
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

SAAD DAHLAB UNIVERSITY OF BLIDA 1

Faculty of Sciences

Department of Computer Science

DOCTORAL THESIS

Speciality : Network and security

Presented by :

REMMIDE Mohamed Abdelkarim

THEME

Hybrid approach to detect social engineering attacks

Publicly defended on 16/12/2024, before a jury composed of :

Prof. Nadjia Benblidia Professeur USDB Chair
Dr. Fatima Boumahdi MCA USDB Thesis supervisor
Prof. Narhimene Boustia Professeur USDB Thesis co-supervisor
Dr. Massaouda Fareh MCA USDB Examiner
Dr. Ahmed Cherif Mazari MCA University of Medea Examiner
Dr. Fouaz Berrhail MCA University of Setif 1 Examiner

Acknowledgements

First and foremost, I express my profound gratitude to Almighty Allah for bestowing
upon me the courage, strength, and perseverance necessary to undertake and complete
this research endeavor. His guidance and blessings have been a constant source of support
throughout this challenging journey.

I would like to convey my deepest appreciation to my supervisor, Dr. Fatima Boumahdi,
and co-supervisor, Professor Narhimene Boustia, for their unwavering support, invaluable
insights, and tireless guidance. Their expertise, constructive feedback, and commitment
to academic excellence have been instrumental in shaping the direction and enhancing
the quality of this thesis. Their mentorship has not only contributed to the successful
completion of this work but has also significantly influenced my growth as a researcher.

I am profoundly grateful to the members of my thesis committee for their time, ex-
pertise, and thoughtful contributions. Their interdisciplinary perspectives, insightful cri-
tiques, and challenging questions have greatly enriched the depth and rigor of this re-
search. Their commitment to academic excellence has pushed me to refine my ideas and
strengthen the overall quality of this thesis.

My sincere gratitude extends to the faculty and staff of the Computer Sciences De-
partment for fostering an intellectually stimulating and collaborative environment. The
resources, facilities, and academic support provided have been crucial in facilitating this
research.

I would also like to acknowledge the invaluable support of my colleagues and fellow
researchers in the cybersecurity lab. Our discussions, collaborations, and mutual support
have been a source of inspiration and have contributed significantly to the ideas presented
in this thesis.

Finally, I am deeply indebted to my family for their unconditional love, understanding,
and encouragement throughout this challenging journey. Their unwavering belief in my
abilities has been a constant source of motivation.

This thesis stands as a testament to the collective support, guidance, and encourage-
ment of all those mentioned above and many others who have contributed in various ways.
To each of you, I express my heartfelt gratitude.

P�l�

T�wbs� ry� �A§wts� �yq�� Y�� �§d��� �mt�m�� ¨� T`§rs�� Tym�r�� �¯w�t�� � �

.¨��rbys�� ��±� �A�� ¨� ­dq`� �A§d�� CwhZ Y�� A¾AS§� � � Amny� ,CAkt�¯�¤ �AO�¯� ��

¨�Ayt�¯� dyOt�� T}A�¤ ,Ty�Amt�¯� TFdnh�� �Am�¡
�b}� ,�A§d�t�� £@¡ �y� ��¤

��º�r�� E¤A�t� T§rKb�� �`S�� ªAq� ��ts� �y� ,CAKt�¯� �F�¤ A¾d§dh� ,(Phishing)
�AKt�¯ T�dqtm�� �Aynqt�� �w� A¾Aqm`t� A¾A��� T�¤rV±� £@¡ �dq� .T§dylqt�� ��±�

¨�¤rtk�³� d§rb�� ��Ð ¨� Am� ,���w� ­d� rb� ¨�Ayt�¯� dyOt�� �Am�¡ �yf��¤

.(SMS) ­ryOq�� TyOn�� �¶AFr��¤ (URLs) Ty�¤rtk�³� �§¤An`��¤

£@¡ �¡As� ,�ym`�� �l`t��¤ ¨�µ� �l`t�� ¨� ­CwWt� �Ay�hn� Yl� Amt�¯� �®� ��

�AKt�� �ys�t� Anm� ,¾¯¤� .¨��rbys�� ��±� �A�� ¨� Tysy¶C �A�AhF� ­d`� ��b��

�� (Oversampling) �Any`�� ­ A§E �Aynq� �ybW� �®� �� Ty�Amt�¯� TFdnh�� �Am�¡

��d�tFA� Aht�} �� �q�t�� �� ,(Support Vector Machines - SVM) ��d�� �®�A� �¯�

�§Abt�� �yl�� d`u§ .(Analysis of Variance - ANOVA) ¨¶AO�³� �§Abt�� �yl�� ��CAbt��

�§Abt�� �yl�� �®� �� ­ d`t� �ÐAm� º� � T�CAqm� �d�tsu§ A¾Ay¶AO�� A¾A�wlF� (ANOVA)

.T�rtqm�� �wl��� Ty�w�w�¤ ­w� �mS§ Am� ,Ah�¶At� �y�

Temporal Convolutional Networks) Tyn�z�� �Aft�¯� �AkbK� A¾rktb� A¾AqybW� �dq� ,A¾Ay�A�

ªAm�±� �yl�� ¨� A¾A�wft� ¾º� � rh\u� �y� ,T§dyOt�� URL �§¤An� �AKt�¯ (TCN
�ym`�� �l`t�� �y� ��d§ A¾Any�¡ A¾A�h� �rtq� ,A¾A��A� .Ty�¤rtk�³� �§¤An`�� �r�± Tylslst��

�Ay�y��rtF� �yt§ Am� ,(Case-Based Reasoning - CBR) �¯A��� Yl� �¶Aq�� �¯dtF¯�¤

.Tq�As�� �Am�h�� ªAm�� Yl� ¾ºAn� ¨�Ayt�¯� dyOt�� �AKt�¯ Tyfyk�

��d�tF� �m`�� �@¡ �Kkts§ ,¨�Ayt�¯� dyOt�� ��d§dh� ¨� rmtsm�� CwWt�� Th��wm�

¨� ��¥m�� T�} �� �q�tl� (Siamese Neural Networks) Ty�Ays�� TybO`�� �AkbK��

_Af��� �� d�wm�� �ym`�� �l`tl� �m� CAV� @yfn� �t§ Am� ,¨�¤rtk�³� d§rb�� �ynO�

dyOt�� �Am�¡ �AKt�¯ (Privacy-Preserving Federated Deep Learning) Ty}wO��� Yl�

.(Smishing) ­ryOq�� TyOn�� �¶AFr�� rb�

Am� ,¨�Ayt�¯� dyOt�� �AKt�� º�C¤ Tn�Ak�� �A§r\nl� �m�� A¾Amh� ��AK�� An�h� r�w§

T��A`� �®� �� .¨��rbys�� ��±� ��º�r�� z§z`t� �ybWtl� Tl�A�¤ Tylm� A¾¯wl� �dq§

,T�dqtm�� Ty�wFA��� �Aynqt�� �� ­ AftF¯�¤ dyOt�� �Am�h� ¢�¤±� ­ d`t� T`ybW��

��d§dht�� dR �ykt�� Yl� ­Cd�¤ ­w� r��� Ty�A� �Ay�� r§wW� ¨� �A��±� £@¡ �¡As�

.d§�zt� �kK� X��rtm�� ¨m�r�� An�A\� ¨� C�rmtFA� ­CwWtm�� Ty��rbys��

dyOt�� �¶AFC �AKt�� ;¨�Ayt�¯� dyOt�� �Am�¡ ;Ty�Amt�¯� TFdnh�� :Ty�Atfm�� �Amlk��

Yl� �¶Aq�� �¯dtF¯� ;T�r`m�� �y�m� ;�ym`�� �l`t�� ;¨�¤rtk�³� d§rb�� rb� ¨�Ayt�¯�

.¨��Cdyf�� �l`t�� ;�¯A���

Abstract

The rapid digital transformation of modern society has ushered in unprecedented connec-
tivity and innovation, while simultaneously introducing complex cybersecurity challenges.
Among these, social engineering attacks, particularly phishing, have emerged as a per-
vasive threat, exploiting human vulnerabilities to bypass traditional security measures.
This thesis presents a comprehensive investigation into advanced techniques for detecting
and mitigating phishing attacks across multiple vectors, including emails, URLs, and SMS
messages.
Leveraging state-of-the-art machine learning and deep learning methodologies, this re-
search makes several key contributions to the field of cybersecurity. First, we advance the
detection of social engineering attacks through the application of oversampling techniques
with Support Vector Machines (SVM), validated using Analysis of Variance (ANOVA)
statistical tests. ANOVA is a statistical method used to compare the performance of
multiple models by analyzing the variance between their results, ensuring the robustness
and reliability of our proposed solutions.
Second, we introduce a novel application of Temporal Convolutional Networks (TCNs)
for phishing URL detection, demonstrating superior performance in analyzing sequential
patterns of URL characters. Third, we propose a hybrid approach that integrates deep
learning with case-based reasoning (CBR), enabling adaptive phishing email detection
strategies informed by historical attack patterns.
To address the evolving landscape of phishing threats, this work explores Siamese neural
networks for authorship verification in email classification and implements a privacy-
preserving federated deep learning framework for detecting SMS-based phishing (smish-
ing) attacks.
Our comprehensive approach not only advances the theoretical understanding of phishing
detection but also provides practical, implementable solutions to enhance cybersecurity
measures. By addressing the multifaceted nature of phishing attacks and leveraging ad-
vanced computational techniques, this research contributes to the development of more
robust and adaptive defense mechanisms against evolving cyber threats in our increasingly
interconnected digital ecosystem.

Keywords: Social engineering; Phishing attacks; Phishing email detection; Deep learn-
ing; knowledge representation; Case-based Reasoning; federated learning.

Résumé

La transformation numérique rapide de la société moderne a engendré une connectivité
et une innovation sans précédent, tout en introduisant des défis complexes en matière
de cybersécurité. Parmi ces défis, les attaques d’ingénierie sociale, en particulier le phi-
shing, sont devenues une menace omniprésente, exploitant les vulnérabilités humaines
pour contourner les mesures de sécurité traditionnelles. Cette thèse présente une inves-
tigation approfondie des techniques avancées pour détecter et atténuer les attaques de
phishing sur plusieurs vecteurs, notamment les e-mails, les URL et les SMS.
En s’appuyant sur des méthodologies de pointe en apprentissage automatique et appren-
tissage profond, cette recherche apporte plusieurs contributions majeures au domaine
de la cybersécurité. Premièrement, nous améliorons la détection des attaques d’ingénie-
rie sociale grâce à l’application de techniques de suréchantillonnage avec les Machines
à Vecteurs de Support (SVM), validées par des tests statistiques d’Analyse de Variance
(ANOVA). L’ANOVA est une méthode statistique utilisée pour comparer les performances
de plusieurs modèles en analysant la variance entre leurs résultats, garantissant ainsi la
robustesse et la fiabilité de nos solutions proposées.
Deuxièmement, nous introduisons une application novatrice des Réseaux Convolutionnels
Temporels (TCN) pour la détection des URL de phishing, démontrant une performance
supérieure dans l’analyse des motifs séquentiels des caractères d’URL. Troisièmement,
nous proposons une approche hybride qui intègre l’apprentissage profond avec le raisonne-
ment à base de cas (CBR), permettant des stratégies de détection de phishing adaptatives
basées sur des modèles d’attaques historiques.
Pour répondre à l’évolution des menaces de phishing, ce travail explore les réseaux de
neurones à architecture Siamese pour la vérification de la paternité dans la classifica-
tion des e-mails et met en œuvre un cadre d’apprentissage profond fédéré préservant la
confidentialité pour détecter les attaques de phishing par SMS (smishing).
Notre approche globale permet non seulement d’approfondir la compréhension théorique
de la détection du phishing, mais offre également des solutions pratiques et applicables
pour renforcer les mesures de cybersécurité. En abordant la nature multifacette des at-
taques de phishing et en exploitant des techniques informatiques avancées, cette recherche
contribue au développement de mécanismes de défense plus robustes et adaptatifs contre
les cybermenaces en constante évolution dans notre écosystème numérique de plus en plus
interconnecté.

Mots Clée : Ingénierie sociale ; Attaques de phishing ; Détection des e-mails de phishing ;
Apprentissage profond ; Représentation des connaissances ; Raisonnement à base de cas ;
Apprentissage fédéré.

Contents

List of Figures i

List of Tables iv

List of Abbreviations vi

General Introduction 1

I State of the art 6

1 Social engineering 7
1.1 Introduction . 7
1.2 Understanding social engineering . 7
1.3 Social Engineering Attack Vectors . 9
1.4 Attack cycle . 10
1.5 Psychological manipulation and exploitation 12
1.6 Types of social engineering attacks . 13
1.7 Detecting of social engineering . 15
1.8 Synthesis . 18
1.9 Conclusion . 19

2 Phishing attack 20
2.1 Introduction . 20
2.2 Phishing Attacks: An Overview . 20
2.3 Anatomy of a Phishing Attack . 21
2.4 Phishing Attack Types . 21
2.5 Phishing attack impact and case study . 23
2.6 Phishing Attacks Detection . 24

2.6.1 Email content . 24

CONTENTS

2.6.2 URL . 28
2.6.3 Smishing . 31

2.7 Conclusion . 37

3 Deep learning and case-based reasoning 38
3.1 Introduction . 38
3.2 Deep Learning . 38
3.3 Convolutional neural networks (CNNs) . 39
3.4 Recurrent neural networks (RNNs) . 41
3.5 Long Short-Term Memory(LSTM) . 42
3.6 Bi-LSTM . 43
3.7 Gated Recurrent Unit (GRU) . 44
3.8 Temporal convolutional network (TCN) . 46
3.9 Attention Mechanism . 48
3.10 Transformer . 49
3.11 Case-Based Reasoning (CBR) . 50
3.12 Conclusion . 52

II Contribution 53

4 Social engineering attack Detection 54
4.1 Introduction . 54
4.2 Architecture . 55

4.2.1 Data balancing . 56
4.2.2 classification model and parameters 57

4.3 Evaluation and analysis . 59
4.3.1 Analysis of Variance (ANOVA) . 59
4.3.2 Dataset overview . 59
4.3.3 Results . 60

4.4 Conclusion . 65

5 Phishing URL Detection 66
5.1 Introduction . 66
5.2 Architecture . 67
5.3 Datasets . 68
5.4 Preprocessing . 69
5.5 Data Balancing . 70

CONTENTS

5.6 Model . 71
5.7 Experiments . 72
5.8 Conclusion . 76

6 Deep Learning and Case-Based Reasoning for Phishing Email Detection 77
6.1 Introduction . 77
6.2 Architecture . 78

6.2.1 Representation (feature extraction) 79
6.2.2 Retrieve . 86
6.2.3 Reuse . 86
6.2.4 Revise . 87
6.2.5 Retain . 88

6.3 Experiments and Results . 89
6.3.1 Dataset . 89
6.3.2 Experiment setup . 90
6.3.3 Results and Discussion . 91

6.4 Conclusion . 95

7 A Privacy-Preserving Approach for Detecting Smishing Attacks using
Federated Deep Learning 96
7.1 Introduction . 96
7.2 Architecture . 97
7.3 Dataset . 99
7.4 Data Preprocessing and word embedding 100
7.5 Building classification model . 101
7.6 Results . 104

7.6.1 Unfederated learning . 105
7.6.2 Federated Learning . 107
7.6.3 Synthesis . 108

7.7 Conclusion . 110

8 Authorship Verification for Phishing Email Detection 111
8.1 Introduction . 111
8.2 Architecture . 112

8.2.1 Data pre-processing . 112
8.2.2 Representative Email Selection . 113
8.2.3 Siamese model . 114
8.2.4 Classification . 116

CONTENTS

8.3 Results . 117
8.3.1 Dataset . 117
8.3.2 Experimental Results and Analysis 118

8.4 Conclusion . 120

General conclusion 121

Bibliography 124

List of Figures

1.1 Overview of Social Engineering Attack Structure 8
1.2 Social Engineering Attack Vectors . 9
1.3 Social Engineering Attack cycle . 11
1.4 Social engineering attack methods . 15

2.1 Phishing attacks type . 23
2.2 Overview of smishing detection methodologies: Summary of authors and

years . 34

3.1 Architecture of CNN [Das et al., 2024] . 40
3.2 Overview of the Recurrent Neural Network (RNN) Architecture [Yin et al.,

2021] . 42
3.3 Architecture of the LSTM block [Yin et al., 2021] 43
3.4 Architecture of the BiLSTM [Yin et al., 2021] 44
3.5 Illustration of LSTM and GRU [Chung et al., 2014] 45
3.6 (a)A causal dilated convolution;(b)TCN residual block.Dilated convolu-

tions [Zhu et al., 2020] . 46
3.7 CBR cycle [Yan and Cheng, 2024] . 51

4.1 Architecture of the Social Engineering Attack Detection Model [Remmide
et al., 2024b] . 55

4.2 Evaluation of Machine Learning Algorithms for Recognizing Social Engi-
neering Attacks [Remmide et al., 2024b] 61

4.3 Performance Comparison of the Proposed Oversampling Method Against
State-of-the-Art Classifiers for Social Engineering Detection [Remmide et al.,
2024b] . 62

4.4 Accuracy Performance Comparison Across Various Social Engineering De-
tection Methods [Remmide et al., 2024b] 63

i

LIST OF FIGURES

4.5 F1-score Performance Comparison Across Various Social Engineering De-
tection Methods [Remmide et al., 2024b] 63

4.6 AUC Performance Comparison Across Various Social Engineering Detec-
tion Methods [Remmide et al., 2024b] . 64

5.1 A high-level diagram of our the proposed phishing URL detection architecture 67
5.2 Our propose phishing URL detection model [Remmide et al., 2022b] 72
5.3 Confusion Matrix of our TCN model Displaying Results from the 3 [Rem-

mide et al., 2022b] . 76

6.1 Overview of the proposed Deep Learning-augmented Case-Based Reasoning
(DL-CBR) system [Remmide et al., 2024c] 79

6.2 Overview of the feature extraction process steps [Remmide et al., 2024c] . . 80
6.3 Word embedding process for a single email [Remmide et al., 2024c] 82
6.4 Architecture of the proposed deep learning model for feature extraction

[Remmide et al., 2024c] . 83
6.5 Diagram detailing inputs and outputs at each stage of the feature extraction

deep learning model. [Remmide et al., 2024c] 85
6.6 Confusion matrices [Remmide et al., 2024c] 93

7.1 Pipeline of the smishing detection model 97
7.2 Architecture of the Unfederated Learning Model for Smishing Detection . . 98
7.3 Federated learning model architecture for smishing detection [Remmide

et al., 2024d] . 99
7.4 SMS phishing dataset distribution . 100
7.5 Confusion Matrices Showing Performance for LSTM, Bi-LSTM, CNN and

MLP modelss . 106
7.6 Confusion Matrices Showing Performance for SVM, Decision Tree, Random

Forest, and AdaBoost Models . 107
7.7 Confusion Matrices Showing Performance for federated LSTM, Bi-LSTM,

CNN and MLP models . 109

8.1 Workflow for the classification Phishing Emails [Remmide et al., 2024a] . . 112
8.2 Siamese LSTM-Based Similarity Model for Email Classification [Remmide

et al., 2024a] . 115
8.3 Overview of Email Class Distribution in the Dataset [Remmide et al., 2024a]117
8.4 Comparative Performance of Authorship Verification Models on Twitter

and SeFACED Datasets [Remmide et al., 2024a] 118

ii

LIST OF FIGURES

8.5 Performance assessment of the proposed models compared to leading re-
search in authorship verification. [Remmide et al., 2024a] 119

8.6 Performance comparison of the proposed models against leading research
in email classification. [Remmide et al., 2024a] 120

iii

List of Tables

2.1 Summary of Related Work in Phishing Detection [Remmide et al., 2024c] . 28
2.2 A comparison of related phishing URL detection work 30
2.3 A comparison of related works on SMS phishing detection [Remmide et al.,

2024d] . 34

4.1 Summary of Hyperparameters used in SMOTE-ENN Implementation . . . 57
4.2 Optimized Hyperparameters for Social Engineering Attack Detection [Rem-

mide et al., 2024b] . 58
4.3 Comparative Performance Evaluation of Machine Learning Classifiers for

Social Engineering Detection [Remmide et al., 2024b] 60
4.4 Evaluation of the Proposed Approach Compared to Benchmark Classifiers

for Social Engineering Detection [Remmide et al., 2024b] 61

5.1 Comparison of the proposed model in the three datasets [Remmide et al.,
2022b] . 73

5.2 Performance Comparison of the Proposed Model and Baseline Models on
the First and Second Datasets [Remmide et al., 2022b] 74

5.3 Performance Comparison of the Proposed Model and Baseline Models on
the third Datasets [Remmide et al., 2022b] 74

5.4 Comparison of the Proposed Model and State-of-the-Art Methods [Rem-
mide et al., 2022b] . 75

6.1 Description of Datasets Used in Phishing Email Detection Experiments
[Remmide et al., 2024c] . 90

6.2 Parameters and Configurations Used in the Experimental Setup of phishing
email detection . 91

6.3 Performance of ML and DL algorithms for the detection of phishing emails
[Remmide et al., 2024c] . 92

iv

LIST OF TABLES

6.4 Comparison of the Proposed Model with Related Work in Phishing Email
Detection [Remmide et al., 2024c] . 94

7.1 Hyperparameters for Models in Smishing Detection 104
7.2 Performance of Deep Learning Models (Unfederated Learning) [Remmide

et al., 2024d] . 105
7.3 Performance of Machine Learning Models (Unfederated Learning) 106
7.4 Measures for Assessing the Performance of Federated Learning Models . . 107
7.5 Comparison of Results Between the Proposed Method and Various Classi-

fication Techniques [Remmide et al., 2024d] 108

v

List of Abbreviations

Acronyms / Abbreviations

AI Artificial intelligence

ANOVA Analysis of Variance

APWG Anti-Phishing Working Group

ASSET Anti-Social Engineering Tool

BERT Bidirectional Encoder Representations from Transformers

BgC Biosynthetic Gene Clusters

Bi-LSTM Bidirectional LSTM

BTC Bitcoin

CBR Case-Based Reasoning

CD Compact disc

CNN Convolutional Neural Network

DBIR Data Breach Investigation Report

DL-CBR Deep Learning-augmented Case-Based Reasoning

ETC Extended Transformer Construction

GBDT Gradient-boosted decision trees

GCN Graph Convolutional Network

GNB Gaussian Naive Bayes

GRU Gated Recurrent Unit

vi

LIST OF ABBREVIATIONS

KNN K-Nearest Neighbor

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

MNB Multinomial Naive Bayes

NB Naive Bayes

NER Named Entity Recognition

NLP Natural Language Processing

PCA Principal Component Analysis

PRISM Personal grouping method for Reducing InterSubject variability

PSD Path-Similarity Distance

RBF Radial Basis Functio

RCNN Region-based Convolutional Neural Network

ResNets Residual Networks

RF Random Forest

RNN Recurrent Neural Network

SE social engineering

SEADM Social Engineering Attack Detection Mode

SGB Stochastic Gradient Descent

Smishing SMS-based phishing

SMOTE-ENN Synthetic Minority Over-sampling Technique with Edited Nearest Neigh-
bors

SVC Support Vector Classifier

SVM Support Vector Machine

TCN Temporal Convolutional Network

vii

LIST OF ABBREVIATIONS

TF Term Frequencies

TF-IDF Term frequency-inverse document frequency

URL Uniform Resource Locator

USB Universal Serial Bus

Vishing voice-based phishing

VPN Virtual Private Network

XGB EXtreme Gradient Boosting

viii

General Introduction

The rapid advancement of digital technologies has profoundly transformed modern
society, permeating every facet of daily life. According to the 2022 Global Digital Report,
an unprecedented 63.5% of the global population—over 5 billion individuals—regularly
engage with the internet for a diverse array of activities, including communication, e-
commerce, and digital education [Digital GLOBAL OVERVIEW REPORT, 2022]. This
statistic not only underscores the pervasive nature of digital technology but also highlights
the critical role the internet plays in facilitating and mediating human experiences in the
21st century.

While this digital transformation offers unparalleled opportunities for connectivity and
innovation, it has concurrently ushered in a complex landscape of cybersecurity challenges.
The escalation of these challenges is evident in recent reports. Deep Instinct observed a
staggering 653% increase in malicious cybersecurity activity in July 2020 compared to
the previous year [Cyber Threat, 2020]. Furthermore, the U.S. Healthcare Cybersecurity
Market report revealed that over 90% of healthcare organizations experienced at least
one cybersecurity breach in the past three years 1. These findings illustrate the growing
vulnerability of critical sectors to cyber threats, emphasizing the urgent need for robust
and adaptive security measures.

Problem statement

Despite significant advancements in technological security measures, the human factor
remains one of the most critical vulnerabilities in cybersecurity ecosystems. According
to Verizon’s 2021 Data Breach Investigation Report (DBIR), 85% of data breaches are
attributed to human-related factors [DBIR Report, 2021]. This vulnerability is systemat-
ically exploited through social engineering attacks, which manipulate human psychology
to bypass traditional security protocols. These attacks prey on cognitive biases, lack of
awareness, and the inherent trust individuals place in digital communications, making
them both pervasive and difficult to mitigate.

1https://www.gminsights.com/industry-analysis/healthcare-cybersecurity-market

1

https://www.gminsights.com/industry-analysis/healthcare-cybersecurity-market

GENERAL INTRODUCTION

Among social engineering tactics, phishing has emerged as a particularly pernicious
and widespread threat. The Anti-Phishing Working Group (APWG) reported an un-
precedented surge in phishing attacks, with over 1 million incidents recorded in the first
quarter of 2022 alone [APWG, 2021a]. The financial sector remains the primary target,
accounting for 23.2% of all phishing attacks [APWG, 2021a]. The economic impact of
these attacks is staggering, with losses estimated at billions of dollars annually. Beyond
financial damage, phishing attacks lead to data breaches, identity theft, compromised
critical infrastructure, and a erosion of trust in digital systems.

The evolving nature of phishing attacks further complicates the challenge. While
email remains the most common vector, attackers have diversified their methods to in-
clude: Smishing (SMS-based phishing),Vishing (voice-based phishing), andExploitation
of social media platforms [Gupta et al., 2018].

This diversification underscores the need for a multifaceted and adaptive approach to
detection and prevention. Traditional security measures, such as blacklists and rule-based
systems, are often ineffective against these evolving tactics, as they rely on static patterns
and cannot adapt to zero-day attacks or novel social engineering techniques.

The human factor exacerbates these challenges. Cognitive biases, such as the ten-
dency to trust authoritative-looking communications, and a general lack of cybersecurity
awareness make individuals easy targets for sophisticated social engineering attacks. This
not only compromises individual security but also undermines trust in digital ecosystems,
with far-reaching consequences for businesses, governments, and society as a whole.

In light of these challenges, there is an urgent need for innovative solutions that ad-
dress the human factor, adapt to the evolving tactics of attackers, and provide robust
detection and prevention mechanisms across multiple attack vectors. This thesis seeks to
address these gaps by leveraging machine learning, deep learning, and hybrid approaches
to develop advanced techniques for combating phishing.

Research methodology

To address these evolving threats, this thesis employs cutting-edge machine learning and
deep learning methodologies. The research draws upon and extends existing literature,
which can be broadly categorized into three solution types [Fang et al., 2019]: [Rao and
Pais, 2017], machine learning [Alam et al., 2020], and deep learning [Remmide et al.,
2022a]. While blacklists have shown promise, they are limited by their reliance on hu-
man maintenance and inability to detect zero-day phishing attempts. Machine learning
techniques have demonstrated effectiveness but often require expert-driven feature en-

2

GENERAL INTRODUCTION

gineering. Deep learning approaches have emerged as particularly promising, offering
effective results without the need for extensive feature engineering.

This thesis aims to develop and evaluate advanced techniques for detecting phishing
attacks across multiple vectors, including email, URLs, and SMS. The research leverages
a combination of novel algorithms, hybrid models, and privacy-preserving frameworks to
address the limitations of existing methods. The key contributions of this work are as
follows:

• Advancing Automated Social Engineering Detection with Oversampling-
Based Machine Learning: This study utilizes oversampling techniques with Sup-
port Vector Machines (SVM) for the detection of social engineering attacks. Addi-
tionally, Analysis of Variance (ANOVA) is employed to assess the effectiveness of
the model [Remmide et al., 2024b].

• Phishing URL Detection Using Temporal Convolutional Networks (TCN
): This approach leverages Temporal Convolutional Networks to analyze the se-
quence of characters in URLs, identifying patterns that are characteristic of phishing
attempts [Remmide et al., 2022b].

• Towards a Hybrid Approach Combining Deep Learning and Case-Based
Reasoning for Phishing Email Detection: Integrating deep learning models
with case-based reasoning to enhance phishing email detection by leveraging past
instances of phishing attacks to inform current detection strategies [Remmide et al.,
2024c].

• Privacy-Preserving Smishing Detection with Federated Deep Learning:
A federated deep learning approach is used to detect smishing attacks while pre-
serving user privacy, enabling collaborative learning across multiple devices without
exposing sensitive data [Remmide et al., 2024d].

• Authorship Verification for Phishing Email Detection Using Siamese Neu-
ral Networks: Employing Siamese neural networks to verify email authorship, this
approach detects phishing attempts by identifying inconsistencies in writing style
when compared to legitimate communications [Remmide et al., 2024a].

Through these contributions, this thesis aims to advance the field of cybersecurity by
addressing critical gaps in phishing detection. The proposed solutions not only improve
detection accuracy but also enhance adaptability to emerging threats, ensuring robust
defense mechanisms in an increasingly interconnected digital world. By leveraging the

3

GENERAL INTRODUCTION

strengths of machine learning, deep learning, and hybrid approaches, this research pro-
vides a comprehensive framework for combating the evolving threat of phishing attacks.

Thesis organization

This thesis is structured into two main parts: the State of the Art , which offers an
overview of the thesis context and a review of related works, and the Contribution
part, which presents the novel approaches developed in this research to address social
engineering attacks, particularly phishing.

The State of the Art part lays the theoretical foundation for the thesis, exploring the
landscape of social engineering attacks and existing detection methods. It comprises the
following chapters::

• Chapter 1: This chapter explores the concept of social engineering, its psychological
underpinnings, and the various types of attacks, including phishing, smishing, and
vishing. It also discusses the evolving tactics used by attackers and their impact on
individuals and organizations.

• Chapter 2: This chapter provides a detailed examination of email phishing, including
the anatomy of phishing attacks, common techniques used by attackers, and existing
detection methods. It highlights the limitations of current approaches and sets the
stage for the proposed solutions.

• Chapter 3: This chapter introduces the theoretical frameworks underpinning the
proposed solutions, with a focus on case-based reasoning (CBR) and deep learning.

Part II presents the original contributions of the thesis, each addressing specific aspects
of phishing detection. It includes the following chapters:

• Chapter 4: This chapter explores the use of oversampling techniques combined with
SVM to detect social engineering attacks. The approach addresses class imbalance in
datasets, enhancing the accuracy and reliability of detection. The effectiveness of the
model is evaluated using Analysis of Variance (ANOVA) to rank its performance.

• Chapter 5: This chapter focuses on detecting phishing URLs using TCNs, a deep
learning architecture well-suited for sequence modeling. The approach analyzes the
sequential structure of URLs to identify patterns characteristic of phishing attempts,
contributing to enhanced security measures.

