse et leur masse

Nitrate de cobalt	
Co (NO ₃) ₃ _6H ₂ O	Masse molaire : 291 g / mol
	La densité : 1.88 g / cm3
	Point de fusion : 55°C
	Point d'ébullition : 105°C
	Solubilité dans l'eau 2170 g/l
	soluble dans l'acétone, l'éthanol et l'ammoniac.
	Apparence : cristaux rouge.
Acide citrique	
$C_6H_8O_7$	Masse molaire : 192,12 g/mol
	La Densité : 1,66 g/cm ³
- Martin	Point de fusion : 153 °C
	Point d'ébullition : 175°C
	Solubilité : 592g/l
335	Solubilité dans Soluble dans l'eau, l'éther, l'acétate
	d'éthyle
	Apparence : poudre blanche
Saccharose	Masse molaire : 342,2965 g/mol
$C_{12}H_{22}O_{11}$	La densité : 1,58g/cm ⁻
	Point de fusion : 186°C
	Point d'ébullition : décomposition

Apparence : poudre blanche inodore

Solubilité : 2000 g/l

Solubilité dans l'eau

	Apparence : poudre blanche		
	Massa malaina + 75 07 - /1		
Glycine C2HeNO2	Masse molaire : /5,0/ g/mol		
	Masse volumique : $1,607 \text{ g/l}$		
	La Densité : $1,61 \text{ g/cm}^3$		
	Point de fusion : 232 à 236°C		
	Point d'ébullition : 181°C		
	Solubilité : 225 g/l		
	Solubilité dans l'eau, l'éthanol		
	Apparence : poudre blanche		
Maltose			
$C_{12}H_{22}O_{11}$	Masse molaire : 342,3 g/mol		
	La Densité : 1,54 g/cm ³		
	Point de fusion : 102 °C		
	Point d'ébullition : 130 °C		
	Solubilité : 1,08 g/l		
	Solubilité dans l'eau		
	Apparence : poudre blanche inodore		
Amidon			
$C_{6}H_{10}O_{5}$	Masse molaire : 162,14 g/mol		
	La Densité : 1,5 g/cm ³		
	Point de fusion : 200 °C		
	Solubilité : 50 g/l		
	Insolubilité dans l'eau froide.		
	Apparence : poudre blanche		
• Structure du Nitrate de Fei	$Fe (NO_3)_3_9H_2O$		
H ₂ O	H ₂ O		
	0 N +≒0		
H ₂ O H ₂ O	H ₂ O H ₂ O		
GIE	Fe ³⁺		
⁻⁰ N ⁺ -0 ⁻ SCIEN ⁰ N ⁺ -0 ⁻			
ll	H ₂ O		
H ₂	о н ₂ о		

20

Figure 3.1 : structure nitrate de fer Fe (NO₃)₃_9H₂O

• Structure du Nitrate de Cobalt Co $(NO_3)_2_6H_2O$:

Figure 3.2 : Structure Nitrate de Cobalt Co (NO₃)₂_6H₂O

Méthode de calcul des masses

Nous avons choisi le composé formé par le nitrate de fer et nitrate de cobalt comme une base pour nos calculs. Un mélange stœchiométrique selon la réaction.

La réaction de formation de CoFe2O4 :

 $2Fe (NO_3)_3 - 9H_2O + Co (NO_3)_2 - 6H_2O \longrightarrow CoFe_2O_4$

Nitrate de fer :

Pour calculée les masses des agents de combustion nous avons utilisé la loi suivant :

 $m_{agents} = \frac{2 \times mCOFe2O4 \times Magent}{MCOFe2O4} \div P$

Les agents de combustion	Les masses pour (3g)
Glycine	2,8824
Acide citrique	8,079
Fructose	6,9174
Saccharose	13,1439
Maltose	13,9622
Amidon de pomme de terre	6,2202

Tableau 3.1 : les masses calculées des agents de CoFe₂O₄

III. Mode opératoire

1^{ere} étape : formation de solution gélifiée

Dans un bécher on fait dissoudre 3,5102g de nitrate de fer et 1,2658g de nitrate de cobalt et 2,4691 g de agent de combustion glycine réalisée avec 10ml de l'eau distillée sous agitation magnétique à température 80 °C jusqu'à la formation de solution gélifier.

Figure 3.3 : Formation de sol-gel

Pour les autres agents de combustion on va répéter le même travail.

Tableau 3.2 : Le temps de formation de solution gélifié

Les agents de combustions	Temps en (min)
Acide citrique	44
Saccharose	60

Fructose	34
Glycine	68
Maltose	30
Amidon	120

Laisser la solution gélifier reposer pendant 24h.

2^{eme} étape : séchage

 Sous la hotte les gels ainsi formés sont séchés et sont portés à une température de 90 °C, pour avoir une poudre.

Tableau 3.3 : le temps de séchage pour chaque solution

Les agents de combustions	Temps en (min)
Acide citrique	60
Saccharose	90
Fructose	35
Glycine	60
Maltose	250
Amidon	90

3^{eme} étape : auto combustion

Une fois les poudres séchées les béchers de ces dernières sont mis un par un dans un bain de sable afin qu'il assure un traitement thermique à différentes températures sous la hotte.

