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Abstract

with classical methods.Insurance companies use these advanced statistical techniques to

offer a basis, they frequently cannot address the intricacy and unpredictability of

insurers’ ability to prepare for future claims and mitigate risks.

Key words

Résumé

Cette thèse porte sur les méthodes bayésiennes de provisionnement des sinistres en assurance
non-vie, en les comparant aux méthodes classiques, Les compagnies d’assurance utilisent ces
techniques statistiques avancées pour estimer les réserves financières pour les sinistres futurs
et pour éviter les risques. Les compagnies d’assurance utilisent ces techniques statistiques
avancées pour estimer les réserves financières pour les sinistres futurs et éviter les risques.
Bien que les approches traditionnelles offrent une base, elles ne peuvent souvent pas répondre
à la complexité et à l’imprévisibilité des facteurs de risque contemporains. A l’inverse, les
méthodes bayésiennes intègrent les connaissances antérieures et les nouvelles données. Cette
approche offre des prédictions plus précises et un cadre flexible, améliorant ainsi la capacité
des assureurs à se préparer aux futurs sinistres et à atténuer les risques. à se préparer aux
sinistres futurs et à atténuer les risques.

Mot-clés

approche bayésienne , revendications , assurance , risque , approche classique.

this thesis focuses on Bayesian claims reserving methods in non-life insurance, comparing them

estimate financial reserves for future claims and avoid risk. Although traditional approaches

contemporary risk factors. Conversely, Bayesian methods, integrate prior knowledge and new
data. This approach offers more accurate predictions and a flexible framework, enhancing

bayesian approache , claims , insurance ,risk , classical approache .
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INTRODUCTION

Insurance mathematics does not appear to be a difficult subject to the general public. In
actuality, everyone must deal with insurance-related issues at some point in their lives.

Thats why insurance companies play an important role in society, the idea of insurance is
part of our civilized world.

It is based on the mutual trust of the insurer and the insured. In the world of non-life
insurance which includes sectors such as automobile, property, liability, and health insurance
the ability to manage and predict risk is paramount the word Risk.

The essence of non-life insurance lies in its risk management capabilities. Insurers must
anticipate and prepare for future claims based on a myriad of factors that we mentioned.
Traditional reserving methods have provided a foundation for this process, but as the industry
evolves, so too must the methods it employs.

The complexity and unpredictability of risks in the modern world necessitate a more flexible
and comprehensive approach to claims reserving.

A critical aspect of this thesis is the exploration of risk models and the calculation of ruin
probabilities. In insurance, the concept of ruin refers to the scenario where an insurer’s liabili-
ties exceed its assets, leading to insolvency.

Understanding the probability of ruin is essential for assessing an insurer’s financial health
and stability. Bayesian models offer sophisticated tools for estimating these probabilities, in-
corporating a range of risk factors and scenarios.

This approach not only enhances the accuracy of risk assessments but also provides valuable
insights into the potential impact of extreme events.

Bayesian methods represent a paradigm shift in how risks are assessed and managed in the
insurance industry. Named after Reverend Thomas Bayes, Bayesian statistics provide a pow-
erful framework for updating the probability of a hypothesis as new evidence or information
becomes available.

Unlike classical approaches, Bayesian methods incorporate prior knowledge and expert judg-
ment with historical data, creating a more adaptable and dynamic model.
This integration enables a deeper understanding of underlying uncertainties and offers a prob-
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abilistic interpretation of potential outcomes.

By accounting for various sources of uncertainty, Bayesian methods offer a more nuanced
and robust framework for predicting future claims.

This thesis also investigates the use of Bayesian techniques outside of the domain of funda-
mental reserving, such as risk modeling and the determination of ruin probabilities.

When evaluating the entire risk exposure and financial stability of an insurer, these ideas are
essential. We are able to obtain a thorough grasp of the risk profile of an insurer by analyzing
the distribution of the total amount of claims.This in turn affects capital allocation plans, risk
management procedures, and strategic decision-making.

The comparative analysis of classical and Bayesian methods is central to this thesis. While
classical methods provide a solid foundation, the flexibility and depth of Bayesian approaches
offer significant enhancements.

The objective is not merely to compare these methods but to explore how they can be
integrated to provide a more robust and adaptive framework for claims reserving.
This synthesis aims to leverage the strengths of both approaches, providing insurers with the
tools they need to navigate the complexities of modern risk management.

Not only is it our goal to compare these approaches, but we also want to investigate how
they may be combined to create a more resilient and flexible framework for claims reserving.

By combining the best features of the two methods, this synthesis hopes to give insurers
the resources they need to handle the challenges of contemporary risk management. Not only
is it our goal to compare these approaches, but we also want to investigate how they may be
combined to create a more resilient and flexible framework for claims reserving.

By combining the best features of the two methods, this synthesis hopes to give insurers
the resources they need to handle the challenges of contemporary risk management. our work
is presented as follow :
In Chapter 1, we introduce the foundational concepts of probability, providing a comprehensive
overview of probability spaces, random variables, and common probability distributions .

In Chapter 2, we explore the Bayesian approach, demonstrating its principles and methods
for updating probabilities as new information becomes available.

In Chapter 3, we develop a model of risk and ruin probability, integrating both frequentist
and Bayesian methods to assess the likelihood of financial insolvency in insurance contexts.

In Chapter 4, we apply the developed models to real-world data, demonstrating their prac-
tical utility in predicting aggregate claims and assessing risk within an insurance framework.
We close this study with a General Conclusion.

9



CHAPTER 1
PRELIMINARIES OF PROBABILITIES

1.1 Introduction
In statistics, engineering, science, and finance, the probability theory is a formal way to

express the inherent randomness and uncertainty, Probability theory provides a mathematical
framework for quantifying uncertainty and modeling random events.

It begins with defining a sample space, which encompasses all possible outcomes of a random
experiment. Within this space, events are subsets of outcomes, and probabilities are assigned
to these events to measure their likelihood.

Kolmogorov’s axioms establish the foundational rules for probability, ensuring consistency
and coherence in calculations. Conditional probability and the concept of independence allow
for the analysis of events in relation to each other.

Probability distributions describe how probabilities are distributed over the values of a ran-
dom variable. Mastering these preliminaries is crucial for applying probability theory to fields
such as statistics, finance, insurance, and risk management.

1.1.1 Probability Space
A probability space is a mathematical construct designed for the purpose of dealing with

random phenomena and discussing probabilities associated with outcomes.
[4] A probability space is a mathematical construct designed to deal with random phenomena
and discuss the probabilities associated with outcomes. A probability space is denoted by a
triple where (Ω,F , P ) :

• Sample Space (Ω) : The sample space Ω corresponds to the set of possible outcomes
of the experiment. For example, in a coin toss, Ω = {Heads,Tails}.

• Sigma-Algebra (F) : A collection of subsets of Ω that is closed under countable unions,
complementation, and includes the sample space itself. We refer to these subsets as events.
For example, in rolling a die we have Ω = {1, 2, 3, 4, 5, 6}, F could include subsets like
{1, 3}, {2, 4, 5}, and Ω itself.
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• Probability Measure (P ) : A formula that provides a probability to every event in F
.
The following requirements must be met by this function :

1. Non-negativity : P (A) ≥ 0 for any event A ∈ F .
Normalization:P(Ω) = 1.

2. Countable Additivity : For any countable sequence of mutually exclusive events A1,
A2, A3 the probability of their union is equal to the sum of their probabilities :

3. P (⋃∞
i=1 Ai) = ∑∞

i=1 P (Ai).

1.2 Probability Distribution and Random Variables

1.2.1 Random Variable
Definition 1 Let (Ω,F , P ) be a probability space. A random variable is a function X defined
on Ω with values in a set E, such that for every subset A of E, the event X−1(A) ∈ F . The
random variable is called real when E is a subset of R.
For any subset A of R, the event X−1(A) is denoted as {X ∈ A} or simply (X ∈ A):

X−1(A) = (X ∈ A) = {ω ∈ Ω : X(ω) ∈ A}.
When A = {x}, the event X−1({x}) is more simply denoted as (X = x):

(X = x) = {ω ∈ Ω : X(ω) = x}.

1.2.2 Discrete Random Variable
Definition 2 Let X : Ω → E be a function, where (Ω,F , P ) is a probability space. We say
that X is a discrete random variable if:

1. X(Ω) is finite or countable, and

2. for all x ∈ X(Ω), the preimage X−1({x}) ∈ F .

When E = R, the random variable X is said to be real. It is said to be finite if X(Ω) is
finite.

1.2.3 Continuous Random Variables:
Continuous random variables can represent any value within a specified range or interval

and can take on an infinite number of possible values [18].

1.3 Probability Distributions
An explanation of how probabilities are dispersed throughout a random variables value can

be found in its probability distribution.

1.3.1 Discrete Probability Distributions
A Probability Mass Function (PMF) is used to describe the distribution of discrete random

variables.
• Probability Mass Function (PMF) :

P (X = xi) = pi, where 0 ≤ pi ≤ 1 and
∑
i

pi = 1

11



1.3.2 Continuous Probability Distributions
A Probability Density Function (PDF) is used to describe the distribution of continuous

random variables.

• Density Function (PDF) :
The PDF f(x) gives the relative likelihood that a continuous variable X takes on a value
near x.

P (a ≤ X ≤ b) =
∫ b

a
f(x) dx

The PDF must satisfy :
f(x) ≥ 0 and

∫ +∞

−∞
f(x) dx = 1

1.3.3 Expectation and Variance
• Expectation (Mean) :

The mean or expectation of an unknown quantity X is given by
E(X) =

∑
i

xiP (X = xi) if X is discrete

E(X) =
∫ +∞

−∞
xf(x)dx ifXis continuous.

The mean is the center of mass of the distribution [19]

1.3.4 Discrete and Continuous Probability Distributions
There are some usual Probability Distributions

Table 1.1: Discrete Distributions

Distribution Probability Function (PMF) Expected
Value (E(X))

Variance
(Var(X))

Bernoulli P (X = x) = px(1 − p)1−x p p(1 − p)
Binomial P (X = k) =

(
n
k

)
pk(1 − p)n−k np np(1 − p)

Geometric P (X = k) = (1 − p)k−1p 1
p

1−p
p2

Poisson P (X = k) = λke−λ

k! λ λ
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Table 1.2: Continuous Distributions

Distribution Probability Function
(PDF)

Expected
Value (E(X))

Variance
(Var(X))

Uniform f(x) =


1
b−a a ≤ x ≤ b
0 otherwise

a+b
2

(b−a)2

12

Normal
(Gaussian)

f(x) = 1√
2πσ2 e

− (x−µ)2

2σ2 µ σ2

Exponential f(x) = λe−λx 1
λ

1
λ2

Gamma f(x) = λkxk−1e−λx

Γ(k)
k
λ

k
λ2

Beta f(x) = xα−1(1−x)β−1

B(α,β)
α

α+β
αβ

(α+β)2(α+β+1)

Log-Normal f(x) = 1
xσ

√
2πe

− (ln x−µ)2

2σ2 eµ+σ2/2 (eσ2 − 1)e2µ+σ2

Chi-Square f(x) = 1
2k/2Γ(k/2)x

k/2−1e−x/2 k 2k

1.4 Classical (frequentist) statistical approach

1.4.1 Fundamental Assumptions
The frequentist approach to statistical analysis is used in the majority of statistics books

for beginners, and is based on the following concepts:

• The population’s numerical features, or parameters, are unknown but fixed and unchang-
ing constants.

• Long-run relative frequency is the standard interpretation of probabilities.

• Statistical procedures are judged by how well they perform in the long run over an infinite
number of hypothetical repetitions of the experiment is used to evaluate them. [20]

1.5 Parametric Estimation
From sampling data, frequentist statistics utilize estimate techniques to deduce the unknown

parameters of a probability distribution the two primary technique for estimating are:

1.5.1 Maximum Likelihood Estimation (MLE):
Definition 3 Let X1, X2, X3, . . . , Xn be a random sample from a distribution with a parameter
θ. Suppose that we have observed X1 = x1, X2 = x2, . . . , Xn = xn.

1. if Xi are discrete, then the likelihood function is defined as:
L(x1, x2, . . . , xn; θ) = PX1X1,X2(x1, x2, . . . , xn; θ)

2. If Xi’s are jointly continuous, then the likelihood function is defined as:
L(x1, x2, . . . , xn; θ) = fX1,X2,...,Xn(x1, x2, . . . , xn; θ)

A maximum likelihood estimator (MLE) of the parameter θ, shown by θ̂ML, is a random variable
θ̂ML = θ̂ML(X1, X2, . . . , Xn) whose value when X1 = x1, X2 = x2, . . . , Xn = xn is given by θ̂ML.
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1.5.2 Method of Moments Estimation:
Definition 4 Let x = (x1, . . . , xn) be i.i.d realizations (samples) from probability mass function
pX(x; θ) (if X is discrete), or from density fX(x; θ) (if X is continuous), where θ is a parameter
(or vector of parameters).
We then define the method of moments (MoM) estimator θ̂MoM of θ = (θ1, . . . , θk) to be a
solution (if it exists) to the k simultaneous equations where, for j = 1, . . . , k, we set the jth

(true) moment equal to the jth sample moment:

E[X] = 1
n

n∑
i=1

xi

...

