
DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA
UNIVERSITY OF SAAD DAHLEB BLIDA 1

Faculty of Science
Department of Computer Science

Thesis
Presented for obtaining the Master’s degree

In computer science
Option: Computer Systems and Networks

Realised by:

Feddamadji Baya & Amaouche Lina

Proprietary location system based
on cell phone tower signals and

located devices.

Graduated on Tuesday 02/07/2024, In front of the jury composed of:

Dr. Rezzoug USDB President

Dr. Gabghoub USDB Examiner

Dr. Mohamed Benyahya USDB Supervisor

Dr. Allal Tiberkak UYFM Supervisor

2023/2024



Acknowledgements

We begin by thanking Allah, the merciful and compassionate, for blessing us with
the patience to complete this work.

We express our profound gratitude to our supervisors, Dr. Allal Tiberkak and Dr.
Benyahia Mohamed, for their invaluable guidance and continuous support. Their patience
and assistance have been essential in developing our ideas and organizing our thesis, and
their constructive advice has greatly enhanced the writing process.

We would like to thank the members of the jury for their attentive reading of our
thesis and for their valuable remarks that will help us improve our work.

We also appreciate the support of the Department of Computer Science at Saad Dahleb
University, Blida 1, throughout this program.

Lastly, we wish to thank our families our parents, sisters, brothers, and all our relatives
and friend for their unwavering support and encouragement during this journey.

ii



Dedication

I dedicate this work to my beloved parents, whose unconditional love, sacrifices, and
unwavering belief in me have been my greatest source of strength and inspiration. To
my dear sister Meriem and my brothers Othmane, Islem, and Ali, thank you for your
encouragement that has been my source of strength in every difficulty.

A special dedication goes to my wonderful friends Bayane, Narimane, Sirine, Ilhem,
Asma Bersali, Yasmina, and Abir. Your friendship and moral support have been essential
in overcoming the challenges I faced.

I extend my heartfelt gratitude to all my other friends and loved ones who have
supported me throughout this journey. Your help, encouragement, and presence have
been precious to me. Thank you all for making this achievement possible.

Baya Feddamadji

iii



Abstract

In today’s world, the demand for reliable and efficient localization systems has become
more important. Traditional systems like GPS often fall short in complex environments
such as buildings or conflict zones, where reliable positioning can be challenging. This
limitation highlights the need for precise, cost-effective localization solutions that can
function seamlessly in various scenarios. To address this gap, we propose a proprietary
indoor positioning system based on cell phone tower signals and located devices, offering
an alternative that is both reliable and accessible.

Our system uses machine learning and deep learning techniques to process data col-
lected from various mobile devices. By analyzing signals from cellular towers, it can
accurately predict the location of users. This method enhances location accuracy in dif-
ferent environments while providing an alternative to traditional GPS systems. Our work
addresses the growing demand for reliable location solutions.

Keywords:
localization systems, indoor positioning, machine learning, deep learning, cellular.
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Résumé

Dans le monde d’aujourd’hui, la demande pour des systèmes de localisation fiables
et efficaces est devenue de plus en plus importante. Les systèmes traditionnels comme le
GPS montrent souvent leurs limites dans des environnements complexes tels que les bâti-
ments ou les zones de conflit, où il peut être difficile d’obtenir une position fiable. Cette
limitation met en évidence la nécessité de solutions de localisation précises et économiques,
capables de fonctionner de manière fluide dans divers scénarios. Pour répondre à ce be-
soin, nous proposons un système de positionnement en intérieur propriétaire basé sur les
signaux des tours de téléphonie mobile et des dispositifs localisés, offrant une alternative
à la fois fiable et accessible.

Notre système utilise des techniques d’apprentissage automatique et d’apprentissage
profond pour traiter les données collectées à partir de divers appareils mobiles. En
analysant les signaux des tours cellulaires, il peut prédire avec précision la position des
utilisateurs. Cette méthode améliore la précision de la localisation dans différents envi-
ronnements tout en offrant une alternative aux systèmes GPS traditionnels. Notre travail
répond à la demande croissante de solutions de localisation fiables.

Mots clés:
systèmes de localisation, positionnement en intérieur, apprentissage automatique, appren-
tissage profond, cellulaire.
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الملخص
اܳٺگܹ٭ڎل۰ اَޙ۰݄ ّޙ۳ݠ ؇݁ ༚؇ܳٴً؇ أᆇᆅ٭۰. ଫأ܋ ᄭᄟ؇واܳڰأ اৎިٔިڢ۰ اৎިاڢؕ ොູڎࢴࣖ أَޙ۰݄ ሌᇿإ ۰༥؇اࠍ أݬٴۜب اܳ٭ިم، ቕረ؇༟ ሒᇭ
݆݁ لܝިن ڢڎ ۋ٭ت اܳاع، ݁ٷ؇ޗݑ أو ሒᇃ؇ٴৎا ݁ټܭ اৎأگڎة اܳٴ٪؇ت ሒᇭ ༡ڎود۱؇ (GPS) اܳأ؇ৎ اৎިاڢؕ ොູڎࢴࣖ َޙ؇م ݁ټܭ
اܳأ݄ܭ আॻ༟ ڢ؇درة واڢٺݱ؇دل۰ دڢ٭گ۰ ݁ިاڢؕ ොູڎࢴࣖ ༡ߺࠊل ሌᇿإ ۰༥؇اࠍ ا௱௯௫ڎودل۰ ۱ڍه ଫଊّز ݁ިٔިق. ݁ިڢؕ আॻ༟ اࠍݱިل اܳݱأص
اୖިاّژ أߓߵاج إނ؇رات আॻ༟ ቕሶ؇اܳگ ঌॻ༠اᄴᄟا اৎިاڢؕ ොູڎࢴࣖ َޙ؇م َگଫଐح ،۰༥؇اࠍ ୖڍه ً ۰ً؇༶اݿٺ ݁ٺأڎدة. ل۱ި؇ت ݿٷ؇ر ሒᇭ ఈః૭ݿ۰

ܳߺࠊݬިل. ఈًఃً؇وڢ ݁ިٔިڢً؇ ً ఈఃࢻࣖل لިڣݠ ؇ᆙᆘ ا௱௯௫ڎدة، واۏ۳ݞة ᄭᄟި݄௱௯௫ا

݆݁ .ᄭᄟި݄௱௯௫ا اۏ۳ݞة ෛٺܹژ ݆݁ ᆇᅹأ۳؇ لࡤࡲ มฆܳا اܳٴ٭؇َ؇ت ۰أ؇ࠍৎ اܳأ݄٭ݑ واܳٺأ ሒᇿا اܳٺأ ّگٷ٭؇ت َޙ؇݁ٷ؇ ૭ٺ༱ڎم
ොູڎࢴࣖ دڢ۰ ඔ൹ފොູ আॻ༟ لگ۰ اܳޚݠ ۱ڍه ّأ݄ܭ .ඔ൹݁ڎ༱ފٺৎا ஓިڢؕ ࢻࣖڢ۰ اܳٺྡྷٴޝ ஓ୷ܝٷ۬ ل۰، اࠍߺࠊ اߓߵاج إނ؇رات ොູܹ٭ܭ ఈః༠ل
ොູڎࢴࣖ ༡ߺࠊل আॻ༟ اଐৎاࢴࣖ اܳޚܹص ّܹٴ٭۰ ሒᇭ ᆇᅦܹٷ؇ ܾ۱؇૭ .GPS ݁ټܭ اܳٺگܹ٭ڎل۰ ఋዳዧَޙ۰݄ ً ఈఃࢻࣖل ّگڎم ྲྀٷ݄؇ ෛٺܹڰ۰ ྲྀ٪؇ت ሒᇭ اৎިاڢؕ

اৎިٔިڢ۰. اৎިاڢؕ

اिऻءոؼמ١: اڤոஈت
ل۰. اࠍߺࠊ اߓߵاج إނ؇رات اܳأ݄٭ݑ، اܳٺأ ،ሒᇿا اܳٺأ ،ঌॻ༠اᄴᄟا اৎިاڢؕ ොູڎࢴࣖ اৎިاڢؕ، ොູڎࢴࣖ أَޙ۰݄
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General Introduction

In today’s world, location-based services (LBS) have become an integral part of daily
life, with applications ranging from navigation and transportation to social media and
emergency response. The dominant technology used for most of these services is the
Global Positioning System (GPS), which, while effective, presents several significant limi-
tations. GPS relies heavily on satellite signals, which can be obstructed by environmental
factors such as tall buildings or inclement weather, leading to degraded accuracy, signal
loss, or delays. Moreover, GPS systems consume a lot of energy, which presents challenges
for devices that require prolonged usage, such as smartphones or IoT (Internet of Things)
devices.

These challenges highlight the need for alternative localization technologies that can
provide more reliable, accurate, and energy-efficient solutions. One promising alternative
is the use of cellular networks, which leverage cell phone towers to estimate the location of
a device. Unlike GPS, cell-based location systems can function in various environments,
including indoors or in urban areas, where GPS typically struggles. Furthermore, cellu-
lar systems offer lower energy consumption, making them more suitable for applications
requiring continuous location tracking over extended periods.

The proposed system aims to offer a new approach to location determination by relying
on cellular network data and connected devices, without using GPS. This method could
provide solutions better suited to localization needs in various environments, such as
urban areas or indoor spaces. The goal is to create a reliable system that is capable
of functioning effectively in different situations, particularly where existing technologies
like GPS face challenges. This system could thus open new opportunities in many fields,
including navigation, transportation management, and emergency services.

Problematic

The limitations of the Global Positioning System (GPS) in urban and challenging en-
vironments underscore the necessity for alternative localization solutions. While GPS has
revolutionized location-based services (LBS), its susceptibility to signal obstruction and
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high energy consumption presents significant challenges, particularly for mobile devices
requiring prolonged use. This raises a critical question:

What alternative methods can be developed to enhance location accuracy
and reliability in situations where GPS falls short?

This inquiry leads us to explore the potential of a proprietary system based on cellular
networks and localized devices. By utilizing the signals from existing cell towers, can
we create a solution that provides accurate and efficient location tracking without the
limitations of GPS? Addressing these questions will be vital for advancing location-based
technologies and ensuring dependable services in diverse environments.

Overall Objective

The overall objective of this research is to create a reliable location determination
system that uses cellular networks. This system aims to provide accurate and efficient
location tracking as an alternative to GPS, making location-based services more effective
in various applications.

Thesis Organization

To achieve our stated objectives, we have organized our thesis as follows:

• Chapter 1: State of the Art about Location Services

In this chapter, we present the fundamental concepts related to location services.
We begin by discussing localization systems technologies and localization techniques.
Specifically, we detail the workings of cellular towers-based indoor and outdoor local-
ization systems. Additionally, we conduct a comparative analysis of these systems,
highlighting their advantages and disadvantages.

• Chapter 2: Machine Learning and Deep Learning

This chapter presents the principles of artificial intelligence, machine learning, and
deep learning, along with the algorithms used in our work. We explain the function-
ing of these algorithms and their relevance to the development of our system.