4^{eme} étape : broyage

Apres le traitement thermique on va broyer l'échantillon

Figure 3.5 : Broyage de l'échantillon

5^{eme} étape : calcination

Mettre la poudre obtenue après broyage dans un creuset en céramique, puis le placer dans un four a moufle programmable avec une vitesse 2°C/min. la calcination est réalisée à température T(en °C)

Figure 3.6 : l'augmentation de température de four en fonction de vitesse

1g de ferrite de cobalt T=600 °C pendant 9h

1g de ferrite de cobalt T=900 °C pendant 9h

IV. Analyses structurale

IV.1 Les analyses de diffraction par les rayons X

Le diffractomètre fourni les résultats de diffraction des rayons X sous forme des fichiers, ces derniers étant transformés en données modifiables par plusieurs programmes. Les résultats de diffraction RX, sont enregistrés dans des fichiers de type *.raw*avec un codage binaire.

IV.1.1 Logiciel X'pertHighScore

Nous allons maintenant commencer au traitement des diffractogrammes par les rayons X en utilisant le logiciel X'pertHighScore. Pour faire une analyse dans highscor nous faisons les étapes suivantes

1-Ouvrir logiciel highscor \longrightarrow file \longrightarrow open

2- ouvrirez le fichier *.raw.*dans highscor

3-Clique le bouton droit sur la sourit _____ set manuel ranges pour couper la partie de spectre

4-Clique le bouton droit sur la sourit → clip range

5-Treatment — search peaks

6-analysis → search & match → execute search & match →

Restrictions \longrightarrow edit restrictions \longrightarrow periodic table (choisir les éléments dans search ok

7-Analysis → rietveld → start rietveld

8-Clique le bouton droit sur la sourit \longrightarrow label peaks \longrightarrow cocher hkl

HighScore Plus - [CFOgly]				
🚰 Eile Edit View Treatment Reference Patter	ns Analysis Beports Jools Customize Window	w Help		× .
Por (27th): 44 576 dispacing (Å): 2.03 Counts		B . B . N Automati . B A TA > Ar S A M A H C D		
Pos. [2111]. 44,570 U-spacing [A]. 2,05 Counts		A Lo o valonali A cara o secon can	- 4	
	🖉 🚽 👔 View 👔 🖾 🖉 🖓 • 💸 Autom	natic M · 5 Parameter(s) · 0 Constrain -		
Ni orody X				3
	Lists Fane	C Object Inspector		
	Pattern List Scan List Peak List	Andrer Scan Data Selected object Peak(s)		
D Counts	Quantification Refinement Contr	Structure Plot Shape Function Pseudo Voigt		
Crogy	Phase Cobalt Di - Update	e Plot Split Peak	2	
S Cobac Dirențin) Citate 100,0 %	Classest Display D. B. L	Refine Position	v	
4	Element Display	Refine Height	×	
a		0 Refixe PWHM	×	
		Refine Shape	×	
		Lei Postion (*2Theta)		18,3077
600-		Contracting (Co)		0.2092
/		FWHM Right (*2Th.)		
0		(i) Shape Left		0,8190
		Shape Right		
400-		Integral Breadth [*27h]		0,3029
		demains		4,8540
947	b 0. 0	Shen2 Theta		0.0253
() •	1 2 20 0	Relative Intensity [%]		4,146
200-	0 0 0	Indiground [cts]		4,2922
8		FWMM Asymmetry Rato		
		Share Asymptry Bato		
		Shape Asymmetry (%)		
o the stand of the stand of the stand of the	and the state of t	Sgriftance		3,5893
20 30 40 50	io 70 io P 🖓 🙈	Tp Widt:		0,2530
Position (*2Theta) (Copper	r (Cul)	Line Profile Analysis		
	9 • •	Derived from Pure K-Alpha2		
VERSIONNER (ALT TO ALT TO ALT CONTONE) Analyze / HI Pattern /		5 Status Studied		
Additional Graphics	0 0	Natched	10	
		Matched by		
		Source Profile Pit		
		(2) Crystanographic Properties		
Belgidus + Beakillet				
Icoune + rear ust				
Adcepted Patterns		Cortona3D		
IdeAll IdeAll IdeCom IdeMin IdeMin Minor	Minerals 🖾 PrintIdeAll 😱 🛛 🏋 🧀 🍝 🚣 • 🔏	1 🕂 🐣 📴 😱 Rietveld Anal - 😤 💥 🖕		

Figure 3.7 : montre une partie de ce traitement

IV.1.2 Raffinement de Rietveld

La technique est employée en cristallographie afin d'affiner et d'ajuster les modèles structuraux des matériaux cristallins. Il tire son nom du physicien néerlandais Hugo Rietveld, qui ont développé cette méthode dans les années 1960. Ce raffinement vise principalement à adapter un modèle de structure cristalline à des données expérimentales de diffraction des rayons X ou de neutrons. Ces données renferment des renseignements concernant les emplacements des atomes, les éléments de structure atomique, les caractéristiques du réseau, les paramètres de déformation, et ainsi de suite. Le processus d'affinement de Rietveld réduit au minimum la disparité entre les données expérimentales et les données calculées à partir du modèle structural [37].

IV.1.3 Logiciel origine

Origine c'est une logicielle fonctionnalité d'analyse de données et de mise en forme graphique, telles que l'analyse de pics, l'ajustement de courbes et les statistiques, afin de répondre aux exigences de qualité et aux besoins spécifiques de la communauté scientifique (chercheurs, étudiants, ingénieurs, techniciens...).