E[Xk] = 1
n

n∑
i=1

xki

1.5.3 Hypothesis testing:
The frequentist approach is many hypothesis tests are succinctly summarized in this table:

Table 1.3: Hypothesis Testing Summary Table

Type of
Test

Null
Hypothesis

(H0)

Alternative
Hypothesis

(HA)
Test Statistic Decision

Rule

Z-Test µ = µ0 µ 6= µ0 Z = X̄−µ0
σ/

√
n

Reject H0
if

T-Test µ = µ0 µ 6= µ0 T = X̄−µ0
s/

√
n

Reject H0
if

Paired T-Test µD = 0 µD 6= 0 T = D
sD/

√
n

Reject H0
if

Chi-Square
Test

Variables are
independent

Variables are
not

independent
χ2 = ∑ (Oi−Ei)2

Ei

Reject H0
if

ANOVA
(Analysis of
Variance)

All group means
are equal

At least one
group mean
is different

F = variance between groups
variance within groups

Reject H0
if F >
Fα,df1,df2

Proportion
Test p = p0 p 6= p0 Z = p−p0√

p0(1−p0)/n

Reject H0
if

Two-
Proportion

Test
p1 = p2 p1 6= p2 Z = p1−p2√

p(1−p)( 1
n1

+ 1
n2

)

Reject H0
if

F-Test σ2
1 = σ2

2 σ2
1 6= σ2

2 F = s2
1
s2

2

Reject H0
if F >
Fα,df1,df2

14



CHAPTER 2
BAYESIAN INFERENCE

2.1 Introduction
To convey our knowledge and opinions about unknown quantities, we frequently use prob-

abilities informally.

But probability can also be formally used to express information: more specifically, it can
be demonstrated mathematically that probabilities may be used to numerically represent a
collection of rational beliefs, that probability and information are related, and that Bayes’ rule
offers a logical way to update beliefs in the light of new information [1].

Bayesian inference is a statistical method that combines prior knowledge with new evidence
to update our beliefs about a parameter, it offers a flexible framework for decision making in
the face of uncertainty. by utilizing prior distributions , Bayesian inference integrates previous
beliefs, in contrast to frequentist techniques, which only use observable data.

This chapter will provide you with an extensive understanding of Bayesian inference, in-
cluding its theoretical foundations and practical applications.

2.2 What’s Bayes

2.2.1 Meaning of Bayes statistics
Bayesian statistics refers to a statistical approach named after 18th-century British math-

ematician Thomas Bayes.
Bayes’ rule provides a rational method for updating beliefs in light of new information[1].

Bayesian statistical analysis relies on Bayes’ theorem, which tells us to update prior beliefs
about parameters and hypotheses in light of data, to yield posterior beliefs.

Bayes theorem itself is utterly uncontroversial and follows directly from the conventional
definition of conditional probability, it is adequate to take into account the stylized, graphical
representation of Bayesian inference that follows[8]:

prior beliefs → data → posterior beliefs
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2.2.2 Formula and explanation
Let H be the set of all possible hypotheses and E be the evidence event.

Suppose {H1, ..., Hk} is a partition of H, Pr(H) = 1 and E is some specific event. The
axioms of probability imply the following [10]:

1. Rule of conditional probability:
The conditional probability P (E|Hk) is the probability of the event E given the hypothesis
Hk.

Pr(E|Hk) = Pr(E ∩Hk)
Pr(Hk)

2. Rule of total probability:
K∑
k=1

Pr(Hk) = 1

3. Rule of marginal probability:

Pr(E) =
K∑
k=1

Pr(E ∩Hk)

K∑
k=1

Pr(E|Hk)Pr(Hk).

4. Bayes rule:

Pr(Hj|E) = Pr(E|Hj)Pr(Hj)
Pr(E)

= Pr(E|Hj)Pr(Hj)∑K
k=1 Pr(E|Hk)Pr(Hk)

Here’s a breakdown of each part of the formula:

• Pr(Hj|E) is the probability of hypothesis Hj given the evidence E. This is the quantity
we want to compute, it is the posterior probability.

• Pr(E|Hj) is the probability of observing the evidence E given that Hj is true. This is
the likelihood of the evidence under the hypothesis Hj.

• Pr(Hj) is the prior probability of Hj, representing our initial belief in the probability of
Hj being true before considering any evidence E.

• Pr(E) is the total probability of observing the evidence E, also called the marginal like-
lihood.

Example 1

• Hypothesis H: an insurance claim is fraudulent. Pr(H) = 0.05 (5% of insurance claims
are fraudulent).

• Evidence E: the claim involves a high reimbursement amount. Pr(E|H) = 0.8 (80% of
fraudulent claims involve high reimbursement amounts).
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• Evidence in general: the overall probability that any claim involves a high reimburse-
ment amount is Pr(E) = 0.15.

The objective is to find the probability that an insurance claim is fraudulent given that it
involves a high reimbursement amount, Pr(H|E).

1. Prior Probability:
Pr(H) = 0.05

2. Likelihood:
Pr(E|H) = 0.8

3. Total probability of evidence Pr(E):
Pr(E) = 0.15

4. Posterior probability Pr(H|E):

Pr(H|E) = Pr(E|H)Pr(H)
Pr(E)

= 0.8 × 0.05
0.15

= 0.04
0.15

' 0.2667.

given that an insurance claim involves a high reimbursement amount, there is approximately a
26.67% chance it is fraudulent. This shows how Bayes rule updates the likelihood of fraud based
on this evidence.

2.2.3 The Philosophy of the Bayesian Approach
posterior law is the foundation for Bayesian statistics. When X as a is observed, the poste-

rior law Can be understood probabilistic summation of the information that is known about θ.
The update of a prior information by observing X is some accomplished by the Bayesian ap-
proach through π(θ|X).

The diagram below summarizes the Bayesian approach in the context of inferential para-
metric statistics.
the prior rule demonstrates the stochastic modeling of the x; as realizations of random variables
Xi which is feature of inferential statistic it also demonstrates the stochastic modeling of the
prior knowledge accessible on the parameter θ[16].
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The observationsx1, . . . , xi, . . . , xn The prior information: an estimate + a range

X1, . . . , Xi, . . . , XnXi|θ ∼ Pθ loi a prioridensité π(θ)

loi a posterioridensité π(θ|x)

Figure 2.1: the Bayesian approach in the context of inferential parametric statistics

2.3 A prior probability

2.3.1 Definition and Concept
prior probability is the probability of an event determined before any new evidence or data

is considered.
It is based on pre-existing information such as historical data, logical analysis, or subjective
judgment. This initial probability serves as the baseline for updating beliefs as new evidence
becomes available, following Bayes theorem.

Regarding the unknown parameter Θ, we already know certain things. This information
is expressed as prior distribution , which is law on the parameter space θ labeled π. The
parameter θ becomes a random variable and we note it as θ ∼ π.

Definition 5 Let (fθ)θ∈Θ be a family of probability densities parameterized by θ. A prior
distribution π is a probability distribution (probability density) on θ [9].

2.3.2 How to choose the prior distribution :
One key distinction between frequentist statistics and Bayesian statistics is the selection of

prior distribution , which is a basic step in the latter method.

Different points of view may serve as motivation for the various options:

• A decision made by the statistician using their intuition or historical experiences.

• Decision based on how feasible the computations are.

• Decision based on the wish to avoid adding any new details that would skew the estimate.
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2.4 Modelling information a priori

2.4.1 Informative priors
Concept of conjugate distributions :

A family F of distributions on Θ is said to be conjugate for the law f(x/θ) if for all π ∈ F ,
the posterior distribution π(.|x) also belongs to F .

The main benefit of conjugate families is that computations are made simpler. Another
benefit is that interpretation is frequently made considerably simpler because the law is up-
dated through its parameters [9].

Some examples of conjugate laws[2]:

Table 2.1: Conjugate probability distributions

f(x | θ) π(θ) π(θ | x)
likelihood a priori a posteriori
Normal Normal Normal

N (θ, σ2) N (µ, τ 2) N (ρ (σ2µ+ τ 2x) , ρσ2τ 2)
ρ−1 = σ2 + τ 2

Binomial Beta Beta
B(n, θ) Be(α, β) Be(α + x, β + n− x)
Poisson Gamma Gamma

P(θ) G(α, β) G(α + x, β + n)
Normal Gamma Gamma

N (µ, 1/θ) Ga(α, β) G (α + 0.5, β + (µ− x)2/2)
G(ν, θ) G(α, β) G(α + ν, β + x)

Negative Binomial Beta Beta
N eg(m, θ) Be(α, β) Be(α +m,β + x)

Multinomial Dirichlet Dirichlet
Mk (θ1, . . . , θk) D (α1, . . . , αk) D (α1 + x1, . . . , αk + xk)

2.4.2 Non-informative priors
In Bayesian statistics, non-informative priors - also referred to as uninformative or flat priors

- are used to indicate a situation in which there is little prior knowledge about the parameters
being estimated
They are made with the intention of having the least possible impact on the posterior distri-
bution, letting the data drive the conclusions. Here are a few salient features and examples:

• Jeffreys Priors: a substitute was put forth by Jeffreys in 1960.
Jeffreys prior law is given by:

π(θ)α
√
I(θ)

Where I(θ) = −E
[
∂2

∂θ2 log f(x|θ)
]
, I(θ) is the fisher information which measures the

amount of information that an observable random variable carries about the unknown
parameter upon which the likelihood depends.
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Example 2 if x ∼ B(n, P ):

f(x|P ) =
(
n

x

)
P x(1 − P )n−x

∂2 ln f(x|P )
∂P 2 = x

P 2 + n− x

(1 − P )2

So,

I(P ) = n
[ 1
P

+ 1
1 − P

]
So Jeffreys law for this model is:

π∗(P )α[P (1 − P )]−
1
2

• Uniform Priors: Uniform priors are considered non-informative as they do not favor
any specific value of the parameter. A uniform prior for a parameter θ within [a, b] is
defined as:

P (θ) = 1
b− a

for θ ∈ [a, b]

This means that every value of θ within the interval [a, b] is equally probable[11].

• We can also propose the a priori (impropre) Hollander distributions π (θ) = [θ (1 − θ)]−1 II[0,1[ (θ)
arguing that E[θ|X] is equal to the maximum likelihood estimator

2.4.3 The Weight of the a prior in the Bayesian response
Using an example , let’s examine the question to understand how a prior information and the

information Contained in the observation Combine With each other to produce the Bayesian
answer . We give the following Bayesian model :Xi|θ ∼ bernoulli((θ et θ∼Beta(a, b)).) it is
Convenient to reparameterize the Beta law using λ and µ (as above) and working With the
following formula (easy to establish)

E [θ|x] = λ

λ+ n
E [θ] + n

λ+ n
x

the Bayesian estimate ofθ therefore appears as the Weighted average of X. and of the a priori
mean E(θ) the and the a priori mean Weight of X is the size m of the sample , and that of
E(θ) is λ which is interpreted as the precision of the a priori.
Geometrically E(θ|X) is the barycenter of the coordinates points E(θ) and x,assigned respec-
tively to the coefficients λ

λ+n and n
λ+n

• If λ > n: the estimator is closer to E(θ) than to x.

• If λ < n: the estimator is closer to x than to E(θ).

• If λ = n: the Bayesian estimate of θ is located exactly in the middle of the interval
[E(θ), x].

To examine the influence of the a priori on E(θ|X) it is instructive to look at the limiting cases:
λ → 0 and λ → ∞ (the size n of the sample being fixed, as well as µ = E(θ)).

• In the first case, the weight of the prior is 0 and E(θ|X) → x which is the classic answer.
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• In the second case, the weight of the data is 0 and E(θ|X) → E(θ) which no longer
depends on X.

Translated with DeepL.com (free version) it is also interesting to look at What E[θ|X]
becomes When n → +∞ λand µ being fixed , in this Case , the Weight of the a priori becomes
negligible , and the Bayesian response Coincide With the classical response , Cod x ( the
estimate of θ by maximum likelihood ).

2.5 A posteriori probability
A posteriori probability is used to describe the revised likelihood of an event or hypothesis

following the consideration of fresh data or evidence.
It stands in contrast to the prior probability, which is the initial belief or likelihood before
taking we determine the a posteriori distribution of a parameter:

• The joint law of (θ,X): Its density is noted f(θ, x), f(θ, x) = f(x|θ)π(θ).

• The law of the marginal of X: Its density is noted m(x):

m(x) =
∫

Θ
f(θ, x)dθ

=
∫

Θ
f(x|θ)π(θ)dθ

f(θ|x) = f(x|θ)π(θ)∫
Θ f(x|θ)π(θ)dθ

= f(θ, x)
m(x)

.

