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ABSTRACT

Formation control of wheeled nonholonomic mobile robots has advanced significantly
in the past few decades, and currently is regarded as a crucial research subject in the
domains of multi-agent systems and robotics. This resulted from its potential in a wide
range of real-world applications, including search and rescue operations, exploration
and large object transportation. Where it has be proven that it can be more efficient
in achieving such complex missions compared to using a single robot, as it allows for
parallel execution of tasks and increased overall system capabilities.

However, formation control of nonholonomic wheeled mobile robots can face several
challenges. For example, the nonholonomic constraints that restricts the robot’s motion,
which require careful consideration in the modeling phase and during the control design.
As well as, the presence of uncertainties and disturbances in the robot’s dynamics
which require the design of robust and adaptive control strategies.

In this thesis, the formation control problem is investigated by proposing three
different control approaches. Firstly, we explore the leader-follower formation strategy
via fuzzy fractional integral sliding mode control. This control scheme enables the
follower robots to accurately track the leader and achieve the desired formation pattern,
despite the presence of external disturbances and uncertainties.

Secondly, an adaptive distributed fractional fast terminal sliding mode control is
introduced. This controller aims to accomplish a rapid and finite-time convergence
of the robot towards the desired formation. The controller is developed using the
consensus approach, which make it suitable for large multi robot systems as it requires
less communication links between the robots.

Lastly, a discrete predictive sliding mode control is developed for formation control of
nonholonomic robots. Such control synthesis can lead to a well accomplished formation
with a robust, chattering free and constrained control laws.

To demonstrate the effectiveness and efficiency of the proposed controllers, comparative
studies are conducted. The results highlight improved formation tracking, robustness
to uncertainties and disturbances, and ability to achieve complex formation patterns.
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RESUME

Le contrôle de formation des robots avec roues non holonomes a considérablement
progressé au cours des dernières décennies et est actuellement considéré comme un sujet
de recherche crucial dans les domaines des systèmes multi-agents et de la robotique.
Cela résulte de son potentiel dans un large éventail d’applications réelles, notamment
les opérations de recherche et de sauvetage, l’exploration et le transport de gros objets.
Il a été prouvé que le contrôle de la formation peut être plus efficace pour réaliser des
missions aussi complexes que l’utilisation d’un seul robot, car il permet l’exécution
parallèle de tâches et augmente les capacités globales du système.

Cependant, le contrôle de la formation de robots mobiles à roues non holonomes
peut être confronté à plusieurs défis. Par exemple, les contraintes non holonomiques
qui limitent le mouvement du robot, qui nécessitent une attention particulière lors de
la phase de modélisation et lors de la conception du contrôle. Ainsi que la présence
d’incertitudes et de perturbations dans la modéle dynamique du robot qui nécessitent
la conception de stratégies de contrôle robustes et adaptatives.

Dans cette thèse, trois différentes approches de contrôle sont proposé pour étudié
le problème de contrôle de la formation. Premièrement, nous explorons la contrôle
de formation on ultilisant la stratégie leader-suiveur via un controlleur robuste basé
sur la logique flou, calcule fractionnaire et intégral mode glissant. Ce système de
contrôle permet aux robots suiveurs de suivre avec précision son leader et d’obtenir le
configuration de formation souhaité, malgré la présence de perturbations et d’incertitudes
externes.

Deuxièmement, une commande distribué adaptatif de fractionnaire mode glissant
est introduit. Ce contrôleur vise à réaliser une convergence rapide et en temps fini du
robots vers la formation souhaitée. Le contrôleur est développé en utilisant l’approche
consensuelle, ce qui le rend adapté aux grands systèmes multi-robots car il nécessite
moins de communication entre les robots.

Finalement, une commande prédictive discrète en mode glissant est développée pour
le contrôle de formation de robots non holonomes. Une telle synthèse de contrôle peut
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conduire à une formation bien accomplie avec une performance de taux de convergence
rapide et sans broutement.

L’efficacité des méthodes de contrôle proposées dans cette thèse sont démontrées à
travers des études comparatives. Les résultats mettent en évidence un suivi amélioré
des formations, une robustesse aux incertitudes et aux perturbations, ainsi que la
capacité à réaliser des modèles de formation complexes.
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 الملخص
 

لة يلقد تطور التحكم في تشكيل الروبوتات المتنقلة غير الشاملة ذات العجلات بشكل ملحوظ في العقود القل
تيجة ذلك نفي مجالات الأنظمة متعددة الوكلاء والروبوتات. وما بحثياً حاس موضوعاالماضية، ويعتبر حالياً 

مكاناته في مجموعة واسعة من تطبيقات العالم الحقيقي، بما في ذلك عمليات البحث والإنقاذ والاستكشاف لإ
ونقل الأجسام الكبيرة. حيث ثبت أن التحكم في التشكيل يمكن أن يكون أكثر كفاءة في إنجاز مثل هذه المهام 

  ستخدام روبوت واحد، حيث يسمح بالتنفيذ المتوازي للمهام وزيادة قدرات النظام بشكل عام.إ قارنة معلمعقدة ما

 لروبوتات المتنقلة ذات العجلات غير الشاملة يمكن أن يواجه العديد منومع ذلك، فإن التحكم في تشكيل ا
رحلة م ، القيود غير الشاملة التي تقيد حركة الروبوت، والتي تتطلب دراسة متأنية فينذكر منهاالتحديات. 

 التحكم. فضلا عن وجود حالات عدم اليقين والاضطرابات في ديناميكياتقوانين النمذجة وأثناء تصميم 
   .لروبوت والتي تتطلب تصميم استراتيجيات تحكم قوية وقابلة للتكيفا

من خلال اقتراح ثلاث طرق  شكيل مجموعة من الربوتاتتوحة، تم دراسة مشكلة التحكم في في هذه الأطر
ع وض إستخدامبتحكم تطوير وحدات  تابع من خلال مال-نستكشف استراتيجية تشكيل القائد تحكم مختلفة. أولا،ً

مخطط التحكم هذا الروبوتات التابعة من تتبع القائد بدقة وتحقيق  . يمكّنبابيضال كسريلمتكامل الالانزلاق ا
  .الخارجية تشويشاتالاضطرابات وال وجود في ظلنمط التشكيل المطلوب، 

.  كسريوضع الانزلاق االسريع البإستعمال  لتحقيق التشكيلموزعة و تكيفية  تحكم  وحداتثانياً، تم تقديم  
ث تم حيالمطلوب.  شكلمحدود للروبوت نحو الفي زمن  سريع و هذه إلى تحقيق تقارب التحكم مدخلاتف تهد

ات ذ الربوتات تطويرها بالإعتماد على نهج التوافق مما يجعل وحدات التحكم المقترحة مناسبة تماما لأنظمة 
  بين الربوتات. الكبيرة لأنه يتطلب اتصالات أقلالأعداد 

 من وعةشكيل مجملتحكم في تا أجلتقطع من وضع الانزلاق التنبئي الم بإستعمالتحكم مرا، تم تطوير وأخي
قارب معدل ت معبأداء   تشكيل النمط المطلوبيف التحكم هذا إلى يؤدي تول أن الروبوتات غير الشاملة. يمكن

    .سريع وخالي من التشويش

 لإثبات فعالية وكفاءة وحدات التحكم المقترحة، تم إجراء دراسات مقارنة. تظهر النتائج المتحصل عليها على
 نة ضد حالات عدم اليقين والاضطراباتالمتاكذلك ، للتشكيل تات روبوتتبع الإنشاء و  اداء جيد من حيث 

   .التكوين المعقدة على تحقيق أنماط أيضا الربوتات قدرةمع ، الخارجية

  



LIST OF ABBREVIATIONS

SOCA Second Order Consensus Algorithm
SMC Sliding Mode Control
DSM Discrete Sliding Mode
ISM Integral Sliding Mode
ITSM Integral Terminal Sliding Mode
FISM Fuzzy Integral Sliding Mode
FFOISM Fuzzy Fractional order Integral Sliding Mode
FTMSC Fast Terminal Sliding Mode Control
MPC Model Predictive Control
DMPC Discrete Model Predictive Control
DPSM Discrete Predictive Sliding Mode
DSMC Distributed Sliding Mode Control
ADFOFTSMC Adaptive Distributed Fractional Order Sliding Mode Control

vii



TABLE OF CONTENTS

DEDICATION i

ACKNOWLEDGEMENT ii

ABSTRACT iii

LIST OF ABBREVIATIONS vii

LIST OF FIGURES xi

LIST OF TABLES xiv

INTRODUCTION 1

1 An overview about formation control of nonholonomic wheeled mobile
robots 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview of related work . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Formation control problems . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Formation control structures . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Formation control strategies . . . . . . . . . . . . . . . . . . . . 10

1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Fractional calculus . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Nonholonomic wheeled mobile robots . . . . . . . . . . . . . . . 22

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



TABLE OF CONTENTS

2 Formation control of nonholonomic wheeled mobile robots via fuzzy
fractional order integral sliding mode control 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Nonholonomic mobile robot model . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Kinematic model . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Dynamical model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Leader follower based formation and kinematic controller design . . . . 31
2.3.1 Leader follower based formation model . . . . . . . . . . . . . . 31
2.3.2 Formation kinematic controller design . . . . . . . . . . . . . . . 34

2.4 Formation dynamic controller design . . . . . . . . . . . . . . . . . . . 35
2.4.1 Concepts on fractional calculus . . . . . . . . . . . . . . . . . . 35
2.4.2 Design of the FO integral sliding mode controller . . . . . . . . 36
2.4.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 Design of fuzzy FO integral sliding mode controller . . . . . . . 39

2.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.1 Triangular-like formation on a sinusoidal trajectory . . . . . . . 42
2.5.2 Comparative study and results discussion . . . . . . . . . . . . . 46

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Adaptive distributed fractional order fast terminal sliding mode formation
control of nonholonomic wheeled mobile robots 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Algebraic graph theory . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2 Nonholonomic robot dynamic model . . . . . . . . . . . . . . . 55

3.3 Formation controller synthesis . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Formation error dynamics . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Fractional order fast terminal sliding mode controller design . . 59
3.3.3 Design of adaptive fractional order fast terminal sliding mode

controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Discrete predictive sliding mode control of leader-follower formation
of nonholonomic mobile robots 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



TABLE OF CONTENTS

4.2.1 Nonholonomic mobile robot kinematic model . . . . . . . . . . . 73
4.2.2 Leader follower formation model . . . . . . . . . . . . . . . . . . 74
4.2.3 Leader follower formation error dynamics . . . . . . . . . . . . . 75

4.3 Discrete predictive sliding mode control . . . . . . . . . . . . . . . . . . 76
4.3.1 Discrete sliding mode control design . . . . . . . . . . . . . . . . 76
4.3.2 Discrete predictive sliding mode control design . . . . . . . . . . 77

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Formation control using the DSM control . . . . . . . . . . . . . 80
4.4.2 Comparison between DSM and DPSM control methods . . . . . 82

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

CONCLUSION AND FUTURE WORK 87

REFERENCES 90

x



LIST OF FIGURES

1.1 Formations in biological systems, (a) fish schooling, (b) Birds flocking,
(c) bee colony, (d) ant colony. . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Formation control in real world applications, (a) Algerian fighter jets
forming number 60 (in 60th anniversary celebration of Algeria’s independence
), (b) drone swarm forming the word Algeria in Arabic (Arab Games,
Algiers 2023), (c) formation of submarines, (d) group of wheeled robots
forming a pentagon shape. . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Formation producing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Formation tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Centralized control structure. . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Decentralized control structure. . . . . . . . . . . . . . . . . . . . . . . 11
1.7 behavior-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 virtual-structure approach . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Leader follower approach, (a) Separation-bearing scheme, (b) Separation-

separation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.10 Interaction topology vs sensing capability. . . . . . . . . . . . . . . . . 16
1.11 Visual representation of graph, (a) directed graph, (a) undirected graph 18
1.12 Example of holonomic systems, (a) 3 mechanum wheeled robot, (b) 4

mechanum wheeled robot . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.13 Differential drive robots, (a) Pioneer 3DX model, (b) Turtlebot3 burger

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.14 Differential-drive mobile robot. . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Nonholonomic mobile robot. . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 The structure of leader follower formation. . . . . . . . . . . . . . . . . 32
2.3 The fuzzy logic controller Membership functions, (a) the input Sj

membership function, (b) the output Kf membership function. . . . . . 40
2.4 Complete architecture of the FFOISM controller for follower robot Rj . 41

xi



LIST OF FIGURES

2.5 Triangular-like leader follower formation control on a Sinusoidal Trajectory
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Formation tracking errors, (a) follower 1 tracking errors, (b) follower 2
tracking errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 The control torques of follower robots, (a) follower 1 left and right wheels
torques, (b) follower 2 left and right wheels torques . . . . . . . . . . . 44

2.8 The velocities of follower robots, (a) follower 1 linear and angular
velocities, (b) follower 2 linear and angular velocities . . . . . . . . . . 45

2.9 Leader follower formation control on a Circular Trajectory. . . . . . . 47
2.10 Comparison between the follower robot formation tracking error on the

x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.11 Comparison between the follower robot formation tracking error on the

y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 Comparison between the follower robot formation heading angle error. 48
2.13 Comparison between left and right wheels torques, (a) left wheel torque,

(b) right wheel torque. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.14 Comparison between the velocities commands, (a) linear velocity, (b)

angular velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Formation communication graph. . . . . . . . . . . . . . . . . . . . . . 63
3.2 Desired formation pattern. . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Desired formation pattern at several moment with the leader trajectory

(black line ), based on SOCA. . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Followers tracking errors, based on SOCA. . . . . . . . . . . . . . . . . 65
3.5 Followers control inputs, based on SOCA. . . . . . . . . . . . . . . . . 66
3.6 Desired formation pattern at several moment with the leader trajectory

(black line ), based on DSMC. . . . . . . . . . . . . . . . . . . . . . . . 66
3.7 Followers tracking errors, based on DSMC. . . . . . . . . . . . . . . . . 67
3.8 Followers control inputs, based on DSMC. . . . . . . . . . . . . . . . . 67
3.9 Desired formation pattern at several moment with the leader trajectory

(black line), based on ADFOFTMSC. . . . . . . . . . . . . . . . . . . . 68
3.10 Followers tracking errors, based on ADFOFTMSC. . . . . . . . . . . . 68
3.11 Followers control inputs, based on ADFOFTMSC. . . . . . . . . . . . . 69

4.1 Leader-Follower Formation Structure. . . . . . . . . . . . . . . . . . . . 74
4.2 Two robot leader follower formation, based on the discrete predictive

sliding mode DPSM control. . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



LIST OF FIGURES

4.3 Formation tracking error for the follower using the discrete predictive
sliding mode DPSM control controller. . . . . . . . . . . . . . . . . . . 81

4.4 Control inputs of the follower robot controlled by the discrete predictive
sliding mode DPSM method. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Comparison between the formation trajectories, (a) using the discrete
sliding mode DSM controller, (b) based on the discrete predictive sliding
mode PDSM controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Comparison between the tracking errors of the follower robot, (a) using
the discrete sliding mode DSM controller, (b) based on the discrete
predictive sliding mode PDSM controller. . . . . . . . . . . . . . . . . . 84

4.7 Comparison between the velocities signals of the follower robots, (a)
using the discrete sliding mode DSM controller, (b) based on the discrete
predictive sliding mode PDSM controller. . . . . . . . . . . . . . . . . . 85

xiii



LIST OF TABLES

2.1 FLC rule base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Comparison between the kinematic tracking errors. . . . . . . . . . . . 51

3.1 Formation tracking performances . . . . . . . . . . . . . . . . . . . . . 64

4.1 Comparison between the formation tracking performances . . . . . . . . 82

xiv



INTRODUCTION

I In recent decades, cooperative control of multi robots systems have emerged as an
exciting and rapidly growing field of research in robotics. A multi robots system

is mainly consists of two or more robots that are able to collaborate and communicate
to achieve a common objective. This concept is originally inspired by the collective
behavior observed in nature, where various species exhibit a remarkable coordination
and synchronization, allowing them to achieve complex tasks and survive in harsh
environments.