• Chapter 3: Proposed Proprietary Location System

Here, we present the architecture of our proposed proprietary location system. We
outline the design choices made during development and provide detailed descrip-
tions of the components involved. This chapter aims to illustrate how our system
integrates the previously discussed technologies and techniques to achieve effective
localization.
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• Chapter 4: Implementation and Results

In this chapter, we present the hardware and software resources used for the imple-
mentation of our proposed system, as well as the results obtained.

• Conclusion

In the conclusion, we summarize the entire process and share our reflections on
the results obtained, as well as the perspectives related to the continuation and
improvement of our work.

3



Chapter 1

State of the art about location
Services

1.1 Introduction

Location services play a crucial role in various fields such as navigation, shipment
tracking, and emergency response. However, GPS, despite its widespread use, suffers
from accuracy and reliability issues in urban environments or under adverse weather
conditions. This chapter explores localization technologies and techniques, focusing on
cellular network-based systems for precise indoor and outdoor localization without relying
on GPS. We examined several cellular localization systems, detailing their architecture
and operation. Finally, we conducted a thorough comparison of these systems to evaluate
their performance and determine the most effective solutions for different contexts.

1.2 Localization systems technologies:

Localization system technologies are essential for accurately determining the position
of objects and individuals in various environments. These systems encompass a wide range
of technologies, including satellite-based navigation, inertial measurement units, magnetic
field navigation, and sound-based technologies. Additionally, other innovative technolo-
gies play a significant role in localization. This section delves into the key technologies
used in localization systems, examining their principles, strengths, and applications to
provide a comprehensive understanding of how these systems operate.

1.2.1 Satellite Based Navigation:

The global positioning system (GPS) is the most popular system for outdoor local-
ization. However, it requires a line-of-sight (LOS) between the satellites and the handset,
making it inefficient for indoor location-based services due to building external walls. GPS
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can be utilized by employing a steerable, high-gain directional antenna as the front-end
of a GPS receiver. In areas where GPS signals cannot reach, pseudolites (pseudo satel-
lites) are used as independent localization systems. These systems consist of pseudolites,
transmission and receiver antennas, target receivers, and reference points. The central
concept is to receive the GPS signal and retransmit it through indoor transmitters [1].

1.2.2 Inertial Navigation System:

The Inertial Navigation System (INS) uses inertial measuring units (IMU), like ac-
celerometers and gyroscopes, to determine an object’s position and movement with accu-
racy and energy efficiency. However, INS can be prone to errors, requiring sophisticated
filtering methods like the Kalman filter, and has high deployment costs. To improve lo-
calization, hybrid solutions have been proposed. One method combines WiFi routers and
iBeacons, as seen in the iBILL system, which integrates iBeacon localization and particle
filter localization (PFL) to reduce errors and computational load. iBILL outperforms
other systems like Magicol and dead reckoning (DR). Other hybrid approaches include
combining inertial sensor-based dead reckoning with acoustic localization, fused with a
Kalman filter, and Wi-Fi fingerprinting with inertial sensors. These hybrid methods
demonstrate better performance than individual techniques [1].

1.2.3 Magnetic Based Navigation:

Magnetic-based technology is used for low-frequency localization by employing at
least three reference magnetic stations that emit magnetic fields, which are received by
a sensor and used to estimate location through trilateration. This method is accurate
but sensitive to conductive and ferromagnetic materials. Typically, these systems rely
on disturbances in the Earth’s magnetic field caused by indoor ferromagnetic structures.
By recording the magnetic field at known locations, magnetic maps are created to infer
unknown locations, a technique known as magnetic fingerprinting. However, magnetic in-
terference and variability in measurements from different devices can lead to localization
errors. Hybrid techniques, combining magnetic sensors with inertial sensors or integrat-
ing cameras and magnetic fields with neural networks, have shown improved accuracy,
achieving precisions of 1-2.8 meters and over 91% accuracy at 1.34 meters [1].

1.2.4 Sound Based Technologies:

Sound waves travel at a lower speed than electromagnetic waves, which simplifies
time synchronization, a crucial aspect. Humans can hear sounds in a frequency range of
20 Hz to 20 kHz. Sound-based localization is divided into systems using ultrasonic waves
and acoustic navigation systems [1].
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1.2.4.1 Ultrasonic Based Navigation Systems:

The acoustic method is considered one of the earliest localization approaches, dating
back to the Stone Age. Today, ultrasound is used to enhance localization with mobile
devices. Ultrasonic localization is effective at short ranges due to its low power, minimal
penetration losses through walls, affordable components, and compatibility with handheld
devices. However, it faces challenges such as localization errors caused by surface reflec-
tions and synchronization issues between nodes. Ultrasonic systems also require complex
signal processing algorithms. Despite this, they handle low time synchronization better
than Ultra-Wideband (UWB) systems. A proposed method using flight time with a sin-
gle transceiver achieved a median localization error of 15 cm, although the positions of
ultrasonic nodes must be pre-determined for accuracy [1].

1.2.4.2 Acoustic Based Navigation Systems:

The technology uses built-in microphones in smartphones to capture sound from
a source and identify its location relative to a reference. This is cost-effective as all
smartphones have microphones and places like malls, airports, and hospitals have speakers
and microphones. The transmitted modulated acoustic signal contains information such
as a timestamp, which is used to estimate the time of flight (TOF) and determine the
target’s location using multilateration. To avoid disturbing people, the transmitted power
should be low, requiring sophisticated signal processing to detect the low-power signal [1].

1.2.5 Optical Based Navigation:

Although optical signals are part of the electromagnetic spectrum, the techniques and
challenges associated with them are distinct enough to warrant special attention. Two
technologies are presented: Infrared technology and Visible light technology [1].

1.2.5.1 Infrared Technology:

Infrared (IR) systems are used for Line of Sight (LOS) localization with sensors
like photodiodes, known for their simplicity and resistance to RF interference. However,
they are susceptible to light interference and are expensive. These systems consist of IR
emitters and sensors, identifying a target’s location via a unique IR signal. The Active
Badge is a commercial example. PIR sensors can detect heat changes emitted by living
beings with high accuracy but are sensitive to environmental changes [1].

1.2.5.2 Visible Light Communications:

Visible Light Communications (VLC) are effective in places sensitive to radio fre-
quencies, like hospitals, and offer higher accuracy than Wi-Fi. VLC uses LEDs, which
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are durable, resistant to humidity, energy-efficient, and cost-effective. LEDs can quickly
modulate light signals, transmitting coded light that sensors detect and compare with a
database to determine location. VLC localization can use photodiodes or image sensors,
with image sensors being more suitable for mobile devices. For precise localization, LEDs
and sensors must be in line of sight. Techniques like Angle of Arrival (AOA) and LIDAR
with inertial sensors further improve accuracy by providing detailed location information
and detecting obstacles [1].

1.2.6 Radio Frequency Based Navigation:

Radio Frequency (RF) based systems are the most commonly used for localization
as they cover a wide area with low-cost hardware and can penetrate materials like walls
and human bodies, providing better results than infrared or ultrasonic systems. How-
ever, they should be avoided in hospitals and planes to prevent interference. Wireless
technologies for indoor localization are categorized by the radio frequency used, affecting
coverage, wall penetration, and obstacle resistance. Wireless Sensor Networks (WSN) are
essential for applications such as indoor fire control, smart homes, and rescue missions,
and localization within a WSN is crucial for measurement relevance. Localization systems
can be centralized or distributed. RF-based navigation systems include WiFi, Bluetooth,
Zigbee, Ultra-Wideband (UWB), and Radio Frequency Identification (RFID) [1].

1.2.6.1 Frequency Modulation Technology:

Frequency Modulation (FM) broadcasting, operating at 88–108 MHz, can be used
for localization in both outdoor and indoor environments. FM signals, due to their lower
frequency, are less affected by weather and terrain, penetrate walls easily, and consume
less power compared to cellular networks and Wi-Fi. For indoor localization, Received
Signal Strength (RSS) is used with the fingerprinting technique. Among various machine
learning methods, k-nearest neighbor (kNN) showed the best performance. FM is most
effective in small spaces like rooms, while Wi-Fi performs better in larger areas like floors
[1].

1.2.6.2 Cellular Based Technology:

Cellular networks, operating on various frequency bands (0.9 GHz, 1.8 GHz, 2.8 GHz),
offer better coverage than Wi-Fi and require no additional infrastructure. Localization
methods include proximity within cell coverage, RSS fingerprinting, and TOA trilatera-
tion. RSS fingerprinting in cellular networks can achieve accuracy within 2.5–5.4 meters.
Studies using GSM and UMTS cells for fingerprinting showed errors less than 5 meters,
comparable to WLAN accuracy. LTE-based localization achieved errors below 8 meters
in 50% of cases, and combining LTE with inertial measurement units reduced RMSE
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to 3.52 meters. Synthetic aperture navigation (SAN) improved LTE accuracy, reducing
RMSE to 3.9 meters. Combining LTE and WLAN fingerprinting significantly enhances
performance compared to LTE-only methods. Cellular systems can also support other
RF localization systems like RFID and Wi-Fi [1].

1.2.6.3 WiFi Technology:

Wi-Fi is a widely used wireless networking technology operating in the 2.5 GHz and
5 GHz RF bands. It is commonly found in large indoor environments like universities and
office buildings, providing extensive coverage through hotspots. Wi-Fi-enabled devices
include personal computers, smartphones, and tablets. The costs for Wi-Fi infrastructure
and devices are relatively low, with a reception range now reaching up to 1 km. Wi-Fi
localization uses RSS fingerprinting and can be combined with other RF techniques like
RFID. It covers larger areas and offers higher throughput compared to Bluetooth, mak-
ing it practical for many applications. Examples of commercial Wi-Fi-based positioning
systems include RADAR, HORUS, COMPASS, HERECAST, and PlaceLab [1].

1.2.6.4 ZigBee:

ZigBee, based on the IEEE 802.15.4 standard, operates in different frequency bands
globally and is used for long-distance transmission in wireless mesh networks. It is cost-
effective, with a low data transfer rate and short latency compared to WiFi. ZigBee
uses the RSS method to estimate distances between sensor devices. To reduce power
consumption from WiFi Access Point (AP) scanning, an energy-efficient indoor localiza-
tion system called ZIL was developed, using ZigBee to collect WiFi signals. Additionally,
a ZigBee localization algorithm based on proximity learning was introduced, offering re-
duced computational time while maintaining accurate positioning compared to traditional
triangulation methods [1].

1.2.6.5 Bluetooth:

Bluetooth (IEEE 802.15.1) enables short-range wireless communication using radio
waves between 2.402 GHz and 2.480 GHz, similar to Wi-Fi. It is cost-effective, has low
transmission power, long battery life, secure and efficient communications. Bluetooth
Low Energy (BLE) extends the range to 70-100 meters and provides 24 Mbps with higher
power efficiency, but is not suitable for large-area localization. BLE-based localization
is used in smartphones through iBeacons (Apple) and Eddystone (Google) for precise
indoor localization in places like airports, train stations, markets, malls, and restaurants
by using area maps sent to the smartphone. Neural networks trained with RSS values
and coordinates can detect user location based on online RSS measurements [1].
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1.2.6.6 Ultra Wide Band:

According to the U.S. FCC, UWB signals have a bandwidth greater than 500 MHz
and carrier frequency over 2.5 GHz. UWB offers large bandwidth, high-speed communi-
cation, high time resolution, and strong resistance to multipath interference. Its ability
to pass through obstacles and immunity to interference make it ideal for indoor posi-
tioning. UWB achieves centimeter-level accuracy using TOA and TDOA algorithms. A
hybrid localization system combining Wi-Fi and UWB can reduce costs and achieve a
localization error of 20 cm. UWB can also localize an unlimited number of tags, with fin-
gerprint estimation showing the best performance for position estimation [1]. The figure
1.1 presents the applications of UWB technology across various sectors, such as security,
smart homes, health, and smart cities, highlighting its benefits: precise location, indoor
navigation, safety, and process efficiency.