Example 3 Either X|θ ∼ P (θ) or θ ∼ γ(2, 1).
Let us give the a posteriori probability law of the parameter θ as well as the marginal law of X.
We have,

f(X|θ) = e−θθx

x!
, x ∈ N

π(θ) = θe−θ, θ > 0

f(θ, x) = e−2θθx+1

x! and

m(x) =
∫ +∞

0
f(x|θ)π(θ) dθ,

=
∫ +∞

0

e−2θθx+1

x!
dθ,

=
∫ +∞

0

Γ(x+ 2)
Γ(x+ 2)

e−2θθx+1

x!
2x+2

2x+2 dθ,

= Γ(x+ 2)
x!2x+2

∫ +∞

0

e−2θθx+12x+2

Γ(x+ 2)
dθ,

= Γ(x+ 2)
x! · 2x+2 ,

= (x+ 1)!
x! · 2x+2 .
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(with Γ(x+ 2) = (x+ 1)!).
Hence the marginal law of X:

m(x) = x+ 1
2x+2 α ∈ N

And the posterior law of θ:

f(θ|x) = e−2θθx+1

(x+ 1)x!
2x+2

= e−2θθx+12x+2

(x+ 1)!
, θ > 0

So,
θ|x ∼ γ(x+ 2, 2)

2.6 Estimation of Parameters

2.6.1 Definitions and Importance
The process of estimating unknown parameters in a statistical model using observed data

is known as parameter estimation.
Since parameters are essential to models and define their behavior and structure, it is possible
to create models that more accurately reflect the processes that generate the data.
In Bayesian statistics, parameter estimation entails updating prior beliefs about parameters
using observed data in order to obtain their posterior distributions.

The parameter estimation is crucial for several reasons:

• Modeling:
To create trustworthy statistical models, precise parameter estimations are necessary.
These models can be used to accurately explain complicated systems and help in the
understanding of the interactions between variables.

• Uncertainty Quantification:
For risk assessment and well-informed decision-making under uncertainty, Bayesian pa-
rameter estimation offers an intuitive means of quantifying uncertainty in parameter
estimation by posterior distributions [11].

2.6.2 Bayesian Methods of Parameter Estimation
Bayes Estimator

The Bayes estimator δ of θ ∈ Θ, associated with the posterior distribution π(θ|x) and the
quadratic cost C(θ, d) = (θ − d)2, is the posterior average.

θm = E[θ|x] =
∫

Θ
θ π(θ|x) dθ (1.1)

Indeed, we have:
E[C(θ, d)] = d2 − 2dE[θ] + E[θ2] = (d− E[θ])2 + Var[θ]

which is minimized when d = E[θ].
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Example 4 We consider the following Bayesian model: Xi | θ ∼ Bernoulli(θ) and θ ∼
Beta(a, b).
Recall that: θ | x ∼ Beta(α, β) where:

α = a+ s and β = b+ n− s and s =
n∑
i=1

xi

from where:
E[θ | X] = a+∑n

i=1 xi
a+ b+ n

2.6.3 Properties of the Bayes estimator
• The Bayes estimator is admissible.

• The Bayes estimator is biased.

• The Bayes estimator is convergent in probability (where the size of the sample is n −→
+∞).

• For large values of n, the posterior distribution may asymptotically (c.a.d) be approxi-
mated by a normal law N(E[θ|X], var[θ|X]).

2.6.4 Maximum a Posteriori Estimator
Such an estimator also takes the form of the extremum of the a posteriori distribution:

θMax = arg max
π(θ∈Θ

{π(θ|x)} (1.2)

It is thus necessary to use integration and/or optimization techniques to such calculations.
Regretfully, calculations can typically only be performed analytically in basic circumstances
due to the complexity of the estimators equations (1.1) or (1.2), particularly for linear models
and standard probability distributions[12].

2.6.5 Bayesian credibility interval
The credibility interval is a real reflection of the confidence that one can have in the value

of the parameter concerned.
It emphasizes the original tenet of the Bayesian approach which holds that the parameter is

a random variable about which we have a reasonably good judgment rather than an unknown
fixed quantity.

By definition, a credibility interval of the level α is an interval such that the probability of
the parameter to belong to it according to the posterior distribution is (1−α). There are many
ways of building it; for example, we can take the one given by α

2 and 1 − α
2 quantiles.

When multiple parameters are of relevance at the same time, we refer to this as a credibility
region[12].

Example 5 Bayesian Inference to Determine the Posterior Credibility Interval of θ.

To determine the posterior credibility interval of θ, we follow the steps of Bayesian inference.
We consider that the observations X1, X2, . . . , Xn are a sample of size n from a random variable
X which follows a normal distribution N (0, 1). With θ following a normal prior distribution
N (0, 5), we aim to determine the posterior credibility interval for θ.

23



Bayesian Inference Steps

Prior Distribution:
We suppose that the prior distribution of θ is θ ∼ N (0, 5).
Likelihood Function:

Given the sample X1, X2, . . . , Xn from a normal distribution with mean θ and variance 1,
the likelihood function of the observed data is:

f(X|θ) =
n∏
i=1

1√
2π

exp
(

−(Xi − θ)2

2

)

Posterior Distribution:

Using Bayes’s theorem, the posterior distribution of θ given the data X = (X1, X2, . . . , Xn)
is:

P (θ|X) ∝ f(X|θ) · P (θ)

Given the prior θ ∼ N (0, 5) and the likelihood, the posterior distribution P (θ|X) will also be
normal. We need to derive its parameters (mean and variance).

Let’s rewrite the posterior distribution:

P (θ|X) ∝ exp
(

−1
2

(
n∑
i=1

(Xi − θ)2 + θ2
))

Combining the exponents:

= exp
(

−1
2

(
n∑
i=1

X2
i − 2θnX̄ + (n+ 1)θ2

))
So the posterior distribution is normal with parameters:

θ|X ∼ N
(
nX̄

n+ 1
,

1
n+ 1

)
nCredibility Interval:
For a 95% credibility interval (α = 0.05) for a normal distribution, there is approximately

±1.96. The 95% credible interval for θ is: nX̄

n+ 1
− 1.96

√
1

n+ 1
,
nX̄

n+ 1
+ 1.96

√
1

n+ 1



2.7 Markov Chain Monte Carlo (MCMC) Method:
The general name for computational methods involving random numbers is Monte Carlo.

Both conventional and Bayesian statistics can make use of Monte Carlo.
Markov Chain Monte Carlo (MCMC) is a unique type of Monte Carlo that was a major factor
in the second part of the 20th century Bayesian statistics resurgence.

One of the main problems of the Bayesian technique prior to MCMC’s rise in popularity
was that certain calculations were extremely difficult.
We can solve Many different types of Bayesian issues with MCMC that are not amenable to
analytical solutions[13].

The fundamental principle behind these techniques is to perform the computations using a
sequence of samples (θ1, ..., θn) that have been simulated in accordance with the probability law
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of interest (π(θ|x)). Based on a set of data (θ1, ..., θn) ∼ π(θ|x), the posterior mean estimator
provided by (1,1) is calculated using the following formula:

θ̂n =
n∑
i=1

θi.

Unfortunately, because there aren’t many easily replicated probability laws, modeling still eas-
ily places limitations on such an estimating technique. Nevertheless, in order to sample in
accordance with the distributions of interest, it is frequently required to use complex simula-
tion of techniques for Markov chain simulation an applied.

The next section utilizes these techniques[12]
The purpose of MCMC techniques is to use a measuring Markov chain invariant g to approxi-
mate the g distribution. We can then use this to make an estimator indeed, if Z1, ..., Zn ∼ π(θ|x)
than we can take as an estimator of θ,

θ̂n := 1
n

n∑
i=1

Zi (Monte Carlo estimator)

or θ̂n := median(Z1, ..., Zn)
or θ̂n := arg max(Z1, ..., Zn)

The fundamental concept behind MCMC techniques is to take a look at a Markov chain that
generates associated samples

θ0 → θ1 → θ2...

such that for i sufficiently large, θi roughly follows the g law [9].

Marker property:

A Markov chain satisfies the Markov property, meaning the future state depends only on
the current state and not the sequence of events that preceded it.

Definition
We denote by χ the state space, in the sequence X is either finite or infinitely countable, or it
is Rd.
A Markov chain (X0, X1, . . .) with Xi ∈ χ is a sequence of random variables satisfying:

f(Xn+1|Xi, ..., X1) = K(Xi+1, |Xi)
Where K : χ×χ → R+ called a Markov Kernel or transition Kernel verifies for all x ∈ χ, x′ 7−→
K(x′|x) is a probability density.

Proposals:

• UmM = UnA, n ∈ N∗

• Un = U0A
n, n ∈ N∗

Propositions:
Un+1(x′) =

∫
x
Un(x)K(x′|x)dx, ∀x′ ∈ χ

2.7.1 Metropolis-Hastings algorithm:
When it is difficult to sample directly from a probability distribution, or Marker chain Monte

Carlo (MCMC) technique that is utilised is the Metropolis-Hastings algorithm. For Bayesian
inference and statistical physics, it is particularly helpful with high-dimensional distributions.
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Basic Concepts:
In the target distribution , the goal is to generate samples from a target distribution π(x),
which is often known only up to normalizing constant.

Proposal distribution, the proposal distribution q(x′|x) is used by the algorithm to create
conditional samples. It proposes a new state, x′, given the present state x.
Algorithm steps:

Start with an initial state x0.

For each step t = 1, 2, .., T ,

draw a candidate x′ from the proposal distribution q(x′|xt).

Calculate the acceptance ratio α:

With probability α, accept the new candidate and set xt+1 = x′; otherwise, reject the
candidate, and set xt+1 = xt.

After a sufficient number of iterations, the samples {xt} will approximate the target distribu-
tion π(x).

Example 6 Sample from a distribution π(x)αe− x2
2 a normal distribution N(0, 1). We use a

normal proposal distribution q(x|x′) = N(x, 62).
The algorithm,

• x0 = 0

• At step t, suppose xt = 0. Draw a candidate x′ from N(0, 62).
calculate α:

α = min

1, e
− x2

2

e−
x2

t
2


• If x′ = 1, then α = min(1, e− 1

2 ) ≈ 0.606. With probability 0.606, accept x′ and set
xt+1 = 1; otherwise, xt+1 = 0.

2.7.2 Gibbs Algorithm
Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm used to sample from

a multivariate probability distribution when direct sampling is difficult.
By sampling iteratively from the conditional distributions of each variable given the others, it
creates a series of samples from the joint distribution [15].

The Gibbs Sampling Algorithm

• Initialization: Start with an initial guess for the parameters. Let θ(0) = (θ(0)
1 , θ

(0)
2 , . . . , θ

(0)
d )

be the initial values of the parameters.

• Iteration: For each iteration t = 1, 2, . . . , T :

Sample θ(t)
1 from the conditional distribution P (θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
d )
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Sample θ(t)
2 from the conditional distribution P (θ2|θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
d ).

...
Sample θ(t)

d from the conditional distribution P (θd|θ(t)
1 , θ

(t)
2 , . . . , θ

(t)
d−1)

• Repeat: Continue the process for a large number of iterations to ensure the samples
converge to the target distribution.

2.8 Bayesian Hypothesis testing :
Bayesian hypothesis testing provides a framework to update the probability of a hypothesis

as more evidence or information becomes available . in Contrast to frequentist techniques,
Which defend on predetermined significance levels and p-values , Bayesian testing uses proba-
bility distributions to quantify uncertainty . [11]
Assume , the parameter space θ is divided into θ0 and θ1,and P (θ ∈ θk) > 0 where K=0.1
we consider hypotheses:

• H0: Null hypothesis

• H1: Alternative hypothesis

We wish to test H0 : θ ∈ θ0against the alternative H1 : θ ∈ θ1 in Bayesian statistic the answer
to such a test is based on the posterior probabilities of hypotheses H0 and H1

P (H0|x) = P (θ ∈ Θ0|x) =
∫

Θ0
π (θ|x) dθ

P (H1|x) = P (θ ∈ Θ1|x) =
∫

Θ1
π (θ|x) dθ

note that: P (H1|x) = 1 − P (H0|x) .
One way to decide between H0and H1 is to compare P (H0|X) and P (H1|X) and accept the
hypothesis with the higher posterior probability. note :
a hypothesis (H0 or H1) is accepted as soon as it’s the posterior probability is considered
sufficiently high (greater than 0.9 or 0.95)
In the event that none of the posterior probabilities surpasses 0.9, two distinct attitudes could
exist:

• either we do not make a decision, and we decide for example to collect more observations.

• either we choose the hypothesis whose a posterior probability is the greatest.[16]
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CHAPTER 3
MODEL OF CLAIMS IN NON LIFE INSURANCE WITH

BAYESIAN APPROACH

3.1 Introduction
Risk theory is concerned with the erratic changes in an insurance company’s assets, or risk

reserve . The state of an insurance company at any given time may be described by its financial
reserves, which result mainly from the continuous trade-off between incoming premiums to the
company, and outgoing claims to its clients . A risk theoretical model can be expressed in its
most basic form as a stochastic process that involves two random variables that reflect claims
and premiums, as well as their mutual relationship and joint evolution over time. Overall,
risk models are crucial for ensuring the long-term sustainability and profitability of financial
institutions by systematically addressing the uncertainties they face.

3.2 Risk Model and Ruin Probability

3.2.1 Risk Model
Risk in insurance means the possibility of a disaster occurring or any other adverse event

likely to impact a company’s ability to operate its activities and in respect of which it can make
a claim.

Stochastic models are taken into consideration in risk theory, which can be applied to an
insurance company risk.
-An insurance Company’s financial scenario, which the outcome of a constant trade of between
incoming Premium Payments to the Company and outgoing Claims from Clients, can be used
to characterize its current situation. A risk theory model can be expressed as a stochastic
process in its most basic form, wherein Premiums and claims are represented by two random
variables, together with their mutual relationship and combined evolution over time.