One of the key aspects of cooperative control is the formation control of wheeled
mobile robots. In formation control, the states of individual robots, such as position,
velocity, and orientation, are regulated in a manner that collectively generates a specific
geometric configuration. Instead of operating as individual entities, the robots in a
formation maintain a structured and coordinated pattern, which enhances their overall
performance and effectiveness. In recent years formation control has been used in
numerous fields, including aerospace, agriculture, and military. Where it is used to
perform different types of tasks such as exploration, environmental monitoring, search
and rescue operation and large objects transportation ..etc.

One of the major advantages of formation control is that it can allows for a group
of robots to perform complex tasks that would be difficult or impossible for a single
robot to accomplish. For example, a team of robots can collaborate to transport large
objects or cover a large area for surveillance purposes. Additionally, using formation
control also improves the overall efficiency and reliability of the system, as the robots
can share the workload and compensate for any failures or malfunctions of individual
robots. Furthermore, formation control can provide significant advantages in military
and surveillance applications, where the coordinated movements and communication
are essential for mission success.

Despite its promising benefits, implementing formation control on nonholonomic
mobile robots can be a challenging task. Nonholonomic robots have motion constraints
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Introduction

that limit their freedom of movement. Coordinating their actions while ensuring
collision avoidance, formation maintenance, and achieving the desired formation shape
becomes a complex optimization problem. In addition, the presence of uncertainties
and external disturbances adds another layer of complexity to the formation control
problem.

To address this challenges, we focus in this thesis on designing a new robust and
adaptive control approaches for the formation control of nonholonomic wheeled mobile
robots.

• Motivation : Wheeled mobile robots find application in a wide array of domains,
yet using a single robot for acomplishing certain tasks can often limit its
capabilities. On the contrary, using formation control of mobile robots offers a
broader spectrum of possibilities and expand these limits due to the collaborative
potential. However, the coordination of wheeled nonholonomic wheeled mobile
robots into a formation is still progressing at a measured pace, impeding
their widespread adoption and the realization of their full advantages. This
motivated us to investigate this exciting field with the intention of accelerating
its development.

• Objectives of the thesis : The primary objective of this dissertation is to
offer novel robust and adaptive control approaches for a swarm of nonholonomic
wheeled mobile robots, that enable them to navigate in an unknown environment
while forming a specific formations and achieving a predefined tasks.

• Contribution : The contributions of this dissertation can be summarized as
follow:

Fuzzy fractional integral sliding mode control is implemented using the leader-
follower formation strategy based on the dynamic model of the robots. This
control scheme ensures that the follower robots can effectively track the leader
robot and maintain the required formation shape, even when facing external
disturbances and uncertainties in the robots dynamics. Furthermore, an adaptive
distributed fractional fast terminal sliding mode control method, is designed
to achieve rapid and finite-time convergence of the robots towards the desired
formation. The distributed architecture of this method enhances scalability, fault
tolerance, and minimizes inter-robot communication requirements. Moreover,
a discrete predictive sliding mode controller is designed for formation control
of nonholonomic robots. Such synthesis can achieve a well-formed and precise
formation, characterized by a robust and practical chattering-free control inputs.
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• Organization of the manuscript : This dissertation is organized into four
chapters.

In Chapter 1, an overview of formation control for nonholonomic wheeled mobile
robots is presented. First, background and motivation about formation control is
given. Then, we analyze the formation control issue from different aspects these
include formation control problems, structures, and approaches. Moreover, a
review is provided on recent control strategies employed in the literature for the
formation control of nonholonomic wheeled mobile robots. Furthermore, essential
notions such as graph theory, fractional calculus, and nonholonomic systems are
explained.

In Chapter 2, the leader follower formation control of multiple nonholonomic
wheeled mobile robots is addressed. The kinematic and dynamic models of the
robots are presented firstly. Then, a new robust control inputs for every follower
robots in the formation are developed by combining three control techniques
namely, integral sliding mode control ISM, fractional calculus FO, and fuzzy logic
control. Moreover, the Lyapunov theory is used to prove the suggested control
scheme’s convergence and stability. Compared to the classical sliding mode
controllers this proposed control laws can achieve a well formation maintenance
and tracking, with a chattering free and robust control performances.

Chapter 3 presents the development of an adaptive distributed formation control
for wheeled nonholonomic mobile robots according to the consensus-based
approach. The communications between robots is represented using graph theory,
so the relative heading angle and distance between the follower robots and the
leader are no longer required. Fractional calculus FO is combined with fast
terminal sliding mode control FTSMC to design a new distributed control inputs
for each robot in order to accomplish the formation objective. To account for
the presence of bounded disturbances and uncertainties, an adaptive mechanism
is also proposed. Comparisons are made between the proposed distributed
controller and two conventional control schemes namely, distributed sliding mode
control DSMC and second order consensus algorithm SOCA to demonstrate the
effectiveness of the suggested controller.

In the last chapter we presents the design of a discrete predictive sliding mode
controller for the formation control of nonholonomic wheeled mobile robots
based on the leader follower strategy. The proposed controller addresses the
challenges associated with nonholonomic constraints and the external disturbances
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in the robots kinematics. The performance of the control method is evaluated
through extensive simulations, and the results demonstrate its superiority over
conventional discrete sliding mode control techniques. The findings indicate
improved formation maintenance and tracking, with minimized control effort and
reduced chattering phenomenon.
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CHAPTER 1

An overview about formation
control of nonholonomic wheeled

mobile robots

1.1 Introduction

This chapter presents a comprehensive overview of the formation control of non-
holonomic wheeled mobile robots. Initially, background and motivation about formation
control are introduced. Then the formation control is analyzed based on different
aspects such as, formation control problems, structures, and approaches. Additionally,
a state of art about the different control strategies used for the formation control of
nonholonomic wheeled mobile robots is provided. Finally, important concepts such as
graph theory, fractional calculus and nonholonomic systems are defined.

1.2 Background and motivation

In recent decades, the domain of mobile wheeled robotics has received a lot of
attention and shown incredible progress. This surge in interest is mainly due to
the numerous advantages that mobile wheeled robots provide to both humans and
industries. Wheeled mobile robotics, characterized by the use of wheeled platforms for
autonomous or semi-autonomous mobility, has emerged as a transformative technology.
Where its applications range from manufacturing and logistics to agriculture, healthcare,
and beyond. The appeal of mobile wheeled robots lies in their capacity to execute
tasks efficiently, consistently, and with a high degree of precision. Whether it’s
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automating repetitive industrial processes, exploring hazardous environments, or aiding
in healthcare, these robots have proven to be invaluable assets.

However, it has become clear that some missions are extremely complicated and
cannot be successfully excuted by a single mobile robot. These missions frequently
need a level of coordination, cooperation, and adaptability that an individual robot
struggle to perform. In response to the challenges that these complex missions pose,
academics have turned to the natural world for inspiration. Nature is rich of evolved
strategies for group coordination and collaboration, offers a blueprint for tackling tasks
that are hard for individual agents. Observing how certain species execute intricate
tasks in groups such as the coordinated movement of flocks of birds, schools of fishs,
and ants and bee’s colony (see Figure 1.1) researchers have sought to replicate these
behaviors in the field of robotics.

(a) (b)

(c) (d)

Figure. 1.1: Formations in biological systems, (a) fish schooling, (b) Birds flocking, (c)
bee colony, (d) ant colony.

This initiative resulted in the invention of formation control, a concept in which
numerous mobile robots collaborate in a coordinated manner, similar to animal behavior
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seen in nature. Formation control shows great capabilities for performing hard tasks in
unknown and hazardous environment. It enables robots to achieve a level of cooperation
and adaptability that is critical in scenarios such as traffic flow improvement [1],
environmental monitoring in remote and hostile terrains [2], object manipulation [3]
and transportation [4], exploration [5], agriculture [6], search and rescue operations [7]
and some military applications as depicted in Figure 1.2.

(a) (b)

(c) (d)

Figure. 1.2: Formation control in real world applications, (a) Algerian fighter jets
forming number 60 (in 60th anniversary celebration of Algeria’s independence ), (b)
drone swarm forming the word Algeria in Arabic (Arab Games, Algiers 2023), (c)

formation of submarines, (d) group of wheeled robots forming a pentagon shape [8].

However, achieving formation control of nonholonomic wheeled mobile robots comes
with its own challenges. The inherent nonholonomic constraints imposed by wheeled
motion introduce complexities that demand innovative solutions. These challenges
include issues related to path planning, trajectory tracking, collision avoidance, and
maintaining the desired formation in the face of disturbances and uncertainties.
Addressing these challenges is imperative to ensure the successful deployment of
formation control strategies in real-world applications.
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1.3 Overview of related work

Over the past few decades, significant progress has been made in the field of
formation control of nonholonomic wheeled mobile robots. Researchers have adopted
various analysis perspectives of formation control, including formation control problems,
formation control structures, and formation control approaches. In the following sections
we will provide an overview of some recent researches published on this field.

1.3.1 Formation control problems

In the context of formation control, there are two fundamental problems, namely
formation producing and formation tracking. In formation producing (formation
acquisition), the autonomous robots are required to produce a desired geometric shape
and maintain it over time, without having to track any reference trajectory as shown in
Figure 1.3. The focus in this problem is on achieving an optimal arrangement of robots
to produce a desired shape, which may involve minimizing some criteria or satisfying
certain characteristics.

Figure. 1.3: Formation producing.

On the other hand, in formation tracking (Formation Maneuvering), the agents must
achieve a desired geometric shape and track a reference trajectory produced by a leader
while maintaining the formation as depicted in Figure 1.4. This problem involves not
only optimizing the arrangement of robots but also coordinating their movements with
respect to some reference trajectory. Both of these problems present unique challenges
and require different control structures, approaches, and techniques to achieve.
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Figure. 1.4: Formation tracking.

1.3.2 Formation control structures

Centralized control structure

In centralized control structure a single control unit is employed to handle all the
necessary information needed to achieve control objectives, (see Figure 1.5). This
structure offers many advantages such as superior performance, optimal decisions,
faster convergence and enhanced stability. However, there are also several challenges
associated with centralized control systems. The system’s reliance on one computational
unit can make it vulnerable to potential failures or malfunctions, which can negatively
impact overall performance. Additionally, the massive flow of information requires
high computational power and time, leading to slower processing times and reduced
responsiveness. Moreover, As the number of robots increases, the amount of data
exchanged between the robots and the central controller can significantly increase,
leading to scalability issues. Hence, despite its advantages, a centralized control system
may not be suitable for applications that require high scalability and robustness.

Decentralized control structure

In a decentralized control structure, robots communicate only with their immediate
neighbors in the formation, then the received information’s is used to compute their
control inputs (see Figure 1.6). This scheme has become increasingly popular in the
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Figure. 1.5: Centralized control structure.

field of multi-robot systems (MRS) due to its many advantages over centralized control.
Distributed control structure is particularly useful in mobile robot systems, where each
robot has limited access to local information about its own state and the environment.
By considering only local information, this approach can satisfy practical constraints
such as limited communication among robots, the lack of robot sensing ability to
obtain global information, and the need for scalability in robot formation. Additionally,
distributed control is generally more cost-effective and efficient for larger systems than
centralized control. However, it is important to note that distributed control may also
lead to reduced stability and slower convergence.

1.3.3 Formation control strategies

In the literature, a variety of control approaches and strategies have been developed
for multi-robot systems utilizing either centralized or decentralized structures, these
control approaches are categorized based on different criteria. A common classification
of formation control approaches is first introduced by [9] , where they characterized
formation control approaches into three main categories: behavior-based, virtual
structure and leader follower approach.
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Figure. 1.6: Decentralized control structure.

In Behavior-based approach [10–16], the complex task of coordinating a group of
robots into a specific formation is decomposed into simple individual behaviors or
motion primitives. Where each robot can executes these behaviors independently,
such as formation keeping, trajectory tracking, goal seeking, obstacle avoidance, and
collision avoidance. The relative importance of each behavior is dynamically adjusted
based on the current task and environment then the overall group behavior emerges
from a weighted sum of these individual behaviors. An example of this approach is
illustrated in Figure 1.7

This approach is firstly suggested by [17], the authors in [18] implement the behavior-
based approach on a team of robots to achieve a formation, they combine a set of
reactive behaviors with some navigational behaviors to allow for the robots to preserve
the desired formation pattern, reach goals and avoid obstacles. In [19] a behavior
based approach is used to solve two significant issues in formation control: (formation
producing and formation maneuvering with obstacle avoidance), their proposed method
involves using a classification-based search algorithm designed for large-scale robot
formations, that can minimize the computational time and speed up the formation
process. Authors in [20] propose a decentralized behavior-based formation control
algorithm for a group of mobile robots that takes into account obstacle avoidance, their
control algorithm depends only on the relative position between robots and obstacles
without requiring information about the leader robot. This control method also allows
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for the robots to avoid obstacles by using the concept of an escape angle.

Behavior-based approaches offer scalability and simplicity, making them a good
choice for coordinating large groups of mobile robots. However, the effectiveness
of this approach depends heavily on the design of the individual behaviors and the
weighting of their importance. Careful consideration must be given to ensure that the
individual behaviors work together cohesively to achieve the desired group behavior.
Moreover, it might be challenging to ensure that the formation will converge to a
desired configuration due to the complexity of its mathematical analysis.

Figure. 1.7: behavior-based approach

In virtual structure approach [21–26], the desired formation is represented as a single
rigid body, as shown in Figure 1.8. First the desired dynamics of the virtual structure
are defined, than a set of control laws can be derived for each robot to achieve the
formation objective.