4

GENERAL INTRODUCTION

• Chapter 6: CBR is combined with deep learning to solve the problem of phishing
email detection. First, deep learning generates the case representation using the
N-pair loss function, which comes from the field of deep metric learning. With
the goal of grouping similar emails into the same cluster. The model consists of
a pre-trained GloVe embedding and a TCN+Bi-LSTM network with an attention
mechanism followed by a CBR classifier.

• Chapter 7: This chapter addresses the detection of smishing using federated learn-
ing. The approach enables collaborative learning across multiple devices while pre-
serving user privacy, ensuring that sensitive data is not exposed during the detection
process.

• Chapter 8: This chapter introduces a novel method for detecting phishing emails
by verifying authorship using Siamese Neural Networks. The model employs LSTM
layers and a Manhattan distance layer to measure the similarity between emails,
capturing unique writing styles and language patterns to identify inconsistencies
indicative of phishing attempts.

• The final chapter summarizes the key findings of the thesis, discusses their impli-
cations for the field of cybersecurity, and outlines potential directions for future
research.

5

Part I

State of the art

6

Chapter 1

Social engineering

1.1 Introduction

Advancements in technology are rapidly shaping modern society, exerting significant in-
fluence on daily life. A 2022 Global Digital Report revealed that over 5 billion people, or
63.5% of the global population, regularly use the internet for activities such as communi-
cation, online shopping, and digital education [Digital GLOBAL OVERVIEW REPORT,
2022]. This highlights our growing reliance on technology, especially the internet.

While greater connectivity has created new opportunities, it has also introduced serious
security challenges. The 2022 Verizon Data Breach Investigations Report noted a 13%
rise in ransomware attacks, exploiting the expanded use of the internet [DBIR Report,
2022].

This increasing dependence on technology, coupled with rising cyber threats, sets the
stage for social engineering attacks. Social engineering exploits human psychology to
access sensitive information or systems, becoming a critical concern in the digital age. As
our lives become more intertwined with technology, the potential impact of these attacks
grows exponentially.

This chapter explores the concept of social engineering, its attack vectors, and the
psychological principles that make it effective. It also examines various types of attacks
and reviews the state of the art in detection and prevention techniques.

1.2 Understanding social engineering

Social engineering is a sophisticated manipulation technique that exploits human psychol-
ogy to gain unauthorized access to confidential information or systems [Kamruzzaman
et al., 2023]. It operates by deceiving individuals into bypassing standard security proce-

7

CHAPTER 1. SOCIAL ENGINEERING

dures, often through carefully crafted scenarios that leverage trust, urgency, or fear [Kam-
ruzzaman et al., 2023]. This method has evolved from a traditional psychological concept
into a major cyber-attack vector, primarily due to human error and a lack of awareness
about cyber threats among employees and users.

The effectiveness of social engineering lies in its exploitation of human nature. Attack-
ers skillfully use psychological triggers to manipulate their targets. They can occur online,
in-person, or through various interactions. They may induce emotions like fear, excite-
ment, or sympathy; create a sense of urgency to force quick, poorly considered decisions;
impersonate figures of authority or influence; or exploit existing relationships and build
false ones to gain trust. By leveraging these psychological vulnerabilities, social engineers
can bypass sophisticated technical security measures, making their attacks particularly
potent and challenging to defend against. This reliance on human psychology rather than
technical exploits sets social engineering apart from many other forms of cyberattacks
and underscores the importance of human-focused security measures.

These techniques capitalize on the human tendency to trust others and make rapid
decisions under pressure, making social engineering attacks particularly potent and chal-
lenging to defend against [Salahdine and Kaabouch, 2019]. The impact of social engineer-
ing extends beyond individual victims. Organizations face significant risks, including data
breaches, financial losses, and reputational damage. As our reliance on digital systems
grows, so does the potential impact of these attacks. This underscores the critical need for
comprehensive cybersecurity strategies that address not only technological vulnerabilities
but also human factors.

Figure 1.1: Overview of Social Engineering Attack Structure.

8

CHAPTER 1. SOCIAL ENGINEERING

Figure 1.1 presents a comprehensive model of a social engineering attack. The social
engineer, whether an individual or group, exploits various communication mediums such
as email, SMS, telephone, or webpages to target individuals or organizations. The attack’s
goal may include financial gain, unauthorized access, or service disruption. These attacks
are driven by principles of compliance, leveraging psychological tactics like reciprocity,
authority, and social validation to manipulate targets. Specific techniques, including
phishing, pretexting, and baiting, are used depending on the mode of communication
and the desired outcome. This holistic view emphasizes the multifaceted nature of social
engineering and the sophistication of its methods.

1.3 Social Engineering Attack Vectors

At its core, social engineering involves manipulating people into performing actions or
divulging sensitive information, such as passwords, bank details, or access codes. These
attacks can be carried out through various channels, known as attack vectors. Common
attack vectors, as shown in Figure 1.2 include :

Figure 1.2: Social Engineering Attack Vectors

• Email-based Attacks (Phishing) :
Email-based attacks, commonly known as phishing, involve the attacker sending
fraudulent emails that appear to be from legitimate sources, such as organizations or
individuals, in an attempt to trick the recipient into revealing sensitive information

9

CHAPTER 1. SOCIAL ENGINEERING

or performing a desired action, such as clicking on a malicious link or downloading
an infected attachment.

• Phone-based Attacks (Vishing)
Vishing, or voice phishing, involves the attacker using the telephone to social engi-
neer their target. The attacker may impersonate a customer service representative,
IT support, or other authority figure to convince the target to disclose sensitive in-
formation or perform a specific action, such as transferring funds or providing login
credentials.

• SMS-based Attacks (Smishing) :
Smishing attacks use text messages (SMS) to lure the target into disclosing sensitive
information or clicking on a malicious link. These attacks often mimic messages
from trusted organizations or individuals to exploit the target’s trust and sense of
urgency.

• Social Media Exploitation :
Attackers may leverage social media platforms to gather information about their
targets, such as their interests, relationships, and online behavior. This informa-
tion can then be used to craft more personalized and convincing social engineering
attempts, such as spear-phishing emails or targeted scams.

• In-person Attacks :
In-person social engineering attacks involve the attacker physically interacting with
the target to manipulate them into divulging sensitive information or performing a
desired action. Examples include tailgating (following an authorized person through
a secure door) or dumpster diving (searching for discarded documents containing
sensitive information).

This diverse range of attack vectors demonstrates the versatility and adaptability
of social engineering techniques, making them a formidable threat in both digital and
physical environments.

1.4 Attack cycle

Social engineering attacks, while differing in specific techniques, generally follow a con-
sistent pattern with four distinct phases. According to [Mitnick and Simon, 2003], these
phases include: (1) collecting information about the target, (2) building a relationship

10

CHAPTER 1. SOCIAL ENGINEERING

with the target, (3) using the acquired information to carry out the attack, and (4) mak-
ing a clean exit without leaving any trace. Figure 1.3 depicts the various stages involved
in a typical social engineering attack.

Figure 1.3: Social Engineering Attack cycle [Mashtalyar et al., 2021]

• Investigation: This initial phase involves gathering information about potential
victims. Attackers research their targets to identify weaknesses and determine the
best methods for manipulation. This can include studying social media profiles,
organizational structures, and employee behaviors to find vulnerabilities that can
be exploited later.

• Hook: In this phase, the attacker establishes contact with the victim, often using
tactics designed to build trust. This could involve impersonating a colleague or
authority figure to create a sense of familiarity and credibility. The goal is to engage
the victim in a way that makes them more susceptible to manipulation.

• Play: Here, the attacker executes the actual manipulation or deception. This could
involve phishing emails, phone calls, or other forms of communication where the
victim is tricked into providing sensitive information or performing actions that
compromise security. The attacker capitalizes on the trust established in the previ-
ous phase to achieve their objectives.

• Exit: After successfully obtaining the desired information or access, the attacker
disengages from the victim. This phase often includes erasing traces of their activi-
ties to avoid detection and ensure they can exploit the information gained without
being caught

11

CHAPTER 1. SOCIAL ENGINEERING

1.5 Psychological manipulation and exploitation

Psychological manipulation and exploitation in social engineering attacks involve the use
of psychological tactics to influence and control individuals, often leading them to take
actions that compromise their security. These attacks exploit human emotions, cognitive
biases, and social norms to achieve malicious goals. They also employ persuasion tech-
niques to distract individuals from thinking critically and analytically by overwhelming
them with disinformation within the normal flow of communication [Ross et al., 2021].

Renowned psychologist Robert Cialdini proposed a well-known taxonomy of six core
principles of persuasion [Resnik, 1986]: Authority, Scarcity, Liking/Similarity, Recipro-
cation, Social Proof, and Commitment/Consistency. Later, he expanded his work by
introducing a seventh principle, Unity, which emphasizes shared identity and group be-
longing [Cialdini Robert, 2021].

• Reciprocity:
This principle is based on the idea that humans feel obligated to return favors or acts
of kindness. When someone does something for us, we feel compelled to reciprocate.
In persuasion, this might involve offering something of value first (like free samples
or helpful information) before making a request.

• Commitment and Consistency:
Once people take a stand or go on record in favor of a position, they prefer to stick
to it. This desire to be (and appear) consistent with our words, beliefs, attitudes,
and deeds is a highly potent weapon of social influence. Marketers often exploit this
by getting people to make small commitments before larger ones.

• Authority:
People tend to obey authority figures, even sometimes when asked to perform ob-
jectionable acts. This principle explains why people are more likely to be persuaded
by individuals perceived as credible, knowledgeable, or authoritative in a particu-
lar field. Titles, clothing (like uniforms), and trappings of authority can increase
perceived authority.

• Liking:
We’re more likely to be influenced by people we like. Cialdini identified several
factors that contribute to liking:Physical attractiveness, Similarity (to ourselves),
Compliments, Contact and cooperation, Conditioning and association.

• Social Proof:
This principle states that people tend to look to the actions of others to determine

12

CHAPTER 1. SOCIAL ENGINEERING

their own, especially in uncertain situations. We assume that if lots of other people
are doing something, it must be the correct thing to do. This is why testimonials,
popularity claims, and "bestseller" labels are so effective.

• Scarcity:
The principle of scarcity states that people want more of what they can have less
of. When something is rare or becoming rare, it’s perceived as more valuable. This
principle is often used in marketing with "limited time offers" or "while supplies
last" messaging.

• Unity:
This principle, added later by Cialdini, suggests that people are more likely to say
yes to those who they see as part of their in-group. It goes beyond simple similarities
to shared identities. This could be based on ethnicity, nationality, family relations,
or shared experiences.

1.6 Types of social engineering attacks

Social engineering tactics used by attackers encompass various methods to deceive in-
dividuals into divulging sensitive information. These tactics include phishing, quid pro
quo, pretexting, baiting, and tailgating, which exploit human psychology and behavior
to manipulate victims [Kamruzzaman et al., 2023]. Figure 1.4 summarizes these types of
social engineering attacks.

• Phishing :
Phishing is the most common type of social engineering attack, where attackers
send fraudulent emails impersonating legitimate organizations or individuals. These
emails often contain malicious links or attachments designed to steal sensitive in-
formation or install malware on the victim’s device. Spear phishing and whaling
are targeted variations of phishing that focus on specific individuals or high-level
executives, respectively [Kamruzzaman et al., 2023].

• Pretexting :
Pretexting involves creating a plausible pretext or scenario to convince the target to
provide the desired information or perform a specific action. Attackers may pose as a
customer, IT support, or other authority figure to gain the target’s trust [Applegate,
2009].

13

CHAPTER 1. SOCIAL ENGINEERING

• Baiting :
Baiting involves leaving physical media, such as USB drives or CDs , containing
malware in a public place, hoping that the target will find and use the device,
infecting their system [Kamruzzaman et al., 2023].

• Quid pro quo :
Quid pro quo attacks involve the attacker offering the target a benefit, service, or
item of value in exchange for the target providing the attacker with access, infor-
mation, or some other desired outcome [Krombholz et al., 2015]. The attacker’s
goal is to exploit the target’s desire for the offered benefit to manipulate them into
compromising security measures or disclosing sensitive data.

• Tailgating :
Tailgating, also known as "piggybacking," occurs when an attacker follows an au-
thorized person through a secure door or gate, gaining unauthorized access to a
restricted area. The attacker may also distract the victim or claim to have forgot-
ten their access card to gain unauthorized entry.

• Impersonation :
Impersonation involves an attacker pretending to be a legitimate person, such as
a co-worker, customer, or authority figure, to gain the target’s trust and obtain
sensitive information [Kamruzzaman et al., 2023].

• Social Media Exploitation :
Attackers may use information publicly available on social media platforms to gather
intelligence about the target, their relationships, and their interests, which can then
be used to craft more convincing social engineering attempts [Edwards et al., 2017].

• Dumpster Diving :
Dumpster diving is the practice of searching through an organization’s trash or
recycling for sensitive documents, printouts, or other information that can be used
to launch social engineering attacks [Applegate, 2009].

• Shoulder Surfing :
Shoulder surfing involves an attacker physically observing the target’s activities,
such as watching them enter passwords or other sensitive information, to gather
information that can be used to gain unauthorized access [Applegate, 2009].

14

CHAPTER 1. SOCIAL ENGINEERING

Figure 1.4: Social engineering attack methods

1.7 Detecting of social engineering

The threat of social engineering (SE) to information security is significant, as it targets
individuals rather than technical systems. In today’s world, SE attacks represent one of
the most prevalent and costly threats to organizations.

Researchers have previously sought to develop methods for the automatic detection
of SE attacks. A comprehensive overview of the state-of-the-art social engineering attack
recognition systems can be found in Tsinganos et al. [Tsinganos et al., 2018]. They
propose a novel approach that incorporates personality recognition, influence recognition,
deception recognition, speech act analysis, and chat history.

Sawa et al. [Sawa et al., 2016] presented a proposal utilizing natural language process-
ing to identify requests seeking private data, as well as instructions or commands that
violate security policies. To identify potential social engineering attacks, the researchers
manually generated lists of verb-noun combinations considered sensitive.

Building upon the investigation by Sawa et al. [Sawa et al., 2016], Peng et al. [Peng
et al., 2018] identified four principal attack vectors relevant to social engineering: urgency
of dialogue, negative or threatening commands or questions, automation cues (such as

15

CHAPTER 1. SOCIAL ENGINEERING

generic greetings), and URL safety checks. To create phishing blacklists, Peng et al.
trained a Naive Bayes classifier using a large collection of recognized phishing emails,
rather than relying on manual methods.

Understanding the linguistic strategies employed in social engineering attacks can
aid in the development of detection methods. Derakhshan et al. [Derakhshan et al.,
2021] found that social engineering attacks frequently involve manipulative speech acts.
Consequently, they developed the Anti-Social Engineering Tool (ASSET), which identifies
and understands the semantic dimensions involved in conversations.

Mouton et al. [Mouton et al., 2015] proposed an enhanced iteration of the Social Engi-
neering Attack Detection Model (SEADM) [Mouton et al., 2014], which was subsequently
validated through the use of published generalized social engineering examples. In another
revision of the SEADM, Mouton et al. [Mouton et al., 2018] formalized social engineering
attacks using a finite state machine.

Expanding on prior research, Bhatia et al. [Bhatia et al., 2020] proposed an extensible
lexicon methodology based on lexical conceptual structure to improve the detection of
social engineering attacks. Their framework aimed to encompass the extensive linguistic
knowledge required for detecting and preventing modern manipulation techniques.

Lansley et al. [Merton Lansley and Polatidis, 2020] proposed using artificial neural net-
works, specifically multilayer perceptron classifiers (MLP), along with ensemble learning
techniques, to identify instances of social engineering attacks that could occur both online
and offline. Their method achieved a high accuracy rate of 92.6%.

In [Lopez and Camargo, 2022], the authors utilized Natural Language Processing
(NLP) to extract features from dialog text, such as URL counts, spell checks, blacklist
counts, and others. These features were used to train machine learning algorithms (Neural
Network, Random Forest, and SVM) for classifying social engineering attacks. The paper
reports that these classification algorithms achieved an accuracy exceeding 80%.

The authors in [Ozen et al., 2024] presented a comprehensive framework focusing
on the visual traits of SE attack pages, which can differ from legitimate sites. The
framework combines a custom security crawler, named SECrawler, designed to scout the
web for examples of in-the-wild social engineering attacks. SENet, a deep learning-based
image classifier, analyzes the visual traits of web pages associated with social engineering
attacks, trained on data gathered by SECrawler. They also proposed SEGuard, a proof-
of-concept browser extension that integrates SENet into web browsers. Through extensive
evaluation, SENet reported a detection rate of up to 99.6%, with only a 1% false positive
rate.

In [Tsinganos et al., 2022a], the authors introduced CSE-PersistenceBERT, a natural
language processing model for paraphrase detection, focusing on identifying persistence as

16

CHAPTER 1. SOCIAL ENGINEERING

a key behavior of social engineering attackers in chat-based dialogues. For this purpose,
they developed the specialized CSE-Persistence corpus.

Building on their earlier work, the same authors, in [Tsinganos et al., 2023], proposed
a set of dialogue acts specific to chat-based social engineering (CSE) attacks, termed
SG-CSE DAs. These acts are designed to reveal the attacker’s intent and the type of
information being targeted in conversations. In addition, they introduced a new annotated
dataset, the SG-CSE Corpus, and developed SG-CSE BERT, a BERT-based model for
zero-shot dialogue-state tracking in the context of CSE attacks.

Further expanding their research, the authors in [Tsinganos et al., 2022b] trained a
convolutional neural network (CNN) on the CSE Corpus, a dataset annotated to recog-
nize Cialdini’s persuasion principles. The resulting classifier, named CSE-PUC, predicts
whether a sentence carries a persuasive intent by generating a probability distribution over
sentence classes, providing insight into how persuasion is used during social engineering
attacks.

In [Lee et al., 2020], the authors present a context-aware approach to improve the
detection of sophisticated phishing attempts. By fine-tuning a pre-trained BERT model
to capture the syntactic and semantic nuances of natural language, their proposed model
achieved an accuracy of 87% and demonstrated resilience against adversarial attacks,
where attackers attempt to evade detection by replacing keywords with synonyms.

Similarly, [Lan, 2021] introduces a social engineering detection model based on a deep
neural network, designed to identify deception and phishing attempts through text anal-
ysis. In the first stage, chat history is processed using natural language techniques, with
context and semantics captured by a bi-LSTM model. The model further integrates user
and chat content characteristics as features for classification, utilizing a ResNet architec-
ture for improved accuracy.

In [Dalton et al., 2020], the authors propose a system that protects against CSE attacks
by deploying a pipeline of NLP components, including Named Entity Recognition (NER
), dialogue management, stylometry, and framing questions. This system uses an active
defense strategy to recognize the social engineer’s intentions, aiming to waste their time
and resources.

Similarly, [Saleilles and Aïmeur, 2021] describes a different approach, introducing a
chatbot designed to educate users and raise awareness of social engineering attacks. The
chatbot first assesses users’ knowledge of cybersecurity concepts through a quiz, then
recommends specific training paths to address knowledge gaps. Throughout the training,
the chatbot simulates malicious questioning techniques to extract sensitive information,
enhancing users’ awareness of potential threats.

17

CHAPTER 1. SOCIAL ENGINEERING

1.8 Synthesis

Social engineering (SE) is a critical threat to information security, exploiting human
vulnerabilities rather than technical systems. With SE attacks becoming one of the most
prevalent and costly threats to organizations, researchers have developed various methods
to detect and mitigate them. Early research focused primarily on rule-based methods.
Sawa et al. [Sawa et al., 2016] used NLP techniques to manually identify sensitive verb-
noun combinations, a method that struggled to adapt to evolving attacks and required
significant manual effort.

As SE tactics became more sophisticated, researchers turned to machine learning
approaches. Peng et al. [Peng et al., 2018] advanced the field by employing a Naive Bayes
classifier to detect phishing through four attack vectors, such as urgency and URL safety
checks. While this improved automation, its reliance on predefined training datasets
posed limitations in detecting new or unseen phishing attempts.

Researchers then explored personality and behavioral recognition to enhance detection.
Tsinganos et al. [Tsinganos et al., 2018] proposed a framework that incorporated multiple
elements like deception detection and speech act analysis. While this approach provided
a broader understanding of social engineering attempts, the complexity of integrating
multiple detection methods made real-time analysis challenging.

More advanced detection methods incorporated deep learning. Lan [Lan, 2021] intro-
duced a bi-LSTM and ResNet model to analyze both user characteristics and chat history,
improving the recognition of deception and phishing attempts. Similarly, Lee et al. [Lee
et al., 2020] leveraged a BERT model to capture syntactic and semantic features, offering
resilience against adversarial attacks where keywords were replaced with synonyms. How-
ever, these approaches often required significant computational power and large datasets
for effective training.

A different line of research aimed at active defense mechanisms. Dalton et al. [Dalton
et al., 2020] proposed an active defense pipeline that used NLP components like stylometry
and dialogue engineering to waste the attacker’s time, while Saleilles and Aïmeur [Saleilles
and Aïmeur, 2021] created a chatbot to educate users by simulating attacks, raising aware-
ness of SE threats. Though educational, such approaches depend on user engagement and
are limited by the effectiveness of simulated interactions.

While significant progress has been made in SE detection, key challenges remain.
Many methods, particularly machine learning models, are constrained by their reliance
on existing datasets, making them vulnerable to novel attacks. Additionally, the high
computational cost of deep learning models hampers their real-time applicability. Fu-
ture research must address these limitations by improving adaptability, scalability, and

18

CHAPTER 1. SOCIAL ENGINEERING

efficiency across diverse SE scenarios.

1.9 Conclusion

This chapter has provided a comprehensive overview of social engineering, exploring its
various facets and implications in the modern digital landscape. Among the different types
of social engineering attacks, phishing stands out as particularly prevalent and damaging.
Phishing attacks are a specific subset that demands close attention due to their frequency,
evolving sophistication, and significant impact on both individuals and organizations.

19

Chapter 2

Phishing attack

2.1 Introduction

Phishing has become the weapon of choice for cybercriminals, dominating the cyber threat
landscape due to its effectiveness and accessibility. Unlike attacks that exploit technical
vulnerabilities, phishing targets the human element often the weakest link in cybersecu-
rity defenses. This approach allows attackers with limited technical expertise to execute
potentially devastating cyberattacks.

At its core, phishing is a form of social engineering that manipulates victims into
divulging sensitive information or taking actions that compromise their security, such as
harvesting login credentials, deploying malware, or gaining unauthorized access to sys-
tems. Attackers use various communication channels, including email (the most common
vector), social media platforms, SMS messages (smishing), and voice calls (vishing).

Phishing techniques continue to evolve, incorporating sophisticated social engineering
tactics and taking advantage of current events or trends, making the threat landscape
increasingly complex. This chapter looks at the complexities of phishing attacks, exploring
their different forms and the cutting-edge strategies used to detect these pervasive threats.

2.2 Phishing Attacks: An Overview

Phishing attacks are deceptive, fraudulent schemes designed to illegally obtain sensitive
information or gain unauthorized access to personal, financial, or corporate data. These
attacks combine social engineering techniques with technical deception, impersonating
trusted entities via emails, websites, and messages. Their aim is to deceive individuals
into unintentionally sharing confidential information or interacting with malicious links,
ultimately compromising security. [Alkhalil et al., 2021,Gupta et al., 2016]

20

CHAPTER 2. PHISHING ATTACK

Attackers craft convincing imitations of legitimate sources to lure victims into believ-
ing the authenticity of the communication. The objectives may include identity theft,
financial exploitation through stolen credentials, or gaining control over user information
and systems.

Phishing capitalizes on human trust in electronic communication, making it a signifi-
cant security threat. As a form of social engineering, it exploits psychological manipulation
to bypass standard security measures.

2.3 Anatomy of a Phishing Attack

Building on the framework of the social engineering attack cycle, phishing attacks adhere
to a similar structure, with nuances specifically designed to deceive victims through digital
communication. The typical phishing attack follows these stages, aligning closely with
the broader social engineering cycle:

• Investigation: Attackers identify targets by gathering information such as email
addresses and social media details. This research helps craft personalized messages
that increase the likelihood of success.

• Hook: Phishers send carefully crafted deceptive emails or messages, often imper-
sonating trusted entities like banks or colleagues. The objective is to create urgency
or fear, prompting the victim to act quickly without scrutinizing the message. This
message usually contains one or more of the following: Malicious URLs leading to
fake websites that mimic trusted entities. Links to download malware disguised as
important documents or software updates. Requests for sensitive information under
false pretenses.

• Play: Victims are tricked into clicking malicious links or downloading attachments
that capture sensitive information or install malware. This phase exploits the trust
and urgency established in the hook phase.

• Exit: Once the attack succeeds, phishers withdraw, often covering their tracks
by using techniques like spoofing or anonymizing their digital footprint to avoid
detection.

2.4 Phishing Attack Types

Phishing attacks manifest in various forms, each designed to exploit specific vulnerabilities
and trick individuals into revealing sensitive information. Some common types of phishing

21

CHAPTER 2. PHISHING ATTACK

attacks include:

• Email Phishing :
This is the most prevalent form of phishing, where attackers send fraudulent emails
that appear to originate from legitimate sources such as banks, online services, or
colleagues. These emails often contain links to malicious websites or attachments
that install malware on the recipient’s device [Gupta et al., 2016].

• Spear Phishing :
Unlike regular phishing, spear phishing targets specific individuals or organizations.
Attackers conduct research on their targets to craft personalized and convincing
emails. These emails often use information relevant to the recipient to increase the
likelihood of a successful attack [Seth and Damle, 2022].

• Whaling :
This is a type of spear phishing that targets high-profile individuals such as execu-
tives, government officials, or other important figures within an organization. Whal-
ing attacks are typically highly personalized and may involve elaborate schemes to
deceive the target [Alkhalil et al., 2021,P.M et al., 2023].

• Clone Phishing :
In this attack, a legitimate email that has previously been sent to the victim is
cloned, but with malicious links or attachments. The attacker may claim that this
is a resend of an original email or an updated version [Gupta et al., 2016,Alkhalil
et al., 2021].

• Voice Phishing (Vishing) :
Vishing involves phone calls where attackers impersonate legitimate entities, such
as banks or government agencies, to extract sensitive information from the victim.
The attacker might create a sense of urgency or fear to persuade the victim to
comply [Bhuvana et al., 2021].

• SMS Phishing (Smishing) :
Attackers send fraudulent SMS messages that appear to come from reputable sources.
These messages often contain links to malicious websites or instructions to call a
number that leads to further social engineering attacks [P.M et al., 2023].

Figure 2.1 summarizes these types of social engineering attacks.

22

CHAPTER 2. PHISHING ATTACK

Figure 2.1: Phishing attacks type

2.5 Phishing attack impact and case study

Phishing attacks pose one of the most significant threats in today’s digital landscape,
affecting individuals, organizations, and even national security.

For individuals, the impact of phishing is profound, often resulting in identity theft,
financial loss, and emotional distress. Victims may lose access to sensitive accounts—such
as bank accounts or social media profiles—leading to unauthorized transactions and mis-
use of private data. The psychological effects can be severe, with individuals experiencing
stress and anxiety as they struggle to regain control of their compromised information.

For businesses, the consequences of phishing attacks can be even more severe, including
direct financial losses, regulatory penalties, and reputational damage. Sensitive corporate
data, such as trade secrets or client information, may be compromised, exacerbating
the fallout. Organizations also face operational disruptions, particularly when phishing
schemes deliver ransomware, forcing system shutdowns and extensive recovery efforts.

A notable case illustrating the impact of phishing is the Twitter breach in July
2020 [Tidy, 2020]. In this incident, a group of hackers executed a sophisticated phishing
scheme by creating a fake website that mimicked Twitter’s internal VPN provider. They
impersonated helpdesk staff, deceiving multiple employees into entering their credentials
on this fraudulent site. As a result, the attackers gained access to several high-profile

23

CHAPTER 2. PHISHING ATTACK

Twitter accounts, including those of Barack Obama and Elon Musk. They used these
accounts to solicit Bitcoin donations from followers under the pretense of doubling their
contributions. Ultimately, the hackers successfully collected approximately 12.86 BTC
(around $110,000 at the time) before Twitter intervened [Tidy, 2020].

2.6 Phishing Attacks Detection

This section reviews the existing research on phishing attack detection, categorizing the
work into three primary areas: phishing email detection based on content, phishing de-
tection through URL analysis, and SMS-based phishing (smishing) detection.

2.6.1 Email content

Phishing email detection based on content involves analyzing the text, headers, and other
elements within the email to identify malicious intent, often using techniques like NLP
alongside machine learning or deep learning models.

This category can be further divided into three subcategories based on the approach
used: machine learning, deep learning, and other heuristic or rule-based methods.

2.6.1.1 Machine Learning

Egozi and Verma [Egozi and Verma, 2018] propose a linear kernel SVM that utilizes
text-based features. Bountakas et al. [Bountakas et al., 2021] compare a combined model
of TF-IDF and Word2Vec with various machine learning classifiers, including Random
Forest, Decision Tree, Logistic Regression, Gradient Boosting Trees, and Naive Bayes.
Additionally, Bountakas and Xenakis [Bountakas and Xenakis, 2023] developed an en-
semble learning model that combines both textual and content features.

Kumar et al. [Kumar et al., 2020] proposed a hybrid approach that combines SVM,
NLP, and probabilistic neural networks for email phishing detection. In their method, they
extract distinctive features from both text and images within the emails. Feature selection
is then performed on these extracted features to enhance the model’s performance. To
classify the emails as legitimate or phishing, they utilize a combination of SVM and
probabilistic neural networks, aiming to improve detection accuracy and robustness.

2.6.1.2 Deep Learning

The authors [Fang et al., 2019] introduce a model named THEMIS for phishing email
detection, building on Lai et al.’s [Lai et al., 2015] RCNN-based text classification frame-

24

CHAPTER 2. PHISHING ATTACK

work. The model preprocesses data to clean up extra spaces and digital gibberish, then
uses word2vec to create sequences at both word and character levels for the email header
and body. These sequences are processed in parallel using Bi-LSTM, and the resulting
header and body representations are combined. An attention mechanism then generates
the final email representation, which is processed through a dropout layer to prevent over-
fitting and a sigmoid function for binary classification. Experiments using the IWSPA-AP
2018 dataset show that THEMIS outperforms other models like CNN and LSTM, achiev-
ing higher accuracy (99.848%) and a lower false positive rate (0.0043%), even on the
unbalanced dataset that reflects real-world conditions.

The authors [Nguyen et al., 2018] present a two-layer architecture for detecting phish-
ing emails using datasets from IWSPA-AP 2018, analyzing emails at both word and
sentence levels. Their model first processes words into embedding vectors and applies a
Bi-LSTM to capture contextual information, followed by an attention module to generate
sentence representations. This process is repeated at the sentence level to create a fi-
nal email body representation, which estimates the phishing probability. For emails with
headers, they integrate body and header representations using similar architectures. They
enhance their model, H-LSTM, with supervised attention (H-LSTM+supervised) to pri-
oritize phishing-related words, demonstrating superior performance over a baseline SVM.
Including headers improves detection results, highlighting their significance in identifying
phishing emails.

