République Algérienne Démocratique et populaire

Ministère de l'enseignement supérieur et de la recherche scientifique

UNIVERSITE SAAD DAHLEB BLIDA 01

Faculté de technologie Département de mécanique Mémoire de fin d'études

En vue de l'obtention du diplôme master En conception mécanique

Thème :

Application de la méthode de collocation de frontière au calcul du facteur d'intensité de contrainte en mode I

Présenté par : Bouza Mohamed Bouras Zekri Encadré par : Pr. FERDJANI Hicheme

2016/2017

REMERCIEMENTS

Nous remercions DIEU tout puissant qui nous avoir donné le courage, la force et la volonté pour réaliser ce modeste travail.

Nous adressons nos plus grands remerciements à nos parents qui ont tellement sacrifié pour nous pendant toutes ces longues années et qui ont fait des efforts inhumains pour nous permettre d'être la aujourd'hui. Un grand merci à vous et à nos familles.

Nous voudrons aussi témoigner toute nos gratitudes envers Monsieur Hicheme Ferdjani, notre Promoteur, pour sa très grande disponibilité et son grand intérêt pour notre travail.

Ses connaissances, sa rigueur scientifique et son expérience ont été exemplaire qui nous permises de faire notre travail dans d'excellentes conditions.

Nous aimerions aussi remercions tous les enseignants du département mécanique (USDB), et spécialement ceux de ma spécialité a l'exceptions de Mr M.temmar pour les efforts colossaux qu'ils ont fournis afin de nous instruire au mieux.

Nomenclature générale

Symboles latins :

- θ , r : composants du repère polaire
- R : rayon de la section circulaire
- x, y: composants du repère cartésien
- a: Longueur de la fissure

KI, KII: Facteur d'intensité de Contrainte respectivement en mode 1 et 2

- C : nombre de points de collocation
- N : nombre de termes

Symboles grecs :

 σ_{ij} :Champ Contrainte [N/m2]

Sommaire

REMERCIEMENTS	2
Liste des figures	6
Liste des tableaux	7
Introduction générale	8

<u>Chapitre I</u>

Rappels Théoriques sur la mécanique de la rupture	9
I.1.Introduction	10
I.2. Définition de la mécanique de la rupture [1]	10
I.2.1. Modes de rupture [3]	10
I.3. Développement des contraintes en série infinie en élasticité plane dans	un milieu
fissuré	11
I.4. Facteur de forme [4]	12

<u>Chapitre II</u>

Méthode de collocation de frontière et méthode des moindres carrés	13
II.1.Introduction	14
II.2. La Méthode de collocation de frontière [5]	14
II.2.1. Cas de l'élasticité plane	14
II.3. La Méthode des moindres carrés [6]	15
II.3.1. Forme standard	16
II.3.2. Solution analytique	16

<u>Chapitre III</u>

Problèmes Traités	19
I-Fissure Centrale Débouchante dans une Section Circulaire	20
I-1-Cas d'un chargement uniforme	20
I-2-1er cas de chargement non uniforme	
I-3-2eme Cas de chargement non uniforme	24
II-Fissure non Centrale Débouchant dans une Section Circulaire	27
Conclusion	

Annexes

Les programmes de calcul du facteur de forme dans une Section Circulaire avec une Fissure Contrale Débouchante	37
Circulaire avec une l'issure Centrale Debouchante	•••••54
Le programme de calcul du facteur de forme dans une Section	
Circulaire avec une Fissure non Centrale Débouchante	36
Les résultats d'une Section Circulaire avec une Fissure non Centrale	
Débouchante pour plusieurs longueurs de fissure	38
Résultats pour a/R=0.05	
Résultats pour a/R=0.1	40
Résultats pour a/R=0.15	41
Résultats pour a/R=0.2	42
Résultats pour a/R=0.25	43
Résultats pour a/R=0.3	44
Résultats pour a/R=0.35	45
Résultats pour a/R=0.4	46
Résultats pour a/R=0.45	47
Résultats pour a/R=0.5	48
Résultats pour a/R=0.55	49
Résultats pour a/R=0.6	50
Résultats pour a/R=0.65	51
Résultats pour a/R=0.7	52
Résultats pour a/R=0.75	53
Résultats pour a/R=0.8	54
Résultats pour a/R=0.85	55
Résultats pour a/R=0.9	56
Résultats pour a/R=0.95	57
Résultats pour a/R=1	58
Déduction du développement des contraintes	59
Bibliographie	67
ninnet akund	••••••04

