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Abstract 

 

Fault diagnosis is critical in control theory for improving safety, performance, and 

reliability in controlled processes. Detecting system errors, component faults, and abnormal 

operations promptly is essential for diagnosing the source and severity of malfunctions. Various 

solutions have been proposed for fault diagnosis and residual generation. The widely used squirrel 

cage three-phase induction motor in industrial applications demands reliable operation due to its 

robustness, low cost, and standardization. Induction motor failures, particularly inter-turn short 

circuits in stator windings, can lead to significant downtimes and adverse effects on both people 

and installations. Additionally, unbalanced supply voltage, which is a common and significant 

phenomenon, may hinder our ability to differentiate it from the detection of inter-turn short circuits. 

 In this thesis, we have contributed to the field by presenting a comprehensive solution for 

the detection, classification, and severity estimation of faults in induction machines using artificial 

intelligence tools. My work includes developing a mathematical model that incorporates Stator 

Inter Turn Short-Circuit faults across three phases of an induction motor. I implemented a Feed 

Forward Neural Network (FFNN) approach for fault detection and phase-specific classification, 

followed by a Multi-Layer Perceptron (MLP) Neural Network approach for detecting and 

classifying both Stator Inter Turn Short-Circuit and Unbalanced Supply Voltage faults, as well as 

estimating the severity of short-circuits. I explored various types of Artificial Neural Networks 

(ANNs) to improve fault detection, classification accuracy, and severity estimation. My thesis is 

organized into four chapters: an introduction covering induction motor faults and diagnostic 

techniques, development and validation of induction motor models using MATLAB/Simulink, 

implementation of FFNN and MLP processes for fault detection and severity estimation, and a 

comprehensive Fault Identification process utilizing multiple ANNs in a cascaded manner. My 

skills include mathematical modeling, MATLAB/Simulink proficiency, and expertise in Neural 

Network development for fault diagnosis and optimization in industrial applications 

 ملخص

تشخيص الأعطال أمر حيوي في نظرية التحكم لتحسين السلامة والأداء والموثوقية في العمليات المُسيطر عليها. إن              

اكتشاف أخطاء النظام وعيوب المكونات والعمليات الغير طبيعية بسرعة أمر أساسي لتشخيص مصدر وشدة الأعطال. تم اقتراح 

ال وتوليد المتبقيات. المحرك الحثي ذو الثلاث مراحل بحوية قفص السنجاب المستخدم على نطاق حلول متنوعة لتشخيص الأعط

واسع في التطبيقات الصناعية يتطلب عملية موثوقة بسبب قوته وتكلفته المنخفضة وتوحيد تصنيعه. فشل محرك الحث، خصوصاً 

توقف طويلة وتأثيرات سلبية على الأشخاص والتركيبات.  الدوائر القصيرة بين التفافات الجزء الثابت، قد يؤدي إلى فترات

بالإضافة إلى ذلك، الجهد المتغير للتغذية الكهربائية غير المتوازن، الذي هو ظاهرة شائعة ومهمة، قد يعيق قدرتنا على التمييز بينه 

 وبين اكتشاف الدوائر القصيرة بين التفافات.



 
 

 
 

قدمنا مساهمة في المجال من خلال تقديم  لاً شاملاً للكشف حالتصنيف حتقديو شدة الأخطراء في آلات التحليد ة،طروح في هذه الا   

بال ث باستخدام أدحات الذكاء الاصطرناعي. يتضمن عملي تطرحيو نمحذج وياضي يدمج أخطراء القصو بين اللفات في الم وكات 

ا ل من م وك ال ث. نفذت نهج شبكة عصبحنية تغذية إلى الأمامال ثية عبو ثلاث مو  (FFNN)  للكشف عن الأخطراء حالتصنيف

لكشف حتصنيف كل من أخطراء القصو بين  (MLP) الخاص بكل مو لة، تليها نهج شبكة عصبحنية بالمعوفة المتعددة الطربقات

بالإضافة إلى تقديو شدة القصو. استكشفت أنحاع مختلفة من اللفات في الستاتحو حأخطراء تحازن الجهد التحويد غيو المتحازن، 

لت سين كشف الأخطراء حدقة التصنيف حتقديو الشدة. تنظم وسالتي إلى أوبعة فصحل:  (ANNs) الشبكات العصبية الاصطرناعية

 / MATLAB مقدمة تغطري أخطراء الم وكات ال ثية حتقنيات التشخيص، حتطرحيو حت قق نماذج الم وكات ال ثية باستخدام

Simulinkحتنفيذ عمليات ، FFNN ح MLP لكشف الأخطراء حتقديو الشدة، حعملية شاملة لت ديد الأخطراء باستخدام العديد من 

ANNs بطرويقة متتالية. تشمل مهاواتي النمذجة الوياضية حإتقان MATLAB / Simulink  حالخبوة في تطرحيو شبكات الأعصاب

بيقات الصناعيةلتشخيص الأخطراء حالت سين في التطر . 

 

Résumé  

Le diagnostic de défaut est crucial en théorie de contrôle pour améliorer la sécurité, les 

performances et la fiabilité des processus contrôlés. Détecter rapidement les erreurs système, les 

défauts de composants et les opérations anormales est essentiel pour diagnostiquer l'origine et la 

gravité des dysfonctionnements. Diverses solutions ont été proposées pour le diagnostic de défaut 

et la génération de résidus. Le moteur à induction triphasé à cage d'écureuil largement utilisé dans 

les applications industrielles exige un fonctionnement fiable en raison de sa robustesse, de son 

faible coût et de sa standardisation. Les défaillances des moteurs à induction, en particulier les 

court-circuites inter-spires dans les enroulements de stator, peuvent entraîner des temps d'arrêt 

importants et des effets néfastes sur les personnes et les installations. De plus, la tension 

d'alimentation déséquilibrée, phénomène courant et significatif, peut entraver notre capacité à la 

différencier de la détection de court-circuit inter-spires.  

Dans cette thèse, nous avons contribué au domaine en présentant une solution complète pour la 

détection, la classification et l'estimation de la gravité des défauts dans les machines à induction en 

utilisant des outils d'intelligence artificielle. Mon travail inclut le développement d'un modèle 

mathématique qui intègre les défauts de court-circuit entre spires du stator sur trois phases d'un 

moteur à induction. J'ai mis en œuvre une approche de Réseau de Neurones à propagation avant 

(FFNN) pour la détection des défauts et la classification spécifique à chaque phase, suivie d'une 

approche par Réseau de Neurones à Perceptron Multi-Couche (MLP) pour détecter et classifier à la 

fois les défauts de court-circuit entre spires du stator et les défauts de tension d'alimentation 

déséquilibrée, ainsi que pour estimer la gravité des court-circuits. J'ai exploré différents types de 

Réseaux de Neurones Artificiels (ANNs) pour améliorer la détection des défauts, la précision de la 

classification et l'estimation de la gravité. Ma thèse est organisée en quatre chapitres : une 



 
 

 
 

introduction traitant des défauts des moteurs à induction et des techniques de diagnostic, le 

développement et la validation de modèles de moteurs à induction à l'aide de MATLAB/Simulink, 

la mise en œuvre des processus FFNN et MLP pour la détection des défauts et l'estimation de la 

gravité, et un processus complet d'identification des défauts utilisant plusieurs ANNs de manière 

cascadienne. Mes compétences incluent la modélisation mathématique, la maîtrise de 

MATLAB/Simulink et l'expertise dans le développement de Réseaux de Neurones pour le 

diagnostic des défauts et l'optimisation dans les applications industrielles. 
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 Introduction 

 

 

Rotating electrical machines play a crucial role in various industrial sectors. Three-

phase squirrel cage induction motors are the most commonly used due to their robustness, 

simple construction, and low cost. However, during their lifespan, these machines may be 

subject to various external or internal stresses that can lead to failures. The industrial 

requirements for reliability, maintainability, availability, and equipment safety are also 

very stringent. This is why the industrial sector is highly interested in a set of techniques to 

determine if they are in healthy condition or not.   

In the literature, three types support the task of Induction Motors (IMs) fault 

diagnosis: model-free methods [6-22], model-based methods [23-32], and artificial 

intelligence (AI)-based methods [34-62].  

Model-free methods rely on analyzing acquisition signals, offering the advantage of 

independence from internal system fluctuations. Thus, the information within the signals 

remains unaffected by possible modeling errors. Various signal processing techniques have 

been employed to analyze the spectral content of different signals from electrical 

machines, including currents, electromagnetic torque, vibrations, instantaneous powers 

…etc. One of the commonly used model-free methods is MCSA (motor current signature 

analysis); this last uses motor current signals [7]. It consists of assigning a spectral 

signature to each fault characterizing it. Moreover, the severity of the fault is a function of 

the amplitude of the harmonic frequency components [8]. Another method is based on d-q 

vector analysis. This technique transforms three-phase stator currents into two rotating 

components (d and q) by the Park’s vector [9-10]; it simplifies analysis and reveals 

valuable insights into the motor condition. By creating a circular reference pattern between 

the d and q RMS (root mean square), any deviation from this circle in the Park's vector 

reveals a fault [12]. The detection through vibration [13, 17, 18], magnetic flux [13,19, 20], 

and instantaneous power [21, 22] require the addition of a supplementary sensor, 

facilitating the utilization of both frequency and time domain analyses for fault diagnosis. 

Magnetic flux and vibration signals were used for detecting and diagnosing electrical faults 

in the stator winding of three-phase induction motors [13]; those last are obtained via 

corresponding sensors. A correlation was established between major electrical faults (such 
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as inter-turn short circuits and unbalanced voltage supplies) and the signals of magnetic 

flux and vibration, enabling the identification of characteristic frequencies associated with 

these faults. The partial and total instantaneous powers were used to enhance diagnostic 

tools for electromechanical fault detection in electrical machines by identifying the most 

suitable diagnostic procedure based on measured power of motor and fault characteristics 

[21]. To assess the sensitivity of the electrical diagnostic tools, a severity factor is defined 

as the increase in amplitude of the fault characteristic frequency compared to the healthy 

condition. This factor facilitates the examination of diagnostic tool performance. 

Additionally, it demonstrates that the total instantaneous power diagnostic procedure 

exhibits the highest detection criterion values for mechanical faults, whereas for electrical 

faults, the most reliable diagnostic procedure correlates closely with the motor power 

factor angle and the motor-load inertia.  

Model-based methods involve developing a mathematical model that describes the 

dynamic behavior of the induction motor under normal and faulty operating conditions. 

These models typically encompass equations representing the electrical, magnetic, and 

mechanical dynamics of the motor. Diagnosis occurs by comparing predicted values 

obtained by the model to measured values acquired by sensors related to the motor, such as 

current, voltage, speed, and electromagnetic torque. Any disparities between the measured 

and predicted values may indicate the presence of a fault. Further analysis is then 

performed to diagnose the fault. One of the familiar models is multiple coupled circuits 

also known as permeance network; it consists of multiple interconnected circuits. In this 

approach, each circuit is represented individually, and their interactions are characterized 

through coupling elements such as mutual inductance, capacitance, or resistance [24]. 

Another model called magnetic coupled circuit model, it is a theoretical framework used to 

analyze the behavior of magnetic circuits consisting of interconnected magnetic 

components such as inductances. It represents the flow of magnetic flux and the interaction 

between different elements in the circuit [23].  

The dq model is a mathematical representation that describes the dynamic behavior 

of the motor in a rotating reference frame. In this model, the motor's electrical variables 

such as voltage, current, and flux are transformed from the stationary abc reference frame 

to the rotating dq reference frame. The dq reference frame rotates synchronously with the 

rotor flux, simplifying the analysis of the motor's dynamic behavior, including torque 

production, speed regulation, and response to various operating conditions and control 
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strategies. An observer model is a mathematical framework used to estimate the internal 

states of an induction motor based on its external measurements (stator currents). It 

operates similarly to a software sensor, continuously monitoring the motor's behavior and 

predicting its internal conditions, such as rotor flux, speed, and torque, without directly 

measuring them. 

 AI-based methods have garnered significant attention from researchers and exhibit 

promise in fault diagnosis applications for electrical IM. However, directly recognizing 

fault patterns proves challenging due to the variability and richness of response signals. 

Therefore, a typical fault diagnosis system comprises two key steps: data processing 

(feature extraction) and fault detection. Most AI-based fault diagnosis systems utilize 

preprocessing by feature extraction to transform high-dimensional input patterns into low-

dimensional feature vectors for easier match and comparison.  

Fault diagnosis is accomplished using machine learning methods such as k-nearest 

neighbor (k-NN), it operates by identifying the k- nearest data points in the training set to a 

given query point, and then assigns the query point a label or value based on the most 

common label among its neighbors (for classification) or the average value of its neighbors 

(for regression). Bayesian classifier is a probabilistic algorithm that utilizes Bayes' theorem 

to classify data points into predefined categories or classes based on their features and the 

probability of occurrence for each class. Support vector machine works by finding the 

optimal hyper-plane that best separates the data points into different classes or groups. The 

most commonly used Artificial neural networks in the field of fault diagnosis is artificial 

neural networks, it is a computational model inspired by the biological neural networks of 

the human brain, consisting of interconnected nodes (neurons) organized in layers. It is 

capable of learning complex patterns and relationships in data, making it a versatile tool 

for fault detection of induction motors. Additionally; deep learning approaches is the most 

recently used AI methods. It employs neural networks with multiple layers to learn 

complex patterns from vast amounts of data, enabling it to perform complex problems. 

They have begun to be applied in the field of fault diagnosis of IM in the few last years. 

Our contribution consists of presenting a solution to the problem of detection, 

classification, and severity estimation of faults in the induction machine using artificial 

intelligence tools. The considered faults are Stator Inter Turn Short-Circuit and 

Unbalanced Supply Voltage. Initially, we develop a mathematical model of the induction 
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motor where the short-circuit fault is presented on all the three phases; it assumes that each 

phase has two coils in series, presenting a healthy portion and a short-circuited portion. 

This selection leads to present the fault as a ratio between the number of short-circuited 

turns and the number of total turns, this last is considered in order to facility the modeling 

of the IM. 

Then, a Feed Forward Neural Network based approach is developed to detect and 

classify the Stator Inter Turn Short-Circuit fault according to the affected phase. The 

approach uses the three phase instantaneous power average as the features, where the 

highest value of average goes back to the damaged phase. Afterwards, a Multi-Layer 

Perceptron Neural Network based approach is used for the detection and classification of 

Stator Inter Turn Short-Circuit and Unbalanced Supply Voltage; also for the estimation of 

the percentage of short-circuits. This approach uses the total instantaneous power 

(maximum, minimum and average values), the phase shift between line current and phase 

voltage (in the three phases) and the negative sequence voltage as the best features of 

faults. Finally, several types of Artificial neural networks (which are typically Artificial 

Neural Networks) are explored for the detection, classification and severity estimation of 

both established faults. The proposed method uses three machine learning blocs in a 

cascaded manner, where the first machine learning bloc is used to detect and classify the 

upcoming fault. Afterward; the output of the first machine learning bloc activates the 

second and third machine learning blocs, where those last supposed to give the estimating 

percentages of Stator Inter Turn Short-Circuit and Unbalanced Supply Voltage. 

The thesis is organized into four chapters. 

The first chapter introduces a state of the art. In first, we discuss the different faults 

that could interrupt induction motor during their operation. Next, we talk about the various 

techniques that are used by researchers to diagnosis this fault. Those techniques are divided 

to classical and intelligent ones. Details are given throughout the chapter. 

The second chapter presents the development of two models of induction motor. 

Using the stator-linked reference-frame, the first model is dedicated to an asymmetrical 

squirrel cage induction motor. The model calculation is detailed throughout the chapter. 

The second model is dedicated to a squirrel cage induction motor with stator inter turn 

short-circuit faults, assuming that each stator phase has two windings in series, presenting 

a healthy portion and a short-circuited portion. Next; using the Matlab/Simulink software, 
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the validation of both models of the induction motor is discussed with results obtained 

through simulation. The experimental study of the asymmetrical asynchronous machine is 

conducted, and the experimental results are compared to those obtained through 

simulation. 

 The third chapter introduces two processes dedicated to the detection, classification, 

and severity estimation of established faults. The first process is designed for identifying 

and categorizing stator inter-turn short circuit faults. Typically; the process is based on 

feed forward neural network. It categorizes the fault according to the specific phase in 

which it occurs. It uses current and voltage signals to evaluate the instantaneous power 

signal. Where this last is not used completely, but only the average of the signal is used. 

After a testing/error treatment the neural network is optimized to the perfect architecture, 

which is a neural network of an input layer that contain three neurons, a hidden layer that 

has five neurons and an output layer that has three neurons. 

The second process is dedicated to the detection and classification of short circuits 

and unbalanced supply voltage. Furthermore, the severity estimation of stator inter-turn 

short circuits is calculated by providing the estimated percentage of the shorted circuits. 

Typically; the process is based on multi-layer perceptron neural network. It categorizes the 

fault into two type of faults, a stator or a supply voltage one. It uses current and voltage 

signals to evaluate the instantaneous power, the phases shift and negative sequence voltage 

signals. Where those last are not used completely, but a feature extraction procedure is 

implemented to extract the best features of faults. After a testing/error treatment the neural 

network is optimized to its perfect architecture, which is a neural network of an input layer 

that contain seven neurons, a hidden layer that has nine neurons and an output layer that 

has two neurons. 

The fourth chapter presents multiple types of IM diagnosis, including:  

 Fault detection and classification of stator inter-turn short circuit.  

 Fault detection and classification of unbalanced supply voltage. 

  Fault Severity Estimation of stator inter-turn short circuit.  

 Fault Severity Estimation of unbalanced supply voltage.  

The proposed Fault Identification process is carried out in a cascaded manner. In 

the first stage, the FI enables the detection of the fault category, whether it is a stator inter-
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turn short circuit or an unbalanced supply voltage. Once the FI process recognizes the type 

of fault, the second stage is automatically activated. This stage allows the estimation of 

fault severity by providing the approximate percentage of the established faults.  

Four types of Artificial neural networks were investigated to implement the 

proposed Fault Identification, including Feed Forward Neural Network, Radial Basis 

Neural Network, Radial Basis Extended Neural Network, and Generalized Regression 

Neural Network. 

A general conclusion and further works concludes this thesis. 
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Chapter (1) 

State of The Art 
 

 

 

1.1. Introduction 

This chapter offers an overview of faults in electrical machines, focusing 

particularly on Induction Motors (IMs) and fault detection. It is emphasized that these 

techniques can be readily extended to other types of electrical machines. The monitoring of 

electrical machines for diagnosis and fault prediction has garnered significant attention in 

recent years, given its substantial impact on the operational continuity of various industrial 

processes. 

 Effective diagnosis and early detection of faults play a crucial role in minimizing 

downtime and maintenance duration for the respective processes. Additionally, they 

contribute to averting harmful, and at times catastrophic, consequences of faults, leading to 

reduced financial losses. An effective detection procedure should employ minimal 

measures from the relevant process and extract a diagnosis that provides a clear indication 

of failure modes through data analysis in the least amount of time.  

The primary objective of this chapter is to present faults and diagnostic methods 

applied to IMs. These methods are categorized into three groups: those using a 

mathematical model of the system, those involving the analysis of measured signals 

(referred to as model-free methods), and those employing artificial intelligent tools. 

1.2. Generality about induction motor 

IMs consist of a fixed stator and a rotating rotor. The stator has a magnetic circuit 

and windings that create a rotating magnetic field. The rotor has windings that carry 

induced currents from the rotating magnetic field. The torque generated by the motor is 

exerted on the conductors of the induced currents, causing the rotor to start and rotate in 

the same direction as the rotating magnetic field. [1] 
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Figure 1.1 : Induction motor construction. 

1.2.1. Induction motor construction 

We propose, in this section, to briefly recall the constitution of the IMs. This 

description will allow us to better understand the faults of this machine, in their physical 

dimension. IMs can be broken down, from a mechanical point of view, into three parts 

distinct: 

 The stator, fixed part of the machine where the electrical supply is connected;  

 The rotor, rotating part which allows the mechanical load to rotate;  

 The bearings, the mechanical part which allows the motor shaft to rotate. 

1.2.1.1 Stator 

The stator of an IM is made up of ferromagnetic sheets in which the stator windings 

are placed. For small machines, these sheets are cut in one piece, while they are cut into 

sections for larger power machines. These sheets are usually coated with varnish to limit 

the effect of eddy currents; they are assembled together using rivets or welds to form the 

stator magnetic circuit. The stator windings are placed in the slots provided for this 

purpose. These windings can be inserted in an interlocking, wavy, or even concentric 

manner. The insulation between the electrical windings and the steel sheets is done using 

insulating materials which can be of different types depending on the use of the IM. The 

stator of an IM is also provided with a terminal box to which the power supply is 

connected. Figure 1.2 presents the different parts that form the stator of an IM [3].  
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Figure 1.2 : Stator 

1.2.1.2. Rotor 

The rotor magnetic circuit is made of ferromagnetic sheets that are generally of the 

same origin as those used to build the stator. The rotors of IMs can be of two types: wound 

or squirrel-cage. Wound rotors are constructed in the same way as the stator winding. The 

rotor phases are then available thanks to a system of slip rings and brushes positioned on 

the shaft of the machine. Regarding squirrel-cage rotors, the windings are made of copper 

bars for large-power motors or aluminum for lower-power motors. These bars are short-

circuited at each end by two short-circuit rings, made of copper or aluminum. Figure 1.3 

shows the different elements that forms a squirrel-cage rotor. In the case of squirrel-cage 

rotors, the conductors are made by casting an aluminum alloy or by pre-formed copper 

bars that are fretted into the rotor sheets. Generally, there is no insulation between the rotor 

bars and the magnetic circuit. However, the resistivity of the alloy used to build the cage is 

low enough so that the currents do not flow through the magnetic sheets, except when the 

rotor cage has a broken rotor bar (BRB) [2]. 

 

Figure 1.3 : Rotor 
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1.2.1.3 Bearings 

 The heart of a bearing lies in its three key components: inner and outer races, rolling    

elements, and a (sometimes optional) cage. The races, like smooth tracks, guide the 

movement of the rolling elements, typically tiny balls or rollers. These elements act as 

tireless intermediaries, rolling instead of sliding to drastically reduce friction and

wear. The cage, when present, plays a crucial role in keeping these rolling elements evenly 

spaced, preventing them from touching and causing further friction or damage. This 

harmonious interplay of parts allows bearings to carry impressive loads while maintaining 

smooth, efficient operation [2]. 

 

Figure 1.4 : Bearings 

1.2.2. Induction motor main faults  

Although IMs are known to be robust, they can sometimes present different types 

of faults which can be either originated by electrical or mechanical source. These faults can 

escalate into failures, which may either be predictable or, unfortunately, stem from a wide 

range of causes. Indeed, a minor problem at the manufacturing stage may be causing a 

fault, as well as improper use of the machine. A statistical study carried out by [3] on IMs 

operated in the field of the petrochemical industry reveals  that certain faults are more 

frequent than others, as shown by the diagram (figure 1.5) by presenting the percentage of 

faults likely to affect these high-power machines. This distribution shows that the faults of 

high-power machines come from mainly bearings and stator; this is due to mechanical 

constraints more important in the case of these machines [4]. 
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Figure 1.5 : Statistical studies [3] 

1.2.2.1 Mechanical faults 

More than 40% of IMs faults are mechanical faults. These faults may be bearing 

faults, eccentricity faults, etc... 

1.2.2.1.1 Bearings faults 

The main reason for machine failures is ball bearing faults which have many causes 

such as lubricant contamination, excessive load or even electrical causes such as the 

circulation of leakage currents induced by PWM inverters [4]. Bearing faults generally 

cause several mechanical effects in the machines such as an increase in noise level and the 

appearance of vibrations.  

 

Figure 1.6 : Bearing faults 

1.2.2.1.2 Eccentricity faults 

The consequences of mechanical faults generally appear at the air gap: by static, 

dynamic or mixed eccentricity [5], as shown in (figure 1.7): 

 The static eccentricity is generally due to a misalignment of the axis of 

rotation of the rotor relatively to the stator center.  
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 The dynamic eccentricity can be caused by a deformation of the rotor 

cylinder, or damage to ball bearings.  

  Mixed eccentricity, the most common, is the combination of static and 

dynamic eccentricity. 

 

Figure 1.7 : Eccentricity faults 

1.2.2.2 Electrical faults 

Electrical failures at the stator level or at the rotor level can have several forms and 

several causes. They are clarified in next. 

1.2.2.2.1 Stator faults 

Stator faults can manifest themselves in the form of an inter-turn short circuit, a 

short circuit between two phases, or a short circuit between one phase and the ground [5] 

(figure 1.8). It is schematized by the direct connection between two points of the winding. 

The short circuit between phases appears preferentially in the heads of coils. The short 

circuit between turns of the same phase can appear either at the level of the heads of coils 

or in the slots, which results in a decrease in the number of effective turns of the winding. 

A short circuit between phases would cause a sharp stop of the machine. However, a short 

circuit between one phase and the neutral (via the grounding) or between turns of the same 

phase. It leads to a phase imbalance, which has a direct impact on the electromagnetic 

torque [4].  
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Short circuit of a phase Short circuit between phases 

  

Short circuit in the slots Degradation caused by overvoltage 

  

Unbalance of supply voltage Damage due to overload 

Figure 1.8 : Stator faults [5] 

1.2.2.2.2 Rotor faults 

Similar to its stator counterpart, a wound rotor can encounter comparable electrical 

issues. However, for the robust cage rotor, faults may originate from BRBs or rings (see 

Figure 1.9). These fractures are often the result of stresses induced by frequent starts or 

overheating, and can also stem from manufacturing faults such as air bubbles or shoddy 

welds [4]. When a break occurs, it disrupts the current flow causing disturbances in both 

torque and current signals which become more pronounced in systems with high inertia. 

Interestingly in systems with lower inertia; the disturbances manifest as wobbling in 

mechanical speed and stator current amplitude. Ring portion breakage is equally 
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problematic, occurring as frequently as bar fractures. These cracks typically result from 

manufacturing faults such as bubbles or thermal mismatches between bars and rings, with 

rings generally carrying heavier currents. Improper ring sizing, harsh operating conditions, 

or torque overloads can all contribute to their failure. 

 

Figure 1.9 : rotor faults 

A bar breakage fault does not cause the machine to stop; due to the fact that the 

current which crossed the BRBs is re-distributed over the adjacent bars. These bars are 

then overloaded, which can lead to their rupture, and so on until the rupture of a 

sufficiently large number of bars to cause the machine to stop.  

Given the array of potential faults and their associated consequences, the 

implementation of monitoring techniques has become imperative for users of electrical 

machines. Moreover, designers are increasingly showing interest in developing these 

monitoring methodologies that can be used for the detection of multiple faults. In the next 

section, we discuss the different types of methods that support the IM diagnostic task. 

1.3 Induction motor diagnosis methods 

1.3.1. Model-free methods 

Those Methods are based on the analysis of measured signals; they have the 

advantage of being independent of internal fluctuations of the IM. Thus, the information 

contained in the signals is not affected by a possible modeling error. Several signal 

processing techniques have long been used to analyze the spectral content of different 

signals from electrical machines such as: currents, electromagnetic torque, vibrations, 

magnetic flux, instantaneous powers, speed, etc… [6] 
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1.3.1.1 Diagnosis by stator current analysis 

The analysis of the stator currents occupies a privileged place in the diagnosis of 

IMs without models. Stator currents are easily accessible and carry information about the 

fault in their spectral contain. This technique is known under the abbreviation MCSA 

(Motor Current Signature Analysis). It was the subject of several research works; it 

consists of assigning a spectral signature to each fault characterizing it. In the same 

context, it was demonstrated that the severity of the fault is a function of the amplitude of 

the harmonic frequency components that it generates, in particular who’s already present in 

the healthy IM. Panadero et al. [7] present an online/offline MCSA with advanced signal 

and data processing algorithms, based on the Hilbert transform. In particular, it is very 

difficult to detect BRBs when the motor is operating at low slip or under no load. 

Therefore, Panadero proposed advanced signal and data processing algorithms. for 

achieving MCSA efficiently. They consist of a sample selection algorithm, a Hilbert 

transformation algorithm of the stator-sampled current and a spectral analysis via FFT of 

the modulus of the resultant Hilbert transformation vector. Rangel-Magdaleno et al. [8] use 

MCSA to detect BRB on IMs under different mechanical load condition. The proposed 

algorithm first identifies the motor load and then the motor condition. The proposed 

method has been implemented in a field programmable gate array, to be used in real-time 

online applications; it reached a 95% accuracy of failure detection. 