The authors [Vinayakumar et al., 2018] introduce the DeepAnti-PhishNet model for
detecting phishing emails across various languages. Their preprocessing involves convert-
ing text to lowercase, removing punctuation and special characters, and assigning unique
identifiers to unknown words. They utilize word2vec and a neural bag of n-grams in the
embedding layer to capture syntactic and semantic features of the emails. These embed-
dings are fed into CNN/RNN/LSTM and MLP networks to extract features, followed by
a fully connected layer with a sigmoid activation function for classification. The training
results using 10-fold cross-validation were lower than test results due to the small and
unbalanced training dataset from IWSPA-AP 2018, causing model bias. The best model
for detecting phishing emails without headers employs LSTM with word2vec, while for
emails with headers, the MLP network with a neural bag of n-grams is used.

The authors [Saha et al., 2020] approach phishing detection as a classification prob-
lem with three categories: phishing websites, legitimate websites, and suspicious websites.
Their model comprises three phases: data acquisition, preprocessing, and classification.
Data is collected from Kaggle, then cleaned, formatted, and analyzed during prepro-
cessing. The classification phase employs a MLP classifier, with 10-fold cross-validation
yielding a 98% accuracy in training and 93% in testing. The confusion matrix indicates

25

CHAPTER 2. PHISHING ATTACK

that detection is more accurate for legitimate and phishing websites than for suspicious
ones. The authors plan to enhance detection of suspicious websites by increasing the
model’s complexity and incorporating a backpropagation neural network.

The authors [Barathi Ganesh et al., 2018] utilized fastText for word embedding, which
captures word representations and their predicted classes. They trained two models using
datasets from the IWSPA-AP 2018: one model handled emails with and without headers
separately, while the other combined both types into a single model. Results indicated
that the independent model for separate email types outperformed the combined model.
They concluded that fastText’s ability to provide semantic representation with low com-
putational cost and reliable performance makes it effective for real-world data.

The authors [Abutair et al., 2019] propose a method for phishing detection that in-
volves two main steps: data preprocessing and classification. In the preprocessing step,
a dataset is generated using dialogue preprocessing, incorporating features like link score
(malicious link detection), spelling score (spelling quality), and intent score (intent de-
tection using a blacklist), each scored from 0 to 1. For classification, an artificial neu-
ral network (MLP) is used to determine if the input indicates an attack (high value).
Additionally, they employ an ensemble learning approach with a Gaussian Naive Bayes
classifier, Decision Tree, and Random Forest using soft voting as an alternative to the
MLP classifier. Experimental results show that both MLP and ensemble learning achieve
comparable accuracy, but the ensemble method with soft voting outperforms MLP in
terms of f1-score and AUC.

2.6.1.3 Others

In [Giorgi et al., 2020] analyses sender-receiver interactions in spearphishing emails in
order to facilitate end-to-end authorship verification. Their study proposes two scenarios
for email authorship verification: sender verification and end-to-end verification. They
propose a binary classification method for authorship verification that uses both standard
machine learning classifiers and deep learning models. A dataset of approximately 150
emails from Enron employees was used for the experiments. The dataset contains a variety
of lengths, with most of the emails being long, followed by medium-length messages, and
a small number of short messages. The results indicate that end-to-end email verification
provides greater accuracy compared to traditional sender verification methods.

The authors of [Seifollahi et al., 2017] present an innovative approach to authorship
analysis of phishing emails. They combine term frequencies (TFs) with a path-similarity
distance (PSD) measure. An algorithm is developed to detect clusters of similar emails
in phishing datasets, combining clustering and feature selection techniques. In addition

26

CHAPTER 2. PHISHING ATTACK

to the well-known K-means algorithm, three optimization-based clustering algorithms are
used in the study: DCClust, INCA, and MS-MGKM.

2.6.1.4 Synthesis

Phishing email is a serious problem that can affect anyone, with the goal of stealing
sensitive information or gaining access to the victim’s internal network. As a result, there
was a lot of research in this area, but most of it focused on phishing URLs rather than
email text. The most popular approach is the blacklist, but it has some drawbacks, such
as its inability to detect new phishing URLs and the malicious URL’s constant change,
which Sheng et al. [Sheng et al., 2009] investigated.

With the increasing use of machine learning in many domains, researchers have at-
tempted to apply it in phishing detection, where there is a lot of work, using techniques
such as K-Nearest Neighbor (KNN) [Zamir et al., 2020], Naive Bayes (NB) [Alqahtani
et al., 2020], and SVM [Figueroa et al., 2017]. However, this method necessitates manual
engineering features, which necessitate domain expertise and manual labor.

These issues, as well as the rapid development of deep learning, is the cause that moves
the researcher to use this approach. Fang et al. [Fang et al., 2019] propose a new repre-
sentation employing a fourth different level header and body, where each is represented
in character and word level, as well as an attention mechanism with an improved RCNN.
Nguyen et al. [Nguyen et al., 2018] also propose hierarchical LSTM with a supervised
attention mechanism for the representation of the email at the word and sentence levels.
Douz et al. [Douzi et al., 2017] proposed a new method for detecting phishing email text
and phishing URLs using simple voting. Barathi Ganesh et al. [Barathi Ganesh et al.,
2018], on the other hand, propose using a new word embedding (fastText) to obtain the
word representation as well as it’s class. Table 2.1 summarises the related work.

27

CHAPTER 2. PHISHING ATTACK

Tableau 2.1: Summary of Related Work in Phishing Detection [Remmide et al., 2024c]

Authors Classification approach Classifier Feature extraction
Alam et al. Machine learning Random Forest PCA
Egozi and Verma Machine learning Linear-SVM Static features
Bountakas et al. Machine learning Random Forest TF-IDF and Word2Vec
Bountakas and Xenakis Machine learning Ensemble Learning hybrid features with word2vec
Barathi Ganesh et al. Deep learning fastText fastText
Nguyen et al. Deep learning LSTM Hierarchical LSTMs
Halgas et al. Deep learning RNN Tokenized text
Alhogail and Alsabih Deep learning GCN TF-IDF
Douz et al. Deep learning Linear regression Autoencoder
Fang et al. Deep learning RCNN Word2vec
Lee et al. Deep learning BERT BERT
Li et al. Deep learning LSTM custom feature

2.6.2 URL

Phishing detection based on URLs focuses on analyzing links embedded in emails or
messages to determine their legitimacy. This can involve a range of techniques, including
blacklists, heuristic analysis, and machine learning classifiers to identify suspicious or
malicious URLs.

We have further divided phishing detection based on URLs into two subcategories
according to the approach used: machine learning and deep learning.

2.6.2.1 Machine learning

[Gitelman, 2014] proposed an SVM-based technique for detecting phishing URLs. The
method utilizes features such as the structure of the URL, the presence of specific words,
and brand names within the URI.

[Hai and Hwang, 2018] introduced a machine learning approach for URL classification,
leveraging natural language processing features with word vector representation and n-
gram models as key features. They used features extracted from n-gram models, word
vector representations, and other lexical properties to build a classification model using
the SVM algorithm. The model utilized 100 features from the word2vec representation.
Among the 150,397 URLs analyzed, 107,615 were benign and 42,782 were malicious. The
SVM achieved an accuracy rate of 97.1% and an F1 score of 0.95, with a classification

28

CHAPTER 2. PHISHING ATTACK

time of just 0.01 seconds.
[Sahingoz et al., 2019] developed a machine learning-based technique for phishing URL

detection, employing seven different classification algorithms and features derived from
NLP. Their experimental results demonstrated that the Random Forest (RF) algorithm,
using NLP-based features, achieved a high accuracy of 97.98% in detecting phishing URLs.

2.6.2.2 Deep learning

[Wei et al., 2020] proposed a method for identifying phishing websites using a deep neu-
ral network with convolutional layers that analyzes the text of the URL address. They
encoded URLs as one-shot character-level vectors and used these as inputs to a convo-
lutional neural network. Their approach demonstrated that a dictionary-free analysis of
URLs can achieve nearly 100% accuracy in detecting phishing sites, offering effective zero-
day defense. The trained phishing detector is compact and efficient, making it suitable
for deployment on mobile devices.

[Rasymas and Dovydaitis, 2020] proposed a method for detecting phishing sites using
only their URLs. They employed a deep neural network architecture to classify phish-
ing and benign URLs, achieving an accuracy of 94.4%. Various feature combinations
were evaluated, including lexical features, character-level embeddings, word-level embed-
dings, and combinations thereof. The highest accuracy was attained using a model that
combined character and word embeddings.

[Huang et al., 2019] introduced PhishingNet, a deep learning framework designed to
effectively detect phishing URLs. PhishingNet combines a character-level convolutional
neural network module with an attention-based hierarchical recurrent neural network
(RNN) module. These parallel modules extract comprehensive URL feature representa-
tions. The framework achieved a precision of 0.98 and an accuracy of 0.97.

[Le et al., 2018] developed URLNet, an end-to-end deep learning method for detect-
ing phishing URLs. They applied a convolutional neural network to both characters and
words within the URL string, training the model through a mutually optimized embed-
ding process. Their results demonstrated that URLNet outperformed existing models in
phishing URL detection. However, the model may be less effective when dealing with
phishing sites that use very short URLs.

29

CHAPTER 2. PHISHING ATTACK

Tableau 2.2: A comparison of related phishing URL detection work

Research Technique Method Dataset Results
[Bahnsen et al.,

2017]
Deep learning LSTM 1 million URLs 98.70% precision

[Hai and Hwang,
2018]

Machine learning SVM
150 397 URLs
(107 615 legitimes,
42 782 phishings)

95% precision

[Abutair et al.,
2019]

Machine learning CRB-PDS
D1 : 500 URLs
D2 : 750 URLs

95% precision

[Sahingoz et al.,
2019]

Machine learning KNN 11 055 URLs 97.98% precision

[Wang et al., 2019] Deep learning PDRCNN
500 000 URLs
from PhishStack

97% precision

[Rasymas and
Dovydaitis, 2020]

Deep learning
387 772 URLs
(153 141 phishings,
234 631 legitimes)

94.4% precision

[Wei et al., 2020] Deep learning CNN 21 208 URLs 99.98% precision

2.6.2.3 Synthesis

The detection of phishing URLs has seen significant advancements through the applica-
tion of both machine learning and deep learning techniques. In the realm of machine
learning, researchers have explored various approaches to enhance detection accuracy and
efficiency. Notably, Sahoo et al. [Sahoo et al., 2017] proposed an SVM-based technique
that leverages the URL structure, specific words, and brand names within the URI as key
features. Expanding on this, Hai et al. [Hai and Hwang, 2018] introduced a more sophis-
ticated approach using natural language processing features, incorporating word vector
representations and n-gram models. Their SVM-based model achieved an impressive ac-
curacy of 97.1% and an F1 score of 0.95, demonstrating the potential of combining lexical
properties with advanced feature extraction techniques. Sahingoz et al. [Sahingoz et al.,
2019] further advanced the field by employing seven different classification algorithms,
with their Random Forest model achieving a high accuracy of 97.98% using NLP-based
features.

The application of deep learning techniques has pushed the boundaries of phishing
URL detection even further. Wei et al. [Wei et al., 2020] proposed a novel approach using a

30

CHAPTER 2. PHISHING ATTACK

deep neural network with convolutional layers to analyze URL text, achieving nearly 100%
accuracy and offering effective zero-day defense. This method’s efficiency makes it suitable
for mobile device deployment. Rasymas et al. [Rasymas and Dovydaitis, 2020] explored
various feature combinations, including lexical features and both character-level and word-
level embeddings, achieving 94.4% accuracy with a model combining character and word
embeddings. Huang et al. [Huang et al., 2019] introduced PhishingNet, a framework that
combines a character-level CNN with an attention-based hierarchical RNN, achieving high
precision (0.98) and accuracy (0.97). Le et al. [Le et al., 2018] developed URLNet, an
end-to-end deep learning method applying CNNs to both characters and words within the
URL string, which outperformed existing models but showed limitations with very short
URLs. These deep learning approaches demonstrate the potential for highly accurate,
efficient, and adaptable phishing URL detection systems, capable of capturing complex
patterns and relationships within URL structures.

2.6.3 Smishing

A rule-based strategy to recognize smishing communications has been proposed by [Jain
and Gupta, 2018]. To separate smishing messages from authentic messages, they set up
nine rules. Furthermore, these rules have been taught using various categorization meth-
ods, including PRISM, RIPPER and the Decision Tree. In the performance assessment
of the approach, more than 99% of actual negative messages are negative.

[Mishra and Soni, 2019] proposed a content-based method to identify smishing mes-
sages in another work that was suggested. The most common words used in smishing
SMS are determined using a machine learning system. In addition, this template eval-
uates the appearance of the login page and the download of the.apk file to check if the
URL is malicious.

A machine learning-based algorithm to identify smishing messages was proposed by
[Balim and Gunal, 2019]. The model classifies communications as valid or as smishing
messages using a combination of feature engineering and machine learning algorithms.
During the characteristics engineering process, the relevant characteristics of the messages
are extracted, such as the existence of specific words or phrases. The model uses decision
trees, random forests and support vector machines as machine learning algorithms. The
model was trained and tested on a set of authentic message data and smishing messages.

[Sonowal, 2020] used four correlation techniques to rank the characteristics in the most
recent study effort for smishing detection, including Pearson rank corrélation, Spearman
rank correllation, Kendall rank correlation, and Point biserial rank correlation. The op-
timal set of characteristics is finally chosen to identify smishing with a 98.40

31

CHAPTER 2. PHISHING ATTACK

A two-stage smishing detection system – domain verification and SMS classification
– has been successfully created and tested by [Mishra and Soni, 2021]. To assess the
maliciousness of the SMS, each phase focused on a different part of the message. They
are mainly focused on reviewing the legitimacy of the URL in the SMS while minimizing
the complexity of the system. The Backpropagation approach was used to develop the
system, and the resulting accuracy was 97.93

[Boukari et al., 2021] introduced a machine-learning-based technique for smishing
fraud detection. Based on the results of the tool, they found that Naive Bayes is a better
classifier when the false-negative score is taken into account, even though Random Forest
produces better measurement measurements. the resulting accuracy was 90.59% with the
Naive bayes algorithm, and 98.15% with Random forest.

A smishing detection technique that combines a text classifier and an URL classifier
has been proposed by [Jain et al., 2022a].The message was analyzed by the template,
and if an URL was found, it was sent to a URL classifier. Voting classifiers are used
in the proposed method to determine whether a message is smishing or not. Voting
classifiers combine the results of different models. The proposed approach produces a
98.94% accuracy rate.

[Mambina et al., 2022] proposed a machine learning-based methodology to detect
Smishing. The best model, with an accuracy of 99.86%, is a hybrid model using Extratree
characteristic selection and Random Forest using TFIDF vectorization (Term Frequency
Inverse Document Frequency). The results are compared to a Naive Bayes multinomial
model as a reference. A database of 32259 messages in swahili is used to evaluate perfor-
mance.

[Zhou et al., 2015] used a C-LSTM model for classifying feelings and questions from
a specified database set. CNN and RNN are merged. RNN is used to create sentences
from the sentences recovered once the phrases are extracted using CNN.

[Roy et al., 2020] used a deep learning model based on CNN and LSTM for classifying
spam communications in the research study. Their methodology is put into action in three
stages: first, a word matrix is produced, then characteristics are identified, and finally,
classification is carried out in the third step. The accuracy is 99.44%.

[Shravasti and Chavan,] proposed a model for smishing detection through deep learn-
ing. The proposed approach is tested using several classification models. The LSTM,
KNeighbors, Stochastic Gradient Descent (SGB), Decision Tree, Naive Bayes and Ran-
dom Forest Classifiers are examples of classification models used. The LSTM gives better
results than other classifiers. The accuracy of the model is 95.11%.

[Mishra and Soni, 2022] used a neural network to create an effective smishing detection
system. In addition, using a neural network, the seven main features of smishing SMS

32

CHAPTER 2. PHISHING ATTACK

are extracted. The accuracy obtained is compared to the results of the classification of
machine learning algorithms. With a difference of 1.11%, the comparison shows that
neural networks produced more accurate results.

A heuristic-based technique to identify smishing messages has been proposed by [Jain
and Gupta, 2019]. The authors used classification methods to rank messages based on
the 10 characteristics they had chosen in smishing messages. The authors tested their
strategy using a set of manually edited data. The results The accuracy ratio was 98.74%.

[Sheikhi et al., 2020] used mediated neural networks with a hidden layer for Create
a precise template for recognizing SMS spam messages based on content-based criteria.
The evaluation results indicate that the extracted characteristics have a strong association
with the message class and that the medium neural network technique is able to accurately
classify the messages class with a high F measurement rate. The results indicate a 98.8%
accuracy rate.

[Goel and Jain, 2018] have proposed to use a technique called "smishing classifier"
for Listing of smishing messages. The three phases of this methodology are SMS analysis,
SMS standardization and SMS classification phase. After studying the URL contained
in the message during the SMS analysis phase, the message is dealt with in more detail.
Lastly, the SMS classification step allows us to classify SMS using the Naive Bayes classi-
fication algorithm. The SMS standardization phase normalizes, or converts the text into
root, the text present in the SMS. The proposed frame searches for the sender’s URL and
mobile phone number in the blacklists.

In their study, the authors [Chen et al., 2023] propose the use of a machine learning
model for the purpose of analysing the contents of messages and identifying URLs associ-
ated with phishing activities. In order to tackle the problem at hand, the researchers gath-
ered real text messages from mobile phones, preserving their anonymity, and proceeded
to manually categorise them. Subsequently, they employed machine learning algorithms
such as SVM, MultinomialNB, RF, and Logistic Regression to effectively detect fraud.
The approach proposed by the authors achieved an F1 score of 94%.

The authors of the study [Karhani et al., 2023] propose a machine learning model that
combines domain-related features with Decision Tree and NLP methods to accurately
detect phishing and smishing attacks. By training the model on smishing messages, from
TELUS Corporation and two public dataset [The National University of Singapore SMS
Corpus:, 2023, Shahrivari et al., 2020] they were able to achieve an accuracy of 99.40%
and an F1 score exceeding 99%.

[Mishra and Soni, 2022] compared machine learning algorithms and neural networks.
Their comparison revealed that neural networks exhibited superior accuracy, with a dif-
ference of 1.11%.

33

CHAPTER 2. PHISHING ATTACK

[Boukari et al., 2021] concluded that Naive Bayes is a better classifier when considering
the false negatives score, even though Random Forest produces better overall results.

Table 7.2 and Figure 2.2 provide a comprehensive summary of the related works ex-
amined in this study on Smishing detection. As it can be seen the most widely used
technique for detecting SMS phishing is machine learning, while deep learning is rarely
employed.

Figure 2.2: Overview of smishing detection methodologies

Tableau 2.3: A comparison of related works on SMS phishing detection [Remmide et al., 2024d]

Research Technique Method Dataset Results
[Zhou

et al.,
2015]

Deep Learning CNN and RNN 11855 SMS 87.8%

[Roy
et al.,
2020]

Deep Learning CNN and LSTM 5574 SMS 99.4%

Continued on next page

34

CHAPTER 2. PHISHING ATTACK

Research Technique Method Dataset Results
[Shravasti

and Cha-
van,]

Deep Learning LSTM, KNeighbors, SGD, Deci-
sion Tree, Naive Bayes, Random
Forest Classifier

5572 SMS 95.11%

[Mishra
and Soni,
2022]

Neural Network ANN 5858 SMS 97.91%

[Jain and
Gupta,
2018]

Machine Learning PRISM , RIPPER, and Decision
Tree

5574 SMS 99%

[Mishra
and Soni,
2019]

Machine Learning Naive Bayes Classifier, Random
Forest Classifier, Decision Tree
Classifier

5572 SMS 96.29%

[Balim
and Gunal,
2019]

Machine Learning Decision Trees, Random Forests,
Support Vector Machines

/ SMS /

[Sonowal,
2020]

Machine Learning Random Forest, Decision Tree
Classifier, AdaBoost Classifier,
Support Vector Machine

5578 SMS 98.40%

[Liu et al.,
2021]

Machine Learning Logistic Regression 31.97 million
SMS

96.16%

[Mishra
and Soni,
2021]

Machine Learning Backpropagation Algorithm,
Random Forest, Naive Bayes,
Decision Tree

5858 SMS 97.93%

[Boukari
et al.,
2021]

Machine Learning Naive Bayes, Random Forest 5000 SMS 98.15%

[Jain
et al.,
2022a]

Machine Learning XGB , GBDT , RF, BgC , KNN,
ETC , DT, LR, AdaBoost, BNB,
MNB , SVC , and GNB

5179 SMS,
507195 URL

98.94%

[Chen
et al.,
2023]

Machine Learning SVM, MultinomialNB, RF, and
Logistic Regression

557 SMS F1 score of
94%

Continued on next page

35

CHAPTER 2. PHISHING ATTACK

Research Technique Method Dataset Results
[Karhani

et al.,
2023]

Machine Learning hybrid between DT and SVC 143,623 SMS 99.40%

[Mambina
et al.,
2022]

Machine Learning Random Forest, Naive Bayes,
SVM, KNN, Adaboost, Logistic
Regression, Extra Tree Classifier

32259 SMS 99.86%

[Goel and
Jain, 2018]

Blacklist Naive Bayesian Classifier,
Bayesian Classifier

/ /

[Jain and
Gupta,
2019]

Heuristic SVM, Logistic Regression, Neural
Network, Naive Bayes, Random
Forest

5574 SMS 98.74%

[Sheikhi
et al.,
2020]

Average Neural
Network

/ 5574 SMS 98.8%

2.6.3.1 Synthesis

The literature on smishing (SMS phishing) detection reveals a diverse array of approaches,
predominantly leveraging machine learning techniques, with an emerging interest in deep
learning methodologies. Early strategies employed rule-based systems, such as the work
by Jain et al. [Jain and Gupta, 2018], which relied on predefined rules combined with clas-
sification algorithms. However, the field has rapidly evolved towards more sophisticated
machine learning approaches. These include feature engineering techniques, as demon-
strated by Balim et al. [Balim and Gunal, 2019] and Sonowal et al. [Sonowal, 2020], and
the application of classical algorithms such as Naive Bayes, Random Forest, and Support
Vector Machines. Some researchers, like Jain et al. [Jain et al., 2022a], have proposed en-
semble methods using voting classifiers to improve performance. Content-based analysis,
focusing on common words in smishing messages and URL evaluation, has also been a
significant area of research, as seen in the work of Mishra et al. [Mishra and Soni, 2019].

While machine learning dominates the field, deep learning approaches are gaining trac-
tion, showing promising results that often outperform traditional methods. Researchers
like Mishra et al. [Mishra and Soni, 2022] and Sheikhi et al. [Sheikhi et al., 2020] have
utilized neural networks, while others such as Zhou et al. [Zhou et al., 2015] and Roy
et al. [Roy et al., 2020] have proposed hybrid models combining CNN and LSTM net-

36

CHAPTER 2. PHISHING ATTACK

works. Multi-stage approaches, such as the two-stage system by Mishra et al. [Mishra
and Soni, 2021] involving domain verification and SMS classification, have also emerged.
Performance metrics across these studies are impressive, with reported accuracies ranging
from 90.59% to 99.86%, and many achieving over 98% accuracy. The field shows trends
towards hybrid models, increased focus on feature importance, and exploration of multi-
lingual approaches. As smishing tactics continue to evolve, future research may focus on
improving the adaptability of detection systems, enhancing multi-lingual capabilities, and
further exploring the potential of deep learning in this critical domain of cybersecurity.

2.7 Conclusion

In this chapter, we have provided a comprehensive overview of phishing attacks, detailing
their anatomy, various types, and the current state-of-the-art detection techniques. We
explored how these attacks exploit the human element, often the weakest link in cyber-
security, and highlighted the diverse communication channels used by cybercriminals to
execute their schemes.

As we transition to the next chapter, which focuses on the theoretical background
of case-based reasoning and deep learning, it is crucial to consider how these advanced
methodologies can enhance our defenses against phishing. By leveraging machine learning
and AI-driven approaches, we can develop robust detection systems capable of identifying
and mitigating phishing threats in real-time but also evolve in response to emerging
tactics. This integration of technology will be crucial in fortifying our cybersecurity
posture and addressing the complexities of phishing in an increasingly digital world.

37

Chapter 3

Deep learning and case-based reasoning

3.1 Introduction

Artificial intelligence (AI) aims to solve complex problems through advanced computa-
tional methods. Within AI, deep learning has become a key technique, using multi-layered
neural networks to automatically extract features and discover complex patterns in large
datasets. It has transformed fields like computer vision, natural language processing, and
speech recognition by eliminating the need for manual feature engineering.

In contrast, case-based reasoning (CBR) is a problem-solving approach that draws on
past cases to solve new ones. By retrieving and adapting solutions from similar prob-
lems, CBR offers a more experience-driven, human-like reasoning process. It has been
applied in various domains, including phishing detection, where historical data informs
the identification of new threats.

This chapter will begin by outlining the principles and architectures of deep learning,
followed by an exploration of CBR and some examples of AI applications.

3.2 Deep Learning

Deep learning is a subfield of machine learning that focuses on artificial neural networks,
which are modeled after the structure and function of the human brain. While traditional
machine learning techniques often require manual feature engineering, deep learning mod-
els can automatically discover the most relevant features from raw data, such as images,
texts, or audio files.

The deep learning model is composed of multiple interconnected layers of artificial
neurons, each performing a specific transformation on the input data. As the data flows
through these layers, the model learns to extract progressively more complex and abstract

38

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

representations, enabling it to tackle a wide range of tasks with remarkable accuracy.
One of the key advantages of deep learning is its ability to achieve human-level or even

superhuman performance on various cognitive tasks. By training on large, labeled datasets
and leveraging the expressive power of deep neural network architectures, deep learning
models can learn intricate patterns and relationships that were previously challenging for
traditional algorithms to capture.

The training process of deep learning models typically involves backpropagation, a
technique that efficiently propagates the error signals backward through the network lay-
ers, allowing the model to adjust its internal parameters and improve its predictive ca-
pabilities. This iterative process of learning from data continues until the model reaches
the desired level of performance.

Furthermore, the versatility of deep learning has led to its widespread adoption across
diverse domains, from computer vision and natural language processing to speech recogni-
tion and bioinformatics. Researchers and practitioners continue to push the boundaries of
deep learning, developing novel architectural designs, training strategies, and applications
to tackle increasingly complex problems.

3.3 Convolutional neural networks (CNNs)

A Convolutional Neural Network (CNN) [Huang et al., 2019] is a deep learning model
designed to process data with a grid-like structure, such as images. Inspired by the orga-
nization of the animal visual cortex, CNNs are designed to automatically and adaptively
learn spatial hierarchies of features, capturing patterns from lower-level details to more
abstract, high-level representations. CNNs are composed of three main types of layers
that work together to form the overall architecture:

• Convolution layers, which are responsible for feature extraction by applying filters
to the input data, detecting features like edges or textures.

• Pooling layers, which downsample the feature maps, reducing dimensionality and
retaining important information.

• Fully connected layers, which combine the extracted features and map them to the
final output, such as classification results.

Together, these layers enable CNNs to perform tasks such as image classification and
object recognition with remarkable accuracy by learning progressively complex represen-
tations of the input data.

39

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

Figure 3.1: Architecture of CNN [Das et al., 2024]

Convolution layer

The purpose of the convolution operation in a CNN is to extract key features from the
input data, such as edges, colors, and gradient orientations. Typically, the first convo-
lutional layer (ConvLayer) captures low-level features, while deeper layers progressively
learn to detect high-level features, allowing the network to develop a more comprehensive
understanding of the images in the dataset.

At the core of the convolutional process is the kernel or filter, a small matrix that
slides over the input data. The kernel is responsible for tasks like blurring, sharpening,
and edge detection by performing a pointwise operation (a dot product) between the kernel
and a portion of the input image. This operation generates feature maps that highlight
important patterns within the image, enabling the network to learn and recognize these
patterns as it moves through deeper layers.

Pooling layer

The purpose of pooling layers [Scherer et al., 2010] is to introduce spatial invariance by
reducing the resolution of the feature maps, making the network more robust to variations
like translation and scale. Each pooled feature map corresponds to a feature map from the
previous layer, but with reduced dimensionality, allowing the network to retain important
information while minimizing computational complexity.

There are several types of pooling operations, with the most common being max
pooling and average pooling (sub-sampling).

40

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

• Max pooling selects the maximum value from a defined neighborhood, effectively
preserving the most prominent features.

• Average pooling computes the average of the values within the kernel’s receptive
field, providing a more generalized representation of the region.

By reducing spatial dimensions, pooling layers help maintain key patterns while dis-
carding less significant details, contributing to the overall efficiency and performance of
the network.

Fully-connected layer

The fully connected layer in a neural network functions like a traditional neural network,
where each neuron connects to every neuron in the previous layer. Its primary role is to
transform the high-level features extracted by earlier layers into final predictions, such as
class scores or probabilities. By computing the scores for each output class and applying
an activation function like softmax, the fully connected layer converts these scores into
probabilities, enabling the model to make a final classification decision. It serves as the
final stage where all learned patterns are consolidated into actionable outcomes.

3.4 Recurrent neural networks (RNNs)

A Recurrent Neural Network (RNN) is a powerful sequence model well-suited for tasks
such as language modeling, speech recognition, and machine translation [Zaremba et al.,
2014]. However, it is widely recognized that effective regularization is crucial for the
success of neural network applications. The most commonly used regularization method
for feedforward neural networks, dropout, does not perform as effectively in RNNs. Due
to the tendency of large RNNs to overfit, many practical applications rely on smaller
models, limiting their potential. Current regularization techniques provide only modest
improvements for RNNs, highlighting a need for more advanced approaches to prevent
overfitting in these models [Zaremba et al., 2014].

The general architecture of the RNN is shown in Figure 3.2:

41

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

Figure 3.2: Overview of the Recurrent Neural Network (RNN) Architecture [Yin et al., 2021]

3.5 Long Short-Term Memory(LSTM)

The LSTM is a specific type of recurrent neural network. This architecture was introduced
primarily to address the issue of vanishing and exploding gradients. This form of network
is also better at maintaining long-distance connections and understanding the relationship
between values at the start and end of a sequence [Alawneh et al., 2020].

The LSTM model introduces expressions, namely gates. There are actually three
different types of gates:

• Forget gate: regulates the amount of information received by the memory cell from
the previous phase.

• Update (input) gate: determines whether the memory cell should be updated or
not. It also regulates the amount of data that any new memory cell will send to the
current memory cell.

• Output gate: controls the value of the next hidden state.

Figure 3.3 shows the architecture of the LSTM block:

42

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

Figure 3.3: Architecture of the LSTM block [Yin et al., 2021]

3.6 Bi-LSTM

A widely used variant of recurrent neural networks for natural language processing is the
Bidirectional Long Short-Term Memory (BiLSTM) network. Unlike a standard LSTM,
which processes input in one direction, BiLSTM captures information from both past and
future contexts by allowing the input to flow in both directions. This makes it particularly
effective for modeling sequential relationships in text, such as dependencies between words
and sentences [Alawneh et al., 2020].

BiLSTM achieves this bidirectional flow by introducing an additional LSTM layer
that processes the input sequence in the reverse order. The outputs from the forward and
backward LSTM layers are then combined using techniques like averaging, summation,
multiplication, or concatenation, enhancing the model’s ability to understand complex
sequence relationships [Alawneh et al., 2020].

The architecture of Bi-LSTM is shown in Figure 3.4 :

43

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

Figure 3.4: Architecture of the BiLSTM [Yin et al., 2021]

3.7 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU), introduced by Cho et al. in 2014 [Chung et al., 2014],
is an evolution of the standard RNN architecture. Designed to address the limitations
of traditional RNNs, such as the vanishing gradient problem, GRUs simplify the LSTM
network while retaining its ability to capture long-term dependencies in sequential data.
By reducing the complexity of LSTMs, GRUs offer a computationally efficient alternative
that performs well in a variety of tasks, including time-series prediction, NLP, and speech
recognition.