Figure 3.8 : La page d'origine

IV.1.4 Calcul de la taille cristallites

La méthode de Debye Scherrer est une équation qui permet de calculer la taille des cristaux d'un matériau en fonction de la largeur de ses pics de diffraction de rayons X. Scherrer a présenté cette loi en 1918 [38].

L'équation de Scherrer se présente comme suit :

$$D = \frac{K \times \lambda}{B \times \cos \Theta}$$

- D : la taille moyenne des cristaux
- K : constante (0,9)
- λ : La longueur d'onde de rayonnement X
- B : la largeur à mi-hauteur du pic de diffraction en radians (FWHM)
- θ : L'angle de diffraction

IV.1.5 Les analyses par la diffraction de rayons X calcinés à température $600^\circ\mathrm{C}$

Les diffractogrammes enregistrés pour les échantillons sont représentés sur les figures cidessous

Figure 3.9 : Diffractogramme de ferrite de cobalt avec glycine

Tableau 3.4 : récapitulatif de la taille des cristallites en utilisant laméthode de Debye Scherrer de ferrite de cobalt (CFO/Glycine)

Pic	Position $2^{\circ}\theta$	hkl	D (nm)
1	18,2741	111	36,7
2	30,0874	022	37,6
3	35,4470	113	38,1
4	37,0813	222	38,3
5	43,0898	004	39,0
6	47,1834	133	39,6

7	53,4688	224	40,6
8	57,0014	115	41,3
9	62,5994	044	42,5
10	65,8228	135	43,2
11	66,8788	244	43,5
12	71,0260	026	44,6
13	74,0688	335	45,4
14	75,0724	226	45,8
15	79,0441	444	47,0

Chapitre 3 : partie expérimentale

Référence : ICSD 98-016-0059

Figure 3.10 : Diffractogramme de ferrite de cobalt avec acide citrique

Pic	Position 2°O	hkl	D (nm)
1	18,4032	111	31,8
2	30,2180	022	32,5
3	35,5782	113	32,9
4	37,2128	222	33,1
5	43,2221	004	33,7
6	47,3163	133	34,2

Tableau 3.5 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/Acide citrique)

7	53,7462	224	35,2
8	57,1357	115	35,7
9	57,1357	333	35,7
10	62,7346	044	36,7
11	65,9586	135	37,4
12	71,1627	026	38,6
13	74,2060	335	39,3
14	75,2098	226	39,6
15	79,1823	444	40,7

Référence ICSD : 98-016-0059

Figure 3.11 : Diffractogramme de ferrite de cobalt avec fructose

Tableau 3.6 : récapitulatif de la taille des cristallites en utilisant laméthode de Debye Scherrer de ferrite de cobalt (CFO/Fructose)

pic	Position	hkl	D(nm)
1	18,3031	111	34,0
2	30,0732	022	34,8
3	35,4341	113	35,2
4	37,0688	222	35,4
5	43,4606	044	36,1

6	53,4606	224	37,6
7	56,9941	115	38,2
8	62,5938	044	39,3
9	65,8182	135	40,0
10	71,0230	026	41,2
11	74,0669	335	42,0
12	75,0709	226	42,3
13	79,0440	444	43,5

Référence : ICSD (CoFe₂O₄) :98-010-9045

Pic	position	HKL	D (nm)
1	24,0999	012	54,4
2	33,1142	104	55,5
3	40,8243	113	56,8
4	49,4310	024	58,6
5	54,0394	116	59,7
6	63,9834	300	62,7
7	71,9291	101	65,7

Référence : ICSD(Fe₃O₄) :98-005-6372

Figure 3.12 : Diffractogramme de ferrite de cobalt avec Saccharose

Tableau 3.7 : récapitulatif de la taille des cristallites en utilisant laméthode de Debye Scherrer de ferrite de cobalt (CFO/ Saccharose)

itre 3 : partie expérimentale				
_	Pic	Position	hkl	
	1	18,3278	111	
	2	30,1077	022	
	3	35,4731	004	
	4	37,1093	224	
	5	43,2373	004	

2	30,1077	022	32,5
3	35,4731	004	33,0
4	37,1093	224	33,1
5	43,2373	004	33,8
6	53,5163	224	35,2
7	57,0534	115	35,7
8	62,6589	044	36,8
9	65,8863	135	37,4
10	66,9445	244	37,7
11	71,0978	026	38,6
12	74,1453	335	39,4
13	75,1505	226	39,6
14	79,3645	444	40,8

D (nm)

31,8

D:

 $R\acute{e}f\acute{e}rence: ICSD(CoFe_2O_4) : 98-009-8553$

Pic	Position	hkl	D (nm)
1	30,9933	022	16,1
2	44,4268	004	16,8
3	55,1799	224	17,6
4	58,8478	115	17,9
5	64,6705	044	18,4

Référence : ICSD(Co₃O₄) : 98-006-9366

Figure 3.13 : Diffractogramme de ferrite de cobalt avec amidon

Tableau 3.8 : récapitulatif de la taille des cristallites en	utilisant la
méthode de Debye Scherrer de ferrite de cobalt (CFO/A	Amidon)

Pic	Position 2°O	hkl	D(nm)
1	18,2876	111	25,1
2	30,0606	022	25,7
3	30,1372	022	25,7
4	35,4227	113	26,0
5	35,5756	113	26,1
6	43,0695	004	26,7
7	53,4841	224	27,8
8	56,9887	115	28,2
9	56,9887	333	28,2
10	62,5900	044	29,0
11	74,0670	335	31,1
12	74,0714	226	31,1