1.3.1.2. Diagnosis by dq vector analysis  

Induction motor fault diagnosis gets a boost with d-q vector analysis. This 

advanced technique transforms three-phase stator currents into two rotating components (d 

and q) by the Park’s vector (PV); this technique simplifies analysis and reveals valuable 

insights into the motor's health. Its sensitivity makes it particularly effective for detecting 

and characterizing common faults like BRB, stator windings issues, and bearing faults. 

Yihan and Acosta [9-10] explore the PV trajectory. It is a circle that shows the ratio 

between the maximum and minimum RMS (root mean square) of the DQ components; its 

eccentricity is near to zero under healthy condition. This eccentricity shows difference 

when different fault types occur, the value of the ratio is larger when phase-phase short 

circuit occurs compared with inter-turn and phase-ground short circuit faults; the 

eccentricity of Park's Vector trajectory would increase with the fault degree severity.  
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Cardoso et al. [11] describe the use of an extended PV (EPV) approach for 

diagnosing the occurrence of stator winding faults in real time operating IM. Experimental 

results, obtained in the laboratory, corroborate that these faults can be detected in the EPV 

approach, by the identification of a spectral component at twice the fundamental supply 

frequency.  

While detecting motor faults with Park's vector is simple. The Multiple Park's 

Vector (MPV) approach tackles this challenge by extracting distinct characteristics for 

different faults like stator windings, rotor windings, unbalanced voltage, and bearings [12]. 

These characteristics exist even under healthy conditions, but are slightly unbalanced due 

to the motor's natural asymmetry. Tushar G. et al [12] assume that the MPV cleverly 

balances these patterns, creating a circular reference pattern. Any deviation from this circle 

in the Park's vector reveals a fault like shown in (figure 1.10), with the specific shape and 

size indicating the type and severity. Tested on experimental motor and validated by 

simulations, MPV promises accurate and robust fault classification for motor operation. 

 

Figure 1.10:  Short circuit detection using park’s vector approach [12] 

1.3.1.3. Diagnosis by measuring electromagnetic torque 

The electromagnetic torque (EMT) developed in the machine comes from the 

interaction between the stator field and rotor field. Consequently, any fault either at the 

stator or at the rotor, directly affects EMT. The spectral analysis of this signal, gives 

relevant information on the state of the motor. However, the need for fairly expensive 

equipment to acquire this EMT represents the major drawback of this method. [14-16] 

have used the EMT to detect rotor faults like BRBs and misalignment.  

1.3.1.4. Diagnosis by measuring vibrations 

Diagnosis by vibration analysis is one of the mechanical techniques which are used 

to detect faults in electrical machines. A vibration is often accompanied by an audible 
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noise which can be high even for low vibration amplitudes. Fault diagnosis using vibration 

analysis is the best-known method in practice [6]. The radial forces created by the air gap 

field, cause vibrations in the IM. These forces are proportional to the square of the 

magnetic induction [6]. Machine vibrations can be captured by accelerometers placed on 

the bearings in the axial, vertical and radial directions. The spectra of the vibration signals 

from the faulty motor are compared with those of references recorded when the motor was 

in healthy condition. This method allows the detection of both electrical and mechanical 

faults since the distribution of the magnetic induction in the air gap is the product of the 

magnetomotive force (MMF) and the permeance. The MMF contains the effects of the 

asymmetries of the stator or the rotor and the permeance depends on the variation of the air 

gap (because of the openings of the stator, rotor slots and the eccentricity). However, the 

cost of vibration sensors which is relatively high, as well as the difficulties encountered in 

connecting these sensors (accessibility problem) represents the limits and disadvantages of 

this method [6]. [13] Lamim Filho et al focuse on detecting and diagnosing electrical faults 

in the stator winding of three-phase induction motors through magnetic flux and vibration 

signals. Those last are obtained via corresponding sensors. A correlation was established 

between major electrical faults (such as inter-turn short circuits and unbalanced voltage 

supplies) and the signals of magnetic flux and vibration, enabling the identification of 

characteristic frequencies associated with these faults. Experimental results demonstrated 

the effectiveness of combining these techniques for detection, diagnosis, and monitoring 

purposes. Betta et al. [17] use vibration signals, those last are on-line acquired and 

processed to obtain a continuous monitoring of the machine status. In case of a fault, the 

system is capable of isolating the fault with a high reliability. Jafar zarei et al. [18] use an 

intelligent filter to cut-off the non-necessary component in a vibration signal in order to 

detect bearings faults such as inner and outer race.  

1.3.1.5 Diagnosis by measuring the leakage axial magnetic flux 

The electromechanical conversion of energy is located in the air gap. This 

conversion is therefore affected by any magnetic, mechanical, electrical or electromagnetic 

fault in the rotor or in the stator. The air gap flux is by the same token the induction 

magnetic in this air gap, the flux embraced in the stator windings, or again the leakage flux 

in the axis of the rotor are parameters which, because of their sensitivity to any imbalance 

of the machine,  merit to be analyzed. The axial flux is the result of the effect of currents 

on the ends of the machine (heads of coils, short-circuit rings), it is always present in 
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electrical machines because of asymmetries inherent to their manufacture. The study of 

flux variations can therefore be a solution to detect and locate a fault through the use of 

search coils placed at outside the machine, perpendicular to the rotor axis. Manés F. 

Cabanas et al. [19] report a new diagnostic method, based on the measurement of the 

magnetic flux linked by one stator coil, which allows perfect simple discrimination 

between the actual presence of rotor asymmetries and the spurious effects caused by the 

oscillations in the load torque of the driven IM. Humberto henao et al. [20] has proved that 

a simple external stray flux sensor is more efficient than the classical MCSA to detect 

stator inter-turn short-circuits (SITSC) in three-phase IM. The new result is that, even in 

the presence of power supply harmonics, it is possible to easily detect the stator winding 

faults in the low-frequency range of the flux spectrum with low-frequency resolution. 

 

1.3.1.6. Diagnosis by frequency analysis of measured  instantaneous power 

Using instantaneous power for fault detection in IMs, has been the objective of 

numerous works such as [21] and [22]. The instantaneous power is the product of the 

supply voltage and the current absorbed by the IMs. Therefore, the amount of information 

provided by this quantity is greater than that brought by the current alone; the spectrum of 

the instantaneous power contains an additional component located at the fault frequency. 

Liu et al. [22] leverages the spectral analysis of instantaneous power to diagnose both BRB 

and eccentricity faults in squirrel-cage induction motors. Their theoretical analysis 

demonstrates that the instantaneous power spectrum lacks components at the fundamental 

supply frequency, facilitating the isolation of fault signatures due to the aforementioned 

faults. This enables effective separation of mixed faults and fault severity quantification.  

1.3.2. Model-based methods 
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Models of motor operation under healthy and faulty conditions are useful for 

investigating the operational characteristics of faulty motors without destructive testing. The 

modeling of an induction machine can be broken down into four broad categories as 

illustrated in Figure. 1.11 [23].  

 

Figure.1.11: Model based categories [23] 

1.3.2.1 Multiple Coupled Circuit model 

 In the multiple coupled circuit (MCC) equation modeling approach, the stator 

and/or rotor windings are represented by an equivalent electrical circuit consisting of an 

inductance in series with a resistance [24].  

 

Figure 1.12: MCC topology [23] 

The self and mutual inductances between the stator and rotor of the machine play 

an important role in this modeling method because they contain the signature of the 

different phenomena that can occur in the IMs. These inductors can be calculated using 

either winding functions theory [6], which requires precise knowledge of the shape of the 

machine's windings, or by decomposing the air gap induction into a Fourier series. This 

type of modeling can therefore take into account spatial harmonics. Time harmonics 

generated by a three-phase AC power supply or by a static converter have been 

Circuit models 

State space models 

FEM models 

Observer models 

IMs 



20 
 

 
 

incorporated into the modeling of the IM’s power supply. The assumptions of this 

approach are:  

 The magnetic circuit is linear (the relative permeability of iron is much greater 

than 1). The skin effect is neglected.  

 The rotor bars are insulated from each other, which eliminates inter-bar 

currents and their effects within the rotor cage.  

 The machine's iron losses, capacitive effects, and thermal effects are neglected. 

 

 

1.3.2.2. Magnetic Equivalent Circuit  model 

Magnetic Equivalent Circuit (MEC) model, also known as permeance network 

model or flux tube models, it is based on detailed magnetic modeling of the machine. The 

magnetic field distribution within the motor is used to evaluate its performance since it 

contains complete information on the stator, rotor and mechanical parts of the motor. The 

magnetic equivalent circuit (MEC) method is based on decomposing the magnetic circuit 

of the machine into elementary flux tubes [23]. A MEC representing the geometry of the 

machine is created, with each MEC calculated from a flow tube. This circuit can be 

compared to a regular electrical circuit, except that fluxes and magnetic potential 

differences are used instead of currents and electrical potential differences. This approach 

allows the characteristics of the iron used in the construction of the IM to be taken into 

account. In fact, the calculation of different MECs can only be done by setting a precise 

value for the relative permeability of iron. The rotational movement of the machine is 

taken into account through variable air gap MECs that depend on the angular position of 

the rotor. The MEC method is less precise than the finite element method, but more precise 

than analytical modeling. The advantage of this method is that it allows for rapid numerical 

resolution.  

1.3.2.3 Finite Element Model  

The finite element model (FEM) is a numerical method used to solve 

electromagnetic field problems. It is used in IM diagnosis to understand and quantify the 

local consequences of faults on different parts of the IM. The FEM works by dividing the 
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machine's magnetic circuit into small elements, each of which is considered to be linear. 

This allows the FEM to take into account the geometry of the machine, the saturation of 

magnetic materials, and the skin effect in the rotor bars. In the field of IM diagnosis, the 

FEM is used to study the local effects of faults such as BRB and SITSC in the phases. For 

example, the FEM can be used to study the local heating and electro-dynamic stress on the 

bars neighboring BRBs. The FEM can also be used to study the local magnetic and thermal 

impacts of SITSC. Considering the local electromagnetic behavior allows for a more 

accurate model of the motor. The FEM also takes into account the electrical equations of 

the machine, which reduces the simplifications made in classical models. This results in a 

model that is closer to the real electrical machine. Vaseghi et al [25] have developed a time 

stepping two- dimensional FEM for modeling and analyzing of IM with SITSC fault. FEM 

analysis is used for magnetic field calculation and the magnetic flux density and vector 

potential of machine is obtained for healthy and faulty cases. By comparing the magnetic 

flux distribution of healthy and faulty machines, the detection of SITSC fault is evident. 

Delforge et al. [26] have developed two model based on MEC and FEM. Simulation results 

on an induction machine are presented and compared showing a good agreement between 

the two models and the motor. 

1.3.2.4. Modified DQ-model 

 The traditional dq transient model of induction machines operates under the 

assumption of sinusoidal distribution for stator and rotor windings, as well as the MMF. 

However, the rotor cage of an IM is non-sinusoidally distributed. Despite this, it can be 

replaced by an equivalent distributed winding. This DQ model of induction motors has 

been used to study some phenomena such as voltage drops and oscillatory torque that may 

occur during start-up and other severe motor operations. DQ models are based on the Park 

transformation, which converts current and voltage signals from the abc reference frame to 

the dq reference frame. Modified dq models have been used mostly to study rotor bar faults 

[27-28], although they have also been applied to the study of SITSC in one or more phases 

[29] and eccentricity [30]. However, this model requires a modification in model structure 

for each fault mode. Despite this, it is widely used for the detection of multiple stator 

faults. 
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1.3.2.5. Observer model 

Observer-based fault diagnosis method for induction motors is another powerful 

approach for detecting and identifying IMs problems. Observer-based techniques focus on 

reconstructing the internal state of the motor using readily available measurements like 

stator currents and voltages. In fact; these models observe the motor's behavior based on 

external measurements. They provide estimates of internal states like rotor currents, speed, 

and flux linkages, which are typically difficult to measure directly. Thus; these models 

compare the estimated internal states of motor with a healthy motor model where 

deviations can be identified. These deviations can then be analyzed to locate specific faults 

within the motor, such as bearing fault, BRBs, or SITSCs. Different fault signatures in the 

estimated states can be mapped to specific fault types, enabling isolation and diagnosis. 

Observer model has very important advantages due to the simple implementation of them; 

where they require only readily available external measurements, making it cost-effective 

and easy to implement in real-world applications. Their robustness where it guaranties a 

less susceptible to sensor noise and uncertainties compared to some other methods. It can 

also be used for online fault detection and monitoring for preventive maintenance. 

Observer-based diagnosis method has a limitation points. These last manifests in model 

dependency, relies on accurate motor models, which can be challenging to develop for 

complex motors or under transient conditions. Sensitivity to sensor faults: Faulty sensors 

can lead to inaccurate state estimates and incorrect fault diagnosis. One of the powerful 

observers in IM fault diagnosis is the Kalman filter. This approach leverages the Kalman 

filter's state estimation capabilities to predict the internal state of an induction motor and 

detect potential faults. By dynamically updating its estimates based on noisy measurements 

and a motor model, the Kalman filter accurately tracks crucial parameters like rotor speed 

and fluxes, even when direct measurement is infeasible. Jian-Da et al. [31] have presented 

an application of adaptive order tracking fault diagnosis technique based on recursive 

Kalman filtering algorithm. A high-resolution order tracking method with adaptive Kalman 

filter is used to diagnose the fault in a gear set and damaged machine turbocharger wheel 

blades. Elmeraoui et al. [32] propose an observer-based fault detection of a delta connected 

IM model that takes the SITSC into account. It allows the generation of residual using 

Extended Kalman filter (EKF). To overcome the problem of the EKF initialization, the 

cyclic optimization method is applied to determine its tuning parameters. The proposed 

approach is done in real-time in order to quickly detect fault and estimate its severity. 
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1.4. AI- based methods 

Artificial intelligence (AI) has attracted great attention from many researchers and 

shows promise in rotating machinery fault recognition applications. However, due to the 

variability and richness of the response signals, it is almost impossible to recognize fault 

patterns directly. Therefore, a common fault diagnosis system often consists of two key 

steps: data processing (feature extraction) and fault recognition. Most intelligent fault 

diagnosis systems are built based on preprocessing by feature extraction algorithms to 

transform the input patterns into low-dimensional feature vectors for easier match and 

comparison. The feature vectors are then used as the input of AI techniques for fault 

recognition. This step amounts to mapping the information obtained in the feature space to 

machine faults in the fault space. Numerous AI tools and techniques have been used in 

fault diagnosis of rotating machinery, including convex optimization, mathematical 

optimization, and classification-, statistical learning-, and probability-based methods. 

Specifically, machine learning methods they have been widely used, such as k-nearest 

neighbor (k-NN) algorithms, Bayesian classifiers, support vector machines (SVMs), and 

artificial neural networks (ANNs). There are also other AI methods which are deep 

learning approaches, they are the most recently used ones and they largely have begun to 

be applied in the field of fault diagnosis. [33] 

1.4.1. Machine learning  methods (ML) 

1.4.1.1 K-nearest neighbor  

The k-nearest neighbors (KNN) algorithm is a simple and intuitive supervised 

classification algorithm that classifies target points (unknown class) based on their 

distances to points in a training set (whose classes are known). KNN works by first finding 

the k most similar points in the training set to the target point (figure 1.13). The class of the 

target point is then assigned based on the majority class of the k most similar points. KNN 

can be used with both quantitative and qualitative data. For quantitative data, the distance 

between two points is typically measured using a Euclidean distance metric. For qualitative 

data, the distance between two points is typically measured using a Hamming distance 

metric. KNN is a useful algorithm that can be utilized for a variety of classification tasks. It 

is particularly well-suited for tasks where the training data is limited or where the data is 

noisy [34]. 
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Figure 1.13 : the diagram of K-NN [33 ] 

In literature, k-NN has been proved to work well and applied widely in fault 

diagnosis. As an instance-based algorithm, k-NN can be used both for classification and 

regression. Jung and Koh [35] exploit the multi-scale energy analysis of discrete wavelet 

transformation to obtain a low-dimensional feature subset of data. The reduced subset of 

data is used as the input of k-NN for bearing fault classification. In [36], Pandya et al. 

present a bearing fault diagnosis method, which uses the acoustic signal to extract features 

by a Hilbert-Huang Transform (HHT). Those features are used as the input of k-NN 

classifiers. This paper also compares the performance of various AI methods. 

1.4.1.2. Naïve Bayes  

A Naive Bayes (NB) classifier is a simple and powerful probabilistic machine 

learning algorithm used for classification tasks. There are different types of Naive Bayes 

such as Gaussian Naive Bayes, Multinomial Naive Bayes and Bernoulli Naive Bayes. It 

uses Bayes' theorem with the strong assumption of independence between features to 

calculate the probability of a data point belonging to a specific class. Its functioning 

principle involves calculating the probabilities of each class given the input features and 

then selecting the class with the highest probability as the output prediction. Naive Bayes 

classifiers serve as a viable option for initial fault detection in IMs. Because, it requires 

minimal training data and is computationally inexpensive, making it suitable for real-time 

fault detection in IMs. Besides, it is useful when dealing with scarce or expensive sensor 

data, providing reliable diagnoses even with limited information. It provides 

straightforward logic behind fault classifications, aiding in easier comprehension of 

diagnosis outcomes and aligns well with the categorical nature of many fault diagnosis 

features in IMs. However, caution is necessary. Its assumption of feature independence 

might not hold in complex IM systems, leading to potential inaccuracies when features 
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interact. Its limitations in handling complex fault scenarios struggles to capture intricate 

relationships among features in scenarios involving multiple or complex faults, impacting 

its ability to isolate specific faults accurately [34]. 

Naive Bayes is a generative model with high learning and predicting efficiency. For 

SITSC fault diagnosis of IMs; [37] Seshadrinath et al. compare the induction machines 

diagnosis results from other AI algorithms to a NB, based on features extracted by the dual 

tree complex wavelet transform, results show the good accuracy of NB. Duan et al. [38] 

present a segmented infrared image analysis for rotating machinery fault diagnosis, which 

applies an image segmentation approach to enhance the feature extraction to infrared 

image analysis. Then, a feature fusion method is applied to obtain features from selected 

regions for fault diagnosis by NB classifier. 

 

1.4.1.3. Support Vector Machine 

A Support Vector Machine (SVM) is a supervised machine learning algorithm used 

for classification and regression tasks. It is particularly effective for classification problems 

and has been applied to fault identification of IMs due to its strengths. In fact, an SVM 

model analyzes data for classification purposes. It works by finding the optimal hyper-

plane that best separates different classes in the input feature space. This hyper-plane aims 

to maximize the margin between classes, thus improving generalization and classification 

accuracy. Figure 1.14 show the optimal hyper-plane for a binary classification by an SVM 

classifier.  SVMs are efficient even in high-dimensional spaces, making them suitable for 

fault identification in IMs with multiple features and complex datasets. SVMs use kernel 

functions to map input data into higher-dimensional spaces, enabling the classification of 

non-linear data. This capability is valuable when dealing with diverse fault patterns in IMs. 

SVMs tend to generalize well and are less prone to over-fitting problems, ensuring reliable 

fault identification by avoiding learning noise in the data [34]. 
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Figure 1.14: The optimal hyper plane for a binary classification by SVM [33]. 

[39] Soualhi et al. developed a way to diagnose bearing problems, they use the 

HHT Huang Transformation to extract health indicators from vibration signals to tack the 

degradation of critical components in bearings. Then the degradation states are detected by 

SVM. Unlike Li et al. [40], Instead of using vibration signals in traditional methods, they 

used SVM to analyze the acoustic emission signals for the diagnosis and prediction of 

different rotor fissures depth. Banerjee and Das [41] uses sensor data fusion to investigate 

a hybrid method for fault signal classification by using an SVM classifier and STFT 

technique. 

1.4.1.4. Decision Tree 

A Decision Tree (DT) algorithm is a supervised machine learning technique used 

for both classification and regression tasks. It is a flowchart-like tree structure where each 

internal node represents a feature, each branch represents a decision rule, and each leaf 

node represents an outcome (class label or numerical value) (figure 1.15). In fact, DTs 

organize data into a tree-like structure where each node denotes a decision based on a 

particular attribute, leading to branches that represent possible outcomes or further 

decisions. [34] 
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Figure 1.15 Decision Tree process. 

Like illustrate in figure 1.15; Starting from the root node, each internal node tests a 

specific attribute, and the outcome determines which branch to follow. This process 

continues until a leaf node, which holds the final decision or prediction. DTs have been 

utilized effectively in fault diagnosis for induction motors (IMs) due to their ability to 

handle complex decision-making processes and their interpretability. Saimurugan et al. 

[42] employ vibration signals to extract the features to identify the status of a machine. DT 

algorithm was used to select the prominent features. These features were given as inputs 

for training and testing two SVM models of classification, both of the models demonstrate 

good accuracies. Aydin et al. [43] propose a new approach that requires the measurement 

of only one phase current signal in order to construct the phase space representation. Then 

each phase space is converted into an image, and the boundary of each image is extracted 

by a DT boundary algorithm.  Therefore, an AI detection algorithm has been designed to 

detect BRBs fault. The results indicate the high recognition rate of the proposed approach 

compared to other ones. 

1.4.1.5. Fuzzy Logic Technique 

A fuzzy logic technique (FLT) refers to the utilization of fuzzy logic principles and 

methodologies to handle uncertainty and imprecision in decision-making, control systems, 

pattern recognition, and various other applications. It involves employing fuzzy sets, 

membership functions, fuzzy rules, and fuzzy inference to model human-like reasoning 

and deal with ambiguous or vague data (figure 1.16). Fuzzy sets which allow elements to 

have degrees of membership within a set, representing the gradual transition between 

membership and non-membership. Membership functions which assign membership 
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values to elements based on their degree of belongingness to a fuzzy set. Fuzzy rules which 

use if-then rules to relate input variables and their associated fuzzy sets. Fuzzy Inference 

processes the fuzzy rules and membership functions to derive crisp output values from 

fuzzy inputs. [34] 

 

Figure 1.16: Fuzzy logic inference 

Fuzzy logic is extensively used in control systems, decision making and pattern 

recognition. As well in fault diagnosis of induction motors, that is due to their excel in 

handling imprecise and uncertain information, providing a more flexible way to model 

human-like reasoning. They can handle noisy data and variations more robustly compared 

to other methods. Lakrout et al. [44] present a method for detecting stator winding faults 

based on stator current analysis. A fuzzy logic approach is used to make decisions about 

the state of the stator winding (good, damaged or seriously damaged). Load Torque 

variations is one of the parameters that can disturb the SITSC fault detection, [45] Lashkari 

opt for fuzzy approach to detect and diagnose the severity of SITSC fault with the taking 

into account of the load variations. 

 

1.4.1.6. Artificial neural network  

Artificial Neural Networks (ANNs) are computational models inspired by the 

human brain's neural structure and task (figure 1.17). They consist of interconnected nodes 

arranged in layers, allowing for complex data processing and pattern recognition problems.  
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Figure 1.17: (a) Human simple neural network; (b) ANN with one hidden layer [33] 

ANNs are principally composed of neurons, layers, weights, connections and 

activation function. Neurons are the basic units of an ANN, alike to the neurons in the 

human brain. Each neuron receives input, performs a calculation, and produces an output. 

Layers are divided to three types; input layer, this one receives input data and transmits it 

to the network. Hidden layers also called Intermediate layers, they connect the input and 

output layers, and they are responsible for processing data through complex 

transformations. Output layer, which provides the final output based on the processed 

information from the hidden layers. Thus; these layers are related to each other by 

connections. Those last are between neurons and assigned weights, which represent the 

strength of the connection. These weights are adjusted during the learning process, 

impacting the network's behavior. Activation function are used to introduce nonlinearities 

into the system, enabling the network to learn complex patterns and relationships in data, 

there are multiple activation function that are used in ANN such as linear transfer function 

(purelin), sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU) etc… The 

area of ANNs is diverse and fascinating, offering a variety of tools for tackling different 

problems. [46]. Here is a slight opening into some popular types: 

1.4.1.6.1 Multi Layer Perceptron  

A MLP is a type of neural network with one or more hidden layers between the 

input and output layers. MLPs are also referred to as fully connected networks because 

each neuron in a layer is connected to every neuron in the subsequent layer. The 

architecture of an MLP is characterized by its ability to learn complex, nonlinear 

relationships in data (figure 1.18) [46]. 
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Figure 1.18: MLP architecture 

1.4.1.6.2. Feed Forward Neural Network 

A feed forward neural network (FFNN) is a type of ANNs that processes 

information in a forward direction, from the input layer to the output layer, without any 

feedback connections (figure 1.19). It follows a straightforward architecture where the 

outputs from one layer serve as inputs to the next layer. FFNNs are also known as MLPs 

when they have multiple hidden layers [46]. Activation functions are mathematical 

functions applied to the outputs of neurons in neural networks. They introduce nonlinearity 

into the network, enabling it to learn complex patterns in the data. Commonly used 

activation functions in FFNNs include the sigmoid function, tanh function, purelin, and 

rectified linear unit (ReLU) function. These functions transform the input values to a 

desired range, facilitating effective learning and prediction within the network. The general 

equations of a FFNN are:  

 Hidden layer equations: 

{
𝑘 = ∑𝑤𝑖𝑥𝑖 + 𝑏𝑖

𝑝𝑗(𝑘) =
1

1+𝑒−𝑘
 

                                                                                                        (1.1) 

 Output layer equations 

{
𝑦 = ∑𝑤′𝑗𝑝𝑗 + 𝑏′

𝑝𝑦(𝑦) = 𝑌
                                                                                                      (1.2) 

Where: 𝑤 is the weight, 𝑏 is the bias. 

. 
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Figure 1.19: FFNN configuration for one hidden layer. 

1.4.1.6.3. Radial Basis Neural Network 

Radial Basis Neural Network (RBNN) is a type of ANNs that uses radial basis 

functions as activation functions. Unlike traditional FFNNs with sigmoid or hyperbolic 

tangent activation functions, RBNNs have a unique architecture and are often employed 

for specific types of tasks offering advantages in classification of nonlinear data due to its 

simple structure and swift convergence. Similar to classical neural networks, the RBF 

network comprises three layers; an input layer, a hidden layer with radial basis functions, 

and an output layer each layer serving a distinct function. Figure 1.20 illustrates the current 

neural network configuration according to its respective functions. In greater detail, the 

first layer represents the input layer, where the number of nodes corresponds to the 

dimensions of the input data. The third layer constitutes the output layer, with the number 

of nodes matching the size of the output data. Notably, this layer maps nonlinearity 

through a linear combiner within a novel space. Situated between them, the intermediate 

layer, known as the hidden layer, introduces nonlinearity. Each node in this layer is 

purposefully identified and characterized through a radial basis function. The most 

commonly used radial basis function is the Gaussian function. [46]. 

The radial basis function process involves estimating each data point within the 

input vectors. The training data, collected from the current network, are compared to the 

input values to generate similar data. Each similarity value is then multiplied by weights in 



32 
 

 
 

the hidden layer, and the resulting summation is displayed in the output layer. For any new 

input data, the network can be easily calculated by measuring the Euclidean distance 

between the input and training data. In such cases, it's crucial to determine the center and 

the spread 𝜎 of nodes originating from the intermediate layer, along with the weight matrix 

positioned between the hidden layer and the output layer. To determine the center of node 

in hidden layer, cluster method is the best to ensure the procedure. This method to be done 

in sequence manner in order to divide data points into diverse categories. The activation 

function is typically represented as a Gaussian function (Equation 3). 

                                         𝜑𝑗(𝑥) = 𝑒
−
‖𝑥−𝑐𝑗‖

𝜎𝑗
2

                                                              (1.3) 

Where 𝑥 represents the input parameters; 𝑐𝑗 and σ𝑗 are center and spread of the i
th

 

RBF node, respectively. The spread can be calculated by Equation 4 as: 

                                         𝜎𝑗  =  
𝑑𝑚𝑎𝑥

√2𝑛
                                                                         (1.4) 

 Where 𝑛 is the number of the node in the intermediate layer, 𝑑𝑚𝑎𝑥 is the maximum 

distance between the cluster centers selected. 

Finally, the outputs of the non-linear activation function 𝜑𝑗(𝑥) are integrated 

linearly with the weight vector 𝜔𝑗 of the output layer to produce the output network class 

as presented in equation follows: 

                                     𝑐𝑙𝑎𝑠𝑠 𝑚 = ∑ 𝜑𝑗𝜔𝑗
𝑛
𝑗=0                                                            (1.5) 
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Figure 1.20: RBNN configuration 

Two types of radial basis function neural network are used in this study, and they 

are presented below: 

 The basic Radial Basis neural network  

This type of neural network is implemented by the "newrb" function. It iteratively 

constructs a radial basis network, adding one neuron at a time. The spread parameter 

determines the width of the Gaussian function associated with each neuron. [47]. 

 A larger spread results in a smoother function approximation.  