Liste des figures :

Eisens L. 1. Les trais ma des de manteux	、
Figure I- 1 Les trois modes de rupture)
Figure I- 2 Champ de contrainte	
Elever II 1 Energy la de mainte de collection 14	
Figure II- 1 Exemple de points de collocation	r
Figure III- 1 Fissure centrale, chargement uniforme)
Figure III- 2 Evolution de Y en fct de N, pour le chargement uniforme	<u>)</u>
Figure III- 3 section fissuré avec chargement variable)
Figure III- 4 Facteur de forme Y en fct de N. pour 1 ^{er} cas de chargement non uniforme	3
Figure III- 5 Section fissurée avec une fissure centrale, dans le 2éme cas du chargement non uniforme24	ł
Figure III- 6 Facteur de forme Y en fct de N. pour 1er cas de chargement non uniforme	5
Figure III- 7 section circulaire fissurée avec une fissure non centrale	1
Figure III- 8 Evolution de Y en fct de a/R)
Figure III- 9 Evolution de k_1 en fct de sqrt(a/R))
Figure A3- 1 Facteur de forme Y en fct de N (a/R=0.05))
Figure A3- 2 Facteur de forme Y en fct de N (a/R=0.1)40)
Figure A3- 3 Facteur de forme Y en fct de N (a/R=0.15)41	_
Figure A3- 4 Facteur de forme Y en fct de N (a/R=0.2)42	ļ
Figure A3- 5 Facteur de forme Y en fct de N (a/R=0.25)	5
Figure A3- 6 Facteur de forme Y en fct de N (a/R=0.3)	ŀ
Figure A3- 7 Facteur de forme Y en fct de N (a/R=0.35)	;
Figure A3- 8 Facteur de forme Y en fct de N (a/R=0.4)	5
Figure A3- 9 Facteur de forme Y en fct de N (a/R=0.45)	1
Figure A3- 10 Facteur de forme Y en fct de N (a/R=0.5)	3
Figure A3- 11 Facteur de forme Y en fct de N (a/R=0.55))
Figure A3- 12 Facteur de forme Y en fct de N (a/R=0.6))
Figure A3- 13 Facteur de forme Y en fct de N (a/R=0.65)	
Figure A3- 14 Facteur de forme Y en fct de N (a/R=0.7))
Figure A3- 15 Facteur de forme Y en fct de N (a/R=0.75)	;
Figure A3- 16 Facteur de forme Y en fct de N (a/R=0.8)	ŀ
Figure A3- 17 Facteur de forme Y en fct de N (a/R=0.85)	;
Figure A3- 18 Facteur de forme Y en fct de N (a/R=0.9)	5
Figure A3- 19 Facteur de forme Y en fct de N (a/R=0.95)	1
Figure A3- 20 Facteur de forme Y en fct de N (a/R=1)	3

Liste des tableaux :

Tableau III- 1 Y en fonction N pour une fissure centrale sous chargement uniforme	21
Tableau III- 2 Y en fonction de N pour le 1 ^{er} cas du chargement non uniforme	24
Tableau III- 3 Y en fonction de N pour le 2éme cas du chargement non uniforme	25
Tableau III- 4 le facteur de forme Y pour chaque rapport a/R	29
Tableau III- 5 le facteur d'intensité K1 pour chaque rapport a/R	30

Tableau A3-1 Y en fct de N (a/R=0.05)	
Tableau A3- 2 Y en fct de N (a/R=0.1)	40
Tableau A3- 3 Y en fct de N (a/R=0.15)	41
Tableau A3- 4 Y en fct de N (a/R=0.2)	42
Tableau A3- 5 Y en fct de N (a/R=0.25)	43
Tableau A3- 6 Y en fct de N (a/R=0.3)	44
Tableau A3- 7 Y en fct de N (a/R=0.35)	45
Tableau A3- 8 Y en fct de N (a/R=0.4)	46
Tableau A3- 9 Y en fct de N (a/R=0.45)	47
Tableau A3- 10 Y en fct de N (a/R=0.5)	
Tableau A3- 11 Y en fct de N (a/R=0.55)	49
Tableau A3- 12 Y en fct de N (a/R=0.6)	50
Tableau A3- 13 Y en fct de N (a/R=0.65)	51
Tableau A3- 14 Y en fct de N (a/R=0.7)	52
Tableau A3- 15 Y en fct de N (a/R=0.75)	53
Tableau A3- 16 Y en fct de N (a/R=0.8)	54
Tableau A3- 17 Y en fct de N (a/R=0.85)	55
Tableau A3- 18 Y en fct de N (a/R=0.9)	56
Tableau A3- 19 Y en fct de N (a/R=0.95)	57
Tableau A3- 20 Y en fct de N (a/R=1)	58