Traditional RNNs struggle with long-range dependencies due to their inability to prop-
agate gradients effectively through extended sequences. LSTMs addressed this issue by
introducing memory cells and gating mechanisms, but their architecture involves three
gates and multiple internal states, which increases computational overhead. GRUs sim-
plify this structure by using only two gates—the update gate and the reset gate—to
manage the flow of information, making them more efficient while still effectively cap-
turing dependencies over time. Figure 3.5 illustrates the key differences between the two
models

44

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

Figure 3.5: Illustration of LSTM and GRU [Chung et al., 2014]

The GRU architecture revolves around these two gates, which selectively control the
information retained or discarded at each time step. The update gate (zt) determines how
much of the previous hidden state is carried forward to influence the current hidden state,
while the reset gate (rt) controls how much of the past information should be forgotten.
This allows GRUs to adaptively capture dependencies of varying lengths, making them
particularly well-suited for tasks involving complex sequential data.

Mathematically, the update and reset gates are computed using sigmoid functions of
the previous hidden state and the current input. The candidate hidden state is calculated
using the tanh activation function, incorporating the output of the reset gate. The final
hidden state is a weighted combination of the previous hidden state and the candidate
hidden state, with the update gate controlling the weights. This formulation ensures
efficient information flow through the network, allowing GRUs to learn and represent
intricate temporal patterns while mitigating the vanishing gradient problem.

GRUs have gained widespread popularity due to their balance of simplicity and perfor-
mance. In NLP, they have been successfully applied to tasks such as machine translation,
text classification, and sentiment analysis. Beyond NLP, GRUs are used in time series
analysis, speech recognition, and even in bioinformatics, for tasks like gene expression
modeling and protein structure prediction.

While GRUs are highly effective, there are cases where LSTMs outperform them,
particularly in tasks involving more complex temporal dynamics. LSTMs’ more elabo-
rate gating mechanisms provide greater flexibility for managing long-range dependencies,
making them better suited for such challenges.

45

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

3.8 Temporal convolutional network (TCN)

Temporal Convolutional Networks (TCNs) represent a significant advancement in neural
network architecture, specifically designed for processing sequential data [Bai et al., 2018].
TCNs utilize specialized convolutions and dilations to effectively handle temporal data
while maintaining large receptive fields, making them particularly suitable for sequence-
to-sequence tasks.

Causal convolutions

TCNs are distinguished by two fundamental characteristics. First, the network ensures
that output at time t depends only on inputs from time t and earlier, never on future
inputs [Lara-Benítez et al., 2020]. Second, TCNs can process time series of any length and
map them to outputs of identical length, similar to RNNs. To implement these features,
TCNs employ one-dimensional convolutional networks in the first layer, with zero padding
to maintain consistent layer sizes. They also utilize dilated convolutions to achieve long
effective histories without excessive computational burden.

Figure 3.6: (a)A causal dilated convolution;(b)TCN residual block.Dilated convolutions [Zhu
et al., 2020]

Dilated convolutions

Dilated convolutions enable TCNs to process time series with extended temporal depen-
dencies efficiently. For a one-dimensional time series x and filter f, the dilated convolution
operation F is defined as [Zhu et al., 2020]:

46

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (3.1)

In this equation, k represents the filter size, d is the dilation factor, and s-d·i indicates
the direction toward past values. When the dilation factor equals one, the operation
reduces to regular convolution. As the dilation factor increases, the receptive field expands
exponentially. TCNs can increase their receptive field through two primary methods: by
increasing the dilation factor d or by using larger filter sizes k. This flexibility allows the
network to adapt to various temporal scales and dependencies in the data.

Residual connections

Residual Networks (ResNets) [Lara-Benítez et al., 2020] are designed to address the
performance degradation that occurs in deep CNNs when the number of layers becomes
excessively large. In TCNs, the stacking of causal convolutions and dilated convolutions
leads to progressively deeper networks. To prevent issues like gradient vanishing or at-
tenuation during training, residual connections are introduced at the output layer of the
TCN. These connections merge the input X directly with the output of the convolutional
network, as expressed by the following equation:

o = Activation(x+ F (x)) (3.2)

Where F (X) is the output of the convolutional layer and Activation(-) represents the
activation function applied to the result. Residual connections allow the network to focus
on refining the identity mapping rather than learning a complete transformation, which
has been shown to improve the performance of very deep networks.

The residual block for TCN, shown in Figure 3.6, consists of two dilated causal con-
volutions, each followed by non-linearities. In this case, the Rectified Linear Unit (ReLU)
function is used as the activation function. Additionally, weight normalization is applied
to the convolutional filters, and an exclusion layer (dropout) is included after each dilated
convolution to mitigate overfitting.

TCNs are particularly well-suited for sequence-to-sequence tasks due to their unique
architecture and advantages:

• Parallelism: Unlike RNNs, where predictions at later time steps must wait for pre-
vious ones to complete, TCNs allow for parallel computation. Since the same con-
volutional filter is applied across all time steps in each layer, long input sequences
can be processed simultaneously during both training and evaluation, significantly

47

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

speeding up the process [Lara-Benítez et al., 2020].

• Flexible receptive field size: TCNs offer flexibility in adjusting the receptive field
size, which can be customized by stacking more dilated convolutional layers, increas-
ing dilation factors, or enlarging filter sizes. This adaptability gives TCNs greater
control over model memory and makes them easily adjustable to different tasks and
domains [Lara-Benítez et al., 2020].

• Low memory requirements: In contrast to LSTMs and GRUs, which require sig-
nificant memory to store intermediate results from multiple gates, TCNs are more
memory-efficient. The use of shared filters in each layer reduces memory usage, and
the backpropagation path only depends on the depth of the network rather than
the sequence length [Lara-Benítez et al., 2020].

3.9 Attention Mechanism

The attention mechanism emerged as a solution to address the limitations of early neu-
ral network architectures, particularly RNNs, which struggled to effectively process long
sequences of data due to vanishing gradients and limited ability to capture long-range
dependencies. Attention provides a dynamic framework, enabling models to selectively
focus on the most relevant parts of the input sequence at each step, significantly improving
their capacity to handle complex dependencies over extended sequences.

First introduced in the context of machine translation by Bahdanau et al. [Luong
et al., 2015], the attention mechanism allowed models to identify which parts of the
source sentence are most relevant to each word in the target sentence, leading to more
accurate translations. This breakthrough laid the foundation for its widespread adoption
across various domains in machine learning and natural language processing.

At its core, the attention mechanism computes a weighted sum of values, with the
weights reflecting the importance or "attention" assigned to each element in the sequence.
This can be formalized through the interaction of three key components:

• Query(Q): Represents the element in the target sequence that requires attention.

• Key(K): Represents the elements in the source sequence, which the query is com-
pared against.

• V alue(V): Contains the information corresponding to each element in the source
sequence, weighted by the attention scores.

48

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

For each query, the attention mechanism calculates a similarity score with each key,
typically via a dot product. These scores are then normalized using the softmax function
to produce a distribution of attention weights. These weights dictate how much influence
each value should have on the output.

The attention computation is described by the following formula:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
(3.3)

where dk is the dimensionality of the key vectors.
Attention mechanisms can be classified into different types based on their scope and

differentiability. One notable distinction is between global and local attention. Global
attention attends to all elements of the input sequence when computing attention weights,
providing a comprehensive overview of the sequence. Conversely, local attention restricts
the focus to a subset of the input, reducing computational complexity and making it
better suited for tasks involving very long sequences where global attention would be
prohibitively expensive.

Another key distinction is between soft and hard attention. Soft attention calculates
a weighted sum over all input elements and is differentiable, which makes it compatible
with standard gradient-based optimization techniques. This differentiability has made
soft attention the predominant form used in modern architectures. Hard attention, on
the other hand, selects a single element from the input sequence, which reduces computa-
tional overhead but introduces non-differentiability. As a result, training hard attention
models often requires specialized techniques like reinforcement learning. Hard attention
is particularly useful in domains like visual processing, where selective focus on certain
regions of an image is crucial.

3.10 Transformer

The success of attention mechanisms in improving sequence modeling tasks paved the way
for the development of Transformers, a revolutionary architecture that relies entirely on
attention mechanisms, eliminating the need for recurrent or convolutional layers. Intro-
duced by Vaswani et al. [Vaswani et al., 2017], Transformers have become the foundation
of many state-of-the-art models in NLP and beyond.

Transformers leverage the concept of self-attention, where the attention mechanism is
applied to the same sequence for both queries, keys, and values. This allows the model to
capture relationships between all elements of the sequence simultaneously, regardless of
their distance from one another. The self-attention mechanism is the core building block

49

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

of Transformers and is responsible for their ability to handle long-range dependencies
effectively.

The Transformer architecture consists of two main components: the encoder and the
decoder. Each component is composed of multiple layers of self-attention and feed-forward
neural networks. The encoder processes the input sequence and generates a set of repre-
sentations, while the decoder uses these representations to produce the output sequence.
This architecture has proven to be highly effective for tasks such as machine translation,
text summarization, and text generation.

One of the key innovations of Transformers is the use of multi-head attention, which
allows the model to focus on different parts of the input sequence simultaneously. By
computing multiple attention heads in parallel, the model can capture diverse patterns
and relationships within the data, leading to richer and more nuanced representations.

Another important feature of Transformers is positional encoding, which is used to
inject information about the position of each element in the sequence. Since Transformers
do not rely on recurrence or convolution, they lack an inherent sense of sequence order.
Positional encodings address this limitation by providing the model with information
about the relative or absolute positions of elements in the sequence.

The success of Transformers has led to the development of numerous variants and
extensions, such as BERT [Devlin et al., 2018], GPT [Radford and Narasimhan, 2018],
and T5 [Raffel et al., 2019], which have achieved state-of-the-art performance on a wide
range of NLP tasks. These models have demonstrated the versatility and scalability of
the Transformer architecture, making it a cornerstone of modern machine learning.

3.11 Case-Based Reasoning (CBR)

Case-Based Reasoning (CBR) is an AI problem-solving approach that relies on the re-
trieval and reuse of past experiences or "cases" to address new problems. This method-
ology allows an AI system to make decisions or provide solutions by drawing upon its
memory of previous similar situations and adapting them to the current context [Aamodt
and Plaza, 1994]. has It been applied across various domains, including construction man-
agement [Hu et al., 2016], medical diagnosis [Pous et al., 2011], energy management [Pinto
et al., 2019], and more.

50

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

Figure 3.7: CBR cycle [Yan and Cheng, 2024]

The CBR process typically involves four main steps [Aamodt and Plaza, 1994] as show
in the figure 3.7:

Retrieve: The core of the CBR process is the retrieval of previously encountered
cases that are similar to the new problem at hand. This step involves searching the case
base, which is the repository of past cases, to find the most relevant cases that can be
adapted to solve the current problem.

Reuse: After the most relevant past cases have been retrieved, the next step in the
CBR process is to reuse the knowledge and solutions from these cases to address the
current problem.

The reuse phase involves adapting or modifying the solution from the retrieved case(s)
to fit the specifics of the new problem. This step requires the extraction and transfer of
relevant information, knowledge, and problem-solving strategies from the retrieved case(s)
to the current situation.

Revise: After the reuse step, where the retrieved solution is adapted to fit the current
problem, the CBR system enters the revise phase. In this step, the system evaluates the
proposed solution and checks its validity and effectiveness in addressing the new problem.

Retain: The final step in the CBR process is the retain phase, where the system
stores the new, successfully applied solution as a new case in its case base. This step is
crucial for expanding the system’s knowledge and improving its ability to solve similar
problems in the future.

CBR is particularly useful in domains where explicit rules or algorithms may be diffi-

51

CHAPTER 3. DEEP LEARNING AND CASE-BASED REASONING

cult to define, and where experience and past cases play a crucial role in problem-solving.
It allows AI systems to learn from their own experiences and gradually improve their
performance over time [Richter and Weber, 2013].

By relying on past experiences, CBR can provide a complementary approach to data-
driven techniques like deep learning. While deep learning excels at automatically ex-
tracting features and discovering complex patterns from large datasets, CBR can offer
additional advantages in terms of reasoning, explanation, and the ability to handle novel
situations that may not be well-represented in the training data.

The integration of CBR with deep learning has been an active area of research [Grace
et al., 2016,Biswas et al., 2018,Hegdal and Kofod-Petersen, 2019], as it can lead to the de-
velopment of hybrid systems that combine the strengths of both approaches. Such hybrid
architectures can leverage the pattern recognition capabilities of deep learning while also
incorporating the case-based reasoning capabilities to enhance the overall performance,
robustness, and interpretability of the system.

3.12 Conclusion

In this chapter, we explored various machine learning and deep learning techniques, in-
cluding CNN, RNN, LSTM, Bi-LSTM, GRU, TCN, attention mechanisms, and CBR.
Each of these methods offers unique strengths for solving complex problems. Our discus-
sion has laid the foundation for applying these techniques to address the challenges we
face.

In the next chapter, we will focus on presenting our contributions, starting with de-
tecting social engineering attacks.

52

Part II

Contribution

53

Chapter 4

Social engineering attack Detection

4.1 Introduction

In the ever-evolving landscape of cybersecurity, significant resources have been invested
in developing robust technological defenses such as firewalls, encryption protocols, intru-
sion detection systems, and antivirus software. However, these advancements have not
eliminated a critical vulnerability: the human element. As Heartfield and Loukas (2018)
assert, people remain the weakest link in information security [Heartfield and Loukas,
2018]. This vulnerability stems from a fundamental aspect of human nature the tendency
to place greater trust in other humans than in machines.

Social engineering attacks exploit this inherent trust, manipulating individuals into
divulging confidential information or acting in ways that contravene security policies.
These attacks pose a severe threat to both businesses and individuals, as they target
human psychology rather than technical weaknesses. The efficacy of social engineering is
particularly pronounced when human interaction is involved, rendering traditional soft-
ware or hardware solutions inadequate without proper human training [Salahdine and
Kaabouch, 2019].

The scale of this threat is starkly illustrated by the Verizon 2022 Data Breach In-
vestigations Report, which found that an alarming 82% of analyzed breaches involved
some form of human interaction [DBIR Report, 2022]. This statistic underscores the out-
sized role that human factors play in cybersecurity incidents. Cybercriminals employ a
range of social engineering techniques, including phishing emails, vishing (voice phishing)
calls, and pretexting messages. These methods are particularly favored when technical
vulnerabilities in a system are scarce or well-defended [Aroyo et al., 2018].

As the internet has become an integral part of modern life, it has simultaneously cre-
ated new security challenges. The human element in cybersecurity has become increas-

54

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

ingly critical, with social engineering attacks evolving to exploit the complex interplay
between human trust and technological systems.

In this chapter, we propose and evaluate machine learning approaches to detect social
engineering attacks, focusing on well-established models such as SVM, Adaboost and XG-
Boost. Recognizing the inherent challenge of imbalanced datasets in cybersecurity (where
legitimate interactions far outnumber malicious ones) we employ advanced oversampling
techniques, specifically SMOTE-ENN (Synthetic Minority Over-sampling Technique with
Edited Nearest Neighbors).

4.2 Architecture

This section describes our proposed machine learning-based approach for detecting so-
cial engineering attacks in more detail. Figure 6.1 provides a schematic overview of the
methodology. Our study utilizes a real-world, imbalanced dataset of normal and malicious
communications, originally compiled by [Lansley et al., 2020].

Figure 4.1: Architecture of the Social Engineering Attack Detection Model [Remmide et al.,
2024b]

To mitigate the inherent class imbalance in the dataset, we employ the SMOTE-
ENN. This sophisticated oversampling technique generates synthetic samples for the
under-represented social engineering class while concurrently eliminating overlapping data
points. This dual process serves to balance the dataset and enhance the model’s capacity
to detect social engineering attacks with improved accuracy.

We train multiple classifier models using the balanced dataset resulting from the
SMOTE-ENN process. The models include SVM, AdaBoost, and XGBoost. These mod-
els represent a spectrum of traditional and ensemble machine learning techniques, each
chosen for its suitability in handling complex classification tasks. The diversity in our

55

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

model selection allows for a comprehensive evaluation of different approaches to social
engineering detection.

Following the training phase, we evaluate the models on a separate hold-out test set.
This evaluation assesses each model’s detection capability for both normal and malicious
messages, providing a robust measure of their performance in real-world scenarios.

Algorithm 2 presents the pseudocode for the key steps of our proposed approach,
encapsulating the entire process from data preparation to model evaluation.

Algorithm 1 Pseudo code for the proposed approach to Social Engineering detection
[Remmide et al., 2024b]
Input: Dataset
Output: Evaluation Measure (Accuracy, Precision, Recall, F-score and AUC)
1: load(Dataset)
2: Train, Test ← split(Dataset)
3: Balance(Train)
4: Initialize models
5: For each fold in range(10)
6: Evaluate Loss, Validation Loss
7: Evaluate Accuracy, Validation Accuracy
8: Evaluate Precision, Recall, F-score and AUC
9: end for

10: return Average(Accuracy, Precision, Recall, F-score and AUC)

4.2.1 Data balancing

In our dataset, a significant class imbalance exists, with social engineering samples com-
prising only 10% of the total instances. This imbalance poses a challenge for machine
learning models, potentially leading to biased predictions favoring the majority class.
To address this issue, we employ the SMOTE-ENN algorithm [Batista et al., 2004], a
sophisticated hybrid approach that combines oversampling of the minority class with un-
dersampling of the majority class.

The choice of SMOTE-ENN is supported by its demonstrated superior performance
in previous cybersecurity studies dealing with imbalanced datasets [Jain et al., 2022b,Tao
et al., 2019]. Its effectiveness lies in its ability to not only balance class distributions but
also improve decision boundaries by removing noisy and overlapping instances. This dual
approach helps in creating a more representative and cleaner dataset, which is crucial
for training robust machine learning models in the context of social engineering attack
detection.

56

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

SMOTE-ENN operates in two main stages, each addressing different aspects of the
class imbalance problem:

SMOTE-ENN operates through a two-stage process, each addressing different aspects
of the class imbalance problem. The first stage, SMOTE (Synthetic Minority Over-
sampling Technique), generates synthetic samples for the under-represented social en-
gineering class. It does this by selecting two or more similar instances based on k-nearest
neighbors and creating new instances that are convex combinations of these selected in-
stances. This approach balances the class distribution without simple duplication, thereby
mitigating overfitting risks.

Following the SMOTE process, the second stage, ENN is applied to clean the resulting
dataset. ENN examines each instance and its nearest neighbors, removing instances that
are misclassified by their k-nearest neighbors. This cleaning step eliminates noisy or
overlapping data points, which can significantly enhance the performance of the classifier
by improving decision boundaries.

We implemented SMOTE-ENN with carefully tuned hyperparameters, as outlined in
the following table 4.1:

Tableau 4.1: Summary of Hyperparameters used in SMOTE-ENN Implementation

Hyperparameter Value

Oversampling Ratio 2:1
Number of Nearest Neighbors for SMOTE 5
ENN Cleaning Threshold (Tomek Links Removal) 3

4.2.2 classification model and parameters

In our study, we employ a diverse set of machine learning classifiers to detect instances
of social engineering attacks. Our approach incorporates both traditional and ensemble
learning techniques, specifically SVMs, AdaBoost, and XGBoost classifiers.

4.2.2.1 Support vector machines (SVM)

In our study, SVM was employed to classify instances of social engineering attacks versus
legitimate interactions. We utilized the Radial Basis Function (RBF) kernel to han-
dle non-linear relationships in the data, which allowed the model to map inputs into a
higher-dimensional space where the attacks could be more easily distinguished from be-
nign activities. The regularization parameter was carefully tuned to 1, striking a balance
between maximizing the margin and controlling the model’s complexity.

57

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

4.2.2.2 XGBoost

In our approach, XGBoost was utilized to predict whether an interaction constituted
a social engineering attack or not. We optimized the tree method to "hist" for faster
training and set the maximum tree depth to 3, ensuring that the model could capture
important patterns without overcomplicating the decision boundaries. The regularized
objective function helped control model complexity, allowing XGBoost to focus on mean-
ingful interactions while avoiding overfitting to noise.

4.2.2.3 AdaBoost

For social engineering detection, we used AdaBoost to build a robust classifier by com-
bining multiple weak decision tree learners. Each subsequent tree was trained to focus
more on previously misclassified instances, allowing the model to adaptively improve its
predictions over time. The base classifier used for AdaBoost was a decision tree, and the
cluster size was set to 100, ensuring the model had enough flexibility to handle the com-
plex and deceptive patterns typical of social engineering attacks. This iterative process
allowed AdaBoost to progressively refine its understanding of social engineering threats.

We conducted a thorough hyperparameter tuning process to identify the optimal set-
tings for each model. The hyperparameters were carefully selected using a combination of
grid search and cross-validation to ensure optimal model performance. Grid search sys-
tematically explores a predefined range of hyperparameter values, while cross-validation
evaluates the model’s performance on different subsets of the data, ensuring robustness
and generalizability. Table 4.2 summarizes the optimized hyperparameters used in our
approach for social engineering attack detection.

Tableau 4.2: Optimized Hyperparameters for Social Engineering Attack Detection [Remmide
et al., 2024b]

Models Parameter Value

AdaBoost
Base classifier DT
Cluster size 100

SVM
Kernel RBF
Regularization parameter 1

XgBoost
Tree method hist
maximum depth of the tree 3
Cluster size 100

58

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

4.3 Evaluation and analysis

In this section, we describe our dataset, experimental setup, and evaluation methodology
for social engineering attack detection. We evaluated several machine learning models,
including SVM, XGBoost, Decision Trees, KNN, and AdaBoost, classifying messages as
normal or social engineering attacks.

Performance was assessed using Accuracy (ACC), F1-score, and Area Under the Curve
(AUC) to compare the effectiveness of our approach with existing methods. Addition-
ally, one-way ANOVA was applied to statistically validate the performance differences,
confirming the reliability and significance of our comparative results.

4.3.1 Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is a statistical method used to compare the means of mul-
tiple groups by analyzing the variance within and between them. In this study, one-way
ANOVA was employed to determine whether the observed differences in model perfor-
mance (e.g., accuracy, F1-score, AUC) are statistically significant. This helps ensure
that the results are not due to random chance but reflect true differences in the models’
effectiveness.

The ANOVA test calculates an F-statistic, which is the ratio of between-group variance
to within-group variance. A high F-statistic indicates that the differences between the
models are significant. The results of the ANOVA test are further validated using a p-
value, where a p-value less than a significance threshold (typically 0.05) confirms that the
observed differences are statistically significant.

By applying ANOVA, we provide a rigorous statistical foundation for comparing the
performance of our machine learning models, ensuring the reliability and validity of our
findings.

4.3.2 Dataset overview

In this study, we utilized publicly available datasets compiled by previous researchers
to train and evaluate our social engineering detection models. The primary dataset,
referred to as the "compound dataset," was introduced by [Lansley et al., 2020] and
consists of 1,051 entries. This dataset was created by merging several sources, including
a standard dataset from [Bezuidenhout et al., 2010], which contributed 147 examples of
social engineering attacks, and 600 tweets labeled as normal customer support interactions
from Twitter.

Each entry in the dataset is represented by four key features:

59

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

• Spelling: Assesses the quality of spelling and the presence of slang, which attackers
may use to appear less formal or bypass automated filters.

• Links: Evaluates the reputation of URLs within the text using the Web of Trust
(WOT) API, identifying potentially malicious or suspicious links.

• Intent: Measures the presence of blacklisted words associated with social engineer-
ing attacks. This feature assigns a higher value to entries containing threatening or
suspicious language, based on a predefined list of terms.

• Attack Label: A binary label indicating whether the text represents a social en-
gineering attempt (1) or a normal interaction (0).

These features, extracted from the raw text as detailed by [Lansley et al., 2020], are
designed to capture contextual cues that may indicate malicious intent. By converting
these cues into numerical representations, they provide suitable input for machine learning
algorithms, enabling them to identify patterns indicative of deceptive communications.

For model evaluation, we employed 10-fold cross-validation, where the dataset is di-
vided into ten equal parts. In each iteration, one part is used for validation and the
other nine for training. This process is repeated ten times, ensuring each entry is used
for validation once and training nine times. This method provides a robust estimate of
model performance by averaging results across all folds, reducing bias and variance in the
evaluation.

4.3.3 Results

All experiments were conducted using Python 3.7 on a Windows 10 system equipped with
an Intel Core i5 (10th Generation) processor, 16GB RAM, and an NVIDIA GTX 1060Ti
GPU. The implementation utilized TensorFlow and Keras frameworks, along with CUDA
toolkit version 5 for GPU acceleration.

Tableau 4.3: Comparative Performance Evaluation of Machine Learning Classifiers for Social
Engineering Detection [Remmide et al., 2024b]

Precision Recall F-score AUC Accuracy
AdaBoost 95,83% 30,71% 44,00% 85,33% 92,52%
SVM 83,17% 42,14% 53,80% 79,82% 92,91%
XgBoost 80,98% 37,50% 49,61% 91,67% 92,39%
KNN 26,27% 55,18% 34,91% 81,49% 77,40%
DT 82,67% 33,04% 45,16% 88,21% 92,11%
SMOT-ENN+SVM 99,53% 96,28% 97,85% 99,86% 97,99%

60

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

Our evaluation compared various machine learning classifiers on the social engineering
detection dataset using standard performance metrics, as shown in Table 4.3 and Fig-
ure 4.2. The SMOTE-ENN oversampling technique demonstrated superior performance
across all metrics, achieving over 96% for precision, recall, F-score, and AUC. This in-
dicates its exceptional ability to accurately identify both social engineering attacks and
legitimate text across diverse classification thresholds. The oversampled SVM model at-
tained the highest overall performance, which can be attributed to the effective handling
of class imbalance through oversampling and the kernel-based approach’s particular suit-
ability for capturing dataset-specific patterns.

Figure 4.2: Evaluation of Machine Learning Algorithms for Recognizing Social Engineering
Attacks [Remmide et al., 2024b]

AdaBoost demonstrated high precision (95.83%) but notably low recall (30.71%), sug-
gesting a tendency to focus heavily on correctly classifying the majority class at the
expense of missing a significant number of true social engineering attacks. Standard
SVM and XGBoost exhibited similar performance profiles, balancing higher precision
with moderate recall, though they may miss some attacks compared to the oversampled
SVM. KNN, while achieving the highest recall among non-oversampled methods, suffered
from significantly low precision (26.27%), resulting in a high false positive rate that limits
its practical applicability.

61

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

Tableau 4.4: Evaluation of the Proposed Approach Compared to Benchmark Classifiers for
Social Engineering Detection [Remmide et al., 2024b]

F-score AUC Accuracy
MLP [Merton Lansley and Polatidis, 2020] 73,20% 68,86% 92,20%
Ensemble learning soft [Merton Lansley and Polatidis, 2020] 75,90% 72,22% 92,40%
Ensemble learning hard [Merton Lansley and Polatidis, 2020] 76,90% 72,20% 92,60%
SMOTE-ENN+SVM 97,85% 99,86% 97,99%

Figure 4.3: Performance Comparison of the Proposed Oversampling Method Against State-of-
the-Art Classifiers for Social Engineering Detection [Remmide et al., 2024b]

Table 4.4 and Figure 4.3 present a comparison of our proposed SMOTE-ENN ap-
proach against benchmark classifiers from recent literature. Our method significantly
outperformed existing techniques, achieving an F-score of 97.85% compared to approxi-
mately 75% for ensemble methods, an AUC of 99.86% versus roughly 72% for the best
competing method, and an accuracy of 97.99% compared to 92.60% for ensemble learning
with hard voting. Traditional approaches like MLP and ensemble learning, while effective
for many classification tasks, demonstrated limitations in handling the unique challenges
of social engineering detection.

62

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

Models

Our approach MLP Soft-voting ensemble learning Hard voting ensemble learning

A
c
c
u

ra
c
y

90

92

94

96

98

100

Figure 4.4: Accuracy Performance Comparison Across Various Social Engineering Detection
Methods [Remmide et al., 2024b]

Models

Our approach MLP Soft-voting ensemble learning Hard voting ensemble learning

F
1

-s
c
o

re

60

65

70

75

80

85

90

95

100

Figure 4.5: F1-score Performance Comparison Across Various Social Engineering Detection
Methods [Remmide et al., 2024b]

63

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

Models

Our approach MLP Soft-voting ensemble learning Hard voting ensemble learning

A
U

C

60

65

70

75

80

85

90

95

100

Figure 4.6: AUC Performance Comparison Across Various Social Engineering Detection Meth-
ods [Remmide et al., 2024b]

The performance metrics shown in Figures 4.4, 4.5, and 4.6 demonstrate the con-
sistent superiority of our SMOTE-ENN approach across accuracy, F1-score, and AUC.
Our method achieved near-perfect results, with a median accuracy significantly higher
than competing models (p-value = 4.88248× 10−10). Similarly, the F1-score comparison
revealed an even greater statistical significance (p-value = 9.04 × 10−18), underscoring
our method’s ability to balance precision and recall effectively. The AUC results further
validated our model’s dominance, with a near-perfect median and the strongest statistical
significance (p-value = 1.125× 10−22). In comparison, traditional methods such as MLP
and ensemble learning techniques showed lower median values and greater variability,
highlighting their limitations in tackling the challenges of imbalanced datasets.

The superior performance of our method can be attributed to the effective handling of
class imbalance through the SMOTE-ENN technique. By combining intelligent oversam-
pling with ENN, our approach ensures that the minority class is well-represented while
simultaneously eliminating noisy data points. This preprocessing step enables the model
to form more accurate and robust decision boundaries, reducing bias towards the majority
class. Additionally, the integration of strong base classifiers further enhances the model’s
ability to detect social engineering attacks with high sensitivity and precision.

These findings emphasize the critical importance of addressing data imbalance in social
engineering detection systems. Traditional methods, while achieving reasonable perfor-
mance on the majority class, struggle to effectively detect minority-class attacks, which

64

CHAPTER 4. SOCIAL ENGINEERING ATTACK DETECTION

are the primary concern in real-world applications. In contrast, our SMOTE-ENN ap-
proach delivers exceptional generalizability and robustness, making it a powerful solution
for identifying and mitigating social engineering threats. This study underscores the
need for specialized techniques tailored to the unique challenges of imbalanced datasets
in cybersecurity.

4.4 Conclusion

This chapter presented a comprehensive approach to detecting social engineering attacks
using machine learning techniques. Our methodology addressed several key challenges in-
herent in social engineering detection, particularly the significant class imbalance typically
found in real-world datasets. Through extensive experimentation and analysis, we demon-
strated the effectiveness of combining oversampling techniques, specifically SMOTE-ENN,
with traditional machine learning classifiers.

The experimental results clearly showed the superiority of our proposed approach
over existing methods. By achieving precision, recall, F-score, and AUC values exceed-
ing 96%, our SMOTE-ENN enhanced classifiers significantly outperformed both baseline
models and state-of-the-art techniques. The statistical analysis further confirmed these
improvements, with p-values indicating highly significant advancements across all perfor-
mance metrics. This success can be attributed to the effective handling of class imbalance,
which enabled the creation of more representative decision boundaries and ultimately led
to more robust detection capabilities.