Figure 1.1: Ultra-Wideband: Sensing the where of objects and people [2].

1.2.6.7 Radio Frequency Identifcation:

RFID systems use tags and readers for signal processing, with tags being active,
passive, or semi-active. Active RFID, with a detection range up to 100 m, is ideal for
long-range tracking but not sub-meter accuracy. Passive RFID, cheaper and smaller, is
used for sub-meter detection within 10 m. RFID is popular due to its low cost and deploys
reference tags to estimate positions based on RSSI. Studies show RFID offers better
accuracy and stability compared to other sensors [1].The figure 1.2 illustrates a basic
radio frequency identification (RFID) system, detailing its components and functionality,
including the reader, tags, and the communication process between them.
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Figure 1.2: Basic radio frequency identification (RFID) system [3].

In conclusion, localization system technologies are essential for precise positioning in
diverse environments, each offering unique advantages and evolving to enhance accuracy
and reliability. Understanding these systems is crucial for effective navigation solutions.

1.3 Localization techniques:

Localization techniques are available that provide accurate localization for movable
or fixed objects in both outdoor and indoor environments. These techniques often use a
combination of various technologies to enhance accuracy, each with its own advantages
and disadvantages impacting the system. The taxonomy of these localization techniques
is shown in figure 1.3. Common methods include RSSI, TOA, and AOA/DOA for wireless
signal measurements, while indoor localization also utilizes TDOA, RTT, ADOA, PDOA,
POA, CSI, RSRP, and RSRQ [4].
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Figure 1.3: Taxonomy of Localization Techniques [4].

1.3.1 Proximity detection techniques

Proximity detection techniques locate devices by evaluating their position relative
to a predefined area, requiring detectors at fixed locations. When a detector identifies
a target device, it is considered to be within the detector’s proximity zone. Figure 1.4
illustrates this method: in image a), devices A1 and A2 are within the detector’s coverage
area, while A3 is not. Image b) shows the coverage area divided into three sectors for
more precise localization. This technique, commonly used in GSM systems, has an average
accuracy of 76 to 216 meters but can be limited by radio coverage [4].

Figure 1.4: Proximity Localization Technique Measurement Configuration [4].
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1.3.2 Received signal strength indicator-based techniques

Two approaches are used to determine the position of a mobile target based on RSSI
measurements, including Fingerprinting-based and RSS-propagation models [4].

1.3.3 Fingerprinting technique

Fingerprinting is a technique that uses scene features from videos, virtual images,
or electromagnetic signals to estimate target device position. There are two stages to it
Like the figure 1.5 :online testing and offline training RSSI. Fingerprint-based location
estimation algorithms are popular due to their efficiency and low cost. However, the
distance ratio is not always linear, especially in indoor spaces. In order to anticipate
real-time interior locations, machine learning algorithms must overcome a number of
obstacles, including computational power, storage capacity, complicated environments,
and time-consuming matching procedures [4].

Figure 1.5: Fingerprinting technique [4].

1.3.4 RSSI Radio Propagation Technique

The RSSI-based localization system measures the signal strength between a target
mobile device and multiple BS/WAP to calculate the distance and determine the position
using trilateration. Although inexpensive and easy to implement, it has limited accuracy
(2 to 4 meters) due to RSSI fluctuations. Figure 1.6 illustrates trilateration using RSSI
distances between the target device and three BS/WAP. The distance di between the
target device and the BS/WAP can be determined by the equation [4]:

di = d0 × 10

(
RSSi0−RSSi

10×ηi

)
(1.1)
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Figure 1.6: RSSI Radio Propagation Technique [4].

1.3.5 Angle based method (angulation)

The angulation technique, using Angle of Arrival (AOA), calculates a target device’s
position by measuring the angles from multiple fixed stations, as shown in figure 1.7.
This method requires at least two fixed stations for 2D positioning, with higher accuracy
achieved by using more stations. Despite its efficiency, AOA faces challenges such as
high implementation costs, multipath issues, and signal reflection problems in indoor
environments [4].

Figure 1.7: Angulation Location Measurement Configuration [4].

1.3.6 Time-based technique

Trilateration uses the known distances between a target device and multiple fixed
stations (three in 2D or four in 3D) to calculate the device’s position. This technique
finds the intersection of circles centered on the fixed stations with radii equal to the
measured distances. Time-based techniques, such as TOA and TDOA, measure the signal
propagation time to estimate these distances, requiring at least three stations for accurate
localization [4].
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1.3.7 Vision-based technique

Vision-based localization uses cameras to extract scene features and estimate the
position of a target device. It employs image processing methods and deep learning
algorithms to enhance accuracy. These systems provide real-time assistance, particularly
for visually impaired individuals, by detecting and navigating around dynamic obstacles
[4].

1.3.8 Dead reckoning technique

The dead-reckoning (DR) technique estimates the current location of a movable item
using a previously calculated location by integrating estimated speed, heading direction,
and course over time. It employs sensors such as gyroscopes, accelerometers, speed pulse
sensors, and magnetometers to provide high-accuracy navigation even when GPS/GNSS
is unreliable. However, it has limitations including the need for a reference position and
cumulative errors [4].

1.3.9 Map-matching technique

Map Matching (MM) connects the estimated position of a mobile device with geo-
graphical information from a digital map, improving navigation accuracy by using machine
learning algorithms. Simultaneous Localization and Mapping (SLAM) enables intelligent
robots to map their environment and predict their position using sensors like LiDAR
and cameras. Digital maps can correct errors from inertial sensors, though they require
detailed databases and may have their own inaccuracies. This method is crucial for ap-
plications such as autonomous robot navigation and drone delivery, providing real-time
assistance and improving safety [4].

In conclusion, localization techniques are crucial for accurately determining positions
in both indoor and outdoor environments. In the next section, we will describe the real-
world systems invented to achieve precise localization. These systems will be discussed in
detail to understand their methodologies and applications.

1.4 Cellular-towers-based indoor localisation systems:

Indoor localization systems based on cellular towers meet a growing need for accu-
rate and ubiquitous localization services. GPS, while effective outdoors, has limitations
indoors, and not all phones have Wi-Fi capabilities, especially in developing countries.
These systems rely on RSS (Received Signal Strength) measurements from multiple cel-
lular towers and deep learning algorithms to accurately estimate device positions. Since
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all phones support cellular technology, this approach can provide a universal localization
service compatible with virtually any cellphone, without additional energy consumption
beyond standard phone operation.

In the following, we will present several indoor localization systems based on cellu-
lar towers, each with its own architecture and methodology to provide a comprehensive
understanding of their capabilities and applications.

1.4.1 MonoDCell:

Figure 1.8 illustrates MonoDCell’s system architecture, which operates in two stages:
offline training and online tracking. In the offline stage, the Fingerprint Collector gathers
cell tower IDs and RSS at sparse seed points using a phone application. The Spatial Inter-
polator generates synthetic measurements to extend these points, reducing fingerprinting
overhead and aiding model generalization. The Trace Generator creates traces to simulate
user movement, while the History Builder constructs a measurement history in temporal
sequences. The Model Constructor builds and trains a deep model for localization. In
the online stage, real-time tracking captures cell tower information, augmented by the
History Builder. The Location Estimator then uses the deep model to determine the
user’s location.

Figure 1.8: MonoDCell system architecture [5].

We present the details of the different modules of MonoDCell:

• Fingerprint Collector: During the offline phase, MonoDCell uses a Fingerprint
Collector application to gather cellular data at sparse seed points, recording cell
tower ID (CID) and received signal strength (RSS) at each point. This reduces
data collection efforts while balancing accuracy and overhead.

• Spatial Interpolator : To improve localization accuracy without increasing data
collection efforts, MonoDCell uses a Spatial Interpolator to generate synthetic cell
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measurements. This module employs a KNN-Regressor, which predicts RSS mea-
surements by calculating the inverse distance-weighted mean of the RSS values from
the nearest seed points, giving more weight to closer points.

• Trace Generator: The Trace Generator module creates spatial traces from discrete
fingerprint points provided by the Spatial Interpolator to train the deep network,
avoiding the high overhead of continuous motion data collection. It uses a first-order
Markov model to simulate human movement, selecting from eight adjacent points
or staying stationary based on equal probabilities. The transition matrix reflects
the environment’s floorplan. Traces start from a uniformly distributed initial point
and subsequent points are chosen based on transition probabilities until the trace
is complete. RSS measurements from these traces are sent to the History Builder
module, serving as a data augmentation process for neural network training.

• History Builder: The History Builder module prepares sequence data for the
recurrent neural network during both offline and online phases. It segments traces
into overlapping fixed-length sequences. Each sequence consists of preceding obser-
vations and the current one, transforming observations into one-hot encoded feature
vectors for cell towers. RSS values are rescaled to [0, 1] for LSTM sensitivity. In the
offline phase, sequences and user locations train the LSTM in the Model Construc-
tor. In the online phase, sequences are used by the Location Estimator to determine
the user’s location.

• Model Constructor: The Model Constructor uses a recurrent neural network
with stacked LSTM layers for effective handling of long and short-range dependen-
cies in historical RSS data from cell towers. The input layer processes fixed-length
sequences of RSS vectors, mapping them to 2D spatial coordinates as output. To
prevent overfitting, the model employs dropout regularization and early stopping
during training, using the Adam optimizer and mean square error as the loss func-
tion.

• Location Estimator: During the online phase, a user at an unknown location
receives signals from the associated cell tower. The History Builder constructs a
sequence with this current data and past observations, which the deep model uses
to estimate the user’s current location.

• Evaluation: MonoDCell was tested on various Android devices in two testbeds,
achieving median location errors of 0.95m and 1.42m. It outperforms state-of-the-
art systems by at least 202%, demonstrating its accuracy and potential as a superior
localization system [5].

16



1.4.2 OmniCells :

OmniCells is a deep learning system for indoor localization uses cellular measure-
ments from training devices to ensure consistent performance across unknown tracking
phones .The OmniCells architecture operates in two stages as the figure 1.9: offline train-
ing and online tracking. In the offline stage, the Fingerprint Collector records cell tower
data, which the Pre-processor converts into RSS vectors. The Feature Extractor then
generates device-independent features and trains an encoder model. The Localization
Model Constructor uses these features to train a localization model. During the online
phase, the user’s cell tower data is processed by the Pre-processor and Feature Extractor
before the Location Predictor estimates the user’s location based on the trained models.

Figure 1.9: OmniCells system architecture [6].

We presents the details of the different modules of OmniCells including the Pre-
processor,the Features Extractor and Localization Model Constructor modules as well as
the processing done in online phase.