 However, if the spread is too large, it may require many neurons to fit a fast-

changing function. 

 Conversely, if the spread is too small, it may require numerous neurons to fit a 

smooth function, and the network may struggle to generalize well.  

Therefore, calling "newrb" with different spreads is necessary to find the optimal 

value for a given problem, balancing between smoothness and complexity for effective 

function approximation. [47]. 

 Radial basis extended neural network  (RBENN) 

This type of neural network is implemented by the "newrbe" function. It rapidly 

constructs a radial basis function network that achieves zero error on the training vector. 
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It's important to note that the spread parameter should not be too large, as this would cause 

each neuron to effectively respond in the same, broad area of the input space [47]. 

1.4.1.6.4. Generalized Regression Neural Network 

Generalized regression neural network (GRNN) contain four layers, input layer, 

pattern layer, summation layer and output layer [46]. Figure 1.21 illustrates the architecture 

of a GRNN. The role of the input layer is just like any other ANN, responsible to receive 

data; the pattern layer equation is given by: 

                     𝐹𝑘(𝑥, 𝑦) =
1

(2𝜋𝜎2)𝑀/2
1

𝑛
∑ 𝑒

−𝑑𝑥
2𝜎2
⁄ . 𝑒

−𝑑𝑦
2𝜎2
⁄𝑛

𝑗=1                                     (1.6) 

 

Where 𝑑𝑥 = (𝑥𝑗 − 𝑥)
𝑇
(𝑥𝑗 − 𝑥), 𝑑𝑦 = (𝑦𝑗 − 𝑦). 

𝑛 is the number of simple observations; 𝑀 is the size of the variable 𝑥𝑗 ; 𝜎 is the 

smoothing parameter; 𝑥 is the independent data in the input layer; 𝑥𝑖 is the observed input; 

𝑦 is the output coming from a specific input vector 𝑥; 𝑦𝑖 is the desired output coming from 

the observed  input 𝑥𝑖. 

 

Figure 1.21: GRNN configuration. 

The regression given by GRNN is the most possible 𝑦 provided from a specific 

input vector 𝑥. Thus; the summation layer has two type of processing neuron, numerator 
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neuron (𝑁) and denominator neuron (𝐷). There equations are defined by equations (7) and 

(8) successively. In the end, the neuron of the output layer is defined as the division of the 

numerator by the denominator (equation 9) and it represents the output. 

                                         𝑁 = ∑ 𝑦𝑗𝑒
−𝑑𝑥

2𝜎2
⁄𝑛

𝑗=1                                                          (1.7)  

                                         𝐷 = ∑ 𝑒
−𝑑𝑥

2𝜎2
⁄𝑛

𝑗=1                                                             (1.8)       

                                         �̂� = 𝑁/𝐷                                                                           (1.9) 

1.4.1.6.5. Artificial neural network in fault diagnosis of induction motors 

ANNs exceled in wide areas such as image and speech recognition, natural 

language processing, financial forecasting, healthcare diagnostics, and predictive 

maintenance. As well as in IM fault detection and identification by given classification of 

the fault introduced and estimating its severity. Lazar et al. [48] propose A FF-MLP-NN 

trained by back propagation algorithm for fault detection and localization of SITSC fault in 

the three phases. The detection process is based on monitoring the three-phase 

instantaneous power average using the stator currents and voltages, the experimental 

investigation demonstrate the effectiveness of the proposed method. As well as lashkari et 

al. [49], a FF-MLP-NN was used to locate SITSC fault. The fault indicator used in this 

approach was the three-phase shift between line current and phase voltage of induction 

motors. Notably, the method also considered unbalanced supply voltage to distinguish 

whether the unbalance in the three currents was due to an SITSC fault or a supply voltage 

fault. The experimental results demonstrated a superior accuracy of the proposed method. 

Maraaba et al. [50] proposed the use of a MLP-NN to estimate SITSC faults by 

determining the percentage of shorted turns. The fault indicator selected for this purpose 

was electro-mechanical torque. Statistical and frequency-related features such as mean, 

variance, max, min, and the occurrence of frequency at 2F (F is the supply frequency) were 

identified as highly distinctive, enabling the correlation of captured electromechanical 

torque with the corresponding percentage of shorted turns. The MLP-NN was trained using 

data from five different motors, and its efficiency was tested on two new, previously 

unseen motors. The results revealed a high level of accuracy in the range of 88–99%. 

Unlike lazar et al. [51], who proposed the use of a MLP-NN to determine the percentage of 

SITSC and detect USV occurrences. Researchers utilized current and voltage signals as 

fault indicators. The distinct features identified for this purpose included the maximum and 

minimum values of total instantaneous power, the phase shift between current and voltage, 
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and the negative sequence voltage. The training phase involved a mathematical model of 

the IM, while the testing phase employed an experimental test IM. The results 

demonstrated a high accuracy level within the range of 95–99%. Moosavi et al. [52] 

proposed the utilization of a FFNN for the diagnosis and classification of various levels of 

SITSCs. They employed a Finite Element Method (FEM)-based approach to develop a 

mathematical model of the motor, aiming to identify the most effective indicators. Signal 

processing, specifically FFT analysis, was applied to reveal the optimal patterns. The 

results were validated using experimental IM, and the ANN was trained and tested using 

experimental data. The proposed approach demonstrated a high level of accuracy in the 

diagnosis process. Nayenteh et al. [53] presented information on the localization of SITSC 

fault and the estimation of fault severity by determining the number of short-circuited turns 

during the fault. They employed a cluster of Focused Time-Lagged Neural Networks 

(FTLNNs) trained using the Particle Swarm Optimization (PSO) algorithm. The zero-

sequence current was identified as a significant feature, and the neural network cluster 

demonstrated satisfactory diagnostic capabilities. Asfani et al. [54] investigated SWSC 

fault occurrences, utilizing the Wavelet Transform (WT) for processing motor current 

signals. The energy level of the high-frequency signal from the wavelet transform served 

as the input variable for a neural network functioning as a detection system. Three types of 

neural networks, namely FFNN, Elman-NN, and RBFNN, were developed and assessed. 

The results indicated that ELMNN was the simplest and most accurate system capable of 

recognizing all unseen test data. Rajamani and Nabunita [55-56] established the per-unit 

change in negative sequence current with positive sequence current as the primary fault 

indicator, integrated into the architecture of a Feed forward Neural Network (FFNN). The 

output of the FFNN effectively classified the SWSC fault level. 

1.4.2. Deep learning methods  

Deep learning (DL), a subset of machine learning, employs artificial neural 

networks with multiple layers, commonly known as deep neural networks (DNNs), to 

address intricate tasks. The term "deep" reflects the utilization of multiple hidden layers 

within these networks. DNNs undergo training using an optimization technique known as 

backpropagation. Throughout the training process, the network refines its internal 

parameters, including weights and biases, based on the disparity between predicted and 

actual outcomes. This iterative adjustment enhances the network's proficiency in making 

accurate predictions. Non-linear activation functions, such as ReLU (Rectified Linear Unit) 
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and sigmoid play a crucial role in DNNs. The domain of deep learning is diverse and 

captivating, offering a spectrum of tools to tackle various problems [57]. Here, we 

highlight two of the most popular types: 

1.4.2.1. Convolutional Neural Networks  

Convolutional neural networks (CNNs) are specialized deep neural networks 

designed for processing grid-like data. They are characterized by two types of layers: 

convolutional layers and pooling layers. The convolutional layers utilize filters to extract 

local patterns and spatial hierarchies, allowing the network to recognize complex visual 

structures. The pooling layers down-sample the spatial dimensions, reducing 

computational complexity, and providing translation invariance. In addition, the fully 

connected layers and the softmax layer are usually added as the top layers to make 

predictions. To give a clear illustration, the framework for a one-layer CNN is displayed in 

(figure 1.22). CNNs have demonstrated remarkable success in image recognition, object 

detection, and various computer vision tasks, leveraging their capacity to capture local 

patterns and spatial relationships in visual data. Moreover, they have proven (effective) 

effectiveness in fault diagnosis of induction motors [57]. 

 

Figure 1.22: Illustrations for one-layer CNN that contains one convolutional 

layer, one pooling layer, one fully connected layer and a softmax layer. [58] 

Janssens et al. [59] employed a 2D-CNN model to recognize four categories of 

rotating machinery conditions. The model's input consisted of Discrete Fourier Transform 

(DFT) results derived from two accelerometer signals collected by two sensors positioned 

perpendicular to each other. Consequently, the input height corresponds to the number of 

sensors. The CNN architecture used comprised one convolutional layer and one fully 

connected layer. Classification was performed using the top softmax layer. Liu et al. 
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introduced a Dislocated Time Series (DTS) CNN for the fault diagnosis of IM’s rotor 

faults [60]. In their approach, a dislocated time series layer was incorporated to shift the 

1D input mechanical signal into an output matrix. The Dislocated Time Series (DTS) 

operation involved arranging several intercepted signals from the original signal to form 

this matrix. Subsequently, a conventional deep CNN model was applied for further 

analysis. 

1.4.2.2. Recurrent Neural Networks  

Recurrent neural networks (RNNs) are specifically designed for handling sequential 

data, rendering them suitable for tasks involving time series analysis. In contrast to 

traditional FFNN, RNNs feature cyclic connections, allowing information to persist and 

circulate through the network in a loop (figure 1.23). The inherent ability of RNNs to 

capture temporal dependencies in data makes them well-suited for tasks where the order of 

inputs is essential. This characteristic enables RNNs to learn and remember information 

over extended sequences, addressing challenges associated with long-term dependencies. 

RNNs find applications in diverse fields, including speech recognition, language modeling, 

and notably fault recognition in IMs [57]. 

 

Figure 1.23: Recurrent neural network and Feed forward neural network 

architectures [58]. 

Zhao et al. introduced a hybrid approach that integrates handcrafted feature design 

with automatic feature learning for machine health monitoring [61]. Features were 

extracted from input time series and inputted into an enhanced bidirectional RNN, which 

comprises two modules: bidirectional and weighted feature averaging. The efficacy of their 

proposed model was demonstrated in three machine health monitoring tasks—tool wear 

prediction, gearbox fault diagnosis, and incipient bearing fault detection. The hybrid 
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approach show effectiveness in recognizing faults in IMs. In [62], Malhotra proposed an 

intriguing structure for bearing prediction. They devised an RNN-based encoder-decoder 

architecture, where the RNN encoder transformed a multivariate input sequence into a 

fixed-length vector. Subsequently, the decoder utilized these vectors to generate the target 

sequence. For prediction, they assumed that the model could initially be trained on raw 

signals corresponding to normal behavior in an unsupervised manner. The reconstruction 

error was then employed to compute a health index, subsequently used for estimating the 

remaining useful life of the bearing. It's noteworthy that a larger reconstruction error 

intuitively corresponds to an unhealthy machine condition. 

1.5. Conclusion  

The condition monitoring of motors plays a critical role in ensuring the 

uninterrupted functioning of machines. The meticulous selection of protective devices not 

only enhances the detection of anomalies but also expedites the restart process.  

Consequently, diagnosing electrical machines has been, and continues to be, a 

profoundly significant research focus spanning several decades, as discussed in this 

chapter. The introduction of monitoring has brought about a revolutionary shift in the 

maintenance of systems reliant on electrical machines. Essentially, this term denotes the 

systematic monitoring of a system to diagnose the condition of an alternating current 

motor, discerning various faults and assessing their severity under normal operating 

conditions.  

Throughout this chapter, our objective has been to compile comprehensive 

information regarding the symptoms that an IM may exhibit. Furthermore, we provide 

extensive details on diagnostic methods to facilitate a thorough understanding of the 

diagnostic processes. 
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Chapter (2) 

Modeling of Induction Motors with SITSC fault 
 

 

 

 

2.1 Introduction  

In this chapter, we will take on the first part the modeling of the asymmetric 

induction machine. In this modeling, we assume that the number of turns for each stator 

phase is different. This assumption does not change the fact that the machine is healthy, 

but the choice of the number of turns in the construction of the machine is different.  

Then, we will revisit the modeling of the IM but in the case of SITC fault. This 

takes into account short-circuit faults on the three stator phases. In practice, this fault can 

be due to damaged insulation (varnish or enamel) on the copper wires. We represent such a 

situation with an additional circuit connecting a part of the faulty phase to the neutral point.  

Finally, we will address the simulation of the two models of the machine. The 

simulation is performed in the Matlab/Simulink environment, which provides the 

opportunity to analyze the machine's behavior under various conditions of asymmetry and 

faults. 

2.2. Park’s Transform 

Park’s transform involves transforming the original IM phase windings a, b, c into 

windings arranged along two axes called d and q, presenting electrical and magnetic 

equivalence. This transformation facilitates the transference from the abc reference frame 

to the αβ reference frame, which remains fixed relative to the abc frame, or to the dq 

frame, which is movable. A transformation matrix is established for currents, voltages, and 

flux. 

𝑃𝑎 = √
2

3

[
 
 
 
 
 cos( 𝜃𝑎) cos( 𝜃𝑎 −

2𝜋

3
) cos( 𝜃𝑎 +

2𝜋

3
)

− sin(𝜃𝑎) − sin(𝜃𝑎 −
2𝜋

3
) −sin(𝜃𝑎 +

2𝜋

3
)

1
√2
⁄ 1

√2
⁄ 1

√2
⁄ ]

 
 
 
 
 

            

 

 

 

                   (2. 1) 
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Figure 2.1: From abc reference frame to αβ reference frame. 

Thus, the coefficient √
2 

3
 is related to the change of basis, and the power is conserved 

during this transformation. The change of variables concerning currents, voltages, and flux 

is defined in the two-phase system by the direct Park transformation as follows:  

𝑋𝑑𝑞0 = 𝑃𝑎𝑋𝑎𝑏𝑐 (2.2) 

𝑋𝑎𝑏𝑐 = 𝑃𝑎
−1𝑋𝑑𝑞0 (2.3) 

The inverse transformation matrix  𝑃𝑎
−1 is given by: 

𝑃𝑎
−1 = 𝑃𝑎

𝑇 (2.4) 

 Note: «a» can represent a statoric quantity «s» or a rotoric quantity «r» 

 

Figure 2.2: The representation of IM’s axes in dq reference frame 

 

2.2.1. Reference frame choice (d,q) 

What makes the Park transformation appealing is that the orientation of the dq 

frame can be arbitrary. There are three important choices; the dq frame can be fixed to the 

stator, to the rotor, or to the rotating field, depending on the application's objective [27]. 
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 d,q axes frame linked to the stator or stationary frame (𝜃𝑠= 0). Electrical quantities 

evolve in a steady-state electrical regime at the stator pulsation 𝜔𝑠. This choice is 

often adopted in observer studies [27]. 

  d,q axes frame linked to the rotor (𝜃𝑟= 0). Electrical quantities evolve in a steady-

state electrical regime at the rotor current pulsation 𝜔𝑟. They have a low frequency 

(slip frequency) [27].  

 d,q axes frame linked to one of the machine's fluxes. The model is simplified by 

using simpler equations. In a steady-state electrical regime, the model quantities are 

continuous. This method is frequently employed in control studies [27]. 

2.2.2. Stator-linked reference frame (Stationary Frame α β) 

This transformation is also called the Clarke transformation, which is, in fact, a specific 

case of the Park transformation. It is obtained when the d,q frame coincides with the αβ 

frame, i.e., by setting (𝜃𝑠= 0). This choice is often made for the diagnosis of electrical 

machines and also for the simplicity of calculations.  

The Park matrices for a stator-linked reference frame (𝜃𝑠= 0) are as follows: 

𝑃𝑠 = √
2

3

[
 
 
 1 −1 2⁄ −1 2⁄

0 √3 2⁄ −√3 2⁄
1
√2
⁄ 1

√2
⁄ 1

√2
⁄ ]

 
 
 

 

 

 

(2.5) 

2.2.3. Simplifying assumptions 

The modeling of the IM is based on a set of simplifying assumptions [2], which are: 

 Magnetic circuits are asymmetrical.  

 The distribution of induction in the air gap is sinusoidal. 

 The air gap is constant. 

 Phenomena of saturation are neglected, allowing the magnetic flux to be considered 

as a linear function of currents.  

 The influence of skin effect and heating on characteristics is not taken into account.  

Among the important consequences of these assumptions, we can mention:  

 The flux is additive.  

 Constancy of the proper inductances.  

 Sinusoidal variation law of mutual inductances between stator and rotor windings 

based on the electrical angle between their magnetic axes. 
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2.3 Asymmetrical Induction Motor modeling 

In the three-phase reference frame, the three vectors 𝑎𝑠, 𝑏𝑠and 𝑐𝑠are aligned with the 

axes of the three stator windings of the machine. The same applies to the rotor. The axis 𝛼𝑠 

is often taken as the reference, and the angle 𝜃 defines the rotor position relative to the 

stator. See Figure 2.2.  

Considering 𝑓𝑎, 𝑓𝑏, and 𝑓𝑐 as the ratios of the number of turns subtracted from the total 

number of turns with:  

𝑓𝑎    =   
𝑛𝑎
𝑁𝑠
        , 𝑓𝑏     =   

𝑛𝑏
𝑁𝑠
       ,      𝑓𝑐     =   

𝑛𝑐
𝑁𝑠

 

Such that:  𝑛𝑎,𝑛𝑏 and 𝑛𝑐are the numbers of turns subtracted for each phase. 

2.3.1. Electric equations 

Taking into account the assumptions mentioned earlier, the electrical equations for 

stator and rotor voltages can be written as follows: 

{
𝑉𝑎𝑏𝑐
𝑠 = 𝑅𝑎𝑏𝑐

𝑠 𝑖𝑎𝑏𝑐
𝑠 +

𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑠

            0 = 𝑅𝑎𝑏𝑐
𝑟 𝑖𝑎𝑏𝑐

𝑟 +
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟

 

 

 

(2.6) 

The quantities 𝑉𝑎𝑏𝑐
𝑠 ,   𝑖𝑎𝑏𝑐

𝑠  , 𝛷𝑎𝑏𝑐
𝑠  are 3x1 dimension vectors defined as follows: 

𝑉𝑎𝑏𝑐
𝑠 = [

𝑉𝑎
𝑠

𝑉𝑏
𝑠

𝑉𝑐
𝑠
]                    𝑖𝑎𝑏𝑐

𝑠 = [

𝑖𝑎
𝑠

𝑖𝑏
𝑠

𝑖𝑐
𝑠
]               𝛷𝑎𝑏𝑐

𝑠 = [

𝛷𝑎
𝑠

𝛷𝑏
𝑠

𝛷𝑐
𝑠
]   

Those of the rotor are: 

𝑖𝑎𝑏𝑐
𝑟 = [

𝑖𝑎
𝑟

𝑖𝑏
𝑟

𝑖𝑐
𝑟
]                    𝛷𝑎𝑏𝑐

𝑟 = [

𝛷𝑎
𝑟

𝛷𝑏
𝑟

𝛷𝑐
𝑟
] 

The matrices of the resistances of the stator and rotor windings are defined as follows: 

𝑅𝑎𝑏𝑐
𝑠 = [

𝑟𝑎𝑠 0 0
0 𝑟𝑏𝑠 0
0 0 𝑟𝑐𝑠

]  : Matrix of resistances of the stator. 

With:  

                                           {

𝑟𝑎𝑠=𝑟𝑠(1−𝑓𝑎)
𝑟𝑏𝑠=𝑟𝑠(1−𝑓𝑏)
𝑟𝑐𝑠=𝑟𝑠(1−𝑓𝑐)

                                                                       (2.7) 
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For  𝑟𝑎𝑠 = 𝑟𝑏𝑠 = 𝑟𝑐𝑠 = 𝑟𝑠    the IM becomes symmetric. 

𝑅𝑎𝑏𝑐
𝑟 = [

𝑟𝑟 0 0
0 𝑟𝑟 0
0 0 𝑟𝑟

]  : Matrix of resistances of the rotor 

𝑟𝑠: Resistance of one stator phase. 𝑟𝑟: Resistance of one rotor phase. 

By applying the Park transformation to equation (2.6), we obtain: 

a. For the stator 

PsVabc
s = Ps(Rabc

s iabc
s +

d

dt
𝛷𝑎𝑏𝑐
𝑠 )      

(2.8) 

𝑃𝑠𝑉𝑎𝑏𝑐
𝑠 = 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝑃𝑠

𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑠  

 

(2.9) 

In a (dq)-frame linked to the stator, we have: 

𝑃𝑠
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑠      =

𝑑

𝑑𝑡
(𝑃𝑠𝛷𝑎𝑏𝑐

𝑠 ) − (
𝑑

𝑑𝑡
𝑃𝑠)𝛷𝑎𝑏𝑐

𝑠  
 

(2.10) 

et (
𝑑

𝑑𝑡
𝑃𝑠)𝛷𝑎𝑏𝑐

𝑠 = 0  

(2.11) 

The matrix of stator voltages becomes: 

𝑃𝑠𝑉𝑎𝑏𝑐
𝑠 = 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑃𝑠
−1(𝑃𝑠𝑖𝑎𝑏𝑐

𝑠 ) +
𝑑

𝑑𝑡
(𝑃𝑠𝛷𝑎𝑏𝑐

𝑠 ) 
(2.12) 

We will arrive at the equation for stator voltages in the Park frame. 

𝑉𝑑𝑞0
𝑠 = 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 +
𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑠  

 

(2.13) 

Let’s define  𝑅𝑑𝑞0
𝑠 = 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑃𝑠
−1 (2.14) 

𝑉𝑑𝑞0
𝑠 = 𝑅𝑑𝑞0

𝑠 𝑖𝑞𝑑0
𝑠 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑠  

 

(2.15) 

Where:  

𝑅𝑑𝑞0
𝑠 = [

𝑟11
𝑠 𝑟12

𝑠 𝑟13
𝑠

𝑟21
𝑠 𝑟22

𝑠 𝑟23
𝑠

𝑟31
𝑠 𝑟32

𝑠 𝑟33
𝑠
].The elements of the stator resistance matrix are in appendix A.  

Where 𝑅𝑑𝑞0
𝑠  is the stator resistance matrix in the Park frame.  

If the machine is symmetric: 𝑅𝑑𝑞0
𝑠 = 𝑟𝑠 [

1 0 0
0 1 0
0 0 1

]. 

b. For the rotor 
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𝑃𝑟 = √
2

3

[
 
 
 
 
 cos( 𝜃𝑟) cos( 𝜃𝑟 −

2𝜋

3
) cos( 𝜃𝑟 +

2𝜋

3
)

− sin(𝜃𝑟) − sin(𝜃𝑟 −
2𝜋

3
) −sin(𝜃𝑟 +

2𝜋

3
)

1
√2
⁄ 1

√2
⁄ 1

√2
⁄ ]

 
 
 
 
 

 

 

 

(2.16) 

0 = 𝑃𝑟(𝑅𝑎𝑏𝑐
𝑟 𝑖𝑎𝑏𝑐

𝑟 +
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟 ) 

 

(2.17) 

0 = 𝑃𝑟𝑅𝑎𝑏𝑐
𝑟 𝑖𝑎𝑏𝑐

𝑟 + 𝑃𝑟
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟  

 

(2.18) 

with 

𝑃𝑟
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟 =

𝑑

𝑑𝑡
(𝑃𝑟𝛷𝑎𝑏𝑐

𝑟 ) − (
𝑑

𝑑𝑡
𝑃𝑟)𝛷𝑎𝑏𝑐

𝑟  
(2.19) 

0 = 𝑃𝑟𝑅𝑎𝑏𝑐
𝑟 𝑃𝑟

−1(𝑃𝑟𝑖𝑎𝑏𝑐
𝑟 ) +

𝑑

𝑑𝑡
(𝑃𝑟𝛷𝑎𝑏𝑐

𝑟 ) − (
𝑑

𝑑𝑡
𝑃𝑟)𝑃𝑟

−1(𝑃𝑟𝛷𝑎𝑏𝑐
𝑟 ) 

(2.20) 

0 = 𝑃𝑟𝑅𝑎𝑏𝑐
𝑟 𝑃𝑟

−1𝑖𝑑𝑞0
𝑟 +

𝑑

𝑑𝑡
(𝛷𝑞𝑑0

𝑟 ) − (
𝑑

𝑑𝑡
𝑃𝑟)𝑃𝑟

−1𝛷𝑞𝑑0
𝑟  

(2.21) 

with      

   (
𝑑

𝑑𝑡
𝑃𝑟) 𝑃𝑟

−1 = 𝜔𝑟 [
0 1 0
−1 0 0
0 0 0

] 

 

 

(2.22) 

 

Let’s define : 𝑅𝑑𝑞0
𝑟 = 𝑃𝑟𝑅𝑎𝑏𝑐

𝑟 𝑃𝑟
−1 

𝑅𝑑𝑞0
𝑟 = 𝑟𝑟 [

1 0 0
0 1 0
0 0 1

]. 

The rotor is symmetric 𝑟𝑎𝑟 = 𝑟𝑏𝑟 = 𝑟𝑐𝑟 = 𝑟𝑟 . 

Where 𝑅𝑞𝑑0
𝑟 is the rotor resistance matrix in the Park frame.  

We arrive at the equation for rotor voltages in the Park reference frame. 

0 = 𝑅𝑑𝑞0
𝑟 𝑖𝑑𝑞0

𝑟 − 𝜔𝑟 [
0 1 0
−1 0 0
0 0 0

]𝛷𝑑𝑞0
𝑟 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑟  

(2.23) 

Finally, we got: 

{
 

 𝑉𝑑𝑞0
𝑠 = 𝑅𝑑𝑞0

𝑠 𝑖𝑑𝑞0
𝑠 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑠

0 = 𝑅𝑑𝑞0
𝑟 𝑖𝑑𝑞0

𝑟 − 𝜔𝑟 [
0 1 0
−1 0 0
0 0 0

]𝛷𝑑𝑞0
𝑟 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑟

                                                    

(2.24) 

2.3.2. Magnetic equations 
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The simplifying assumptions mentioned earlier lead to linear relationships between the 

flux and currents of the IM. These relationships are expressed as follows: 

{
𝛷𝑎𝑏𝑐
𝑠 = 𝐿𝑎𝑏𝑐

𝑠𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑎𝑏𝑐

𝑠𝑟 𝑖𝑎𝑏𝑐
𝑟

𝛷𝑎𝑏𝑐
𝑟 = 𝐿𝑎𝑏𝑐

𝑟𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑎𝑏𝑐

𝑟𝑟 𝑖𝑎𝑏𝑐
𝑟     

(2.25) 

𝐿𝑎𝑏𝑐
𝑠𝑠 : Matrix of proper and mutual inductances between stator phases.  

𝐿𝑎𝑏𝑐
𝑟𝑟 : Matrix of proper and mutual inductances between rotor phases. 

𝐿𝑎𝑏𝑐
𝑠𝑟 : Matrix of mutual inductances between stator and rotor phases. 

𝐿𝑎𝑏𝑐
𝑟𝑠 : Matrix of mutual inductances between rotor and stator phases.  

𝐿𝑙𝑠: Stator leakage inductance.  

𝐿𝑙𝑟: Rotor leakage inductance. 

𝐿𝑚𝑠: Stator magnetizing inductance. 

To define the elements of the inductances of an asymmetric machine, it is assume that 

the stator phases 𝑎𝑠, 𝑏𝑠 and 𝑐𝑠have turn numbers given by 𝑁𝑎, 𝑁𝑏 and 𝑁𝑐, respectively, and 

that the rotor phases  𝑎𝑟, 𝑏𝑟 and 𝑐𝑟have turn numbers given by 𝑁𝑎𝑟 = 𝑁𝑏𝑟 = 𝑁𝑐𝑟 = 𝑁𝑟.  