Despite these promising results, our investigation highlighted a critical limitation in the
field of social engineering detection: the scarcity of large, comprehensive datasets. This
constraint poses a significant challenge to the development and validation of detection
methods. Additionally, our analysis of attack patterns revealed that phishing remains the
most prevalent form of social engineering attack, accounting for a substantial portion of
all recorded incidents.

Given these findings and constraints, the focus of our subsequent research shifts to
the specific domain of phishing detection, with particular emphasis on phishing URL
identification. This transition is motivated by several factors: the abundance of available
phishing URL datasets, the critical role URLs play in phishing attacks, and the potential
for immediate practical applications in cybersecurity systems

65

Chapter 5

Phishing URL Detection

5.1 Introduction

In the ever-evolving landscape of cybersecurity threats, phishing remains one of the most
pervasive and damaging forms of attack. Phishing is a sophisticated form of cybercrime
that combines social engineering tactics with technical deception to illicitly acquire sen-
sitive personal information, including financial account credentials and other confidential
data [APWG, 2021b]. This malicious practice typically involves luring unsuspecting vic-
tims into clicking on deceptive links, often leading them to fraudulent websites designed to
harvest their personal information. In more advanced scenarios, cybercriminals may em-
ploy technical subterfuge, surreptitiously installing malware on victims’ devices to pilfer
data directly.

The prevalence of phishing attacks has surged dramatically in recent years, posing a
significant threat to both individuals and organizations worldwide. Its simplicity and low
technical barriers make it highly accessible to attackers, contributing to its widespread
use. According to the APWG, phishing attacks doubled between the first quarter of 2020
and the third quarter of 2021 [APWG, 2021b].

Particularly vulnerable to these attacks are sectors that handle sensitive user data and
financial transactions. The APWG report highlights that software-as-a-service (SaaS)
providers, webmail services, financial institutions, and payment processors are among
the most frequently targeted entities [APWG, 2021b]. This targeting pattern reveals the
attackers’ strategic focus on sectors where successful breaches can yield the most valuable
data.

This chapter delves into the detection of phishing URLs through Temporal Convo-
lutional Networks (TCNs), a deep learning architecture particularly adept at sequence
modeling tasks. By focusing on how TCNs can be employed to effectively identify phish-

66

CHAPTER 5. PHISHING URL DETECTION

ing URLs, this chapter contributes to the development of stronger defenses against this
ever-present cyber threat.

5.2 Architecture

Figure 5.1: A high-level diagram of our the proposed phishing URL detection architecture

67

CHAPTER 5. PHISHING URL DETECTION

We propose the use of TCNs for phishing URL detection, as illustrated in Figure 5.1.
The architecture processes URLs through data pre-processing and tokenization, convert-
ing URLs into word embeddings, followed by TCN layers that extract essential features
for classification. The model ultimately classifies URLs as either legitimate or phish-
ing. Finally, 10-fold cross-validation is used to evaluate performance based on accuracy,
F1-score, precision, recall, and AUC.

TCNs are particularly effective for tasks like phishing URL detection due to their
strengths in sequence modeling, which have proven valuable in NLP. Compared to RNNs,
TCNs offer several advantages: they have a larger memory capacity for capturing long-
term dependencies, achieve parallelism through convolutional layers for faster training,
and allow for flexible receptive field sizes to enhance temporal awareness. Additionally,
TCNs avoid the vanishing gradient problem commonly seen in RNNs, ensuring stable and
efficient training.

5.3 Datasets

The effectiveness of a phishing URL detection system is heavily dependent on the quality
and representativeness of the data used in its development. In our research, we selected
three distinct datasets to provide a comprehensive evaluation of phishing URL detection
techniques, considering various feature sets, sample sizes, and data distributions.

Dataset 1 :

The first dataset, as proposed by [Vrbančič et al., 2020], is available in two variants. The
full version, referred to as Dataset-full, contains a total of 88,647 URL instances, of which
58,000 are legitimate and 30,647 are fraudulent. Each URL in this dataset is represented
by a set of 111 characteristics that determine its legitimacy. A smaller version of this
dataset, called Dataset-small, is also available. It contains 58,645 instances, with 27,998
legitimate URLs and 30,647 fraudulent URLs. Both versions of this dataset provide a
rich set of features and a large number of samples, allowing for in-depth analysis of URL
characteristics.

Dataset 2 :

The second dataset, sourced from PhishTank and Google1. It contains a total of 11,000
instances, evenly split between 5,500 legitimate URLs and 5,500 phishing URLs. This

1https://www.kaggle.com/datasets/sagarbanik/phishing-url-binary-datatset

68

CHAPTER 5. PHISHING URL DETECTION

dataset contains 14 unique features that differentiate phishing URLs from legitimate ones.
This balanced dataset provides a concise set of features, making it suitable for developing
and testing binary classification models.

Dataset 3 :

The third dataset, obtained from Kaggle2, offers a large-scale collection of URL strings.
It includes both the URL strings and their corresponding labels. The dataset contains a
total of 549,346 URLs, of which 392,924 are legitimate and 156,422 are phishing URLs.
This extensive dataset provides a real-world distribution of legitimate and phishing URLs,
allowing for the development of models that can handle a large variety of URL patterns.

5.4 Preprocessing

Effective preprocessing is crucial for ensuring that our datasets are clean, well-structured,
and optimally prepared for training models to detect phishing URLs. Each of our three
datasets required specific preprocessing steps tailored to their unique characteristics and
intended use in the study.

For Dataset 1 and Dataset 2, which contain structured features, we applied the fol-
lowing preprocessing steps:

1. Normalization: We scaled numerical features to ensure they were on a comparable
scale, preventing any single feature from dominating the others due to differences
in magnitude.

2. Encoding of Categorical Features: We employed one-hot encoding to transform
categorical variables into a format suitable for machine learning algorithms. This
process creates binary columns for each category, allowing the model to interpret
categorical data effectively.

3. Feature Scaling: We applied standardization (z-score normalization) to ensure
all features contributed equally to the model’s learning process. This step involved
subtracting the mean and dividing by the standard deviation for each feature.

4. Handling Missing Values: We addressed missing data by imputing values using
statistical measures. Specifically, we used the mean of each feature to fill in missing
values, ensuring data completeness without introducing significant bias.

2https://www.kaggle.com/datasets/taruntiwarihp/phishing-site-urls

69

CHAPTER 5. PHISHING URL DETECTION

Dataset 3, which consists of raw URL strings, required a different approach focused
on text processing:

1. URL Parsing: We decomposed each URL into its constituent parts (e.g., protocol,
domain, path, query parameters) to extract meaningful features.

2. Tokenization: We split the URL strings into individual tokens, which could be
words, subdomains, or other meaningful units within the URL structure.

3. Text Normalization: We converted all text to lowercase and removed special
characters to reduce noise and ensure consistency across the dataset.

4. GloVe Embeddings: We utilized Global Vectors for Word Representation (GloVe)
to convert our tokens into dense vector representations. This step allows the model
to capture semantic relationships between different parts of the URLs.

5. Sequence Padding: To ensure uniform input length for our models, we applied
padding to shorter sequences and truncated longer ones to a fixed length.

6. Label Encoding: We converted the binary classification labels (phishing/legitimate)
into numerical format (0/1) for model compatibility.

7. Data Cleaning: We removed any corrupt or inconsistent data entries to ensure
the quality of our dataset.

5.5 Data Balancing

To address the absorptive learning bias towards the dominant class (0) in our first
database, we implemented a comprehensive data balancing strategy. Our approach em-
ployed two distinct techniques: subsampling and oversampling. By utilizing these meth-
ods, we aimed to create a more equitable representation of classes, thereby enhancing the
reliability and accuracy of our subsequent analysis.

Subsampling Technique

We employed random undersampling to reduce the number of samples in the majority
class (0). This technique helps mitigate the overfitting risk associated with the dominant
class. Using the RandomUnderSampler from the imbalanced-learn library, we reduced the
majority class from 58,645 to 30,647 samples, matching the count of the minority class
(1).

70

CHAPTER 5. PHISHING URL DETECTION

Oversampling Technique

To complement the subsampling approach, we applied the Synthetic Minority Over-
sampling Technique (SMOTE) to increase the representation of the minority class (1).
SMOTE generates synthetic examples in the feature space, avoiding exact replication and
potential overfitting issues. Using the SMOTE implementation from imbalanced-learn,
we increased the minority class from 30,647 to 58,645 samples, equaling the original count
of the majority class.

5.6 Model

Our phishing detection system consists of two primary modules as shown in Figure 5.2.
The word embedding learning module (using techniques such as Word2Vec and GloVe)
performs the vector representation of words in URLs, while the detection module trains
machine learning algorithms on these vector representations to classify URLs as phishing
or legitimate. In this work, we adopt a TCN for its effectiveness and efficiency in sequence
modeling tasks.

The architecture of our TCN-based model consists of several key components. The
input layer accepts word embedding vectors of URLs, as raw URLs cannot be directly
passed to the model. This is followed by two stacked TCN blocks, each with specific
configurations. The first TCN block contains 128 filters, while the second uses 64 filters.
Both blocks employ a kernel size of 3 and use expansion factors (dilation rates) of 1, 2,
and 4 to capture different scales of temporal patterns.

After the TCN blocks, the model applies two parallel global pooling operations - max
pooling and average pooling to the final sequence output. This dual pooling strategy
helps capture different aspects of the sequence features. The results from both pooling
operations are then concatenated and passed through a dense layer of 16 neurons, serving
as a bottleneck for feature compression. Finally, the output layer consists of 2 neurons
with a softmax activation function for binary classification (phishing vs. legitimate).

71

CHAPTER 5. PHISHING URL DETECTION

Figure 5.2: Our propose phishing URL detection model [Remmide et al., 2022b]

5.7 Experiments

All models were implemented using TensorFlow [Abadi et al., 2016] and Keras. We
compared our TCN models with baseline classifiers such as KNN and Logistic Regression.
we applied 10-fold cross-validation. Table 5.1 summarizes the performance of our TCN
model across all datasets and configurations.

72

CHAPTER 5. PHISHING URL DETECTION

Tableau 5.1: Comparison of the proposed model in the three datasets [Remmide et al., 2022b]

Dataset Model Accuracy Precision Recall F-1 score

2 TCN 99,96% 99% 99% 99%

1
(dataset_small)

TCN 98,76% 98% 98% 98%

1 (dataset_full) TCN 96% 97% 96% 96%

1 (dataset_full)
with undersam-
pling

TCN 96% 96% 96% 96%

1 (dataset_full)
with oversam-
pling

TCN 98% 97% 97% 97%

3 Word2vec em-
bedding with
TCN

98,95% 98% 98% 98%

3 GloVe em-
bedding with
TCN

97,76% 98% 98% 98%

For Dataset 2, the TCN model performs exceptionally well, achieving an accuracy of
99.96%, with precision, recall, and F1 score all at 99%. This suggests that the model
handles this dataset with near-perfect accuracy and minimal classification errors.

In Dataset 1 (small subset), the TCN model achieves a slightly lower accuracy of
98.76%, while still maintaining high precision, recall, and F1 score at 98%. This demon-
strates that even with reduced data, the TCN model maintains strong performance.

For Dataset 1 (full), the model’s performance decreases slightly with an accuracy of
96%, and precision, recall, and F1 scores all around 96-97%. This drop suggests that the
larger dataset presents more challenges, potentially due to complexity or class imbalance.

When undersampling is applied to Dataset 1 (full), the performance remains consis-
tent, with accuracy staying at 96%. This indicates that undersampling did not signifi-
cantly impact model performance, possibly because of the inherent complexity of the data.
However, when oversampling is applied, there is a noticeable improvement in accuracy,
rising to 98%, with corresponding increases in precision, recall, and F1 score to 97%. This
suggests that oversampling helps the model by addressing class imbalance more effectively

73

CHAPTER 5. PHISHING URL DETECTION

than undersampling.
In Dataset 3, when Word2vec embeddings are used with the TCN, the model achieves

a high accuracy of 98.95%, with other metrics at 98%. This demonstrates that the model
benefits from the Word2vec embeddings, leading to robust performance. With GloVe
embeddings, the accuracy drops slightly to 97.76%, although precision, recall, and F1
scores remain high at 98%. This indicates that while both embedding methods perform
well, Word2vec offers a slight advantage.

In summary, the TCN model performs consistently well across different datasets, with
oversampling showing notable improvements in handling data imbalance, and Word2vec
embeddings offering the best results in dataset 3. The overall findings highlight the
effectiveness of TCN, particularly when paired with techniques like oversampling and
optimized embeddings.

Tables 5.2 and 5.3 compare our TCN model against baseline approaches for Datasets
1, 2, and 3.

Tableau 5.2: Performance Comparison of the Proposed Model and Baseline Models on the
First and Second Datasets [Remmide et al., 2022b]

Dataset Model Accuracy Precision Recall F-measure

D2
KNN 94.25% 94.2% 94% 94.10%
TCN 99.96% 99% 99% 99%

D1 small
KNN 85.64% 85.4% 87.2% 86.31%
TCN 98,76% 98% 98% 98%

Tableau 5.3: Performance Comparison of the Proposed Model and Baseline Models on the
third Datasets [Remmide et al., 2022b]

Method Accuracy Precision Recall F1-score

KNN 91% 90% 86% 88%

LR + CountVectorizer 96% 93% 96% 95%

LR + RegexpTokenizer 96% 94% 96% 96%

Word2Vec + TCN 98,95% 98% 98% 98%

GloVe + TCN 97,76% 98% 98% 98%

In Dataset 2 (D2), the TCN significantly outperforms the KNN model, achieving
an accuracy of 99.96% compared to KNN’s 94.25%. Similarly, TCN achieves uniformly
high precision, recall, and F-measure (99%), showcasing its superiority over KNN, which
records slightly lower metrics (around 94%). For the smaller subset of Dataset 1 (D1

74

CHAPTER 5. PHISHING URL DETECTION

small), TCN again demonstrates a strong advantage with 98.76% accuracy, outperform-
ing KNN’s 85.64%. The high and consistent performance of TCN across both datasets
highlights its robustness and effectiveness in comparison to the traditional KNN model.

In the third dataset, the TCN model paired with Word2Vec embeddings achieves the
highest performance, with an accuracy of 98.95% and precision, recall, and F1 scores all at
98%. This is superior to both KNN, which reaches only 91% accuracy, and LR combined
with different feature extraction methods (CountVectorizer and RegexpTokenizer), which
both achieve 96% accuracy. The TCN model paired with GloVe embeddings also performs
well with an accuracy of 97.76%, but Word2Vec embeddings provide a slight edge. These
results confirm that the TCN model, particularly when combined with advanced word
embeddings like Word2Vec, outperforms traditional machine learning methods in handling
complex datasets.

The confusion matrices in Figures 5.3a, 5.3b, and 5.3c illustrate a significant reduction
in both false negatives and false positives across all experiments. This improvement is
particularly notable in the second dataset, highlighting the effectiveness of the proposed
model in enhancing classification accuracy and minimizing errors.

Tableau 5.4: Comparison of the Proposed Model and State-of-the-Art Methods [Remmide
et al., 2022b]

Refrence Accuracy Precision Recall F1-score

[Abutair et al., 2019] 95% - - 96%

[Aljofey et al., 2020] 95.80% 96% 94% 95%

[Wang et al., 2019] 95.6% 97.33% 93.78% 95%

[Liang et al., 2019] - 95.97% 95.96% 95.96%

[Liang et al., 2022] 99.27% 97.42% 95.44% 96.38%

Our model 98,95% 98% 98% 98%

The table 5.4 compares the performance of the proposed model (Word2Vec + TCN)
against several state-of-the-art models from prior studies. The proposed model achieves
the highest overall performance, with an accuracy of 98.95%, and precision, recall, and F1-
score all at 98%. This surpasses the accuracy of most of the compared models, such as the
works by [Abutair et al., 2019] at 95%, [Aljofey et al., 2020] at 95.80%, and [Wang et al.,
2019] at 95.6%, which also show slightly lower recall and precision values. While [Liang
et al., 2019, Liang et al., 2022] achieved a higher accuracy at 99.27%, the precision and
recall metrics 97.42% and 95.44%, respectively are slightly lower compared to the proposed
model. Overall, this highlights that the proposed model delivers the most balanced and

75

CHAPTER 5. PHISHING URL DETECTION

(a) Confusion Matrix Displaying Results from the
Test Set of Dataset 1.

(b) Confusion Matrix Displaying Results from the
Test Set of Dataset 2.

(c) Confusion Matrix Displaying Results from the
Test Set of Dataset 3.

Figure 5.3: Confusion Matrix of our TCN model Displaying Results from the 3 [Remmide
et al., 2022b]

robust performance across all evaluation metrics, excelling in both classification accuracy
and consistency.

5.8 Conclusion

In this chapter, we introduced and evaluated a TCN combined with word embeddings,
a deep learning-based approach for phishing URL detection. Our experimental results
demonstrated that the proposed model outperforms baseline models, achieving 98% in
accuracy, precision, recall, and F1-score. Moving forward, our goal is to enhance the
model’s effectiveness against evolving phishing techniques and to validate its performance
in real-world environments. In the next chapter, we will shift focus to detecting phishing
emails by analyzing their content, further expanding the scope of our phishing detection
efforts.

76

Chapter 6

Deep Learning and Case-Based
Reasoning for Phishing Email Detection

6.1 Introduction

In the digital age, the Internet and technological advancements have become integral to
both professional and personal life. However, this increased reliance on technology has
led to a surge in cybercriminal activity. The Deep Instinct report highlighted a staggering
653% increase in malicious activity in July 2020 compared to the previous year [Cyber
Threat, 2020]. Moreover, the U.S. Healthcare Cybersecurity Market 2020 report revealed
that over 90% of healthcare organizations experienced at least one cybersecurity breach in
the past three years 1. These statistics underscore the critical importance of cybersecurity
in today’s interconnected world.

Despite the implementation of advanced security technologies, attackers continue to
find sophisticated methods to exploit the weakest link in any system: the human element.
Verizon’s 2021 DBIR indicates that a staggering 85% of breaches are attributable to
human factors [DBIR Report, 2021]. This vulnerability is often exploited through social
engineering techniques, with phishing attacks emerging as the most prevalent form of
cyberthreat.

Phishing attacks, which typically involve deceiving victims into divulging confidential
information or performing harmful actions, have seen a dramatic rise in recent years.
The APWG reported a tripling of phishing attacks since the beginning of 2020, with the
financial sector remaining the primary target [APWG, 2021a]. December 2021 marked
a historic high in APWG’s reporting, with 316,747 recorded phishing attacks [APWG,
2021a].

1https://www.gminsights.com/industry-analysis/healthcare-cybersecurity-market

77

https://www.gminsights.com/industry-analysis/healthcare-cybersecurity-market

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

While traditional phishing attacks predominantly utilized email as the primary vec-
tor, cybercriminals have expanded their tactics to include other communication channels.
Smishing (SMS phishing) targets users through text messages, while vishing exploits Voice
over IP (VoIP) communications [Gupta et al., 2015]. Social media platforms have also
become breeding grounds for phishing activity, with the APWG Q4 2022 report indicat-
ing that approximately 10.5% of all phishing attacks targeted social media users [APWG,
2022].

The dynamic nature of phishing attacks presents a significant challenge, as attackers
continuously evolve their techniques to evade detection. This adaptability underscores
the need for more robust and effective anti-phishing solutions [Basit et al., 2021, Boun-
takas and Xenakis, 2023]. In response to this challenge, researchers have begun exploring
hybrid approaches that combine the strengths of multiple techniques to enhance phishing
detection capabilities.

One promising avenue of research is the integration of CBR with deep learning tech-
niques for phishing email detection. Case-based reasoning, a problem-solving paradigm
that utilizes past experiences to address new problems, offers the potential to comple-
ment the pattern recognition capabilities of deep learning models. By leveraging his-
torical phishing cases and the adaptive learning capabilities of deep neural networks, a
hybrid CBR-deep learning approach could potentially offer improved detection accuracy
and resilience against evolving phishing tactics.

This chapter explores the synergistic potential of combining case-based reasoning and
deep learning for content-based phishing email detection.

6.2 Architecture

This chapter presents phishing email detection as a classification problem, proposing a
novel hybrid approach that integrates deep learning with CBR. Our methodology leverages
deep learning techniques to construct optimal case representations, which are subsequently
utilized within the CBR cycle to enhance classification accuracy.

We introduce Deep Learning-augmented Case-Based Reasoning (DL-CBR), a com-
prehensive framework that encompasses five interconnected stages within a single cycle:
Representation, Retrieve, Reuse, Retain, and Revise (5R). Figure 6.1 illustrates the ar-
chitectural overview of our model, delineating these five stages and their intricate inter-
actions.

Prior to deploying the model for phishing email detection, two crucial initialization
steps must be completed. First, the deep learning feature extraction model must un-

78

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

dergo thorough training using a designated training dataset. Second, the system’s case
base must be populated with a diverse set of carefully curated cases, establishing the
foundational knowledge for the CBR component. This dual initialization process ensures
that both the deep learning and CBR components are adequately prepared for effective
phishing detection.

Figure 6.1: Overview of the proposed Deep Learning-augmented Case-Based Reasoning (DL-
CBR) system [Remmide et al., 2024c]

6.2.1 Representation (feature extraction)

CBR is a problem-solving paradigm that utilizes past experiences to address new chal-
lenges. In our context of phishing email detection, each new email represents a case that
can be modeled in various formats, such as feature vectors, structured data, or textual
representations [Bergmann et al., 2005]. This research adopts a feature vector represen-
tation, extracted using a neural network. The process starts with feeding the system the
incoming emails, which are preprocessed to isolate the body text. After removing noise
and irrelevant elements such as HTML tags, hyperlinks, encoded characters, punctuation,
and stop words the emails are tokenized at the word level.

The neural network architecture consists of a TCN, a Bi-LSTM layer, and a final
dense layer. However, since we are not training a conventional classifier, standard learn-
ing methods are not applicable. Instead, we employ a more advanced technique: the
N-pair multi-class loss function. Figure 6.2 illustrates the overall architecture of our deep
learning-based feature extraction, and each component is detailed in the following sub-
sections.

79

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

Figure 6.2: Overview of the feature extraction process steps [Remmide et al., 2024c]

6.2.1.1 Data preprocessing

Preprocessing is a key step in NLP, particularly when working with email data. It trans-
forms raw text into a cleaner and more structured form, ready for analysis. This process
involves several important tasks aimed at reducing noise and ensuring consistency across
the data.

The first step is case normalization, where all text is converted to lowercase. This pre-
vents the same word from being treated differently due to capitalization. Next, common
stop words like "a," "the," and "is" are removed because they occur frequently but do
not add much meaning to the text.

After that, we remove unnecessary symbols and punctuation (e.g., commas, periods,
brackets) that do not typically contribute to the meaning of the content. For email-specific
elements, such as email addresses, URLs, or signatures, special handling is applied they
are removed.

Finally, tokenization is performed. This step breaks the text into smaller units (words)
making it easier for later steps. The pseudocode for this preprocessing sequence is pre-
sented in Algorithm 2.

Algorithm 2 Algorithm of data preprocessing [Remmide et al., 2024c]
Input: E-mail messages
Output: list of words
1: list ← []
2: For each E-mail message E
3: LowerCase(E)
4: Remove(punctuation, stopword, numbers, whitespace characters from E)
5: list.append(Split(E))
6: end for
7: return list

80

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

6.2.1.2 Word embedding

Word embedding is a crucial technique in NLP that transforms raw textual data into
vector representations suitable for machine learning and deep learning algorithms. This
process maps words to dense vectors of real values, preserving semantic relationships
and contextual information. For instance, words with similar meanings, such as "king"
and "queen," are positioned closely in the embedding space, while semantically disparate
words like "joyful" and "miserable" are situated far apart.

To enhance generalization, especially when working with limited training data, word
embeddings are typically pre-trained on extensive, unannotated corpora. Several promi-
nent embedding techniques exist, including Word2Vec, GloVe [Pennington et al., 2014],
and FastText. This study employs GloVe embeddings, specifically those trained by Pen-
nington et al. [Pennington et al., 2014] on a corpus of 27 billion tokens from Twitter
tweets.

The embedding process for a given text input, such as an email, is illustrated in Figure
6.3. The embedding layer takes a sequence of words, denoted as x1, ..., xn, where n ≤ 100,
meaning we consider a maximum of 100 words per email. Each word xi is converted into a
100-dimensional GloVe vector, which captures its meaning based on the context in which
it appears.

Formally, let E : V → Rd be the embedding function that maps words from the
vocabulary V to d-dimensional vectors (in this case, d = 100). The email can then be
represented as a matrix X ∈ Rn×d, where:

X =


E(x1)

E(x2)
...

E(xn)


This representation preserves both the semantic meaning of individual words and their

sequential order within the email. The output of the embedding layer for each email is a
two-dimensional array of shape (100, 100), where each row corresponds to a word vector,
and each column represents one of the 100 dimensions of the GloVe vectors.

Using this embedding method, we turn the raw email text into a meaningful repre-
sentation that captures relationships between words, which helps improve classification
task.

81

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

Figure 6.3: Word embedding process for a single email [Remmide et al., 2024c]

6.2.1.3 Network (Bi-LSTM+TCN model with attention)

In this study, we introduce a hybrid model that combines Bi-LSTM networks and TCN
with an attention mechanism. This architecture is designed to capture both sequential
and contextual dependencies from the email data, while focusing on the most relevant
information for case representation. Figure 6.4 provides an overview of the model’s archi-
tecture.

82

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

Figure 6.4: Architecture of the proposed deep learning model for feature extraction [Remmide
et al., 2024c]

Bidirectional LSTM Layer The model begins with a Bi-LSTM layer [Hochreiter and
Schmidhuber, 1997, Schuster and Paliwal, 1997], which extracts semantic features from
the input sequence. Bi-LSTM networks consist of three gates: the forget gate, input
gate, and output gate, denoted as ft, it, and ot, respectively. The forget gate determines
which information to discard from the cell state, while the input gate selects which new
information to store. The cell state is updated accordingly, and the output gate generates
the final output.

The Bi-LSTM cell operates on three inputs: the hidden state ht−1, the memory state
ct−1, and the current input xt, representing the t-th word in the email. The cell’s output
is computed using the following equations:

it = σ(Wixt + Uiht−1 + bi) (6.1)

83

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

ft = σ(Wfxt + Ufht−1 + bf) (6.2)

c̃i = tanh(Wcxt + Ucht−1 + bc) (6.3)

ci = fi ⊗ ct−1 + it ⊗ c̃t (6.4)

ot = σ(Woxt + Uoht−1 + bo) (6.5)

ht = ot ⊗ tanh(ct) (6.6)

Where Wj,Uj are weight matrices that represent learning parameters and bj are the
bias vectors for Bi-LSTM j ∈ {i, f, o, c}. The symbols σ(·) and tanh(·) denote the element-
wise sigmoid and hyperbolic tangent functions, and ⊗ is the element-wise multiplication.
The initial values of h0 and c0 are 0. ht is the hidden state is the final output of the
Bi-LSTM at time t.

Temporal Convolutional Network Layer The second layer is the TCN layer [Bai
et al., 2018,Remmide et al., 2022b,Aouchiche et al., 2024], which performs deeper feature
extraction. The TCN receives the final hidden state ht from the Bi-LSTM and processes
it using dilated convolutions to increase the receptive field. The TCN also incorporates
residual connections to stabilize training and prevent gradient issues. The operation for
a dilated convolution is defined as:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (6.7)

Where d represents the dilation factor, k is the size of the convolution kernel, and s− d · i
determines the receptive field size.

Attention Mechanism The third layer is the attention mechanism [Bahdanau et al.,
2014], which enhances the model’s focus on key information while ignoring less relevant
details. The attention mechanism computes a weight vector that assigns importance to
each word in the sequence. The attention score is calculated as:

U = tanh(WwX + bw) (6.8)

a = softmax(U) (6.9)

c = XaT (6.10)

Here,Wwand bw are the weight and bias parameters of the attention layer, X represents
the output from the previous layer, and a is the attention score that determines which

84

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

parts of the input should be focused on.
Following the attention layer, we apply dropout (with a 0.2 rate) to prevent overfitting,

followed by a dense layer with hyperbolic tangent activation. The dense layer outputs a
vector that represents the case of the email, with the size of this layer determining the
dimensionality of the case representation. Figure 6.5 illustrates the step-by-step processing
of an input sequence through each layer of the model.

Figure 6.5: Diagram detailing inputs and outputs at each stage of the feature extraction deep
learning model. [Remmide et al., 2024c]

6.2.1.4 Multi-class N-pair loss function

Since our goal is to generate effective representations of email cases, traditional training
methods—based on calculating the loss between predicted and true outputs—are not
applicable. Instead, we employ a deep metric learning approach known as the multi-class
N-pair loss function [Sohn, 2016].

The multi-class N-pair loss function is designed to bring similar emails from the same
class closer in the embedding space, while pushing apart emails from different classes.
It extends the concept of triplet loss by simultaneously considering multiple negative
examples rather than a single negative example for each update. This increases the
efficiency and robustness of the training process.

Given N pairs of emails {(x1, x+1), ..., (xN , x+N)} from N classes and feature vector f ,

85

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

the loss is formulated as follows (eq. 6.11) :

LN−pair−mc({(xi, x+i)}Ni=1; f) =
1

N

N∑
i=1

log

(
1 +

∑
j 6=i

exp(f(xi)
>f(x+j)− f(xi)>f(x+i))

)
(6.11)

Where N represents the total number of email pairs with matching labels, fi is the
embedding of the email xi and f+ is the embedding of its corresponding positive example
x+i . The loss function works by minimizing the distance between positive email pairs
while maximizing the distance between negative pairs (i.e., emails from different classes).
This helps in creating a more discriminative and meaningful email representation for
subsequent classification task.

6.2.2 Retrieve

The retrieve stage operates on email representations generated by the neural network
in the feature extraction phase. These representations, along with their corresponding
classifications, populate the case base in a high-dimensional embedding space.

For new email classification, the process follows two key steps. First, the neural
network generates an embedding representation for the incoming email. Second, the
system queries the case base to identify similar, previously classified cases using a k-NN
approach.

The similarity between cases is quantified using Euclidean distance in the embedding
space. For two cases P and Q, each with n features, the Euclidean distance is calculated
as:

d(P,Q) =

√√√√ n∑
i=1

(pi − qi)2 (6.12)

where pi represents the i-th feature of case P, qi represents the i-th feature of case Q, and
n is the total number of features.

The retrieval process involves computing similarities between the new case and all cases
in the case base, ordering cases by decreasing similarity (increasing Euclidean distance),
and selecting the top K most similar cases. In our DL-CBR implementation, we set K=3,
retrieving the three most similar cases for subsequent processing.

6.2.3 Reuse

The reuse stage is critical for determining a solution to the new problem based on retrieved
cases. This process can range from directly applying the solution of the most similar case

86

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

to requiring sophisticated adaptation mechanisms, depending on the similarity between
retrieved cases and the new problem.

In our approach, we implement a weighted voting mechanism using the K most similar
retrieved cases. Each case contributes a vote towards either the ’phishing’ or ’legitimate’
classification based on its stored label. The final classification is determined by majority
rule, where the class receiving the most votes becomes the predicted label for the new
case.

However, our system incorporates an important safety mechanism: if all retrieved
cases exhibit low similarity scores (falling below a predetermined threshold) to the new
case, the DL-CBR system automatically classifies the email as phishing and flag it for
humain validation. This conservative approach is based on the principle that if an email
doesn’t closely resemble any known legitimate emails in the case base, it warrants careful
scrutiny as potentially malicious.

