INTRODUCTION TO MATERIAL AND ENERGY BALANCES ## CONTENTS | CHAPTER 1 INTRODUCTION | 1 | |---|----------------------| | 1.1 THE ROLE OF THE CHEMICAL ENGINEER | 1 | | 1.2 THE ROLE OF BALANCE CALCULATIONS | 7 | | 1.3 REVIEW OF BASIC CONCEPTS | 11 | | 1.3.1 The Conservation Principles 1.3.2 Chemical Stoichiometry 1.3.3 Equation-Solving Concepts 1.3.4 Dimensional Quantities and Their Manipulation | 12
14
18
24 | | 1.4 PREVIEW OF SUBSEQUENT CHAPTERS | 31 | | CHAPTER 2 MATERIAL BALANCES IN NONREACTING SYSTEMS | 33 | | 2.1 FORMULATING THE MATERIAL BALANCE PROBLEM | 33 | | 2.1.1 Material Balance Variables 2.1.2 Material Balance Equations and Their Properties 2.1.3 Material Balance Information | 34
37
42 | | 2.2 ANALYSIS OF THE MATERIAL BALANCE PROBLEM | 49 | | 2.2.1 The Degree of Freedom2.2.2 Solution Strategy | 50
56 | | 2.3 SYSTEMS INVOLVING MULTIPLE UNITS | 60 | | 2.3.1 Independent Sets of Balance Equations 2.3.2 Degree-of-Freedom Analysis 2.3.3 Special Multiunit Configurations 2.3.4 Strategy of Solution | 60
65
69
77 | | 2.4 SUMMARY | 85 | | CHAPTER 3 SPECIES BALANCES IN REACTING SYSTEMS | 106 | | 3.1 SPECIES BALANCES WITH A SINGLE CHEMICAL REACTION | 107 | | 3.1.1 The Rate of Reaction Concept 3.1.2 The Limiting Reactant and Conversion 3.1.3 Degree-of-Freedom Analysis | 109
112
114 | **xii** Contents | 3.2 | SPECIES BALANCES WITH MULTIPLE CHEMICAL REACTIONS | 124 | |-------------------|---|-------------------| | 3.2 | | 126 | | | 2.3 Degree-of-Freedom Analysis | 137 | | 3.3 | THE ALGEBRA OF MULTIPLE CHEMICAL REACTIONS | 149 | | 3.3
3.3
3.3 | 3.2 Determination of Linear Independence | 150
154
161 | | 3.4 | SUMMARY | 164 | | CHAD | PTER 4 ELEMENT BALANCES | 407 | | | | 187 | | 4.1 | THE ELEMENT BALANCE EQUATIONS | 188 | | 4.1
4.1
4.1 | | 190
196
200 | | 4.2 | THE RELATIONSHIP BETWEEN ELEMENT AND SPECIES BALANCES | 209 | | 4.2 | 2.1 Nonreacting Systems 2.2 Reacting Systems 2.3 The Maximum Number of Independent Reactions | 210
213
218 | | 4.3 | APPLICATIONS INVOLVING CHEMICAL PROCESSING OF FOSSIL FUELS | 220 | | 4.3 | Fossil Fuels and Their Constituents Characterization of Fossil Fuels Major Types of Chemical Processing Operations for Fossil Fuels | 220
222
224 | | 4.4 | CONVERSION OF ELEMENT BALANCES TO SPECIES BALANCES | 236 | | 4.4
4.4
4.4 | .2 Construction of a Set of Independent Reactions | 237
240
245 | | 4.5 | SUMMARY | 251 | | CHAP | PTER 5 MATERIAL BALANCES IN PROCESS | | | | SHEETS | 264 | | 5.1 | STRATEGY FOR MANUAL COMPUTATIONS | 264 | | 5.1
5.1
5.1 | 1 0 1 | 265
267
277 |