Référence : ICSD (CoFe₂O₄)98-024-7577

Pic	Position 2°O	hkl	D (nm)
1	24,0836	012	37,4
2	33,1000	104	38,1

3	35,6672	110	38,4
4	40,8103	113	30,0
5	49,4185	024	40,3
6	54,0228	116	41,0
7	62,4055	214	42,8
8	63,9720	030	43,1

Référence : ICSD (Fe₂O₃) 98-008-2135

 Pic	Position 2°Θ	hkl	D (nm)
1	36,5923	113	20,6

Référence : ICSD(Co₃O₄) 98-006-9369

Figure 3.14 : Diffractogramme de ferrite de cobalt avec maltose

Tableau 3.9 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/Maltose)

Pic	Position $2^{\circ} \Theta$	hkl	D (nm)
1	18,0236	111	33,7
2	29,8473	022	34,5
3	35 ,2117	113	34,9

4	36,8475	222	35,1
5	48,8617	004	36,6
6	53,2511	224	37,3
7	56,7874	115	37,9
8	56,7874	333	37,9
9	62,3917	044	38,9
10	70,8284	026	40,9
11	74,8801	226	42,0
12	78,8572	444	43,1

Référence : ICSD(CoFe₂O₄) 98-016-7445

Pic	position	hkl	D(nm)
1	23,8730	012	41,1
2	32,8891	104	41,9
3	49,2248	024	44,2
4	62,2254	214	47,0

Référence : ICSD(Fe₂O₃) 98-016-1291

Figure 3.15 : superposition des diffractogrammes des six échantillons calcinés à 600°C

De la superposition des spectres DRX nous remarquerons que pour les différents échantillons synthétisés s'avèrent une phase pure à 900°C sauf pour celui de l'agent de combustion fructose qui présente une phase secondaire de Fe_2O_3 .

Echantillons	Structure	Groupe	a=b=c (Å)	$\alpha = \beta = \gamma(^{\circ})$
	cristalline	d'espace		
CFO/Glycine	Cubique	Fd-3m	8,3940	90
CFO/acide citrique	Cubique	Fd-3m	8,3750	90
CFO/Saccharose	Cubique	Fd-3m	8,3810	90
CFO/fructose	Cubique	Fd-3m	8,3860	90
CFO/amidon	Cubique	Fd-3m	8,3900	90
CFO/maltose	Cubique	Fd-3m	8,4180	90

Tableau 3.10 : les paramètres de maille et le groupe d'espace de composé ferrite de cobalt

 Tableau 3.11 : Evolution de la taille moyenne

Les pha	ises	La taille moye	nne (nm)
CFO/Gly	cine	39,1	
CFO/Acide	citrique	33,16	
CFO/Fru	ctose	COFe2O4	Fe ₂ O ₄
COFe2O4	Fe2O4	38,43	59,057
CFO/Sacc	harose	COFe ₂ O ₄	Co ₃ O ₄
COFe ₂ O ₄	CO ₃ O ₄	36,1	17,3
CFO/Am	nidon	COFe ₂ O ₄	Fe ₂ O ₄
COFe ₂ O ₄	Fe ₂ O ₄	27,55	38,8875
CFO/N	Ial	CoFe ₂ O ₄	Fe ₂ O ₃
CoFe ₂ O ₄	Fe ₂ O ₃	43,55	37,71

IV.1.6 La comparaison de la taille moyenne entre les six échantillons calcinés à 600°C

La glycine offre une possibilité obtenir une taille de cristallite de l'ordre 39,1 et l'acide citrique 33,16, tandis que la CFO ayants comme agents : fructose saccarose, amidon et maltose a une taille moyenne qui varie entre 27 et 44 nm. Ces matériaux synthétisés n'ont une phase encore complète pour cela on remarque la formation de Fe_2O_4 , Co_3O_4

IV.1.7 Les analyses par la diffraction des rayons X calcinés à température 900 °C :

Figure 3.16 : Diffractogramme de ferrite de cobalt avec glycine calcinés à 900°C

pic	Position 2° <i>θ</i>	hkl	D (nm)
1	18,2710	111	55,7
2	30,0934	022	56,9
3	35,4573	113	57,7
4	37,0930	222	58,0
5	43,1065	004	59,1
6	53,4947	224	61,6
7	57,0306	115	62,6

Tableau3.12 : récapitulatif de la taille des cristallites en utilisant laméthode de Debye Scherrer de ferrite de cobalt (CFO/Glycine)

8	62,6341	044	64,4
9	65,8608	135	65,5
10	71,0697	026	67,6
11	74,1159	335	68,9
12	75,1208	226	69,4
13	79,0973	444	71,3

Chapitre 3 : partie expérimentale

Référence : ICSD 98-016-0059

Figure 3.17 : Diffractogramme de ferrite de cobalt avec acide citrique calcinés à $900^{\circ}C$

Tableau3.13 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/Acide citrique)

Pic	Position 2°Theta	hkl	D(nm)
1	18,2136	111	58,7
2	30,0298	022	60,0
3	35,3908	113	60,9
4	37,0256	222	61,1
5	43,0357	004	62,3
6	53,4178	224	64,9
7	56,9514	115	66,0
8	62,5312	333	67,8
9	70,9808	044	71,2
10	74,0247	026	72,6
11	75,0020	335	73,1
12	79,0020	226	75,1
13	79,0020	444	75,1

référence : ICSD 98-003-9131

Figure 3.18 : Diffractogramme de ferrite de cobalt Saccharose

Tableau 3.14 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/saccharose)