This default-to-phishing strategy reflects our system’s design philosophy of prioritizing
security over convenience. We deliberately optimize to minimize false negatives (unde-
tected phishing attempts) at the potential cost of increasing false positives (legitimate
emails incorrectly flagged as phishing). This trade-off acknowledges that the consequences
of missing a phishing attack typically outweigh the inconvenience of manually verifying a
falsely flagged legitimate email.

6.2.4 Revise

The revision stage is crucial for enabling continuous learning in our Case-Based Reasoning
system. Through this stage, the system evolves and improves by learning from both
successes and failures, with human experts playing a pivotal role in the verification and
correction process.

Our implementation employs a hybrid human-in-the-loop approach. When the system
encounters emails with similarity scores below a predefined confidence threshold, these
cases are automatically flagged for expert review. Domain specialists then examine these
flagged emails, leveraging their expertise to either validate the system’s classification or
provide corrective feedback. This expert-driven revision process operates through several
key mechanisms:

• Manual Validation: Human reviewers examine flagged emails, confirming or over-
riding the system’s initial classification.

• Feedback Integration: Cases where expert assessment differs from the system’s
prediction are incorporated into the case base with the corrected classification.

87

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

• Proactive Review: Domain experts can initiate reviews of any emails they suspect
may have been misclassified, regardless of the system’s confidence level.

• Customization Capability: The system supports adaptation to specific organiza-
tional requirements through expert feedback, allowing for fine-tuning of classification
criteria.

This iterative feedback loop significantly enhances the robustness of our DL-CBR sys-
tem. By continuously incorporating expert knowledge, the system becomes increasingly
adept at handling ambiguous or borderline cases that initially fell below the confidence
threshold. Importantly, this approach maintains a balance between automated efficiency
and human expertise, ensuring both scalability and accuracy in email classification.

6.2.5 Retain

The retain stage represents the culmination of the CBR cycle, where newly solved cases
are selectively incorporated into the case base. This careful curation process ensures the
continuous evolution and enhancement of the system’s problem-solving capabilities while
maintaining the efficiency and relevance of the case base.

Our system employs a stringent evaluation process for case retention. A new case
must satisfy at least one of the following criteria to be considered for inclusion. First, the
case exhibits low similarity to existing cases in the case base, as determined by comparing
feature vectors using our established similarity metrics. This criterion ensures that each
retained case contributes unique information, preventing redundancy and maintaining
the diversity of the case base. Second, the case has undergone human expert verification,
providing a high degree of confidence in its correctness and relevance.

The retention strategy embraces both positive and negative experiences. Positive cases
serve as valuable precedents for solving similar future problems, while negative cases func-
tion as critical learning examples, preventing the repetition of past errors. This balanced
approach to retention aligns with the fundamental principles of case-based reasoning, as
established by A [Aamodt and Plaza, 1994].

Each retained case incrementally enhances the system’s problem-solving capabilities.
As [Richter and Weber, 2013] notes, this iterative expansion of the case base exemplifies
the essence of continual learning in CBR systems. With each cycle, the system becomes
more adept at leveraging past experiences to address new challenges.

To maintain optimal performance, our system regularly evaluates the utility of retained
cases, employs efficient indexing structures to manage the growing case base, and balances
the trade-off between comprehensive coverage and computational efficiency.

88

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

6.3 Experiments and Results

We conducted our experiments using a computer equipped with a 3.60 GHz CPU, 16 GB
of RAM, and a GTX 1060 GPU. The model implementation utilized TensorFlow [Abadi
et al., 2016] and Keras frameworks.

6.3.1 Dataset

A significant challenge in phishing email detection research is the lack of a standardized,
large-scale dataset for model development and comparison. Researchers typically rely on
either open-source or proprietary datasets. Some of the most widely recognized datasets
include the Enron Email Corpus [Enron email dataset, 2011], the SpamAssassin Public
Corpus [Spam assassin project, 2015], the Nazario Phishing Corpus [Jose nazario phishing
email corpus, 2004], and the Fraud Dataset [CLAIR collection of fraudemail, 2008].

To thoroughly assess the robustness and generalization capabilities of our proposed
Deep Learning-based Case-Based Reasoning (DL-CBR) model, we employed two distinct
datasets for evaluation.

Dataset 1 (D1) is a combination of three public corpora, which includes legitimate
emails sourced from the Enron Corpus and the SpamAssassin Public Corpus (comprising
both "easy ham" and "hard ham") as well as phishing emails collected from the Spa-
mAssassin Public Corpus and the Nazario Phishing Corpus. The total composition of
this dataset consists of 34,250 emails, with 28,137 being legitimate and 6,113 classified as
phishing.

In contrast, Dataset 2 (D2) merges legitimate emails sourced solely from the Enron
Corpus with fraudulent emails obtained from a dedicated fraud dataset. This dataset
contains a total of 28,795 emails, including 25,596 legitimate emails and 3,199 phishing
emails.

When comparing the two datasets, several key characteristics emerge. First, regarding
source diversity, D1 combines data from three different corpora, whereas D2 is based on
only two sources, which may lead to a greater degree of consistency in D2. Additionally,
the class balance reveals a greater imbalance in D2, with a ratio of 8:1 for legitimate to
phishing emails, compared to D1’s ratio of 4.6:1. Finally, D2’s reliance on a single source
for legitimate emails may contribute to more consistent samples. Table 6.1 summarizes
the composition of both datasets after removing duplicates.

Overall, by utilizing these two datasets, we aim to comprehensively evaluate our
model’s performance under diverse and realistic conditions, thereby enhancing its ap-
plicability in real-world scenarios.

89

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

Tableau 6.1: Description of Datasets Used in Phishing Email Detection Experiments [Remmide
et al., 2024c]

Dataset Legitimate Phishing Total
D1 28137 6113 34250
D2 25596 3199 28795

6.3.2 Experiment setup

In this experimental study, we employed a model utilizing pre-trained GloVe embeddings
with 100 dimensions, followed by a contrastive representation learning network. The
architecture includes a Bi-LSTM with 64 hidden units and a TCN with 32 hidden units,
a kernel size of K=2, and dilation factors of d=[1,2,4,8,16]. This is complemented by an
attention layer with a dropout rate of 0.2, and a dense layer containing 128 hidden units
with tanh activation functions.

To facilitate objective evaluation, we implemented a series of baseline models, includ-
ing AdaBoost, Decision Tree, LSTM, and CNN. Additionally, CBR approaches such as
TF-IDF+CBR and Bag-of-words+CBR were compared with our DL-CBR model. TF-
IDF and Bag-of-Words techniques were utilized to extract simple lexical features from the
text, representing cases for the CBR case base. Each dataset was split into 90% training
and 10% testing data using stratified randomization to maintain the original phishing-to-
legitimate email ratio. To train the network, we implemented the N-pair multi-class loss
function alongside the Adam optimizer, set with a learning rate of 0.001 for a duration of
100 epochs and L2 regularization of 0.001. The TCN applies ReLU activation. Addition-
ally, we implemented a CBR classifier in Python. Table 6.2 summarises the parameters
used in the experiment.

We conducted extensive experimentation with various configurations, testing different
kernel sizes (k) of 2, 3, 4, and 5, and dilation factor sets, including d=[1,2,4], d=[1,2,4,8],
and d=[1,2,4,8,16]. Adjustments were also made to the dimensions of GloVe, Bi-LSTM,
and TCN. Ultimately, the hyperparameters presented yielded the most favorable out-
comes, surpassing alternative configurations by a margin of 0.2% in terms of accuracy
and precision.

Additionally, we implemented a comparative model using a different architecture: this
model also utilized pre-trained GloVe embeddings with 100 dimensions, followed by a
contrastive representation learning approach consisting of a CNN with 25 hidden layers,
a max-pooling layer with a pool size of 2, and a Bi-LSTM with 50 hidden units. This
architecture culminates in a dense layer of 100 units that represents the final output. To

90

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

mitigate overfitting, we included a dropout of 0.3 between the third and fourth layers.
This model was trained using contrastive loss and the Adam optimizer, followed by a
CBR classifier implemented in Python.

To facilitate objective evaluation, we implemented a series of baseline models, including
AdaBoost, Decision Tree, LSTM, and CNN. Additionally, CBR approaches such as TF-
IDF+CBR and Bag-of-words+CBR were compared with our DL-CBR model. TF-IDF
and Bag-of-Words techniques were utilized to extract simple lexical features from the
text, representing cases for the CBR case base. Each dataset was split into 90% training
and 10% testing data using stratified randomization to maintain the original phishing-to-
legitimate email ratio.

Tableau 6.2: Parameters and Configurations Used in the Experimental Setup of phishing email
detection

Parameter Value
GloVe Embedding Dimensions 100
Bi-LSTM Hidden Units 64
TCN Hidden Units 32
TCN Kernel Size 2
TCN Dilation Factors [1, 2, 4, 8, 16]
Dropout Rate 0.2
Dense Layer Hidden Units 128
Activation Function (Dense Layer) tanh
Training Loss Function N-pair multi-class loss
Optimizer Adam
Learning Rate 0.001
Number of Epochs 100
L2 Regularization 0.001
TCN Activation Function ReLU
Dropout Between Layers 0.3 (between 3rd and 4th layers)

6.3.3 Results and Discussion

Table 6.3 presents the performance of various machine learning (ML) and deep learning
(DL) algorithms for phishing email detection on two datasets, D1 and D2.

91

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

Tableau 6.3: Performance of ML and DL algorithms for the detection of phishing emails
[Remmide et al., 2024c]

Dataset model Precision Recall Accuracy F-measure

D1

AdaBoost 55.31 61 84.24 58.01
Decision Tree 51.90 60.54 82.95 55.89
Bi-LSTM 95.74 92 97.84 93.83
CNN 92.86 94.72 97.76 93.78
TF-IDF+CBR 61.50 39.36 84.78 48
Bag-of-word+CBR 43.93 61.43 80.60 36.78
CNN+bi-LSTM-CBR 95 95.56 96.18 95.01
DL-CBR 95.25 95 98.28 95.12

D2

AdaBoost 57.37 66.14 90.77 61.45
Decision Tree 56.36 66.14 90.54 60.86
Bi-LSTM 99.81 92.70 99.17 96.12
CNN 99.64 96.18 99.53 97.87
TF-IDF+CBR 75.60 10.76 89.69 18.84
Bag-of-word+CBR 68.75 3.81 89.11 7.23
CNN+bi-LSTM-CBR 98.06 97.50 97.81 98.18
DL-CBR 98.71 97.74 99.61 98.25

Our proposed DL-CBRmodel exhibited strong overall performance across both datasets,
D1 and D2, consistently outperforming the best baseline model, Bi-LSTM. On D1, it
achieved a low false positive rate of 0.96% and a high true negative rate of 99.03%, with
precision at 95.25%, recall at 95%, accuracy at 98.28%, F-measure at 95.12%, and an
AUC of 96.74%. For D2, the model’s performance improved further, featuring a very low
false positive rate of 0.13% and a high true negative rate of 99.86%, alongside impressive
scores of precision at 98.71%, recall at 97.74%, accuracy at 99.61%, F-measure at 98.25%,
and an AUC of 98.80%.

The true positive rate on D1 was 95%, while on D2 it was 97.74%, indicating the
model’s effectiveness in accurately identifying a significant majority of phishing emails.
Additionally, the confusion matrix for our DL-CBR model, depicted in Figures 6.6a and
6.6b, shows high values for true positives (TP) and true negatives (TN), with minimal
false positives (FP) and false negatives (FN). The model achieved an AUC of 98.79% and
minimized the false negative rate to approximately 0.0225, underscoring its efficacy in
phishing detection.

92

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

(a) Confusion Matrix Displaying Results from the
Test Set of Dataset 1.

(b) Confusion Matrix Displaying Results from the
Test Set of Dataset 2.

Figure 6.6: Confusion matrices [Remmide et al., 2024c]

These comprehensive results demonstrate the model’s ability to reliably differentiate
between legitimate and phishing emails. The high precision and recall reflect its profi-
ciency in correctly classifying both categories, while the AUC scores indicate excellent
discrimination, particularly in dataset D2, where classification approached perfection.
The low false positive rates are encouraging, as misclassifying legitimate emails can pose
significant operational challenges.

Although some phishing emails were missed, the model effectively avoided incorrectly
flagging genuine emails as threats. The notably strong performance on dataset D2 em-
phasizes the model’s generalization capabilities across diverse email distributions.

The challenges posed by dataset D1, with its varied legitimate email sources and
multiple phishing techniques, contribute to a more robust evaluation of the model’s per-
formance. As shown in Table 6.3, our model outperformed other CBR models that utilized
traditional text representation techniques, such as TF-IDF and Bag-of-Words.

In addition to comparing our model with the baseline models, we also compare it
with published studies in terms of accuracy, precision, recall, and F-measure as shown in
Table 6.4. Our DL-CBR model demonstrates competitive performance in phishing email
detection. Notably, [Fang et al., 2019] achieved slightly better results; however, their
method utilised both headers and body text for detection, while our model relies solely
on the email body. Furthermore, while [Bountakas and Xenakis, 2023] achieved superior

93

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

precision, recall, and F-measure, our model excels in accuracy, relying exclusively on
textual features derived from semantic representations learnt from raw text through word
embedding and sequence modelling layers.

Tableau 6.4: Comparison of the Proposed Model with Related Work in Phishing Email Detec-
tion [Remmide et al., 2024c]

Author Precision Recall Accuracy F-measure
[Fang et al., 2019] 99.66 99.00 99.84 99.33
[Alhogail and Alsabih, 2021] 98.5 98.3 98.2 98.55
[Halgaš et al., 2020] 97.45 95.98 96.74 96.71
[Halgaš et al., 2020] - 98 96.74 97
[Nguyen et al., 2018] 97 95 99 96
[Bountakas and Xenakis, 2023] 99.43 99.43 99.43 99.42
DL-CBR 98.71 97.74 99.61 98.25

Furthermore, our DL-CBR model outperformed [Nguyen et al., 2018], [Halgaš et al.,
2020], [HB et al., 2018], [Alhogail and Alsabih, 2021].

In addition to competing with published studies, our approach benefits from leverag-
ing human expertise to rectify misclassified emails during the revision process. Correctly
labeled instances from these misclassifications are reintegrated into the case base, en-
hancing the classifier’s performance on similar future inputs by providing a richer set of
examples for retraining. This iterative process, as highlighted in related work [Perner,
2019,LOPEZ DE MANTARAS et al., 2005,Avr, 2008], can improve system accuracy and
adaptability over time, given the right conditions and high-quality data.

Incorporating feedback from human reviewers may also bolster our model’s perfor-
mance against zero-day attacks. The insights provided can aid in identifying and address-
ing emerging threats that have not been encountered previously, thereby enhancing the
system’s ability to detect and mitigate such risks.

While the manual revision method is valuable for specific scenarios with limited data,
such as smaller, mission-critical environments, it may not scale effectively for larger
datasets. Human review may hinder the system’s ability to meet real-world demands.
For larger-scale applications, a hybrid approach that combines manual revision with au-
tonomous learning techniques may be necessary to ensure both accuracy and efficiency.
This strategy could harness human expertise for critical tasks while enabling the system
to learn and adapt independently as data volumes increase.

94

CHAPTER 6. DEEP LEARNING AND CASE-BASED REASONING FOR PHISHING EMAIL DETECTION

6.4 Conclusion

In this chapter, we introduced DL-CBR, a novel approach that combines Case-Based
Reasoning with deep learning to effectively detect phishing emails. Utilizing pre-trained
GloVe embeddings, a TCN, and a Bi-LSTM network, our model achieved impressive re-
sults, including a precision of 98.71% and low false negative rates across two datasets.
Despite its strong performance, we recognized limitations in automation and case reten-
tion, suggesting future research directions, including semi-supervised learning techniques.

To address the critical issue of privacy in detecting phishing attempts, we will shift
our focus to SMS phishing detection, or "smishing," utilizing federated learning. This
approach enables us to enhance security while keeping sensitive user data on local devices,
ensuring that personal information remains private.

95

Chapter 7

A Privacy-Preserving Approach for
Detecting Smishing Attacks using
Federated Deep Learning

7.1 Introduction

In the last few years, the expansion of mobile technology has allowed users unprecedented
convenience for communication and information use. This increase in smartphone usage
has simultaneously exposed people to new kinds of cyber threats, with smishing—using
SMS messages for phishing attacks—emerging as a particularly threatening issue. In
smishing, attackers exploit the trust that people have in SMS communication, tricking
them into either revealing sensitive information or running malicious software. This phe-
nomenon, first named by McAfee [Kang et al., 2014], is a company that excels in Internet
security.

The analysis of potential threats in smishing attacks encounters unique challenges
because of the restricted nature of mobile devices, the secretive nature of SMS content, and
the imperative to maintain user privacy during the analysis. The traditional centralised
technique for threat detection creates major privacy concerns since it typically collects user
data in one location. As a direct result, there is an essential need for privacy-respective
solutions that can monitor these attacks without infringing on user privacy.

This chapter presents a novel contribution to the field: an approach to privacy pro-
tection for the detection of smishing attacks leveraging Federated Deep Learning. By
taking advantage of federated learning, this approach permits collaborative training of
deep learning models across decentralised devices without transferring raw data to a cen-
tral server. This maintains that sensitive data continues to stay securely on users’ devices,

96

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

therefore enhancing privacy and improving the recognition of smishing attacks.

7.2 Architecture

In developing an effective smishing detection system, we explored various learning models,
including both unfederated and federated learning approaches.

Figure 7.1: Pipeline of the smishing detection model

97

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

The overall architecture of the proposed solution is depicted in Figure 8.1. The ap-
proach starts with preprocessing the dataset, applying techniques like tokenisation, re-
moving punctuation, and converting text to lowercase. During the next phase, we use the
GloVe word embedding technique to turn the preprocessed text into a high-dimensional
vector space. This vectorised representation is then provided to a classification model
that classifies smishing messages apart from legitimate ones. The model is trained on
the preprocessed data combined with GloVe embeddings. Finally, the performance of the
classification model is evaluated using metrics like precision, recall, F1 score, and AUC
to assess its effectiveness in detecting smishing messages.

Initially, we experimented with unfederated learning models, as shown in Figure 7.2.
Different algorithms were involved: LSTM, CNN, SVM, Decision Tree, Random Forest,
MLP, and AdaBoost. These models have been tested on separate data, yielding insights
into their performance and limitations for smishing detection, based on metrics such as
accuracy, precision, recall, and F1 score.

Figure 7.2: Architecture of the Unfederated Learning Model for Smishing Detection

After that, we shifted to a federated learning framework, shown in Figure 7.3. The
process of federated learning enables distributed devices to collaboratively train a model
without sharing raw data. In our setup, each device trains its own model locally, and
only shares model parameters with a central server to uphold data privacy. This method

98

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

successfully handles the issue of data distribution imbalance and privacy concerns while
maintaining the model’s performance.

Figure 7.3: Federated learning model architecture for smishing detection [Remmide et al.,
2024d]

7.3 Dataset

The SMS phishing dataset used in this study was developed by Sandhya Mishra and
Devpriya Soni [Mishra and Soni, 2023]. It contains a total of 5,971 SMS messages, cate-
gorised into three classes: legitimate (Ham), spam, and phishing. More specifically, the
dataset composes of 4,844 valid messages, 489 spam messages, along with 638 phishing
messages. The illustration in Figure 7.4 reveals the distribution of SMS messages.

99

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

Figure 7.4: SMS phishing dataset distribution

7.4 Data Preprocessing and word embedding

The initial stages of our approach focus on preparing raw data for model training through
preprocessing and feature extraction. These crucial steps ensure that the input data
is appropriately formatted for machine learning models and that it captures the most
relevant information for smishing detection.

Our preprocessing pipeline applies a series of techniques to clean and standardize the
raw text data, improving both the quality and consistency of the input:

• Tokenization: The raw text is segmented into individual words or subword units,
enabling the model to process linguistic information at a granular level.

• Punctuation Removal: All punctuation are removed to reduce noise, allowing
the model to focus on meaningful textual content.

• Lowercase Conversion: The entire text corpus is converted to lowercase to ensure
uniformity, preventing the model from treating identical words with varying cases
(e.g., "Apple" vs. "apple") as distinct entities.

100

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

• Stopword Removal: Commonly used words that offer little semantic value (e.g.,
"the," "is," "and") are eliminated to reduce dimensionality and emphasize more
informative terms.

• URL and Phone Number Normalization: URLs and phone numbers are re-
placed with standardized tokens, allowing the model to generalize these entities
without being influenced by specific addresses or numerical patterns.

Following preprocessing, the cleaned text is transformed into numerical representations
suitable for input into machine learning models. This transformation is performed using
the Global Vectors for Word Representation (GloVe) algorithm, which generates high-
dimensional vector representations for each word.

The output of this preprocessing and embedding pipeline is a set of fixed-length vector
sequences. Each sequence represents an entire text message, where individual elements
within the sequence correspond to high-dimensional vectors that capture both the seman-
tic meaning of words and their contextual relationships within the message.

7.5 Building classification model

We study two methods for building classification model for smishing texts: unfederated
learning and federated learning.

Unfederated learning

In the unfederated learning approach, we experimented with several well-established ma-
chine learning and deep learning models, including LSTM, Bi-LSTM, CNN, SVM, Deci-
sion Tree, Random Forest, MLP, and AdaBoost. Various performance metrics were used
to evaluate the effectiveness of each model.

Federated Learning

The second approach utilizes federated learning, which allows the training of models
on decentralized data sources without sharing the raw data between devices. In this
framework, we focus on deep learning models, specifically LSTM, Bi-LSTM, CNN, and
MLP.

We chose these algorithms due to their ability to handle the complex patterns and
relationships found in textual smishing data. Deep learning algorithms excel at identifying
intricate patterns and connections in data using multiple layers of neural networks. This

101

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

is particularly advantageous for smishing detection, as text messages often contain subtle
linguistic and contextual information that deep learning models can better capture.

Algorithm 3 presents an overview of the federated learning process for smishing de-
tection, which consists of a coordinating server and several client devices. Each client,
represented by C, where C ∈ [1, 2, 3,4], has its own set of local SMS data.

Algorithm 3 Federated Learning for Smishing Detection [Remmide et al., 2024d]
Input: Smishing dataset
Output: Model performance (e.g., Accuracy, F1-score, and Precision)
/* Server-side */
Server: Initialize and send global model Wt to all C clients
for each epoch e ∈ E do

for each client c ∈ {1, 2, ..., C} in parallel do
Wct ← ClientUpdate(Wct) //local updates

Perform weighted averaging and update the global model: Wt+1 ←
∑(

nc

n

)
·Wct , where

nc is the number of samples in client c and n is the total number of samples
Send the updated global model Wt+1 to all clients

/* Client-side at each client c */ ClientUpdate(Wct):
/* Runs once at the beginning */
Prepare smishing dataset:

• Data extraction

• Data preprocessing

• Perform an 80:20 train-test split

• Tokenization

/* Runs repetitively during training/testing */ whileglobal model Wt is received
from the server do

Set Wct = Wt

/* Training/testing on the local smishing dataset X with nc samples */
for each batch b ∈ B do
Wct ← Wct − η ·Of (Wct ;X), for X ∼ Pc

/* B is the batch size, η is the learning rate, and Of (Wct ;X) represents
gradients with respect to the cost function */

Send locally trained Wct to the server for aggregation

The federated learning process proceeds as follows:

1. Local Training: Each client device trains a local model using its smishing dataset
DC . After training, the model on each client c is updated to WCt. This training is
performed independently on each client’s local data without sharing the raw data.

102

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

2. Model Aggregation: After each client updates its local model, the parameters
are sent to the central server. The server then performs aggregation by calculating a
weighted average. This process results in an updated global model, denoted asWt+1.
The aggregation step can be mathematically represented by equation as shown in
Eq. 7.1:

θglobal =
1

N

N∑
i=1

θi (7.1)

Here, θglobal denotes the global model parameters, N represents the number of par-
ticipating clients, and θi corresponds to the model parameters of the i-th client. The
averaging ensures that each client’s contribution is proportionally incorporated into
the global model.

3. Global Model Distribution: After aggregation, the updated global model Wt+1

is distributed back to all participating clients, ensuring that all clients work with
the most recent version of the model. This synchronization facilitates collaborative
learning among clients.

4. Iterative Training: The process of local training, model aggregation, and synchro-
nization is repeated iteratively over multiple epochs until the global model converges
and achieves optimal performance for smishing detection.

This federated learning setup ensures data privacy by keeping the raw SMS datasets on
the client devices. Instead of transmitting sensitive user data, only model parameters
are exchanged between clients and the central server, ensuring that personal informa-
tion remains secure and confidential throughout the training process. This approach is
particularly suited for scenarios where user privacy is paramount, such as mobile service
providers collaborating on smishing detection without exposing individual users’ SMS
content.

Table 7.1 details the optimized hyperparameters of the proposed approach.

103

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

Tableau 7.1: Hyperparameters for Models in Smishing Detection

Model Hyperparameter Value

LSTM, Bi-LSTM
CNN, MLP

Batch Size 64
Dropout Rate 0.3 (LSTM), 0.4 (Bi-LSTM, MLP)
Optimizer Adam
Epochs 50 (LSTM, Bi-LSTM), 30 (CNN, MLP)

LSTM
LSTM Units 100
Layers 2

Bi-LSTM
LSTM Units (per direction) 128
Layers 2

CNN
Conv. Layers 3
Filter Sizes [64, 128, 256]
Kernel Size 3x3

MLP
Hidden Layers 2
Neurons (per layer) [128, 64]

SVM

Kernel Radial Basis Function (RBF)
Regularization (C) 1.0
Gamma Scale
Max Iterations 1000

Decision Tree

Max Depth 20
Min Samples Split 2
Min Samples Leaf 1
Criterion Gini

Random Forest

Number of Trees (n_estimators) 100
Max Depth 20
Min Samples Split 2
Criterion Gini

AdaBoost
Number of Trees (n_estimators) 50
Base Classifier Decision Tree
Max Depth of Base Estimator 1

7.6 Results

In this study, we evaluated the performance of several deep learning and traditional ma-
chine learning models for smishing detection. Both centralized (unfederated) and de-

104

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

centralized (federated) learning approaches were tested. Performance was assessed using
standard metrics: accuracy, precision, recall, and F1-score, providing a comprehensive
assessment of each model’s performance.

7.6.1 Unfederated learning

In our study, we evaluated different deep learning and machine learning models to detect
smishing in our dataset, such as: LSTM, Bi-LSTM, CNN, SVM, Decision Tree, Random
Forest, MLP and AdaBoost.

Deep learning algorithms :

Table 7.2 summarises the performance of the implementation of the four deep learning
models: LSTM, Bi-LSTM, CNN, and MLP in the centralised approach.

Tableau 7.2: Performance of Deep Learning Models (Unfederated Learning) [Remmide et al.,
2024d]

Algorithm Accuracy Precision Recall F1-Score
LSTM 87.86% 81% 88% 84%
Bi-LSTM 92.3% 92% 91% 91%
CNN 91.54% 91% 92% 91%
MLP 80.5% 69% 81% 74%

The results show that the Bi-LSTM model achieved the highest accuracy at 92.30%.
The CNN model followed closely behind with an accuracy of 91.54%. Both LSTM and
MLP models showed lower performance compared to Bi-LSTM and CNN, with accuracies
of 87.86% and 80.5%, respectively.

The confusion matrices of these deep learning models, as illustrated in Figure 7.5,
provide further insights into their classification capabilities.

Machine learning algorithms :

In addition to deep learning models, we evaluated four traditional machine learning al-
gorithms: SVM, Decision Tree, Random Forest, and AdaBoost. The results of these
evaluations are presented in the following table 7.3:

105

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

(a) Confusion Matrix Representing the Performance of the
LSTM model

(b) Confusion Matrix Representing the Performance of the
Bi-LSTM model

(c) Confusion Matrix Representing the Performance of the
CNN model

(d) Confusion Matrix Representing the Performance of the
MLP model

Figure 7.5: Confusion Matrices Showing Performance for LSTM, Bi-LSTM, CNN and MLP
modelss

Tableau 7.3: Performance of Machine Learning Models (Unfederated Learning)

Algorithme Accuracy Precision Recall F1-Score
SVM 73.13% 76% 73% 74%
Decision Tree 80.08% 82% 80% 80 %
Random Forest 88.95% 87% 89% 87%
AdaBoost 86.61% 85% 87% 86%

Among the machine learning algorithms, Random Forest demonstrated the best perfor-
mance with an accuracy of 88.95%, followed by AdaBoost with an accuracy of 86.61%.
Decision Tree performed moderately well with an accuracy of 80.08%, while SVM showed
the lowest performance with 73.13% accuracy.

The confusion matrices for each algorithm are presented in Figure 7.6:

106

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

(a) Confusion Matrix Representing the Performance of
the SVM Model

(b) Confusion Matrix Representing the Performance of
the Decision Tree Model

(c) Confusion Matrix Representing the Performance of
the Random Forest Model

(d) Confusion Matrix Representing the Performance of
the AdaBoost Model

Figure 7.6: Confusion Matrices Showing Performance for SVM, Decision Tree, Random Forest,
and AdaBoost Models

The SVM model Figure 7.6a exhibited the lowest classification accuracy, as seen from
its relatively high rate of false positives and false negatives. The Decision Tree model
Figure 7.6b performed moderately well, though misclassifications were still present. In
contrast, the Random Forest model Figure 7.6c achieved the best performance among
the machine learning algorithms, with fewer misclassifications, especially in distinguish-
ing smishing messages. The AdaBoost model Figure 7.6d showed similar classification
strength, producing balanced metrics and minimizing misclassifications.

7.6.2 Federated Learning

In the federated learning context, we applied the same deep learning models (LSTM, Bi-
LSTM, CNN, MLP) to evaluate their performance. The results of our federated learning
experiments are presented in the following table 7.4 :

107

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

Tableau 7.4: Measures for Assessing the Performance of Federated Learning Models

Algorithm Accuracy Precision Recall F1-Score
LSTM 81.17% 66% 81% 73%
Bi-LSTM 88.78% 88% 89% 87%
CNN 92.38% 92% 92% 92%
MLP 88.87% 88 % 89% 87%

In the federated learning setup, the CNN model achieved the highest accuracy, with
92.38%, surpassing all other models. Both the Bi-LSTM and MLP models performed
well, with accuracies of 88.78% and 88.87%, respectively. The LSTM model, however,
exhibited the lowest performance, with an accuracy of 81.17%.

The confusion matrices for the federated learning models are shown in Figure 7.7.
The CNN model Figure 7.7c continued to demonstrate superior performance, with very
few misclassifications, showcasing its ability to generalize well across the dataset. The
Bi-LSTM model Figure 7.7b also performed strongly, though it had slightly more misclas-
sifications than CNN. Both the MLP and LSTM models Figures 7.7d and 7.7a struggled
more in the federated context, as reflected by their lower classification accuracy.

7.6.3 Synthesis

Our study provides valuable insights into the effectiveness of both federated and non-
federated learning approaches for smishing detection. Comparing the two approaches
reveals that the best-performing model in federated learning, CNN with an accuracy of
92.38%, slightly outperformed the best model in non-federated learning, Bi-LSTM with
an accuracy of 92.3%. This demonstrates the potential of federated learning for smishing
detection while preserving data privacy.

To contextualize our results, we compared them with previous studies using the same
dataset, as illustrated in Table 7.5.