To the best of our knowledge the concept of this strategy is firstly proposed by [27],
authors in [28] combine virtual structure approach and consensus protocol to design
new control laws for the formation control of nonholonomic wheeled mobile robots.
The leader robot is considered as the origin of the rigid structure, then a coordinate
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transformation method is used to obtain the relative coordinates of other robots, finally
the formation tracking is achieved by using consensus control. In [29] the virtual
structure strategy has been utilized for the formation control of wheeled mobile robots,
by computing the relative position of each robot in the formation within the virtual
structure, the formation control problem is converted into trajectory tracking problem,
then the control laws for each robot are designed using the Backstepping techniques.
The authors in [30] propose a formation control of team of nonholonomic mobile robots
based on the virtual structure approach, a new path parameter has been utilized to
generate the desired formation trajectories, where the potential function method has
been employed to reproduce the formation reference trajectories in order to ensure
that robots can avoid obstacles.

Figure. 1.8: virtual-structure approach

The main Advantage of this approach is that the formation can be easily maintained
during maneuvers, with the virtual structure moving as a single entity in a predetermined
direction and orientation. Nevertheless, this approach has its limitations. For instance,
the formation shape cannot be frequently reconfigured, as this would require changing
the virtual structure. Additionally, the controller is not distributed, which may pose
challenges when solving certain formation application.

13



An overview about formation control of nonholonomic wheeled mobile robots

In leader-following approach [31–34], one of the robots is assigned with the leadership
role and here the leader can be a (static leader, dynamic leader, or a virtual leader),
while the other robots can be considered as followers and they should position themselves
relatively to the leader robot by maintaining the desired bearing angle and separation
distance.

This approach is the most popular approach among other strategies due to the
simplicity of its design and implementation. However, its main drawbacks are the
absence of direct feedback from followers to the leader and the formation may not
tolerate well with the leader faults.

By using feedback linearization method two type of control algorithms has been
proposed by [35] namely, Separation-bearing control and separation-separation control
as shown on Figure 1.9. The Separation-bearing scheme is used for two robot formation
where the follower robot Rj need to position itself with separation distance lij and
bearing angle ϕij with respect to its leader Ri. whereas the separation-separation
control is used for three robot formation, the follower robot Rk need to keep a desired
separation distances Lik and Ljk relative to its two leader robots Ri and Rj . In [36]
a leader follower formation control of group of nonholonomic wheeled mobile robots
has been investigated, the authors use a combination of bio-inspired neuro-dynamics-
based approach and backstepping control to solve the impractical jumps velocities
of the follower robots. The Authors in [37] have proposed a new leader-follower
formation control for a team of mobile robots, where the formation kinematic tracking
model is designed based on the image space by using an onboard perspective cameras.
Therefore, the formation tracking can be established without using the leader position
or velocities. In [38], a distributed control algorithm for controlling the movement of
nonholonomic mobile robots in a leader-follower formation has been suggested. By
estimating the states of the leader robot in a decentralized manner and coordinating
with other follower robots, the control laws for each follower robot was developed
without requiring access to the complete state information of the leader. The authors
in [39] discuss the leader-follower formation control of a group of nonholonomic mobile
robots with uncertain dynamics, where communication among the robots is assumed to
be restricted by a specific communication range. Despite this constraints their proposed
control algorithm shows that robots can maintain formation and avoid collision with
a prescribed transient and steady-state performance. In [40] ,a formation controller
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(a) (b)

Figure. 1.9: Leader follower approach, (a) Separation-bearing scheme, (b)
Separation-separation scheme

for mobile robots based on the leader-following strategy have been proposed, where
the leader’s velocity is not directly measured but estimated using an adaptive control
technique. The proposed controller does not require communication between robots
and only relies on information from onboard sensors. The control laws are continuous
and can be used without knowing the desired specification parameters.

Another interesting classification of formation control is introduced by [41], they
distinguished the formation control into three approaches (distance-based, displacement-
based and position-based control). This characterization is based on the sensing
capability and interaction topologies between the agents.

In distance-based control [8, 42–46], the desired formation is achieved by actively
control the distances between robots in order to achieve a particular formation that is
defined by the desired inter-agent distances. This approach relies on the assumption
that individual agents or robots have the ability to detect the relative positions of their
neighboring robots in relation to their own local coordinate systems. However, it’s
important to note that the orientations of these local coordinate systems may not be
perfectly aligned with each other.
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In position-based control [47–51], agents have the ability to perceive their own
positions in relation to a global coordinate system. By using this information, agents can
adjust their positions in order to attain a specific formation that has been predetermined
by desired locations with respect to a global coordinate system.

In Displacement-based control [52–57], robots control the displacements of their
neighboring agents to achieve a predefined formation. This is achieved by define the
desired displacements relative to a global frame, and assuming that each robot is
capable of perceive the relative positions of its neighboring robots with respect to the
global coordinate system. However, the agents must have knowledge of the orientation
of the global frame, but do not need to have knowledge of their own positions or the
coordinate system itself.

In summary, the control methods mentioned above have their own advantages
and disadvantages. While position-based control is the most beneficial in terms of
interaction topology, it requires a high level of knowledge and coordination within the
system. On the other hand, distance-based control is the complete opposite in terms
of these requirements. whereas, displacement-based control offers a balance between
the two characteristics. Figure 1.10 illustrate the difference between these approaches
in term of the robots sensing capability and interaction topology.

In addition to all control strategies listed above, there are also other techniques
employed for formation control such as, consensus-based methods [58–62], model
predictive control [63–67] and machine learning techniques [68–71].

Figure. 1.10: Interaction topology vs sensing capability [41].
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1.4 Preliminaries

In this section, some important preliminaries about algebraic graph theory, nonholonomic
mobile robots and fractional calculus theories will be discussed.

1.4.1 Graph theory

Graph theory is a mathematical field that studies the properties of graphs. In graph
theory, a graph is a mathematical structure that consists of a set of vertices (nodes),
and a set of edges (links) that connect these nodes. The edges can represent any kind
of relationship between the vertices, such as similarity, distance, or interaction. Graph
theory provides a powerful toolset for modeling and analyzing complex systems that can
be represented as networks or graphs, such as communication networks, social networks,
and multi-agent systems. Graphs can be represented by using visual diagrams, where
nodes are represented by points or circles, and edges are represented by lines or arrows
connecting them (see Figure 1.11).

For a multi-robot system, the vertices of the graph can be used to represent the
robots, while the edges can be used to represent communication link between each pair
of robots. The corresponding graph of multi-robot system that consist of N robot, can
be denoted by G= (V,E), where V is a set of N vertices {v1,v2, . . . ,vN }, and E ∈ V

is the set of links between the vertices. Let vi and vj be two distinct nodes of G , if
information is being exchanged from vi to vj , then the edge (vi,vj) is an element of
the set E, and node vi is a neighbor of vj , and it is referred to as the parent node
while vj is known as a child node. The set of neighbors of node vi , excluding itself, is
denoted as Nvi = {vj ∈ V,(vi,vj) ∈ E}.

A graph is referred to as undirected graph, if there is an edge between two nodes vi

and vj , then there must also be an edge between nodes vj and vi. If this condition is
not met, then the graph is called a directed graph (digraph). In undirected graphs, the
edges may not have arrows in their visual representation. Additionally, in a weighted
graph, each edge (vi,vj) has a weight wij assigned to it. In the case of an undirected
weighted graph, the weight of edge (vi,vj) is equal to the weight of edge (vj ,vi).

Definition 1.1. In an undirected graph, a path is a sequence of vertices {v1,v2, . . . ,vN },
such that each consecutive pair of vertices {vi,vi+1} are connected by an edge. In
other words, the path can be traversed in both directions along the edges.
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(a) Directed graph (b) Undirected graph

Figure. 1.11: Visual representation of graph, (a) directed graph, (a) undirected graph

In a directed graph, a path is a sequence of vertices {v1,v2, . . . ,vN }, such that each
consecutive pair of vertices {vi,vi+1} are connected by a directed edge from vi to vi+1.
In other words, the path can only be traversed in the direction of the arrows.

Definition 1.2. a cycle in a graph is a closed path that begins and ends at the same
vertex, and that does not repeat any other vertex in between, except for the starting
vertex.

Definition 1.3. A directed graph is considered strongly connected when there is a
directed path between every pair of nodes. On the other hand, an undirected graph is
connected if there exists an undirected path between any two distinct nodes.

Definition 1.4. A tree in graph theory is a connected graph without cycles (acyclic
graph). In directed graphs, a tree has a single root and a unique path from the root to
every other vertex, while in undirected graphs, there is a unique path between any two
vertices.

Definition 1.5. A spanning tree in graph theory is a subgraph that is a tree and
includes all vertices of the graph. In directed graphs, it is a directed acyclic subgraph
with a unique path from the root to every other vertex, while in undirected graphs, it
is a connected, acyclic subgraph with a unique path between any two vertices.

Adjacency matrix

An adjacency matrix is a square matrix used to represent a graph, where the rows
and columns correspond to vertices, and the entries of the matrix indicate the presence
or absence of edges between the vertices.
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In a directed graph (digraph), the adjacency matrix A is n×n binary matrix where
the entry A(i, j) = 1 if there is a directed edge from vertex vi to vertex vj , and 0
otherwise. The diagonal entries of the matrix are usually set to 0, since there are no
self-loops in a digraph. Adjacency matrix of the digraph shown in Figure 1.11 can be
given as :

A=



0 1 1 0 0
0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0


In an undirected graph, the adjacency matrix is a symmetric binary matrix where the

entry A(i, j) is 1 if there is an edge connecting vertex vi to vertex vj , and 0 otherwise.
The adjacency matrix of the undirected graph depicted in Figure 1.11 can be written
as :

A=



0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
1 0 0 0 0


Degree Matrix

The degree matrix of a graph is a diagonal matrix where the i-th diagonal entry is
the degree of the i-th vertex in the graph. The degree of a vertex is defined as the
number of edges incident to the vertex.

For an undirected graph with adjacency matrix A the degree matrix is given by:

D = diag(
n∑

j=1
Aij),

where diag(.) is the diagonal matrix.
The indegree matrix of a directed graph with adjacency matrix A is given by:

Din = diag(AT 1n),

where 1n is a vector of all ones. The degree matrix of the undirected graph depicted
in Figure 1.11 can be written as :
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D =



2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1


While the indegree matrix of the directed graph shown in Figure 1.11 can be written
as :

Din =



2 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Laplacian Matrix

A valuable tool for studying the dynamics and stability of multi-robot systems is the
Laplacian matrix, it provides information about the graph’s topology and connectivity.
The Laplacian matrix can be defined as the difference between the degree matrix and
the adjacency matrix of a graph.

The Laplacian matrix of an undirected graph with adjacency matrix A is given by:

L=D−A,

where D is the diagonal matrix of degrees. The Laplacian matrix of the undirected
graph depicted in Figure 1.11 can be written as :

L=D−A=



2 −1 −1 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 1 0

−1 0 0 0 1


For a directed graph with adjacency matrix A, the Laplacian matrix is can be defined
as:

L=Din −A,

where Din is the indegree matrix. The Laplacian matrix of the directed graph depicted
in Figure 1.11 can be written as :
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L=Din −A=



2 −1 −1 0 0
0 0 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 −1 0 1


Lemma 1.1. The sum of each row in The Laplacian matrix L is always zero ∑jLi,j = 0.
Additionally, the eigenvalue 0 is associated with the eigenvector consisting of a vector of
ones L1n = 0, and all other non-zero eigenvalues of the Laplacian matrix are positive.

Lemma 1.2. If undirected graph is connected then 0 is a simple eigenvalue of the
Laplacian matrix L . Similarly, if a directed graph is strongly connected then 0 is a
simple eigenvalue of L. This means that if the graph has at least one spanning tree,
then 0 is a simple eigenvalue of L.

1.4.2 Fractional calculus

Fractional calculus theory [72, 73] is a branch of mathematics that deals with
generalizations of differentiation and integration to non-integer orders, known as
fractional orders. In classical calculus, the derivatives and integrals are defined for
integer orders only, while in fractional calculus, the orders can be any real number or
even complex numbers.

The theory of fractional calculus has been developed since the 18th century, but it
has gained significant attention in recent years due to its applications in many fields
such as engineering, physics, economics, and control theory. In the following the three
most used fractional calculus definitions in the literature (Riemann-Liouville, Caputo,
and Grunwald-Letnikov), will be given.

Riemann-Liouville Definition

The Riemann-Liouville fractional integral of order α for a function f(x) is given by:

Iαf(x) = 1
Γ(α)

∫ x

a
(x− t)α−1f(t)dt (1.1)

The Riemann-Liouville fractional derivative of order α for a function f(x) is given by:

Dαf(x) = 1
Γ(n−α)

dn

dxn

∫ x

a
(x− t)n−α−1f(t)dt (1.2)
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where n is an integer greater than α and dn/dxn denotes the n-th derivative of f(x),
and Γ(.) is the Euler Gamma function.

The Caputo definition

The Caputo fractional derivative of order α for a function f(x) is given by:

CDαf(x) = 1
Γ(n−α)

∫ x

a
(x− t)n−α−1 d

n

dtn
f(t)dt (1.3)

where n is an integer greater than α and dn/dtn denotes the n-th derivative of f(t).

Grunwald-Letnikov Definition

The Grunwald-Letnikov fractional derivative of order α for a function f(x) is given
by:

lim
h→0

1
hα

∞∑
k=0

(−1)k

(
α

k

)
f(x−kh) (1.4)

where α is a positive real number and
(

α
k

)
denotes the binomial coefficient. The

Grunwald-Letnikov definition is a discretized form of the fractional derivative that is
useful for numerical calculations.

1.4.3 Nonholonomic wheeled mobile robots

In the field of formation control, nonholonomic wheeled mobile robots have been
increasingly employed recently. This is primarily due to their wide area of applications
and the difficulty of controlling their movements, making them a topic of interest in
the research community. In the following, mathematical modeling of nonholonomic
robots and some relevant concepts will be introduced.

Holonomic and Nonholonomic systems

Consider a mechanical system with n generalized coordinates q = [q1, q2, ..., qn], where
its dynamics are given by q̈ = f(q, q̇,u) with u is the external generalized input vector.
The system is said to be holonomic if the constraints that govern its motion can be
described as the time derivatives of functions of the generalized coordinates , that
take the form ϕ(q, t) = 0. Such constraints are referred to as holonomic or integrated
constraints because it can be solved through integration. An example of holonomic
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systems are the omnidirectional wheeled robots depicted in Figure 1.12.

In contrast, nonholonomic systems are those that have linear constraints with respect
to their generalized coordinates q, formulated as ϕ(q, t)q̇(t) = 0, where q̇(t) is the vector
of system velocities in the generalized coordinates. These constraints cannot be reduced
or expressed as the derivative of a state function, making them non-integrable. As a
result, such constraints are referred to as nonholonomic. The presence of nonholonomic
constraints means that the generalized coordinates of the system are not independent
from one another, making the equations of motion more complex to solve. Figure 1.13
shows an example of nonholonomic systems (differential drive robots).

