ROYAL STATISTICAL SOCIETY LECTURE NOTE SERIES • 4

Stochastic Networks Theory and Applications

Edited by
F. P. KELLY
S. ZACHARY
and I. ZIEDINS

OXFORD SCIENCE PUBLICATIONS

	Lain Much hee good Has Stedens and Lain Much hees and Lain Much	xi
Lis	t of contributors	
1	Convergence to equilibria for fluid models of certain FIFO and processor sharing queueing networks Maury Bramson	1 1
2	Optimal draining of fluid re-entrant lines: some solved examples Gideon Weiss	19
3	On the approximation of queueing networks in heavy traffic R. J. Williams	35
4	The BIGSTEP approach to flow management in stochastic processing networks J. Michael Harrison	57
5	Queue lengths and departures at single-server resources Neil O'Connell	91
6	Brownian motions Kurt Majewski	105
7	Limit theorems for workload input models Thomas G. Kurtz	
8	Frank Kelly	
g	Traffic characterisation and effective bandwidths for broadband network traces R. J. Gibbens	169
1	10 Nonparametric estimation for quantities of interest in queues Sugar M. Pitts	181

11	The asymptotic behaviour of large loss networks Stan Zachary	
12	Admission controls for loss networks with diverse routing Iain MacPhee and Ilze Ziedins	205
	On load balancing in Erlang networks Murat Alanyali and Bruce Hajek	215
14	Analysing system behaviour on different time scales Suzanne P. Evans	231
15	1 1 to the bounds for	247
16	with breakdowns and repairs Ram Chakka and Isi Mitrani	267
17 10	Stationary ergodic Jackson networks: results and counter-examples François Baccelli, Serguei Foss, and Jean Mairesse	281
18	·/GI/1 queueing tandems T. Mountford and B. Prabhakar	309
19	The Poisson-independence hypothesis for infinitely-growing fully-connected packet-switching networks Yu. M. Suhov and D. M. Rose	323
20	A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks Walter Willinger, Murad S. Taqqu, and Ashok Erramilli	339

Contributors

Murat Alanyali University of Illinois, Urbana Champaign alanyali@manti.csl.uiuc.edu

François Baccelli INRIA Sophia-Antipolis francois.baccelli@sophia.inria.fr

Maury Bramson University of Wisconsin, Madison bramson@math.wisc.edu

Ram Chakka Imperial College, London rsc@doc.ic.ac.uk

Ashok Erramilli Bellcore ashok@bellcore.com

Suzanne P. Evans Birkbeck College, London s.evans@statistics.bbk.ac.uk

Serguei Foss Novosibirsk State University foss@math.nsk.su

Renate Garbe
University of Newcastle
renate.garbe@newcastle.ac.uk

Richard Gibbens
University of Cambridge
r.j.gibbens@statslab.cam.ac.uk

Kevin Glazebrook
University of Newcastle
kevin.glazebrook@newcastle.ac.uk

Bruce Hajek University of Illinois, Urbana Champaign hajek@shannon.csl.uiuc.edu

J. Michael Harrison Stanford University fharrison@gsb-lira.stanford.edu

Frank Kelly University of Cambridge f.p.kelly@statslab.cam.ac.uk

Thomas G. Kurtz University of Wisconsin, Madison kurtz@math.wisc.edu

Iain MacPhee University of Durham i.m.macphee@durham.ac.uk

Jean Mairesse BRIMS, HP Laboratories, Bristol jem@hplb.hpl.hp.com Royal Statistical Society Lecture Note Series

Series Editors: Raymond J. Carroll, John B. Copas, David J. Hand, and Richard L. Smith

As well as publishing original work, the RSS Lecture Note Series will introduce recent developments in statistical methodology or new application areas to a wider audience, and promote sound statistical practice among users of statistical methods. The scope of the series is intended to include the areas of statistics currently covered by the Society's journals, such as official statistics, medical and social statistics, industrial statistics, statistical computation, and theoretical statistics with a clear methodological bearing.

Stochastic networks: theory and applications Edited by F. P. Kelly, S. Zachary, and I. Ziedins

The theory of stochastic networks is a significant and rapidly developing research area, driven in part by important industrial applications in the design and control of modern communications and manufacturing networks. This volume is a collection of invited papers written by some of the leading researchers in this field, and provides a comprehensive survey of current research and the very latest developments.

The areas covered include: the mathematical modelling and the optimal control of queuing and loss networks; the use of large deviations theory and effective bandwidth concepts in analysis and control; the statistical modelling and analysis of network data.

The book also contains a comprehensive and up-to-date bibliography of the statistical literature on long-range dependence and self-similarity in network traffic and other scientific and engineering applications.