The elements of the stator inductance matrix are: 

𝐿𝑎𝑏𝑐=
𝑠𝑠 [

𝐿𝑎𝑠𝑎𝑠 𝐿𝑎𝑠𝑏𝑠 𝐿𝑎𝑠𝑐𝑠
𝐿𝑏𝑠𝑎𝑠 𝐿𝑏𝑠𝑏𝑠 𝐿𝑏𝑠𝑐𝑠
𝐿𝑐𝑠𝑎𝑠 𝐿𝑐𝑠𝑏𝑠 𝐿𝑐𝑠𝑐𝑠

] 

𝐿𝑎𝑠𝑎𝑠 =
𝑁𝑎
2

𝑁𝑠2
(𝐿𝑙𝑠 +

2

3
𝐿𝑚) = 𝑁𝑎

2𝐿𝑚𝑙𝑠 
(2.26) 

𝐿𝑏𝑠𝑏𝑠 = 𝑁𝑏
2𝐿𝑚𝑙𝑠 (2.27) 

𝐿𝑐𝑠𝑐𝑠 = 𝑁𝑐
2𝐿𝑚𝑙𝑠 (2.28) 

With: 

𝐿𝑚𝑙𝑠 =
1

𝑁𝑠2
(𝐿𝑙𝑠 +

2

3
𝐿𝑚) 

(2.29) 

𝐿𝑚𝑠 =
2

3
𝐿𝑚 

(2.30) 

And 

{
 
 

 
 𝑁𝑎=𝑁𝑠( 1 − 𝑓𝑎), 𝑓𝑎 =

𝑛𝑎
𝑁𝑠

𝑁𝑏=𝑁𝑠( 1 − 𝑓𝑏), 𝑓𝑏 =
𝑛𝑏
𝑁𝑠

𝑁𝑐=𝑁𝑠( 1 − 𝑓𝑐), 𝑓𝑐 =
𝑛𝑐
𝑁𝑠

 

 

(2.31) 

 

The stator mutual inductances: 
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𝐿𝑎𝑠𝑏𝑠 = 𝐿𝑏𝑠𝑎𝑠 = (−
1

2
𝑁𝑎𝑁𝑏) (

2

3

𝐿𝑚
𝑁𝑠2
) = −

1

3

𝑁𝑎𝑁𝑏
𝑁𝑠2

𝐿𝑚 = 𝑁𝑎𝑁𝑏𝐿𝑚𝑠𝑠 
(2.32) 

𝐿𝑎𝑠𝑐𝑠 = 𝐿𝑐𝑠𝑎𝑠 = (−
1

2
𝑁𝑎𝑁𝑐) (

2

3

𝐿𝑚
𝑁𝑠2
) = −

1

3

𝑁𝑎𝑁𝑐
𝑁𝑠2

𝐿𝑚 = 𝑁𝑎𝑁𝑐𝐿𝑚𝑠𝑠 
(2.33) 

𝐿𝑏𝑠𝑐𝑠 = 𝐿𝑐𝑠𝑏𝑠 = 𝑁𝑏𝑁𝑐𝐿𝑚𝑠𝑠 (2.34) 

with    𝐿𝑚𝑠𝑠 = −
1

3

𝐿𝑚

𝑁𝑠
2 

(2.35) 

If the stator is symmetrical, the proper inductances of phases 𝑎𝑠 , 𝑏𝑠 and 𝑐𝑠are equal: 

𝐿𝑎𝑠𝑎𝑠 = 𝐿𝑏𝑠𝑏𝑠 = 𝐿𝑐𝑠𝑐𝑠 = 𝐿𝑙𝑠 +
2

3
𝐿𝑚 = 𝐿𝑙𝑠 + 𝐿𝑚𝑠 

(2.36) 

For the same reason, the mutual inductances of the stator are also equal. 

𝐿𝑎𝑠𝑏𝑠 = 𝐿𝑎𝑠𝑐𝑠 = 𝐿𝑏𝑠𝑎𝑠 = 𝐿𝑏𝑠𝑐𝑠 = 𝐿𝑐𝑠𝑎𝑠 = 𝐿𝑐𝑠𝑏𝑠 = −
1

2
𝐿𝑚𝑠 

(2.37) 

Consequently, the matrices of inductances are expressed as: 

𝐿𝑎𝑏𝑐
𝑠𝑠 =

[
 
 
 
 
 𝑓𝑎
2(𝐿𝑙𝑠 + 𝐿𝑚𝑠) −

𝐿𝑚𝑠
2
𝑓𝑎𝑓𝑏 −

𝐿𝑚𝑠
2
𝑓𝑎𝑓𝑐

−
𝐿𝑚𝑠
2
𝑓𝑎𝑓𝑏 𝑓𝑏

2(𝐿𝑙𝑠 + 𝐿𝑚𝑠) −
𝐿𝑚𝑠
2
𝑓𝑏𝑓𝑐

−
𝐿𝑚𝑠
2
𝑓𝑎𝑓𝑐 −

𝐿𝑚𝑠
2
𝑓𝑏𝑓𝑐 𝑓𝑐

2(𝐿𝑙𝑠 + 𝐿𝑚𝑠)]
 
 
 
 
 

 

And                       𝐿𝑎𝑏𝑐
𝑠𝑟 = 𝐿𝑠𝑟

[
 
 
 
 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
) 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
)

𝑐𝑜𝑠 (𝜃 −
2𝜋

3
) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
)

𝑐𝑜𝑠 (𝜃 +
2𝜋

3
) 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
) 𝑐𝑜𝑠(𝜃) ]

 
 
 
 

 

𝐿𝑠𝑟 : Maximum of the mutual inductance between one stator phase and one rotor phase.  

The rotor is assumed symmetrical, the proper inductances of phases 𝑎𝑟 , 𝑏𝑟 and 𝑐𝑟are 

equal. 

𝐿𝑎𝑟𝑎𝑟 = 𝐿𝑏𝑟𝑏𝑟 = 𝐿𝑐𝑟𝑐𝑟 = 𝐿𝑙𝑟 +
2

3
𝐿𝑚 = 𝐿𝑙𝑟 + 𝐿𝑚𝑟 

(2.38) 

For the same reason, the mutual inductances of the rotor are equal. 

𝐿𝑎𝑟𝑏𝑟 = 𝐿𝑎𝑟𝑐𝑟 = 𝐿𝑏𝑟𝑎𝑟 = 𝐿𝑏𝑟𝑐𝑟 = 𝐿𝑐𝑟𝑎𝑟 = 𝐿𝑐𝑟𝑏𝑟 = −
1

2
𝐿𝑚𝑟 

(2.39) 

Avec     𝐿𝑚𝑟 =
2

3
𝐿𝑚 (2.40) 

The matrix of mutual inductances between stator and rotor phases depends on the angular 

position 𝜃  (stator-rotor). It is written as: 
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𝐿𝑎𝑏𝑐
𝑠𝑟 =

[
 
 
 
 
 𝐿𝑎𝑠𝑎𝑟 cos 𝜃 𝐿𝑎𝑠𝑏𝑟 cos( 𝜃 +

2𝜋

3
) 𝐿𝑎𝑠𝑐𝑟 cos(𝜃 −

2𝜋

3
)

𝐿𝑏𝑠𝑎𝑟 cos(𝜃 −
2𝜋

3
) 𝐿𝑏𝑠𝑏𝑟 cos 𝜃 𝐿𝑏𝑠𝑐𝑟 cos(𝜃 +

2𝜋

3
)

𝐿𝑐𝑠𝑎𝑟 cos(𝜃 +
2𝜋

3
) 𝐿𝑐𝑠𝑏𝑟 cos(𝜃 −

2𝜋

3
) 𝐿𝑐𝑠𝑐𝑟 cos 𝜃 ]

 
 
 
 
 

 

𝐿𝑎𝑏𝑐
𝑟𝑠 = 𝐿𝑎𝑏𝑐

𝑠𝑟𝑇  (2.41) 

The coefficients 𝐿𝑎𝑠𝑎𝑟  ,𝐿𝑎𝑠𝑏𝑟, 𝐿𝑎𝑠𝑐𝑟, 𝐿𝑏𝑠𝑎𝑟,𝐿𝑏𝑠𝑏𝑟,𝐿𝑏𝑠𝑐𝑟 ,𝐿𝑐𝑠𝑎𝑟, 𝐿𝑐𝑠𝑏𝑟 and 𝐿𝑐𝑠𝑐𝑟 are the peak 

values of the stator-rotor mutual inductances. 

The elements of the matrix of mutual inductances between stator and rotor are [29]: 

𝐿𝑎𝑠𝑎𝑟 = 𝐿𝑎𝑠𝑏𝑟 = 𝐿𝑎𝑠𝑐𝑟 =
𝑁𝑎𝑁𝑟
𝑁𝑠2

(
2

3
𝐿𝑚) = 𝑁𝑎𝐿𝑚𝑠𝑟 

(2.42) 

𝐿𝑏𝑠𝑎𝑟 = 𝐿𝑏𝑠𝑏𝑟 = 𝐿𝑏𝑠𝑐𝑟 =
𝑁𝑏𝑁𝑟
𝑁𝑠2

(
2

3
𝐿𝑚) = 𝑁𝑏𝐿𝑚𝑠𝑟 

(2.43) 

𝐿𝑐𝑠𝑎𝑟 = 𝐿𝑐𝑟𝑏𝑟 = 𝐿𝑐𝑠𝑐𝑟 =
𝑁𝑐𝑁𝑟
𝑁𝑠2

(
2

3
𝐿𝑚) = 𝑁𝑐𝐿𝑚𝑠𝑟 

(2.44) 

𝐿𝑚𝑠𝑟 =
2

3

𝑁𝑟
𝑁𝑠2

𝐿𝑚 
(2.45) 

The stator and rotor Park fluxes are obtained by applying the Park transformation to 

equation (2.25). 

a. For the stator 

𝑃𝑠𝛷𝑎𝑏𝑐
𝑠 = 𝑃𝑠(𝐿𝑎𝑏𝑐

𝑠𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑎𝑏𝑐

𝑠𝑟 𝑖𝑎𝑏𝑐
𝑟 ) (2.46) 

𝛷𝑑𝑞0
𝑠 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1(𝑃𝑠𝑖𝑎𝑏𝑐

𝑠 ) + 𝑃𝑠𝐿𝑎𝑏𝑐
𝑠𝑟 𝑃𝑟

−1(𝑃𝑟𝑖𝑎𝑏𝑐
𝑟 ) (2.47) 

We arrive at the equation for stator fluxes in the Park reference frame. 

𝛷𝑑𝑞0
𝑠 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 + 𝑃𝑠𝐿𝑎𝑏𝑐
𝑠𝑟 𝑃𝑟

−1𝑖𝑑𝑞0                  
𝑟  (2.48) 

We define 𝐿𝑑𝑞0
𝑠𝑠  and 𝐿𝑑𝑞0

𝑠𝑟 as: 

𝐿𝑑𝑞0
𝑠𝑠 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1 (2.49)   

𝐿𝑑𝑞0
𝑠𝑟 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑟 𝑃𝑟
−1 (2.50) 

𝛷𝑑𝑞0
𝑠 = 𝐿𝑑𝑞0

𝑠𝑠 𝑖𝑞𝑑0
𝑠 + 𝐿𝑑𝑞0

𝑠𝑟 𝑖𝑑𝑞0
𝑟  (2.51) 

𝐿𝑑𝑞0
𝑠𝑠 = [

𝐿11
𝑠𝑠 𝐿12

𝑠𝑠 𝐿13
𝑠𝑠

𝐿21
𝑠𝑠 𝐿22

𝑠𝑠 𝐿23
𝑠𝑠

𝐿31
𝑠𝑠 𝐿32

𝑠𝑠 𝐿33
𝑠𝑠
] 
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The elements of the matrix of proper and mutual inductances between stator phases in the 

Park frame are in appendix A. 

If   𝑁𝑎 = 𝑁𝑏 = 𝑁𝑐 = 𝑁𝑠 

Thus:  𝐿𝑑𝑞0
𝑠𝑠 = [

𝐿𝑙𝑠 +
3

2
𝐿𝑚𝑠 0 0

0 𝐿𝑙𝑠 +
3

2
𝐿𝑚𝑠 0

0 0 𝐿𝑙𝑠

] 

𝐿𝑑𝑞0
𝑠𝑟  : Matrix of mutual inductances between stator and rotor phases in the Park reference 

frame. 

𝐿𝑑𝑞0
𝑠𝑟 = [

𝐿11
𝑠𝑟 𝐿12

𝑠𝑟 0

𝐿21
𝑠𝑟 𝐿22

𝑠𝑟 0

𝐿31
𝑠𝑟 𝐿32

𝑠𝑟 0
] 

The elements of the matrix of mutual inductances between stator and rotor in the Park 

frame are in the appendix A. 

b. For the rotor 

𝑃𝑟𝛷𝑎𝑏𝑐
𝑟 = 𝑃𝑟(𝐿𝑎𝑏𝑐

𝑟𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑎𝑏𝑐

𝑟𝑟 𝑖𝑎𝑏𝑐
𝑟 ) (2.52) 

𝛷𝑑𝑞0
𝑟 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑃𝑠
−1(𝑃𝑠𝑖𝑎𝑏𝑐

𝑠 ) + 𝑃𝑟𝐿𝑎𝑏𝑐
𝑟𝑟 𝑃𝑟

−1(𝑃𝑟𝑖𝑎𝑏𝑐
𝑟 ) (2.53) 

We arrive at the equation for rotor fluxes in the Park reference frame. 

𝛷𝑑𝑞0
𝑟 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 + 𝑃𝑟𝐿𝑎𝑏𝑐
𝑟𝑟 𝑃𝑟

−1𝑖𝑑𝑞0
𝑟  (2.54) 

We define 𝐿𝑑𝑞0
𝑟𝑠  and  𝐿𝑑𝑞0

𝑟𝑟  as: 

𝐿𝑑𝑞0
𝑟𝑠 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑃𝑠
−1 (2.55)   

𝐿𝑑𝑞0
𝑟𝑟 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑟 𝑃𝑟
−1 (2.56) 

𝛷𝑑𝑞0
𝑟 = 𝐿𝑑𝑞0

𝑟𝑠 𝑖𝑑𝑞0
𝑠 + 𝐿𝑑𝑞0

𝑟𝑟 𝑖𝑑𝑞0
𝑟  (2.57) 

𝐿𝑑𝑞0
𝑟𝑟 : Matrix of proper and mutual inductances between rotor phases in the Park reference 

frame. 

𝐿𝑑𝑞0
𝑟𝑟 =

[
 
 
 
 𝐿𝑙𝑟 +

3

2
𝐿𝑚𝑟 0 0

0 𝐿𝑙𝑟 +
3

2
𝐿𝑚𝑟 0

0 0 𝐿𝑙𝑟]
 
 
 
 

 

𝐿𝑑𝑞0
𝑟𝑠 = [

𝐿11
𝑠𝑟 𝐿21

𝑠𝑟 𝐿31
𝑠𝑟

𝐿12
𝑠𝑟 𝐿22

𝑠𝑟 𝐿32
𝑠𝑟

0 0 0

] 

The elements of the matrix of mutual inductances between rotor and stator in the Park 

frame are in the appendix A. 

Finally, we obtain: 
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{
𝛷𝑑𝑞0
𝑠 = 𝐿𝑑𝑞0

𝑠𝑠 𝑖𝑑𝑞0
𝑠 + 𝐿𝑑𝑞0

𝑠𝑟 𝑖𝑑𝑞0
𝑟

𝛷𝑑𝑞0
𝑟 = 𝐿𝑑𝑞0

𝑟𝑠 𝑖𝑑𝑞0
𝑠 + 𝐿𝑑𝑞0

𝑟𝑟 𝑖𝑑𝑞0
𝑟  

(2.58) 

2.3.3 Mechanic equations  

The study of the dynamic characteristics of the IM introduces variations not only in 

electrical quantities (voltage, current, flux), but also in mechanical quantities (torque, 

speed). 

𝐽
𝑑

𝑑𝑡
𝛺 = 𝐶𝑒−𝐶𝑟−𝑓𝑣𝛺 

 

(2.59) 

With  

𝛺 =
𝜔

𝑃
 

(2.60) 

𝐶𝑒: Electromagnetic torque. 

 𝐶𝑟: Resisting torque imposed by the mechanical load.  

𝑓𝑣 : Viscous friction torque.  

Ω: Rotation speed. 

 J: Moment of inertia.  

P: Number of pole pairs. 

The electromechanical torque is represented in the following equation [29]: 

Ce= P[𝑖𝑎𝑏𝑐
𝑠 ]𝑇[

𝑑

𝑑𝜃
𝐿𝑎𝑏𝑐
𝑠𝑟 ] [𝑖𝑎𝑏𝑐

𝑟 ]       (2.61) 

We have : 𝑖𝑎𝑏𝑐
𝑠 = 𝑃𝑠

−1𝑖𝑑𝑞0
𝑠  (2.62) 

With         [𝑖𝑎𝑏𝑐
𝑠 ]𝑇= [𝑃𝑠

−1𝑖𝑑𝑞0
𝑠 ]𝑇 (2.63) 

As a result, we obtain:  [𝑖𝑎𝑏𝑐
𝑠 ]𝑇 = [𝑖𝑑𝑞0

𝑠 ]𝑇[𝑃𝑠
−1]𝑇; [𝑃𝑠

−1]𝑇 =[𝑃𝑠] 

  [ 𝑖𝑎𝑏𝑐
𝑟 ] = [𝑃𝑟

−1][𝑖𝑑𝑞0
𝑟 ] (2.64) 

By substituting equation (2.64) into equation (2.61), we got: 

𝐶𝑒 = 𝑃[𝑖𝑑𝑞0
𝑠 ]𝑇[𝑃𝑠][

𝑑

𝑑𝜃
𝐿𝑎𝑏𝑐
𝑠𝑟 ][𝑃𝑟

−1][𝑖𝑑𝑞0
𝑟 ] 

 

(2.65) 

2.3.4. State space model 

The equations are rearranged to develop the state space model of the asymmetric IM. 

a. For the stator: 

Equation (1.15) can be written in developed form as: 



51 
 

 
 

𝑑

𝑑𝑡
[

𝛷𝑑
𝑠

𝛷𝑞
𝑠

𝛷0
𝑠

] = [

𝑉𝑑
𝑠 0 0
0 𝑉𝑞

𝑠 0

0 0 𝑉0𝑠

] − [

𝑟11
𝑠 𝑟12

𝑠 𝑟13
𝑠

𝑟21
𝑠 𝑟22

𝑠 𝑟23
𝑠

𝑟31
𝑠 𝑟32

𝑠 𝑟33
𝑠
] [

𝑖𝑑
𝑠

𝑖𝑞
𝑠

𝑖0
𝑠

] 

(2.66) 

The voltages are balanced and equal, so 𝑉0𝑠 = 0.  

Since the neutral is not connected, 𝑖0
𝑠 = 0. 

 
𝑑

𝑑𝑡
𝛷𝑑
𝑠 = 𝑉𝑑

𝑠 − 𝑟11𝑖𝑑
𝑠 − 𝑟12𝑖𝑞

𝑠  (2.67) 

 
𝑑

𝑑𝑡
𝛷𝑞
𝑠 = 𝑉𝑞

𝑠 − 𝑟21𝑖𝑑
𝑠 − 𝑟22𝑖𝑞

𝑠  (2.68) 

b. For the rotor: 

Equation (1.23) can be written in developed form as: 

𝑑

𝑑𝑡
[

𝛷𝑑
𝑟

𝛷𝑞
𝑟

𝛷0
𝑟

] = 𝜔𝑟 [
0 1 0
−1 0 0
0 0 0

] [

𝛷𝑑
𝑟

𝛷𝑞
𝑟

𝛷0
𝑟

] − 𝑟𝑟 [
1 0 0
0 1 0
0 0 1

] [

𝑖𝑑
𝑟

𝑖𝑞
𝑟

𝑖0
𝑟

] 

 

(2.69) 

Since the neutral is not connected, 𝑖0
𝑟 = 0. 

 
𝑑

𝑑𝑡
𝛷𝑑
𝑟 = 𝜔𝑟𝛷𝑞

𝑟 − 𝑟𝑟𝑖𝑑
𝑟  (2.70) 

 
𝑑

𝑑𝑡
𝛷𝑑
𝑟 = −𝜔𝑟𝛷𝑑

𝑟 − 𝑟𝑟𝑖𝑞
𝑟 (2.71) 

The expressions for the derivatives of stator and rotor fluxes are: 

{
 
 
 
 
 

 
 
 
 
 
𝑑

𝑑𝑡
𝛷𝑑
𝑠 = 𝑉𝑑

𝑠 − 𝑟11𝑖𝑑
𝑠 − 𝑟12𝑖𝑞

𝑠

𝑑

𝑑𝑡
𝛷𝑞
𝑠 = 𝑉𝑞

𝑠 − 𝑟21𝑖𝑑
𝑠 − 𝑟22𝑖𝑞

𝑠

𝑑

𝑑𝑡
𝛷𝑑
𝑟 = 𝜔𝑟𝛷𝑞

𝑟 − 𝑟𝑟𝑖𝑑
𝑟

𝑑

𝑑𝑡
𝛷𝑞
𝑟 = −𝜔𝑟𝛷𝑑

𝑟 − 𝑟𝑟𝑖𝑞
𝑟

𝐽
𝑑

𝑑𝑡
𝛺 = 𝐶𝑒−𝐶𝑟−𝑓𝑣𝛺

 

 

 

(2.72) 

From equation (2.72), we develop the state space model in terms of the fluxes of an 

IM: 

[
 
 
 
 𝛷𝑑

𝑠̇

𝛷𝑞
𝑠̇

𝛷𝑑
𝑟̇

𝛷𝑞
𝑟̇ ]
 
 
 
 

= [

𝑉𝑑
𝑠 0 0 0

0 𝑉𝑞
𝑠 0 0

0     0      0     0
0 0       0 0

] + 𝜔𝑟 [

0  0 0   0
0  0 0   0
0  0 0  1
0  0 −1 0

] .

[
 
 
 
 
𝛷𝑑
𝑠

𝛷𝑞
𝑠

𝛷𝑑
𝑟

𝛷𝑞
𝑟
]
 
 
 
 

− [

𝑟11
𝑠 𝑟12

𝑠 0 0
𝑟21
𝑠 𝑟22

𝑠 0 0
0      0 𝑟𝑟 0

0     0 0 𝑟𝑟

] .

[
 
 
 
 
𝑖𝑑
𝑠

𝑖𝑞
𝑠

𝑖𝑑
𝑟

𝑖𝑞
𝑟
]
 
 
 
 

  

 

 

(2.73) 

The currents can be expressed in terms of fluxes as follows: 

[𝑖] = [𝑙−1]. [𝛷] (2.74) 
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In a condensed manner, we can write: 

[�̇�] = [𝐵][𝑉] + 𝜔𝑟[𝐴]. [𝛷] − [𝑅]. ([𝑙
−1]. [𝛷]) (2.75) 

The state space model of the asymmetric IM can be defined by the following system of 

nonlinear equations: 

 

[�̇�] = (𝜔𝑟[𝐴] − [𝑅]. [𝑙
−1])[𝛷] + [𝐵][𝑉] (2.76) 

With: 

 [𝑅] = [

𝑟11
𝑠 𝑟12

𝑠 0 0
𝑟21
𝑠 𝑟22

𝑠 0 0
0      0 𝑟𝑟 0

0     0 0 𝑟𝑟

]  [𝐵] = [

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

] 

[𝐴] = [

0  0 0   0
0  0 0   0
0  0 0  1
0  0 −1 0

] [𝑉] = [

𝑉𝑑
𝑠

𝑉𝑞
𝑠

0
0

] [𝑙] =

[
 
 
 
𝐿11
𝑠𝑠 𝐿12

𝑠𝑠 𝐿11
𝑠𝑟 𝐿12

𝑠𝑟

𝐿21
𝑠𝑠 𝐿22

𝑠𝑠 𝐿21
𝑠𝑟 𝐿22

𝑠𝑟

𝐿11
𝑠𝑟 𝐿21

𝑠𝑟 𝐿11
𝑟𝑟 0

𝐿12
𝑠𝑟 𝐿22

𝑟 0   𝐿22
𝑟𝑟 ]
 
 
 
 

2.4. Induction motor modeling under stator inter turn short circuit 

In this section, we consider that the presence of a SITSC on one or more phases causes 

a reduction in the number of turns of the affected phase; which involve the occurrence of 

an unbalance.  

 

Figure 2.3: SITSC in phase as  

This unbalance can be expressed as ratios between the number of shorted turns and the 

total number of turns in the each phase. These ratios are already expressed as:  

𝑓𝑎    =   
𝑛𝑎
𝑁𝑠
        , 𝑓𝑏     =   

𝑛𝑏
𝑁𝑠
       ,      𝑓𝑐     =   

𝑛𝑐
𝑁𝑠
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Such that:  𝑛𝑎,𝑛𝑏 and 𝑛𝑐are the numbers of shorted turns for each phase, and 𝑁𝑠 is the 

total number of turns in each phase. 

2.4.1. Electric equations 

The voltage equations for the three stator phases and the three rotor phases are: 

{
𝑉′𝑎𝑏𝑐

𝑠
= 𝑅′𝑎𝑏𝑐

𝑠
𝑖′𝑎𝑏𝑐
𝑠

+
𝑑

𝑑𝑡
𝛷′𝑎𝑏𝑐

𝑠

            0 = 𝑅𝑎𝑏𝑐
𝑟 𝑖𝑎𝑏𝑐

𝑟 +
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟

 

 

(2.77) 

The quantities 𝑉′𝑎𝑏𝑐
𝑠
,   𝑖′𝑎𝑏𝑐

𝑠
 , 𝛷′𝑎𝑏𝑐

𝑠
 are defined as follows: 

𝑉′𝑎𝑏𝑐
𝑠

=

[
 
 
 
 
 
 
𝑣𝑎1
𝑠

𝑣𝑎2
𝑠

𝑣𝑏1
𝑠

𝑣𝑏1
𝑠

𝑣𝑐1
𝑠

𝑣𝑐2
𝑠 ]
 
 
 
 
 
 

           𝑖′𝑎𝑏𝑐
𝑠

=

[
 
 
 
 
 
 
 

𝑖𝑎
𝑠

(𝑖𝑎
𝑠 − 𝑖𝑎

𝑓
)

𝑖𝑏
𝑠

(𝑖𝑏
𝑠 − 𝑖𝑏

𝑓
)

𝑖𝑐
𝑠

(𝑖𝑐
𝑠 − 𝑖𝑐

𝑓
)]
 
 
 
 
 
 
 

               𝛷′𝑎𝑏𝑐
𝑠

=

[
 
 
 
 
 
 
𝛷𝑎1
𝑠

𝛷𝑎2
𝑠

𝛷𝑏1
𝑠

𝛷𝑏2
𝑠

𝛷𝑐1
𝑠

𝛷𝑐2
𝑠 ]
 
 
 
 
 
 

  

Those of rotor are:  

𝑖𝑎𝑏𝑐
𝑟 = [

𝑖𝑎
𝑟

𝑖𝑏
𝑟

𝑖𝑐
𝑟
]                    𝛷𝑎𝑏𝑐

𝑟 = [

𝛷𝑎
𝑟

𝛷𝑏
𝑟

𝛷𝑐
𝑟
] 

The matrices of resistances for stator and rotor windings are defined as follows: 

𝑅′𝑎𝑏𝑐
𝑠

=

𝑅𝑠

[
 
 
 
 
 
(1 − fa) 0 0 0 0 0
0 fa 0 0 0 0
0 0 (1 − fb) 0 0 0
0 0 0 fb 0 0
0 0 0 0 (1 − fc) 0
0 0 0 0 0 fc]

 
 
 
 
 

    

 

 

 

𝑅𝑎𝑏𝑐
𝑟 = [

𝑟𝑟 0 0
0 𝑟𝑟 0
0 0 𝑟𝑟

]   

We rewrite the equations governing the operation of the machine and obtain: 

{
𝑉𝑎𝑏𝑐
𝑠 = 𝑅𝑎𝑏𝑐

𝑠 𝑖𝑎𝑏𝑐
𝑠 +

𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑠 − 𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

            0 = 𝑅𝑎𝑏𝑐
𝑟 𝑖𝑎𝑏𝑐

𝑟 +
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟

 

 

(2.78) 

With: 

𝑉𝑎𝑏𝑐
𝑠 = [

𝑉𝑎
𝑠

𝑉𝑏
𝑠

𝑉𝑐
𝑠
]                  𝑖𝑎𝑏𝑐

𝑠 = [

𝑖𝑎
𝑠

𝑖𝑏
𝑠

𝑖𝑐
𝑠
]                     𝛷𝑎𝑏𝑐

𝑠 = [

𝛷𝑎
𝑠

𝛷𝑏
𝑠

𝛷𝑐
𝑠
]   
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𝑅𝑎𝑏𝑐
𝑠 = 𝑅𝑠 [

1 0 0
0 1 0
0 0 1

]                𝑖𝑎𝑏𝑐
𝑓

= [

𝑖𝑎
𝑓

𝑖𝑏
𝑓

𝑖𝑐
𝑓

]                     𝑓𝑎𝑏𝑐 = [

𝑓𝑎 0 0
0 𝑓𝑏 0
0 0 𝑓𝑐

] 

And: 

𝑉𝑎𝑏𝑐2
𝑠 =𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑠  +

𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐2
𝑠 -𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

=𝑟𝑓𝑖𝑎𝑏𝑐
𝑓

 (2.79) 

Moreover:  

𝑉𝑎𝑏𝑐2
𝑠  : The voltage of fault. 

 𝑟𝑓 : The resistance matrix of fault. 