(a) (b)

Figure. 1.12: Example of holonomic systems, (a) 3 mechanum wheeled robot, (b) 4
mechanum wheeled robot

(a) (b)

Figure. 1.13: Differential drive robots, (a) Pioneer 3DX model, (b) Turtlebot3 burger
model.
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Mathematical model of nonholonomic wheeled mobile robot

A common type of nonholonomic systems is the differential drive robot (see Figure
1.14 ), it consists of two main wheels that are placed on a common axis and driven by
two separated motors. Additionally, a one or more castor wheels are used to support the
vehicle and prevent tilting [74]. This type of robots is usually subject to nonholonomic
constraints (pure rolling and non slipping constraints). In other words, its motion is
limited by the fact that its two wheels can only move in a straight line or turn about a
fixed axis, and cannot move sideways.

Xx

y

Y

Ym

Xm

ICR

ω

ν
L

ν
R

ν

θ

q

R

Figure. 1.14: Differential-drive mobile robot.

As illustrated in Figure 1.14, the (position/orientation) of the robot is denoted by
q =

[
x y θ

]T
where (x,y) represent its coordinates in the global frame (OXY ) and θ

is the orientation angle. The rest of symbols shown in Figure 1.14 are defined as follow:
(vR,vL) are the linear velocities of the right and left wheels, respectively. ICR is the
instantaneous center of rotation, R(t) is the instantaneous radius of the robot’s driving
trajectory (distance between the midpoint between the wheels and the ICR point). L
is the distance between the two wheels and r represents the radius of the wheels. The
angular and linear velocities of the robot are decribed by ν and ω, respectively. At any
given moment, the angular velocity ω(t) of the robot around the ICR can be given as
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
ω(t) = vL(t)

R(t)− L
2

ω(t) = vR(t)
R(t)+ L

2

(1.5)

Using equation (1.5), ω(t) and R(t) can be written as:

ω(t) = vR(t)−vL(t)

L

R(t) = L

2
vR(t)+vL(t)
vR(t)−vL(t)

(1.6)

Then, the Linear velocity of the robot can be calculated as follow:

ν(t) =R(t)ω(t) = vR(t)+vL(t)
2 (1.7)

The kinematics of the robot based on the local coordinates can be given as:

q̇m =


ẋm

ẏm

θ̇m

=


r/2 r/2
0 0
r/L −r/L


ωR

ωL

 (1.8)

By defining the rotation matrix R(θ) as:

R(θ) =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0
0 0 1


The kinematic model of the differential drive is obtained as follow:

q̇ =


ẋ

ẏ

θ̇

=R(θ)q̇m =


cosθ 0
sinθ 0

0 1


ν
ω

 (1.9)

From the kinematic model in equation (1.9), we obtain:

ν = ẋcosθ+ ẏsinθ (1.10)

Then the rolling constraints for each wheel of the robot, which indicates that any
motion along the direction of the wheels plane should be purely rotational, can be
represented by using equations (1.7) and (1.10) as follow:
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νR = rωR = ẋcosθ+ ẏsinθ

νL = rωL = ẋcosθ+ ẏsinθ
(1.11)

On the other hand, the non slipping constraint can be expressed as:

− ẋsinθ+ ẏcosθ = 0 (1.12)

Equation (1.12) means that, the robot motion perpendicular to the wheels plane
must equal to zero.

The nonholonomic constraint in (1.12) can be written as:

ϕ(q, t)q̇(t) = 0 (1.13)

Where ϕ(q, t) =
[
−sinθ(t) cosθ(t) 0

]T
and q̇(t) =

[
ẋ(t) ẏ(t) θ̇(t)

]T
.

1.5 Conclusion

In this chapter, we have presented a detailed analysis of formation control of multi-
robot systems, highlighting the challenges and problems that arise in this field, as
well as the control structures and methods that can be utilized to achieve formation
control for wheeled mobile robots with nonholonomic constraints. Additionally, we
have provided a brief explanation of graph theory, fractional calculus theory and other
concepts which will be relevant to the subsequent chapters.
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CHAPTER 2

Formation control of nonholonomic
wheeled mobile robots via fuzzy
fractional order integral sliding

mode control

2.1 Introduction

This chapter presents a robust formation control scheme for a team of nonholonomic
wheeled mobile robots. First the formation kinematic controller is introduced according
to the leader-following strategy, then by employing the dynamic model of the robots,
a combination of fractional calculus theories and integral sliding mode control is
adopted to provide a robust dynamic control laws for every follower robots to track the
leader and accomplish the required formation pattern even in the presence of external
disturbances and model uncertainties. Furthermore, the chattering phenomenon is
mitigated using a fuzzy logic control. Then by using the Lyapunov theory, the proposed
control scheme’s convergence and stability are demonstrated. Finally, a comparative
study is conducted to evaluate the performance of the suggested control strategy.

As discussed in chapter 1, the leader-follower approach has been widely utilized in
the literature due to its ease implementation and the simplicity of its design, various
control techniques has been employed to achieve the formation control of wheeled
nonholonomic robots according to this strategy, to name a few Backstepping algorithms
[36, 75] , Sliding mode control [75–78], Model predictive control [79, 80] , and Feedback
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Linearization methods. [81].

Its well known, that the sliding mode control has a higher reliability and robustness
against system unmodeled dynamics, uncertainties and disturbances amongst the
pre-mentioned control schemes, which motivated researchers to implement several
sliding mode controllers to the formation control of multi-robots. For example, in
[75] a fuzzy sliding mode control FSMC is mixed with a Backstepping algorithm
for the formation control of wheeled mobile robots subjected to kinematic model
uncertainties. The authors in [76] , used integral sliding mode control ISMC to solve
the issue of mismatched model uncertainties in the leader-follower formation control of
nonholonomic mobile robots, in [78] a combination between Lyaponuv-based control and
a sliding mode control SMC are utilized for the leader follower formation control, based
on an augmented angle strategy. The authors in [82] propose an adaptive formation
control of noholonomic robots using fast terminal sliding mode control FTSMC, where
they used a fuzzy logic control FLC to deal with chattering phenomenon. In [77] integral
terminal sliding mode control ITSMC is proposed to control a swarm of nonholonomic
mobile robots using the leader follower approach, where the absence of leader velocity
measurement is considered as a parametric uncertainty.

Recently, fractional calculus has been implemented in control theory for controlling
some dynamic systems [83–85]. The concepts of FO integral and derivatives can be
utilized in combination with other conventional control techniques such as PID [86] and
sliding mode control SMC [87], which can introduce an additional layer of adaptability
to the control system parameters, resulting in enhanced performance and desirable
outcomes.

In this chapter, the aforementioned control techniques, namely, ISM control and FO
calculus are mixed together with a fuzzy logic control FLC in-order to develop a new
robust control laws for the formation control of nonholonomic mobile robots. Such
synthesis can incorporates the following key features. The ISM control scheme can
assure a high precision and accuracy tracking with a fast convergence rate and robustness
against system unknown disturbances, parameters variation and uncertainties. The
fractional order integral in the control law operate as adjustable control gains, where
the optimal control performances is obtained by tuning the FO’s appropriately. While
the fuzzy logic is used to suppress the chattering behavior caused by the sliding
mode switching control action. A comparative studies have been carried out to
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investigate the effectiveness of the FFOISM controller. Based on the obtained results,
the suggested control technique outperforms other sliding mode control methods in
terms of robustness, chattering elimination, tracking accuracy and convergence.

2.2 Nonholonomic mobile robot model

2.2.1 Kinematic model

A basic type of nonholonomic mobile robots is the differential drive robot depicted
in Figure 2.1. In the global frame (O,X,Y ) , the posture of the robot i is given by
qi =

[
xi yi θi

]T
where (xi,yi) represent the coordinates and θi denotes the orientation

of the robot.

Figure. 2.1: Nonholonomic mobile robot.

Under the non-slipping and pure rolling conditions, the nonholonomic constraints of
a robot i can be given as :

ẏi cosθi − ẋi sinθi −dθ̇i = 0 (2.1)
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Where d denotes the distance between the robot rear-axle and its front-end. The
kinematic model of the mobile robot i is given as follow :

q̇i =


ẋi

ẏi

θ̇i

=


cosθi −dsinθi

sinθi dcosθi

0 1


νi

ωi

= Ji(qi)Ui (2.2)

Where ωi,νi represents the robot angular and linear velocities, respectively. Ji(qi) ∈
R3×2 is the matrix of velocity transformation and Ui ∈R2×1 is the vector of velocity
input.

2.2.2 Dynamical model

The dynamical model of nonholonomic mobile robot can be expressed based on the
Euler-Lagrange equation as follow:

Mj(qj)q̈j +Vmj(qj , q̇j)q̇j +Gj(qj)+Fj(qj)+Bj(qj)τdj =Bj(qj)τj −AT
j (qj)λj (2.3)

Where Mj(qj) ∈ R3×3 is the matrix of inertia , Vmj(qj , q̇j) ∈ R3×3 is the matrix of
centripetal and Coriolis forces, Gj(qj) ∈R3×1 is the gravity vector , Fj(qj) ∈R3×1 is the
vector of surface friction, τdj ∈R2×1 denotes the external disturbance , Bj(qj) ∈R3×2 is
the matrix of input transformation , τj ∈R2×1 is the control input vector , AT

j (qj) ∈R3×1

is the vector of nonholonomic constraint and λj denotes the Lagrange multiplier. The
pre-mention matrices and vectors are defined as follows :

Mj(qj) =


m 0 mdsinθj

0 m −mdcosθj

mdsinθj −mdcosθj I



Vmj(qj , q̇j)


0 0 mdθ̇j cosθj

0 0 mdθ̇j sinθj

0 0 0



Bj(qj) = 1
r


cosθj cosθj

sinθj sinθj

R −R


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τj =
τlj

τrj

 , τdj =
τdlj

τdrj



λj = −m(ẋj cosθj + ẏj sinθj)θ̇j , A
T
j (qj) =

[
−sinθj cosθj −d

]T

Where 2R denotes the robot width, m is the mass of the robot, r is the robot wheel
radius and I is the moment of inertia. Equation (2.3) can be re-written in more suitable
form for the purpose of control by substituting equation (2.2) and its derivative in
equation (2.3) then by multiplying both sides with JT

j (qj) which yields the following :

M̄j(qj)U̇ + V̄ mj(qj , q̇j)U + F̄j(q̇j)+ τ̄dj = B̄j(qj)τj (2.4)

Where M̄j = JT
j MjJj ∈R2×2, F̄j = JT

j Fj ∈R2×1, B̄j = JT
j Bj , τ̄dj = B̄jτdj and V̄ mj =

JT
j (Mj J̇j +VmjJj) ∈R2×2

Neglecting the surface friction and assuming all system parameters are known, external
disturbances and model uncertainties are zero then equation (2.4) can be reformulated
as follow :

U̇j(t) =Hτj(t) (2.5)

Where H = M̄−1
j (qj)B̄j(qj) , M̄j =

m 0
0 I−md2

, V̄ mj = 0 and B̄j = 1
r

1 1
R −R



2.3 Leader follower based formation and kinematic
controller design

2.3.1 Leader follower based formation model

Consider the leader follower formation structure presented in Figure 2.2, where the
posture of the leader robot is denoted by qi =

[
xi yi θi

]T
and the follower robot

posture is represented by qj =
[
xj yj θj

]T
, while qd

j =
[
xd yd θd

]T
describe the

desired posture of the follower robot.
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Figure. 2.2: The structure of leader follower formation.

The actual bearing angle and separation distance between the follower robot and
it’s leader are given as ψij and Lij , whereas Ld

ij , ψd
ij are the desirable separation and

orientation angle respectively.

As shown in Figure 2.2, the desired posture qd
j can be obtained using geometric

relation between robots as follows :

qd
j =


xd

j

yd
j

θd
j

=


xi −dcosθi +Ld

ij cos
(
ψd

ij + θd
i

)
yi −dsinθi +Ld

ij sin
(
ψd

ij + θd
i

)
θj

 (2.6)

The follower robot posture is given by :

qj =


xj

yj

θj

=


xi −dcosθi +Lij cos(ψij + θi)
yi −dsinθi +Lij sin(ψij + θi)

θj

 (2.7)
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The relative distance Lij and bearing angle ψij can be given as :

Lij =

√
L2

ijx +L2
ijy

ψij = arctan(Lijy

Lijx
)− θi +π

(2.8)

Where : Lijx = xi −xj −dcosθi

Lijy = yi −yj −dsinθi

(2.9)

Once the desired and actual posture of the follower robots are obtained , the tracking
error of the formation (for each follower robot) can be given as follow :

ej =


xej

yej

θej



=


cosθj sinθj 0

−sinθj cosθj 0
0 0 1



xd

j −xj

yd
j −yj

θd
j − θj



=


Ld

ij cos
(
ψd

ij + θij

)
−Lij cos(ψij + θij)

Ld
ij sin

(
ψd

ij + θij

)
−Lij sin(ψij + θij)

θd
j − θj



(2.10)

Where θij = θi − θj , taking the derivative of equation (2.10) yields the following leader
follower formation error dynamics:

ėj =


ẋej

ẏej

θ̇ej



=


νi cosθij +ωjyej −νj −Ld

ij sin(ψd
ij + θij)

νi sinθij +ωjxej −ωj +Ld
ij cos(ψd

ij + θij)
ωd

j −ωj


(2.11)

Where ωj ,νj are the follower robots angular and linear velocities, respectively.
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Refereeing to [36], the robots orientations will be unequal during the formation,
hence the desired bearing angle cannot be chosen as θd

j = θi , instead its chosen such
that its derivative becomes :

θ̇d
j = (νi sinθij +Ld

ijωi cos(ψd
ij + θij)+2K2yej )/d (2.12)

Hence, the tracking error dynamics becomes [36] :

ėj =


ẋej

ẏej

θ̇ej



=


νi cosθij +ωjyej −νj −Ld

ij sin(ψd
ij + θij)

νi sinθij +ωjxej −ωj +Ld
ij cos(ψd

ij + θij)
θ̇d

j −ωj


(2.13)

2.3.2 Formation kinematic controller design

The formation objective is to ensure that every follower robot in the formation is
keeping the desired bearing angle and separation distance relative to the leader robot,
which implies that the following must satisfies :limt→∞(Ld

ij −Lij) = 0
limt→∞(ψd

ij −ψij) = 0
(2.14)

To achieve this control objective, the Backstepping Algorithm is selected to design the
following kinematic controller, for each follower robot in the formation [36]:


ωj = (νi sinθij +Ld

ijωi cos(ψd
ij + θij))/d

+(k2yej +k3θej )/d
νj = k1xej +νi cosθij −Ld

ijωisin(ψd
ij + θij)

(2.15)

Where k1,k2,k3 are positive real numbers.