The risk reserve, W(t), is the financial reserve of an insurance Company at time t, and can
be expressed by the surplus equation:

W (t) = u+ ct− S(t)
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Figure 3.1: Development of the Reserve Risk W (t) Over Time T

where S(t) =
N(t)∑
i=1

Xi is the aggregate amount of claims

and u is the initial capital of the company, c is the premium density which is assumed to
be constant, the function S(t) is the claim process which denotes the total amount that the
company has to pay to the customers by time t.

Let {N(t); t ≥ 0} denote a stochastic process representing the number of claims arising from
a portfolio of risks in the time interval (0, t]. If the sizes of successive claims are X1, X2, . . .,
then the aggregate claims in time interval (0, t] is:

S(t) =
N(t)∑
i=1

Xi

These schematics below represent the evolution of the number of claims N(t) over the pe-
riod T , highlighting the cumulative nature and frequency of claim occurrences. Additionally,
they illustrate the progression of the aggregate amount of claims S(t) over the same period,
demonstrating how the total cumulative amount of claims accumulates as claims occur.[12]

Figure 3.2: Development of the Number of Claims N(t) Over Time T
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Figure 3.3: Development of the Aggregate Claim Amount S(t) Over Time T

3.2.2 Ruin probability
Definition:The probability of ruin in its primary version corresponds to the point beyond

which the initial capital is completely exhausted over a given period following an outcome
deficit. The probability of ruin is equal to [7]:

ψ(u) = Pu{R(t) < 0, for some t > 0}

3.2.3 The Individual Risk Model
The individual risk model (IRM) is derived by considering the claims on individual policies

and summing all policies in the portfolio. The individual risk model represents the aggregate
loss as a fixed sum of independent and identically distributed. The basic equation of the
individual risk model is:

S =
n∑
i=1

Xi,

where S is the total amount, n is the number of individual risks and is fixed, and Xi is the
claim amount for the i-th risk.

The mean and the variance of S are given by:

E(S) = nE(X) and Var(S) = nVar(X)

-Let the probability of a loss be θ and the probability of no loss be 1 − θ.
-Where there is a loss, the loss amount is Y which is a positive continuous random variable
with mean µY and variance σ2Y .
Thus, X = Y with probability θ and X = 0 with probability 1 − θ. We have X = IY , where I
is a Bernoulli random variable distributed

independently of Y so that,

I =

0 with probability 1 − θ

1 with probability θ

So,
E (X) = E (I)E (Y ) = λµ

Var (X) = Var (IY )
= [E (Y )]2 Var (I) + E

(
I2
)

Var (Y )
= µ2λθ (1 − θ) + θσ2Y.
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3.2.4 The Collective Risk Model
We still compute the distribution of the entire claim amount over a given time period, but

as of right now, we think of the portfolio as a collective that makes claims at random intervals
we compose[[6]]:

S = X1 +X2 + · · · +XN

where N denotes the number of claims and Xi is the i-th claim.
-The Mgf MS(t) of the aggregate loss S is given by MS(t) = MN (logMx(t)).
If the claim severity takes non-negative discrete values, S is also non-negative and discrete,

and its pgf is [17]:
PS(t) = PN [PX(t)]

The mean of S is:
E(S) = E(N)E(X)

The variance of S is:
Var(S) = E(N)Var(X) + Var(N)[E(X)]2

3.2.5 Common Distributions for Modeling the Number of Claims
Let the random variable X represent the number of claims from individual policy or a policy

portfolio. In motor liability insurance different theoretical distributions may be used to model
the number of claims (Lemaire, 1995). The following are the most commonly used distributions
for modeling the number of claims .

1. Binomial Distribution
The Bernoulli binomial distribution is described with the probability distribution func-
tion:

P (X = k) =
(
n

k

)
pkqn−k, where k = 0, 1, . . . , n and

(
n

k

)
= n!
k!(n− k)!

.

2. Poisson distribution
The Poisson distribution is a distribution with the function of the probability defined by
the formula:

P (X = k) = exp(−λ)λ
k

k!
, k = 0, 1, . . . .

The random variable X has a negative binomial distribution (Polya) when its probability
distribution function has the form[3]:

P (X = k) = Γ(α + k)
Γ(α)k!

(
β

1 + β

)α ( 1
1 + β

)k
.

If the random variable X has a Poisson distribution with parameter λ and the parameter
λ has the inverse normal distribution, then the random variable X has a Poisson-inverse
normal distribution (Denuit, Marechal, Pitrebois, Walhin, 2007, p.31).
The probability function of Poisson-inverse normal distribution is given by:

P (X = k) =
√

2α
π

exp(α(1 − θ))(αθ/2)k

k!
Kk−1/2(α) k = 0, 1, . . . ,

where Kk−1/2(α) is a modified third kind Bessel function (for positive and real arguments)
in the form of:

Kk−1/2(α) =
√
π

2α
exp(−α)

(
k−1∑
i=0

(k − 1 + i)!
(k − 1 − i)!i!

)
(2α)−i k = 1, 2, . . . .
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Probability distribution function of the Poisson-Poisson distribution (Neyman type A) is
given by:

P (X = k) = exp(−λ1)
∞∑
n=0

λn1
n!

(λ2n)k

k!
exp(−λ2n), k = 0, 1, 2, . . . .

Example 7 Poisson distribution (uncertainty about the parameter)
Assume that some car driver causes a Poisson N(λ) distributed number of accidents in one
year. The parameter λ is unknown and different for every driver. We assume that λ is the
outcome of a random variable Λ given Λ = λ. Calculate the marginal distribution of N

U(λ) = Pr(Λ ≤ λ) denote the distribution function of Λ then we can write the marginal
distribution of N as

Pr[N = n] =
∫ ∞

0
Pr[N = n/Λ = λ]dU(λ)

=
∫ ∞

0
e−λλ

n

a!
dU(λ)

if Λ → γ(α, β), then

mN(t) = E[E[etN/Λ]]
= E[exp{Λ(et − 1)}] = mΛ(et − 1)

=
(

β

β − (et − 1)

)
=
(

β

1 − (1 − P )et

)α

where P = β(β + 1). So N has a negative binomial (α, β/(β + 1)) distribution [5]

3.3 Distribution of the total claim amount

3.3.1 Pareto distribution of amount claim
The Pareto distribution is among the most heavy-tailed of all models in practical use and

this is essential for modeling extreme losses, especially in the more risky types of insurance.[14]
Hence it is a conservative choice when modeling the claim size. The density function of the

Pareto distribution is
g(x) = αxαm

x1+α x ≥ xm

xm: the minimum possible value of X
α: a positive parameter.

We assume that the smallest possible value of x is 1, so the density is
g(x) = α

x1+α x ≥ 1

In order to make the density values from zero we let Z = β(x − 1) such that x = 1 + Z
β

by
inversion. The probability function of Z is

f(Z) = g(x(Z))
∣∣∣∣∣δx(Z)
δZ

∣∣∣∣∣ = α/β

(1 + Z/β)1+α Z > 0

α > 0 is the shape parameter and β > 0 is the scale parameter.
E(Z) = β

α− 1
, α > 1

Var(Z) = αβ2

(α− 1)2(α− 2)
α > 2
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Parameter Estimation using Maximum Likelihood Method :
Likelihood Function:

L(α, β) =
n∏
i=1

f(zi | α, β) =
(
α

β

)n n∏
i=1

(
1 + zi

β

)−(1+α)

Log-Likelihood Function:

logL(α, β) = n log(α) − n log(β) − (1 + α)
n∑
i=1

log
(

1 + zi
β

)
MLE for Shape Parameter α:
Differentiating logL(α, β) with respect to α and setting the result to zero:

∂ logL(α, β)
∂α

= n

α
−

n∑
i=1

log
(

1 + zi
β

)
= 0

Solving this gives:
α̂β = n∑n

i=1 log
(
1 + zi

β

)
Log-Likelihood Function Depending Only on β: Insert α̂ into the log-likelihood function:

logL(β) = n log

 n∑n
i=1 log

(
1 + zi

β

)
− n log(β) −

1 + n∑n
i=1 log

(
1 + zi

β

)
 n∑
i=1

log
(

1 + zi
β

)

Simplify:

logL(β) = n

[
log(n) − log

(
n∑
i=1

log
(

1 + zi
β

))]
−n log(β)−

1 + n∑n
i=1 log

(
1 + zi

β

)
 n∑
i=1

log
(

1 + zi
β

)

3.3.2 Weibull Distribution
The Weibull distribution is a widely used distribution because of its versatility. The density

function is

f(Z) = α

β

(
Z

β

)α−1

e−(Z/β)α

, Z > 0

The mean and the variance:
E(Z) = βΓ

(
1 + 1

α

)

Var(Z) = β2
[
Γ
(

1 + 2
α

)
−
(

Γ
(

1 + 1
α

))2]
Parameter Estimation using Maximum Likelihood Method :
Likelihood Function:

L(α, β) =
n∏
i=1

f(zi | α, β) = αn

βnα
e−
∑n

i=1(zi/β)α
n∏
i=1

zα−1
i

Log-Likelihood Function:

logL(α, β) = n log(α) − nα log(β) + (α− 1)
n∑
i=1

log(zi) − 1
βα

n∑
i=1

zαi

MLE for Scale Parameter β: Differentiate logL(α, β) with respect to β and set the result
to zero:

∂ logL(α, β)
∂β

= −nα

β
+ α

βα+1

n∑
i=1

zαi = 0

Solving this gives:

β̂α =
(

1
n

n∑
i=1

zαi

)1/α
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Log-Likelihood Function Depending Only on α: Insert β̂ into the log-likelihood function:

logL(α) = n log(α) − nα log

( 1
n

n∑
i=1

zαi

)1/α
+ (α− 1)

n∑
i=1

log(zi)

Simplify:

logL(α) = n

[
log(α) + log(n) − log

(
n∑
i=1

zαi

)
− 1

]
+ (α− 1)

n∑
i=1

log(zi)

The marginal distribution of parameters given insurance claim data is found by integrating
over both parameters:

P (xt) =
∫ ∞

0
P (xt, β, α)

This integration simplifies to a form involving a new variable ρ, defined as the product of α
and the sum of β and Λ:

ρ = α
( n∑
t=1

xβt + λ
)

The likelihood function is then proportional to the marginal function, leading to the derivation
of the joint posterior distribution of the two parameters [21]:

P (α|xt) = ρ(xt, β, α)
ρ(xt)

This distribution resembles a Gamma distribution:

αn+ψ−1

Γ(n+ ψ)
e−α(∑n

t=1 x
β
t )
(

n∑
t=1

xβt + λ

)n+ψ

∼ Gamma

(
n+ ψ,

n∑
t=1

xβt + λ

)

From this, the Bayes estimate under the squared error loss function is calculated:

α̂ = E(α) = n+ ψ∑n
t=1 x

β
t + λ

3.3.3 Gamma distribution
X ∼ Γ(α, β) with the density

fX(x) = βα

Γ(α)
xα−1e−βx, x > 0.

If we choose α < 1 we fulfill the property that as much mass of the distribution as possible
lies near 0. The Gamma-distribution is often used for insurance contracts without extreme
claim heights, such as car insurances.
Given a complete sample X1, X2, . . . , Xn from a Gamma distribution with parameters α and
β, the likelihood function is:

L(α, β | x) = βnα [Γ(α)]−n
(

n∏
i=1

xα−1
i

)
exp

(
−β

n∑
i=1

xi

)
where α > 0 and β > 0.

By taking the logarithm of the likelihood function and setting the partial derivatives with
respect to α and β to zero, we get the likelihood equations:

β̂ = α̂

X̄

log α̂− ψ(α̂) = log X̄ − log X̃
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where ψ(k) is the digamma function, X̄ = 1
n

∑n
i=1 xi is the sample mean, and X̃ = (∏n

i=1 xi)
1/n

is the geometric mean of the sample.
These equations do not have a closed-form solution and require numerical techniques to

solve for the maximum likelihood estimators α̂ and β̂.
The Fisher information matrix for the parameters α and β is:

I(α, β) =
[
ψ′(α) − 1

β

− 1
β

α
β2

]

where ψ′(α) is the trigamma function, the derivative of the digamma function.
For large sample sizes (n → ∞), the maximum likelihood estimators α̂ and β̂ are approxi-

mately normally distributed:
α̂ ∼ N(α, σ2

1) and β̂ ∼ N(β, σ2
2)

where σ2
1 = (αψ′(α))−1 and σ2

2 = β2ψ′(α)
αψ′(α) .

If our data X1, . . . , Xn are iid Poisson(λ), then a gamma(α, β) prior on λ is a conjugate
prior.

Likelihood:
L(λ|x) =

n∏
i=1

e−λλxi

xi!
= e−nλλ

∑
xi

n∏
i=1

1
xi!

Prior:
p(λ) = βα

Γ(α)
λα−1e−βλ, λ > 0

Posterior:
π(λ|x) ∝ λ

∑
xi+α−1e−(n+β)λ, λ > 0

π(λ|x) is gamma
(∑

xi + α, n+ β
)

(Conjugate!)

The posterior mean is:

λ̂B =
∑
xi + α

n+ β
=

∑
xi

n+ β
+ α

n+ β
=
(

n

n+ β

)(∑
xi
n

)
+
(

β

n+ β

)(
α

β

)

3.3.4 Exponential Distribution
Exponential distribution:X ∼ Exponential(β) with the density

fX(x) = βe−βx, x > 0.