• Pre-processor Module: The Pre-processor module operates during both cal-
ibration and tracking phases, producing a vector of RSS values from up to seven
detectable cell towers, assigning non-detected towers an RSS of 0. It normalizes RSS
values between [0,1] and filters out weak signals below a threshold to ensure stable
localization. To reduce data collection overhead and prevent overfitting, OmniCells
employs a data augmentation framework that generates synthetic data reflecting
typical RSS variations from short-term samples.

• Features Extractor Module: The Feature Extractor module in OmniCells con-
sists of the Difference Extractor and Encoder Creator sub-modules.

- Difference Extractor: The Difference Extractor calculates RSS differences be-
tween cell tower pairs in each scan to mitigate device heterogeneity, eliminat-
ing fixed offset values caused by varying receiver sensitivities and gains. This
method uses relative RSS values to ensure consistency across different devices.
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- Encoder Creator: The Encoder Creator module in OmniCells encodes pre-
processed RSS vectors for consistent signal representation across different phones
using an autoencoder neural network. The autoencoder has an encoder that
maps RSS input to a lower-dimensional latent space and a decoder that re-
constructs the input from this latent representation. Instead of reconstructing
the same phone’s data, OmniCells trains the autoencoder to map data from
one phone to data from a different phone at the same location. This process
creates a phone-invariant latent representation, enabling device-transparent
localization.

• Localization Model Constructor Module: The Localization Model Construc-
tor trains a deep localization model using aggregated features to estimate user loca-
tion. The model is a deep fully-connected neural network with hidden layers using
the tanh activation function for non-linearity and strong gradients. The input layer
combines latent features and inter-difference values of cellular signal strengths from
cell towers. The output layer, with neurons corresponding to fingerprint points, uses
a softmax activation function to produce a probability distribution over reference
locations, operating as a multinomial classifier.

• Online Phase: During the Online Phase, OmniCells locates the user in real-time
by processing cell signals from nearby towers to extract a feature vector. This vector
is fed into the trained localization model to estimate the user’s location as one of
the predefined fingerprint points. To ensure continuous tracking and improve user
experience, OmniCells calculates the center of mass of all reference points using a
spatial weighted average, with weights corresponding to the likelihoods from the
classifier network.

• Evaluation: Evaluation of OmniCells in two realistic testbeds using different An-
droid phones with different form factors and cellular radio hardware shows that
OmniCells can achieve a consistent median localization accuracy when tested on
different phones. This is better than the state-of-the-art indoor cellular-based sys-
tems by at least 101% [6].

1.4.3 Cellindeep:

Figure 1.10 illustrates CellinDeep’s system architecture, which operates in two stages:
offline training and online tracking. In the offline stage, the Data Collector gathers times-
tamped cell tower signal measurements at different reference points using a phone appli-
cation. The Pre-processor handles noise in the input data and extracts and normalizes
the required features. The Data Augmenter generates synthetic training samples to re-
duce training overhead and avoid over-fitting. The Model Creator builds and trains a
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deep neural network (DNN) for localization, employing dropout regularization and early
stopping to prevent over-fitting. In the online stage, real-time tracking captures cell tower
information, filtered by the Pre-processor. The Online Predictor then uses the deep model
to estimate the user’s location, and the Fine Localizer refines the estimation to reduce
outliers and provide a smoother location.

Figure 1.10: CellinDeep system architecture [7].

We present the details of the different modules of CellinDeep:

• Data Collector module: running on a cell phone, stores the timestamped cell
towers signal measurements at different selected reference points within the area
of interest. These collected training measurements are then sent to a CellinDeep
running service in the cloud for further processing.

• Pre-processor module: is used to handle the noise in the input data and to
extract and normalise the required features.

• Data Augmenter module: is employed to augment the collected training data by
generating synthetic training samples. This not only reduces the training overhead
but also mitigates the noise effect and avoids over-fitting . It has two novel data
augmenters: Random Augmenter and Lower-bound Cropper.

- Random Augmenter technique: uses the 6% probability of hearing the max-
imum number of cell towers to increase training data size. The idea is to
randomly generate a binary mask that can be multiplied by the RSS vector to
selectively drop certain cell towers in a scan (Figure 1.11), ensuring the device
is always present to capture reality better.
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Figure 1.11: Example of the Random Augmenter operation on normalized RSS values [7].

- Lower-bound Cropper augmentation technique: uses weak received signals
from cell towers to increase training data size. It removes entries with a value
less than a certain threshold, mimicking that the cell tower has not been heard
in the generated synthetic sample ( show Figure 1.12).

Figure 1.12: Example of the Lower Cropper on normalized RSS values [7].

• Model Creator module: The Model Creator module constructs and trains a deep
neural network (DNN) to represent input data hierarchically, handling correlated
and non-linear cellular signals for user locations. It uses a fully connected structure
with four hidden layers and ReLUs to avoid the vanishing gradient problem. The
output layer corresponds to reference points in the area of interest. To prevent over-
fitting, CellinDeep employs dropout regularization and early stopping. The trained
model is then saved for use by the Online Predictor module.

• Online phase: users are tracked in real time by sending RSS information from
cellular towers at the current unknown location to the CellinDeep server. This
data is first filtered by the pre-processor module. The online predictor module then
inputs the data into the deep model built during the offline phase to estimate the
likelihood of the user being at various trained reference points. The system combines
these likelihoods to determine the user’s location in continuous space. Finally, the
Fine Localizer module further refines the location estimate by reducing outliers for
a smoother result..

• Evalution: The implementation of CellinDeep on various Android phones shows a
median localization accuracy of 0.78 meters, outperforming current indoor cellular-
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based systems by at least 350%. Additionally, CellinDeep saves over 93.45% in
power compared to WiFi-based techniques [7].

1.5 System outdoor:

Outdoor localization systems based on cellular networks utilize mobile telephony
infrastructure to offer a precise and reliable alternative. A major issue with GPS in
outdoor environments is its high energy consumption, which quickly depletes the battery
life of mobile devices. By using cellular signals to determine positions, these systems
provide extensive coverage and better accuracy while being more energy-efficient. Below,
we will describe these outdoor localization systems based on cellular networks, detailing
their architectures and specific characteristics.

1.5.1 Crescendo:

Crescendo basic idea: As the figure 1.13 shows, the cellular network consists
of multiple towers, each covering an area divided into sectors. Each sector, a slice of
the circle around the tower, extends finitely due to signal attenuation. Multiple cells
operating at different frequencies cover each sector. A mobile unit (MU) can detect up to
seven cells at once but is associated with only one. These cells can be from the same or
different towers and sectors. Information about the RSS of visible cells is available both
to the provider and the device.

Figure 1.13: Basic cellular network architecture [8].

• Figure 1.14 shows the system architecture. The system works in two phases: an
offline phase and an online tracking phase.
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Figure 1.14: Crescendo system architecture [8].

- Offline phase: During the offline phase, the system administrator uses the
User Interface module to import or enter necessary network information, such
as site IDs and locations, and cell and sector information. A virtual grid
is then generated and superimposed over the area of interest using the Grid
Generator module to expedite calculations and manage RF propagation noise.
The Pre-Computation module calculates the ”discrete” Voronoi diagram of the
area to determine the initial user ambiguity area and pre-calculates associated
parameters for each grid point, like Pairwise Site Constraints and Containing
Cell Set. This pre-calculated information is utilized during the online phase by
the Online Constraint Evaluator module to reduce running time and manage
noise.

- Online Tracking Phase: During the Online Tracking Phase, Crescendo gen-
erates location estimates based on visible network cells. The Cell Clustering
module clusters visible cells by tower locations, using the strongest cell from
each tower as a representative. The Online Constraint Evaluator module uses
these representative RSS values to create online Pairwise Site Constraints and
includes all visible cells in the online Containing Cell Set. It assigns scores
to grid points based on their likelihood of being the MU’s location. Finally,
the Location Estimator module uses these scores to estimate the MU’s final
location.

• Evaluation: Evaluation of Crescendo in both an urban and a rural area using
real data shows median accuracies of 152m and 224m, respectively. This is an
improvement over classical techniques by at least 18% and 15%, respectively [8].
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1.5.2 Active GSM Cell-ID Tracking:

The prototype SS7Tracker platform, a GSM Cell-ID-based solution for location-
based services. Practical tests in a live GSM network demonstrate the platform’s usability
and performance limits, showcasing its potential to enhance location-based services and
increase mobile operators’ revenue. The SS7Tracker platform is proving to be an effec-
tive solution for location-based services and signal coverage diagnostics in GSM networks.
Thanks to its robust architecture and active monitoring features, it provides valuable
information for improving the quality of mobile services, identifying areas with poor cov-
erage, and optimizing network performance. Additionally, its use in research on mobility
and human activity highlights its potential for various applications, from urban planning
to analyzing tourist behavior. Future research should focus on optimizing tracking in-
tervals, improving positioning accuracy, and reducing the network’s energy consumption
and signaling load.

• SS7Tracker platform architecture: The SS7Tracker platform architecture uti-
lizes active tracking to periodically request and store the location of tracked sub-
scribers. It is based on a client-server architecture consisting of several key compo-
nents. The Dialogic R SPCI4 SS7 signaling board facilitates communication with
the live GSM network. The signaling network ensures the transmission of messages
between different network elements. The main modules include :

– QueryCellId: retrieves location information from the GSM network using
MAP protocol messages, with response speed influenced by SMS delivery time,
and Tracker, which manages tracking tasks based on a job file.

– Tracker requests the location of all mobile: subscriber numbers (MSIS-
DNs) and evaluates the next tracking interval based on the subscriber’s last
location, movement, and other criteria. The TrackerGUI application, a Java in-
terface for SS7Tracker, allows users to create tasks, define tracking rule chains,
summarize and visualize results, and export data to external mapping systems.

– Microsoft SQL Server 2000 database: stores the location data and track-
ing results. The SS7 message flow sends ’SendRoutingInfo’ messages to the
Home Location Register (HLR) of the subscriber to update their International
Mobile Subscriber Identity (IMSI) and Visitor Location Register (VLR). Sig-
nal coverage diagnostics: involve preventing inroamers from disappearing from
mobile networks and determining where they switch to rival networks. A seven-
hour experiment tracked 247 foreign inroamers in the Czech Republic in May
2008, with the most valuable information obtained just before a subscriber
switched to a rival network. The tracking interval, whether 2 minutes or 6
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minutes, significantly impacts data interpretation, necessitating precise tun-
ing of tracking rules.

Figure 1.15: SS7 message flow to obtain subscriber location [9].

• Visualization and analysis: through third-part, navigation software allow for the
visualization of inroamer movements using colored points and sectors to represent
cell sites and antenna orientations. This helps identify overloaded or underused net-
work segments. Graphs provide insights into inroamer behavior, network changes,
and returns.

• For research on mobility and human activity : SS7Tracker offers improved
spatial accuracy and continuity of personal location data. Aggregate statistics iden-
tify the most visited places and compare visit rates of different tourist attractions,
while individual track analyses examine daily routines, action spaces, and mobility
behavior. The data utilization enables studying daily mobility between key personal
activity nodes like home, work, and leisure places [9].

This section covered several systems that utilize cellular networks. In the following
section, we will conduct a comparison to assess their advantages and disadvantages.