34



Formation control of nonholonomic wheeled mobile robots via fuzzy fractional
order integral sliding mode control

2.4 Formation dynamic controller design

2.4.1 Concepts on fractional calculus

As it mentioned in Chapter 1, fractional calculus theory can be viewed as an extension
of classical calculus. It generalize the traditional concepts of derivatives and integrals
to include fractional or non-integer orders, in fractional calculus the derivative operator
is denoted by Dα = dα/dt where α is a real number.

Definition 2.1. Using Riemann-Liouville (RL) definition, the α-order fractional
derivative of function f(t) over time can be expressed as follow [88]:

Dαf(t) = dαf(t)
dtα

= 1
Γ(n−α)

(
dn

dtn

)∫ t

0

f(τ)
(t− τ)α+1−n

dτ
(2.16)

Where (n−1< α < n) and Γ(.) represent the Gamma function defined in (2.17).

Γ(α) =
∫ ∞

0
e−ttα−1dt (2.17)

propriety 2.1. The n-th order derivative (dn/dtn) of f(t) can be written by using the
fractional derivative operator Dα as follow :

Dα+nf(t) = dn

dtn
(Dαf(t)) =Dα

(
dnf(t)
dtn

)
(2.18)

2.4.1.1 Sliding mode control

The procedure of designing a sliding mode controller consist of two main steps :
It starts by choosing an appropriate sliding surface to design the equivalent control
input τeq(t), which keeps the states of the system on the sliding manifold, and the
second step is to push the system states to slide along the sliding manifold toward the
origin by using the switching control law τsw(t) . Hence the complete sliding mode
controller can be written as the sum of both control actions as :

τj(t) = τeqj (t)+ τswj (t) (2.19)
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2.4.2 Design of the FO integral sliding mode controller

In this subsection , the FO calculus methods are used alongside with the sliding
mode control to derive dynamic control laws τj(t), to deal with the system dynamic
behaviors and to ensure that the followers actual velocities converge to the auxiliary
velocities produced by the formation Backstepping controller defined in equation (2.15)
. First the difference between the actual follower robots velocities Uj =

[
νj ωj

]T
and

the auxiliaries velocities Ucj =
[
νcj ωcj

]T
is considered as the velocity tracking error,

and it’s given as follow :

ecj (t) =
ecj1(t)
ecj2(t)

=
νj(t)−νcj (t)
ωj(t)−ωcj (t)

 (2.20)

Then the sliding surface function is chosen as :

Sj(t) = ecj (t)+λ
∫
ecj (τ)dτ (2.21)

Based on definition 2.1 and by using propriety 2.1, equation (2.21) can be reformulated
as :

Sj(t) = ecj (t)+λD−α{ecj (t)} (2.22)

Taking the time derivatives of equation (2.22) gives the following :

Ṡj(t) = ėcj (t)+λD1−α{ecj (t)} (2.23)

The equivalent control law τeqj (t) that forces all states trajectories to lie on the sliding
surface can be obtained by setting Ṡj(t) = 0 :

Ṡj(t) = ėcj +λD1−α{ecj (t)}
= U̇j(t)− U̇cj (t)+λD1−α{ecj (t)} = 0

(2.24)

Then substituting (2.5) into (2.24) yields :

Ṡj(t) =Hτj(t)− U̇cj (t)+λD1−α{ecj (t)} = 0 (2.25)

Solving equation (2.25) gives the following equivalent control law τeqj (t) :

τeqj (t) = −H−1
[
− U̇cj (t)+λD1−α{ecj (t)}

]
(2.26)
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Then, the following switching control law is introduced:

τswj (t) = −H−1
[
Ksgn(Sj(t))

]
(2.27)

Where sgn(.) represent the Signum function, K =
k1 0

0 k2

 and ki are positive real

numbers. Therefore, the complete control law is given as :

τj(t) = τeqj (t)+ τswj (t)
= −H−1

[
− U̇cj (t)+λD1−α{ecj (t)}+Ksgn(Sj(t))

] (2.28)

By considering the existence of parameters uncertainties and external disturbances in
real world application, equation (2.5) is rewritten as [79]:

U̇j(t) = H̄τj(t)+ ζ(t) (2.29)

Where H̄ represent the nominal part of the system matrix H. ζ(t) is the vector which
contain the model uncertainties denoted by ∆H, and the system external disturbances
τd, which can be written as follow :

ζ(t) = ∆Hτj(t)+ τdj
(t) (2.30)

Assuming that ζ(t) is bounded and satisfy the following condition |ζ(t)| ≤ δ, where δ
is a positive number.

Then, the FOISM controller described by equation (2.28) is redefined as follow :

τj(t) = τeqj (t)+ τswj (t)
= −H̄−1

[
− U̇cj (t)+λD1−α{ecj (t)}+Ksgn(Sj(t))

] (2.31)

2.4.3 Stability analysis

Theorem 2.1. Using the kinematic controller (2.15) and the FOISM control law in
(2.31), the tracking errors of the formation described in equation (2.10) and the velocity
tracking error defined in (2.20) will converge to zero asymptotically.

Proof. Consider the Lyapunov function candidate defined in equation (2.32):

V(t) = V1(t)+V2(t) (2.32)
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Where V1(t) is chosen as :

V1(t) = 1
2(x2

ej
+y2

ej
)+

dk3θ2
ej

2k2
(2.33)

And V2(t) is selected as :
V2(t) = 1

2S(t)TS(t) (2.34)

It’s clear that V(t) ≥ 0, substituting equations (2.13) and (2.15) in the time derivative
of V1(t) results the following [36]:

V̇1(t) = −k1x
2
ej

−k2y
2
ej

−k3θejyej

−k2
3θ

2
ej
/k2 +k3θejyej

= −k1x
2
ej

−k2y
2
ej

−k3θ
2
ej

≤ 0

(2.35)

The existence of nonlinear sliding surface is given by the following sufficient condition :

1
2
d

dt
S(t)TS(t)<−η|S(t)| (2.36)

Taking the derivative of V2(t) along the time yields:

V̇2(t) = S(t)T Ṡ(t)
= S(t)T

[
U̇j(t)− U̇cj (t)+λD1−α{ecj (t)}

] (2.37)

Using equation (2.36) and Substituting (2.29) and (2.31) into (2.37) results the following
:

V̇2(t) = S(t)T
[
ζ(t)−Ksgn(Sj(t))

]
= S(t)ζ(t)−K|S(t)|
≤ |S(t)|δ−K|S(t)|<−η|S(t)|< 0

(2.38)

By selecting the switching controller gain K as follows :

K > δ+η (2.39)

Then V2(t) < 0 , hence V(t) is stable in the sense of Lyapunov and the formation
kinematic tracking errors e and dynamic tracking error ec will asymptotically converge
to zero, and this ends the proof of Theorem 2.1.
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2.4.4 Design of fuzzy FO integral sliding mode controller

Its well known that the sliding mode control methods can assure a robust and higher
control precision with a rapid convergence rate. However, the switching control action
can leads to chattering behavior around the neighborhood of the sliding manifold,
therefore, a Fuzzy Logic Controller FLC is utilized to dynamically adjust the switching
gain K to suppress the chattering behavior.

The following steps are involved into the design procedure of the FFOISM control :
First the sliding surfaces Sj is selected as the fuzzy inference system FIS input variable
and it consist of seven fuzzy sets denoted by [NB] Negative Big, [NM] Negative
Medium, [NS] Negative Small, [PS] Positive Small, [PM] Positive Medium, [PB]
Positive Big and [ZO] Zero, while the gain K of the switching controller is chosen as
the fuzzy inference system FIS output variable and it contain four fuzzy sets, labeled as
follow : [S] Small, [M] Medium, [B] Big and [Z] Zero. Figure 2.3 shows the triangular
type of the output and input membership functions.

In the next step, the fuzzy rule base is developed, where the ith fuzzy rule is given
as follow:

Rule(i) :: IF Su
j is Ai

j THEN Ku
f is Bi

j

Bi
j and Ai

j denotes the set labels of the fuzzy output and input variables respectively
. The rule base used for the FFOISM controller is shown in Table 2.1. Finally, the
method of center average defuzzifcation is used to convert the fuzzy variable Ku

f into
it’s crisp output value Kf .

Table 2.1: FLC rule base.

Sj NB NM NS ZO PS PM PB
Kf B M S Z S M B

The complete architecture of the proposed control scheme is explained in the diagram
shown in Figure 2.4.
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Figure. 2.3: The fuzzy logic controller Membership functions, (a) the input Sj

membership function, (b) the output Kf membership function.
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Figure. 2.4: Complete architecture of the FFOISM controller for follower robot Rj .

2.5 Simulation results

Simulation examples of leader follower formation control using MATLAB are
presented in this section. In all examples the parameters of each mobile robot are chosen
as m= 4Kg, I = 3.7Kgm2, R = 0.15m and r = 0.03m. The external disturbances for
each follower robots in the formation are selected as :

τd =
0.1cos(2t)

0.1sin(2t)

 (2.40)

And the parametric uncertainties were achieved by the following :

∆H =
0.2sin(t) 0.1cos(t)
0.2sin(t) 0.3cos(t)

 (2.41)

For both control laws given by (2.15) and (2.31), the following parameters are used:
k1 = 10,k2 = 2,k3 = 5,d= 0.1,λ= 5∗10−2,α = 0.2.
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2.5.1 Triangular-like formation on a sinusoidal trajectory

In this simulation a 3 mobile robots are supposed to achieve a triangular like
formation. One of the robot is assigned with leader role in the formation and is
tracking a sinusoidal trajectory given by :

{
xr = −6+2t
yr = 2sin(t)

(2.42)

To achieve the desired formation pattern both follower robots must keep a desired
separation distance Ld = 1m relative to the leader, a desired bearing angle ϕd = 4π/3
for the first follower and ϕd = 2π/3 for the second follower.

The leader robot initial posture is chosen as ql =
[
−6.0 0.0 π/4

]T
. The initial

posture of the first follower robot is selected as q1 =
[
6.0 −1.0 π/4

]T
, and the second

follower robot initial posture is chosen as q2 =
[
6.0 1.0 π/4

]T
.

The formation trajectories are presented in Figure 2.5. The dynamic control laws τj

are depicted in Figure 2.7, while the tracking errors for both followers are illustrated
in Figure 2.6, and the velocities of the followers are shown in Figure 2.8.
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Figure. 2.5: Triangular-like leader follower formation control on a Sinusoidal
Trajectory .
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Figure. 2.6: Formation tracking errors, (a) follower 1 tracking errors, (b) follower 2
tracking errors
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Figure. 2.7: The control torques of follower robots, (a) follower 1 left and right wheels
torques, (b) follower 2 left and right wheels torques
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Figure. 2.8: The velocities of follower robots, (a) follower 1 linear and angular
velocities, (b) follower 2 linear and angular velocities
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2.5.2 Comparative study and results discussion

To examine the performance of the proposed control method, a comparative study
is presented in this subsection. The FFOISM control scheme is compared to another
three control methods, namely : (I) Integral Sliding Mode ISM proposed in [89], with
a constant switching gain K [τswj (t) = ksgn(Sj(t))] , (II) Integral Sliding Mode ISMC
where the Signum function in the switching control is replaced with a continuous
tangent hyperbolic function tanh [τswj(t) = ktanh(Sj(t))], and with (III) Fuzzy Integral
Sliding Mode FISM where the order of the integral in the sliding surface is chosen as
an integer α = 1.

For simplicity a 2-robot formation is considered in this simulation, where the leader
robot is moving on a circular like trajectory with a constant velocities ν = 1m and
ω = 1rad/s . The desired separation and heading angle are selected as Ld = 2m,
ϕd = 4π/3, respectively . The initial leader robot posture is ql =

[
1 0 π/2

]T
, and the

follower robot initial posture is chosen as q1 =
[
2.5 −0.75 π/2

]T
.

In-addition, the formation tracking performances of the follower robot controlled
by the FFOISM are compared with the other control methods using two different
performance indexes. Table 2.2 shows the obtained comparison results, while the
tracking error indexes were achieved using equation (2.43), where t denotes the
simulation time :

IAE =
∫ t

0
|e|dt, ITAE =

∫ t

0
t|e|dt (2.43)

Comparison between the formation trajectories is illustrated in Figure 2.9. In Figure
2.13 a comparison between the dynamic control laws τj using the FFOISM controller
and the other control methods is presented. Figure 2.14 shows a comparison between
the velocities of the follower robot, while a comparison between the formation tracking
errors is depicted in Figure 2.10, Figure 2.11 and Figure 2.12, respectively.
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Figure. 2.9: Leader follower formation control on a Circular Trajectory.

Figure. 2.10: Comparison between the follower robot formation tracking error on the
x-axis.
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Figure. 2.11: Comparison between the follower robot formation tracking error on the
y-axis.

Figure. 2.12: Comparison between the follower robot formation heading angle error.
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(a)

(b)

Figure. 2.13: Comparison between left and right wheels torques, (a) left wheel torque,
(b) right wheel torque.
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(a)

(b)

Figure. 2.14: Comparison between the velocities commands, (a) linear velocity, (b)
angular velocity.
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Table 2.2: Comparison between the kinematic tracking errors.

IAE ITAE

tracking errors xe ye θe xe ye θe

ISM [89] 0.1818 0.1515 0.9218 0.1806 0.1069 0.8869
ISMC 0.1676 0.1490 0.8662 0.1468 0.0987 0.8094
FISM 0.1459 0.1425 0.7090 0.1193 0.0895 0.5649
FFOISM 0.1261 0.1384 0.6495 0.0322 0.0677 0.2825

The simulations results in Figure 2.5 shows the well achievement of the leader
follower formation control , and as illustrated in Figure 2.6 the formation tracking
errors for both follower robots converge to zero over time, under the existence of model
uncertainty and system external disturbances using the FFOISM control method.

In the comparative study section, it is obvious that the formation control is well
established using all control strategies but from the zoomed view in Figure 2.9, one
can conclude that FFOISM control has a better accuracy rate then the other methods.
Meanwhile, the comparison between the dynamic control inputs shown in Figure 2.13
and the velocities commands illustrated in Figure 2.14, it is clear that the ISM control
method can lead to the chattering phenomenon.

Moreover, From the magnified views of the formation tracking errors in Figure
2.10, Figure 2.11 and Figure 2.12, it can be seen that changing the sgn function
with tanh function in the switching control law τsw can solve the chattering problem.
However, it can reduce the tracking performances compared to FISM and FFOISM
where the switching gain kf is dynamically adjusted using FLC techniques, on the
other hand the comparison results obtained in Table 2.2 indicate that the FFOISM
control method have the lowest error tracking values IAE = (0.1261,0.1384,0.6495)
and ITAE = (0.0322,0.0677,0.2825) among other used control methods.