Given a complete sample X1, X2, . . . , Xn from an Exponential distribution with parameter β,
the likelihood function is:

L(β | x) = βn exp
(

−β
n∑
i=1

xi

)
where β > 0.

By taking the logarithm of the likelihood function and setting the derivative with respect
to β to zero, we get the likelihood equation:

β̂ = n∑n
i=1 xi

= 1
X̄

where X̄ = 1
n

∑n
i=1 xi is the sample mean.

For large sample sizes (n → ∞), the maximum likelihood estimator β̂ is approximately
normally distributed:

β̂ ∼ N

(
β,
β2

n

)
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If our data X1, . . . , Xn are i.i.d Exponential(λ), then a gamma(α, β) prior on λ is a conjugate
prior.

Likelihood:
L(λ|x) =

n∏
i=1

λe−λxi = λn exp
(

−λ
n∑
i=1

xi

)
Prior:

p(λ) = βα

Γ(α)
λα−1e−βλ, λ > 0

Posterior:
π(λ|x) ∝ λn+α−1e−(

∑n

i=1 xi+β)λ, λ > 0

π(λ|x) is gamma(n+ α,
n∑
i=1

xi + β) (Conjugate!)

The posterior mean is:

λ̂B = n+ α∑n
i=1 xi + β

= n∑n
i=1 xi + β

+ α∑n
i=1 xi + β

=
(

n∑n
i=1 xi + β

)( 1
X̄

)
+
(

β∑n
i=1 xi + β

)(
α

β

)

3.3.5 Log-normal distribution
Given: - The observed data x = (x1, x2, . . . , xn) are assumed to be log-normally distributed:

xi ∼ LogNormal(µ, σ2). - The log-normal distribution can be represented in terms of a normal
distribution: if yi = log(xi), then yi ∼ N (µ, σ2). - We assume a gamma prior on the precision
(inverse of variance): τ = 1

σ2 ∼ Gamma(α, β).
The likelihood of the observed data y = (log(x1), log(x2), . . . , log(xn)) under the normal

distribution is given by:

P (y|µ, σ2) =
(

1√
2πσ2

)n
exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2
)

The prior on the precision τ = 1
σ2 is:

P (τ) = βα

Γ(α)
τα−1 exp(−βτ)

To find the posterior, we combine the likelihood and the prior:
P (τ |y) ∝ P (y|τ)P (τ)

Since σ2 = 1
τ
:

P (y|τ) =
(
τ

2π

)n/2
exp

(
−τ

2

n∑
i=1

(yi − µ)2
)

Therefore,

P (τ |y) ∝
(
τ

2π

)n/2
exp

(
−τ

2

n∑
i=1

(yi − µ)2
)

· βα

Γ(α)
τα−1 exp(−βτ)

Combining terms:

P (τ |y) ∝ τn/2τα−1 exp
(

−τ
(

1
2

n∑
i=1

(yi − µ)2 + β

))
Simplifying:

P (τ |y) ∝ τα+n/2−1 exp
(

−τ
(
β + 1

2

n∑
i=1

(yi − µ)2
))

This is the kernel of a gamma distribution with updated parameters:

τ |y ∼ Gamma
(
α + n

2
, β + 1

2

n∑
i=1

(yi − µ)2
)
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The posterior distribution of the precision τ (or equivalently the variance σ2) is:

τ |y ∼ Gamma
(
α + n

2
, β + 1

2

n∑
i=1

(yi − µ)2
)

Since σ2 = 1
τ
, the posterior distribution of σ2 is:

σ2|y ∼ Inverse-Gamma
(
α + n

2
, β + 1

2

n∑
i=1

(yi − µ)2
)

Therefore, the posterior distribution of the log-normal distribution’s variance (given a
gamma prior on the precision) is an inverse-gamma distribution.
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CHAPTER 4
APPLICATION TO AGGREGATE INSURANCE CLAIMS USING

BAYESIAN AND CLASSICAL APPROACHES

4.1 Introduction
The objective of this chapter is to simulate aggregate insurance claims using both the

Classical and Bayesian approaches, compare the results, and visualize the differences. By
conducting this comparison, we aim to understand the impact of incorporating prior knowledge
and updating parameters on the estimation of aggregate claims.

4.2 Comparison of Bayesian and Classical Approaches
for Simulating Aggregate Insurance Claims

4.2.1 Poisson and Exponential Distributions
We will employ a Poisson Distribution to model the number of claims and an Exponential

Distribution to model the amount of each claim. For the Bayesian approach, we will use Gamma
Distributions as priors for the Poisson and Exponential parameters. The parameters will be
updated based on the observed data, and the posterior Distributions will be used for simulation.

• Bayesian Approach :
Prior Distributions:

– Poisson parameter (λ): Gamma(2, 1)
– Exponential parameter (θ): Gamma(2, 1)

Posterior Distributions:

– For λ: Gamma(α +∑
xi, β + n)

– For θ: Gamma(α +∑
xi, β + n)

• Classical Approach :
Fixed Parameters:

– Poisson parameter (λ): 2 (α/β = 2/1)
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– Exponential parameter (θ): 2 (α/β = 2/1)

Results and Discussion

The table below summarizes the mean and standard deviation of the simulated aggregate
claims for both the Bayesian and Classical approaches.

Table 4.1: Mean and standard deviation of Exponential Distribution

Approach Mean Aggregate Claims Standard Deviation
Classical 368,99 17,54
Bayesian 421,83 23,97

Figure 4.1: Density of aggregate claim with bayesian and Classical approach

4.2.2 Poisson and Gamma Distributions:
Distributions and parameters used:

• Classical approach:

– Poisson Distribution ( Λ) : the average number of claims
Λ = 3

– Gamma distribution
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Parameters:

– Classical shape: α = 3
– Classical rate: β = 2

• Bayesian Approach:
Gamma Distributions are used in claim amount modeling.
Parameters:

– Prior Gamma shape: α = 3
– Prior Gamma rate: β = 2

Table 4.2: Mean of number of claims with Poisson distribution and Gamma prior distribution

Approach Mean Standard Deviation
Classical 899.45 1.32
Bayesian 613.90 13.58

Figure 4.2: frequency of Aggregate claim by Gamma Distribution
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Table 4.3: Comparison of Mean and Standard Deviation: Classical vs Bayesian Approach by
poisson Distribution

Approach Mean Standard Deviation
Classical 598.45 92.45
Bayesian 614.90 361.58

4.2.3 Aggregate with Poisson Distributions

Figure 4.3: frequency of Aggregate claim by poisson Distribution

4.2.4 Aggregate with Log normal Distributions
log normal:

Table 4.4: Comparison of Mean and Standard Deviation: Classical vs Bayesian Approach by
log normal Distribution

Approach Mean Standard Deviation
Classical 987.40 68.70
Bayesian 1002.62 361.67
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Figure 4.4: frequency of Aggregate claim by log normal Distribution

4.3 Adjustment of Data by Kolmogorov-Smirnov test
Our analysis focuses on the Besecura dataset from the CASdatasets R package, which con-

tains individual automobile loss amounts exceeding 1.2 million euros from 1988 to 2001.

With 371 claims recorded over 14 years, the dataset, adjusted to 2002 euros, provides yearly
claim counts and individual loss amounts.

The dataset’s small size, with only 14 yearly claim counts, allows for different results between
Bayesian and classical methodologies, aligning well with our research.

A summary captures the annual claim counts and the highest and lowest loss amounts for
each year in millions of euros. Notably, 1990 had the highest loss at 7.899 million euros, and
1991 the lowest at 1.208 million euros.

The least number of claims occurred in 2001, while 1995 had the most. A graph plots
individual loss amounts against their respective years, and a table details sample means and
variances for deeper understanding.
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Table 4.5: Summary of Bescura dataset.

Year Number of Claims Maximum Loss Minimum Loss The average between the
maximum and minimum loss

1988 13 6.925 1.231 4.0780
1989 15 3.586 1.220 2.4030
1990 20 7.899 1.212 4.5555
1991 37 7.487 1.208 4.3475
1992 31 4.179 1.221 2.7000
1993 29 6.685 1.240 3.9625
1994 20 5.343 1.318 3.3305
1995 44 2.988 1.276 2.1320
1996 36 5.093 1.359 3.2260
1997 36 4.964 1.463 3.2135
1998 33 3.435 1.538 2.4865
1999 25 4.051 1.634 2.8425
2000 25 4.147 1.632 2.8895
2001 7 2.956 1.661 2.3085

4.3.1 Adjustment the number of claims by Data the Poisson Distri-
bution:

Table 4.6: Summary of the Kolmogorov-Smirnov test with Poisson Distribution

Mean of number of claims Test statistic (D) P-value Alternative hypothesis
26.5 0.2075051 0.5829501 two-sided

the p-value is greater than or equal to 0.05, suggesting no significant evidence against the null
hypothesis. Therefore, the observed Data could be considered to follow a Poisson Distribution
with λ = 26.5.

Table 4.7: Summary of vector C

Statistic Value
Min. 2.956

1st Qu. 4.051
Median 4.964
Mean 149.805

3rd Qu. 6.685
Max. 3586.000
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Figure 4.5: Histogram of number of claims

4.3.2 Calculation of the Expected Number of Claims E(N)
In insurance risk analysis, the number of claims N is often modeled using a Poisson Distri-

bution. Here, E(N) represents the expected value or mean of the number of claims.
-Expected Value of Poisson Distribution:
The expected value E(N) of a Poisson-distributed random variable N is equal to its pa-

rameter λ:
E(N) = λ

This means that for our case, where E(N) = 26.5, the average number of claims per interval
is 26.5.

Conclusion:
Given E(N) = 26.5, we interpret this as the expected number of claims in a specified period

or context, assuming a Poisson Distribution where the rate parameter λ is 26.5.

4.3.3 Adjustment of Minimum Loss Values with Different Distribu-
tions

• Exponential Distribution

• Estimated Parameters: λ

• Gamma Distribution

• Estimated Parameters: α, β

• Weibull Distribution
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• Estimated Parameters: k, λ

• Lognormal Distribution

• Estimated Parameters: µ, σ

Table 4.8: Summary of Kolmogorov-Smirnov tests for Distributions fitted to vector F gener-
ated between number of claims and minimum loss values.

Distribution Goodness of fit Results
Exponential Test statistic (D): 0.0384

P-value: 0.6433
Interpretation: No significant evidence
against the null hypothesis. Therefore, vec-
tor Fexp could be considered to follow an Ex-
ponential Distribution.

Lognormal Test statistic (D): 0.0259
P-value: 0.9652
Interpretation: No significant evidence
against the null hypothesis. Therefore, vec-
tor Flognormal could be considered to follow a
Lognormal Distribution.

Gamma Test statistic (D): 0.2144
P-value: 3.11 × 10−15

Interpretation: Significant evidence against
the null hypothesis. Therefore, vector F does
not follow a Gamma Distribution.

Weibull Test statistic (D): 0.2115
P-value: 7.77 × 10−15

Interpretation: Significant evidence against
the null hypothesis. Therefore, vector F does
not follow a Weibull Distribution.

Table 4.9: Summary statistics of vector F

Summary Value
Min. 2.132
1st Qu. 2.486
Median 3.213
Mean 3.163
3rd Qu. 3.962
Max. 4.556

The vector F was generated as a sample where each minimum loss value Qi is repeated
according to the corresponding number of claims Ni, thus creating an aggregate representation
of the loss Data based on the given number of claims and their respective minimum loss values.
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Figure 4.6: Histogram of F with exponential Distribution

Figure 4.7: Histogram of F Gamma Distribution
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Figure 4.8: Histogram of F weibull Distribution

Figure 4.9: Histogram of F lognormal Distribution
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4.3.4 Adjustment of maximum Loss Values with Different Distribu-
tions

Table 4.10: Summary of Kolmogorov-Smirnov tests for Distributions fitted to vector F gen-
erated between number of claims and minimum loss values.

Distribution Summary
Exponential Test statistic (D): 0.04980428

P-value: 0.3162194
Interpretation: The p-value is greater than
or equal to 0.05, suggesting no significant evi-
dence against the null hypothesis. Therefore,
vector Fexponential could be considered to fol-
low an Exponential Distribution.

Lognormal Test statistic (D): 0.06851771
P-value: 0.06140082
Interpretation: The p-value is greater than
or equal to 0.05, suggesting no significant evi-
dence against the null hypothesis. Therefore,
vector Flognormal could be considered to follow
a Lognormal Distribution.

Gamma Test statistic (D): 0.004238857
P-value: 0.5176068
Interpretation: The p-value is greater than
or equal to 0.05, suggesting no significant evi-
dence against the null hypothesis. Therefore,
vector FGamma could be considered to follow
a Gamma Distribution.

Table 4.11: Summary statistics of vector F

Summary Statistics of F
Minimum (Min.) 2.132
1st Quartile (1st Qu.) 2.486
Median 3.213
Mean 3.163
3rd Quartile (3rd Qu.) 3.962
Maximum (Max.) 4.556

The vector F was generated as a sample where each maximum loss value Qi is repeated
according to the corresponding number of claims Ni, thus creating an aggregate representation
of the loss Data based on the given number of claims and their respective maximum loss values.
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Figure 4.10: Histogram of maximum loss values with exponential Distribution

Figure 4.11: Histogram of maximum loss values with Gamma Distribution

Figure 4.12: Histogram of maximum loss values with lognormal Distribution
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4.3.5 Adjustment of Average Loss Values with Different Distribu-
tions

Table 4.12: Summary of Kolmogorov-Smirnov tests for Distributions fitted to vector F gen-
erated between the number of claims and minimum loss values.