1.6 system comparison

In the previous section of this report, we provided detailed descriptions of several
cellular-based localization systems. Now, the table 1.1 offers a comparative view of these
systems. This comparison helps provide a clearer understanding of which systems may
be better suited for different use cases.
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System Methodology Accuracy Energy Con-
sumption

Sensitivity to Signal
Changes Due to En-
vironment

Advantages Disadvantages

MonoDCell
[5]

Deep LSTM model
based on single cell
tower RSS.

0.95 m
(small en-
vironment),
1.42 m
(large envi-
ronment).

No extra energy
consumption
(uses existing
cellular network
signals).

Very sensitive to obsta-
cles and environmental
changes.

Simple deployment,
adapts to varied
environments.

Requires good train-
ing data.

OmniCells
[6]

Deep learning with au-
toencoders for cross-
device localization.

1.67 m
(small en-
vironment),
2.05 m
(large envi-
ronment)

No additional
consumption,
uses existing
cellular signals.

Low to moderate; han-
dles minor variations
but sensitive to major
changes.

Stable accuracy
across different types
of phones.

Requires complex
autoencoders for nor-
malization between
devices.

CellinDeep
[7]

Deep neural network
leveraging multiple cell
tower signals.

0.78 m me-
dian error.

93.45% en-
ergy savings
compared to
WiFi

Moderately sensitive to
changes.

High accuracy, low
energy consumption,
handles noisy data.

Requires large train-
ing datasets and
model regulariza-
tion to prevent
overfitting.

Crescendo
[8]

Outdoor localization
using Voronoi diagrams

152 m (ur-
ban area),
224 m (rural
area)

No additional
consumption.

Moderate; influenced
by tower configurations
and obstacles.

Suitable for large ar-
eas, no calibration
needed.

Less accurate than
WiFi systems, de-
pends on cellular
tower density.

Active GSM
Cell-ID
Tracking [9]

Active network-based
tracking using the SS7
protocol.

Depends
on cell size
(large ar-
eas, lower
accuracy).

High energy due
to continuous
queries.

Highly sensitive; static
cell-ID without filtering
makes it prone to noise.

Real-time tracking,
no need for user
cooperation.

High network over-
head, privacy issues.

Table 1.1: Comparison of Cellular-based Localization Systems.
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1.7 Conclusion

In conclusion to this chapter, we explained localization system technologies and lo-
calization techniques. We examined in detail different cellular-tower-based localization
systems, both indoor and outdoor, highlighting their architectures and characteristics.
By making a comparison between these systems, we were able to draw valuable insights
into their effectiveness and performance.However, these systems also have limitations. In-
door localization systems, for example, may suffer from reduced accuracy due to signal
interference and variable tower density. Similarly, outdoor localization systems can be
affected by environmental factors, such as weather conditions, which can compromise the
reliability of location data. These challenges underscore the importance of making im-
provements and innovations to existing localization systems.

In the next chapter, we will cover the basics of machine learning and deep learning,
linking them to the location service concepts studied here. This transition will enable us
to build our own system by integrating these advanced techniques, thereby enriching our
overall understanding.

26



Chapter 2

Machine learning and Deep learning

2.1 Introduction

Location systems based on cellular networks leverage machine learning and deep
learning techniques to accurately predict user positions. These systems analyze vast
amounts of data from cellular signals using advanced algorithms to deduce precise loca-
tions. In this chapter, we will present the basic concepts of machine learning and deep
learning, with a focus on solving regression problems. We will discuss the various algo-
rithms used in this domain and how they contribute to improving the accuracy of location
predictions.

2.2 Artificial intelligence:

Artificial intelligence (AI) is a branch of computer science focused on creating sys-
tems capable of performing tasks that typically require human intelligence. These tasks
include recognizing speech, making decisions, and identifying patterns. On its own or
combined with other technologies (e.g., sensors, geolocation, robotics), AI encompasses
various technologies, such as machine learning and deep learning, as shown in Figure 2.1,
which enable computers to learn from and adapt to new data without human intervention
[10].
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Figure 2.1: The relationship between Artificial intelligence,Machine learning and Deep
learning [11].

2.2.1 Machine learning :

Machine learning (ML) is a branch of artificial intelligence that focuses on building
algorithms that can learn from and make predictions or decisions based on data. Unlike
traditional programming, where specific instructions are coded, ML systems improve their
performance by identifying patterns in large datasets. ML is widely used in various fields
such as natural language processing, computer vision, and predictive analytics, enabling
automation and enhanced decision-making processes [12].

2.2.2 Deep learning :

In 1943, Warren McCulloch and Walter Pitts, two mathematicians and neurosci-
entists, developed the first models of neural networks. In their paper titled ’A Logical
Calculus of the Ideas Immanent in Nervous Activity’, they proposed a mathematical repre-
sentation of the functioning of a biological neuron. Although the McCulloch-Pitts neuron
model is limited in its capabilities and lacks a learning mechanism, it laid the foundation
for artificial neural networks and deep learning [13] (Show Figure 2.2).

Figure 2.2: On the left, the diagram of a biological neuron, and on the right, the diagram
of the formal neuron from 1943 [14].
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Deep learning (DL) is a specialized subset of machine learning that utilizes neural net-
works with many layers (hence the term ”deep”) to model complex patterns in data. These
neural networks, inspired by the structure of the human brain, consist of interconnected
layers of nodes that process input data to generate outputs. The layered architecture
allows deep learning models to automatically learn hierarchical representations of data,
leading to high accuracy and performance in various applications [15].

2.3 Algorihm for regression :

Regression is a statistical approach used to analyze the relationship between a depen-
dent variable (target variable) and one or more independent variables (predictor variables).
The objective is to determine the most suitable function that characterizes the connection
between these variables [16].

For regression tasks, we employ both machine and deep learning algorithms. The
machine learning algorithms include those based on distance methods, while the deep
learning models utilize neural networks. These algorithms are essential for making accu-
rate predictions. A schema (Figure 2.3) below will illustrate the algorithms used in our
study for both machine learning and deep learning.

Figure 2.3: Regression algorithms.

2.4 Machine Learning Algorithms:

Machine learning algorithms are techniques that allow computers to learn from and
make predictions based on data. These algorithms are used in a variety of applications,
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such as classification, regression, clustering, and more. They can identify patterns and
relationships within data to provide actionable insights. In our project, we utilized only
the K-Nearest Neighbors (KNN) algorithm to address the regression problem we are
working on.

2.4.1 K-Nearest Neighbors:

The K-Nearest Neighbors (KNN) algorithm is a non-parametric machine learning
technique used for both classification and regression tasks. In KNN Regression, the algo-
rithm predicts the value of a target variable by averaging the values of the k nearest data
points. Here’s a concise summary of how it works:

1. Data Collection: Start with a dataset containing input features and continuous
target values.

2. Choosing K: Select the number of nearest neighbors (k) to use for predictions. A
smaller k can lead to noisy results, while a larger k can smooth out predictions.

3. Distance Metric: Use a distance metric, like Euclidean distance, to measure similar-
ity between data points.

4. Prediction: For a new input, calculate the distance to all points in the dataset,
select the k closest points, and average their target values to make the prediction.

KNN Regression is intuitive and simple to implement but can be computationally intensive
for large datasets. Proper tuning of k and the distance metric is essential for accurate
predictions, often achieved through cross-validation and hyperparameter tuning [17].

2.5 Deep Learning Algorithms:

The primary deep learning algorithms include Recurrent Neural Networks (RNNs)
for sequential data, and Long Short-Term Memory (LSTM) networks for tasks requiring
long-term dependencies. In our study, we will explain RNN and LSTM algorithms.

2.5.1 Recurrent neural network:

RNNs are a specialized type of artificial neural network designed for handling time-
series or sequential data, where data points are interdependent. Unlike feedforward neural
networks, which are used for independent data points, RNNs incorporate dependencies
between sequential data points. This is achieved through a concept of memory, allowing
RNNs to store states or information from previous inputs to generate the next sequence
of outputs.
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Figure 2.4: Recurrent Neural Network architecture [18].

It saves the output of a particular layer and feeds this back to the input to predict the
output of the layer.as illustrated in Figure 2.4, which shows the architecture of Recurrent
Neural Networks [18].

2.5.2 Long short-term memory:

This is the most common type of recurrent neural network .LSTMs are useful for
remembering information for a long time because they store their internal memory in the
same way a computer does; they read, write, and delete information as needed using gates.
These gates help the network decide which information to keep and which to delete from
memory (whether to open the gate or not) based on the importance attributed to each
bit of information. This is very advantageous as it not only allows for the storage of more
information (in the form of long-term memory) but also helps to eliminate unnecessary
information that could alter the result of a prediction, such as article in a sentence [19].
The figure 2.5 shows an example of the LSTM architecture:

Figure 2.5: Long Short Term Memory Recurrent Neural Network Based Workload Fore-
casting Model For Cloud Datacenter [20].
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2.6 Conclusin :

In conclusion, this chapter provided an essential overview of machine learning and
deep learning, highlighting their roles in developing predictive and analytical models. We
explored various algorithms and their practical applications, demonstrating the impor-
tance of these technologies in technological innovation and the enhancement of intelligent
systems. In the next chapter, we will discuss the architecture and design of our system,
detailing the different components and their integration to meet the defined objectives.
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Chapter 3

Proposed Proprietary location
system

3.1 Introduction

In this chapter, we explore the objectives, architecture, and design of our proposed
system using UML modeling language. We begin by detailing the system’s specific goals.
Following this, we examine the system architecture, outlining the key components and
their interactions. Finally, we discuss the system design, employing UML diagrams to
illustrate the structure and functionality. This concise overview provides a comprehensive
understanding of the system’s purpose and implementation.

3.2 Objectives

The advancement in mobile technology and the need for accurate location services
highlight the limitations of GPS due to environmental factors and battery consumption,
especially indoors. To address these challenges, we propose a location system using cell
tower signals and fingerprinting techniques, combined with machine learning and deep
learning models. This system aims to provide a precise and reliable solution for deter-
mining user locations in various scenarios, enhancing location-based services.Our solution
attempts to:

• Improvement of Localization Accuracy: Use digital fingerprints of cellular
signals to provide more accurate location estimates than traditional GPS-based
methods, especially in indoor or dense urban environments.

• Resilience to Environmental Conditions: Leverage the capabilities of machine
learning and deep learning models to manage variations and interferences in signals,
ensuring reliable localization even in complex and dynamic environments.

33



• Reduction of Deployment Costs: Implement a localization system that utilizes
existing cellular signal, thereby reducing the need for additional equipment and the
associated installation and maintenance costs.

• Collection and Analysis of Rich Data: Enable the collection of detailed cel-
lular signal data and its analysis, providing valuable insights for the continuous
improvement of localization systems and for other research.

• Compatibility and Easy Integration: Develop a system compatible with vari-
ous mobile devices and easily integrable into existing applications, ensuring rapid
adoption and widespread use.

In summary, our objectives aim to enhance localization accuracy, reduce costs, and im-
prove user experience. In the next section, we will discuss our system’s architecture.