Pic	Position	hkl	D (nm)
1	18,3604	111	84,1
2	30,2665	022	86,0
3	35,6698	113	87,2

4	37,3178	222	87,6
5	43,3775	004	89,3
6	53,8503	224	93,1
7	57,4168	115	94,6
8	63,0709	004	97,4
9	66,3282	135	99,1
10	71,5889	026	102,3
11	74,6670	335	104,4
12	75,6827	226	105,1
13	79,7035	111	108,1

Référence : ICSD 98-016-0059

Figure 3.19 : Diffractogramme de ferrite de cobalt avec amidon

Tableau 3.15 : récapitulatif de la taille des cristallites en ut	ilisant la
méthode de Debye Scherrer de ferrite de cobalt (CFO/Ami	idon)

Pic	Position 2°Theta	hkl	D(nm)
1	18,1522	111	47,0
2	29,9735	022	48,0
3	35,3368	113	48,7
4	36,9724	222	48,9
5	42,9853	004	49,8
6	53,3724	224	51,9

7	56,9079	115	52,8
8	56,9079	333	52,8
9	62,5107	044	54,3
10	70,9452	026	57,0
11	73,9911	335	58,1
12	74,9958	226	58,5
13	78,9717	444	60,1

Référence : ICSD 98-003-9131

Figure 3.20 : Diffractogramme de ferrite de cobalt avec maltose

Tableau 3.16 : récapitulatif de la taille des cristallites en utilisant la méthode de Debye Scherrer de ferrite de cobalt (CFO/maltose)

Pic	Position 2°Theta	hkl	D (nm)
1	18,2622	111	59,4
2	30,0761	022	60,7
3	35,4360	113	61,6
4	37,0704	222	61,8
5	43,0793	004	63,0
6	53,4589	224	65,7
7	56,9917	115	66,7
8	56,9917	333	66,7

9	62,5901	044	68,6
10	71,0174	026	72,0
11	74,0604	335	73,5
12	75,0641	226	73,9
13	79,0362	444	76,0

Référence : ICSD 98-010-9044

Figure 3.21 : Diffractogramme de ferrite de cobalt avec Fructose

Tableau 3.17 : récapitulatif de la taille des cristallites en utilisant laméthode de Debye Scherrer de ferrite de cobalt (CFO/Fructose)

Pic	Position	hkl	D(nm)
1	18,2657	111	58,5
2	30,0826	022	59,8
3	35,4438	113	60,7
4	37,0787	222	60,9
5	43,0891	004	62,1
6	47,1841	133	63,1
7	53,4717	224	64,7
8	57,0056	115	65,8
9	62,6057	044	67,6
10	65,8304	135	68,8
11	71,0358	026	71,0
12	74,0800	335	72,4

13	75,0841	226	72,9
14	79,0577	444	74,9

Référence : ICSD (CoFe₂O₄) :98-010-9045

D' -		1.1.1	\mathbf{D} (\mathbf{x} \mathbf{x})
Pic	position	nki	D (nm)
1	24, 1067	012	69,7
2	33, 1234	104	71,1
3	40, 8302	113	72,7
4	49, 4372	024	75,0
5	54, 0490	116	76,5
6	63, 9846	330	80,3
7	71, 9465	1010	84,2

Référence : ICSD(Fe₂O₃) :98-005-6372

Tableau 3.18 : les paramètres de maille et le groupe d'espace de composé ferrite de cobalt à température 900°C

Echantillons	Structure cristalline	Groupe	a=b=c (Å)	$\alpha = \beta = \chi(^{\circ})$
		d'espace		
CFO/Glycine	Cubique	Fd-3m	8,3560	90
CFO/acide citrique	Cubique	Fd-3m	8,4000	90
CFO/ Saccharose	Cubique	Fd-3m	8,3560	90
CFO/amidon	Cubique	Fd-3m	8,4000	90
CFO/maltose	Cubique	Fd-3m	8,3940	90
CFO/Fructose	Cubique	Fd-3m	8,3860	90

Les phases		La taille moyenne		
CFO/G	CFO/Glycine		62,97	
CFO/Acide citrique		66,83		
CFO/Saccharose		95,25		
CFO/Amidon		52,91		
CFO/Maltose		66,89		
CFO/Fructose		CoFe ₂ O ₄	Fe ₂ O ₃	
CoFe ₂ O ₄	Fe ₂ O ₃	65,94	75,64	

Tableau 3.19 : Evolution de la taille moyenne

IV.1.8 La comparaison de la taille moyenne entre les six échantillons calcinés à 900°C :

Le Saccharose offre une possibilité obtenir une grande taille de cristallite de l'ordre 95,25 et l'amidon un petit taille de cristallite de l'ordre 52,91, tandis que la glycine, le maltose et l'acide citrique aune taille de cristallite varie entre 62 et 67 nm, par contre la CFO ayants le fructose comme agent a une taille moyenne de l'ordre 65,94 nm. Ce matériau synthétisé n'ont une phase encore complète pour cela on remarque la formation de Fe_2O_3 .

Figure 3.22 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec la glycine calcinés à différetes températures.

Référence : ICSD 98-016-0059

Figure 3.23 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec l'acide citrique calcinés à différentes températures.

cRéférence ICSD : 98-016-0059

Figure 3.24 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec le saccharose calcinés à différents température.