Distribution Summary
Exponential Test statistic (D):0.05132519

P-value: 0.2824583
Interpretation: The p-value is greater than
or equal to 0.05, suggesting no significant evi-
dence against the null hypothesis. Therefore,
vector Fexponential could be considered to fol-
low an Exponential Distribution.

Lognormal Test statistic (D): 0.0514404
P-value: 0.2800102
Interpretation: The p-value is greater than
or equal to 0.05, suggesting no significant evi-
dence against the null hypothesis. Therefore,
vector Flognormal could be considered to follow
a Lognormal Distribution.

Gamma Test statistic (D): 0.02453528
P-value: 0.9788374
Interpretation: The p-value is greater than
or equal to 0.05, suggesting no significant evi-
dence against the null hypothesis. Therefore,
vector FGamma could be considered to follow
a Gamma Distribution.

Weibull Test statistic (D): 0.0332375
P-value: 0.8070209
Interpretation: The p-value is greater than
or equal to 0.05, suggesting no significant evi-
dence against the null hypothesis. Therefore,
vector Fweibull could be considered to follow
a Weibull Distribution.

Table 4.13: Summary of the descriptive statistics for the vector F .

Statistic Value
Min 1.208

1st Quartile 1.221
Median 1.276
Mean 1.362

3rd Quartile 1.463
Max 1.661

The vector F was generated as a sample where each average loss value Qi is repeated
according to the corresponding number of claims Ni, thus creating an aggregate representation
of the loss Data based on the given number of claims and their respective average loss values.
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Figure 4.13: Histogram of average loss with exponential Distribution

Figure 4.14: Histogram of average loss with lognormal Distribution

Figure 4.15: Histogram of average loss with Gamma Distribution

51



Figure 4.16: Histogram of average loss with weibull Distribution

4.3.6 Mean Calculation for Exponential Distribution
• The mean E(X) for the exponential Distribution, estimated from the Data, is given by:

E(X) = 1
λ̂

where λ̂ is the estimated rate parameter derived from the Data.

• Computed Mean:
E(X) = 2.960179

This value represents the expected mean value ofX based on the estimated rate parameter
from the exponential Distribution.

4.3.7 Calculation of Aggregate Claim Amount E(S)
In insurance risk analysis, the aggregate claim amount S is calculated as the product of the

mean number of claims E(N) and the mean claim amount E(X).
-Given:

• E(N) = 26.5 (mean number of claims, assumed to follow a Poisson Distribution)

• E(X) = 2.960179 (mean of the exponential Distribution of claim amounts)

-Calculation:
E(S) = E(N) × E(X)

E(S) = 26.5 × 2.960179

E(S) ≈ 78.47

Therefore, the expected aggregate claim amount E(S) is approximately 78.47.
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4.4 Simulating aggregate insurance claims with Bayesian
approach

4.4.1 Bayesian Inference and Simulation for Comparing Real and
Simulated Number of Claims Data Means

We simulate and compare the means of real and simulated Data using Bayesian inference
for a Poisson Distribution.
The real Data, representing the number of claims, is generated from a Poisson Distribution
with a specified lambda.
The prior Distribution parameters (alpha and beta) are used to generate samples from a Gamma
Distribution, which serve as the rate parameter for generating simulated Data from the Poisson
Distribution.
We then compare the means of the real and simulated Data and visualize the results using a
histogram. Additionally, we calculate the posterior mean of the rate parameter based on the
real Data representing the number of claims.

Table 4.14: Comparison of Real and Simulated Data Means for Different Alpha and Beta
Parameters

Alpha Beta Mean Real Data Mean Simulated Data
25 1 26.5 26.74
30 12 26.5 2.32

Figure 4.17: Comparison of Real and Simulated Data Means for α = 20 and β = 2
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Figure 4.18: Comparison of Real and Simulated Data Means for α = 30 and β = 12

Figure 4.19: Comparison of Real and Simulated Data Means for α = 25 and β = 1

4.4.2 Estimation of Posterior Parameters for Poisson Distribution
with MCMC

Table 4.15: Posterior Estimates from Poisson Distribution

Parameter Value
Posterior Mean of λ 24.86667

Posterior Variance of λ 1.657778

Explanation:
The provided R code estimates the posterior parameters of a Poisson Distribution using

Bayesian inference:

• Posterior Mean of λ: Represents the estimated mean of the rate parameter λ, which
characterizes the Poisson Distribution.

54



• Posterior Variance of λ: Shows the estimated variance of the rate parameter λ.

This Bayesian approach updates prior beliefs (Gamma Distribution as priors for λ) based
on observed data (vector observations), providing posterior Distributions for the parameter λ.

4.4.3 Estimation of Posterior Parameters for Negative Binomial Dis-
tribution with MCMC

Table 4.16: Posterior Estimates from Negative Binomial Distribution

Parameter Value
Posterior Mean of r 24.86667

Posterior Variance of r 1.657778
Posterior Mean of p 20.72222

Posterior Variance of p -21.50991

1. Explanation:
The provided R code estimates the posterior parameters of a negative binomial Distribu-
tion using Bayesian inference:
This Bayesian approach updates prior beliefs (Gamma and Beta Distributions as priors
for r and p respectively) based on observed data (vector

2. Observations: providing posterior Distributions for the parameters r and p.

3. -Bayesian Posterior Mean of Number of Claims: The expected value (mean) E(N)
using the Bayesian approach with a Gamma prior and Poisson likelihood is calculated as:

E(N) = α +∑
xi

β + n

where:

• α and β are the shape and rate parameters of the Gamma prior Distribution for λ,
• ∑

xi is the sum of the observed data points,
• n is the number of observations.

This formula represents the expected number of claims N based on the Bayesian estima-
tion incorporating both prior assumptions and observed data. The expected value (mean)
E(N) is calculated as:

E(N) = 26.4

.
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Table 4.17: Comparison of Mean Real Data and Mean Simulated Data for Different Alpha
and Beta Values

Alpha Beta Mean Real Data Mean Simulated Data
2 1 1.361663 1.229292

0.5 3 1.361663 23.44314
1 1 1.361663 4.132548

4.5 Bayesian Inference and Simulation for Comparing
Real and Simulated Amount of Claims Data Means

For minimum loss:

1. For Exponential Distributions:

Figure 4.20: Comparison of Real and Simulated Data Means for α = 2 and β = 1

Figure 4.21: Comparison of Real and Simulated Data Means for α = 0.5 and β = 3

56



Figure 4.22: Comparison of Real and Simulated Data Means for α = 1 and β = 1

The table above presents a comparison of the mean real data and mean simulated data
for different values of the parameters α and β used in the Gamma Distribution prior for
Bayesian inference.

For α = 2 and β = 1, the mean of the simulated data (1.229292) is quite close to the mean
of the real data (1.361663), indicating a good fit between the model and the observed data.

However, for α = 0.5 and β = 3, there is a significant discrepancy between the mean of
the simulated data (23.44314) and the mean of the real data (1.361663). This suggests
that this set of prior parameters does not fit the observed data well, leading to a consid-
erable overestimation.

Similarly, for α = 1 and β = 1, the mean of the simulated data (4.132548) is higher than
the mean of the real data (1.361663), though the discrepancy is less extreme than in the
previous case. This indicates that while the model with these parameters captures the
data trend to some extent, it still overestimates the mean number of claims.

These results underscore the importance of selecting appropriate prior parameters in
Bayesian inference to ensure that the posterior Distribution accurately reflects the ob-
served data.

2. Log-normal Distributions:

Table 4.18: Comparison of Mean Real Data and Mean Simulated Data for Different Alpha
and Beta Values

Alpha Beta Mean Real Data Mean Simulated Data
2 1 1.361663 7.09912
2 2 1.361663 1.958708
6 2 1.361663 28.54447
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Figure 4.23: Comparison of Real and Simulated Data Means for α = 6 and β = 2

Figure 4.24: Comparison of Real and Simulated Data Means for α = 2 and β = 1

Figure 4.25: Comparison of Real and Simulated Data Means for α = 2 and β = 2
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Comments:

1. Alpha = 2, Beta = 1: The simulated mean (7.09912) is notably higher than the real
mean (1.361663). This discrepancy suggests that with a lower Beta, there is a tendency
to overestimate the parameter.

2. Alpha = 2, Beta = 2: The simulated mean (1.958708) is closer to the real mean
(1.361663) compared to Alpha = 2, Beta = 1. This indicates a better fit of the simulated
data with a slightly higher value of Beta.

3. Alpha = 6, Beta = 2: The simulated mean (28.54447) is much higher than the real
mean (1.361663), highlighting a significant overestimation. This is likely due to the high
value of Alpha and a moderate Beta, leading to a wider spread in simulated data.

4.5.1 For maximum loss:
1. Exponential Distribution:

Table 4.19: Summary of Mean Values for different α and β

Alpha Beta Mean Real Data Mean Simulated Data
2 1 6.844756 7.171678
2 2 6.844756 1.071517
10 3 6.990864 0.330146

Figure 4.26: Comparison of Real and Simulated Data Means for α = 2 and β = 2
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Figure 4.27: Comparison of Real and Simulated Data Means for α = 2 and β = 1

Figure 4.28: Comparison of Real and Simulated Data Means for α = 10 and β = 3

2. For Gamma Distribution:

Table 4.20: Summary of Mean Values for Different Parameter Sets

Alpha Beta Mean Real Data Mean Simulated Data
10 3 6.848152 1.120329
1 2 6.916385 4.994823
1 1 6.883371 6.535302
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Figure 4.29: Comparison of Real and Simulated Data Means for α = 1 and β = 1

Figure 4.30: Comparison of Real and Simulated Data Means for α = 10 and β = 3

Figure 4.31: Comparison of Real and Simulated Data Means for α = 1 and β = 2
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For Average loss :

-Gamma Distribution

Table 4.21: Comparison of Real and Simulated Data Means for Different Alpha and Beta
Values

Alpha Beta Mean Real Data Mean Simulated Data
2 1 3.162784 5.782636
20 10 3.162784 3.365112
10 1 3.162784 0.7072573

Figure 4.32: Comparison of Real and Simulated Data Means for α = 10 and β = 1

Figure 4.33: Comparison of Real and Simulated Data Means for α = 2 and β = 1
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Figure 4.34: Comparison of Real and Simulated Data Means for α = 20 and β = 10

-Exponential disribution

Table 4.22: Summary of Mean Values for Different Parameter Sets

Alpha Beta Mean Real Data Mean Simulated Data
2 1 3.162784 3.130718
1 3 3.162784 11.1317
10 1 3.162784 0.3504516

Figure 4.35: Comparison of Real and Simulated Data Means for α = 2 and β = 1
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Figure 4.36: Comparison of Real and Simulated Data Means for α = 1 and β = 3

Figure 4.37: Comparison of Real and Simulated Data Means for α = 10 and β = 1

-Bayesian Posterior Mean of amount of Claims:

Calculate Posterior Mean:

• We use a Gamma Distribution as the prior for the rate parameter λ:
λ ∼ Gamma(α, β)

Here, α and β are the shape and rate parameters of the Gamma Distribution, respectively.

• Given n observed data points x1, x2, . . . , xn, the likelihood function is:

p(x | λ) =
n∏
i=1

λe−λxi = λne−λ
∑n

i=1 xi

• The posterior Distribution is also a Gamma Distribution with updated parameters:

λ | x ∼ Gamma(α + n, β +
n∑
i=1

xi)
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Here, n is the number of data points, and ∑n
i=1 xi is the sum of the observed data points.

• The mean of the Gamma Distribution is given by:

E[λ | x] = α + n

β +∑n
i=1 xi

E[λ | x] = 3.130718

4.5.2 Calculating the Mean of Aggregate: Expected Value of Total
Claims in Insurance

To calculate the expected value E(S) of the total aggregate claims S, we use the following
steps:

1. Calculate the expected number of claims per period, E(N):
E(N) = 26.4

2. Calculate the expected size of each claim, E(X):
E(X) = 0.3244229

3. Use the formula for the expected aggregate claims:
E(S) = E(N) × E(X)

Substituting the values:
E(S) = 26.4 × 0.3244229 = 8.5605976

Therefore, the expected value of the total aggregate claims E(S) is 8.5605976.

4.5.3 Comparison of Expected Aggregate Amount E(S)

Table 4.23: Comparison of Expected Aggregate Amount

Approach E(N) E(X) E(S)
Bayesian 26.4 3.130718 82,65
Classical 26.5 2.960179 78.47

Comments on Results:

• Bayesian Approach: Estimates E(S) to be approximately 8.55. This approach incor-
porates prior knowledge and updates it with observed data, resulting in a lower expected
aggregate amount.

• Classical Approach: Estimates E(S) to be approximately 78.47. This approach as-
sumes independence between the number of claims and the amount per claim, calculating
the product of their respective means.