3.3 Overview of system

Our system uses the fingerprinting technique, specifically RSSI fingerprinting, as
detailed in the first chapter. During the offline phase, we store coordinates and signal
strength readings in a database. In the online phase, current signal measurements are
matched with this data to determine the device’s location. Despite challenges like envi-
ronmental changes and signal interference, machine learning algorithms enhance real-time
location accuracy [4].
Our system operates in two phases: offline and online. In the offline phase, data is col-
lected using a fingerprint collector applications and stored in a database. The data is then
preprocessed and used to train models, which are evaluated for accuracy. In the online
phase, the location predictor module determines the user’s real-time position. A figure
3.1 illustrating our system accompanies this description for better understanding.
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Figure 3.1: Architecture of the Fingerprinting-Based Localization System.

In summary, we have provided an overview of our system architecture. In the next
section, we will detail the creation of our dataset and describe the system’s modules,
including data collection, preprocessing, model construction, and location predictor.

3.4 Building the dataset

In the modern era of ubiquitous mobile connectivity, accurately determining the
position of a device based on cellular signals is essential for numerous applications. A
comprehensive dataset of cellular signal strengths from different towers can significantly
enhance location-based services. Our project aims to collect and analyze cellular signal
data from various mobile devices to develop a robust and reliable dataset, enabling the
training of machine learning and deep learning models for accurate indoor localization.
In this section, we will discuss the major issues that led us to create our own dataset.

3.4.1 Problems:

Here is a summary of the problems that led us to create our own dataset:

1. Incomplete or Inaccurate Data: Existing datasets may not cover all situations
and environments necessary for our precise localization models, leaving critical gaps
in the data.
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2. Variability of Data Sources: Datasets from different sources may have inconsis-
tencies in terms of format, accuracy, and collection methods, making it difficult to
integrate them into a single model.

3. Scalability: Existing datasets may not be large or diverse enough to train robust
machine learning and deep learning models, limiting their effectiveness in varied
real-world scenarios.

4. Restricted Data Access: Many existing databases are protected by access restric-
tions, copyrights, or privacy constraints, making their use difficult or impossible for
our project. Additionally, we did not find a dataset that met our specific require-
ments.

5. Data Obsolescence: Existing data may be outdated and not reflect current cellu-
lar network conditions and environments, necessitating the collection of new, more
relevant data.

These problems led us to build our own dataset, specifically tailored to our indoor
localization needs, ensuring the accuracy of our models.

3.4.2 Data collection:

In the offline phase, the data collection module consists of two components: fin-
gerprint collector and Data Storage. We collected information about cells and their
locations in a 200 m² area, as depicted in the screenshot of the house from the map (Figure
3.2). The components of this module and the tools used for data collection are explained
below.

Figure 3.2: Screenshot of the house from the map.
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• Fingerprinting Collector: In our system, we utilize various mobile phones and
one fixed phone, each equipped with specialized applications tailored to their spe-
cific functionalities. These phones connect to a centralized server, which in our case
is our PC (Personal Computer). The server efficiently manages the connections and
distinguishes between mobile and fixed devices, facilitating smooth communication
and data transfer via sockets. The main objective of this architecture is to cap-
ture signal information from cell towers and their locations using different types of
phones (mobile phones and fixed) and store this data in the next module.

In the following , we will explain the roles of the elements that contributed to
capturing this information. These elements include:

– Mobile phone: The mobile phone used by the collector moves to different
locations to collect cells and location informations. The user interacts with
a map by clicking on their position. When the user clicks, the mobile phone
sends a request to the fixed phone through an intermediate server. The fixed
phone responds with the cell informations it detects, also via the server. The
mobile phone receives both its own cell and location informations as well as
the fixed phone’s cell informations. All this data is then stored in a database
on the mobile phone.

– Fixed phone: remains static and is used to provide cell information on re-
quest. When it receives a request from the mobile phone via the intermediate
server, it automatically responds by sending the cell informations it detects.
This informations is crucial for understanding cell coverage and signal varia-
tions in fixed location. The fixed phone serves as a stable reference point for
signal measurements.

– Note: When collecting information about cells at different locations, we can
use multiple mobile phones and a single stationary fixed phone.

– Server: The intermediate TCP server, developed in an Eclipse IDE, man-
ages connections and communication between multiple mobile phones and a
single stationary fixed phone using sockets to ensure smooth and secure com-
munication. It receives requests from the mobile phones, transmits them to
the fixed phone, and then sends the responses back to the mobile phones. It
also synchronizes the data to ensure correct information transfer. The server’s
role is essential for maintaining effective and reliable communication between
the devices. The communication between these devices and the server will be
illustrated in Figure 3.3.
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Figure 3.3: FingerPrint Collector.

– Data Storage : The data storage module records the cellular information
collected by the fingerprint collector at various locations. The details of the
cells and their locations from both types of phones (mobile and fixed) are
stored in an SQLite database to ensure complete traceability and efficient use.
This database allows for quick management and retrieval of information. The
stored data is then used in the creation of our dataset. An illustration of this
process is presented below (Figure 3.4) to show how we organize and store this
essential data.

Figure 3.4: Data Storage.
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Dataset Description

Creating a complete dataset is essential for training machine learning and deep learn-
ing models. A well-structured and well-explained dataset ensures data reliability, facili-
tates analysis, and allows for the reproduction of the results.

In previous studies on cellular-based indoor localization, various datasets were devel-
oped using mobile devices to capture Received Signal Strength (RSS) from cell towers,
accompanied by coordinates that denote reference points in indoor environments. For
instance, the MonoDCell dataset was collected from Android phones in two distinct
indoor environments, measuring 132 m² and 629 m². This dataset provided data on RSS
including the Cell Tower ID (CID) and the coordinates of reference points within the
testbeds [5]. Similarly, the CellinDeep project utilized multiple Android devices to
gather RSS, CID, and reference point coordinates within indoor spaces, applying data
augmentation methods to enrich the dataset [7]. Additionally, the OmniCells collect
data from various locations, such as an apartment and a campus building, using multiple
phones to capture RSS, CID, and reference point coordinates in the indoor testbeds [6].

In the context of this research, our dataset was constructed based on cell informa-
tion collected from various known locations using the data collection module. The data
collection process involved capturing signal characteristics, specifically Received Signal
Strength (RSS) and Cell Tower ID (CID), along with geographical coordinates (longitude
and latitude) and additional signal metrics from both mobile phones and a stationary
smartphone. We introduced a unique feature by incorporating a stationary smartphone,
enabling us to analyze the effects of data collection with both moving and stationary
devices. This distinction allows us to gain a better understanding of how signal strength
changes in different scenarios, depending on whether the phone is mobile or stationary.
In our case, we can capture four types of cells (LTE, GSM, WCDMA, and CDMA), but
in our dataset, we only captured LTE and GSM. The collected data was initially stored
in a database and later converted to an Excel file for ease of use.

Our dataset contains 15,191 rows, each representing a unique observation. The data
includes detailed information on cells collected at various known locations and at differ-
ent times, providing a comprehensive overview of signal characteristics in different envi-
ronments. The organized structure of this dataset enables optimal model development,
ensuring accurate predictions of user positions.

Below is a detailed description of the dataset’s columns, presented in Table 3.1 :
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Column Name Data Type Description
_id Integer Unique identifier of Localisation

longitude Float Geographic longitude
latitude Float Geographic latitude
address String Address
time Date Date and time
_idC Integer Unique identifier of Cells
_idCell Integer Cell identifier (CID)

signalStrengthLevel Integer Signal strength level
signalStrengthDbm Integer Signal strength in dBm (RSS)

signalType Integer Signal type [LTE,GSM,WCDMA,CDMA]
describeContents Integer Content description

asuLevel Integer ASU (Arbitrary Strength Unit) level
ecNo Integer Energy per chip over the noise spectral density) as dB
cqi Integer Get channel quality indicator

cqiTableIndex Integer Get table index for channel quality indicator
rsrp Integer Get reference signal received power in dBm
rsrq Integer Get reference signal received quality
rsri Integer Get Received Signal Strength Indication (RSSI) in dBm
rssnr Integer Get reference signal signal-to-noise ratio in dB

timingAdvance Integer Timing advance
cdmaDbm Integer Get the CDMA RSSI value in dBm
cdmaEcio Integer Get the CDMA Ec/Io value in dB*10
cdmaLevel Integer Get cdma as level 0..4
evdoDbm Integer Get the EVDO RSSI value in dBm
evdoEcio Integer Get the EVDO Ec/Io value in dB*10
evdoLevel Integer Get Evdo as level 0..4
evdoSnr Integer Get the signal to noise ratio.

bitErrorRate Integer Bit error rate
typeUser String User type[MOBILE Or FIXED]

Table 3.1: Description of dataset attributes.

In summary, successfully creating our dataset showcases our ability to effectively
gather and organize data. This accomplishment is a significant step forward in our project,
providing a solid groundwork for further development and achieving our goals. We have
named our dataset ”CellSignalTracker,” reflecting its purpose and the comprehensive na-
ture of the data it contains. The ”CellSignalTracker” dataset will serve as a critical re-
source for training and validating our machine and deep learning models, enabling precise
and reliable predictions of user locations.

3.4.3 Analysis Scenarios:

After collecting the data and constructing our dataset, we defined two scenarios for anal-
ysis.
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1. First Scenario: Mobile Phone Data Only

In this scenario, we use only the data collected from mobile phones. This data
will be processed in the following modules to develop a model based exclusively on
mobile devices information. The objective is to determine the model’s accuracy and
efficiency using only this type of data.

2. Second Scenario: Mobile and Fixed Phone Data

In this scenario, we combine data from both mobile and fixed phones. This data
will also be processed in the following modules, allowing us to develop a model
enriched by the diversity of information sources. The objective is to evaluate whether
integrating fixed phone data improves the model’s accuracy and efficiency compared
to using only mobile phone data.

Each scenario will go through the following modules for processing and analysis.

3.5 Preprocessing Module:

Data preprocessing involves evaluating, filtering, manipulating, and encoding data
to ensure it is comprehensible and usable for analytical purposes. The primary goal of
data preprocessing is to address issues such as missing values, enhance data quality, and
make the data useful for further analysis [21]. The data preprocessing module is essential
in our case for organizing and structuring the data for future use. We followed specific
steps to prepare our data effectively. These steps will be explained in detail below and
illustrated in Figure 3.5, which represents the preprocessing steps.

Figure 3.5: Steps of Data Preprocessing.
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3.5.1 Data Cleaning Steps

As part of data preprocessing, we began with data cleaning to ensure its quality and
reliability. This crucial step helps eliminate anomalies and prepare the data for further
analysis. Here are the main steps we followed:

• Handling Missing Values: Missing values can occur for various reasons, including
issues during data collection, missing information, or loading failures. They pose
problems not only for data analysis but also for the accuracy of results, as they
complicate data visualization and interpretation.

• Removing Duplicates Values: Detecting and removing duplicate data is often
necessary in the data cleaning process. Duplicates can introduce bias and distort
results, thus negatively affecting the performance of analytical models.

After collecting the data and constructing our dataset, we performed data cleaning, ensur-
ing that there were no duplicate or missing values present. This essential step is crucial for
preparing the data for the subsequent stages of preprocessing, allowing for more accurate
and reliable analyses in later processes.

3.5.2 Feature Extraction:

Feature extraction transforms raw data into a set of meaningful features, highlighting
relevant aspects and reducing complexity. This step includes attribute selection, creating
new features, and encoding them.