Référence : ICSD(CoFe₂O₄) :98-009-8553 Référence : ICSD(CO₃O₄) : 98-006-9366

Figure 3.25 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec l'amidon calcinés à différents température.

Référence : ICSD (CoFe₂O₄)98-024-7577

Référence : ICSD (Fe₂O₄) 98-008-2135

Référence : ICSD(Co₃O₄) 98-006-9369

Figure 3.26 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec le maltose calcinés à différents température.

Référence : ICSD(CoFe₂O₄) 98-016-7445

Référence : ICSD(Fe₂O₄) 98-016-1291

Figure 3.27 : superposition des diffractogrammes des deux échantillons de ferrite de cobalt avec le fructose calcinés à différents température.

Référence : ICSD (CoFe₂O₄) :98-010-9045

Référence : ICSD (CoFe₂O₄) :98-010-9045

Figure 3.28 : superposition des diffractogrammes des six échantillons calcinés à 900°C

De la superposition des spectres DRX nous remarquerons que pour les différents échantillons synthétisés s'avèrent une phase pure à 900°C sauf pour celui de l'agent de combustion fructose qui présente une phase secondaire de Fe_2O_3 .

Echantillons	La taille moyenne (600)	La taille moyenne (900)
CFO/Glycine	39,1	62,97
CFO/Acide citrique	33,16	66,83
CFO/Saccharose	36,1	95,25

Tableau 3.20 : comparaison de la taille moyenne

CFO/Amidon	27,55	52,91
CFO/Maltose	43,55	66,89
CFO/Fructose	38,43	65,94

L'augmentation de la température entraine une augmentation de la taille moyenne des cristallites.

IV.2 Analyse Morphologique MEB

Figure 3.29 : cliché MEB de la poudre de CFO calcinée à 900°C avec une échelle de 1µm et un grossissement de 25000

Nous remarquons sur ce cliché de MEB où le grossissement est à 25000 qu'il existe quelque amas de CFO en forme de rods mais majoritairement des blocs nanométriques.

Figure 3.30 : clichés MEB de la poudre de CFO calcinée à 900°C avec une échelle de 100 nm et un grossissement de 150.000

La figure ci-contre qu'est un cliché MEB de CFO calciné à 900 °C avec une échelle 100nm de et un grossissement de 150.000, montre l'existence d'amas nanométriques de notre matériau synthétisé par voie sol gel auto combustion.

Conclusion

Ce chapitre a fait l'objet des différentes étapes de la synthèse de la ferrite de cobalt avec six agents de combustion en vue de voir leurs effets sur la taille des nanoparticules de CoFe₂O₄, une série de caractérisation a été faite afin de déterminer la structuration de notre matériau ainsi que sa morphologie.

Conclusion générale

Conclusion générale

Conclusion

Nous avons pu élaborer la spinelle CoFe₂O₄ avec différents agents de combustion à savoir la glycine, l'acide citrique, le saccharose, l'amidon, le maltose et le fructose.

Nous avons essayé de cerner la température de calcination, on a trouvé que la glycine et l'acide citrique offre une formation d'aérogel de CoFe₂O₄ à température de 600°C avec une phase pure.

Les échantillons ayant comme agent de combustion : le saccharose, l'amidon, le maltose, leur phase unique se forme à 900°C.

Nous avons remarqué que le passage de 600 à 900°C lors de la calcination a fait doubler la taille des cristallites calculées par la méthode de Debye Scherrer.

Le MEB a révélé une distribution de taille des grains homogènes comprise entre 130 à 250nm de CFO.

Comme perspectives, nous envisageons de faire des analyses plus approfondies de par le gap optique, le magnétisme, la morphologie et l'exploration de la surface spécifique (BET) pour tous nos échantillons.

Faire des essaies de photo catalyse avec nos matériaux.

Nous n'avons pas pu obtenir les caractérisations DRX, MEB, FTIR, VSM de NFO, de ce fait nous n'avons pas pu faire une analyse comparative entre les deux séries de nanomatériaux.

Références bibliographiques :

[1] B. NOEMIE, MATERIAUX NANOMETRIQUES A BASE DE METAUX 3D (FE, CO, NI): NOUVELLES VOIES DE SYNTHESE ET CARACTERISATIONS UNIVERSITE PARIS-NORD-PARIS XIII. YERS2014.

[2]M.A.WILLARD, L.K. KURIHARA E.E. CARPENTER, S.CALVIN, V.G. HARRIS, INT. MATER. REV.49.125.YERS2004.

[3] W.Abchiche. Étude des proprietes structurales et microstructurales de ferrites spinelles Zn0.8M0.2Fe2O4 avec M (Zn, Ca,Sr et Cu) elaborees par la methode ceramique, Memoire de master, Universite MOHAMED SEDDIK BENYAHIA JIJEL. Yers2023.

[4] S.H XU, D.L. FENG, W.F. SHANGGUAN, J. PHYS. CHEM. C113.2463. YERS2009.

[5]S. BENRAMACHE, THESE DE DOCTORAT, UNIVERSITE MOHAMED KHIDERBISKRA.yers2012.

[6] A.OUICHAIMA. SYNTHESE DES PINELLE ZN(1-X) CUXCO2O4 PAR LA METHODE SOL GEL POUR UN MATERIAU CATHODE DANS LES PILES A COMBUSTIBLE . UNIVERSITE MOHAMED KHIDER DE BISKRA, 2021.