𝑟𝑓=[

𝑟𝑎𝑓 0 0

0 𝑟𝑏𝑓 0

0 0 𝑟𝑐𝑓

] 

By applying the Park transformation to equation (2.78), we obtain: 

For the stator: 

𝑃𝑠𝑉𝑎𝑏𝑐
𝑠 = 𝑃𝑠(𝑅𝑎𝑏𝑐

𝑠 𝑖𝑎𝑏𝑐
𝑠 +

𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑠 − 𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓
)      

(2.80) 

𝑃𝑠𝑉𝑎𝑏𝑐
𝑠 = 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝑃𝑠

𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑠 − 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 
(2.81) 

In a (dq) frame linked to the stator, we have: 

𝑃𝑠
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑠 =

𝑑

𝑑𝑡
(𝑃𝑠𝛷𝑎𝑏𝑐

𝑠 ) − (
𝑑

𝑑𝑡
𝑃𝑠)𝛷𝑎𝑏𝑐

𝑠  
(2.82) 

 (
𝑑

𝑑𝑡
𝑃𝑠)𝛷𝑎𝑏𝑐

𝑠 = 0 
(2.83) 

The equation for stator voltages becomes: 

𝑃𝑠𝑉𝑎𝑏𝑐
𝑠 = 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑃𝑠
−1(𝑃𝑠𝑖𝑎𝑏𝑐

𝑠 ) +
𝑑

𝑑𝑡
(𝑃𝑠𝛷𝑎𝑏𝑐

𝑠 ) − Ps𝑅𝑎𝑏𝑐
𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐

𝑓
 

(2.84) 

We arrive at the equation for stator voltages in the Park frame. 

𝑉𝑑𝑞0
𝑠 = 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 +
𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑠 − 𝑃𝑠𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 
 

(2.85) 

Let’s define :   𝑅𝑑𝑞0f
𝑠 = Ps𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐 (2.86) 

𝑉𝑑𝑞0
𝑠 = 𝑅𝑑𝑞0

𝑠 𝑖𝑞𝑑0
𝑠 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑠 − 𝑅𝑑𝑞0f

𝑠 𝑖𝑎𝑏𝑐
𝑓

 
 

(2.87) 
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With:                          𝑅𝑑𝑞0𝑓
𝑠 =

[
 
 
 
 
 
 √

2

3
𝑅𝑠𝑓𝑎 −√

1

6
𝑅𝑠𝑓𝑏 −√

1

6
𝑅𝑠𝑓𝑐

0 √
1

2
𝑅𝑠𝑓𝑏 −√

1

2
𝑅𝑠𝑓𝑐

√
1

3
𝑅𝑠𝑓𝑎 √

1

3
𝑅𝑠𝑓𝑏 √

1

3
𝑅𝑠𝑓𝑐 ]

 
 
 
 
 
 

 

𝑉𝑎𝑏𝑐2
𝑠 =𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑃𝑠
−1𝑖𝑑𝑞0

𝑠  +
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐2
𝑠 -𝑅𝑎𝑏𝑐

𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

=𝑟𝑓𝑖𝑎𝑏𝑐
𝑓

 (2.88) 

 For the rotor: 

0 = 𝑃𝑟(𝑅𝑎𝑏𝑐
𝑟 𝑖𝑎𝑏𝑐

𝑟 +
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟 ) 

(2.89) 

0 = 𝑃𝑟𝑅𝑎𝑏𝑐
𝑟 𝑖𝑎𝑏𝑐

𝑟 + 𝑃𝑟
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟  

(2.90) 

With 

𝑃𝑟
𝑑

𝑑𝑡
𝛷𝑎𝑏𝑐
𝑟 =

𝑑

𝑑𝑡
(𝑃𝑟𝛷𝑎𝑏𝑐

𝑟 ) − (
𝑑

𝑑𝑡
𝑃𝑟)𝛷𝑎𝑏𝑐

𝑟  
(2.91) 

0 = 𝑃𝑟𝑅𝑎𝑏𝑐
𝑟 𝑃𝑟

−1(𝑃𝑟𝑖𝑎𝑏𝑐
𝑟 ) +

𝑑

𝑑𝑡
(𝑃𝑟𝛷𝑎𝑏𝑐

𝑟 ) − (
𝑑

𝑑𝑡
𝑃𝑟)𝑃𝑟

−1(𝑃𝑟𝛷𝑎𝑏𝑐
𝑟 ) 

(2.92) 

0 = 𝑃𝑟𝑅𝑎𝑏𝑐
𝑟 𝑃𝑟

−1(𝑃𝑟𝑖𝑎𝑏𝑐
𝑟 ) +

𝑑

𝑑𝑡
(𝑃𝑟𝛷𝑎𝑏𝑐

𝑟 ) − (
𝑑

𝑑𝑡
𝑃𝑟)𝑃𝑟

−1(𝑃𝑟𝛷𝑎𝑏𝑐
𝑟 ) 

(2.93) 

with :   (
𝑑

𝑑𝑡
𝑃𝑟) 𝑃𝑟

−1 = 𝜔𝑟 [
0 1 0
−1 0 0
0 0 0

] 
 

(2.94) 

We define:  𝑅𝑑𝑞0
𝑟 = 𝑃𝑟𝑅𝑎𝑏𝑐

𝑟 𝑃𝑟
−1 (2.95) 

𝑅𝑑𝑞0
𝑟 = 𝑅𝑟 [

1 0 0
0 1 0
0 0 1

] 

Where 𝑅𝑑𝑞0
𝑟 , is the matrix of rotor resistances in the Park frame.  

We arrive at the equation for rotor voltages in the Park frame. 

0 = 𝑅𝑑𝑞0
𝑟 𝑖𝑑𝑞0

𝑟 − 𝜔𝑟 [
0 1 0
−1 0 0
0 0 0

]𝛷𝑑𝑞0
𝑟 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑟  

(2.96) 

Finally, we obtain: 
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{
 
 
 
 

 
 
 
 
𝑣𝑎2
𝑠 =  𝑓𝑎𝑅𝑠 (√

2

3
𝑖𝑑
𝑠 +√

1

3
𝑖0
𝑠 − 𝑖𝑓) +

𝑑

𝑑𝑡
𝛷𝑎2
𝑠 = 𝑟𝑓𝑖𝑓

𝑉𝑑𝑞0
𝑠 = 𝑅𝑑𝑞0

𝑠 𝑖𝑞𝑑0
𝑠 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑠 − 𝑅𝑑𝑞0f

𝑠  𝑖𝑓

0 = 𝑅𝑑𝑞0
𝑟 𝑖𝑑𝑞0

𝑟 − 𝜔𝑟 [
0 1 0
−1 0 0
0 0 0

]𝛷𝑑𝑞0
𝑟 +

𝑑

𝑑𝑡
𝛷𝑑𝑞0
𝑟

 

 

 

 

 

  (2.97) 

2.4.2. Magnetic equations 

The total fluxes of the machine are related to the currents through the following equations: 

{
𝛷′𝑎𝑏𝑐

𝑠
= 𝐿′𝑎𝑏𝑐

𝑠𝑠 𝑖′𝑎𝑏𝑐
𝑠

+ 𝐿′𝑎𝑏𝑐
𝑠𝑟 𝑖𝑎𝑏𝑐

𝑟

𝛷′𝑎𝑏𝑐
𝑟 = 𝐿′𝑎𝑏𝑐

𝑟𝑠 𝑖′𝑎𝑏𝑐
𝑠

+ 𝐿𝑎𝑏𝑐
𝑟𝑟 𝑖𝑎𝑏𝑐

𝑟  
 

(2.98) 

To define the elements of the inductances of a faulty IM let's assume a short circuit at 

the stator phases 𝑎𝑠, 𝑏𝑠and 𝑐𝑠.  

The coefficients 𝑓𝑎  ,𝑓𝑏  and 𝑓𝑐 are introduced into the various matrices. 

The matrices of inductances are expressed as follows: 

𝐿′𝑎𝑏𝑐
𝑠𝑠   =

𝐿𝑙𝑠

[
 
 
 
 
 
(1 − fa) 0 0 0 0 0

0 fa 0 0 0 0
0 0 (1 − fb) 0 0 0
0 0 0 fb 0 0
0 0 0 0 (1 − fc) 0
0 0 0 0 0 fc]

 
 
 
 
 

+𝐿𝑚𝑠

[
 
 
 
 
 
f11 f12 f13 f14 f15 f16
f21 f22 f23 f24 f25 f26
f31 f32 f33 f34 f35 f36
f41 f42 f43 f44 f45 f46
f51 f52 f53 f54 f55 f56
f61 f62 f63 f64 f65 f66]

 
 
 
 
 

 

The elements of the stator magnetization inductance matrix are in the appendix B. 

𝐿𝑎𝑏𝑐
𝑟𝑟 =

[
 
 
 
 
 𝐿𝑙𝑟 + 𝐿𝑚𝑟 −

𝐿𝑚𝑟
2

−
𝐿𝑚𝑟
2

−
𝐿𝑚𝑟
2

𝐿𝑙𝑟 + 𝐿𝑚𝑟 −
𝐿𝑚𝑟
2

−
𝐿𝑚𝑟
2

−
𝐿𝑚𝑟
2

𝐿𝑙𝑟 + 𝐿𝑚𝑟]
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𝐿′𝑎𝑏𝑐
𝑠𝑟  =   𝐿𝑠𝑟

[
 
 
 
 
 
 
 
 
 
 
 
 (1 − fa) 𝑐𝑜𝑠(𝜃) (1 − fa) 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
) (1 − fa) 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
)

fa 𝑐𝑜𝑠(𝜃) fa 𝑐𝑜𝑠 (𝜃 +
2𝜋

3
) fa 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
)

(1 − fb) 𝑐𝑜𝑠 (𝜃 −
2𝜋

3
) (1 − fb) 𝑐𝑜𝑠(𝜃) (1 − fb) 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
)

fb 𝑐𝑜𝑠 (𝜃 −
2𝜋

3
) fb 𝑐𝑜𝑠(𝜃) fb 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
)

(1 − fc) 𝑐𝑜𝑠 (𝜃 +
2𝜋

3
) (1 − fc) 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
) (1 − fc) 𝑐𝑜𝑠(𝜃)

fc 𝑐𝑜𝑠 (𝜃 +
2𝜋

3
) fc 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
) fc 𝑐𝑜𝑠(𝜃) ]

 
 
 
 
 
 
 
 
 
 
 
 

 

𝐿𝑠𝑟 : Maximum mutual inductance between a stator phase and a rotor phase. 

With the consideration of:  

𝐿𝑠𝑟 =
2

3
𝐿𝑚 

(2.99) 

𝐿′𝑎𝑏𝑐
 𝑟𝑠 = 𝐿′𝑎𝑏𝑐

 𝑠𝑟 𝑇
 (2.100) 

We rewrite the equations governing the operation of the machine, and we obtain: 

{

𝛷𝑎𝑏𝑐2
𝑠 = 𝑓𝑎𝑏𝑐(𝐿𝑎𝑏𝑐

𝑠𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑎𝑏𝑐

𝑠𝑟 𝑖𝑎𝑏𝑐
𝑟 − 𝐿𝑎𝑏𝑐

𝑓
𝑖𝑎𝑏𝑐
𝑓
)

𝛷𝑎𝑏𝑐
𝑠 = 𝐿𝑎𝑏𝑐

𝑠𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑎𝑏𝑐

𝑠𝑟 𝑖𝑎𝑏𝑐
𝑟 − 𝐿𝑎𝑏𝑐

𝑠𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

𝛷𝑎𝑏𝑐
𝑟 = 𝐿𝑎𝑏𝑐

𝑟𝑟 𝑖𝑎𝑏𝑐
𝑟 + 𝐿𝑎𝑏𝑐

𝑟𝑠 𝑖𝑎𝑏𝑐
𝑠 − 𝐿𝑎𝑏𝑐

𝑟𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 

 

(2.101) 

With: 

𝐿𝑎𝑏𝑐
𝑠𝑠 =

[
 
 
 
 
 𝐿𝑙𝑠 + 𝐿𝑚𝑠 −

𝐿𝑚𝑠
2

−
𝐿𝑚𝑠
2

−
𝐿𝑚𝑠
2

𝐿𝑙𝑠 + 𝐿𝑚𝑠 −
𝐿𝑚𝑠
2

−
𝐿𝑚𝑠
2

−
𝐿𝑚𝑠
2

𝐿𝑙𝑠 + 𝐿𝑚𝑠]
 
 
 
 
 

 

𝐿𝑎𝑏𝑐
𝑠𝑟 = 𝐿𝑠𝑟

[
 
 
 
 
 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
) 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
)

𝑐𝑜𝑠 (𝜃 −
2𝜋

3
) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 (𝜃 +

2𝜋

3
)

𝑐𝑜𝑠 (𝜃 +
2𝜋

3
) 𝑐𝑜𝑠 (𝜃 −

2𝜋

3
) 𝑐𝑜𝑠(𝜃) ]

 
 
 
 
 

 

𝐿𝑎𝑏𝑐
 𝑟𝑠 = 𝐿𝑎𝑏𝑐

 𝑠𝑟 𝑇
 (2.102) 

 



58 
 

 
 

𝐿𝑎𝑏𝑐
𝑓

=

[
 
 
 
 
 𝐿𝑙𝑠 + 𝑓𝑎𝐿𝑚𝑠 −

𝑓𝑏𝐿𝑚𝑠
2

−
𝑓𝑐𝐿𝑚𝑠
2

−
𝑓𝑎𝐿𝑚𝑠
2

𝐿𝑙𝑠 + 𝑓𝑏𝐿𝑚𝑠 −
𝑓𝑐𝐿𝑚𝑠
2

−
𝑓𝑎𝐿𝑚𝑠
2

−
𝑓𝑏𝐿𝑚𝑠
2

𝐿𝑙𝑠 + 𝑓𝑐𝐿𝑚𝑠]
 
 
 
 
 

 

Noting that: 

𝐿𝑎𝑏𝑐
𝑓

: Matrix of fault inductances.  

𝛷𝑎𝑏𝑐2
𝑠 : Stator fault flux.  

Applying the Park transformation to equation (2.101), we get: 

a. For the stator: 

𝑃𝑠𝛷𝑎𝑏𝑐
𝑠 = 𝑃𝑠(𝐿𝑎𝑏𝑐

𝑠𝑠 𝑖𝑎𝑏𝑐
𝑠 + 𝐿𝑎𝑏𝑐

𝑠𝑟 𝑖𝑎𝑏𝑐
𝑟 − 𝐿𝑎𝑏𝑐

𝑠𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓
) (2.103) 

𝛷𝑑𝑞0
𝑠 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1(𝑃𝑠𝑖𝑎𝑏𝑐

𝑠 ) + 𝑃𝑠𝐿𝑎𝑏𝑐
𝑠𝑟 𝑃𝑟

−1(𝑃𝑟𝑖𝑎𝑏𝑐
𝑟 ) − 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 (2.104) 

 

We arrive at the equation for stator fluxes in the Park frame. 

𝛷𝑑𝑞0
𝑠 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 + 𝑃𝑠𝐿𝑎𝑏𝑐
𝑠𝑟 𝑃𝑟

−1𝑖𝑑𝑞0 
𝑟 − 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 (2.105) 

We define: 𝐿𝑑𝑞0
𝑠𝑠 ,𝐿𝑑𝑞0

𝑠𝑟  and 𝐿𝑑𝑞0f
𝑠𝑠  as: 

𝐿𝑑𝑞0
𝑠𝑠 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1 (2.106)   

𝐿𝑑𝑞0
𝑠𝑟 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑟 𝑃𝑟
−1 (2.107)    

𝐿𝑑𝑞0f
𝑠𝑠 = 𝑃𝑠𝐿𝑎𝑏𝑐

𝑠𝑠 𝑓𝑎𝑏𝑐 (2.108)  

With:  𝐿𝑑𝑞0f
𝑠𝑠 =

[
 
 
 
 
 
 𝑓𝑏√

2

3
(𝐿𝑙𝑠 + 𝐿𝑚) −𝑓𝑏√

1

6
(𝐿𝑙𝑠 + 𝐿𝑚) −𝑓𝑐√

1

6
(𝐿𝑙𝑠 + 𝐿𝑚)

0 𝑓𝑏√
1

2
(𝐿𝑙𝑠 + 𝐿𝑚) −𝑓𝑐√

1

2
(𝐿𝑙𝑠 + 𝐿𝑚)

𝑓𝑏√
1

3
(𝐿𝑙𝑠 + 𝐿𝑚) 𝑓𝑏√

1

3
(𝐿𝑙𝑠 + 𝐿𝑚) 𝑓𝑐√

1

3
(𝐿𝑙𝑠 + 𝐿𝑚) ]

 
 
 
 
 
 

 

𝛷𝑑𝑞0
𝑠 = 𝐿𝑑𝑞0

𝑠𝑠 𝑖𝑑𝑞0
𝑠 + 𝐿𝑑𝑞0

𝑠𝑟 𝑖𝑑𝑞0
𝑟  -𝐿𝑑𝑞0f 

𝑠𝑠 𝑖𝑎𝑏𝑐
𝑓

 (2.109) 

𝛷𝑎𝑏𝑐2
𝑠 = 𝑓𝑎𝑏𝑐(𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 + 𝐿𝑑𝑞0
𝑠𝑟 𝑃𝑟

−1𝑖𝑑𝑞0
𝑟 − 𝐿𝑎𝑏𝑐

𝑓
𝑖𝑎𝑏𝑐
𝑓
) (2.110) 

b. For the rotor: 

𝑃𝑟𝛷𝑎𝑏𝑐
𝑟 = 𝑃𝑟(𝐿𝑎𝑏𝑐

𝑟𝑟 𝑖𝑎𝑏𝑐
𝑟 + 𝐿𝑎𝑏𝑐

𝑟𝑠 𝑖𝑎𝑏𝑐
𝑠 − 𝐿𝑎𝑏𝑐

𝑟𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 )                                             (2.111) 

𝛷𝑑𝑞0
𝑟 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑃𝑠
−1(𝑃𝑠𝑖𝑎𝑏𝑐

𝑠 ) + 𝑃𝑟𝐿𝑎𝑏𝑐
𝑟𝑟 𝑃𝑟

−1(𝑃𝑟𝑖𝑎𝑏𝑐
𝑟 ) -𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 (2.112) 

We arrive at the equation for rotor fluxes in the Park frame. 
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𝛷𝑑𝑞0
𝑟 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 + 𝑃𝑟𝐿𝑎𝑏𝑐
𝑟𝑟 𝑃𝑟

−1𝑖𝑑𝑞0
𝑟   -𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑓𝑎𝑏𝑐𝑖𝑎𝑏𝑐
𝑓

 (2.113) 

We define: 𝐿𝑑𝑞0
𝑟𝑠 , 𝐿𝑑𝑞0

𝑟𝑟  and 𝐿𝑑𝑞0𝑓
𝑟𝑠  as: 

𝐿𝑑𝑞0
𝑟𝑠 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑃𝑠
−1 (2.114)   

𝐿𝑑𝑞0
𝑟𝑟 = 𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑟 𝑃𝑟
−1 (2.115) 

𝐿𝑑𝑞0𝑓
𝑟𝑠 =𝑃𝑟𝐿𝑎𝑏𝑐

𝑟𝑠 𝑓𝑎𝑏𝑐 (2.116) 

𝛷𝑑𝑞0
𝑟 = 𝐿𝑑𝑞0

𝑟𝑠 𝑖𝑑𝑞0
𝑠 + 𝐿𝑑𝑞0

𝑟𝑟 𝑖𝑑𝑞0
𝑟  - 𝐿𝑑𝑞0𝑓

𝑟𝑠 𝑖𝑎𝑏𝑐
𝑓

 (2.117) 

Finally, we have: 

{
 

 𝛷𝑎𝑏𝑐2
𝑠 = 𝑓𝑎𝑏𝑐(𝐿𝑎𝑏𝑐

𝑠𝑠 𝑃𝑠
−1𝑖𝑑𝑞0

𝑠 + 𝐿𝑑𝑞0
𝑠𝑟 𝑃𝑟

−1𝑖𝑑𝑞0
𝑟 − 𝐿𝑎𝑏𝑐

𝑓
𝑖𝑎𝑏𝑐
𝑓
)

𝛷𝑑𝑞0
𝑠 = 𝐿𝑑𝑞0

𝑠𝑠 𝑖𝑑𝑞0
𝑠 + 𝐿𝑑𝑞0

𝑠𝑟 𝑖𝑑𝑞0
𝑟 − 𝐿𝑑𝑞0f 

𝑠𝑠 𝑖𝑎𝑏𝑐
𝑓

𝛷𝑑𝑞0
𝑟 = 𝐿𝑑𝑞0

𝑟𝑠 𝑖𝑑𝑞0
𝑠 + 𝐿𝑑𝑞0

𝑟𝑟 𝑖𝑑𝑞0
𝑟 − 𝐿𝑑𝑞0𝑓

𝑟𝑠 𝑖𝑎𝑏𝑐
𝑓

 

 

 

(2.118) 

 

2.4.3. Mechanic equations 

The equation for mechanical speed is represented by equation (2.59). 

𝐽
𝑑

𝑑𝑡
𝛺 = 𝐶𝑒−𝐶𝑟−𝑓𝑣𝛺 

(2.119) 

We expand the expression of electromechanical torque represented in equation (2.61) to: 

Ce= P[𝑖′𝑎𝑏𝑐
𝑠
]𝑇[

𝑑

𝑑𝜃
𝐿′𝑎𝑏𝑐
𝑠𝑟 ] [𝑖𝑎𝑏𝑐

𝑟 ]                                     (2.120) 

For a short circuit on the three phases of the stator, the expression of the torque 

becomes: 

Ce= P[𝑖𝑑𝑞0
𝑠 ]𝑇[𝑃𝑠][

𝑑

𝑑𝜃
𝐿𝑎𝑏𝑐
𝑠𝑟 ][𝑃𝑟

−1][𝑖𝑑𝑞0
𝑟 ]+P[𝑖𝑎𝑏𝑐

𝑓
]𝑡 [𝑓𝑎𝑏𝑐][

𝑑

𝑑𝜃
𝐿𝑎𝑏𝑐
𝑠𝑟 ][𝑃𝑟

−1][𝑖𝑑𝑞0
𝑟 ] (2.121)    

2.4.4. State space model 

To obtain the state-space model in terms of flux, we expand the expressions 

(2.121). in matrix form: 

[
 
 
 
 
 
 
 
𝜱𝒂𝟐
𝒔

𝜱𝒃𝟐
𝒔

𝜱𝒄𝟐
𝒔

𝜱𝒅
𝒔

𝜱𝒒
𝒔

𝜱𝒅
𝒓

𝜱𝒒
𝒓
]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑳𝟏𝟏 𝑳𝟏𝟐 𝑳𝟏𝟑 𝑳𝟏𝟒 𝑳𝟏𝟓 𝑳𝟏𝟔 𝑳𝟏𝟕
𝑳𝟐𝟏 𝑳𝟐𝟐 𝑳𝟐𝟑 𝑳𝟐𝟒 𝑳𝟐𝟓 𝑳𝟐𝟔 𝑳𝟐𝟕
𝑳𝟑𝟏 𝑳𝟑𝟐 𝑳𝟑𝟑 𝑳𝟑𝟒 𝑳𝟑𝟓 𝑳𝟑𝟔 𝑳𝟑𝟕
𝑳𝟒𝟏 𝑳𝟒𝟐 𝑳𝟒𝟑 𝑳𝟒𝟒 𝑳𝟒𝟓 𝑳𝟒𝟔 𝑳𝟒𝟕
𝑳𝟓𝟏 𝑳𝟓𝟐 𝑳𝟓𝟑 𝑳𝟓𝟒 𝑳𝟓𝟓 𝑳𝟓𝟔 𝑳𝟓𝟕
𝑳𝟔𝟏 𝑳𝟔𝟐 𝑳𝟔𝟑 𝑳𝟔𝟒 𝑳𝟔𝟓 𝑳𝟔𝟔 𝑳𝟔𝟕
𝑳𝟕𝟏 𝑳𝟕𝟐 𝑳𝟕𝟑 𝑳𝟕𝟒 𝑳𝟕𝟓 𝑳𝟕𝟔 𝑳𝟕𝟕]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 𝒊𝒂
𝒇

𝒊𝒃
𝒇

𝒊𝒄
𝒇

𝒊𝒅
𝒔

𝒊𝒒
𝒔

𝒊𝒅
𝒓

𝒊𝒒
𝒓
]
 
 
 
 
 
 
 
 

 

 

 

 

 

(2.122) 
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Where: 

[𝜱] = [𝑳][𝑰] 
(2.123) 

With 

[𝛷]  = [𝛷𝑎2
𝑠 𝛷𝑏2

𝑠 𝛷𝑐2
𝑠 𝛷𝑑

𝑠 𝛷𝑞
𝑠 𝛷𝑑

𝑟 𝛷𝑞
𝑟]𝑡 

[𝐼] = [𝑖𝑎
𝑓

𝑖𝑏
𝑓

𝑖𝑐
𝑓

𝑖𝑑
𝑠 𝑖𝑞

𝑠 𝑖𝑑
𝑟 𝑖𝑞

𝑟]
𝑡
 

[𝑳] =

[
 
 
 
 
 
 
𝑳𝟏𝟏 𝑳𝟏𝟐 𝑳𝟏𝟑 𝑳𝟏𝟒 𝑳𝟏𝟓 𝑳𝟏𝟔 𝑳𝟏𝟕
𝑳𝟐𝟏 𝑳𝟐𝟐 𝑳𝟐𝟑 𝑳𝟐𝟒 𝑳𝟐𝟓 𝑳𝟐𝟔 𝑳𝟐𝟕
𝑳𝟑𝟏 𝑳𝟑𝟐 𝑳𝟑𝟑 𝑳𝟑𝟒 𝑳𝟑𝟓 𝑳𝟑𝟔 𝑳𝟑𝟕
𝑳𝟒𝟏 𝑳𝟒𝟐 𝑳𝟒𝟑 𝑳𝟒𝟒 𝑳𝟒𝟓 𝑳𝟒𝟔 𝑳𝟒𝟕
𝑳𝟓𝟏 𝑳𝟓𝟐 𝑳𝟓𝟑 𝑳𝟓𝟒 𝑳𝟓𝟓 𝑳𝟓𝟔 𝑳𝟓𝟕
𝑳𝟔𝟏 𝑳𝟔𝟐 𝑳𝟔𝟑 𝑳𝟔𝟒 𝑳𝟔𝟓 𝑳𝟔𝟔 𝑳𝟔𝟕
𝑳𝟕𝟏 𝑳𝟕𝟐 𝑳𝟕𝟑 𝑳𝟕𝟒 𝑳𝟕𝟓 𝑳𝟕𝟔 𝑳𝟕𝟕]

 
 
 
 
 
 

  

The elements of the stator and rotor inductance matrix are in the appendix B. 

From equation (2.97), we develop the state-space model in terms of flux for an IM with 

SITSC faults. 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 𝑑

𝑑𝑡
𝛷𝑎2
𝑠 = (𝑓𝑎𝑅𝑠 + 𝑟𝑎𝑓)𝑖𝑎

𝑓
− 𝑓𝑎√

2

3
𝑅𝑠𝑖𝑑

𝑠

𝑑

𝑑𝑡
𝛷𝑏2
𝑠 = (𝑓𝑏𝑅𝑠 + 𝑟𝑏𝑓)𝑖𝑏

𝑓
+ 𝑓𝑏√

1

6
𝑅𝑠𝑖𝑑

𝑠 − 𝑓𝑏√
1

2
𝑅𝑠𝑖𝑞

𝑠

𝑑

𝑑𝑡
𝛷𝑐2
𝑠 = (𝑓𝑐𝑅𝑠 + 𝑟𝑐𝑓)𝑖𝑐

𝑓
+ 𝑓𝑐√

1

6
𝑅𝑠𝑖𝑑

𝑠 + 𝑓𝑐√
1

2
𝑅𝑠𝑖𝑞

𝑠

𝑑

𝑑𝑡
𝛷𝑑
𝑠 = 𝑣𝑑

𝑠 + 𝑓𝑎√
2

3
𝑅𝑠𝑖𝑎

𝑓
− 𝑓𝑏√

1

6
𝑅𝑠𝑖𝑏

𝑓
− 𝑓𝑐√

1

6
𝑅𝑠𝑖𝑐

𝑓
− 𝑅𝑠𝑖𝑑

𝑠

𝑑

𝑑𝑡
𝛷𝑞
𝑠 = 𝑣𝑞

𝑠 + 𝑓𝑏√
1

2
𝑅𝑠𝑖𝑏

𝑓
− 𝑓𝑐√

1

2
𝑅𝑠𝑖𝑐

𝑓
− 𝑅𝑠𝑖𝑞

𝑠

𝑑

𝑑𝑡
𝛷𝑑
𝑟 = 𝜔𝑟𝛷𝑞

𝑟 − 𝑅𝑠𝑖𝑑
𝑟

𝑑

𝑑𝑡
𝛷𝑞
𝑟 = −𝜔𝑟𝛷𝑑

𝑟 − 𝑅𝑠𝑖𝑞
𝑟

 

 

 

 

 

 

(2.124) 

 

In a condensed manner: 

[�̇�]= [B] [V] + 𝜔𝑟[A] [𝛷] – [R] [𝐼] (2.125) 

Where: 

[�̇�]  = [𝛷𝑎2
�̇� 𝛷𝑏2

�̇� 𝛷𝑐2
�̇� 𝛷𝑑

𝑠̇ 𝛷𝑞
𝑠̇ 𝛷𝑑

𝑟̇ 𝛷𝑞𝑟̇ ]
𝑡
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The currents can be expressed in terms of the fluxes, by inversing equation (2.123). 