Tableau 7.5: Comparison of Results Between the Proposed Method and Various Classification
Techniques [Remmide et al., 2024d]

Research Algorithm Precision Accuracy Recall F1-Score AUC
[Mishra and Soni, 2021] Backpropagation

Algorithm
84% 97.93% 94% / 98.8%

[Mishra and Soni, 2022] Naive Bayes 93% 91.6% 92% 92% /
[Mishra and Soni, 2022] ANN / 94% / 86.72% /
Our approach CNN 92% 92.38% 92% 92% /

108

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

(a) Confusion Matrix Representing the Performance of the
LSTM model

(b) Confusion Matrix Representing the Performance of the
Bi-LSTM model

(c) Confusion Matrix Representing the Performance of the
CNN model

(d) Confusion Matrix Representing the Performance of the
MLP model

Figure 7.7: Confusion Matrices Showing Performance for federated LSTM, Bi-LSTM, CNN
and MLP models

Our federated learning approach with CNN (92.38% accuracy) performed competitively
compared to centralized approaches in the literature. While the accuracy is slightly lower
than that reported in some previous studies, our method offers significant advantages
in terms of data privacy and security. As each client device in our federated learning
setup trained its own local model with its own private data, and only model updates were
shared with the central server for aggregation. This decentralized approach ensures that
user data remains secure and private, mitigating the privacy issues associated with central
data storage. This makes it particularly well-suited for real-world applications where data
privacy is of paramount importance.

109

CHAPTER 7. A PRIVACY-PRESERVING APPROACH FOR DETECTING SMISHING ATTACKS USING
FEDERATED DEEP LEARNING

7.7 Conclusion

This study has made a substantial contribution to the field of smishing detection by
leveraging federated learning to enhance data privacy. Through a comprehensive analysis
of various machine learning and deep learning models, we demonstrated the efficacy of
federated learning in addressing the challenges of privacy-preserving smishing detection.

Notably, our CNN model, combined with federated learning, achieved an average
accuracy of 92.38%, marking a significant outcome of the study. While this accuracy did
not surpass all existing benchmarks, our primary focus was on balancing performance
with privacy, ensuring that user data remained decentralized and secure. This represents
a significant step forward in the development of privacy-conscious cybersecurity solutions.

In the next chapter, we extend our investigation into phishing detection by employing
authorship verification techniques. This approach focuses on identifying phishing attacks
based on writing style analysis, further enhancing our ability to detect social engineering
threats while safeguarding user privacy.

110

Chapter 8

Authorship Verification for Phishing
Email Detection

8.1 Introduction

In the contemporary digital landscape, the proliferation of online communication chan-
nels has fundamentally transformed interpersonal and organizational relationships, facil-
itating rapid information exchange while simultaneously creating fertile ground for cy-
bercrime [Parvinder, 2017]. Among various cyber threats, phishing attacks represent a
particularly insidious form of social engineering, wherein attackers fraudulently obtain
confidential information by manipulating victims into revealing financial details, pass-
words, or personal information [Awan, 2020].

The efficacy of phishing attacks stems from their exploitation of human psychological
vulnerabilities rather than technical system weaknesses. A seminal study by [Benenson
et al., 2017] demonstrated that approximately 20% of recipients clicked on specious links
embedded in phishing emails, highlighting the human factor in cybersecurity breaches.
This vulnerability has led to an unprecedented surge in phishing incidents, with the
APWG reporting nearly five million attacks in 2023 marking it as the most severe year
for phishing activities on record [APWG, 2023].

This chapter explores the theoretical foundations, methodological approaches, and
empirical evaluation of authorship verification techniques in the context of phishing de-
tection.

111

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

8.2 Architecture

This chapter presents a robust method for authorship verification through a Siamese
deep learning network, designed to effectively classify emails into four distinct categories:
phishing, legitimate, harassment, and suspicious.

In this methodology, email classification is redefined as an authorship verification
task, based on the premise that each category possesses distinct stylistic and linguistic
characteristics, regardless of any impersonation or attempts to obscure identity. Unlike
traditional classification techniques that depend on specific indicators, this method utilizes
the inherent writing style to ensure accurate email classification.

The classification process commences upon receiving a new email. A Siamese net-
work, featuring three shared LSTM layers, encodes the incoming email into a vector
representation. The network then calculates a similarity score between this vector and
the representative vectors from each category, employing the Manhattan distance metric.
These representative emails serve as reference points for evaluating similarity.

To identify these representative emails, the k-means clustering algorithm groups simi-
lar emails, forming distinct clusters for each category. This clustering assists in classifying
incoming emails by comparing them to these representative examples. If the similarity
score surpasses a predetermined threshold, the email is confidently categorized accord-
ingly. Figure 8.1 illustrates the overall architecture of this solution.

Figure 8.1: Workflow for the classification Phishing Emails [Remmide et al., 2024a]

8.2.1 Data pre-processing

The preprocessing phase addresses various challenges arising from the noisy and unstruc-
tured characteristics of email data. Our dataset often includes elements like HTML tags,
URLs, mentions, emojis, and contractions, which can negatively impact the effectiveness
of our classification model.

112

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

To mitigate these issues, we implement a thorough preprocessing pipeline that includes
the following essential steps:

• Handling Missing Values: We remove any rows with missing values to ensure
that the model receives complete and consistent data inputs.

• Text Cleaning: A series of text preprocessing functions are applied to minimize
noise and transform the text into a more manageable format for classification. This
process includes converting text to lowercase, eliminating Unicode characters, sub-
stituting URLs and mentions with placeholders, removing non-alphabetic characters
and emojis, and expanding contractions (e.g., converting "can’t" to "cannot").

• Stopword Removal: After text cleaning, common English stopwords are removed.
Since these words generally do not contribute to the classification task, their elimi-
nation improves processing efficiency.

• Preparation for Siamese Network Training: The cleaned email text is then
classified into categories to create sample pairs for training the Siamese network.
This involves selecting subsets of samples for each class and generating positive pairs
(samples from the same class) and negative pairs (samples from different classes) to
enhance the network’s ability to differentiate between categories.

8.2.2 Representative Email Selection

A critical component of our methodology is the identification of representative emails for
each category (e.g., phishing, legitimate, harassment, suspicious). To achieve this, we
employ k-means clustering, an unsupervised learning algorithm, to partition the training
dataset into distinct clusters within each category. The cluster centroids are then selected
as representative exemplars.

This approach offers several key advantages. First, it ensures comprehensive coverage
of stylistic variations within each category by capturing the diverse linguistic and stylistic
features present in the data. This allows the selected representatives to reflect the full
range of characteristics within each category, improving the model’s ability to generalize.
Second, it enhances computational efficiency during the similarity assessment phase. By
comparing emails to centroids rather than all other emails, the number of comparisons
is significantly reduced, making the process faster and more scalable. Third, it provides
robustness against outliers or anomalous samples, as the centroids are calculated based
on the average of all points within a cluster, ensuring that the representatives are not
skewed by rare or irregular data points.

113

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

The clustering process is mathematically defined as:

C

k∑
i=1

∑
x∈Ci

|x− µi|2 (8.1)

where C represents the set of clusters, k is the number of clusters, x represents an email
in cluster Ci, and µi is the centroid of cluster Ci.

The goal of k-means clustering is to minimize the within-cluster sum of squares, which
measures the total squared distance between each email and its corresponding cluster
centroid. By minimizing this value, the algorithm ensures that emails within the same
cluster are as similar as possible, while emails in different clusters are as distinct as
possible. The process begins with the random selection of k initial centroids, followed by
iterative steps of assigning emails to the nearest centroid and recalculating the centroids
until convergence is achieved.

Once the clusters are formed, the centroids (µi) are selected as the representative
emails for each category. These centroids serve as exemplars that encapsulate the key
characteristics of their respective clusters, enabling efficient and accurate similarity com-
parisons during the classification process. By selecting centroids from multiple clusters,
we ensure that the representative emails cover a wide range of stylistic and linguistic
variations within each category. This diversity is crucial for capturing the nuances of
different email types. Additionally, the use of centroids improves computational efficiency
and scalability, as the number of comparisons is significantly reduced. The centroids also
provide robustness against outliers, as they represent the "average" characteristics of their
clusters, making them reliable representatives that are less affected by noisy data.

8.2.3 Siamese model

The proposed method utilizes a Siamese network architecture, which is particularly ef-
fective for tasks that require similarity assessment. The architecture of the network is
depicted in Figure 8.2.

114

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

Figure 8.2: Siamese LSTM-Based Similarity Model for Email Classification [Remmide et al.,
2024a]

This Siamese network consists of two input branches, each designed to accept an email
sample. Initially, these email samples are transformed into dense vector representations
through Word2Vec, resulting in vectors of 300 dimensions.

These vectors are then processed through a shared LSTM network, which encodes the
email content into meaningful representations. The shared LSTM features three layers
with progressively decreasing units—64, 32, and 16—allowing the model to capture the
linguistic and stylistic intricacies present in the email data.

After passing through the shared LSTM network, each branch generates an output
corresponding to its respective email sample. The similarity between the two output
representations is computed using the negative Manhattan distance exponent, as indicated
in Eq. 8.2:

Similarity = exp(−
∑
|xi − yi|) (8.2)

The Manhattan distance (also known as the L1 distance) was chosen for several rea-
sons. First, it is robust to outliers, as it sums the absolute differences between corre-
sponding elements, making it less sensitive to extreme values compared to the Euclidean
distance (L2). Second, it provides a straightforward and interpretable measure of simi-
larity, which is particularly useful for tasks like email classification where understanding
the model’s decision-making process is important. Third, it is computationally efficient,
making it suitable for large-scale datasets and real-time applications. The use of the ex-
ponential function further enhances the differences in similarity scores, helping the model

115

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

better distinguish between emails from the same class (high similarity) and those from
different classes (low similarity).

The training of the Siamese network employs the mean squared error (MSE) loss
function, along with the Adadelta optimizer and gradient clipping. During training,
the model learns to effectively encode the content of emails and distinguish between
samples belonging to the same class (high similarity) and those from different classes (low
similarity). This enables the Siamese network to identify patterns within the email data,
facilitating accurate classification into four categories: phishing, legitimate, harassment,
and suspicious.

8.2.4 Classification

The process of classifying a new email using the trained Siamese network involves the
following steps:

1. Determining Representative Vectors: To establish representative vector repre-
sentations for each email category, the output vector representations from the shared
LSTM network are clustered using the K-means algorithm. The centroids of these
clusters are designated as the representative vectors, as they encapsulate the essen-
tial stylistic and linguistic features that define each email category. These centroids,
specific to each class, are stored as reference points for future email classification
during the inference stage.

2. Calculating Similarity: The new email sample is processed through one branch
of the Siamese network, while the other branch concurrently processes the repre-
sentative vectors corresponding to each of the four classes: phishing, legitimate,
harassment, and suspicious. The network computes similarity scores between the
new email and each of these representative vectors.

3. Assigning a Class Label: The new email is assigned a class label based on which
similarity score is the highest. For instance, if the highest score corresponds to the
"phishing" category, the email is classified as phishing. This process is similarly
applied to all classes, with the email being categorized into the class that has the
highest similarity score.

4. Applying a Confidence Threshold: To improve classification accuracy, a confi-
dence threshold is introduced. If the highest similarity score falls below this thresh-
old, the system flags the new email as "uncertain" or "unclassified" instead of assign-

116

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

ing it to a specific category. This strategy helps reduce misclassifications, especially
for emails that do not closely align with any of the predefined classes.

8.3 Results

This section provides details on the dataset used, the experimental setup, and the results
obtained. The experiments were run on a system with a 2.11 GHz CPU, 32 GB RAM,
and an RTX 3070 Ti GPU. The model was built using TensorFlow and Keras frameworks.

8.3.1 Dataset

Our experimental evaluation employed two distinct datasets to ensure robust validation
of the proposed methodology:

• Twitter Corpus: A curated dataset from Kaggle comprising 26,000 tweets from
13 randomly selected celebrities, with each author contributing 2,000 tweets. This
dataset provided a controlled environment for initial model evaluation, offering di-
verse writing styles while maintaining consistent authorship.

• SeFACED Dataset [Hina et al., 2021]: A comprehensive email corpus containing
32,427 messages across four categories: normal, fraudulent, harassment, and suspi-
cious. This dataset integrates content from multiple sources, including the Enron
Corpus, Phished Emails Corpus, and Hate Speech and Offensive Language Collec-
tion. Figure 8.3 illustrates the class distribution within this dataset. Fig8.3 presents
the distribution of the different classes.

Figure 8.3: Overview of Email Class Distribution in the Dataset [Remmide et al., 2024a]

The utilization of two distinct datasets enabled us to evaluate our model’s generalizability
across different domains and writing styles.

117

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

8.3.2 Experimental Results and Analysis

Figure 8.4 presents a comparative analysis of our model’s performance across both datasets,
demonstrating robust results, with slightly superior metrics on the Twitter dataset. This
performance difference can be attributed to factors such as dataset characteristics (e.g.,
consistency in writing style and text length), class distribution and balance, and domain-
specific linguistic features. The model achieved accuracy rates of 97.12% and 90.12% on
the Twitter and SeFACED datasets, respectively, indicating strong generalization capa-
bilities across different textual domains.

Figure 8.4: Comparative Performance of Authorship Verification Models on Twitter and Se-
FACED Datasets [Remmide et al., 2024a]

Our methodology’s effectiveness was evaluated against leading approaches in both
authorship verification and email classification:

Figure 8.5 illustrates that the models proposed in this approach attained an accuracy
of 97.12%, which is on par with the HRSN model by [Boenninghoff et al., 2019] at 97%
accuracy. It significantly outperformed the PRNN model [Hosseinia and Mukherjee, 2018],
which reached 90% accuracy. Additionally, our method demonstrated competitive results
against various architectural approaches, such as convolutional models [Shrestha et al.,
2017] and feature-based systems [Weerasinghe and Greenstadt, 2020].

Figure 8.5 demonstrates that the models developed in this study produced results com-
parable to those of other leading research in authorship verification [Boenninghoff et al.,
2019,Hosseinia and Mukherjee, 2018,Shrestha et al., 2017,Weerasinghe and Greenstadt,
2020]. Our method attained an accuracy of 97.12%, which closely aligns with the findings
of [Boenninghoff et al., 2019], which reported an accuracy of 97% using an HRSN model.

118

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

Additionally, our results surpass those of [Hosseinia and Mukherjee, 2018], which achieved
90% accuracy with a PRNN model.

Figure 8.5: Performance assessment of the proposed models compared to leading research in
authorship verification. [Remmide et al., 2024a]

In the email classification task (Figure 8.6), our model achieved an accuracy of 90.12%
on the SeFACED dataset, showcasing strong performance. While this result is slightly
below the original SeFACED approach [Hina et al., 2021], which achieved 95% accuracy,
our model remains competitive within this domain.

The slight performance gap in email classification can be attributed to several factors:
First, email content is inherently more complex than social media text, presenting unique
challenges. Secondly, distinguishing between closely related email categories can be chal-
lenging due to overlapping characteristics. Finally, variations in email length may impact
feature extraction, further complicating classification.

Overall, our methodology demonstrates robust performance across different domains,
illustrating its versatility and effectiveness in both authorship verification and email clas-
sification tasks.

119

CHAPTER 8. AUTHORSHIP VERIFICATION FOR PHISHING EMAIL DETECTION

Figure 8.6: Performance comparison of the proposed models against leading research in email
classification. [Remmide et al., 2024a]

8.4 Conclusion

In this chapter, we presented an innovative method for email classification that employs
a Siamese deep learning network for authorship verification. Our model utilizes three
LSTM layers followed by a Manhattan distance layer to evaluate the similarity between
emails, making effective use of unique stylistic and linguistic characteristics.

Using the SeFACED dataset, our method achieves an accuracy of 90.12%, proving
its effectiveness and competitiveness against state-of-the-art methods. This demonstrates
the potential of authorship verification as a solution for phishing emails classification.

120

General conclusion

The rapid digitalization of modern society has ushered in an era of unprecedented inter-
connectivity, enabling individuals and organizations to access a wealth of information and
opportunities. However, this digital transformation has also given rise to a proliferation
of cybersecurity threats, with phishing attacks emerging as a pervasive and increasingly
sophisticated challenge. Phishing attacks exploit human psychology and technological
vulnerabilities, making them one of the most effective and damaging forms of cybercrime.
This thesis addresses this critical issue by developing and evaluating advanced techniques
for detecting phishing attacks across multiple vectors, including URLs, emails, and SMS
messages. Leveraging cutting-edge machine learning and deep learning methodologies,
this research makes significant contributions to the field of cybersecurity, offering innova-
tive solutions to mitigate the risks posed by these evolving threats.

The primary objective of this thesis was to develop robust and adaptive solutions
for detecting phishing attacks while addressing the unique challenges posed by social
engineering tactics. Social engineering attacks, such as phishing, rely on manipulating
human behavior rather than exploiting technical vulnerabilities, making them particularly
difficult to detect using traditional security measures. To tackle this challenge, we focused
on creating models that not only detect phishing attempts but also adapt to the ever-
changing tactics employed by attackers. Our work spans multiple dimensions of phishing
detection, from analyzing URL structures and email content to verifying authorship and
preserving user privacy in SMS-based phishing detection.

One of the key contributions of this research is the use of TCNs for phishing URL
detection. By analyzing the sequential patterns of URL characters, this approach achieved
98% accuracy in identifying malicious URLs. TCNs are particularly effective for this
task because they can capture long-range dependencies in sequential data, making them
well-suited for detecting subtle patterns indicative of phishing attempts. This method
provides a proactive tool for identifying and mitigating phishing attempts targeting online
resources, helping users avoid malicious websites that could lead to data breaches or
financial fraud.

121

GENERAL CONCLUSION

For phishing email detection, we developed a hybrid approach that integrates deep
learning with CBR. This method achieved 99.61% accuracy and 98.71% precision, with
a low false positive rate, demonstrating its effectiveness in distinguishing phishing emails
from legitimate ones. The integration of CBR allows the model to leverage historical
attack patterns, enabling it to adapt to new phishing tactics over time. This adaptability
is crucial in the fast-evolving landscape of cyber threats, where attackers constantly re-
fine their methods to bypass detection systems. Additionally, our Siamese network-based
authorship verification technique achieved 90.12% accuracy in detecting phishing emails
by identifying inconsistencies in writing style compared to known legitimate communica-
tions. This approach provides an additional layer of defense against social engineering
tactics, as it focuses on the unique linguistic patterns of individual authors, making it
harder for attackers to impersonate trusted entities.

To address the growing threat of smishing, we developed a privacy-preserving federated
deep learning framework. This approach achieved 92.83% accuracy in detecting smishing
attacks while ensuring that user data remains private and secure. Federated learning
enables collaborative model training across multiple devices without transferring sensitive
data to a central server, making it ideal for applications where privacy is a top priority.
This innovation paves the way for scalable and personalized phishing detection solutions
that respect individual data sovereignty, addressing one of the key challenges in modern
cybersecurity.

Furthermore, our work on social engineering attack detection achieved 96% accuracy
by addressing class imbalance through oversampling techniques. Class imbalance is a
common issue in social engineering detection datasets, where the number of legitimate
messages far outweighs the number of social engineering attempts. By using oversampling
methods, we ensured that the model could learn from a balanced dataset, improving its
ability to detect social engineering attempts without being biased toward the majority
class. This approach ensures robust and reliable detection of social engineering attempts
across diverse datasets, making it a valuable tool for organizations and individuals alike.

The performance of the proposed models depends heavily on the quality and diversity
of the training data. Limited or biased datasets may reduce the generalizability of the
results. While our DL-CBR models demonstrated consistent performance across different
datasets, challenges remain in fully automating the revision process and refining case
retention strategies, which are critical for maintaining adaptability to evolving threats.
These areas represent key opportunities for future research.

Additionally, the computational complexity of some models, such as Temporal Con-
volutional Networks (TCNs) and federated learning frameworks, may pose challenges for
real-time deployment in resource-constrained environments. For instance, while TCNs

122

GENERAL CONCLUSION

are highly effective for sequential data analysis, they require significant computational
resources, which may limit their applicability in low-power devices. Similarly, federated
learning, while privacy-preserving, introduces additional overhead due to the need for
distributed training and communication between devices.

Looking ahead, this research opens up several promising avenues for future investiga-
tion. One key direction is the automation of the case-based reasoning revision process
to enhance adaptability to emerging phishing techniques. By automating the incorpo-
ration of new attack patterns into the model, we can ensure that it remains effective
against evolving threats. Another area of interest is the exploration of semi-supervised
and self-supervised learning techniques, which could enable the leveraging of larger vol-
umes of unlabeled data. This would reduce dependence on manual annotation, making
the models more scalable and cost-effective. Additionally, the development and evalua-
tion of multilingual datasets, particularly in languages such as Arabic and French, will be
crucial in assessing the cross-cultural efficacy of the proposed models. Finally, extensive
real-world testing will be necessary to validate the practical applicability and robustness
of the developed systems across diverse operational environments, ensuring that they can
handle the complexities of real-world cybersecurity challenges.

123

Bibliography

[Avr, 2008] (2008). Case-Based Reasoning Approach, pages 51–70. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-based reasoning:
Foundational issues, methodological variations, and system approaches. AI commu-
nications, 7(1):39–59.

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R.,
Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. (2016). Tensorflow: A system for large-scale machine
learning.

[Abutair et al., 2019] Abutair, H., Belghith, A., and AlAhmadi, S. (2019). CBR-PDS: a
case-based reasoning phishing detection system. Journal of Ambient Intelligence and
Humanized Computing, 10(7):2593–2606.

[Alam et al., 2020] Alam, M. N., Sarma, D., Lima, F. F., Saha, I., Ulfath, R.-E., and
Hossain, S. (2020). Phishing attacks detection using machine learning approach. In 2020
Third International Conference on Smart Systems and Inventive Technology (ICSSIT),
pages 1173–1179.

[Alawneh et al., 2020] Alawneh, L., Mohsen, B., Al-Zinati, M., Shatnawi, A., and Al-
Ayyoub, M. (2020). A comparison of unidirectional and bidirectional lstm networks for
human activity recognition. pages 1–6.

[Alhogail and Alsabih, 2021] Alhogail, A. and Alsabih, A. (2021). Applying machine
learning and natural language processing to detect phishing email. Computers & Secu-
rity, 110:102414.

124

BIBLIOGRAPHY

[Aljofey et al., 2020] Aljofey, A., Jiang, Q., Qu, Q., Huang, M., and Niyigena, J.-P.
(2020). An effective phishing detection model based on character level convolutional
neural network from url. Electronics, 9(9).

[Alkhalil et al., 2021] Alkhalil, Z., Hewage, C., Nawaf, L., and Khan, I. A. (2021). Phish-
ing attacks: A recent comprehensive study and a new anatomy. 3.

[Alqahtani et al., 2020] Alqahtani, H., Sarker, I., Kalim, A., Hossain, S., Ikhlaq, S., and
Hossain, S. (2020). Cyber Intrusion Detection Using Machine Learning Classification
Techniques, pages 121–131.

[Aouchiche et al., 2024] Aouchiche, R. I. A., Boumahdi, F., Remmide, M. A., and
Madani, A. (2024). Authorship attribution in twitter: a comparative study of ma-
chine learning and deep learning approaches. International Journal of Information
Technology, pages 1–8.

[Applegate, 2009] Applegate, S. D. (2009). Social engineering: Hacking the wetware!
Information Security Journal: A Global Perspective, 18:40 – 46.

[APWG, 2021a] APWG (2021a). Anti-Phishing Working Group. (2021). Phishing Activ-
ity Trends Report 4th Quarter 2021. [online] Available at: https://docs.apwg.org/

reports/apwg_trends_report_q4_2021.pdf [Accessed 19 March 2024].

[APWG, 2021b] APWG (2021b). Anti-Phishing Working Group. (2021). Phishing Activ-
ity Trends Report 3rd Quarter 2021. [online] Available at: https://docs.apwg.org/

reports/apwg_trends_report_q3_2021.pdf [Accessed 15 Janv 2022].

[APWG, 2022] APWG (2022). Anti-Phishing Working Group. (2022). Phishing Activ-
ity Trends Report 4th Quarter 2022. [online] Available at: https://docs.apwg.org/

reports/apwg_trends_report_q4_2022.pdf [Accessed 15 March 2024].

[APWG, 2023] APWG (2023). Anti-Phishing Working Group. (2021).
Phishing Activity Trends Report 4th Quarter 2023. [online] Avail-
able at: https://docs.apwg.org/reports/apwg_trends_report_q4_

2023.pdf?_gl=1*t7dwkj*_ga*MTUxMTAwNDA2Ny4xNzE1MDYyNzYw*_ga_

55RF0RHXSR*MTcxNTA2Mjc2MC4xLjEuMTcxNTA2Mjc4OC4wLjAuMA..[Accessed 30 March
2024].

[Aroyo et al., 2018] Aroyo, A. M., Rea, F., Sandini, G., and Sciutti, A. (2018). Trust
and social engineering in human robot interaction: Will a robot make you disclose

125

https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2021.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2021.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2022.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2022.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2023.pdf?_gl=1*t7dwkj*_ga*MTUxMTAwNDA2Ny4xNzE1MDYyNzYw*_ga_55RF0RHXSR*MTcxNTA2Mjc2MC4xLjEuMTcxNTA2Mjc4OC4wLjAuMA..
https://docs.apwg.org/reports/apwg_trends_report_q4_2023.pdf?_gl=1*t7dwkj*_ga*MTUxMTAwNDA2Ny4xNzE1MDYyNzYw*_ga_55RF0RHXSR*MTcxNTA2Mjc2MC4xLjEuMTcxNTA2Mjc4OC4wLjAuMA..
https://docs.apwg.org/reports/apwg_trends_report_q4_2023.pdf?_gl=1*t7dwkj*_ga*MTUxMTAwNDA2Ny4xNzE1MDYyNzYw*_ga_55RF0RHXSR*MTcxNTA2Mjc2MC4xLjEuMTcxNTA2Mjc4OC4wLjAuMA..

BIBLIOGRAPHY

sensitive information, conform to its recommendations or gamble? IEEE Robotics and
Automation Letters, 3(4):3701–3708.

[Awan, 2020] Awan, M. (2020). Pishing attacks in network security. LC International
Journal of STEM.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate. ArXiv, 1409.

[Bahnsen et al., 2017] Bahnsen, A. C., Bohorquez, E. C., Villegas, S., Vargas, J., and
Gonzalez, F. A. (2017). Classifying phishing urls using recurrent neural networks.
eCrime Researchers Summit, eCrime, pages 1–8.

[Bai et al., 2018] Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

[Balim and Gunal, 2019] Balim, C. and Gunal, E. S. (2019). Automatic detection of
smishing attacks by machine learning methods. In 2019 1st International Informatics
and Software Engineering Conference (UBMYK), pages 1–3. IEEE.

[Barathi Ganesh et al., 2018] Barathi Ganesh, H. B., Vinayakumar, R., Anand Kumar,
M., and Soman, K. P. (2018). Distributed representation using target classes: Bag of
tricks for security and privacy analytics Amrita-NLP@IWSPA-2018. In CEUR Work-
shop Proceedings, volume 2124, pages 10–15.

[Basit et al., 2021] Basit, A., Zafar, M., Liu, X., Javed, A. R., Jalil, Z., and Kifayat, K.
(2021). A comprehensive survey of ai-enabled phishing attacks detection techniques.
Telecommunication Systems, 76:139–154.

[Batista et al., 2004] Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A
study of the behavior of several methods for balancing machine learning training data.
SIGKDD Explor. Newsl., 6(1):20–29.

[Benenson et al., 2017] Benenson, Z., Gassmann, F., and Landwirth, R. (2017). Unpack-
ing spear phishing susceptibility. pages 610–627.

[Bergmann et al., 2005] Bergmann, R., Kolodner, J., and Plaza, E. (2005). Representa-
tion in case-based reasoning. The Knowledge Engineering Review, 20(3):209–213.

126

BIBLIOGRAPHY

[Bezuidenhout et al., 2010] Bezuidenhout, M., Mouton, F., and Venter, H. S. (2010). So-
cial engineering attack detection model: Seadm. In 2010 Information Security for South
Africa, pages 1–8. IEEE.

[Bhatia et al., 2020] Bhatia, A., Dalton, A., Mather, B., Santhanam, S., Shaikh, S.,
Zemel, A., Strzalkowski, T., and Dorr, B. J. (2020). Adaptation of a lexical or-
ganization for social engineering detection and response generation. arXiv preprint
arXiv:2004.09050.

[Bhuvana et al., 2021] Bhuvana, Bhat, A., Shetty, T., and Naik, M. (2021). A study
on various phishing techniques and recent phishing attacks. International Journal of
Advanced Research in Science, Communication and Technology, pages 142–148.

[Biswas et al., 2018] Biswas, S. K., Devi, D., and Chakraborty, M. (2018). A hybrid case
based reasoning model for classification in internet of things (iot) environment. J.
Organ. End User Comput., 30:104–122.

[Boenninghoff et al., 2019] Boenninghoff, B., Nickel, R. M., Zeiler, S., and Kolossa, D.
(2019). Similarity learning for authorship verification in social media. In ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE.

[Boukari et al., 2021] Boukari, B. E., Ravi, A., and Msahli, M. (2021). Machine learning
detection for smishing frauds. In 2021 IEEE 18th Annual Consumer Communications
& Networking Conference (CCNC), pages 1–2. IEEE.

[Bountakas et al., 2021] Bountakas, P., Koutroumpouchos, K., and Xenakis, C. (2021). A
comparison of natural language processing and machine learning methods for phishing
email detection. In The 16th International Conference on Availability, Reliability and
Security, ARES 2021, New York, NY, USA. Association for Computing Machinery.

[Bountakas and Xenakis, 2023] Bountakas, P. and Xenakis, C. (2023). Helphed: Hybrid
ensemble learning phishing email detection. Journal of Network and Computer Appli-
cations, 210:103545.

[Chen et al., 2023] Chen, S.-S., Sun, C.-Y., and Pai, T.-W. (2023). Using machine learn-
ing for efficient smishing detection. In 2023 International Conference on Consumer
Electronics - Taiwan (ICCE-Taiwan), pages 207–208.

[Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical
evaluation of gated recurrent neural networks on sequence modeling.

127

BIBLIOGRAPHY

[Cialdini Robert, 2021] Cialdini Robert, B. (2021). Influence, new and expanded: the
psychology of persuasion. City/Country. New York.

[CLAIR collection of fraudemail, 2008] CLAIR collection of fraudemail (2008).
Radev,D.2008‘CLAIR collection of fraudemail , ACL Data and Code Repository
, adcr2008t001’, http://aclweb.org/aclwiki[Accessed: 02 March 2020].

[Cyber Threat, 2020] Cyber Threat (2020). Cyber Threat: Re-
port on 2020 Shows Triple- Digit Increases across all Malware
Types. [online] Available at: https://www.deepinstinct.com/news/

cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types.

[Dalton et al., 2020] Dalton, A., Aghaei, E., Al-Shaer, E., Bhatia, A., Castillo, E., Cheng,
Z., Dhaduvai, S., Duan, Q., Hebenstreit, B., Islam, M. M., Karimi, Y., Masoumzadeh,
A., Mather, B., Santhanam, S., Shaikh, S., Zemel, A., Strzalkowski, T., and Dorr,
B. J. (2020). Active defense against social engineering: The case for human language
technology. In Bhatia, A. and Shaikh, S., editors, Proceedings for the First International
Workshop on Social Threats in Online Conversations: Understanding and Management,
pages 1–8, Marseille, France. European Language Resources Association.