[7]N. DJIHANE .M. R. YAKOUBI.EFFET DE DOPAGE DANS LA SYNTHESE DES COMPOSES POUR PILE A COMBUSTIBLE CARACTERISE PAR DIFFRACTION DES RAYONS X, MICROSCOPE ELECTRONIQUE A BALAYAGE (MEB) ET EDAX. PHD THESIS, UNIVERSITE DE JIJEL. YERS2021.

[8]Z.Q.Z. YAN, SPINELS CONTROLLED PREPARATION, APPLICATION DE LA REACTION DE REDUCTION/EVOLUTION DE L'OXYGENE ET AU-DELA, ANALYSES CHIMIQUES. 117(15): 10121-10211. YERS2017.

[9]MOSKOWITZ,HITCHHIKER'SGUIDETOMAGNETISM,HTTP://WWW.GEO.UMN.EDU/O RGS/IRM/HG2M/HG2M_INDEX.HTML, FEBRUARY 2004 2.1.1.5 ANTIFERROMAGNETISM.YERS1991.

[10]O.NEILL, A. NAVROSTSKY, SPINEL, GEMS. GEMOLOGY.GEM TRADE LAB. NOTES, FALL, PP.226-227 C SIMPLE SPINELS AMERICAN MINERALOGIST, VOL 68, PP 181-194. YERS1990. [11] Z. ZHOU, Y. ZHANG, Z. WANG, W. WEI, W. TANG, J. SHI AND R. XIONG, APPLIED SURFACE SCIENCE, 254.6972-6975.YERS2008.

[12]S. CAPDEVILLE. COUCHES MINCES DE FERRITES SPINELLE A PROPRIETES SEMI CONDUCTRICES DESTINEES A LA REALISATION DE MICTOBOLOMETRES, THESE DE DOCTORAT, UNIVERSITE DE TOULOUSE 3 FRANCE. YERS2005.

[13] R.ZEDJADJ, SYNTHESE ET CARACTERISATION STRUCTURAL ET ELECTRONIQUE D'UNE STRUCTURE SPINELLE, MEMOIRE DE MASTER, UNIVERSITE MOHAMMED SEDDIK BEN YAHIA – JIJEL .YERS2018.

[14] SITE-SENSITIVE X-RAY PHOTOELECTRON SPECTROSCOPY OF FE3O4 BY PHOTOELECTRON DIFFRACTION. DOI-10.1002/SIA.6568.

[15] B.ABDELKEBIR, LA STRUCTURE CRISTALLINE ET LES PROPRIETES ELECTRONIQUES DES COMPOSES A BASE DE LITHIUM, MEMOIRE DE MASTER, UNIVERSITE MOHAMED BOUDIAF – M'SILA .YERS2020.

[16] S.IAICHE, ETUDE DES COUCHES MINCES ZNAL2O4, CORRELATION ELABORATIONPROPRIETES ET APPLICATION, THESE DE DOCTORAT, UNIVERSITE LARBI BEN M'HIDI – OUM EL BOUAGHI. YERS2016.

[17] K.SAKER, MEMOIRE DE MASTER, UNIVERSITE MOHAMED KHIDER DE BISKRA. YERS2021.

[18] E.By Rolf . H, Electronic Properties of Materials, Springer 2012. Band Theory and Electronic Properties of Solids, by John Singleton, Oxford University Press. yers2001.

[19] K. M.M.ANSARI, S.A.PRADHAN, D. J. SPINELLES SYNTHETISEE, PROPRIETES ET APPLICATIONS. NANOMATERIAUX POUR LA CONVERSION D'ENERGIE (PP. 107-139). SPRINGER, CHAM

. HTTPS://DOI.ORG/10.1007/978-3-319-52244-3_4.yers2017.

[20] L. NEEL. PROPRIETES MAGNETIQUES DES FERRITES, FERRIMAGNETISME ET ANTIFERROMAGNETISME, PHYS 3, 137, M. S. ED.MAGNETIC SPINELS - SYNTHESIS, PROPERTIES ET APPLICATIONS.'' INTECH. ISBN 978-953-51-2974-5. YERS2017.

[21]STUDYSMARTER FR HTTPS://WWW.STUDYSMARTER.FR> PHYSIQUE-CHIMIE > CHIMIE.CATALYSEUR
[22] M. BOUGHABA, W. ABCHICHE ET L. E. AMIROUCHE, ETUDE DES PROPRIETES STRUCTURALES ET MICROSTRUCTURALES DE FERRITES SPINELLES ZNO. 8MO. 2FE2O4 AVEC M (ZN, CA, SR ET CU) ELABOREES PAR LA METHODE CERAMIQUE, VOL. UNIVERSITE DE JIJEL.YERS 2023.

[23] MICHEL DEQUATREMARE ET THIERRY DEVERS. PRECIS DES MATERIAUX-DE LA CONCEPTION AUXCONTROLES. DUNOD.YERS2012.

[24] A. BRITEL. COURS DE CRISTALLOGRAPHIE.YERS 2018.

[25] K. SCHMETZER, E. GUBELIN, ALEXANDRITE-LIKE SPINEL FROM SRI LANKA, NEUES JAHRBUCH FUR MINERALOGIE, ABHANDLUNGEN, VOL 9, PP.428-432. YERS1980.