For 𝐿 to be invertible, it is necessary that 𝑓𝑎, 𝑓𝑏 and 𝑓𝑐are different from zero.  

[𝐿]−1 = [𝐿−1] (2.126) 

We have: 

[𝐼]= [𝐿−1] [𝛷] (2.127) 

In a condensed manner, we can write: 

[�̇�]= [B] [V] + 𝜔𝑟[A] [𝛷]-  [R] ([𝐿−1] [𝛷] )                

(2.128) 

The state model of the asynchronous machine with faults can thus be defined by the 

following system of equations: 

[�̇�]= (𝜔𝑟[A] – [R] [𝐿−1]) [𝛷]+ [B] [V]                            (2.129) 

With: 

B=

[
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0

    

0 0     0 0
0 0     0 0
0 0     0 0
0 0     0 0
0 0     0 0
0 0     0 0
0 0     0 0

  

]
 
 
 
 
 
 

 A=

[
 
 
 
 
 
 
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0 ]

 
 
 
 
 
 

 

R=

[
 
 
 
 
 
 
𝑟11 𝑟12 𝑟13 𝑟14 𝑟15 𝑟16 𝑟17
𝑟21 𝑟22 𝑟23 𝑟24 𝑟25 𝑟26 𝑟27
𝑟31 𝑟32 𝑟33 𝑟34 𝑟35 𝑟36 𝑟37
𝑟41 𝑟42 𝑟43 𝑟44 𝑟45 𝑟46 𝑟47
𝑟51 𝑟52 𝑟53 𝑟54 𝑟55 𝑟56 𝑟57
𝑟61 𝑟62 𝑟63 𝑟64 𝑟65 𝑟66 𝑟67
𝑟71 𝑟72 𝑟73 𝑟74 𝑟75 𝑟76 𝑟77]

 
 
 
 
 
 

 V=

[
 
 
 
 
 
 
0
0
0
𝑣𝑑
𝑠

𝑣𝑞
𝑠

0
0 ]
 
 
 
 
 
 

 

The elements of the stator and rotor resistance matrix are in the appendix B. 

2.5. Simulation results 

In this section, we address the simulation of the IM models established in 

previously.  

 The simulation is carried out in the Matlab/Simulink environment, which provides 

the opportunity to analyze the machine's behavior under various unbalance and fault 

conditions.  

 The simulation parameters for the machine are presented in table 2.1. 

 The simulation of the two models is established for a star-connected IM. The 

machine is feed by a balanced system of three-phase voltages in the given form: 
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 [

𝑉𝑎
𝑉𝑏
𝑉𝑐

]=220 ∗ √2 [

sin (2𝜋𝑓 ∗ 𝑡)

sin (2𝜋𝑓 ∗ 𝑡 − 2𝜋/3)
sin (2𝜋𝑓 ∗ 𝑡 − 4𝜋/3)

]  with 𝑓𝑠 = 50𝐻𝑧. 

Table 2.1 The IM parameters used for the simulation 

Maximum voltage (V) 220√2   

Rated Current (A) 1.6  

Nombre of winding turns per phase 528 

Nombre of pole pairs 2 

Moment of inertia 0.00177007 

Viscous Coefficient   0.0006437777 

Resistance of stator (Ω) 13.6324  

Resistance of rotor (Ω) 13.3072  

Resistance of fault (Ω) 1.3  

Frequency (Hz) 50 

Mutuelle Inductance (H) 0.6380 

Stator leakage inductance (H) 0.0388 

Rotor leakage inductance (H) 0.0388 

2.5.1. Induction motor asymmetrical-model simulation 

First, we will provide and interpret the results obtained from the simulation of a 

symmetrical IM, which it is called healthy. Then, we will analyze the behavior of an 

asymmetric machine, which is also healthy but differently constructed.  

In case of symmetrical IM, the simulation involves a no-load start followed by the 

application of a resistive torque (Cr = 3.8 Nm) at t=0.5 s. figures from 2.4 to 2.9 illustrate 

the obtained results. 

 

Figure 2.4: Stator current signals. 
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Figure 2.5: Rotor current signals 

 

 

Figure 2.6: Park’s stator flux signals 

 

Figure 2.7: Park’s rotor flux signals 
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Figure 2.8 : Electromagnetic Torque signal 

 

Figure 2.9 : Mechanic Speed signal 

All quantities settle quickly after a transient regime of 0.25s, representing the 

machine's response time. There is a strong initial surge in stator current, although brief, 

which then stabilizes at a constant value of 1.45 A, defining the current required for the 

magnetization of the machine at no-load (Figure 2.4 ). A brief surge in rotor current occurs, 

followed by stabilization at an almost negligible value at no-load (Figure 2.5).  

In the initial moments of start-up, the electromagnetic torque exhibits oscillations 

reaching a maximum value of 16.3 Nm. This is necessary to overcome the motor's inertia, 

and then it returns to a very low value to compensate for no-load mechanical losses (Figure 

2.8).  

The speed evolution over time shows a steady increase, eventually settling around 

the synchronous speed (≈156.8 rad/s) after 0.25s (Figure 2.9). With the application of the 

load (Cr = 3.8 Nm) to the machine at time t=0.5s, the stator current increases, the 

electromagnetic torque grows to the imposed load value (Cr), and the speed decreases to 

145.5 rad/s.  
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Figures from 2.10 to 2.15 illustrate the results of Asymmetrical IM model 

simulation. This simulation will be conducted under the same conditions as the 

symmetrical IM. The goal is to clearly observe the differences in the behavior of variables 

between a symmetrical and asymmetrical IM. In this case, IM model has 30 turns 

subtracted from phase 𝑎𝑠, 50 turns from phase 𝑏𝑠, and 70 turns from phase 𝑐𝑠.  

 

Figure 2.10: Stator current signals. 

 

Figure 2.11: Rotor current signals 
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Figure 2.12: Park’s stator flux signals 

 

Figure 2.13: Park’s rotor flux signals. 

 

Figure 2.14 : Electromagnetic Torque signal. 

 

Figure 2.15 : Mechanic Speed signal 
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The machine exhibits asymmetry in all three phases. There is an increase in stator 

currents in all three phases, which have changed from 1.45 A to 1.68 A for phase 𝑎𝑠, 1.61 A 

for phase  𝑏𝑠, and 2.1 A for phase  𝑐𝑠. This fault is manifested as an irregular evolution of 

current in the phases, as illustrated in Figure 2.10. The change in the number of turns of the 

windings influences the rotor current, and a deformation in the waveform of the graphs is 

perceived (Figure 2.11). 

In the initial moments of start-up, the electromagnetic torque exhibits oscillations 

reaching a maximum value of 18 Nm. It is notable that there are ripples in the torque 

waveform in the steady-state regime, as shown in Figure 2.14. 

 A steady increase in speed during startup, settling at 157 rad/s, is observed. As 

speed reflects the electromagnetic torque, its evolution in the steady-state regime also 

shows a wavy pattern (Figure 2.15), which is dampened by the inertia of the load. This 

implies intense mechanical vibrations.  

2.5.2. Induction motor SITSC- model simulation 

The objective of this section is to clearly observe the difference in the evolution of 

quantities between a faulty machine and a healthy machine. We will present the simulation 

of a no-load start under sinusoidal voltage followed by the application of a resisting torque 

(Cr = 3.8 Nm) at time t=0.3s. The machine has a short circuit of 30 turns on phase 𝑎𝑠at 

time t=0.4s, then 50 turns on phase 𝑏𝑠 at time t=0.6s, and finally, 70 turns on phase 𝑐𝑠 at 

time t=0.8s. The results obtained from the simulation are presented in figures from 2.16 to 

2.21. 

 

Figure 2.16: Stator current signals 
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Figure 2.17: Rotor current signals 

 

Figure 2.18 : Electromagnetic Torque signal 

 

Figure 2.19 : Mechanic Speed signal 
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Figure 2.20: Faulty current signals 

 

Figure 2.21: Faulty flux signals 

Upon the occurrence of a short-circuit fault starting at t = 0.4 s, it is observed that 

the amplitude of the current in phase 𝑎𝑠is larger than the other phases (Figure 2.16). At t = 

0.6 s, the amplitude of the current in phase 𝑏𝑠is getting bigger than the phases 𝑎𝑠, 𝑐𝑠. 

Finally; at t = 0.8 s, the amplitude of phase 𝑐𝑠is higher than the phases 𝑎𝑠, 𝑏𝑠. Thus, it can 

be noticed that the rotor currents of the IM are strongly influenced by the fault, as these 

signals are highly distorted (figure 2.17).  

The electromagnetic torque exhibits strong oscillations from the moment the fault 

appears at t = 0.4 s, due to the unbalance in currents that give birth to it (figure 2.18). 

These oscillations are dampened at the mechanical speed level due to the inertia of the 

rotor (figure 2.19). 

The appearance of fault currents and fluxes, taking a sinusoidal shape, is visualized. 

It is observed that the larger the number of short-circuited turns, the more significant the 

increase in amplitudes, as illustrated in Figure 2.20 and 2.21.  
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2.5.3. Comparison & comments 

In order to compare the two models developed and simulated previously, a table 

summarizing the results of multiple simulations is presented below (table 2.2). In this table, 

the amplitude of stator currents was considered to discern and compare the outcomes of the 

two models. Both models were simulated for various cases of unbalance in one or more 

phases. 

 Table 2.2: The amplitude of stator currents for the two models 

 Asymmetrical motor model SITSC motor model 

Unbalance 

stator phases 

 

𝑖𝑎𝑠 

(𝐴) 

 

𝑖𝑏𝑠 

(𝐴) 

 

𝑖𝑐𝑠  

(𝐴) 

 

Ω 

(rad/sec) 

 

𝑖𝑎𝑠 

(𝐴) 

 

𝑖𝑏𝑠 

(𝐴) 

 

𝑖𝑐𝑠  

(𝐴) 

 

Ω 

(rad/sec)  𝑎𝑠  𝑏𝑠  𝑐𝑠 

6 - - 1.5 1.5 1.4 156.8 1.5 1.5 1.4 156.8 

- 24 - 1.4 1.6 1.5 156.9 1.4 1.6 1.6 156.9 

- - 30 1.6 1.3 1.7 156.8 1.6 1.4 1.6 156.8 

30 6 - 1.7 1.6 1.3 156.8 1.6 1.6 1.4 156.9 

- 30 24 1.4 1.6 1.7 156.8 1.5 1.6 1.7 156.8 

6 - 30 1.6 1.3 1.7 156.8 1.6 1.4 1.6 156.8 

24 30 6 1.5 1.7 1.5 156.8 1.6 1.7 1.5 156.9 

Upon observing the preceding table, it is evident that both models yielded values 

close to 99% for the two measurements of current and mechanical speed. Furthermore, the 

discrepancy between the two measurement models appears to be minimal. Thus, we can 

conclude that the inclusive SITSC motor model is valuable for studying fault detection. 

2.6. Experimental investigation 

2.6.1 Description of the test bed. 

The test-bed (figure 2.22) comprises a power supply voltage source with an RMS 

value of 380 V per phase applied to the terminals of the three star-coupled stator phases of 

the IM. These voltages form a system of balanced sinusoidal three-phase voltages with a 

frequency of 50Hz. A three-phase rewound IM was used, possessing the same parameters 

as the IM models. Its stator contains four coils for each phase, with each coil having 132 

turns connected in series. The motor was rewound to create stator short-circuits, as 
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depicted in Figure 2.23(a). Current and voltage were measured using Hall-effect sensors, 

and the signals from these sensors were conditioned and amplified using an op-amp based 

circuit, as shown in Figure 2.23(b). The measured signals go through a filtering with a 

Butterworth-type anti-aliasing low pass filter with a 500Hz cutting frequency. The 

DSPACE1104 platform, equipped with MPC 8240 processor, was used for signal 

acquisition and control figure 2.23(c). This platform can be directly programmed using 

MATLAB/Simulink software. The program was integrated into Simulink using the basic 

functions and specific blocks of the DSPACE system, and after successful debugging; it 

was uploaded onto the DS1104 platform. The CONTROLDESK software managed the 

platform and supervised the experiment, offering the ability to access, visualize, and record 

various variables for further analysis. Additionally, it allowed online modification of 

program parameters, such as regulator gains. 

 

Figure 2.22: Experimental test bed 

   

(a) (b) (c) 

Figure 2.23: (a) rewound IM, (b) currents & voltages measuring boxes, (c) DS1104 

acquisition card. 
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2.6.2. Start-up of the test-bed 

Figures from 2.24(a) to 2.24(d) illustrate the results of experimental IM start-up. 

This start-up will be conducted under the different cases of unbalance stator. The goal is to 

clearly observe the currents of a real motor. 

 

(a) 

 

(b) 



73 
 

 
 

 

(c) 

 

(d) 

Figure 2.24: Currents signals of experimental IM. 

It can be seen from Figure 2.24 that the curves are not smooth and this is due to the 

fact of sampling time which equal to 10
-4

 second (data acquisition). The results show that 

for a case of a short circuit in one phase, the amplitude of the current of the concerned 

phase is larger than the other healthy ones. Unlike the appearance of the short circuit in 

two or more phases, the current amplitudes increase in different ways. 

2.6.3. Comparison & comments  

In this section, we opt for comparison between the two models and experimental 

IM, a table summarizing the results of multiple simulations is presented below (table 2.3). 
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In this table, the amplitudes of stator currents were considered to observe and compare the 

outcomes of different bases. All systems were simulated for various cases of unbalance in 

one or more phases. 

 Table 2.3 The amplitude of stator currents 

 Asymmetrical 

motor model 

SITSC motor 

model 

Experimental 

simulation 

Number of 

removed 

turns 

 

𝑖𝑎𝑠 

(𝐴) 

 

𝑖𝑏𝑠 

(𝐴) 

 

𝑖𝑐𝑠  

(𝐴) 

 

𝑖𝑎𝑠 

(𝐴) 

 

𝑖𝑏𝑠 

(𝐴) 

 

𝑖𝑐𝑠  

(𝐴) 

 

𝑖𝑎𝑠 

(𝐴) 

 

𝑖𝑏𝑠 

(𝐴) 

 

𝑖𝑐𝑠  

(𝐴) 

𝑎𝑠 𝑏𝑠 𝑐𝑠 

6      0     0 1.5 1.5 1.4 1.5 1.5 1.4 1.7 1.6 1.6 

0    24     0 1.4 1.6 1.5 1.4 1.6 1.6 1.5 1.7 1.8 

0      0   30 1.6 1.3 1.7 1.6 1.4 1.6 1.7 1.9 1.6 

30    6     0 1.7 1.6 1.3 1.6 1.6 1.4 1.9 1.6 1.7 

0    30   24 1.4 1.6 1.7 1.5 1.6 1.7 1.6 1.9 1.8 

6      0   30 1.6 1.3 1.7 1.6 1.4 1.6 1.7 1.9 1.6 

24   30    6 1.5 1.7 1.5 1.6 1.7 1.5 1.7 1.8 1.9 

Upon observing the last table, we see that the measurements of the rewound motor 

are slightly higher than the two created models. This is due to the fact that the motor is 

powered by supply voltage source that is obviously unbalanced. Furthermore, the 

simplifying assumptions already made in section (2.2.3) are not guaranteed in real mode. 

The experimental current measurements are close to 80% for both models; indeed, the 

difference between the motor measurements and the two models sometimes seems 

significant (a difference of 0.5 A). But; by carefully noticing the results, we can realize that 

the model with SITSC is a bit closer to experimental motor.  

2.7. Conclusion 

In this chapter, we have modeled the asymmetric induction machine and the 

machine with stator short-circuit fault. This modeling is based on the application of the 

Park transformation, the primary advantage of which is to simplify the three-phase model 

into a two-phase model. This modeling will serve as a basis for developing the two models. 
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 The asymmetric model of the IM assumes that the stator phases do not have the 

same number of turns. The model with a fault assumes that the short-circuited phase is 

divided into two parts (healthy portion and short-circuited portion).  

The modeling of the IM with a stator inter-turn short-circuit fault allowed for a 

precise simulation of the machine's behavior under fault conditions. It requires a significant 

computation time due to the number of differential equations representing the model. 

Finally, we have validated the operation of a (healthy) symmetric and asymmetric 

induction machine through simulation. From a modeling perspective, a symmetric 

induction machine can be considered a special case of the asymmetric machine, and the 

asymmetric machine is a healthy machine but constructed in a different way. Then, we 

have compared the results obtained through simulation and experimentation for the two 

developed models. 
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Chapter (3) 

Detection, classification and severity estimation of 

Multi induction motor faults 
 

 

 

 

3.1. Introduction 

In this chapter, two types of IM diagnosis were discussed.  

The first one is Fault Detection and Classification (FDC) of SITSC. A Feed 

Forward Neural Network (FFNN), trained by the back-propagation algorithm, is applied 

for the FDC process. It is based on monitoring the three-phase instantaneous power 

average (IP) using the stator currents and voltages. 

 The second diagnosis involves an efficient approach to estimate the percentage of 

SITSC and detect Unbalance Supply Voltage (USV) occurrences. A fault classifier for 

SITSC and USV is implemented using a Multi-Layer Perceptron Neuronal Network (MLP-

NN). The fault identification process monitors three types of signals: total instantaneous 

power, shift between line current and phase voltage, and negative sequence voltage.  

Both approaches demonstrate good performance in the diagnostic field. 

3.2. Detection and classification of SITSC fault 

This section introduces an ANN-based approach for detecting and classifying SITSC 

faults in a three-phase Induction Motor. The FDC process enables the identification of 

SITSC faults and categorizes them into phases 𝑎𝑠, 𝑏𝑠, or 𝑐𝑠. A feed forward neural network 

(FF-NN) trained by the back propagation algorithm is employed. The FDC process relies 

on monitoring the average three-phase instantaneous power (IP) using stator currents and 

voltages signals. 

3.2.1. Fault indicators selection 

The FDC process uses instantaneous power signals to pursue the diagnosis. IP is 

obtained using only motor current and voltage signals.   
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3.2.1.1. Instantaneous power analysis 

The selection of anomaly indicators is a crucial initial step in the fault detection and 

classification, its selection directly influences the final results. In this section, we conduct a 

study on the behavior of three-phase instantaneous power (IP) in the presence of SITSC 

faults. The IM model with SITSC fault developed previously in chapter 2 is used to gain 

the issue. The three phases IPs are calculated as follow [48]: 

{

  𝐼𝑃𝑎𝑠(𝑡) = 𝑉𝑎𝑠(𝑡) × 𝐼𝑎𝑠(𝑡)
  𝐼𝑃𝑏𝑠(𝑡) = 𝑉𝑏𝑠(𝑡) × 𝐼𝑏𝑠(𝑡)
 𝐼𝑃𝑐𝑠(𝑡) = 𝑉𝑐𝑠(𝑡) × 𝐼𝑐𝑠(𝑡)

 

 

(3.1) 

      Simulation results for the three-phase instantaneous power in healthy and faulty cases 

are shown in Figures from 3.1 to 3.4. 

 

Figure 3.1: Simulation of IP (healthy case) 

 

Figure 3.2: Simulation of IP (fault in phase 𝑎𝑠) 
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Figure 3.3: Simulation of IP (fault in phase 𝑏𝑠 ) 

 

Figure 3.4: Simulation of IP (fault in phase 𝑐𝑠 ) 

  

Upon examining the preceding figures, it is observed that the instantaneous power 

signal is a sinusoidal signal with a frequency of 100 Hz, since it is the product of the 

current and voltage signals. Initially, the motor takes high values, which are necessary for 

motor startup (high power required to turn on a motor). Thus, its average value is not equal 

to zero like the current and voltage signals, but it is a low value that keeps the motor 

running. In a healthy motor scenario, the instantaneous power values have the same 

amplitude in the whole phases. The occurrence of a short circuit fault brings change in the 

amplitudes, where the damaged phase has a higher average value of IP than the others, 

leading to a change in the amplitude. 

3.2.1.2. Load torque variation influence 
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Load torque variation in one of the motor common functioning conditions. It 

influences on currents, consequently on instantaneous power. Therefore, analyzing it is 

very important to see whether it can give a fault alarm for the FDC process or not. Figures 

from 3.5 to 3.8 illustrate the IP signals under no load condition, then a load torque is 

applied at t=0.3s where 𝑐𝑟 = 3.8 𝑁𝑚. 

 

Figure 3.5: Simulation of IP (healthy case) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 

 

Figure 3.6: Simulation of IP (fault in phase 𝑎𝑠) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 
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Figure 3.7: Simulation of IP (fault in phase 𝑏𝑠) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 

 

Figure 3.8: Simulation of IP (fault in phase 𝑐𝑠) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 

 The change in load torque in the preceding figures reveals another insight. Initially, 

in the first steady-state period (t=0.15 sec to t=0.3 sec), the motor exhibits a low average 

value of IP, previously justified by the motor's running power. Once the load torque 

reaches its rated value, the power undergoes a sudden change in its average value while 

maintaining the amplitude. This change is attributed to the necessary power to turn the 

motor under the new conditions. For a healthy motor, the values of instantaneous power 

have the same amplitude. The occurrence of a short circuit fault results in a change in 

amplitudes, with the damaged phase having a higher average value than the others. 
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3.2.2. Features extraction 

FDC method utilizing artificial intelligence tools necessitate a dataset. This dataset 

is acquired through features extracted. Feature extraction is a process in which relevant 

information or characteristics (features) are identified and extracted from raw data 

(indicators). This is typically done to reduce the dimensionality of the data, highlight 

important patterns, and provide meaningful input for diagnosis algorithm. Therefore, using 

the entire IP signal seems unreasonable. Hence, the instantaneous power average on one 

period appears as a good feature to select. The calculation of the IP average is given by 

[48]: 

                                       𝐼𝑃(𝑎𝑏𝑐) =
1

𝑇𝑖𝑝
∫ 𝐼𝑃(𝑎𝑏𝑐)𝑠(𝑡) 𝑑𝑡
𝑡0+𝑇𝑖𝑝
𝑡0

                    (3.2) 

                                                   𝑇𝑖𝑝 = 2 × 𝑇𝑠𝑣 =
2

𝐹
.                                 (3.3) 

Where: F is the supply voltage frequency (50 Hz).  

 The variation of the average instantaneous power concerning the number of short-

circuited turns under no-load conditions is depicted in Figure 3.9. [48] 

 

(a) 
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(b) 

 

(c) 

Figure 3.9: Instantaneous power average for SITSC fault on (a) phase 𝑎𝑠, (b) 

phase 𝑏𝑠, (c) phase 𝑐𝑠 (no load conditions) [48]. 

  

 The SITSC faults simulations are repeated with five load torque values (𝐶𝑟=0%, 

𝐶𝑟=10%, 𝐶𝑟=30%, 𝐶𝑟=70%, 𝐶𝑟=100%) of the fully load torque (𝐶𝑟=3.8 N.m)), in order to 

investigate the load effect on the IPs average. Figure 3.10 illustrate the obtained results. 

[48] 
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(a) 

 

(b) 

 

(c) 

Figure 3.10: The three phase IP average under 4 load conditions, in case of 

SITSC fault on (a) phase 𝑎𝑠, (b) phase 𝑏𝑠, (c) phase 𝑐𝑠 [48]. 
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 It is understandable from Figure 3.9 that the average values of three-phase IPs are 

correlated with the number of shorted turns. Additionally, the maximum IP value 

corresponds to the phase where the fault occurs. For example, if an SITSC fault occurs in 

phase 𝑎𝑠, the decreasing order of IPs is: 𝐼𝑃𝑎-𝐼𝑃𝑐-𝐼𝑃𝑏. If an SITSC fault occurs in phase 𝑏𝑠, 

the decreasing order of IPs is: 𝐼𝑃𝑏-𝐼𝑃𝑎-𝐼𝑃𝑐. If an SITSC fault occurs in phase 𝑐𝑠, the 

decreasing order of IPs is: 𝐼𝑃𝑐-𝐼𝑃𝑏-𝐼𝑃𝑎. Moreover; as depicted in Figure 3.10, the average 

IPs of the faulty stator under various load conditions do not overlap. As result, the fault 

detection system is insensitive to load variations. According their favorable behavior 

against SITSC fault and load condition, we choose the three-phase stator instantaneous 

power averages (𝐼𝑃𝑎, 𝐼𝑃𝑏, 𝐼𝑃𝑐) as the greatest suitable inputs for the FF-NN.  

 

3.2.3. Fault diagnosis approach 

The primary objective of this study is to utilize ANN for the detection and localization 

of SITSC faults in Induction Motors (IMs). The IM model with SITSC fault, developed 

earlier, is simulated under various load-torque (0- 100%) levels and different percentages 

of shorted turns (0 - 10%). Currents and voltages are measured for all simulated cases at 

steady state. These signals are thoroughly explored and analyzed to identify representative 

indicators. The selected indicators are then used to extract distinctive features, namely (𝐼𝑃𝑎, 

𝐼𝑃𝑏 and 𝐼𝑃𝑐). These features serve as inputs for the proposed Feed Forward Neural 

Network (FF-NN) designed for Fault Detection and Classification (FDC) purposes.  

To train and test the FF-NN, a dataset is required, which is obtained by collecting data 

under different percentages of SITSC fault, and load torque. The FF-NN is employed to 

correlate the extracted features with their corresponding affected phases. For the validation 

of the proposed FF-NN, a new dataset extracted from the experimental test bed is created to 

validate the diagnostic tool. Figure 3.11 illustrates the flowchart of the overall system. 
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Figure 3.11: Block diagram of the proposed method. [48] 

3.2.3.1. Feed forward neural network architecture and configuration 

This study utilizes a FF-NN trained with the Levenberg–Marquardt backpropagation 

(BP) algorithm to automatically detect and locate ITSC faults. The ANN architecture 

comprises three layers; input layer consists of three neurons which correspond to the IPs 

values. The output layer consists of three neurons which correspond to the affected phase. 

Finally, the hidden layer consists of five neurons (see Figure 3.11). The activation 

functions for the hidden layer are "tansig". While the activation function of the output 

layers is "logsig". The selection of the number of neurons in the hidden layer is done 

through trial and error, as too few neurons may lead to undertraining, while too many 

neurons might result in memorization of the training set (overtraining). Both scenarios 

obstruct good generalization. The ANN is trained and subsequently tested with separate 

datasets to assess both training and testing errors. 

3.2.3.2. Training and testing dataset 

In the initial phase of this study, the induction motor models presented in the previous 

chapter were employed to generate simulation data under normal operating conditions and 

with varying levels of SITSC fault. The collected data enabled the calculation of IP 
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averages and the creation of datasets for training and testing the Artificial Neural Network 

(ANN). 

 To enhance the network's generalization ability, training and testing data were 

encompassed to cover the complete spectrum of operating conditions. This included 

various fault occurrences and healthy operations under different load torques [48]. The 

training dataset was constructed to include different operating scenarios of the induction 

motor: 'healthy' (one point), faults with (n=3, 5, 9, 13, 17, 20, 23, 25) shorted turns on each 

stator phase (24 points), and load torque variations of (0%, 10%, 30%, 70%, 100% of the 

rated load torque). This resulted in a dataset comprising 125 points. The testing dataset 

included faults with (n=4, 8, 10, 14, 18, 22) shorted turns on each stator phase (18 points) 

and load torque variations of (20%, 40%, 80%, 90% of the rated load torque), making the 

dataset consist of 72 points. 

 

3.2.4. Results and discussion 

3.2.4.1. Simulation results  

The performance of the ANN is assessed by its Mean Squared Error (MSE), as 

depicted in Figure 3.12. Remarkably, after only sixty-four epochs of learning, the network 

achieves a low training MSE, equal to 6.6891 × 10⁻
12

. Figure 3.13 illustrates the desired 

output, training outputs. The training results are highly conclusive; the ANN effectively 

learns the training data by reproducing the desired outputs with minimal training errors. 