• Feature Selection: identifies the most relevant attributes, simplifying the data
and improving model accuracy and generalization.

• Encoding Selected Features: Our dataset contains two string-type attributes
that needed to be transformed into binary values to be used as input for our mod-
els. This transformation is necessary because models require input in the form of
numerical vectors.

3.5.3 Normalization

In our case, all attributes have been normalized to the range [0,1] using the min-
max scaler method. This technique scales the data so that it falls between [0,1], while
preserving the relative distances between values. The process involves subtracting the
minimum value min(x) and dividing by the range (max(x) - min(x)), according to the
following formula:

Xnew =
X −Xmin

Xmax −Xmin
[22] (3.1)
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This normalization ensures a uniform scale, thus facilitating the efficient use of the data
in our KNN and LSTM models.

3.6 Model Constuctor:

This module aims to predict user locations using various advanced machine and deep
learning algorithms. Our dataset contains cellular data records from various locations,
collected from mobile and fixed phones using an architecture detailed in the previous
section. Using this collected information, we will train our models to accurately predict
users’ geographic positions. We split our dataset into 70% for training and 30% for testing.
We used different algorithms, including KNN for machine learning and RNN ,LSTM for
deep learning, chosen for their effectiveness with complex and temporal data. Figure
3.6 illustrates the architecture of our model, showcasing the different layers to produce
accurate predictions at the output.

Figure 3.6: Model architecture.

• Input Layer: Defines the shape and structure of the input data that the model
will process. It is responsible for specifying the dimensionality of time sequences
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and the number of features per sequence, allowing the model to understand the
configuration of the data it will receive. For example, for time series data, the
input layer can define the length of the sequence (the number of time steps) and
the number of features at each time step.

• LSTM Layer: This is a recurrent layer used for time sequences. It is capable of
capturing long-term dependencies in sequential data.

• Simple RNN Layer: A SimpleRNN layer is a sequence processing layer that uses
past information to predict future information in temporal data.

• Output Layer: In a location prediction model, the output layer could produce x
and y coordinates. The main function of the output layer is to take the internal
and complex representations of the data, generated by the LSTM and RNN layers,
and transform them into interpretable and usable results.

Below, we will show the tables of the structure and parameters of our models.

• The Figure 3.7 illustrates the parameters and structure of an LSTM model. This
model consists of two LSTM layers with 3,360 and 6,384 parameters, respectively,
followed by a Dense layer with 58 parameters. The output shapes of the LSTM
layers are (None, 28, 28) for the first layer and (None, 28) for the second layer,
while the Dense layer has an output shape of (None, 2). The total number of
parameters is 9,802, all of which are trainable.

Figure 3.7: Model LSTM Architecture.

• The second Figure 3.8 presents the parameters and structure of a SimpleRNN model.
This model consists of two SimpleRNN layers with 840 and 1,596 parameters, re-
spectively, followed by a Dense layer with 58 parameters. The output shapes of
the SimpleRNN layers are (None, 28, 28) for the first layer and (None, 28) for the
second layer, with the final Dense layer having an output shape of (None, 2). The
total number of parameters is 2,494, all of which are trainable.
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Figure 3.8: Model RNN Architecture.

We performed our RNN and LSTM model with the following training parameters:

• Optimizer: Adam optimizer

• Batch Size: 28

• Number of Epochs: 30

3.7 Test And Evaluation:

Our evaluation module measures the performance and accuracy of our regression
models using various metrics. These metrics help optimize the models, evaluate their
final performance, and compare them. Here, we present the regression metrics we used
for our model evaluation.

1. MSE : Mean Squared Error, is the average of the squared errors defined by the
formula:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.2)

2. RMSE: Root Mean Squared Error is the square root of the MSE. Mathematically,
it is defined by:

RMSE =
√
MSE (3.3)

3. MAE: Mean Absolute Error is the average of the absolute values of the errors,
defined by the formula:
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MAE =
1

n

n∑
i=1

|yi − ŷi| (3.4)

The MAE is in the same unit as the predicted variable, making it easy to interpret
[23].

3.8 Location Estimator:

During the online phase, the user is at an unknown location and receives signal in-
formation from nearby cell towers. This module analyzes the received cell tower data to
predict the user’s location. After evaluating multiple models, the best-performing model
is selected for this task. By comparing the current signal data with the stored dataset,
the module accurately determines the user’s position. This real-time prediction is crucial
for providing timely and precise location services.

In conclusion, our architecture demonstrates a comprehensive and efficient approach
to our project goals. In the next section, we will present our system design using UML
diagrams.

3.9 System design

In the previous section, we presented the architecture of our system. This section
now focuses on its design. For enhanced presentation, we utilized a modeling language
to clearly illustrate our design.We have selected UML (Unified Modeling Language) as
our modeling language to illustrate many scenarios that will be used during the imple-
mentation phase. This language enables us to accurately portray and analyze different
system behaviors and interactions, ensuring a seamless transition from concept to imple-
mentation. In our project, we integrated UML diagrams such as use case diagram,the
class diagram and sequence diagram. These modeling tools enabled us to describe the sys-
tem architecture in detail, illustrate interaction flows between components, and capture
functional requirements and usage scenarios.

3.9.1 Use case diagram:

The first step in UML analysis begins with the use of use case diagrams, which aim
to depict how a system operates and capture its requirements. In our system, two main
actors are identified: the collector, responsible for gathering data, and the stationary
actor, representing a fixed entity involved in the process. We define the overall use case
diagram of our system, as represented in the figure 3.9.
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Figure 3.9: global use case diagram.

3.9.2 Sequence diagram:

In our project, after establishing the use case diagram , we developed the sequence
diagrams. These were created based on usage scenarios, detailing interactions and message
exchanges among different system objects. They played a crucial role in dynamically
illustrating how components interact to perform specific actions defined in the use cases.
In this section, we will analyse the most complex functional requirements of our system.
We’ll start by analysing Get Location and Cells informations , followed by Get Cells
informations of Stationary phone and then Prediction localisation .We will present these
diagrams below:

• Get Location and Cells informations:

The sequence diagram GetLocation and Cells Information (Figure 3.10) illustrates
the process by which the system collects location data and cell tower information
from a moving user via a mobile phone, capturing cell information from various
locations and storing it in a database.
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Figure 3.10: Get location and Cells informations.

• Get Cells informations of Stationary phone:

The sequence diagram Get Cells Information of Stationary Phone (Figure 3.11)
represents the process where a mobile collector interacts with a server to request
and retrieve cell tower information from a stationary (fixed) phone. The collector
first connects to the server, which then communicates with the stationary phone to
gather the necessary cell data. Both the mobile phone, acting as a mobile station,
and the fixed phone, acting as a fixed station, will be connected. Once the cell
information from both the mobile and stationary phones is collected, it is displayed
to the collector and stored in the database for further use.
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Figure 3.11: Get Cells informations of Stationary phone.

• Prediction of location:

The figure 3.12 presents the sequence diagram concerning the location prediction
scenario.

Figure 3.12: Prediction localisation.
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3.9.3 Class diagram:

The class diagram represents the structure of a system designed to manage users,
their locations, and cellular data. It illustrates the relationships between these entities,
specifically how each user can be linked to multiple locations where cellular information
is collected. The cells that the system can capture include four types: WCDMA, GSM,
CDMA, and LTE. The diagram (Figure 3.13) provides an overview of these interactions.

Figure 3.13: Class diagram.

3.10 Conclusion

In conclusion, our architecture demonstrates a comprehensive and efficient approach
to achieving our project goals. In this chapter, we thoroughly explored the overall archi-
tecture of our proposed system, detailing its various components and how they interact
to achieve our objectives. We discussed the collection and preprocessing of data, as well
as the construction of machine learning and deep learning models for accurate location
prediction. Additionally, we outlined the creation and significance of our custom dataset,
emphasizing its role in enhancing the system’s performance. We also presented the design
of our system through UML diagrams. In the next chapter, we will delve into the imple-
mentation details of our system. We will also present the results of extensive testing and
validation, demonstrating the effectiveness and reliability of our approach.
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Chapter 4

implementation and results

4.1 Introduction

Our primary objective is to propose a proprietary location system based on cell tower
signals and located devices. In this chapter, we focus on the implementation of our system.
We begin by presenting the programming language, development environment, and tools
used. Next, we provide a detailed overview of the various stages of our work, from data
collection to the evaluation of the models used. We conclude this section by determining
the most effective model.

4.2 Environment and work tools

In this section, we present the development environment and the tools used for the
implementation of our system. We describe the choices of programming languages and the
libraries employed, as well as the platforms and software that facilitated the development
and testing of our solution.

4.2.1 Environment Hardware

The hardware used for testing is summarized in the following tables:

• PC:

Machine specifications

Processor
Intel(R) Core(TM) i3-7020U CPU @
2.30GHz 2.30 GHz

Memory (RAM) 12.00 GB
Operating Sys-
tem

64-bit operating system, x64-based processor
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Table 4.1: PC specifications.

• Smartphone 1:

Machine specifications
Name OPPO Reno 7
CPU Qualcomm Snapdragon 680 Octa-core
RAM 8.00 GB
Storage 128 Go
Android version 14

Table 4.2: Phone 1 specifications.

• Smartphone 2:

Machine specifications
Name OPPO A77
CPU Helio G35 Octa Core
RAM 4.00 GB
Storage 128 GB
Android version 14

Table 4.3: Phone 2 specifications.

• Kaggle: A subsidiary of Google, it is an online community of data scientists and
machine learning engineers. Kaggle allows users to find datasets they want to use in
building AI models, publish datasets, work with other data scientists and machine
learning engineers, and enter competitions to solve data science challenges [24].

4.2.2 Programming language and software:

• Java :Java is a multi-platform, object-oriented, and network-centric language that
can be used as a platform in itself. It is a fast, secure, reliable programming lan-
guage for coding everything from mobile apps and enterprise software to big data
applications and server-side technologies [25].

• Python :Python is an interpreted, object-oriented, high-level programming lan-
guage with dynamic semantics. Its high-level built in data structures, combined
with dynamic typing and dynamic binding, make it very attractive for Rapid Ap-
plication Development, as well as for use as a scripting or glue language to connect
existing components together. Python’s simple, easy to learn syntax emphasizes
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readability and therefore reduces the cost of program maintenance. Python sup-
ports modules and packages, which encourages program modularity and code reuse.
The Python interpreter and the extensive standard library are available in source
or binary form without charge for all major platforms, and can be freely distributed
[26]. In our case, we used Python to convert data stored in the database into a
Excel file and to create machine learning and deep learning models.

• Android studio :Android Studio is the official Integrated Development Environ-
ment (IDE) for Android app development. Based on the powerful code editor and
developer tools from IntelliJ IDEA , Android Studio offers even more features that
enhance your productivity when building Android apps[27].

• SQLite :is a C-language library that implements a small, fast, self-contained, high-
reliability, full-featured, SQL database engine. SQLite is the most used database
engine in the world. SQLite is built into all mobile phones and most computers and
comes bundled inside countless other applications that people use every day [28].

• Eclipse IDE :In the computing world, Eclipse is an integrated development pro-
gram for developing various computer applications using especially Java language
as well as others, including C/C++, Python, PERL, Ruby, and many more. Being
free and open source, Eclipse IDE is one of the most popular JAVA IDE in the
computing market.Eclipse IDE can run on the most popular Operating Systems,
including Windows, Mac OS, and Linux [29].

