
Charles Kittel

2º CYCLE • ÉCOLES D'INGÉNIEURS

Physique de l'état solide

7° édition

DUNOD

SOMMAIRE

Guide des principaux tableaux	XI
Quelques références de base	XIII
×1. Structure cristalline	1
X 2. Réseau réciproque	25
3. Liaison cristalline et constantes élastiques	51
4. Phonons I. Vibrations du réseau	91
5. Phonons II. Propriétés thermiques	107
6. Gaz des électrons libres de Fermi	131
7. Bandes d'énergie	159
8. Cristaux semi-conducteurs	179
9. Surfaces de Fermi et métaux	213
10. Plasmons, polaritons et polarons	245
11. Processus optiques et excitons	277
12. Supraconductivité	303
13. Diélectriques et ferroélectriques	341
14. Diamagnétisme et paramagnétisme	373
15. Ferromagnétisme et antiferromagnétisme	397
16. Résonance magnétique et masers	435
17. Solides non cristallins	463
18. Défauts ponctuels	479
19. Physique des surfaces et des interfaces	491
20. Dislocations	521
21. Alliages	543
Appendices	
A. Influence de la température sur les raies de diffraction	563
B. Méthode d'Ewald de sommations dans un réseau	566
C. Quantification des ondes élastiques : phonons	570
D. Fonction de distribution de Fermi-Dirac	575
E. Démonstration de l'équation en d <i>k</i> =d <i>t</i>	578
F. Équation de transport de Boltzmann	580
G. Potentiel-vecteur, moment cinétique du champ et transformation de jauge	585
H. Paires de Cooper	589
I. Équation de Landau-Ginzburg	591
J. Collisions électron-phonon	595
Tableau des éléments	599
Tableau périodique des éléments	600
Tableau des constantes physiques	601
Tableau des préfixes du système SI	602
Index	603

SCIENCES SUP

Charles Kittel

PHYSIQUE DE L'ÉTAT SOLIDE

7e édition

Ce manuel de référence est destiné aux étudiants des 2e et 3e cycles universitaires ainsi qu'aux élèves-ingénieurs. La physique de l'état solide décrit des propriétés qui résultent de la distribution des électrons dans les métaux, les semi-conducteurs et les isolants. Des modèles simples, dont la puissance et la portée sont désormais solidement établies, expliquent comment les excitations et les imperfections des solides réels peuvent être comprises. Le sujet est tout à fait propice à l'interaction entre expérience, application et théorie.

Cette 7° édition dont le niveau théorique n'a pas changé, comporte de nouveaux thèmes tels que les nanostructures, les super-réseaux, les niveaux de Bloch/Wannier, l'effet tunnel Zener, les diodes électroluminescentes et les nouveaux matériaux magnétiques.

Certaines avancées significatives ont été ajoutées ou discutées de façon plus approfondie notamment dans le domaine des supraconducteurs à haute température, de la microscopie électronique à balayage et des fibres optiques. La partie consacrée aux ondes et constantes élastiques a été réintégrée à la demande de nombreux lecteurs.

Avec ses nombreux problèmes, ses résumés, ses bibliographies, ses appendices, ses quelque 600 figures, ce manuel de référence contitue un remarquable outil de travail pour les étudiants.

CHARLES KITTEL

Professeur émérite à l'Université de Berkeley. Membre de l'Académie des sciences des États-Unis et de l'Académie américaine des arts et des sciences.

MATHÉMATIQUES

PHYSIQUE

CHIMIE

PHYSIQUE APPLIQUÉE

INFORMATIQUE

SCIENCES DE LA NATURE ET DE LA VIE

ISBN 2 10 003267 4 Code 043267