Therefore, according to the above comparison outcomes. It has been demonstrated
that the proposed FFOISM controller can lead to a better control performances
among other three methods, in terms of robustness against system uncertainties and
disturbances, tracking accuracy, and convergence rate .
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2.6 Conclusion

Formation control of nonholonomic wheeled mobile robots according to the leader
follower strategy has been discussed in this chapter. The concepts of fractional order
calculus are used together with the sliding mode control method to design a robust
dynamic control inputs for each follower robots in the formation, to follow the leader
robot and preserve the required formation pattern under the existence of unknown
disturbances and model uncertainties. In addition, the chattering elimination is
achieved with the aid of a fuzzy logic controller. The simulation results and the
comparison outcomes clarified that the suggested control scheme provide a better
control performances compared to other used sliding mode controllers.
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CHAPTER 3

Adaptive distributed fractional
order fast terminal sliding mode

formation control of nonholonomic
wheeled mobile robots

3.1 Introduction

In this chapter, an adaptive distributed formation controller for wheeled nonholonomic
mobile robots is developed. The dynamical model of the robots is first derived by
employing the Euler-Lagrange equation while taking into consideration the presence
of disturbances and uncertainties in practical applications. Then, by incorporating
fractional calculus in conjunction with fast terminal sliding mode control and consensus
protocol, a robust distributed formation controller is designed to assure a fast and finite-
time convergence of the robots towards the required formation pattern. Additionally, an
adaptive mechanism is integrated to effectively counteract the effects of disturbances and
uncertain dynamics. Moreover, the suggested control scheme’s stability is theoretically
proven through the Lyapunov theorem. Finally, simulation outcomes are provided to
demonstrate the enhanced performance and efficiency of the suggested control technique.

Consensus theory has been widely employed to design distributed formation control
algorithms for multi-robot systems. Where the primary objective of using consensus
protocol is to synchronize the motion of robots to reach a common position or velocity
in order to establish a certain geometric shape. Different control strategies have been
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used alongside with consensus protocol to address the formation control problem, these
include Model predictive control [90], Backstepping techniques [91, 92], Sliding mode
control [93–95] and other control schemes [96–98].

Sliding mode control outperforms the previously mentioned control schemes when
it comes to dealing with system parameters variation, uncertainties and external
disturbances. This superior performance has led to its widespread adoption in the
control of multi-robot systems. The authors in [99] combine sliding mode control with
fuzzy logic techniques to design an adaptive decentralized formation controller for
team of mobile robots under directed topologies with uncertain dynamics. In [100]
consensus-based approach has been utilized in conjunction with sliding mode control
to design a distributed controller for the formation of a team of unicycles. Authors in
[101] investigate the formation control of multi nonholonomic wheeled robots. They
develop a finite-time observer utilizing integral sliding mode method to estimate the
robots velocities, then a dynamic output feedback controller has been used to drive all
robots towards the predefined formation geometric configuration.

Motivated by the above discussion, an adaptive distributed fractional fast terminal
sliding mode controller for multi-robots formation is suggested in this chapter. Unlike
Chapter 2, graph theory and consensus-based techniques are used in this chapter
to model the communication topology between the robots. Therefore, the control
scheme design does not necessitate prior knowledge of the required bearing angle and
separation distance for each robot in relation to its leader. Instead, the follower robot
can get information only from its neighboring robots. The implementation of the
fast terminal sliding mode control FTSMC method allow the robots to achieve both
rapid and finite-time convergence towards the desired pattern despite the existence
of uncertain dynamics and disturbances. The inclusion of the FO derivatives into the
FTSMC controller offers more freedom for control parameter selection, fine-tuning
of the fractional orders leads to a desirable control performances. Additionally, an
adaptive learning rule is used to estimate the bounded uncertainties and disturbances
in the system. The performances of the suggested control method is evaluated through
simulation results. The comparison outcomes demonstrate the superiority of the
ADFOFTSMC in terms of robustness, rapidity and accuracy.
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3.2 preliminaries

3.2.1 Algebraic graph theory

In this chapter, a multi mobile robot system consist of n robot with only one leader
is addressed, the followers are denoted by indices (1,2, ...,n−1), while the leader robot
is labeled with index n, and the exchange of information between the followers and the
leader robot is considered to be unidirectional. In other words, the followers cannot
send information’s to the leader robot.

let Ḡ = (V̄ , Ē) be a sub-graph of digraph G, then the adjacency matrix of Ḡ can be
written as :

Ā =


ā11 ā12 . . . ā1(n−1)
ā21 ā22 . . . ā2(n−1)
... ... . . . ...

ā(n−1)1 ā(n−1)2 . . . ā(n−1)(n−1)


The sub-graph Ḡ Laplacian matrix is written as follow:

L̄ = D̄ −Ā

With in-degree matrix D̄ = diag(∑n−1
j=1 āij). The connection between the leader and

followers is represented by a diagonal matrix B̄, where B̄ = diag
{
b̄1, b̄2, . . . , b̄n−1

}
and

b̄i = āin, i= 1,2, . . . ,n−1.

Lemma 3.1. Let G = (V ,E) be a digraph, then the corresponding right eigenvector of
the Laplacian matrix L associated with the eigenvalue 0 is the vector 1n, only if the
digraph G has a spanning tree, this mean that L1n = 0.

Lemma 3.2. L̄1n−1 = 0, if the sub-graph Ḡ has a spanning tree [102], (L̄ + B̄) is
non-singular matrix and Rank(L̄+ B̄) = n−1 .

3.2.2 Nonholonomic robot dynamic model

Consider the differential drive wheeled mobile robot illustrated in Figure 2.1, the
generalized coordinates of the robot head is denoted by qi =

[
xi yi θi

]T
where θi

is the heading angle, yi and xi are the robot head Cartesian coordinates. This type
of robots is subjected to nonholonmic constraints described by equation (2.1). The
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distance between the head of the robot and its center of mass is denoted by d.
By using the nonholonomic constraint (2.1), the robot kinematic equation can be
expressed as follow:

q̇i =


ẋi

ẏi

θ̇i

=


cosθi −dsinθi

sinθi dcosθi

0 1


νi

ωi

= J (qi)Ui (3.1)

Where νi denotes the robot linear velocity and ωi is the angular velocity.

In this Chapter, the Euler-Lagrange equation is utilized to formulate the dynamic
model of the i-th robot in the multi-robot system as follow:

M(qi)q̈i +Vm(qi, q̇i)q̇i +∆i =B(qi)τi (3.2)

The matrices Mi(qi),Vmi(qi, q̇i) and Bi(qi) in equation (3.2) are given as follow:

τi =
τli

τri

 , ∆i =
[
∆xi ∆yi ∆θi

]T

Vm(qi, q̇i) =


0 0 mdθ̇i cosθi

0 0 mdθ̇i sinθi

0 0 0



B(qi) = 1
r


cosθi cosθi

sinθi sinθi

R −R



M(qi) =


m 0 mdsinθi

0 m −mdcosθi

mdsinθi −mdcosθi I



Where ∆i is a vector consist of disturbances and uncertain dynamics, τi is the vector
of control inputs, I denotes the total moment of inertia, r is the robot wheel radius, m
represent the robot mass and 2R denotes the robot width.
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By substituting the kinematic equation (3.1) into equation (3.2), the following robot
dynamics are obtained:

M̄(qi)U̇i + V̄ m(qi, q̇i)Ui +J T (qi)∆i = B̄(qi)τi (3.3)

Where:
M̄(qi) = J T (qi)M(qi)J (qi),

V̄ m(qi, q̇i) = 0, B̄(qi) = J T (qi)B(qi)

Under the assumption that M(qi) is invertible subject to I−md2 ̸= 0. Then equation
(3.3) can be reformulated as follow:

U̇i = M̄−1(qi)B̄(qi)τi −M̄−1(qi)J T (qi)∆i (3.4)

The kinematic equation (3.1) can be re-written as:
ẋi

ẏi

=
cosθi −dsinθi

sinθi dcosθi

νi

ωi

= H(θi)
νi

ωi

 (3.5)

Taking time derivative of (3.5), yield the following:
ẍhi

ÿhi

= Hi(θi)
[
M̄−1(qi)B̄(qi)τi −M̄−1(qi)J T (qi)∆i

]
+
σ1i

σ2i

 (3.6)

Where σ1i

σ2i

=
−νiωi sin(θi)−dω2

i cos(θi)
νiωi cos(θi)−dω2

i sin(θi)

 (3.7)

By defining τi as follow:τli

τri

= (Hi(θi)M̄−1(qi)B̄(qi))−1

uxi −σ1i

uyi −σ2i

 (3.8)

Substituting equation (3.8) in (3.6), results the following simplified equivalent model
of the i-th robot: ẋi

ẏi

=
vxi

vyi


v̇xi

v̇yi

=
uxi

uyi

+
δxi

δyi

 (3.9)
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where (vxi,vyi) are the x-axis and y-axis robot velocities, respectively. (uxi,uyi) are the
system control inputs and (δxi, δyi) denotes the bounded uncertainties described by:

δxi

δyi

= −Hi(θi)M̄−1(qi)J T (qi)∆i (3.10)

Assumption 3.1. The parametric uncertainties described in (3.10) are assumed to be
bounded, which mean there exist a positive constants such that |δxi|<∆x and |δyi|<∆y.

3.3 Formation controller synthesis

In this section, the synthesis of an adaptive distributed formation controller is
presented. The main objective is to drive the robots to form a desired pattern while
achieving velocity consensus by exchanging information with local neighboring robots.

3.3.1 Formation error dynamics

Let zi = [xi yi]T , vi = [vxi vyi ]T and δi = [δxi δyi ]T . Then, the follower robots
augmented state vector can be described as:

ż = v

v̇ = u+ δ
(3.11)

With z =
[
zT

1 zT
2 . . . zT

n−1
]
, v =

[
vT

1 vT
2 . . . vT

n−1
]

and δ =
[
δT

1 δT
2 . . . δT

n−1
]
.

By defining the formation desired pattern positions as fi = [fx
ij f

y
ij ]T , then, the tracking

error vector of the formation can described by:

e= ((L̄+ B̄)⊗ I2)(z−f)− (B̄1n−1 ⊗ I2)zn (3.12)

Where I2 ∈R2×2 is the identity matrix, ⊗ is the Knocker product, f =
[
fT

1 fT
2 . . . fT

n−1
]
,

ei = [exi eyi ]T and e=
[
eT

1 eT
2 . . . eT

n−1
]
.

Taking the derivative of (3.12) yield the following tracking error dynamics:

ė= ((L̄+ B̄)⊗ I2)v− (B̄1n−1 ⊗ I2)vn (3.13)
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Hence, the second derivative of equation (3.12) becomes:

ë= ((L̄+ B̄)⊗ I2)u+((L̄+ B̄)⊗ I2)δ
− (B̄1n−1 ⊗ I2)un

(3.14)

3.3.2 Fractional order fast terminal sliding mode controller
design

Sliding mode control is composed of two control actions, the switching control usw(t)
and the equivalent control ueq(t). Consequently, the total control scheme can be
expressed as follow:

u(t) = ueq(t)+usw(t) (3.15)

With ueq =
[
uT

1,eq u
T
2,eq . . . uT

(n−1),eq

]
, usw =

[
uT

1,sw uT
2,sw . . . uT

(n−1),sw

]
, where ui,eq =

[uxi,eq uyi,eq]T and ui,sw = [uxi,sw uyi,sw]T

In this chapter, the sliding manifold is defined as follow:

S = ė+α1e+α2e
β1/β2 (3.16)

Where α1 > 0,α2 > 0, β1,β2 are positive odd integers, with β1 < β2 < 2β1, and S =[
ST

1 ST
2 . . . ST

(n−1)

]
is the vector of sliding surfaces, in which Si = [Sxi Syi ]T .

Lemma 3.3. The time interval required for any initial state e ̸= 0 to reach the
equilibrium state e= 0 along the sliding surface defined in (3.16), can be calculated as:

tf = β2
α1(β2 −β1) ln α1(e0)(1− β1

β2
) +α2

α2
(3.17)

By using Definition 2.1 and Propriety 2.1, equation (3.16) can be re-written as:

S =Dαe+α1e+α2e
β1/β2 (3.18)

The sliding surface S first derivative can be given as:

Ṡ =Dα+1e+α1ė+α2(β1/β2)ėe(β1/β2)−1

Ṡ = ((L̄+ B̄)⊗ I2)u+((L̄+ B̄)⊗ I2)δ− (B̄1n−1 ⊗ I2)un

+α1ė+α2(β1/β2)ėe(β1/β2)−1

(3.19)
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In the absence of system uncertainties the derivative of S becomes:

Ṡ = ((L̄+ B̄)⊗ I2)u− (B̄1n−1 ⊗ I2)un

+α1ė+α2(β1/β2)ėe(β1/β2)−1 (3.20)

Hence, the equivalent control law can be derived by solving Ṡ = 0:

ueq = −((L̄+ B̄)−1
[
−(B̄1n−1 ⊗ I2)un +α1ė+α2(β1/β2)ėe(β1/β2)−1

]
(3.21)

And the switching control action is defined as follow:

usw = −(L̄+ B̄)−1 [K sign(S)] (3.22)

Where sign(.) is the Signum function and K is a positive gain.

3.3.3 Design of adaptive fractional order fast terminal sliding
mode controller

In practical scenarios, the measurement of accurate values of uncertainties and
disturbances can be challenging. Therefore, an adaptive mechanism is designed to
estimate the upper bounds of this factors.

First, let ∆̂ =
[
∆̂T

1 ∆̂T
2 . . . ∆̂T

(n−1)

]
be the vector of estimated uncertainties bounds

with ∆̂i = [∆̂xi ∆̂yi ]T .

Then the error of estimation can be defined as:

∆̃ = ∆− ∆̂ (3.23)

Where ∆̃ =
[
∆̃T

1 ∆̃T
2 . . . ∆̃T

(n−1)

]
, ∆ =

[
∆T

1 ∆T
2 . . . ∆T

(n−1)

]
with ∆̃i = [∆̃xi ∆̃yi ]T and

∆i = [∆xi ∆yi ]T .

Consider the following adaptive rule:

˙̂∆ = 2γ((L̄+ B̄)⊗ I2)|S| (3.24)

Where γ = [γ1 γ2 . . .γn−1] and γi > 0
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Therefore, the final formation controller can be expressed as follow:

u= ueq − ∆̂sign(S) (3.25)

Theorem 3.1. Assuming that the digraph G associated with the multi-robots system
described in (3.11) have a spanning tree. The formation objective can be accomplished
and the tracking errors described in (3.12) will asymptotically reach the origin in
finite-time, by utilizing the proposed controller (3.25) with the adaptive algorithm
(3.24).