[26] M. BOUGHABA, W. ABCHICHE AND L. E. AMIROUCHE IN ÉTUDE DES PROPRIETES STRUCTURALES ET MICROSTRUCTURALES DE FERRITES SPINELLES ZNO.
8M0. 2FE2O4 AVEC M (ZN, CA, SR ET CU) ELABOREES PAR LA METHODE CERAMIQUE, VOL. UNIVERSITE DE JIJEL, 2023.

[27] Z. ZHOU, Y. ZHANG, Z. WANG, W. WEI, W. TANG, J. SHI AND R. XIONG, APPLIED SURFACE SCIENCE 2008, 254, 6972-6975.

[28] CH. ABDELLAOUI, SYNTHESE DE SPINELLE ZN (1-X) CUXCO2O4 PAR LA METHODE SOL-GEL POUR UN MATERIAU CATHODE DANS LES PILES A COMBUSTIBLE JURY. UNIVERSITE MOHAMED KHIDER DE BISKRA 2021.

[29] C. CHAUFFETON IN ÉTUDE ET PROSPECTION PHYSICOCHIMIQUE D'UN PIGMENT HISTORIQUE DE LA MANUFACTURE NATIONALE DE SEVRES: LE BLEU THENARD, VOL. UNIVERSITE PARIS SCIENCES ET LETTRES, 2021.

[30] A. KAOULA AND N. BOUCHEKIROU IN ELABORATION, CARACTERISATION ET ETUDE DES PROPRIETES ELECTROCHIMIQUES DE MATERIAUX COMPOSITES SPINELLE-NICKELATES DE LANTHANE, VOL. UNIVERSITE DE JIJEL, 2022.

[31] D. TECHNIQUE, RESCOLL CENTRE TECHNOLOGIQUE 2004.

[32] W. TIBERMACINE IN ETUDE STRUCTURALE ET PROPRIETES DES OXYDES DE STRUCTURE SPINELLE NI1-X F EX AL2O4, VOL. UNIVERSITE MOHAMED KHIDER DE BISKRA, 2019.

[33] J. RICHARD IN DEVELOPPEMENT D'ACCUMULATEUR NOUVELLE GENERATION MG ION, VOL. UNIVERSITE GRENOBLE ALPES (COMUE), 2017. [34] C. MAZOUZ IN CARACTERISATIONS CRISTALLOGRAPHIQUES, OPTIQUES ET ELECTRIQUES DE PHASES DE TYPE SPINELLE, VOL. UNIVERSITE IBN KHALDOUN, 2023.

[35] A. RIDOUARD IN CARACTERISATION DE NOUVELLES CERAMIQUES TRANSPARENTES ET VERRES NANOSTRUCTURES PAR SPECTROSCOPIE RMN HAUTE RESOLUTION DU SOLIDE, VOL. UNIVERSITE D'ORLEANS, 2023.

[36]CRDP-AQUITAINE.FR/STL/LEXIQUE/MEB-MICROSCOPE-ELECTRONIQUE-A-BALAYAGE.

[37] B. ZOULIKHA IN AFFINEMENT STRUCTURALE DES COMPOSES TYPE AB PAR LA METHODE DE RIETVELD,VOL. FACULTE DES SCIENCES ET TECHNOLOGIES.YERS2021.

[38] D. LOUËR. R. COUPE. A. LE BAIL, JOURNAL DE CRISTALLOGRAPHIE APPLIQUEE, 17, 131-133. YERS1984.

Résume

Ce travail est relatif à la synthèse et la caractérisation de type spinelle ferrite de cobalt avec déférents agents de combustion.

Nous avons synthétisée le $CoFe_2O_4$ par voie de auto combustion sol-gel avec six agents de combustion (glycine, acide citrique, saccharose, amidon, maltose, fructose) avec déférents température, ensuit nous avons caractérisé ce matériau par deux technique de caractérisation DRX et MEB.

La diffraction des rayons X a confirmé à une phase pure et les six composés cristallisent dans le système cubique avec un groupe d'espace Fd-3m.

La microscopie à balayage (MEB) qu'il existe quelque amas de $CoFe_2O_4$ en forme des blocs nanométrique.

ملخص

تطرقنا في هذا العمل، بإعداد عينات من أكاسيد السبينل المختلطة مع ستة عوامل احتراق (الجليسين وحمض الستريك والسكروز والنشا والمالتوز والفركتوز) باستخدام الطريقة محلول احتراق ذاتي، وخضعت العينات لمعاملة حرارية، مختلفة آخر ها كانت عند 900 درجة مئوية، وقد أجري الوصف بالعدد من التقنيات بما في ذلك DRX و MEB أن المركبات الستة تتبلور في النظام كشفت لنا النتائج التي تم الحصول عليها بواسطة حيود الأشعة السبنية DRX والتي تتوافق جدا مع الأعمال سابقا العينات بواسطة طريقة ديبيشرير ، و أظهر m-Fd3 المكعب مع مجموعة فضائية الفحص المجهري الإلكتروني بالماسح الضوئي أن هناك الحبيبات من على شكل كتل نانومتريه

Abstract

This work concerns the synthesis and characterization of spinel-type cobalt ferrite with different combustion agents.

We synthesized CoFe2O4 by sol-gel self-combustion with six combustion agents (glycine, citric acid, sucrose, starch, maltose, and fructose) at different temperatures, and then characterized the material using two characterization techniques: XRD and SEM.

X-ray diffraction confirmed a pure phase and all six compounds crystallized in the cubic system with a space group of Fd-3m.

Scanning electron microscopy (SEM) revealed that some CoFe2O4 clusters exist in the form of nonmetric blocks.