• These results highlight the difference in expectations between the Bayesian and Classi-
cal methods, showcasing how prior beliefs and statistical assumptions can influence the
estimated aggregate amount E(S).
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CONCLUSION

This thesis has successfully traversed the challenging realm of non-life insurance risk man-
agement , with a focus on the integration of Bayesian and classical methods and their compar-
ative examination.

Through methodically expanding on fundamental principles of probability, we created a
thorough framework for comprehending the random structure of insurance risks.

The creation of risk and ruin probability models, which offered vital insights into the finan-
cial stability of insurers, was a key component of our research.

Through the combination of frequentist and Bayesian approaches, we developed an all-
encompassing framework that improves the precision and resilience of insolvency risk assess-
ments.

These models’ practical usefulness was further shown by applying them to actual data,
which showed how well they could anticipate total claims and assess overall risk.

There were notable differences and similarities between the Bayesian and classical tech-
niques compared.

Traditional approaches provide a strong and dependable foundation for risk assessment since
they are based on well-established statistical principles.

Nonetheless, the incorporation of previous knowledge and the ability to continuously update
with fresh data are transformational edges brought about by the advent of Bayesian techniques.

As a result of this integration, models become more dynamic and sophisticated and can
adjust to changing uncertainties.

The process of risk assessment is enhanced by the Bayesian approach’s capacity to offer
probabilistic interpretations of outcomes, which yield more accurate and thorough forecasts.

Also an important aspect of this thesis was the implementation of simulations using R code.
Through these simulations, we compared the expected aggregate amount of claims between
Bayesian and classical approaches.

Our findings highlighted the significant impact of incorporating prior knowledge in Bayesian
methods, resulting in more conservative and potentially more accurate risk assessments.
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In conclusion, this thesis has demonstrated that Bayesian methods represent a
significant advancement in the field of insurance risk management.

By integrating these methods with classical approaches, insurers can develop
a more resilient and flexible framework for predicting future claims and managing
risks.

This synthesis not only enhances the accuracy of risk assessments but also pro-
vides valuable insights into the potential impact of extreme events, ultimately
contributing to the financial stability and robustness of the insurance industry.
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APPENDICES

Appendix 1: Bayesian Aggregate Claims Simulation

1 # Load necessary library
2 if(! require ("MASS")) install . packages ("MASS", dependencies =TRUE)
3 library (MASS)
4

5 # Set prior parameters for Bayesian approach
6 prior _ lambda _ shape <- 2
7 prior _ lambda _rate <- 1
8 prior _exp_shape <- 2
9 prior _exp_rate <- 1

10

11 # Number of replications
12 num_ replications <- 1000
13

14 # Function to simulate aggregate claims with given parameters
15 simulate _ aggregate _ claims <- function (lambda , rate) {
16 # Simulate number of claims from Poisson distribution
17 num_ claims <- rpois (200 , lambda )
18

19 # Simulate the amount of each claim from Exponential distribution
20 claim _ amounts <- rexp(sum(num_ claims ), rate = rate)
21

22 # Calculate aggregate claims
23 aggregate _ claims <- sum(claim _ amounts )
24

25 return ( aggregate _ claims )
26 }
27

28 # Initialize the vector to store aggregate claims samples
29 aggregate _ claims _ samples <- numeric (num_ replications )
30

31 # Simulate 1000 replications of aggregate claims
32 for (i in 1: num_ replications ) {
33 # Update Poisson parameter ( lambda )
34 lambda _ posterior <- rgamma (1, shape = prior _ lambda _shape , rate =

prior _ lambda _rate)
35
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36 # Update Exponential parameter (rate)
37 rate_ posterior <- rgamma (1, shape = prior _exp_shape , rate = prior _

exp_rate)
38

39 # Simulate aggregate claims
40 aggregate _ claims _ samples [i] <- simulate _ aggregate _ claims ( lambda _

posterior , rate_ posterior )
41 }
42

43 # Calculate the mean and standard deviation of the aggregate claims
44 mean_ aggregate _ claims <- mean( aggregate _ claims _ samples )
45 sd_ aggregate _ claims <- sd( aggregate _ claims _ samples ) / sqrt(num_

replications )
46

47 # Output the results
48 print (paste ("Mean of the 1000 aggregate claims ( Bayesian approach ):",

mean_ aggregate _ claims ))
49 print (paste (" Standard deviation of the mean of the 1000 aggregate

claims ( Bayesian approach ):", sd_ aggregate _ claims ))

Appendix 2: Kolmogorov-Smirnov Test for Poisson Dis-
tribution

1 # Given number of claims
2 number _of_ claims <- c(13, 15, 20, 37, 31, 29, 20, 44, 36, 36, 33, 25,

25, 7)
3

4 # Calculate the mean of the Poisson distribution
5 lambda _est <- mean( number _of_ claims )
6

7 # Perform the Kolmogorov - Smirnov (KS) test assuming a Poisson
distribution with estimated lambda

8 ks_ result _ poisson <- ks.test( rpois ( length ( number _of_ claims ), lambda =
lambda _est), " ppois ", lambda = lambda _est)

9

10 # Print the test result
11 print (ks_ result _ poisson )
12

13 # Summary and Interpretation
14 cat("\ nSummary of the Kolmogorov - Smirnov test with Poisson

distribution :\n")
15 cat("Test statistic (D):", ks_ result _ poisson $statistic , "\n")
16 cat("P- value :", ks_ result _ poisson $p.value , "\n")
17 cat(" Alternative hypothesis :", ks_ result _ poisson $ alternative , "\n\n")
18

19 # Interpretation based on the p- value
20 if (ks_ result _ poisson $p.value < 0.05) {
21 cat("The p- value is less than 0.05 , suggesting significant evidence

against the null hypothesis .\n")
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22 cat("Therefore , the observed data does not follow a Poisson
distribution with lambda =", lambda _est , "\n")

23 } else {
24 cat("The p- value is greater than or equal to 0.05 , suggesting no

significant evidence against the null hypothesis .\n")
25 cat("Therefore , the observed data could be considered to follow a

Poisson distribution with lambda =", lambda _est , "\n")
26 }
27

28 # Plot histogram of number of claims
29 hist( number _of_claims , breaks = 10, col = " skyblue ", xlab = " Number of

Claims ", main = " Histogram of Number of Claims ")

Appendix 3: Exponential Distribution Sample Genera-
tion and KS Test

1 # Required libraries
2 library ( fitdistrplus )
3

4 # Given number of claims and minimum loss values
5 number _of_ claims <- c(13, 15, 20, 37, 31, 29, 20, 44, 36, 36, 33, 25,

25, 7)
6 min_ losses <- c(6.925 , 3.586 , 7.899 , 7.487 , 4.179 , 6.685 , 5.343 ,

2.988 , 5.093 , 4.964 , 3.435 , 4.051 , 4.147 , 2.956)
7

8 # Function to generate sample with numbers of claims and sum
constraint from Exponential distribution

9 generate _ sample _ exponential <- function ( number _of_claims , rates ,
target _sum) {

10 sample <- numeric ( target _sum)
11 index <- 1
12

13 for (i in seq_ along( number _of_ claims )) {
14 sample [index :( index + number _of_ claims [i] - 1)] <- rexp( number _of_

claims [i], rate = rates[i])
15 index <- index + number _of_ claims [i]
16 }
17

18 return ( sample )
19 }
20

21 # Set the target sum
22 target _sum <- sum( number _of_ claims )
23

24 # Estimate rates for the Exponential distribution
25 rates _est <- 1 / min_ losses
26

27 cat(" Estimated rates for Exponential distribution :\n")
28 print (rates _est)
29
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30 # Generate a sample from Exponential distribution
31 F_ exponential <- generate _ sample _ exponential ( number _of_claims , rates _

est , target _sum)
32

33 # Estimate parameters for the Exponential distribution
34 fit_ exponential <- fitdist (F_ exponential , "exp")
35

36 # Extract estimated parameter
37 rate_est <- fit_ exponential $ estimate ["rate"]
38

39 # Print estimated parameter
40 cat(" Estimated rate parameter ( Exponential distribution ):", rate_est ,

"\n")
41

42 # Perform the Kolmogorov - Smirnov (KS) test assuming an Exponential
distribution with estimated parameter

43 ks_ result _ exponential <- ks.test(F_ exponential , "pexp", rate = rate_
est)

44

45 # Print the test result
46 print (ks_ result _ exponential )
47

48 # Summary and Interpretation
49 cat("\ nSummary of the Kolmogorov - Smirnov test with Exponential

distribution :\n")
50 cat("Test statistic (D):", ks_ result _ exponential $statistic , "\n")
51 cat("P- value :", ks_ result _ exponential $p.value , "\n")
52 cat(" Alternative hypothesis :", ks_ result _ exponential $ alternative , "\n\

n")
53

54 # Interpretation based on the p- value
55 if (ks_ result _ exponential $p.value < 0.05) {
56 cat("The p- value is less than 0.05 , suggesting significant evidence

against the null hypothesis .\n")
57 cat("Therefore , vector F_ exponential does not follow an Exponential

distribution .\n")
58 } else {
59 cat("The p- value is greater than or equal to 0.05 , suggesting no

significant evidence against the null hypothesis .\n")
60 cat("Therefore , vector F_ exponential could be considered to follow

an Exponential distribution .\n")
61 }
62

63 # Plot histogram of F_ exponential
64 hist(F_ exponential , main = " Histogram of F_ exponential ( Exponential

Distribution )", xlab = " Values ", ylab = " Frequency ")

Appendix 4: Kolmogorov-Smirnov Test for Generated
Data
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1 # Required libraries
2 # Function to generate sample with specified numbers and apply

Kolmogorov - Smirnov (KS) test with exponential distribution
3 generate _ sample _and_ks_test <- function (numbers , target _sum) {
4 sample <- numeric ( target _sum)
5 index <- 1
6

7 for (i in seq_ along( numbers )) {
8 sample [index :( index + numbers [i] - 1)] <- rexp( numbers [i], rate =

1)
9 index <- index + numbers [i]

10 }
11

12 # Perform the Kolmogorov - Smirnov (KS) test assuming an Exponential
distribution with rate = 1

13 ks_ result <- ks.test(sample , "pexp", rate = 1)
14

15 return (list( sample = sample , ks_ result = ks_ result ))
16 }
17

18 # Given numbers
19 numbers <- c(10 , 15, 20, 25, 30)
20

21 # Set the target sum
22 target _sum <- sum( numbers )
23

24 # Generate sample and perform KS test
25 result <- generate _ sample _and_ks_test(numbers , target _sum)
26

27 # Print the test result
28 print ( result $ks_ result )
29

30 # Summary and Interpretation
31 cat("\ nSummary of the Kolmogorov - Smirnov test with Exponential

distribution :\n")
32 cat("Test statistic (D):", result $ks_ result $statistic , "\n")
33 cat("P- value :", result $ks_ result $p.value , "\n")
34 cat(" Alternative hypothesis :", result $ks_ result $ alternative , "\n\n")
35

36 # Interpretation based on the p- value
37 if ( result $ks_ result $p.value < 0.05) {
38 cat("The p- value is less than 0.05 , suggesting significant evidence

against the null hypothesis .\n")
39 cat("Therefore , the generated data does not follow an Exponential

distribution .\n")
40 } else {
41 cat("The p- value is greater than or equal to 0.05 , suggesting no

significant evidence against the null hypothesis .\n")
42 cat("Therefore , the generated data could be considered to follow an

Exponential distribution .\n")
43 }
44

45 # Plot histogram of generated sample

74



46 hist( result $sample , main = " Histogram of Generated Sample ( Exponential
Distribution )", xlab = " Values ", ylab = " Frequency ")

In this continuation, we complete the setup for generating a sample with specified numbers
and applying the Kolmogorov-Smirnov (KS) test with an exponential distribution.

Appendix 5: R Code for Bayesian Inference with Poisson
Distribution

The following R code implements Bayesian inference for the Poisson distribution:
1 # Bayesian Inference for Poisson Distribution
2 # Assuming a Poisson distribution with parameter lambda
3

4 # Given data
5 data <- c(5, 3, 7, 2, 4)
6

7 # Bayesian analysis using conjugate prior (Gamma prior )
8 # Prior parameters
9 alpha <- 1 # Shape parameter

10 beta <- 1 # Rate parameter
11

12 # Posterior parameters
13 alpha _post <- alpha + sum(data)
14 beta_post <- beta + length (data)
15

16 # Posterior mean and variance
17 posterior _mean <- alpha _post / beta_post
18 posterior _var <- alpha _post / (beta_post ^2)
19

20 # Posterior distribution ( Gamma )
21 posterior _ distribution <- rgamma (10000 , shape = alpha _post , rate =

beta_post)
22

23 # Summary
24 cat(" Posterior Mean:", posterior _mean , "\n")
25 cat(" Posterior Variance :", posterior _var , "\n\n")
26

27 # Plot posterior distribution
28 hist( posterior _ distribution , main = " Posterior Distribution ( Gamma )

for Poisson Parameter ", xlab = " Parameter Value ", ylab = " Density ")

This code conducts Bayesian inference for the Poisson distribution using a conjugate Gamma
prior.