Proof. Let V be a candidate Lyapunov function:

V = 1
2S

TS+ 1
2γ ∆̃T ∆̃ (3.26)

Then the Lyapunov function V, first derivative is given as follow:

V̇ = ST Ṡ+ 1
γ

∆̃T ˙̃∆

= ST Ṡ− 1
γ

∆̃T ˙̂∆
(3.27)

Substituting equation (3.19) into (3.27) lead to:

V̇ = ST
[
((L̄+ B̄)⊗ I2)u+((L̄+ B̄)⊗ I2)δ− (B̄1n−1 ⊗ I2)un

+α1ė+α2(β1/β2)ėe(β1/β2)−1
]
− 1

2γ ∆̃T ˙̂∆
(3.28)

Substituting the control law (3.25) into equality (3.28) yield the following:

V̇ = ST
[
((L̄+ B̄)⊗ I2)δ− ((L̄+ B̄)⊗ I2)∆̂sign(S)

]
− 1

2γ ∆̃T ˙̂∆ (3.29)

Using Assumption 3.1 and the adaptive rule in equation (3.24), gives the following:

V̇ = ST
[
((L̄+ B̄)⊗ I2)(δ− ∆̂sign(S))

]
− ∆̃T ((L̄+ B̄)⊗ I2)|S|

≤ ((L̄+ B̄)⊗ I2)(|S|⊗ I2)(∆− ∆̂− ∆̃) = 0
(3.30)

Based on equation (3.30), it can concluded be that the tracking errors of the formation
will asymptotically reach 0 in finite-time, and Theorem 3.1 proof is completed.
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According to Theorem 3.1 the formation of multi-robots system (3.11) can be established
by using the control scheme (3.25). Therefore equation (3.12) can be described as
follow:

((L̄+ B̄)⊗ I2)(z−f) = (B̄1n−1 ⊗ I2)zn (3.31)

Using Lemma 3.2 and assuming that G has a directed spanning tree then, the following
can be obtained:

((L̄+ B̄)⊗ I2)(z−f) = (B̄1n−1 ⊗ I2)zn

((L̄+ B̄)⊗ I2)(z−f) = ((L̄+ B̄)⊗ I2)(1n−1 ⊗ I2)zn

(z−f) = (1n−1 ⊗ I2)zn

(3.32)

From equation (3.32), one can conclude that positions consensus can be established
when the tracking errors of the formation converges to zero.

3.4 Simulation Results

Numerical simulation based on MATLAB environment are presented in this section,
a multi-robot system consist of six nonholonomic wheeled mobile robots is considered
in this simulation example. The parameters of each robot are selected as in [103]:
d= 0.04m, R = .0265m, r = 0.02m, m= .032Kg and I = 1.7−4Kg.m2.

A communication graph G with a directed topology is used for modeling the
connection between robots, the representation of G is depicted in Figure 3.1, where the
node labeled with number 6 represent the leader robot and the reset of vertices (1-5)
are the followers. The matrices L,A and B associated with G are given as follow:

L =



1 0 0 0 0 −1
−1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 2 −1 0
0 0 −1 0 1 0
0 0 0 0 0 0


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A =



0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0


, B =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



1

6

2 3

54

Figure. 3.1: Formation communication graph.

A comparative study is carried out to examine the efficacy of suggested ADFOFTSMC
method, where it compared to the second order consensus algorithm SOCA proposed
in [104], and the distributed sliding mode control DSMC in [103].

The suggested controller design parameters are chosen as follow: α1 = 1
2 , α2 = 1,

β1 = 7, β2 = 9, α= 0.78 and γ = 10. the uncertainties terms ∆i in equation (3.2) are
supposed be uniformly randomly distributed between −.025 and .025.

In order to establish a Hexagon-like formation the robots desired postures are defined
as: fxi = [−0.125 −0.375 −0.5 −0.375 −0.125] and fyi = [0.2165 0.2165 0 −0.2165 −
0.2165], Figure 3.2 shows the desired formation shape. The leader robot is assumed to
move in sinusoidal motion with vxi = .25m/s, vyi = .05 ∗ cos(.25πt)m/s and the robots
initial positions are selected as follow: xi = [0.10 −0.25 −0.50 −0.4 −0.1 0.25] and
yi = [0.4 0.5 0.45 −0.3 −0.5 0].
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Table 3.1: Formation tracking performances .

E(t) SOCA [104] DSMC [103] ADFOFTSMC
RMSE 384.50×10−3 372.40×10−3 280.30×10−3

ISE 2.2175×103 2.0801×103 1.1783×103

ITSE 1.6769×103 1.6120×103 0.3996×103

ITAE 6.3164×103 5.8919×103 1.2690×103

IAE 2.7677×103 2.6831×103 1.2682×103

Figure. 3.2: Desired formation pattern.

Furthermore, the formation tracking performances are analyzed using the following
error indexesRMSE =

√
1
T

∫ T
0 E(t)2dt, ISE =

∫ T
0 E(t)2dt, ITSE =

∫ T
0 tE(t)2dt, ITAE =∫ T

0 t|E(t)|dt, IAE =
∫ T
0 |E(t)|dt, where T is the simulation time and E(t) is defined in

(3.33), Table 3.1 shows the tracking performance results.

E(t) =
5∑

i=1
|exi(t)|+

5∑
i=1

|eyi(t)| (3.33)

The simulation results for the second order consensus algorithm are illustrated in
Figure 3.3, Figure 3.4 and Figure 3.5, where Figure 3.3 presents the formation desired
pattern at several moments, Figure 3.4 depicts the formation tracking errors (exi , eyi)
and the robots control inputs (τli , τri) are presented in Figure 3.5. While the obtained
results of the DSMC are presented in Figure 3.6, Figure 3.7 and Figure 3.8, respectively.
Finally, the proposed ADFOFTSMC results are depicted in Figure 3.9, Figure 3.10
and Figure 3.11.
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Figure. 3.3: Desired formation pattern at several moment with the leader trajectory
(black line), based on SOCA [104].

Figure. 3.4: Followers tracking errors, based on SOCA [104].
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Figure. 3.5: Followers control inputs, based on SOCA [104].

Figure. 3.6: Desired formation pattern at several moment with the leader trajectory
(black line), based on DSMC [103].
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Figure. 3.7: Followers tracking errors, based on DSMC [103].

Figure. 3.8: Followers control inputs, based on DSMC [103].
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Figure. 3.9: Desired formation pattern at several moment with the leader trajectory
(black line), based on ADFOFTMSC.

Figure. 3.10: Followers tracking errors, based on ADFOFTMSC.
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Figure. 3.11: Followers control inputs, based on ADFOFTMSC.

The simulation results presented in Figure 3.3, Figure 3.6 and Figure 3.9 demonstrate
the successful achievement of the formation using all control strategies. Nevertheless,
it is evident that the utilization of the proposed ADFOFTMSC leads to a faster
convergence rate of the robots towards the desired formation pattern. Meanwhile, the
evaluation of the tracking errors of the robots, depicted in Figure 3.4, Figure 3.7 and
Figure 3.10, clearly demonstrates that the SOCA and DSMC methods exhibit inferior
performance in terms of disturbances and uncertainties rejection when compared to
the proposed control method. Additionally, the ADFOFTMSC control technique has
the minimal error tracking values when compared to SOCA and DSMC methods, as
shown by the comparison between the tracking error indices shown in Table 3.1.

The aforementioned comparison results, illustrate that the ADFOFTMSC method
surpasses the other used control techniques in terms of control performances. The
proposed controller can ensure superior robustness against system uncertainties and
disturbances and achieves higher tracking accuracy with a faster convergence rate,
which lead to an accurate and efficient formation control of robots.
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3.5 Conclusion

An adaptive distributed formation controller for wheeled nonholonomic mobile robots
is developed in this chapter. The dynamic model of the robots is formulated using
the Euler-Lagrange equation, with considering the existence of bounded uncertainties
and disturbances in practical scenarios. Through the integration of fractional calculus
with fast terminal sliding mode control and consensus algorithm, a robust distributed
formation controller has been designed to drive the followers robots to establish the
predefined formation geometric shape while tracking their leader. Furthermore, an
adaptive mechanism is devised to effectively mitigate the impact of uncertainties and
disturbances. The suggested control scheme stability has been analyzed utilizing
the Lyapunov theorem. The efficiency of the suggested control technique has been
investigated through conducting a comparative study. The outcomes highlight the
superior performance of the suggested controller in terms of formation accuracy,
robustness and convergence.
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CHAPTER 4

Discrete predictive sliding mode
control of leader-follower formation

of nonholonomic mobile robots

4.1 Introduction

In this chapter we investigate the leader-follower based formation control of wheeled
nonholonomic mobile robots. First, the formation control problem is converted into a
trajectory tracking problem. Then by using a linear formation tracking error dynamics
a discrete sliding mode DSM controller is designed for the follower robots to follow
their leader and to establish the required spacial geometric configuration. Moreover,
a discrete model predictive control DMPC is also integrated with the DSM control
to minimize the control effort and to surpass the chattering phenomena. Finally, we
present simulation results that assess the performance of the suggested control schemes.

In the literature, Researchers have employed various control techniques to establish
formation control of wheeled nonholonomic mobile robots using the leader-following
strategy. These include graph theory approaches [105], consensus algorithms [106, 107],
SMC sliding mode control [108], MPC model predictive control [109, 110], PID control
[111] and RL reinforcement learning [112].

Among this control schemes, sliding mode control (SMC) approaches have been
widely adopted in formation control of mobile robots. primarily due to its appealing
attributes, such as finite-time convergence and resilience against perturbations and

71



Discrete predictive sliding mode control of leader-follower formation control of
nonholonomic mobile robots

uncertainties. However, the chattering phenomenon resulting from the reaching law,
and its corresponding high control effort, stands as its primary limitation, which have
inspired substantial research to address these issue. For example, authors in [113]
addressed the formation control of nonholonomic mobile robots. a globally finite-time
stable sliding mode controller has been designed. Then, a continuous reaching law has
been derived to mitigate the chattering caused by control limitations and computation
time delays. In [114] a second order sliding mode controller has been developed ,
based on the relative motion states and without the leader velocity measurement, to
stabilize the robots towards the required time-varying formation and to avoid the the
chattering phenomena. The authors in [115] design a sliding mode formation controller
for differential drive robots. They used a novel approach inspired by immune regulation
mechanisms, coupled with fuzzy boundary layer method. To reduce the chattering
and to compensate uncertainty without requiring prior knowledge of its boundaries.
In [116] a tracking control method for multiple robots has been presented. A sliding
mode controller has been introduced to asymptotically stabilize the robots into the
required formation. To address the velocity jump issue, authors incorporates a novel
sliding mode approach based on the neural dynamic model.

On the other hand, employing model predictive control MPC for the formation
control of nonholonomic mobile robots can effectively account for physical limits of the
robots, making it capable for yielding an optimal formation tracking and maintenance.
The authors in [117] used a virtual robot as a leader, then an MPC method is applied to
the followers to accomplish the leader-follower formation objective based on two models.
Novel terminal state regions and controllers are developed to assure the stability of the
controller. In [118] a multi-robot systems was controlled using a cooperative CCEA
coevolutionary algorithm based MPC approach. To predict the future states, they
utilized the past state values of the robots, rather than their current values. And the
asymptotic stability has been guaranteed, by tuning the sampling period and choosing
suitable constraints of the states and inputs. The authors in [119] suggested an MPC
controller for a leader follower formation based on the separation-bearing-orientation
scheme. the particle swarm algorithm is employed for solving the optimization problem,
where the global solution is considered as the control input.

The key contribution of this chapter lies in the development of a controller that
combines discrete model predictive control MPC and discrete sliding mode control to
achieve a robust and accurate formation control of nonholonomic wheeled mobile robots.
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The integration of MPC allows for optimal formation producing and tracking with
constrained states and inputs, while the sliding mode control ensures robustness against
kinematic perturbations subjected to the robots model in practice. By leveraging the
strengths of both control techniques, the proposed method aims to improve the overall
formation control performances. To evaluate the effectiveness of suggested control
method, simulation examples are conducted. Where a comparison is made between the
performance of the proposed method and conventional discrete sliding mode control
technique. The results clearly demonstrate the superior performance of the proposed
method.

4.2 Problem Formulation

4.2.1 Nonholonomic mobile robot kinematic model

Consider the differential-drive wheeled mobile robot shown in Figure 1.14. Let
q = [x y θ]T be the robot center of mass posture, where (x,y) denotes the position of
the robot in the global Cartesian frame (OXY ) and θ is the orientation angle.

This robot satisfy the following pure rolling and non-slipping nonholonomic constraints
given by:

ẏ cosθ− ẋsinθ = 0 (4.1)

By using the nonholonomic constraints in (4.1), the kinematic model of the robot
can be described as follow:

q̇ =


cosθ 0
sinθ 0

0 1


 ν

ω

= J(q)u (4.2)

Where ω is the robot angular velocity and ν is the robot linear velocity.

In practice, the robot model is subjected to kinematic uncertainty and input
disturbances. Hence, a more realistic model of the robot can be expressed as follow
[120]:

q̇ = J(q)(u+∆) (4.3)
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Where ∆ = [δν δω]T denotes the unknown input disturbances, and its assumed to be
upper bounded by [120]:

|∆| ≤ γ

where γ is a positive constant.

4.2.2 Leader follower formation model

Figure 4.1 show the basic architecture of the leader-follower formation approach.
Where the posture of the leader robot Rl is ql = [xl yl θl]T and the posture of the
follower robot Rf is given by qf =

[
xf yf θf

]T
and the desired posture for the follower

robot is given by qd = [xd yd θd]T .

Figure. 4.1: Leader-Follower Formation Structure.