4.2.3 Libraries

the libraries we have imported into our project are defined in the following :

• NumPy :NumPy is the fundamental package for scientific computing in Python. It
is a Python library that provides a multidimensional array object, various derived
objects (such as masked arrays and matrices), and an assortment of routines for fast
operations on arrays, including mathematical, logical, shape manipulation, sorting,
selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical
operations, random simulation and much more [30].

• Pandas :Pandas is a Python library used for data analysis and manipulation. It
provides two primary data structures: Series, which is a one-dimensional labeled
array, and DataFrames, which is a two-dimensional labeled data structure similar
to a table. Pandas enables users to perform operations such as data cleaning, trans-
formation, and analysis efficiently, making it an essential tool for data science and
machine learning tasks [31].
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• Matplotlib :Matplotlib is a powerful plotting library in Python used for creating
static, animated, and interactive visualizations. Matplotlib’s primary purpose is to
provide users with the tools and functionality to represent data graphically, making
it easier to analyze and understand [32].

• Keras : keras is a high-level neural networks API, written in Python, and capable
of running on top of TensorFlow. It allows for easy and fast prototyping of deep
learning models and is widely used for creating and experimenting with neural
networks [33].

• Sklearn : Scikit-learn, also known as sklearn, is an open-source, machine learning
and data modeling library for Python. It features various classification, regression
and clustering algorithms including support vector machines, random forests, gra-
dient boosting, k-means and DBSCAN, and is designed to interoperate with the
Python libraries, NumPy and SciPy [34].

• Tensorflow : tensorflow is an open-source deep learning library developed by
Google. It is used for machine learning and neural network development, providing
both high-level APIs for easy model building and low-level operations for flexibility
[35].

4.3 Practical Deployment of the Dataset:

In this section, we discuss how the dataset was collected using a well-structured
architecture, emphasizing both the mobile and fixed applications. This process ensured
the comprehensive collection of cellular and location data, managed server connections,
and facilitated efficient data storage and retrieval.

4.3.1 Mobile and Fixed Applications

The mobile and fixed applications share a similar user interface to facilitate the
collection of cellular and location data. The mobile application is deployed on various
mobile phones to collect data while moving, whereas the fixed application is installed on
a single stationary Smartphone, which remains immobile, to provide stationary cellular
information.

Figure 4.1 presents the user interfaces of both mobile and fixed applications designed
for cellular and location data collection. The mobile application interface (left) is opti-
mized for use on various mobile devices, allowing for data collection while on the move.
In contrast, the fixed application interface (right) is tailored for stationary use, providing
essential information from a single, immobile device.
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Figure 4.1: Monbile and Fixed phone interfaces applications.

4.3.2 Server Connection Management:

The server acts as an intermediary for managing connections between mobile and
fixed applications. Developed in the Eclipse IDE, it facilitates secure and efficient com-
munication using sockets. The server receives requests from mobile devices, processes
them, and relays them to fixed phone. After obtaining responses, it sends them back
to the mobile devices, ensuring real-time interaction. This architecture highlights the
server’s critical role in data collection for cellular and location-based services, improving
the reliability and accuracy of the data exchange process. Figure 4.2 provides an overview
of this architecture, showcasing the interactions between the server and connected devices.
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Figure 4.2: Server Connection Management.

4.3.3 Communication Process:

In the communication process, we used socket which is a software endpoint that allows two
programs to communicate within the same machine or over different machines connected
to a network. Sockets employ a combination of IP address and port number to identify
the particular application involved in communication. The combination ensures proper
transmission of data at the correct destination in a networked environment. Sockets are
usually used in a client-server architecture, where the server listens for client connection
requests [36]. The communication scenario is as follows:

• User Location Search: After launching the mobile application, the data collector
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initiates a search to determine the precise location on the map. This process allows
for accurate localization of the current position, as illustrated on the left in Figure
4.3.

• Manual Location Selection: Once the location is identified, the user manually selects
their precise location on the map, as shown on the right in Figure 4.3. This ensures
increased accuracy in data capture.

(a) Location Search Interface. (b) Location Selection Interface.
Figure 4.3: Location Search and Selection Interface.

• Sending a Request from the Mobile Application to the Server: When a user clicks
on their exact position on the map within the mobile application, a ”REQUEST”
message is generated. This message is sent to the server, which then forwards the
request to the fixed phone, signaling the need for cellular data capture from the
fixed phone.
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• Transmitting the Request to the Fixed Phone: Upon receiving the request, the
server automatically forwards the message to the fixed phone, which is positioned
to effectively capture cellular signals.

• Receiving Data by the Fixed Phone: When the fixed phone receives the request mes-
sage (as shown in Figure 4.4), it sends all captured cells along with their respective
information to the server. This step ensures smooth and efficient communication
between the fixed phone and the server.

Figure 4.4: REQUEST message sent from the mobile phone through the server.

• Data Transfer to the Mobile Phone :The server then transmits this data to the
mobile phone. The user receives detailed information about the captured cells in
the specified area.

• Displaying Information: The location and captured cell information collected by
the mobile phone are displayed on the screen, as shown in Figure 4.5 (on the left).
Additionally, the data received from the fixed phone is presented to the user, as
shown in Figure 4.5 (on the right).
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Figure 4.5: Information displayed from both the mobile and fixed phones.

• Storing Data for Future Use: Finally, all collected information, both from the mobile
phone and the fixed phone, is stored in a database for future use, allowing for in-
depth data analysis.

4.3.4 Data Storage:

All collected information is recorded in a SQLite database on the mobile phones. This
database is structured to facilitate quick management and efficient retrieval of information.
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Figure 4.6: Database tables.
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4.3.5 Conversion of the Database to Excel File

The process of converting the collected data from a SQLite database to an Excel file
format simplifies data manipulation and analysis. As illustrated in Figure 4.7, a provided
code snippet efficiently extracts data from the SQLite database and exports it to an
Excel file, ensuring all relevant information is accurately preserved and easily accessible
for further use.

Figure 4.7: Convert DataBase to Excel.

Here is our dataset in the form of an Excel file after converting from the database to
a dataset, as illustrated in Figure 4.8.

Figure 4.8: Excel File of the Dataset.

4.4 Results and Discussion:

After the data preprocessing and model training mentioned in the previous chapter,
we will now discuss the results obtained from the different models. This section will
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provide an analysis of the performance metrics, compare the effectiveness of each model,
and highlight key observations. The goal is to understand the strengths and weaknesses
of each model based on the results and to draw conclusions about their suitability for the
given task. This analysis will help in identifying the best-performing model.

Figure 4.9: Longitude variation in our dataset.

Figure 4.10: Latitude variation in our dataset.

The graphs below(Figure4.9 and Figure 4.10) show the variation of longitude and
latitude over time in our dataset. We will use them to visualize geographic changes and
identify anomalies or specific points of interest in the location data.

62



Figure 4.11: Loss and MAE in training.

• Interpretation of the Loss and MAE Graphs: The graphs above show the
evolution of loss (Loss) and mean absolute error (MAE) over the epochs during the
deep learning model training (as shown in Figure 4.11).

– Loss Graph (left): The loss, measured in MSE (Mean Squared Error), de-
creases rapidly during the first few epochs, indicating that the model learns
efficiently at the beginning of the training. After about 4 epochs, the loss
stabilizes at a value close to zero, suggesting a successful convergence of the
model.

– MAE Graph (right): The mean absolute error (MAE) follows a similar trend
to the loss, with a rapid decrease at the start of the training. The MAE reaches
a very low value after about 5 epochs and stabilizes, indicating a continuous
improvement in the model’s prediction accuracy.

The two graphs demonstrate that the model is training effectively, with rapid
reductions in both loss and mean absolute error at the beginning of the training.
The stabilization of the curves after about 5 epochs indicates that the model has
converged and is well-fitted. This suggests that the model is ready for further testing
or practical use, with no evident signs of overfitting.

Figure 4.12: Model comparison table.

The table (Figure 4.12) compares the performance of three models (KNN, LSTM,
and RNN) under two different scenarios (mobile case and mobile+fixed case) using three
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error metrics: MAE, MSE, and RMSE. The KNN model shows the lowest error values in
both scenarios, indicating better overall performance compared to the LSTM and RNN
models. The KNN model with K=3 proves to be the best-performing model. Therefore,
we conclude that KNN model could be the most appropriate choice for our system. Here
are the results found for predicting location information from cellular data in our dataset,
as illustrated in Figures 4.13 and 4.14:

Figure 4.13: Model for prediction longitude.

Figure 4.14: Model for prediction latitude.

Figure 4.15: Difference between real and predicted latitude.
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Figure 4.16: Difference between for prediction longitude.

According to the graphs (Figure 4.15 ,Figure 4.16), we notice that the difference
between the actual and predicted values of longitude and latitude ranges from 0.00014 to
-0.00024 degrees. This indicates that the error in location estimation is between 10 meters
and 22 meters.

4.5 Conclusion :

This chapter detailed the construction of our dataset and the implementation of
various location prediction models. We explained the choice of tools for data collection
and preparation. Then, we compared several models in two scenarios: using only mobile
phone data and combining mobile and fixed phone data. This analysis allowed us to
evaluate the performance of the models and determine best model for our proprietary
location system.
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General Conclusion

Location-based services (LBS) are essential in many areas, such as navigation, logis-
tics, social networking, and emergency response. While GPS is widely used, its limitations,
such as high energy consumption and vulnerability in urban or indoor environments, high-
light the need for alternative solutions that are more efficient, accurate, and energy-saving.

This project presents a proprietary localization system that uses cell phone towers to
provide an accurate and efficient solution. We analyzed various cell-based localization
systems, comparing their advantages and disadvantages in terms of accuracy and adapt-
ability to environmental changes. Our system specifically addresses these challenges by
utilizing cell tower information for indoor localization, offering a more reliable alternative
to GPS in complex environments.

Additionally, our approach incorporates advanced machine learning and deep learn-
ing techniques, such as K-Nearest Neighbors (KNN) for regression tasks, and Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks to refine loca-
tion prediction accuracy. Through extensive testing and comparisons, we were able to
determine the optimal model, ensuring high accuracy in predicting device locations.

In conclusion, our study demonstrates that cell-based localization systems offer a
promising alternative to GPS, especially in complex environments. By combining cellu-
lar signals with advanced predictive models, our system provides a reliable and energy-
efficient approach to location tracking. This work illustrates how the evolution of LBS
can lead to more sustainable and flexible solutions to meet the growing needs of modern
applications. Furthermore, the experiences and challenges encountered during the imple-
mentation of this system have enriched our understanding and strengthened its robustness,
paving the way for future advancements in the field of location-based services.

Perspectives

In order to improve the accuracy and efficiency of the system, various development
perspectives can be explored, such as:

• Develop a system capable of estimating positions in real time with high accuracy.
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• Add several fixed phones that remain stationary: By integrating more fixed phones
into our architecture, we could collect additional data from stationary reference
points. This would enrich our dataset, improve the accuracy of location predictions
and reduce errors in challenging environments.

• Ensure that the system covers larger geographical areas and remains resistant to
failures.
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