Appendix 6: R Code for Monte Carlo Simulation with
Bayesian Methods

The following R code performs a Monte Carlo simulation using Bayesian methods:
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1 # Monte Carlo Simulation with Bayesian Methods
2 # Simulating data from a hypothetical Bayesian model
3

4 # Parameters
5 N <- 1000 # Number of simulations
6 alpha <- 2 # Prior parameter
7 beta <- 5 # Prior parameter
8

9 # Simulate data from a model (e.g., Normal distribution )
10 # Here we generate data assuming a normal distribution
11 # with mean alpha and standard deviation beta
12 simulated _data <- rnorm (N, mean = alpha , sd = beta)
13

14 # Bayesian analysis (e.g., updating priors with simulated data)
15 # Posterior calculations would follow Bayesian updating rules
16 # For example , updating parameters based on simulated data
17

18 # Summary of simulated data
19 cat(" Summary of Simulated Data :\n")
20 cat("Mean:", mean( simulated _data), "\n")
21 cat(" Standard Deviation :", sd( simulated _data), "\n\n")
22

23 # Plot of simulated data
24 hist( simulated _data , main = " Histogram of Simulated Data", xlab = "

Values ", ylab = " Frequency ")

This code conducts a Monte Carlo simulation using Bayesian methods, simulating data from
a hypothetical Bayesian model and analyzing the results.

These appendices provide detailed R code examples for various statistical simulations and
Bayesian analyses.

Appendix 7: R Code for Kolmogorov-Smirnov Test with
Exponential Distribution

The following R code performs the Kolmogorov-Smirnov (KS) test with an exponential
distribution:

1 # Kolmogorov - Smirnov Test with Exponential Distribution
2 # Testing goodness of fit with KS test
3

4 # Sample data
5 data <- c(4.0780 , 2.4030 , 4.5555 , 4.3475 , 2.7000 , 3.9625 , 3.3305 ,

2.1320 , 3.2260 , 3.2135 , 2.4865 , 2.8425 , 2.8895 , 2.3085)
6

7 # Fit exponential distribution
8 lambda <- 1 / mean(data)
9 exp_ distribution <- rexp( length (data), rate = lambda )

10

11 # Perform KS test
12 ks_test <- ks.test(data , "pexp", lambda = lambda )
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13

14 # Summary
15 cat("KS Test Summary :\n")
16 print (ks_test)
17

18 # Plot of data and fitted distribution
19 hist(data , freq = FALSE , main = " Histogram of Data vs. Fitted

Exponential Distribution ", xlab = " Values ", ylab = " Density ")
20 curve (dexp(x, rate = lambda ), add = TRUE , col = "blue")
21 legend (" topright ", legend = c("Data", " Exponential Fit"), col = c("

black ", "blue"), lty = 1)

This code calculates the Kolmogorov-Smirnov (KS) test statistic to assess the goodness of
fit of an exponential distribution to the given data.

Appendix 8: R Code for Markov Chain Monte Carlo
(MCMC) Simulation

The following R code implements a Markov Chain Monte Carlo (MCMC) simulation:
1 # Markov Chain Monte Carlo (MCMC) Simulation
2 # Simulating data using MCMC methods
3

4 # Parameters
5 N <- 1000 # Number of iterations
6 burn_in <- 100 # Burn -in period
7

8 # Initialize
9 theta <- numeric (N)

10 theta [1] <- 1 # Initial value
11

12 # MCMC simulation (e.g., Gibbs sampling )
13 for (i in 2:N) {
14 # Update theta using a Metropolis - Hastings step ( example )
15 proposal <- rnorm (1, mean = theta[i - 1], sd = 0.5)
16

17 # Calculate acceptance ratio (in a simple case)
18 acceptance <- min (1, dnorm (proposal , mean = 0, sd = 1) / dnorm (theta

[i - 1], mean = 0, sd = 1))
19

20 # Accept or reject proposal
21 if (runif (1) < acceptance ) {
22 theta[i] <- proposal
23 } else {
24 theta[i] <- theta[i - 1]
25 }
26 }
27

28 # Remove burn -in period
29 theta <- theta [( burn_in + 1):N]
30
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31 # Summary
32 cat("MCMC Simulation Summary :\n")
33 cat("Mean:", mean(theta), "\n")
34 cat(" Standard Deviation :", sd(theta), "\n\n")
35

36 # Plot of MCMC samples
37 hist(theta , main = " Histogram of MCMC Samples ", xlab = " Values ", ylab

= " Frequency ")

This code demonstrates a basic Markov Chain Monte Carlo (MCMC) simulation using
Gibbs sampling with a simple Metropolis-Hastings step.

These appendices provide additional R code examples, including the KS test with exponen-
tial distribution and a Markov Chain Monte Carlo (MCMC) simulation .

Appendix 9: R Code for Bayesian Inference with Poisson
Distribution

The following R code demonstrates Bayesian inference with a Poisson distribution:
1 # Bayesian Inference with Poisson Distribution
2 # Example of Bayesian updating
3

4 # Data ( number of claims )
5 claims <- c(10, 12, 8, 15, 11)
6

7 # Prior parameters
8 alpha <- 1
9 beta <- 1

10

11 # Posterior parameters
12 alpha _post <- alpha + sum( claims )
13 beta_post <- beta + length ( claims )
14

15 # Posterior distribution
16 posterior <- rgamma (10000 , shape = alpha _post , rate = beta_post)
17

18 # Summary statistics
19 cat(" Posterior Mean:", mean( posterior ), "\n")
20 cat(" Posterior Standard Deviation :", sd( posterior ), "\n\n")
21

22 # Plot of posterior distribution
23 hist(posterior , breaks = 30, col = " lightblue ", main = " Posterior

Distribution ", xlab = " Values ", ylab = " Density ")

This code illustrates Bayesian updating with a Poisson distribution using conjugate priors
and simulates the posterior distribution using a Gamma distribution.
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Appendix 10: R Code for Bayesian Linear Regression
The following R code performs Bayesian linear regression:

1 # Bayesian Linear Regression
2 # Example using Gibbs sampling
3

4 # Simulated data
5 set.seed (123)
6 n <- 100
7 x <- seq (0, 10, length .out = n)
8 true_slope <- 0.5
9 true_ intercept <- 2

10 epsilon <- rnorm (n, mean = 0, sd = 1)
11 y <- true_ intercept + true_ slope * x + epsilon
12

13 # Bayesian linear regression model
14 library ( MCMCpack )
15 model <- MCMCregress (y ~ x)
16

17 # Summary of the regression coefficients
18 summary ( model )
19

20 # Plot of data and regression line
21 plot(x, y, main = " Bayesian Linear Regression ", xlab = "x", ylab = "y"

)
22 abline (coef( model )["( Intercept )"], coef( model )["x"], col = "blue", lwd

= 2)

This code performs Bayesian linear regression using Gibbs sampling and visualizes the
regression line fit to simulated data. These appendices provide additional R code examples for
Bayesian inference with a Poisson distribution and Bayesian linear regression .

Appendix 11: R Code for Kolmogorov-Smirnov Test with
Exponential Distribution

The following R code demonstrates the Kolmogorov-Smirnov test with an exponential dis-
tribution:

1 # Kolmogorov - Smirnov Test with Exponential Distribution
2 # Example of goodness -of -fit test
3

4 # Data ( example data , replace with your data)
5 data <- c(4.0780 , 2.4030 , 4.5555 , 4.3475 , 2.7000 , 3.9625 , 3.3305 ,

2.1320 , 3.2260 , 3.2135 , 2.4865 , 2.8425 , 2.8895 , 2.3085)
6

7 # Fit exponential distribution
8 lambda <- 1/mean(data)
9 exp_ distribution <- rexp( length (data), rate = lambda )

10

11 # Kolmogorov - Smirnov test
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12 ks_test <- ks.test(data , "pexp", lambda = lambda )
13

14 # Summary of KS test
15 cat("Kolmogorov - Smirnov Test :\n")
16 print (ks_test)
17

18 # Plot of empirical and fitted distributions
19 hist(data , freq = FALSE , col = " lightblue ", main = " Empirical vs

Fitted Exponential Distribution ", xlab = " Values ", ylab = " Density "
)

20 curve (dexp(x, rate = lambda ), col = "blue", lwd = 2, add = TRUE ,
legend = " Exponential Fit")

21 legend (" topright ", legend = c(" Empirical ", " Exponential Fit"), fill =
c(" lightblue ", "blue"))

This code fits an exponential distribution to data and performs a Kolmogorov-Smirnov test
to assess the goodness of fit.

Appendix 12: R Code for Bayesian Inference with Beta-
Binomial Model

The following R code demonstrates Bayesian inference with a beta-binomial model:
1 # Bayesian Inference with Beta - Binomial Model
2 # Example using conjugate priors
3

4 # Data ( number of trials and successes )
5 trials <- 100
6 successes <- 60
7

8 # Prior parameters
9 alpha <- 1

10 beta <- 1
11

12 # Posterior parameters
13 alpha _post <- alpha + successes
14 beta_post <- beta + trials - successes
15

16 # Posterior distribution
17 posterior <- rbeta (10000 , shape1 = alpha _post , shape2 = beta_post)
18

19 # Summary statistics
20 cat(" Posterior Mean:", mean( posterior ), "\n")
21 cat(" Posterior Standard Deviation :", sd( posterior ), "\n\n")
22

23 # Plot of posterior distribution
24 hist(posterior , breaks = 30, col = " lightgreen ", main = " Posterior

Distribution ", xlab = " Values ", ylab = " Density ")
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This code illustrates Bayesian inference with a beta-binomial model using conjugate priors
and simulates the posterior distribution.

These appendices cover additional R code examples for Bayesian inference with a beta-
binomial model and Kolmogorov-Smirnov test with an exponential distribution.

Appendix 13: R Code for Bayesian Model of Risk and
Ruin Probability

The following R code demonstrates a Bayesian model for risk and ruin probability:
1 # Bayesian Model of Risk and Ruin Probability
2 # Example using Bayesian methods
3

4 # Data ( adjust with your specific data)
5 claims <- c(1000 , 1500 , 2000 , 2500 , 3000) # Example claim amounts
6 premium <- 1200 # Example premium amount
7 loss <- claims - premium # Loss amounts
8

9 # Prior distribution ( Gamma for claim amounts and Normal for premium )
10 alpha _prior <- 2
11 beta_prior <- 1000
12 mu_ prior <- 1200
13 sigma _prior <- 100
14

15 # Bayesian update
16 alpha _post <- alpha _prior + sum(loss)
17 beta_post <- beta_ prior + length (loss)
18 mu_post <- (alpha _ prior * mu_prior + sum(loss)) / (alpha _prior +

length (loss))
19 sigma _post <- sqrt (( beta_prior * sigma _prior ^2 + sum (( loss - mu_ prior)

^2) + (alpha _ prior * length (loss) * (mu_prior - mu_post)^2)) / (
beta_ prior + length (loss)))

20

21 # Posterior distributions
22 posterior _alpha <- rgamma (10000 , shape = alpha _post , rate = beta_post)
23 posterior _mu <- rnorm (10000 , mean = mu_post , sd = sigma _post)
24

25 # Summary statistics
26 cat(" Posterior Mean of Alpha :", mean( posterior _alpha), "\n")
27 cat(" Posterior Mean of Mu:", mean( posterior _mu), "\n\n")
28

29 # Plot of posterior distributions
30 par(mfrow = c(2, 1))
31 hist( posterior _alpha , breaks = 30, col = " lightblue ", main = "

Posterior Distribution of Alpha ", xlab = " Values ", ylab = " Density "
)

32 hist( posterior _mu , breaks = 30, col = " lightgreen ", main = " Posterior
Distribution of Mu", xlab = " Values ", ylab = " Density ")

This code exemplifies a Bayesian approach to modeling risk and ruin probability using
Gamma and Normal distributions for prior and posterior updates.
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Appendix 14: R Code for Simulation with Bayesian Meth-
ods

The following R code demonstrates simulation using Bayesian methods:
1 # Simulation with Bayesian Methods
2 # Example of MCMC simulation
3

4 # Data ( adjust with your specific data)
5 n <- 100 # Number of observations
6 x <- rpois (n, lambda = 3) # Simulated Poisson data
7

8 # Bayesian model ( Poisson likelihood , Gamma prior )
9 alpha <- 2

10 beta <- 2
11

12 # Initial values for MCMC
13 lambda <- 2
14 lambda _ samples <- numeric (10000)
15

16 # MCMC simulation
17 for (i in 1:10000) {
18 lambda _prop <- rnorm (1, mean = lambda , sd = 0.5)
19 if ( lambda _prop > 0) {
20 acceptance _prob <- min (1, exp(sum(dpois (x, lambda _prop , log = TRUE

)) - sum( dpois (x, lambda , log = TRUE))))
21 if ( runif (1) < acceptance _prob) {
22 lambda <- lambda _prop
23 }
24 }
25 lambda _ samples [i] <- lambda
26 }
27

28 # Summary statistics
29 cat(" Posterior Mean of Lambda :", mean( lambda _ samples ), "\n")
30 cat(" Posterior Standard Deviation of Lambda :", sd( lambda _ samples ), "\n

\n")
31

32 # Plot of posterior distribution
33 hist( lambda _samples , breaks = 30, col = " lightblue ", main = " Posterior

Distribution of Lambda ", xlab = " Values ", ylab = " Density ")

This code demonstrates a simulation using Bayesian methods, specifically using Markov
Chain Monte Carlo (MCMC) to estimate parameters.

These appendices cover additional R code examples for Bayesian modeling of risk and ruin
probability, as well as simulation with Bayesian methods.
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