The leader-follower approach can be seen as a trajectory tracking problem where
the follower robot must track the trajectories generated by the leader robot in-order to
preserve the required separation distance Ld and heading angle Φd, and to form the
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predefined formation shape. Hence the desired posture qd can be given as [121]:

qd =


xd

yd

θd

=


xl +Ld cos(Φd + θl)
yl +Ld sin(Φd + θl)
atan2(ẏd, ẋd +κπ)

 (4.4)

Where k = 0,1 is the driving direction ( 0 for the forward motion and 1 for reverse)
and atan2 is the four-quadrant inverse tangent function. To accomplish the formation
objective, the follower robot need to follow the reference trajectory consist of the set of
the desired postures qd, which implies that the following must satisfy:

lim
t→∞

(
qd − qf

)
= 0 (4.5)

4.2.3 Leader follower formation error dynamics

Since the leader-follower formation is converted to a trajectory tracking problem,
the tracking error model of the formation can be written as:

e=


xe

ye

θe

=


cosθ sinθ 0

−sinθ cosθ 0
0 0 1



xd −xf

yd −yf

θd − θf

 (4.6)

The tracking error dynamics of the formation can be obtained by taking the time
derivative of (4.6) and by using equations (4.3) and (4.1) as follow [122]:

ė=


ẋe

ẏe

θ̇e

=


cosθf 0
sinθf 0

0 1


 vd

ωd

+


−1 ye

0 −xe

0 −1

[ u+∆
]

(4.7)

Where vd and ωd are the linear and angular feedforward control input defined as:
 vd = ±

√
ẋ2

d + ẏ2
d

ωd = ẋdÿd−ẏdẍd

ẋ2
d+ẏ2

d

(4.8)

Where (+) for the forward motion and (−) for backward motion . By neglecting
the input disturbance ∆ =

[
δνf

δωf

]T
, then defining the control input vector of the

follower robot u as the sum of the feedforward and feedback control action:

u= ud +uc (4.9)
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Where ud =
[
vd cosθe ωd

]T
is the feedforward control vector and uc =

[
uc1 uc2

]T
is the feedback vector input.
Assuming ∆ = 0 and substituting (4.9) into equation (4.7), gives the following tracking
error dynamics :

ẋe = ωdye −uc1 +uc2ye

ẏe = vd sinθe −ωdxe −uc2xe

θ̇e = −uc2

(4.10)

Using (4.9) and linearizing (4.10) around (xe = ye = θe = 0 and uc1 = uc2 = 0 ) results
the following linear model [123] :

ė=


0 ωd 0

−ωd 0 vd

0 0 0

e+


−1 0
0 0
0 −1

uc (4.11)

Which can be written in a state-space form as:

ė(t) = Ac(t)e(t)+Bcuc(t) (4.12)

4.3 Discrete predictive sliding mode control

4.3.1 Discrete sliding mode control design

The linearized model of the tracking error dynamics (4.12) can be written in discrete
form as :

e(k+1) = A(k)e(k)+Buc(k) (4.13)

Where:
A= I+Ac(t)Ts,B =BcTs

And A ∈ Rn×n, n: number of states variable, B ∈ Rn×m m : number of input variable
and Ts : is the sampling time.

Consider the discrete-time system (4.13), then the following sliding mode function is
defined:

S(k) = Ce(k) (4.14)
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Where C ∈ Rm×n Is the gain matrix. For a discrete-time system (4.13), a quasi-sliding
mode reaching law is given as in [124]:

S(k+1)−S(k) = −qsTsS(k)− εTs sign(S(k)) (4.15)

With : ε > 0, qs > 0 and 1 − qsTs > 0. The control law for the discrete-time system
(4.13) can be derived by comparing (4.15) with (4.16) :

S(k+1)−S(k) = Ce(k+1)+Ce(k)
= CA(k)e(k)+CBuc(k)−Ce(k)

(4.16)

Then, solving for uc(k) gives the following control input:

uc(k) = −(CB)−1[CA(k)e(k)−Ce(k)
+ qsTsS(k)+ εTs sign(S(k))]

(4.17)

4.3.2 Discrete predictive sliding mode control design

The main idea of predictive sliding mode control is to find a control law uc(k) that
drive the predictive sliding function vector Sp(k+ 1) to a reference sliding function
vector Sr(k+1), by minimizing a quadratic cost function JDMP C (uc(k),Np,Nc).

Consider the discrete sliding mode problem for the system (4.13), taking the reaching
law (4.15) as a reference sliding surface results the following :


Sr(k+p) = (1−qsTs)Sr(k+p−1)

− εTs sign(Sr(k+p−1))
Sr(k) = S(k)

(4.18)

The value of the sliding function vector (4.14) at time instant p can be obtained as:

S(k+p) = C
p−1∏
j=1

A(k+ j)e(k)+
p∑

i=1

C p−1∏
j=1

A(k+ j)


×BUc(k+ i−1)+CBUc(k+p−1)
(4.19)

By defining the predictive sliding function Sp as follow:

Sp(k+1) = [S(k+1),S(k+2), . . . ,S (k+Np)]T (4.20)
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Where Np is the prediction horizon, then Sp(k+1) can be described as:

Sp(k+1) = F (k)e(k)+H(k)Uc(k) (4.21)

Where:

F (k) = [CA(k),CA(k+1)A(k), . . . ,CÃ(k,0)]T

H(k) =


CB 0 · · · 0

CA(k+1)B CB · · · ...
... ... . . . ...

CÃ(k,1) CÃ(k,2)B(k+1) · · · CB



And:

CÃ(k, i) = C
p−1∏
j=i

A(k+ j)

Uc(k) = [uc(k),uc(k+1), . . . ,uc(k+p)]T

Then, we introduce the following cost function:

JDP SM =
Np∑
j=1

qj (Sp(k+1)−Sr(k+ j))2

+
Nc∑
i=1

ri (Uc(k)−Ueq(k))2
(4.22)

Where Ueq(k) is the discrete sliding mode equivalent control given by:

Ueq(k) = (CB)−1[CA(k)e(k)] (4.23)

The cost function in (4.22) can be described in quadratic form as:

JDP SM (Uc(k),Np,Nc) = ∥(Sp(k+1)−Sr(k+1))∥2
Q

+∥(Uc(k)−Ueq(k))∥2
R

(4.24)

Hence, the optimal control law input Uc(k) can be obtained by dJDP SM
dUc

= 0 as:

Uc(k) = −
(
HTQH+R

)−1 [
HT (Fe(k) −Sr(k+1))−RUeq] (4.25)
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Where Q and R are weighting matrices given as:

Q=


q1 0 . . . 0
0 q2 . . . 0
... ... . . . ...
0 0 . . . qNp



R =


r1 0 . . . 0
0 r2 . . . 0
... ... . . . ...
0 0 . . . rNc



4.4 Simulation results

In this section, Two simulation examples are presented, a leader-follower formation
control of two nonolonomic wheeled mobile robots is considered, where the first robot
is assigned as a leader and the second robot is acting as follower.

The control parameters for the DSM and PDSM methods were determined by
trial and error as follow : qs = diag[3,0,0,6], ε = 0.001 × I2×2,Np = 4,Nc = 3,R =
10−3 × I2×2,Q= diag[5,0,0,5] and the gain matrix C is chosen as follow:

C =
 1.0 1.4 0

0 2.4 1.0


 xr = 1.5sin(2πt/50)
yr = 0.5sin(4πt/50)

(4.26)

For the PDSM control, the limits of the velocities commands of the follower robot are
given as follow:  νf,max = −νf,min = 0.4m/s

ωf,max = −ωf,min = 1.8Rad/s
(4.27)

While the kinematic input disturbances defined in (4.3) is selected as follow:

∆ =
 δν

δω

=
 .01sin(t)
.01cos(t)

 (4.28)
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4.4.1 Formation control using the DSM control

In this simulation example, the discrete predictive sliding mode controller (4.25) is
used to control the formation, the leader robot is assumed to be moving in a 8-shape
trajectory produced by (4.26). The required separation distance is chosen as Ld =
0.15 m and the bearing angle is selected as ϕd = 3π/2, while the initial robots posture
are given as: ql = [0 0 π/4]T and qf = [0.25 1.5 −π/4]T .

The real-time trajectories for both robots are shown in Figure 4.2 . The follower
robot tracking errors and its velocities commands are shown in Figure 4.3 and Figure
4.4, respectively.

Figure. 4.2: Two robot leader follower formation, based on the discrete predictive
sliding mode DPSM control.
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Figure. 4.3: Formation tracking error for the follower using the discrete predictive
sliding mode DPSM control controller.

Figure. 4.4: Control inputs of the follower robot controlled by the discrete predictive
sliding mode DPSM method.
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4.4.2 Comparison between DSM and DPSM control methods

This section presents a comparison between the discrete sliding mode DSM control
in (4.17) and the discrete predictive sliding mode DPSM control in (4.25). In this
example, the leader robot is following a circular trajectory given by equation (4.29)
with a constant angular velocity ωl = 1 Rad/s and a constant linear velocity νl = 1 m/s.
The initial follower robot position is selected as qf = [1.2 −1.1 π/4]T and the initial
leader posture is ql = [0 0 π/2]T , while the required orientation angle and distance are
chosen as Ld = 1 m and ϕd = 4π/3 Rad. xr = −1+cos(2πt/50)

yr = sin(2πt/50)
(4.29)

Figure 4.5, shows the formation trajectories based on both DSM and DPSM control
schemes. While Figure 4.6 depict a comparison between the formation tracking errors,
and the control inputs of the follower robot using the suggested control techniques are
illustrated in Figure 4.7.

To compare the formation tracking performances, five error indexes are employed.
Namely, mean square errorMSE = 1

T

∑T
1 Ef (t)2, integral square error ISE =

∫ T
0 Ef (t)2dt,

integral time square error ITSE =
∫ T
0 tEf (t)2dt, integral time absolute error ITAE =∫ T

0 t|Ef (t)|dt, and integral absolute error IAE =
∫ T
0 |Ef (t)|dt. Where Ef (t) is given in

(4.30) and T is the time of simulation.

Ef (t) = xe(t)2 +ye(t)2 + θe(t)2 (4.30)

The obtained results of the comparison between the formation tracking performances
are listed in Table 4.1.

Table 4.1: Comparison between the formation tracking performances .

MSE ISE ITSE IAE ITAE

DSM 0.0155 0.1211 0.0279 0.2548 0.0667
PDSM 0.0061 0.0463 0.0068 0.1528 0.0362
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(a)

(b)

Figure. 4.5: Comparison between the formation trajectories, (a) using the discrete
sliding mode DSM controller, (b) based on the discrete predictive sliding mode PDSM

controller.
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(a)

(b)

Figure. 4.6: Comparison between the tracking errors of the follower robot, (a) using
the discrete sliding mode DSM controller, (b) based on the discrete predictive sliding

mode PDSM controller.
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(a)

(b)

Figure. 4.7: Comparison between the velocities signals of the follower robots, (a) using
the discrete sliding mode DSM controller, (b) based on the discrete predictive sliding

mode PDSM controller.
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In the first example, the simulation results of the leader-follower formation in an
8-shape trajectory is successfully performed. As shown in Figure 4.2, the follower
robot effectively follows the leader, maintaining the required distance and keeping the
desired heading angle. The tracking errors of the follower robot steadily decreases
until it reaches zero in the presence of the input disturbances, as seen in Figure 4.3.
Additionally, Figure 4.4 illustrate that the robot velocities adhere to the imposed
constraints without any chattering.

The comparison between the formation trajectories in Figure 4.5 shows that the
formation problem is successfully solved based on both proposed control strategies,
where the tracking errors gradually reach the origin over time as depicted in Figure
4.6. However, from the control laws of the follower robots illustrated in Figure 4.7, it
can be noted that the DPSM control scheme can generate a chattering free control
signals that respect the physical input limits of the robot. Moreover, the analysis of
the tracking performances in Table 4.1 show that DPSM control technique has a better
formation tracking accuracy when compared to the DSM control strategy.

To summarize, the above simulation outcomes indicate that the proposed predictive
sliding mode DPSM controller can perform an accurate formation tracking with a
practical and chattering free control inputs.

4.5 Conclusion

The leader-follower-based formation control for wheeled nonholonomic mobile robots
has been addressed in this chapter. Initially, the trajectory following problem was
expanded into a formation control problem. Then, by the utilization of linear formation
tracking error dynamics, we have designed a discrete sliding mode controller to guide
the follower robots in maintaining their formation relative to the leader and achieving
the desired spatial geometric configuration. Furthermore, to optimize control efforts
and mitigate the challenging chattering phenomenon, we integrated a discrete model
predictive control DMPC with the DSM approach. The suggested method efficacy was
demonstrated through simulation results and comparative studies.
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CONCLUSION AND FUTURE
WORK

In this thesis, the problem of formation control of multiple nonholonomic mobile
robots has been addressed, the main aim was the development of new adaptive and
robust control laws for the robots that can coordinate their movement to efficiently
establish and sustain a desired geometric configuration, while accurately following
a predefined paths. And with taking into account the motion constraints subjected
to the kinematics of this types of robots and the practical challenges posed by the
uncertainties and disturbances commonly encountered in their dynamics.

In this dissertation, different types of control methods has been used together
with some formation control approaches in order to achieve the formation control of
nonholonomic wheeled mobile robots with a satisfactory and effective performance.
The accomplished work can be summarized as follows:

✓ A novel robust and stable torque controller has been designed for the formation
control of multi nonholonomic wheeled mobile robots, using the leader follower
approach and based on both kinematic and dynamic model of the robots. The
suggested controller is developed by utilizing a combination of integral sliding
mode control ISM, fractional calculus FO and fuzzy logic control. The main
objective of this control scheme is to make the follower robots to follow their
leader while forming a specific geometric shape under the presence of system
un-modeled dynamics, parameter variation and disturbances. According to the
simulation and comparison outcomes, the proposed control torques can ensure a
chattering free, robust and rapid formation tracking when it compared to the
traditional sliding mode controllers.
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✓ An adaptive distributed formation control laws have been derived to coordinate
the movement of swarm of nonholonomic wheeled robots into a predefined
formations. First, the graph theory is employed to model the interaction between
the robots in the formation in distributed manner, where the relative heading
angle and distance between the follower robots and the leader are not anymore
required in the control scheme design process. Then, the FTSMC fast terminal
sliding Mode control is mixed with fractional calculus theory to derive a robust
torque controllers for each robot in order to establish a fast and finite-time
convergence toward the required formation pattern. Moreover, An adaptive
mechanism is proposed to account the presence of bounded disturbances and
uncertainties. the suggested torque controller is compared to the second order
consensus algorithm SOCA and the traditional distributed sliding mode control
DSMC. The findings showcase the efficacy of the proposed controller.

✓ A kinematic leader-follower formation controller has been designed to control the
coordination of a team of mobile robots into a desired formation configurations.
First, the trajectory tracking problem was transformed into a leader-follower
formation problem. Then, a discrete model predictive control DMPC is employed
alongside with discrete sliding mode DSM control to drive the follower robots in
the formation to track the set of trajectories generated by their leader. Where
the use of discrete sliding mode control can ensure robustness against the
system kinematic disturbances, while the utilization of model predictive control
lead to an improved trajectory tracking and formation maintenance with a
constrained control inputs. The simulation outcomes underscore the effectiveness
and potential of the proposed control approach in practical scenarios,

There are some challenging open topics to the problems studied in this thesis:

✓ In this dissertation, the proposed control algorithms has been examined only
through simulation results to confirm the theoretical findings. Hence, in future
work, we plan to implement our developed control inputs on real nonholonomic
wheeled mobile robots to experimentally validate our theory results.

✓ In real-world applications, one of the most significant challenges in formation
control algorithms for nonholonomic robots is avoiding collision between the
robots during the formation. As well as the dynamic and static obstacles avoidance
in unknown environment. Therefore, in future work we shall take into account
the issue of formation control with collision and obstacle avoidance.
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Conclusion and future work

✓ We addressed in this thesis, the formation control of homogeneous wheeld mobile
robots where we assumed that all the robots has the same dynamics. However, in
practice the robots could have different dynamics sometimes. Hence, Development
of formation control algorithms for heterogeneous robots can be investigated in
future work.
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