The generalization capacity of the trained network is assessed using the test dataset, as 

depicted in Figure 3.14. The test results affirm that the ANN-based method effectively 

detects SITSC faults in each of the three phases. 
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              Figure 3.12: Training performance of the neuronal network. 

 

Figure 3.13: Training errors, training & desired outputs. 
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Figure 3.14: Testing errors, testing & desired outputs. 

3.2.4.2. Experimental results 

In order to validate the proposed FDC technic, experimental tests were conducted 

for the diagnosis of SITSC in the IM. The three-phase squirrel cage induction motor used 

in Laboratory has the same parameters as that of the simulated model (see chapter 2, table 

2.1) [48]. The validation of the ANN is discussed, by using the real motor under healthy 

operation as well as in presence of SITSC fault. 

The SITSC faults appear in the whole three phases of the stator. The validation dataset 

composed of fifty-one samples. One healthy case and fifty combined faults occurrence, the 

shorted turns vary as (6, 24, 30 turns) for each phase. And the variation of the load torque 

is taken into account. The results of the validation are shown in Figure 3.15. 
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Figure 3.15: Validation errors, FF-NN & desired outputs. 

As it can be observed in figure 3.15, The ANN has recognized more than 90% of 

the cases. In phases 𝑎𝑠 and 𝑏𝑠 the FF-NN recognize 91% of the cases, in phase 𝑐𝑠 the ANN 

did recognize 95% of the cases.  

3.3. Detection, classification and severity estimation of SITSC and USV faults 

IMs undergo various stresses that can disrupt their normal operation. Excessive 

stress can exhibit symptoms before the IM faces a failure situation. Therefore, detecting 

these symptoms early allows for shutting down IMs to prevent complete destruction. Fault 

detection is a primary objective of diagnosis systems, and SITSC is a significant cause of 

IM breakdown. However, unbalanced supply voltage is a contributing factor affecting IMs' 

operation. To avoid false alarms caused by USV, the diagnosis system must distinguish 

between USV and SITSC faults. The training, testing, and validation phases of the MLP-

NN require dataset creation, and the necessary data is obtained from the developed model 

and the laboratory test-bed (Chapter 2). The results demonstrate the sensitivity and 

effectiveness of the proposed diagnosis system. 

3.3.1. Fault indicators selection 

In this section, three types of indicators obtained from time domain current and 

voltage signals where selected to do the diagnosis purpose. 

3.3.1.1. phase shift between line current and phase voltage analysis 
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To calculate the phase shift between current and voltage signals, it is necessary to 

estimate the zero time (ZT) of each signal. Subsequently, determine the zero crossing time 

(ZCT) between them, and finally, convert the ZCT values from seconds to degrees. Figure 

3.16 illustrates how to calculate an approximate zero crossing point, and equation (3.4) 

provides its expression. 

        

Figure 3.16: Approximate zero time calculation method 

The ZT is given as follows: 

 
𝐼(𝑛)−0

𝐼(𝑛)−𝐼(𝑛−1)
=

𝑡(𝑛)−𝑇(𝑘)

𝑡(𝑛)−𝑡(𝑛−1)
                                                        (3.4) 

The approximate 𝑇(𝑘) is defined as: 

                                     𝑇(𝑘) = 𝑡(𝑛) −
𝐼(𝑛)[𝑡(𝑛)−𝑡(𝑛−1)]

𝐼(𝑛)−𝐼(𝑛−1)
                                                    (3.5) 

So, ZCT between current and voltage signals is defined as : 

                                        𝑍𝐶𝑇𝑎𝑏𝑐 = 𝑍𝐶𝑇𝑣𝑎𝑏𝑐
𝑠 − 𝑍𝐶𝑇𝑖𝑎𝑏𝑐

𝑠                                                  (3.6) 

Where: 𝑍𝐶𝑇𝑣𝑎𝑏𝑐
𝑠   are the stator voltages zero crossing times in phases 𝑎𝑠, 𝑏𝑠 and 𝑐𝑠.  

𝑍𝐶𝑇𝑖𝑎𝑏𝑐
𝑠    are the stator currents zero crossing times in phase 𝑎𝑠, 𝑏𝑠 and 𝑐𝑠. 

Finally; phase shift is calculate as: 

                                                𝜑𝑎𝑏𝑐 =
𝑍𝐶𝑇𝑎𝑏𝑐

𝑇
× 360                                                         (3.7) 

Where T is the period of the supply voltage ( 𝑇 =
1

𝑓
=

1

50
= 0.02 𝑠𝑒𝑐) 

 

Simulation results for the three-phase shift between line current and phase voltage in 

healthy and faulty cases are shown in Figures from 3.17 to 3.21. 
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Figure 3.17: Simulation of PS(abc) (healthy case) 

 
Figure 3.18: Simulation of PS(abc)  (fault in phase 𝑎𝑠) 

 
Figure 3.19: Simulation of PS(abc)  (fault in phase 𝑏𝑠 ) 
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Figure 3.20: Simulation of PS(abc)  (fault in phase 𝑐𝑠 ) 

 
Figure 3.21: Simulation of PS(abc) : healthy case, (t=0.5)  10 shorted turns in 𝑎𝑠, (t=1 

sec) 20 shorted turns in 𝑎𝑠, (t=1.5 sec) 40 shorted turns in 𝑎𝑠. 
 

In the transient regime, the values of the PS are unstable because the current and 

voltage signals are also in the transitional regime. In the steady-state, the PS takes on a 

constant value. In the case of a healthy motor, the three PS values are equal (PS=85 

degrees). The occurrence of a SITSC fault brings a change, where the faulty phase takes 

the smallest value of PS, and this value decreases as the level of SITSC increases. 

Load torque variation in one of the motor functioning conditions. It influences on 

the currents, consequently on phases shift. Therefore, analyzing it is very important to see 

whether it can disturb the diagnosis process by given faulted calculation of SITSC 
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percentage or not. Figure from 3.22 to 3.25 illustrate the PS signals under no load 

condition, then a load condition application at t=0.5s where 𝑐𝑟 = 3.8 𝑁𝑚. 

 

Figure 3.22: Simulation of PS(abc) (healthy case) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 

 

Figure 3.23: Simulation of PS(abc) (fault in phase 𝑎𝑠) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 
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Figure 3.24: Simulation of PS(abc) (fault in phase 𝑏𝑠) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 

             

Figure 3.25: Simulation of PS(abc)(fault in phase 𝑐𝑠) under load torque (𝑐𝑟 = 3.8 𝑁𝑚) 

An increase in the load torque affects the PS by decreasing its value. For a healthy 

motor case, the values of the PS decrease until PS=45 degrees. In the event that the motor 

faces a short circuit fault; the same reasoning holds, the damaged phase is the one with the 

lowest value of PS. 

In order to explore the impact of USV on the PS. The IM model has been simulated 

under USV conditions, the results are illustrated figures from 3.26 to 3.29.  
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Figure 3.26: Simulation of healthy IM PS(abc) under USV in phase 𝑎𝑠. 

 

Figure 3.27: Simulation of healthy IM PS(abc) under USV in phase 𝑏𝑠. 
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Figure 3.28: Simulation of healthy IM PS(abc) under USV in phase 𝑐𝑠. 

Oppositely to the SITSC effect on the phase shifts, the damaged phase is the one 

with highest value of PS. we can explain that by the fact that the phases voltage are not the 

same, where the damaged one has a lowest amplitude of voltage. 

3.3.1.2. Total instantaneous power analysis 

In an induction motor supplied from an ideal three-phase source, the currents and 

voltages of the three phases are given as: 

𝑣𝑎𝑏𝑐
𝑠 =

{
  
 

  
 𝑣𝑎

𝑠 = √2 𝑉 cos(𝜔𝑡)

𝑣𝑏
𝑠 = √2 𝑉 cos(𝜔𝑡 + 2𝜋/3)

𝑣𝑐
𝑠 = √2 𝑉 cos(𝜔𝑡 − 2𝜋/3)

          𝑖𝑎𝑏𝑐
𝑠 =

{
  
 

  
 𝑖𝑎

𝑠 = √2 𝐼 cos(𝜔𝑡 − 𝜑)

𝑖𝑏
𝑠 = √2 𝐼 cos(𝜔𝑡 +

2𝜋

3
−𝜑)

𝑖𝑐
𝑠 = √2 𝐼 cos(𝜔𝑡 −

2𝜋

3
− 𝜑)

               

 

 

      (3.8)  

Where: 𝐼 and 𝑉 are respectively the root mean square (RMS) values of the 

fundamental component of the current and voltage. 𝜑 is the phase shift between current and 

voltage, 𝜔 is the supply frequency in radians per second.  

In a healthy motor, the total instantaneous power (TIP) is given by[51] equation (3.9): 

𝑇𝐼𝑃(𝑡) = ∑𝑣𝑎𝑏𝑐
𝑠 (𝑡)𝑖𝑎𝑏𝑐

𝑠 (𝑡) = 3𝑉𝐼𝑐𝑜𝑠(𝜑) = 𝑃0.     (3.9)                                               

In the case of a SITSC occurrence, the TIP equation changes where an expression define 

fault is being added. [21] has developed the TIP equation and gives it as follows: 
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𝑇𝐼𝑃(𝑡) = 𝑃0 + 𝑇𝐼𝑃𝑓(𝑡)          (3.10) 

Where:  

𝑇𝐼𝑃𝑓(𝑡) = 3𝑉(𝐼𝑙 𝑐𝑜𝑠[𝜔𝑜𝑠𝑐𝑡 − 𝜑𝑙] + 𝐼𝑟 𝑐𝑜𝑠[𝜔𝑜𝑠𝑐𝑡 − 𝜑ᵣ])                (3.11) 

𝐼𝑙  is the RMS value of the lower side-band current component, 𝐼ᵣ is the RMS value of 

the upper side-band current component, 𝜔𝑜𝑠𝑐 is the modulating frequency, 𝜑𝑙 and 𝜑ᵣ are the 

current left and right phase shift respectively. 

Simulation results for the total instantaneous power in healthy and faulty cases and 

under USV and load torque variations are shown in Figures 3.29 and 3.30. 

 

             Figure 3.29: Healthy motor instantaneous power under load torque conditions [51]. 

 

Figure 3.30: Healthy motor instantaneous power under USV [51]. 
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Figure 3.31: Total instantaneous power for one faulty phase [51]. 

 

Figure 3.32: Total instantaneous power for three faulty phases [51]. 

Figure 3.29 illustrates that in the case of a healthy IM, the TIP maintains a low, 

constant value, attributed to IM losses (iron losses and joule losses). Application of a load 

causes the TIP to quickly increase until it reaches the rated TIP. In Figure 3.30, the TIP 

value remains constant. However, in the presence of an USV fault, the TIP signal exhibits 

ripples around the constant low value. The amplitude of these ripples amplifies with the 

developing of USV fault severity. The occurrence of SITSC fault (as depicted in Figures 

3.31 and 3.32) induces undulations in the TIP signal. The amplitude of these undulations 

increases proportionally with the fault severity. Moreover, the average TIP value fluctuates 

with changes in the SITSC percentage. 
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3.3.1.3. Sequence Component analysis 

In 1918, Fortescue proposed a transformation that decomposes any unbalanced 

system into three balanced ones [49]. Therefore, this transformation is used to convert 

unbalanced supply voltage (USV) into three sets of symmetrical balanced supply voltage 

components, namely positive, negative, and zero sequence components. This 

transformation is defined by: 

[
𝑃𝑆𝑉
𝑁𝑆𝑉
𝑍𝑆𝑉

] =
1

3
[
1   𝑎2 𝑎
1 𝑎   𝑎2

1 1 1

] . [

𝑣𝑎
𝑠

𝑣𝑏
𝑠

𝑣𝑐
𝑠
] 

 

(3.12) 

Where: 𝑎 = 𝑒
𝑗2𝜋

3⁄ , 𝑣𝑎
𝑠, 𝑣𝑏

𝑠 and 𝑣𝑐
𝑠  are the three-phase supply voltages.  

PSV, NSV, and ZSV are successively the positive, negative, and zero sequence voltages.  

If the supply voltage is balanced, only the positive sequence exists, and other 

components (negative & zero) are equal to zero. The appearance of USV fault causes an 

increase in the NSV value. Figure 3.33 shows the evaluation of the symmetrical 

components of a healthy supply voltage, then a USV occurrence in phase 𝑎𝑠 at 0.2 sec, this 

USV increases from 5% to 15%. 

 

Figure 3.33: Sequence component simulation under: (t=0.2 sec) 5% of USV, (t=0.5 

sec) 10% of USV, (t=0.75 sec) 15% of USV. [51]. 

Figure 3.33 demonstrates that as the USV increases, the NSV also increases, while 

the PSV decreases. Meanwhile, the ZSV remains constant at zero. It's noteworthy that the 

occurrence of a SITSC fault and the application of a load charge do not affect the sequence 
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components; this is because the sequence components are associated with the motor itself, 

however the USV is linked to the power supply voltage. 

3.3.2. Features extraction 

The proposed MLP-NN-based diagnosis system requires a dataset, which is 

acquired through feature extraction. Feature extraction is a process in which relevant 

information is identified and extracted from raw data indicators. This is done to reduce the 

dimensionality of the data by capturing important patterns and providing meaningful input 

for the diagnosis process. Therefore, using the entire signals of indicators seems 

unreasonable. Hence, averaging, maximum, and minimum values over one period sound 

like a good solution to select features. 

3.3.2.1. Three phase shift between current and voltage  

According to figures from 3.17 to 3.30, the transient regime contains non-equal 

values of the PS. However, the steady-state regime provides a fixed value of the PS, and it 

is this value that we will consider for this diagnosis approach.  

To study the behavior of PS under SITSC fault, the IM model is simulated at no 

load torque for various percentages of SITSC (SITSC= 0%, 2%, 4%, 6%, 8% and 10%) 

and various percentages of USV (USV= 0%, 2%, 3%, 5%, 7%, 10% and 15%) in the three 

phases. The results are illustrated in Figures 3.34 and 3.35. To observe the effect of load 

torque variation on PS, the IM model is simulated at three load torque levels (0%, 50%, 

100% of full load) and under the same percentages of SITSC fault and USV. The results 

are summarized in Figures 3.36 and 3.37. 
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  Figure 3.34: PS evaluation as function of SITSC percentages  

 

 Figure 3.35: PS evaluation as function of USV percentages  
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Figure 3.36: PS evaluations as function of SITSC percentages and load condition. 

 

Figure 3.37: PS evaluations as function of USV percentages and load condition. 

From Figure 3.34, it is clear that as the SITSC percentage increases, the smallest PS 

value regresses in the damaged phase, while the PS values in the other phases increase. 

Conversely, in Figure 3.35, as the USV percentage increases, the largest PS value reverts 

to the unbalanced phase, while the others decrease. Particularly, the load torque does not 

significantly impact the system; as depicted in Figures 3.36 and 3.37, variations in load 

torque do not overlap with changes in PS indicators, ensuring the diagnosis system remains 

unaffected by load variations. 
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3.3.2.2. The minimum, maximum and average of the total instantaneous power  

In this diagnosis approach; the statistical characteristics of the TIP signal 

(minimum, maximum and average) were selected as the powerful features of this indicator. 

To study the behavior of the statistical features under SITSC fault and USV, the IM model 

is simulated at no load torque for different percentages of shorted turns (0%, 2%, 4%, 6%, 

8%, 10% of the total turns) and different percentages of USV (0%, 2%, 3%, 5%, 7%, 10%, 

and 15%). The obtained results are summarized in Figures 3.38 and 3.39. To observe the 

effect of load torque variation on these features, the IM model is simulated at three load 

torque levels (0%, 50%, 100% of the full load) and under the same percentages of SITSC 

fault and USV previously used. The results are summarized in Figures 3.40 and 3.41. 

            

Figure 3.38: TIP features evaluation as function of SITSC percentages. 

             

Figure 3.39: TIP features evaluation as function of USV percentages 
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Figure 3.40: TIP features evaluation as function of SITSC percentages and load 

condition. 

    

Figure 3.41: TIP features evaluation as function of USV percentages and load 

condition. 

Figures 3.38 and 3.39 reveal that with increasing severity of SITSC faults and 

USV, the TIPmax, TIPmin, and TIPmean values diverge from each other. This enlargement gap 

is a result of the undulations observed in the TIP signal, corroborating the findings from 

Figures 3.30 and 3.32. Furthermore, in Figures 3.40 and 3.41, the progression of selected 
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indicators across various load torque levels remains distinct, indicating that the proposed 

diagnosis system remains insensitive to variations in load torque. 

3.3.2.3.Negative sequence voltage  

The occurrence of a SITSC will not affect the NSV component, since the USV is a 

primary influencer of NSV changes. Therefore, in this study we chose the NSV as the 

appropriate feature to indicate the occurrence of a supply voltage unbalance. Figure 3.42 

illustrates the evaluation of the NSV component as a function of the percentages of USV in 

the three phases. This figure is employed to investigate the behavior of the negative 

sequence when unbalanced supply voltage appears in the three phases. 

 

Figure 3.42: NSV evaluations as function of USV percentages. 

In Figure 3.42, it's evident that the amplitude of the NSV displays a linear 

dependence on the level of the USV. Additionally, when a USV occurs in phases A, B, or 

C, the NSV values are identical (as indicated by the superimposed curves). This equality 

can be clarified by Equation 3.12 of the sequence component. Meanwhile the USV 

predominantly induces changes in NSV; the NSV factor serves as an indicator for 

detecting the presence of supply voltage unbalance. 

3.3.3. Fault identification approach 

The key objective of this study is to employ ANNs for the detection, classification 

and severity estimation of SITSC in IMs. The previously developed IM model with SITSC 
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faults is simulated under various percentages of SITSC (0 - 10%) and different load-torque 

levels (0 - 100%). Currents and voltages are measured for all simulated cases at steady 

state. These signals are thoroughly explored and analyzed to identify representative 

indicators. The selected indicators, namely PS, TIP and sequence component are then used 

to extract distinctive features. These features are PS average, statistical characteristics of 

TIP and NSV. Those features serve as inputs for the proposed multi-layer perceptron 

neural network (MLP-NN) designed for Fault detection, classification and severity 

estimation purposes [51]. 

 MLP-NN is employed to correlate the extracted features with their corresponding 

SITSC percentages and USV occurrence. For the validation of the proposed FF-NN, a new 

dataset extracted from the experimental test bed is created to validate the diagnostic tool. 

Figure 3.43 illustrates the flowchart of the overall system 
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Figure 3.43: Flowchart of the diagnostic system [51]. 
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3.3.3.1. MLP-NN design and parameters configuration  

In this study, Multi-Layer Perceptron Neural Network (MLP-NN) is explored as a 

complementary component to enhance the IM diagnostic system. The MLP-NN 

architecture consists of an input layer, one hidden layer, and one output layer [51]. Figure 

3.44 illustrates the structure of the designed MLP. Based on the analysis of fault indicators 

in the previous section:  

 The input layer comprises seven neurons (TIPmin, TIPmax, TIPmean, PSa, PSb, PSc, and 

NSV).  

 The hidden layer includes nine neurons, determined as optimal for the network's 

accuracy through trial and error.  

 The output layer consists of two neurons: one for indicating the percentage of SITSC 

fault and the other for binary output to detect the presence of USV.  

The activation functions used are “tangent-sigmoid” for the input and hidden layer 

and “purelin” for the output layer. The Levenberg-Marquardt algorithm is selected as the 

training algorithm, with mean square error and regression curves serving as the 

performance criterion." 

                    

Figure 3.44: MLP-NN architecture for the proposed diagnosis system. 
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3.3.3.2. Training and testing dataset 

The training and testing process of the MLP-NN is conducted offline. To ensure an 

MLP-NN effective in estimating the percentage of SITSC fault and detecting USV 

occurrence, the designed NN should demonstrate generalization across a comprehensive 

range of operating conditions, including various fault occurrences and load torques. To 

achieve this, an input dataset is prepared with different operating cases, covering a range of 

SITSC percentages from 0% to 10% (with a step of 1% for each phase).  

Additionally, three unbalanced supply voltage cases (7%, 10%, and 15% of the 

power supply) and balanced supply voltage cases (0%, 2%, 3%, and 5% of the power 

supply) are included. Load torque varies from 0% to 100% of the full load torque, with a 

step of 10%. Consequently, the input dataset consists of 203 cases, with 120 cases 

allocated for training and 83 cases for testing the trained ANN.  

For the output dataset, it is a matrix of size (2×203), where 183 cases are designated 

for SITSC percentage, and 20 cases are reserved for indicating USV occurrence. 

3.3.4. Results and discussion 

3.3.4.1. Simulation results 

The proposed MLP-NN is assessed by three criteria, Mean Squared Error (MSE), 

regression analysis. As depicted in Figures from 3.45 to 3.47; the performances of the 

MLP-NN are shown. 

 

Figure 3.45: MSE training performance. 
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(a) 

 
(b) 

Figure 3.46: Regression analysis for training (a) SITSC estimation, (b) USV 

detection 
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(c) 

 
(d) 

Figure 3.47: Regression analysis for testing (c) SITSC estimation, (d) USV 

detection. 

The performance of the MLP-NN has reached a significant level, as demonstrated 

by Figures from 3.45 to 3.47. Specifically, after 1000 epochs of training, the MSE has 

achieved a value of (4.2141×10
-7

) (Figure 3.45), within only t=5 seconds.  

Figures 3.46 and 3.47 illustrate the results of the regression analysis. Linear 

regression establishes a model that relates prediction data and responded data in a linear 

relationship [51], represented the fit function knows as the following equation: 

𝑦 = 𝛼𝑥 + 𝛽                                                                            (3.13)  

A good fit function is expected to closely align with the identity function (𝑦 = 𝑥), 

indicating 𝛼 ≅ 1 and 𝛽 ≅ 0. Analysis of the regression study conducted previously reveals 
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a favorable fit function, where β is varies between 2.3×10
-2

 and 1.7×10
-7

 which can be 

negligible and α equals 1 for both the training and testing datasets.  

3.3.4.2. Experimental results 

To validate the proposed Fault identification process, experimental tests were 

conducted for diagnosing SITSC in the Induction Motor (IM). The three-phase squirrel 

cage induction motor utilized in the laboratory was simulated under different cases of 

SITSC, USV and load torque variation. SITSC faults were induced in all three phases of 

the stator. USV was generated using high power rheostats, by inserting them between the 

voltage source and the motor terminal board. The validation dataset comprised thirty-four 

samples, including seven healthy cases, twenty cases with USV occurrence and twenty-

seven SITSC fault occurrences [51]. The shorted turns varied as (6, 24, 30, 54, 60 turns). 

The variations in load torque are (0%, 50% and 100% of the full load). The results of the 

validation are illustrated in Figures 3.48 and 3.49 [51]. 

                        

                            Figure 3.48: Validation of MLP-NN for SITSC fault estimation. 
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                      Figure 3.49: Validation of MLP-NN for USV occurrence. 

Figure 3.48 demonstrates the commendable performance of the MLP-NN using the 

dataset provided by the test-bed. These results align closely with the targeted outcomes, 

indicating high concordance. However, if SITSC fault occur in two or three phases, the 

MLP-NN performance may diminish due to the data resembling that of a weakly faulted 

IM. 

Additionally, Figure 3.49 showcases the effective detection of USV occurrences. 

When there is no USV, the indicator remains close to zero, while the indicator ranges 

between 0.95 and 1 in the presence of USV. Notably the appearance of USV results in an 

indicator value close to one.  

Following a thorough investigation of the proposed diagnostic system, the MLP-

NN yields commendable results while maintaining the simplicity of its architecture and 

calculations. As depicted in the last figures, the accuracy of the proposed method exceeds 

95%. 

3.4. Conclusion  

In this chapter, two distinct approaches for diagnosing Induction Motor (IM) issues 

were explored. The first method focuses on SITSC-FDC. It employs a FF-NN to classify 

the SITSC fault source whether it’s from phase 𝑎𝑠, 𝑏𝑠 or 𝑐𝑠. The FDC process depends on 

the three- phase IP delivered by the three phase stator currents and voltages. The FF-NN-

based approach has an accuracy of 90%. 
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The second diagnosis method introduces an efficient technique for estimating 

SITSC percentage and detecting occurrences of USV. A fault classifier for SITSC and 

USV is implemented using MLP-NN. This approach consist of monitoring the statistical 

characteristic of the total instantaneous power, the average value of shift between line 

current and phase voltage, and negative sequence voltage. According to the previous 

results, the proposed process gives good results despite the simplicity of its architecture 

and calculations.  
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Chapter (4) 

Cascaded approach for SITSC and USV faults identification using multi ANNs 
 

 

 

 

4.1. Introduction 

In this chapter, four types of Induction Motor (IM) diagnosis were established. 

Those are Fault Detection and Classification (FDC) of SITSC, Fault Severity Estimation 

(FSE) of SITSC, Fault Detection and Classification (FDC) of USV, and finally Fault 

Severity Estimation (FSE) of USV.  

The proposed Fault Identification (FI) process is done in cascaded manner. In the 

first cascade, the FI permits to detect the category of the fault whether it is a SITSC or 

USV. Once the FI process recognizes the type of fault, the second cascade is activated 

automatically. This last allows the estimation of fault severity by the approximate 

percentage of SITSC or USV.  

Four types of Artificial neural networks (ANNs) were investigated to pursue the 

proposed FI including Feed Forward Neural Network (FFNN), Radial Basis Network 

(RBN), Radial Basis Extended Network (RBEN), and Generalized Regression Neural 

Network (GRNN). 

The IM-mathematical model (already developed in chapter 2) was used to analyze 

the current and voltage sequence components in order to extract the best features. The 

ratios between positive and negative sequence voltage and current were selected as the 

appropriate features of the cascaded approach. 

 The four cascaded ANNs where trained and tested under experimented dataset, and 

they demonstrate good performance in the diagnostic field. 

4.2. Fault indicators choice 

The symmetrical components are significant tool for analyzing and solving the 

problems of any unbalanced three-phase system. The symmetrical components are found 

reliable indicators of SITSC and USV faults. In fact, symmetrical IM supplied with 

symmetrical three-phase voltage sources will not produce negative and zero sequences of 

current or voltage. But when a SITSC fault occurs, symmetry will disturb and generate 
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negative and zero sequences current. Same for USV fault, symmetry will breakdown and 

generates negative and zero sequences voltage.  

Using Fortescue’s transformation given by equation (4.1), symmetrical components 

(Ip, In) are calculated from unbalanced phase currents (ias, ibs, ics) and symmetrical 

components (Vp, Vn) are calculated from unbalanced phase voltages (vas, vbs, vcs). 

{
  
 

  
 𝐼𝑝 =

1

3
(𝑖𝑎𝑠 + 𝑒

𝑗4𝜋
3⁄ 𝑖𝑏𝑠 + 𝑒

𝑗2𝜋
3⁄ 𝑖𝑐𝑠)

𝐼𝑛 =
1

3
(𝑖𝑎𝑠 + 𝑒

𝑗2𝜋
3⁄ 𝑖𝑏𝑠 + 𝑒

𝑗4𝜋
3⁄ 𝑖𝑐𝑠)

𝑉𝑝 =
1

3
(𝑣𝑎𝑠 + 𝑒

𝑗4𝜋
3⁄ 𝑣𝑏𝑠 + 𝑒

𝑗2𝜋
3⁄ 𝑣𝑐𝑠)

𝑉𝑛 =
1

3
(𝑣𝑎𝑠 + 𝑒

𝑗2𝜋
3⁄ 𝑣𝑏𝑠 + 𝑒

𝑗4𝜋
3⁄ 𝑣𝑐𝑠)

                                            (4.1) 

Fundamentally, the three-phase IM is a symmetrical system in healthy conditions 

and produces only positive sequence currents. It generates positive, negative, and zero 

sequence when symmetry is disturbed during a SITSC fault situation, not like in voltage 

source. In reality voltage source is an asymmetrical system. In this work, voltage source is 

considered symmetrical if the percentage of asymmetry is less than 5%; if it is more than 

5% the voltage source is considered as asymmetrical. Due to the difficulty in creating the 

SITSC and USV and measuring the currents and voltages experimentally for high values of 

percentage of SITSC and USV, we required to create the Simulink model using MATLAB 

software. The IM model with SITSC and USV is constructed based on the fundamental 

equations mentioned in the chapter 2. The model of the IM with SITSC and USV is shown 

in Appendix C. The unbalance of voltage source is created by changing the amplitude of 

voltage for one phase. 

The model is simulated for different levels of SITSC in the phases of the IM and 

different levels of USV in only one phase. The values of current and voltage are recorded. 