[Das et al., 2024] Das, S., Ahsan, S. M. M., Rahman, M., and Karim, M. S. (2024). A
voting approach for heart sounds classification using discrete wavelet transform and
cnn architecture. SN Comput. Sci., 5(2).

[DBIR Report, 2021] DBIR Report (2021). verizon. (2021). 2021 Data Breach Investiga-
tions Report. [online] Available at: https://www.verizon.com/business/resources/
reports/2021-data-breach-investigations-report.pdfx [Accessed 15 March
2022].

[DBIR Report, 2022] DBIR Report (2022). verizon. (2022). 2022 Data Breach Investiga-
tions Report 4th Quarter 2022. [online] Available at: [Accessed 23 Jan 2023].

[Derakhshan et al., 2021] Derakhshan, A., Harris, I. G., and Behzadi, M. (2021). Detect-
ing telephone-based social engineering attacks using scam signatures. In Proceedings of
the 2021 ACM Workshop on Security and Privacy Analytics, IWSPA ’21, page 67–73,
New York, NY, USA. Association for Computing Machinery.

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT:
pre-training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805.

128

http://aclweb.org/aclwiki
https://www.deepinstinct.com/news/cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types
https://www.deepinstinct.com/news/cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types
https://www.verizon.com/business/resources/reports/2021-data-breach-investigations-report.pdfx
https://www.verizon.com/business/resources/reports/2021-data-breach-investigations-report.pdfx
https://www.verizon.com/business/resources/reports/dbir/2022-data-breach-investigations-report-dbir-industries.pdf

BIBLIOGRAPHY

[Digital GLOBAL OVERVIEW REPORT, 2022] Digital GLOBAL OVERVIEW RE-
PORT (2022). Digital 2022: Global overview report.

[Douzi et al., 2017] Douzi, S., Amar, M., and Ouahidi, B. E. (2017). Advanced phishing
filter using autoencoder and denoising autoencoder. ACM International Conference
Proceeding Series, pages 125–129.

[Edwards et al., 2017] Edwards, M., Larson, R., Green, B., Rashid, A., and Baron, A.
(2017). Panning for gold: Automatically analysing online social engineering attack
surfaces. Comput. Secur., 69:18–34.

[Egozi and Verma, 2018] Egozi, G. and Verma, R. (2018). Phishing email detection us-
ing robust nlp techniques. In 2018 IEEE International Conference on Data Mining
Workshops (ICDMW), pages 7–12.

[Enron email dataset, 2011] Enron email dataset (2011). Enron email dataset, http:

//www.cs.cmu.edu/~./enron/[Accessed: 02 March 2022].

[Fang et al., 2019] Fang, Y., Zhang, C., Huang, C., Liu, L., and Yang, Y. (2019). Phish-
ing email detection using improved rcnn model with multilevel vectors and attention
mechanism. IEEE Access, 7:56329–56340.

[Figueroa et al., 2017] Figueroa, N., L’huillier, G., and Weber, R. (2017). Adversarial
classification using signaling games with an application to phishing detection. Data
Min. Knowl. Discov., 31(1):92–133.

[Giorgi et al., 2020] Giorgi, G., Saracino, A., and Martinelli, F. (2020). Email spoofing
attack detection through an end to end authorship attribution system. In ICISSP,
pages 64–74.

[Gitelman, 2014] Gitelman, L. (2014). Paper Knowledge: Toward a Media History of Doc-
uments. Sign, Storage, Transmission. Duke University Press, United States. Includes
bibliographical references (pages 189-204) and index.

[Goel and Jain, 2018] Goel, D. and Jain, A. K. (2018). Smishing-classifier: a novel frame-
work for detection of smishing attack in mobile environment. In Smart and Innovative
Trends in Next Generation Computing Technologies: Third International Conference,
NGCT 2017, Dehradun, India, October 30-31, 2017, Revised Selected Papers, Part II
3, pages 502–512. Springer.

[Grace et al., 2016] Grace, K., Maher, M., Wilson, D. C., and Najjar, N. (2016). Com-
bining cbr and deep learning to generate surprising recipe designs. pages 154–169.

129

http://www.cs.cmu.edu/~./enron/
http://www.cs.cmu.edu/~./enron/

BIBLIOGRAPHY

[Gupta et al., 2018] Gupta, B. B., Arachchilage, N., and Psannis, K. (2018). Defending
against phishing attacks: Taxonomy of methods, current issues and future directions.
Telecommunication Systems, 67.

[Gupta et al., 2015] Gupta, P., Srinivasan, B., Balasubramaniyan, V., and Ahamad, M.
(2015). Phoneypot: Data-driven understanding of telephony threats. In NDSS, volume
107, page 108.

[Gupta et al., 2016] Gupta, S., Singhal, A., and Kapoor, A. (2016). A literature sur-
vey on social engineering attacks: Phishing attack. 2016 International Conference on
Computing, Communication and Automation (ICCCA), pages 537–540.

[Hai and Hwang, 2018] Hai, Q. T. and Hwang, S. O. (2018). Detection of malicious urls
based on word vector representation and ngram. Journal of Intelligent & Fuzzy Systems,
35(6):5889–5900.

[Halgaš et al., 2020] Halgaš, L., Agrafiotis, I., and Nurse, J. (2020). Catching the Phish:
Detecting Phishing Attacks Using Recurrent Neural Networks (RNNs), pages 219–233.
Springer International Publishing.

[HB et al., 2018] HB, B. G., R, V., KP, S., and M, A. K. (2018). Distributed represen-
tation using target classes: Bag of tricks for security and privacy analytics amrita-
nlp@iwspa 2018.

[Heartfield and Loukas, 2018] Heartfield, R. and Loukas, G. (2018). Detecting semantic
social engineering attacks with the weakest link: Implementation and empirical evalu-
ation of a human-as-a-security-sensor framework. Computers & Security, 76:101–127.

[Hegdal and Kofod-Petersen, 2019] Hegdal, S. S. and Kofod-Petersen, A. (2019). A cbr-
ann hybrid for dynamic environments. CEUR Workshop Proceedings.

[Hina et al., 2021] Hina, M., Ali, M., Javed, A. R., Ghabban, F., Khan, L. A., and Jalil,
Z. (2021). Sefaced: Semantic-based forensic analysis and classification of e-mail data
using deep learning. IEEE Access, 9:98398–98411.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural computation, 9(8):1735–1780.

[Hosseinia and Mukherjee, 2018] Hosseinia, M. and Mukherjee, A. (2018). Experiments
with neural networks for small and large scale authorship verification.

130

BIBLIOGRAPHY

[Hu et al., 2016] Hu, X., Xia, B., Skitmore, M., and Chen, Q. (2016). The application of
case-based reasoning in construction management research: An overview. Automation
in Construction, 72:65–74.

[Huang et al., 2019] Huang, Y., Yang, Q., Qin, J., and Wen, W. (2019). Phishing url
detection via cnn and attention-based hierarchical rnn. In 2019 18th IEEE Inter-
national Conference On Trust, Security And Privacy In Computing And Communi-
cations/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pages 112–119. IEEE.

[Jain and Gupta, 2018] Jain, A. K. and Gupta, B. (2018). Rule-based framework for
detection of smishing messages in mobile environment. Procedia Computer Science,
125:617–623.

[Jain and Gupta, 2019] Jain, A. K. and Gupta, B. B. (2019). Feature based approach
for detection of smishing messages in the mobile environment. Journal of Information
Technology Research (JITR), 12(2):17–35.

[Jain et al., 2022a] Jain, A. K., Gupta, B. B., Kaur, K., Bhutani, P., Alhalabi, W., and
Almomani, A. (2022a). A content and url analysis-based efficient approach to de-
tect smishing sms in intelligent systems. International Journal of Intelligent Systems,
37(12):11117–11141.

[Jain et al., 2022b] Jain, U., Srivastava, Y., Malik, A., Dhingra, D., Kumar, A., and Na-
grath, P. (2022b). Malicious dns detection and prediction using smote-enn and hybrid
artificial neural network. In 2022 International Conference on Computing, Communi-
cation, and Intelligent Systems (ICCCIS), pages 138–144.

[Jose nazario phishing email corpus, 2004] Jose nazario phishing email corpus (2004).
Jose nazario phishing email corpus, https://monkey.org/~jose/phishing/[Accessed:
02 March 2020].

[Kamruzzaman et al., 2023] Kamruzzaman, A., Thakur, K., Ismat, S., Ali, M. L., Huang,
K., and Thakur, H. N. (2023). Social engineering incidents and preventions. In
2023 IEEE 13th Annual Computing and Communication Workshop and Conference
(CCWC), pages 0494–0498.

[Kang et al., 2014] Kang, A., Dong Lee, J., Kang, W. M., Barolli, L., and Park, J. H.
(2014). Security considerations for smart phone smishing attacks. In Advances in
Computer Science and its Applications: CSA 2013, pages 467–473. Springer.

131

https://monkey.org/~jose/phishing/

BIBLIOGRAPHY

[Karhani et al., 2023] Karhani, H. E., Jamal, R. A., Samra, Y. B., Elhajj, I. H., and
Kayssi, A. (2023). Phishing and smishing detection using machine learning. In 2023
IEEE International Conference on Cyber Security and Resilience (CSR), pages 206–
211.

[Krombholz et al., 2015] Krombholz, K., Hobel, H., Huber, M., and Weippl, E. (2015).
Advanced social engineering attacks. Journal of Information Security and Applications,
22:113–122. Special Issue on Security of Information and Networks.

[Kumar et al., 2020] Kumar, A., Chatterjee, J. M., Díaz, V. G., et al. (2020). A novel
hybrid approach of svm combined with nlp and probabilistic neural network for email
phishing. International Journal of Electrical and Computer Engineering, 10(1):486.

[Lai et al., 2015] Lai, S., Xu, L., Liu, K., and Zhao, J. (2015). Recurrent convolutional
neural networks for text classification. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, AAAI’15, page 2267–2273. AAAI Press.

[Lan, 2021] Lan, Y. (2021). Chat-oriented social engineering attack detection using
attention-based bi-lstm and cnn. In 2021 2nd International Conference on Computing
and Data Science (CDS), pages 483–487.

[Lansley et al., 2020] Lansley, M., Mouton, F., Kapetanakis, S., and Polatidis, N. (2020).
Seader++: social engineering attack detection in online environments using machine
learning. Journal of Information and Telecommunication, 4(3):346–362.

[Lara-Benítez et al., 2020] Lara-Benítez, P., Carranza-García, M., Luna-Romera, J. M.,
and Riquelme, J. C. (2020). Temporal convolutional networks applied to energy-related
time series forecasting. Applied Sciences, 10(7).

[Le et al., 2018] Le, H., Pham, Q., Sahoo, D., and Hoi, S. C. (2018). Urlnet: Learning
a url representation with deep learning for malicious url detection. arXiv preprint
arXiv:1802.03162.

[Lee et al., 2020] Lee, Y., Saxe, J., and Harang, R. (2020). Catbert: Context-aware tiny
bert for detecting social engineering emails. arXiv preprint arXiv:2010.03484.

[Liang et al., 2019] Liang, Y., Kang, J., Yu, Z., Guo, B., Zheng, X., and He, S. (2019).
Leverage temporal convolutional network for the representation learning of urls. In
2019 IEEE International Conference on Intelligence and Security Informatics (ISI),
pages 74–79.

132

BIBLIOGRAPHY

[Liang et al., 2022] Liang, Y., Wang, Q., Xiong, K., Zheng, X., Yu, Z., and Zeng, D.
(2022). Robust detection of malicious urls with self-paced wide amp; deep learning.
IEEE Transactions on Dependable and Secure Computing, 19(2):717–730.

[Liu et al., 2021] Liu, M., Zhang, Y., Liu, B., Li, Z., Duan, H., and Sun, D. (2021).
Detecting and characterizing sms spearphishing attacks. In Annual Computer Security
Applications Conference, pages 930–943.

[Lopez and Camargo, 2022] Lopez, J. C. and Camargo, J. E. (2022). Social engineer-
ing detection using natural language processing and machine learning. In 2022 5th
International Conference on Information and Computer Technologies (ICICT), pages
177–181.

[LOPEZ DE MANTARAS et al., 2005] LOPEZ DE MANTARAS, R., MCSHERRY, D.,
BRIDGE, D., LEAKE, D., SMYTH, B., CRAW, S., FALTINGS, B., MAHER, M. L.,
COX, M. T., FORBUS, K., and et al. (2005). Retrieval, reuse, revision and retention
in case-based reasoning. The Knowledge Engineering Review, 20(3):215–240.

[Luong et al., 2015] Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective ap-
proaches to attention-based neural machine translation.

[Mambina et al., 2022] Mambina, I. S., Ndibwile, J. D., and Michael, K. F. (2022). Clas-
sifying swahili smishing attacks for mobile money users: A machine-learning approach.
IEEE Access, 10:83061–83074.

[Mashtalyar et al., 2021] Mashtalyar, N., Ntaganzwa, U. N., Santos, T., Hakak, S., and
Ray, S. (2021). Social engineering attacks: Recent advances and challenges. In HCI
for Cybersecurity, Privacy and Trust: Third International Conference, HCI-CPT 2021,
Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, July
24–29, 2021, Proceedings, page 417–431, Berlin, Heidelberg. Springer-Verlag.

[Merton Lansley and Polatidis, 2020] Merton Lansley, Francois Mouton, S. K. and Pola-
tidis, N. (2020). Seader++: social engineering attack detection in online environments
using machine learning. Journal of Information and Telecommunication, 4(3):346–362.

[Mishra and Soni, 2019] Mishra, S. and Soni, D. (2019). A content-based approach for
detecting smishing in mobile environment. In Proceedings of International Conference
on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity
University Rajasthan, Jaipur-India.

133

BIBLIOGRAPHY

[Mishra and Soni, 2021] Mishra, S. and Soni, D. (2021). Dsmishsms-a system to detect
smishing sms. Neural Computing and Applications, pages 1–18.

[Mishra and Soni, 2022] Mishra, S. and Soni, D. (2022). Implementation of ‘smishing
detector’: an efficient model for smishing detection using neural network. SN Computer
Science, 3(3):189.

[Mishra and Soni, 2023] Mishra, S. and Soni, D. (2023). Sms phishing dataset for machine
learning and pattern recognition. In Abraham, A., Hanne, T., Gandhi, N., Manghir-
malani Mishra, P., Bajaj, A., and Siarry, P., editors, Proceedings of the 14th Interna-
tional Conference on Soft Computing and Pattern Recognition (SoCPaR 2022), pages
597–604, Cham. Springer Nature Switzerland.

[Mitnick and Simon, 2003] Mitnick, K. D. and Simon, W. L. (2003). The art of deception:
Controlling the human element of security. John Wiley & Sons.

[Mouton et al., 2014] Mouton, F., Leenen, L., Malan, M. M., and Venter, H. S. (2014).
Towards an ontological model defining the social engineering domain. In Kimppa, K.,
Whitehouse, D., Kuusela, T., and Phahlamohlaka, J., editors, ICT and Society, pages
266–279, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Mouton et al., 2015] Mouton, F., Leenen, L., and Venter, H. (2015). Social engineering
attack detection model: Seadmv2. In 2015 International Conference on Cyberworlds
(CW), pages 216–223.

[Mouton et al., 2018] Mouton, F., Nottingham, A., Leenen, L., and Venter, H. (2018).
Finite state machine for the social engineering attack detection model: Seadm. SAIEE
Africa Research Journal, 109(2):133–148.

[Nguyen et al., 2018] Nguyen, M., Nguyen, T., and Nguyen, T. H. (2018). A deep learning
model with hierarchical LSTMs and supervised attention for anti-phishing. In CEUR
Workshop Proceedings, volume 2124, pages 29–38.

[Ozen et al., 2024] Ozen, I., Subramani, K., Vadrevu, P., and Perdisci, R. (2024). Senet:
Visual detection of online social engineering attack campaigns.

[Parvinder, 2017] Parvinder (2017). Cyber crimes in india: An overview. International
Journal of Research, 4:1707–1709.

[Peng et al., 2018] Peng, T., Harris, I., and Sawa, Y. (2018). Detecting phishing attacks
using natural language processing and machine learning. In 2018 IEEE 12th Interna-
tional Conference on Semantic Computing (ICSC), pages 300–301.

134

BIBLIOGRAPHY

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove:
Global vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

[Perner, 2019] Perner, P. (2019). Case-based reasoning – methods, techniques, and ap-
plications. In Nyström, I., Hernández Heredia, Y., and Milián Núñez, V., editors,
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications,
pages 16–30, Cham. Springer International Publishing.

[Pinto et al., 2019] Pinto, T., Faia, R., Navarro-Cáceres, M., Santos, G., Corchado, J.,
and Vale, Z. (2019). Multi-agent-based cbr recommender system for intelligent energy
management in buildings. IEEE Systems Journal, 13:1084–1095.

[P.M et al., 2023] P.M, D., M, M., B, N., R.S, S., M.E, P., and A, M. (2023). Identification
of phishing attacks using machine learning algorithm. E3S Web of Conferences.

[Pous et al., 2011] Pous, C., Pla, A., Gay, P., and López, B. (2011). exit*cbr: A frame-
work for case-based medical diagnosis development and experimentation. Artificial
intelligence in medicine, 51 2:81–91.

[Radford and Narasimhan, 2018] Radford, A. and Narasimhan, K. (2018). Improving
language understanding by generative pre-training.

[Raffel et al., 2019] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M.,
Zhou, Y., Li, W., and Liu, P. J. (2019). Exploring the limits of transfer learning with
a unified text-to-text transformer. CoRR, abs/1910.10683.

[Rao and Pais, 2017] Rao, R. S. and Pais, A. R. (2017). An enhanced blacklist method to
detect phishing websites. In Shyamasundar, R. K., Singh, V., and Vaidya, J., editors,
Information Systems Security, pages 323–333, Cham. Springer International Publishing.

[Rasymas and Dovydaitis, 2020] Rasymas, T. and Dovydaitis, L. (2020). Detection of
phishing urls by using deep learning approach and multiple features combinations.
Baltic journal of modern computing, 8(3):471–483.

[Remmide et al., 2024a] Remmide, M. A., Boumahdi, F., Ammar Aouchiche, I. R., Guen-
douz, A., and Boustia, N. (2024a). A robust approach to authorship verification using
siamese deep learning: application in phishing email detection. International Journal
of Speech Technology, pages 1–8.

135

BIBLIOGRAPHY

[Remmide et al., 2022a] Remmide, M. A., Boumahdi, F., and Boustia, N. (2022a). Phish-
ing email detection using bi-gru-cnn model. In Ragab Hassen, H. and Batatia, H.,
editors, Proceedings of the International Conference on Applied CyberSecurity (ACS)
2021, pages 71–77, Cham. Springer International Publishing.

[Remmide et al., 2024b] Remmide, M. A., Boumahdi, F., and Boustia, N. (2024b). Ad-
vancing automated social engineering detection with oversampling-based machine learn-
ing. International Journal of Security and Networks, 19(3):150–158.

[Remmide et al., 2024c] Remmide, M. A., Boumahdi, F., and Boustia, N. (2024c). To-
wards a hybrid approach combining deep learning and case-based reasoning for phishing
email detection. International Journal on Artificial Intelligence Tools, 0(ja):null.

[Remmide et al., 2022b] Remmide, M. A., Boumahdi, F., Boustia, N., Feknous, C. L.,
and Della, R. (2022b). Detection of phishing urls using temporal convolutional network.
Procedia Computer Science, 212:74–82.

[Remmide et al., 2024d] Remmide, M. A., Boumahdi, F., Ilhem, B., and Boustia, N.
(2024d). A privacy-preserving approach for detecting smishing attacks using federated
deep learning. International Journal of Information Technology, pages 1–7.

[Resnik, 1986] Resnik, A. J. (1986). Book review: Influence: Science & practice.

[Richter and Weber, 2013] Richter, M. and Weber, R. (2013). Case-based reasoning: a
textbook. Springer.

[Ross et al., 2021] Ross, R. M., Rand, D. G., and Pennycook, G. (2021). Beyond “fake
news”: Analytic thinking and the detection of false and hyperpartisan news headlines.
Judgment and Decision making, 16(2):484–504.

[Roy et al., 2020] Roy, P. K., Singh, J. P., and Banerjee, S. (2020). Deep learning to filter
sms spam. Future Generation Computer Systems, 102:524–533.

[Saha et al., 2020] Saha, I., Sarma, D., Chakma, R. J., Alam, M. N., Sultana, A., and
Hossain, S. (2020). Phishing attacks detection using deep learning approach. In Proceed-
ings of the 3rd International Conference on Smart Systems and Inventive Technology,
ICSSIT 2020, number Icssit, pages 1180–1185.

[Sahingoz et al., 2019] Sahingoz, O. K., Buber, E., Demir, O., and Diri, B. (2019). Ma-
chine learning based phishing detection from urls. Expert Systems with Applications,
117:345–357.

136

BIBLIOGRAPHY

[Sahoo et al., 2017] Sahoo, D., Liu, C., and Hoi, S. C. (2017). Malicious url detection
using machine learning: A survey. arXiv preprint arXiv:1701.07179.

[Salahdine and Kaabouch, 2019] Salahdine, F. and Kaabouch, N. (2019). Social engineer-
ing attacks: A survey. Future Internet, 11:89.

[Saleilles and Aïmeur, 2021] Saleilles, J. and Aïmeur, E. (2021). Secubot, a teacher in
appearance: How social chatbots can influence people. In Proceedings of the 1st
Workshop on Adverse Impacts and Collateral Effects of Artificial Intelligence Tech-
nologies—AIofAI 2021, volume 2942, pages 31–49. CEUR Montréal, Canada.

[Sawa et al., 2016] Sawa, Y., Bhakta, R., Harris, I. G., and Hadnagy, C. (2016). Detection
of social engineering attacks through natural language processing of conversations. In
2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pages
262–265.

[Scherer et al., 2010] Scherer, D., Müller, A., and Behnke, S. (2010). Evaluation of pool-
ing operations in convolutional architectures for object recognition. In International
conference on artificial neural networks, pages 92–101. Springer.

[Schuster and Paliwal, 1997] Schuster, M. and Paliwal, K. K. (1997). Bidirectional recur-
rent neural networks. IEEE transactions on Signal Processing, 45(11):2673–2681.

[Seifollahi et al., 2017] Seifollahi, S., Bagirov, A., Layton, R., and Gondal, I. (2017). Opti-
mization based clustering algorithms for authorship analysis of phishing emails. Neural
Processing Letters, 46:411–425.

[Seth and Damle, 2022] Seth, P. and Damle, M. (2022). A comprehensive study of classifi-
cation of phishing attacks with its ai/i detection. In 2022 International Interdisciplinary
Humanitarian Conference for Sustainability (IIHC), pages 370–375.

[Shahrivari et al., 2020] Shahrivari, V., Darabi, M. M., and Izadi, M. (2020). Phishing
detection using machine learning techniques.

[Sheikhi et al., 2020] Sheikhi, S., Kheirabadi, M. T., and Bazzazi, A. (2020). An effec-
tive model for sms spam detection using content-based features and averaged neural
network. International Journal of Engineering, 33(2):221–228.

[Sheng et al., 2009] Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., and
Zhang, C. (2009). An empirical analysis of phishing blacklists.

137

BIBLIOGRAPHY

[Shravasti and Chavan,] Shravasti, S. S. and Chavan, M. Smishing detection: Using
artificial intelligence.

[Shrestha et al., 2017] Shrestha, P., Sierra, S., González, F., Montes, M., Rosso, P., and
Solorio, T. (2017). Convolutional neural networks for authorship attribution of short
texts. In Lapata, M., Blunsom, P., and Koller, A., editors, Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 669–674, Valencia, Spain. Association for Computational
Linguistics.

[Sohn, 2016] Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss
objective. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc.

[Sonowal, 2020] Sonowal, G. (2020). Detecting phishing sms based on multiple correlation
algorithms. SN computer science, 1(6):361.

[Spam assassin project, 2015] Spam assassin project (2015). Spam assassin project
(2015) spam assassin public corpus, https://spamassassin.apache.org/

publiccorpus/[Accessed: 02 March 2020].

[Tao et al., 2019] Tao, L., Youpeng, H., Wen, Z., and Jie, Z. (2019). The meter-
ing automation system based intrusion detection using random forest classifier with
smote+enn.

[The National University of Singapore SMS Corpus:, 2023] The National University of
Singapore SMS Corpus: (Accessed: 15 March 2023). , https://www.kaggle.com/
datasets/rtatman/the-national-university-of-singapore-sms-corpus.

[Tidy, 2020] Tidy, J. (2020). Twitter hack: What went wrong and why it matters.

[Tsinganos et al., 2022a] Tsinganos, N., Fouliras, P., and Mavridis, I. (2022a). Applying
bert for early-stage recognition of persistence in chat-based social engineering attacks.
Applied Sciences, 12(23).

[Tsinganos et al., 2023] Tsinganos, N., Fouliras, P., and Mavridis, I. (2023). Leveraging
dialogue state tracking for zero-shot chat-based social engineering attack recognition.
Applied Sciences, 13(8).

138

https://spamassassin.apache.org/publiccorpus/
https://spamassassin.apache.org/publiccorpus/
https://www.kaggle.com/datasets/rtatman/the-national-university-of-singapore-sms-corpus
https://www.kaggle.com/datasets/rtatman/the-national-university-of-singapore-sms-corpus

BIBLIOGRAPHY

[Tsinganos et al., 2022b] Tsinganos, N., Mavridis, I., and Gritzalis, D. (2022b). Utiliz-
ing convolutional neural networks and word embeddings for early-stage recognition of
persuasion in chat-based social engineering attacks. IEEE Access, 10:108517–108529.

[Tsinganos et al., 2018] Tsinganos, N., Sakellariou, G., Fouliras, P., and Mavridis, I.
(2018). Towards an automated recognition system for chat-based social engineering
attacks in enterprise environments. In Proceedings of the 13th International Conference
on Availability, Reliability and Security, pages 1–10.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.

[Vinayakumar et al., 2018] Vinayakumar, R., Barathi Ganesh, H. B., Anand Kumar, M.,
Soman, K. P., and Poornachandran, P. (2018). DeepAnti-PhishNet: Applying deep
neural networks for phishing email detection CEN-AISecurity@IWSPA-2018. In CEUR
Workshop Proceedings, volume 2124, pages 39–49.

[Vrbančič et al., 2020] Vrbančič, G., Fister, I., and Podgorelec, V. (2020). Datasets for
phishing websites detection. Data in Brief, 33:106438.

[Wang et al., 2019] Wang, W., Zhang, F., Luo, X., and Zhang, S. (2019). Pdrcnn: precise
phishing detection with recurrent convolutional neural networks. Security and Com-
munication Networks, 2019.

[Weerasinghe and Greenstadt, 2020] Weerasinghe, J. and Greenstadt, R. (2020). Feature
vector difference based neural network and logistic regression models for authorship
verification. In CEUR workshop proceedings, volume 2695.

[Wei et al., 2020] Wei, W., Ke, Q., Nowak, J., Korytkowski, M., Scherer, R., and Woź-
niak, M. (2020). Accurate and fast url phishing detector: A convolutional neural
network approach. Computer Networks, 178.

[Yan and Cheng, 2024] Yan, A. and Cheng, Z. (2024). A review of the development and
future challenges of case-based reasoning. Applied Sciences, 14(16).

[Yin et al., 2021] Yin, J., Qi, C., Chen, Q., and Qu, J. (2021). Spatial-spectral network for
hyperspectral image classification: A 3-d cnn and bi-lstm framework. Remote Sensing,
13(12).

139

BIBLIOGRAPHY

[Zamir et al., 2020] Zamir, A., Khan, H., Iqbal, T., Yousaf, N., Aslam, F., Anjum, A.,
and Hamdani, M. (2020). Phishing web site detection using diverse machine learning
algorithms. The Electronic Library, ahead-of-print.

[Zaremba et al., 2014] Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent
neural network regularization. arXiv preprint arXiv:1409.2329.

[Zhou et al., 2015] Zhou, C., Sun, C., Liu, Z., and Lau, F. (2015). A c-lstm neural network
for text classification. arXiv preprint arXiv:1511.08630.

[Zhu et al., 2020] Zhu, R., Liao, W., and Wang, Y. (2020). Short-term prediction for wind
power based on temporal convolutional network. Energy Reports, 6:424–429. 2020 The
7th International Conference on Power and Energy Systems Engineering.

140

	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	I State of the art
	1 Social engineering
	1.1 Introduction
	1.2 Understanding social engineering
	1.3 Social Engineering Attack Vectors
	1.4 Attack cycle
	1.5 Psychological manipulation and exploitation
	1.6 Types of social engineering attacks
	1.7 Detecting of social engineering
	1.8 Synthesis
	1.9 Conclusion

	2 Phishing attack
	2.1 Introduction
	2.2 Phishing Attacks: An Overview
	2.3 Anatomy of a Phishing Attack
	2.4 Phishing Attack Types
	2.5 Phishing attack impact and case study
	2.6 Phishing Attacks Detection
	2.6.1 Email content
	2.6.2 URL
	2.6.3 Smishing

	2.7 Conclusion

	3 Deep learning and case-based reasoning
	3.1 Introduction
	3.2 Deep Learning
	3.3 Convolutional neural networks (CNNs)
	3.4 Recurrent neural networks (RNNs)
	3.5 Long Short-Term Memory(LSTM)
	3.6 Bi-LSTM
	3.7 Gated Recurrent Unit (GRU)
	3.8 Temporal convolutional network (TCN)
	3.9 Attention Mechanism
	3.10 Transformer
	3.11 Case-Based Reasoning (CBR)
	3.12 Conclusion

	II Contribution
	4 Social engineering attack Detection
	4.1 Introduction
	4.2 Architecture
	4.2.1 Data balancing
	4.2.2 classification model and parameters

	4.3 Evaluation and analysis
	4.3.1 Analysis of Variance (ANOVA)
	4.3.2 Dataset overview
	4.3.3 Results

	4.4 Conclusion

	5 Phishing URL Detection
	5.1 Introduction
	5.2 Architecture
	5.3 Datasets
	5.4 Preprocessing
	5.5 Data Balancing
	5.6 Model
	5.7 Experiments
	5.8 Conclusion

	6 Deep Learning and Case-Based Reasoning for Phishing Email Detection
	6.1 Introduction
	6.2 Architecture
	6.2.1 Representation (feature extraction)
	6.2.2 Retrieve
	6.2.3 Reuse
	6.2.4 Revise
	6.2.5 Retain

	6.3 Experiments and Results
	6.3.1 Dataset
	6.3.2 Experiment setup
	6.3.3 Results and Discussion

	6.4 Conclusion

	7 A Privacy-Preserving Approach for Detecting Smishing Attacks using Federated Deep Learning
	7.1 Introduction
	7.2 Architecture
	7.3 Dataset
	7.4 Data Preprocessing and word embedding
	7.5 Building classification model
	7.6 Results
	7.6.1 Unfederated learning
	7.6.2 Federated Learning
	7.6.3 Synthesis

	7.7 Conclusion

	8 Authorship Verification for Phishing Email Detection
	8.1 Introduction
	8.2 Architecture
	8.2.1 Data pre-processing
	8.2.2 Representative Email Selection
	8.2.3 Siamese model
	8.2.4 Classification

	8.3 Results
	8.3.1 Dataset
	8.3.2 Experimental Results and Analysis

	8.4 Conclusion

	General conclusion
	Bibliography