From these values, negative and positive sequence currents are calculated; same for 

negative and positive sequence voltages. These last are tabulated in Tables from 4.1 to 4.5.  
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 Table. 4.1 Symmetrical components in case of Stator Inter turn 

short-circuit 

SITSC % Vp(V) Vn(V) Ip   (A) In   (A) 

0 311.1 3.4e-4 1.5 2.99e-4 

2 311.1 3.5e-4 1.5 0.03 

4 311.1 3.4e-4 1.5 0.09 

6 311.1 3.4e-4 1.5 0.17 

8 311.1 3.4e-4 1.6 0.26 

10 311.1 3.5e-4 1.7 0.37 

 

 Table. 4.2 Symmetrical components in case of unbalance voltage 

source. 

USV % Vp(V) Vn(V) Ip   (A) In   (A) 

0 311.1 3.37e-4 1.5 2.86e-4 

3 308 3.1 1.4 0.1 

5 305.9 5.2 1.4 0.17 

7 303.9 7.3 1.4 0.24 

10 300.8 10.4 1.4 0.34 

 

 Table. 4.3 Symmetrical components in case of load torque variation 

LT (%) Vp(V) Vn(V) Ip   (A) In   (A) 

0 311.1 3.4e-4 1.5 2.99e-4 

50 311.1 3.5e-4 1.6 1.9e-4 

100 311.1 3.5e-4 2.1 9e-4 

The variation of the IM’s positive and negative currents and voltages are presented 

as function of SITSC, USV and load torque (LT) percentages variations successively in 

tables 4.1, 4.2 and 4.3. In order to analyze the impact of combination of LT with SITSC 

and LT with USV on 𝑉𝑝, 𝑉𝑛, 𝐼𝑝 and 𝐼𝑛, the tables 4.4 and 4.5 resume the obtained results.  

The analysis shows that in case of a SITSC prevalence; the positive current stills constant 

for almost all SITSC percentages; but the negative current increases as the SITSC severity 

rises. Meanwhile the positive and negative voltages have no deviations. An USV 

occurrence has a different influence; the negative current and voltage amplitudes found to 

be increasing gradually with the USV level rising. Alike the positive voltage which 
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decreases as the USV severity rises. However the positive current keeps constant. The LT 

variation has an expected effect, where the positive and negative voltages save their values, 

same for the negative current which is approximately zero. The positive current 

automatically rises up as the LT level grows up. 

 Table. 4.4 Symmetrical components for a SITSC as function of LT 

variation 

S
IT

S
C

 (
%

) 

 LT % Vp(V) Vn(V) Ip   (A) In   (A) 

2 0 311.1 3.5e-4 1.5 0.03 

50 311.1 3.4e-4 1.6 0.03 

100 311.1 3.5e-4 2.1 0.03 

4 0 311.1 3.4e-4 1.5 0.09 

50 311.1 3.4e-4 1.7 0.09 

100 311.1 3.6e-4 2.1 0.09 

6 0 311.1 3.4e-4 1.5 0.17 

50 311.1 3.4e-4 1.7 0.18 

100 311.1 3.5e-4 2.2 0.18 

8 0 311.1 3.4e-4 1.6 0.26 

50 311.1 3.5e-4 1.8 0.27 

100 311.1 3.5e-4 2.2 0.27 

1

0 

0 311.1 3.5e-4 1.7 0.37 

50 311.1 3.5e-4 1.9 0.38 

100 311.1 3.5e-4 2.2 0.39 
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 Table. 4.5 Symmetrical components for a USV as function 

of LT variation 

U
S

V
 (

%
) 

 LT % Vp(V) Vn(V) Ip   (A) In   (A) 

3 0 308 3.1 1.4 0.1 

50 308 3.1 1.6 0.1 

100 308 3.1 2 0.1 

5 0 305.9 5.2 1.4 0.17 

50 305.9 5.2 1.6 0.17 

100 305.9 5.2 2.1 0.17 

7 0 303.9 7.3 1.4 0.24 

50 303.9 7.3 1.6 0.24 

100 303.9 7.3 2.1 0.24 

10 0 300.8 10.4 1.4 0.34 

50 300.8 10.4 1.6 0.34 

100 300.8 10.4 2.1 0.34 

The combination of the LT with SITSC variation furnishes familiar results. The 

positive current increases slowly when varying SITSC and LT percentages, while the 

negative current amplitude stabilizes when varying LT and rise up when changing SITSC 

percentages. Instead the positive and negative voltages, they do not change whenever LT 

or SITSC varies. The combination of the LT with USV variation gave significant results; 

the positive and negative voltage amplitudes stabilize when rising LT severity, likewise the 

negative current; while they rise up when enhancing USV percentage. The positive current 

increases when LT severity rises and stabilizes when USV severity graduates.   

The variation of positive and negative components as function of LT variations 

demonstrates that LT have no influence on negative voltage, negative current and positive 

voltage. It has an impact only on positive current. 

4.3. Features selection 

Feature extraction techniques are widespread in ML. it has different range such as 

statistical and model based techniques. In ML; it is required to reduce the large amount of 

information contained in a signal to a small number of features, those last reflects the 

overall characteristics of a signal. This procedure is known as signal feature extraction 
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[63]. In this work, the features are extracted from positive and negative current and voltage 

signals. The two signals should be preprocessed to fit the ML-based FI system. The large 

information in the two signals must be converted to a few features, so that the proposed 

system learn how to distinguish between features representing healthy operating condition 

and faulty one. In this section; the per-unit change in a negative sequence with positive 

sequence is proposed as an effective fault feature factor for both SITSC and USV. The 

following equations express the key factors of the proposed FI process:  

                                        𝛿 =
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
-                                    (4.2) 

In case of a current factor, equation (4.2) becomes: 

                                                 𝛿𝑖 =
𝐼𝑃−𝐼𝑛

𝐼𝑝
                                                                         (4.3)      

In case of a voltage factor, equation (4.2) becomes: 

                                                𝛿𝑣 =
𝑉𝑃−𝑉𝑛

𝑉𝑝
                                                                        (4.4) 

 𝛿𝑖 is considered as the main parameter for FDC of SITSC  . Also 𝛿𝑣 is considered as the 

main input parameter for FDC of USV. And both 𝛿𝑖 and 𝛿𝑣 with 𝑉𝑛 and 𝐼𝑛 are adopted for 

FSE of SITSC and USV.  

The values of 𝛿𝑖 and 𝛿𝑣 are tabulated in table 4.6 and 4.7 respectively for various levels of 

SITSC and USV. 

 

 

 Table. 4.6 The variation of 𝛿𝑖 and 𝛿𝑣as function of SITSC 

variation 

                   LT (%) 

SITSC (%)             

0 50 100 

 𝛿𝑖 𝛿𝑣 𝛿𝑖 𝛿𝑣 𝛿𝑖 𝛿𝑣 

0 0.99 1 0.99 1 1 1 

2 0.98 1 0.98 1 0.98 1 

4 0.94 1 0.95 1 0.95 1 

6 0.89 1 0.9 1 0.9 1 

8 0.84 1 0.84 1 0.84 1 

10 0.78 1 0.78 1 0.78 1 
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Observing tables 4.6 and 4.7, it can be noticed that 𝛿𝑖 and 𝛿𝑣 gradually decreases 

with the increase in SITSC and USV. Furthermore, the LT rise seems to have a slight 

effect on 𝛿𝑖 and 𝛿𝑣 values, for example for a SITSC of 2% and a USV of 0% , 𝛿𝑖 is 0.98 for 

all LT levels. Although 𝛿𝑣 remains equal to 1. For a SITSC of 0% and a USV of 7% the 𝛿𝑖 

values are between 0.83 and 0.85, therefore a variation of 0.02 for all LT levels. 𝛿𝑣 remains 

constant for all LT levels and equals to 0.97. From these tables; it can be perceived that 𝛿𝑖 

and 𝛿𝑣 are mostly insensitive to the LT variations. This analysis impulses 𝛿𝑖 and 𝛿𝑣 to be 

the ultimate selected features.  

4.4. Description of the fault identification process  

The proposed diagnosis procedure begins with the systematic collection of data 

pertaining to the three-phase stator currents and voltages from an experimental Induction 

Motor (IM). This IM stator has different number of SITSC: (6, 24, 30, 36, 54, 60) which 

correspond to (1.13%, 4.54%, 5.68%, 6.82%, 10.23%, 11.36%); at different LT conditions: 

10%, 20%, 30, 40, 50, 60, 70, 80, 90 and 100% of the full LT and different levels of 

voltage shutdown (6V, 7.6V, 8V, 8.3V, 8.8V, 10.9V, 11.2V, 11.8V, 12.4V, 14.4V, 15.6V, 

18V, 22V, 22.5V, 23.5V, 30V) which correspond to (1.93%, 2.44%, 2.57%, 2.67%, 2.83%, 

3.5%, 3.6%, 3.8%, 3.99%, 4.63%, 5.01%, 5.79%, 7.07%, 7.23%, 7.55%, 9.64%) of voltage 

source. These currents and voltages are converted to symmetrical components using 

Fortescue transform. The symmetrical current and voltage signals are recollected in feature 

extraction. These extracted features are provided for SITSC and USV faults classification 

and severity estimation using MANNs system, figure 4.2 shows the proposed system. The 

MANNs system uses ANNs in cascade manner. Three ANNs are clustering to succeed the 

 Table. 4.7 The variation of 𝛿𝑖 and 𝛿𝑣as function of USV 

variation 

                    LT (%) 

USV (%)             

0 50 100 

 𝛿𝑖 𝛿𝑣 𝛿𝑖 𝛿𝑣 𝛿𝑖 𝛿𝑣 

0 0.99 1 0.99 1 1 1 

3 0.93 0.99 0.94 0.99 0.94 0.99 

5 0.89 0.98 0.89 0.98 0.9 0.98 

7 0.83 0.97 0.85 0.97 0.85 0.97 

10 0.76 0.96 0.79 0.96 0.79 0.96 
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proposed FI process. ANN1 uses 𝛿𝑖 and 𝛿𝑣 to classify the occurred fault. Afterward, ANN2 

and ANN3 employ the ANN1 results with negative sequence voltage and current to 

estimate the fault severity. ANN2 estimates the percentage of SITSC and the ANN3 

estimates the USV percentage. The performance of each ANN is evaluated taking into 

account MSE and Regression analysis metrics in order to select the optimal classifier with 

the highest accuracy. The overall schematic representation of the proposed process is 

presented in Figure 4.1. 
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Voltage source Rewound IM abc current & voltage 

signals 
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Figure 4.1 : Schematic diagram of the proposed FI process 
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Figure 4.2: MANNs system. 
 

4.5. Results and discussion 

4.5.1. Artificial neural networks configuration 

Table 4.8 resumes the configuration of each used ANN. Prediction of the used 

ANNs depends on training and testing dataset, this last is created using experimental set up 

measures. The main work of NN algorithm is to brand feature extraction. The feature 

extraction is the important part of the study; 𝛿𝑖 and 𝛿𝑣 selected as the main features of the 

proposed FI. It helps to split the dataset for analysis. The dataset then is split into training 

data set and testing data set. 80% of the data set was used to train the ANNs and 20% was 

used to evaluate the performance of the classifiers for finding out the accuracy of each 

ANN. 

 Table. 4.8 ANNs configuration 

 ANN1 ANN2 ANN3 

 IL OL HL Transfer 

Function 

IL OL HL Transfer  

function 

IL OL HL Transfer 

function 

FFNN 4 2 7 Sig– Lgsig 6 1 11 Sig- Prln 6 1 11 Sig- Prln 

RBNN 4 2 96 Rbf –Prln 6 1 96 Rbf –Prln 6 1 96 Rbf –Prln 

RBENN 4 2 96 Rbf –Prln 6 1 96 Rbf–Prln 6 1 96 Rbf –Prln 

GRNN 4 2 96 Rbf –Prln 6 1 96 Rbf –Prln 6 1 96 Rbf –Prln 

IL: input layer; OL: output layer; HL: hidden layer. 

Sig: tangent sigmoid function. Prln: pure line function.  

Lgsig: Logarithmic sigmoid function. Rbf: Radial basis function  

4.5.2. Training, testing and validating dataset 

The training, testing and validating process is conducted using experimental data 

obtained from laboratory test bed. To ensure effectiveness in estimating the percentage of 

                           
                                                                                                                       FDC of SITSC 

                                        𝛿𝑖                                                                FDC of USV                                       

                       Iabcs           𝛿𝑣                                                                   

                       Vabcs         𝑉𝑛                                                                                                         FSE of SITSC 

                                        𝐼𝑛 

                                                 FSE of USV      

 

 

 

 

 

ANN1 
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IM 
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SITSC fault and detecting USV occurrence, the designed ANNs should demonstrate 

generalization across a comprehensive range of operating conditions, including various 

fault occurrences and load torques. To achieve this, an input dataset is prepared with 

different operating cases.  

 Therefore, the IM stator has different number of SITSC, 6, 24, 30, 36, 54, 60 

shorted-turns) which correspond to (1.13%, 4.54%, 5.68%, 6.82%, 10.23%, 11.36% 

of SITSC), covering a range of SITSC percentages approximately from 1% to 12% . 

 Additionally, different levels of voltage shutdown (6V, 7.6V, 8V, 8.3V, 8.8V, 10.9V, 

11.2V, 11.8V, 12.4V, 14.4V, 15.6V, 18V, 22V, 22.5V, 23.5V, 30V) which 

correspond to (1.93%, 2.44%, 2.57%, 2.67%, 2.83%, 3.5%, 3.6%, 3.8%, 3.99%, 

4.63%, 5.01%, 5.79%, 7.07%, 7.23%, 7.55%, 9.64%) of voltage source covering a 

range of USV percentages approximately from 1% to 10% . 

 Load torque varies from 0% to 100% of the full load torque, which correspond to 

10%, 20%, 30, 40, 50, 60, 70, 80, 90 and 100% of the full load.  

Consequently, the input dataset consists of 112 cases, with 80% of cases allocated 

for training, 10% of cases for testing and 10% for validating the ANNs.  

4.5.3. Results and discussion 

The mean square errors (MSEs) were calculated in each iteration to find the 

ultimate accuracy rate. Table 4.9 resumes the final MSE of every algorithm. The regression 

is also used to evaluate the performance of the classifiers; Figures 4.3 and 4.5 illustrates 

the regression plots between ANN outputs and predictive values.  To observe the deference 

between target and output values; the error between those lasts was calculated and 

illustrated for each ANN. Moreover, the plotting of the outputs and the targets is also 

illustrated in figures 4.6 and 4.8. 

 
Table 4.9 MSEs final values 

 ANN1 ANN2 ANN3 

FFNN 5.21e-4
 

8.53e-4 1.96e-6 

RBN 1.96e-6 1.76e-16 2.28e-28 

RBEN 5.06e-6 2.13e-16 2.70e-28 

GRNN 8.06e-2 8.95e-2 4.87e-2 

The table of MSE values shows a good performance rate for all algorithms used. 

For the first cascaded ANN1 which is dedicated to the FDC, GRNN gave a higher MSE 
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value than the other algorithms, which makes it classified as the lowest in performance. In 

fact, the RBN and the RBEN showed a very low MSE rate, which explains the robustness 

of these latters. FFNN has reached an adequate value. The second and third cascade ANN2 

and ANN3 are assigned for the SITSC and USV FSE; the training and testing results 

furnish an extremely high performance rate of RBN and RBEN with the rate of 10
-16

 and 

10
-28

, that why they are categorized as the most efficient for the FI purpose. The FFNN 

presents a low value of MSE which reduces the performance of this last. GRNN has given 

a higher value of MSE which is considered as the weakest in FDC and FSE. 

 

 

FFNN RBN 

  

RBEN GRNN 

Figure 4.3 ANN1 regression analysis 
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FFNN RBN 

  

RBEN GRNN 

Fig.4.4: ANN2 regression analysis 

  

FFNN RBN 

  

RBEN GRNN 

Figure 4.5 : ANN3 regression analysis 

Linear regression forms a model that relates the target (the prediction data) and the 

ANN output (the response data) in a linear relationship called fit function like shown in 

equation (4.5) thereafter: 

 𝑦 = 𝑎𝑥 + 𝑏                                                                        (4.5) 

Where the model is expected to show a good fit (𝑦 = 𝑥 ) when 𝑎 ≃ 1 and 𝑏 ≃ 0.  
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Figures from 4.3 to 4.5 shows the regression analysis of all used ANNs; the RBN 

and RBEN provide a suitable fit between there outputs and the targets; thus all the curves 

slopes are equal to 1, as well as the coefficient 𝑏 is extremely small and is close of 10
-15

; 

and that is for all ANNs. FFNN also showed a well regression, therefore the slopes of the 

curves are all greater than 0.9, moreover the coefficient 𝑏 varies between 0.39 and 

5.1 ∗ 10−4 which makes it reliable. It is worth noting that FFNN regression gives a lower 

performance, when it is the case of FSE of SITSC. GRNN has not responded to regression 

analysis as well as other used ANN; in case of FDC and FSE of SITSC the curves slopes 

are of 0.85 and 0.49 and the coefficient 𝑏 is of 2 and 10
-15

 successively. These results are 

less accurate than the first ones. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.6 Outputs and targets; Error between outputs and targets for FDC-SITSC 

and FDC-USV, in case of ANN1 type of: (a) FFNN, (b) RBNN, (c) RBENN, (d) 

GRNN. 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4.7: Outputs and targets: Error between outputs and targets for FSC-SITSC  in 

case of ANN2 type of: (a) FFNN, (b) RBNN, (c) RBENN, (d) GRNN. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.8 : Outputs and targets ; Error between outputs and targets for FSC-SITSC  

in case of ANN3 type of: (a) FFNN, (b) RBNN, (c) RBENN, (d) GRNN. 

The error is calculated as the difference between the target and ANN output, this 

one is presented as follows: 

 𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑀𝐿𝐴𝑂𝑢𝑡𝑝𝑢𝑡                                                     (4.6) 

Figures from 4.6 to 4.8 illustrations the outputs and targets of all used ANNs, 

moreover the errors between those last is also presented.  

In the case of SITSC-FDC and USV-FDC; the RBNN and RBEN provide a small 

error (10
-4

 for USV-FDC with RBNN and SITSC-FDC with RBENN) and a good 

correspondence between all the targets and the outputs.  For the SITSC-FDC with RBNN 

and USV-FDC with RBENN, the errors are slight but show some peaks. The targets and 
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outputs are in correspondence only a few ones how are far from each other. The FFNN 

offers a small error of 10
-1

 with peaks about ±1; the correspondence between outputs and 

targets are appropriate, and a few ones who are distant from one another. Unlike FFNN, 

GRNN yields target and output values that are slightly separated and error values that vary 

about ±0.7. 

In the case of SITSC-FSE and USV-FSE; the RBN and RBEN provide a very small 

error (10
-8

 and 10
-14

 for ANN2 and ANN3) and an extreme correspondence between there 

outputs and targets values. For the FFNN and GRNN; the error values are slightly lower 

(10
-1

 and 10
0
 for ANN2 and ANN3), the correspondence between the outputs and targets is 

highly favorable for FFNN algorithm. Unlike GRNN, the correspondence is acceptable for 

low percentage values of SITSC and USV. However, for higher percentages, GRNN 

produces output values far from the targets. 

4.6. Conclusion 

This chapter presents an FI approach employing ANNs to effectively detect, 

classify, and quantify both SITSCSC and USV faults. The proposed FI system utilizes four 

ANNs: FFNN, RBN, RBEN, and GRNN. These ANNs are employed to accurately detect 

and classify SITSC and USV faults, along with estimating the approximate percentage of 

each fault type.  

The FI process commences with the extraction of significant indicators from the 

enhanced IM model (see chapter 2) that incorporates SITSC considerations in all three 

phases and USV in one phase. Moreover, the identification of the ratios between positive 

and negative sequences of current and voltage as the most critical features for both SITSC 

and USV faults.  

Next, a cascade of ANNs is implemented as the core of the FI system; the MANNs 

process is responsible for both FDC and FSE of SITSC and USV. Following the training 

and testing phases for each ANN, the FI system converges to a stable state, achieving a 

MSE values ranging from 10
-2

 to 10
-28

.  

This work is successfully accomplished using an experimental test bed. Eliminating 

the need for additional sensors, the terminal voltage and current measurements alone 

suffice for diagnosis purpose.  
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Conclusion 

 

 

 

The work conducted in this thesis focused on squirrel cage induction motor fault 

diagnosis. The analysis of statistics on electrical machines has demonstrated that stator 

faults and supply voltage unbalance are among the most common in induction machines. It 

has also been shown that the some techniques currently used in IM monitoring require 

accurate modeling with respect to faults. Therefore, modeling the machine for this purpose 

was the primary focus of this thesis. Two models were developed for the analysis an IM. 

Beside, monitoring IM with developed techniques like AI tools was the main objective of 

this purpose. Two advanced process were introduced for the diagnostic field. 

The three-phase IM, due to its interesting characteristics: robustness, low cost, and 

ease of construction, offers an advantageous choice in many fields of application at fixed 

or variable speeds. However, in its classical modeling, SITSC faults are not fully taken into 

account (in the three phases) by researchers. Since the short circuit phenomena extensively 

occurs and may touch the whole phases; the classical models are no longer valid for 

describing its operation in fault mode. These various restrictions inherent in modeling have 

favored the development of mathematical model that could guarantee the simulation of the 

IM behavior under different classes of SITSC. The mathematical model has been used to 

promise a wide type of diagnosis process such as those based on AI methods. The use of 

AI-based methods has become a common tool in IM fault diagnosis, one of the most 

widespread methods is ANN. 

The detection of IM-SITSC faults has been in interest for long years, because more 

than 36% of IM failures fall into SITSC [29]. Moreover; the presence of USV makes the 

fault detection system unable to know whether there is a SITSC fault or not, that is why 

identification of USV is also very important task. Besides; discriminate between SITSC 

fault and USV fault is too complicate; because the two phenomena give almost the same 

effects, only a few works arrived to differentiate between them. Additionally, detection is 

even more crucial when providing an estimate of the fault severity, as it allows time to 

implement solutions before the induction motor's operational area is compromised. These 

considerations have led us to focus our work on the development of:  
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 models dedicated to diagnosis 

 AI-based method that: 

 Ensure the consideration of stator inter-turn short-circuit faults. 

 Ensure the consideration of unbalance supply voltage faults. 

First, we focused on the analytical modeling of an asymmetric machine. The major 

advantage of such a model is that it allows changing the physical characteristics to 

simulate, with a relatively short calculation time, its healthy behavior or in the presence of 

three-phase asymmetry. The second analytical model is deliberate for inter-turn short 

circuit fault. It is assumed that the stator circuit phases have two kinds of windings in 

series, one healthy portion and another short-circuited. This second model is also deliberate 

for voltage source faults. 

Additionally, we validated our study through simulation using Matlab/Simulink and 

experimentally on the test bench for the case of a healthy and faulty IM. With the help of 

the results obtained through simulation, we observed that a symmetric IM can be 

considered a special case of an asymmetric machine; also both of the machines are healthy. 

Furthermore, an IM with an inter-turn short circuit fault can be analytically considered as 

an asymmetric IM.  

Second, we concentrated on the use of AI in the field of induction machine 

diagnoses. We developed a primary process that detect and categorize stator inter turn 

short circuit into the corresponded phase. We validate our proposed diagnostic system 

using the experimental test bed; an accuracy of 90% has been reached. 

 In Addition; we have taken in consideration of two kinds of fault, stator short 

circuit and supply voltage unbalance. The secondary process has the ability to detect and 

classifies the fault in too SITSC or USV fault and also has the ability to estimate the 

severity of short circuit turns. We validate our proposed diagnostic process using the same 

experimental test bed; an accuracy of 95% has been attended. 

Third; we propose a Fault Identification (FI) approach employing four types of 

Artificial neural networks (ANNs) to effectively detect and classify faults, accurately 

estimating the percentage of each fault type. The FI process consists of three cascaded 

ANNs. This work was successfully implemented using an experimental test bed, achieving 

an accuracy percentage ranging from 76% to 100% for all employed ANNs 
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 It seems interesting to continue this work, and various directions are open to us. 

 The hardware implementation of the proposed methods constitutes an 

important extension that can be made to this work.  

 Validating this approach on a controlled IM (scalar or vector control) is also 

an important issue.  

 Implementing online identification is another important aspect to consider for 

effective monitoring and prediction of incoming faults. 

 Combining models in different fault situations, associated with multiple 

diagnostic approaches process, will constitute a comprehensive solution for 

the diagnosis of multiple faults in  IMs such as SITSC, BRBs, ball 

bearings, and eccentricity. 
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𝐿14 = 𝑓𝑎√
2

3
 (𝐿𝑙𝑠 + 𝐿𝑚) 

𝐿16 = 𝑓𝑎√
2

3
𝐿𝑚 

𝐿22 = −fb(𝐿𝑙𝑠 +
2

3
𝑓𝑏𝐿𝑚) 

𝐿23 = 𝐿32 =
1

3
𝑓𝑏𝑓𝑐𝐿𝑚 

𝐿24 = −𝑓𝑏√
1

6
 (𝐿𝑙𝑠 + 𝐿𝑚) 

𝐿25 = 𝑓𝑏√
1

2
 (𝐿𝑙𝑠 + 𝐿𝑚) 

𝐿26 = −𝑓𝑏√
1

6
𝐿𝑚 

𝐿27 = 𝑓𝑏√
1

2
𝐿𝑚 

𝐿33 = −fc(𝐿𝑙𝑠 +
2

3
𝑓𝑐𝐿𝑚) 

𝐿34 = −𝑓𝑐√
1

6
 (𝐿𝑙𝑠 + 𝐿𝑚) 

𝐿35 = −𝑓𝑐√
1

2
 (𝐿𝑙𝑠 + 𝐿𝑚) 

𝐿36 = −𝑓𝑐√
1

6
𝐿𝑚 

𝐿37 = −𝑓𝑐√
1

2
𝐿𝑚 

𝐿41 = −𝐿14 

𝐿42 = −𝐿24 

𝐿43 = −𝐿34 

𝐿44 = 𝐿55 =(𝐿𝑙𝑠 + 𝐿𝑚) 

𝐿46 = 𝐿57 = 𝐿64 = 𝐿75 = 𝐿𝑚 

𝐿52 = −𝐿25 



 
 

 
 

f52 = −
fa(1 − fc)

2
 

f53 = −
(1 − fb)(1 − fc)

2
 

f54 = −
fb(1 − fc)

2
 

f55 = (1 − fc)² 
f56 = fc(1 − fc) 

f61 = −
fc(1 − fa)

2
 

f62 = −
fcfa
2

 

f63 = −
fc(1 − fb)

2
 

f64 = −
fbfc
2

 

f65 = fc(1 − fc) 
f66 = fc² 
 

𝐿53 = −𝐿35 

𝐿61 = −𝐿16 

𝐿62 = −𝐿26 

𝐿63 = −𝐿36 

𝐿66 = 𝐿77 =(𝐿𝑙𝑟 + 𝐿𝑚) 

𝐿72 = −𝐿27 

𝐿73 = −𝐿37 

𝐿15 = 𝐿17 = 𝐿45 = 𝐿47 = 𝐿51 = 𝐿54 =
𝐿56 = 𝐿65 = 𝐿67 = 𝐿71 = 𝐿74 = 𝐿76 =0 

 

𝑟11 = −(𝑓𝑎𝑅𝑠 + 𝑟𝑎𝑓) 

𝑟14 = 𝑓𝑎√
2

3
𝑅𝑠 

𝑟22 = −(𝑓𝑏𝑅𝑠 + 𝑟𝑏𝑓) 

𝑟24 = −𝑓𝑏√
1

6
𝑅𝑠 

𝑟25 = 𝑓𝑏√
1

2
𝑅𝑠 

𝑟33 = −(𝑓𝑐𝑅𝑠 + 𝑟𝑐𝑓) 

𝑟34 = −𝑓𝑐√
1

6
𝑅𝑠 

𝑟35 = 𝑓𝑐√
1

2
𝑅𝑠 

 

𝑟12 = 𝑟13 = 𝑟15 = 𝑟16 = 𝑟17 = 𝑟21 =
𝑟23 = 𝑟26 = 𝑟27 = 𝑟31 = 𝑟32 = 𝑟36 =
𝑟37 =0 

𝑟41 = −𝑟14 

𝑟42 = −𝑟24 

𝑟43 = −𝑟34 

𝑟44 = 𝑟55 = 𝑅𝑠 
𝑟52 = −𝑟25 

𝑟53 = −𝑟35 

𝑟66 = 𝑟77 = 𝑅𝑟 

𝑟45 = 𝑟46 = 𝑟47 = 𝑟51 = 𝑟54 = 𝑟56 =
𝑟57 = 𝑟61 = 𝑟62 = 𝑟63 = 𝑟64 = 𝑟65 =
𝑟67 = 𝑟71 = 𝑟72 = 𝑟73 = 𝑟74 = 𝑟75 =
𝑟76 =0 
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