Introduction générale

Le facteur d'intensité de contraintes (FIC) est un paramètre important pour déterminer la nocivité d'une fissure dans une structure, dans le cadre de la mécanique de la rupture fragile. En effet il intervient dans les critères de propagation. Sa détermination est donc un objectif important dans le calcul des structures fissurées.

Il existe plusieurs méthodes numériques pour calculer le FIC. L'une des plus utilisées est « la méthode de collocation de frontière ». Cette méthode a déjà été utilisée dans des précédents master en mode III (KH. Serir [8], (Y .Mezouani [9], Sofiane BENTTALAH et Wahid IZA [7]).

Dans ce travail, nous allons utiliser la méthode de collocation de frontière pour calculer le FIC en mode I dans une structure cylindrique fissurée, la section du cylindre est circulaire.

Nous envisagions deux cas : fissure centrale et non centrale. Le chargement est une traction radiale appliquée au bord du cylindre.

Le mémoire se divise en trois chapitres :

Un premier chapitre présente les bases théoriques du travail.

Dans le deuxième chapitre, on présente : la méthode de collocation de frontière dans le cas de l'élasticité plane. Nous présentons également un aperçu sur la méthode de moindres carrés.

Le troisième chapitre est consacré aux applications. Nous considérons le problème d'une section circulaire fissurée. Deux cas seront étudiés : le cas d'une fissure centrale et le cas d'une fissure non centrale.

Et nous terminons par la conclusion générale.

CHAPITRE I

Rappels Théoriques Sur la Mécanique de la rupture.

Chapitre I

Rappels Théoriques

I.1.Introduction :

Dans ce chapitre, nous présentons les bases théoriques de notre travail en deux parties:

- Dans la première, nous visitons quelques notions de la mécanique de la rupture.
- La seconde partie présente le développement des contraintes en série infinie, qui sera utilisé dans la méthode de collocation de frontière. Elle présente également la définition du facteur de forme.

I.2. Définition de la mécanique de la rupture [1] :

La théorie de la mécanique de la rupture est un moyen pour estimer la stabilité des fissures qui peuvent survenir à cause des défauts. Elle permet de prévoir l'évolution de la fissure jusqu'à la ruine de la structure.

L'objet de mécanique de la rupture est l'étude de la propagation de la fissure en fonction des chargements appliqués et des caractéristiques du matériau constituant.

I.2.1. Modes de rupture [3] :

Une fissure est définie comme une surface séparant localement un solide en deux parties.

Le champ des déplacements est alors discontinu à travers cette surface et les trois composantes vectorielles de

cette discontinuité forment les trois modes de rupture (Figure. I.1) :

Le mode I : pour une ouverture normale.

Le mode II : pour un glissement plan (dans un cas tridimensionnel).

Le mode III : pour un glissement anti-plan). Le cas réel est une superposition de ces modes, on parle alors de mode mixte.

Figure I- 1 Les trois modes de rupture

I.3. Développement des contraintes en série infinie en élasticité plane dans un milieu fissuré :

Considérons une fissure droite, avec un repère (O, x_1, x_2) avec O confondu avec la pointe et les coordonnées

polaires (r, θ) correspondentes (Fig. I.2).

Figure I- 2 Champ de contrainte

Nous allons présenter ci-dessous, les expressions de σ_{rr} et $\sigma_{r\theta}$ en fonction de r et θ , car nous en aurons besoin dans la suite du travail. En effet, on peut établir que l'expression générale de σ_{rr} et $\sigma_{r\theta}$ en élasticité plane pour une structure fissurée, est donnée par (voir la démonstration en Annexe 4) :

$$\sigma_{rr} = \sum_{n=1}^{\infty} \left(r^{\left(n-\frac{3}{2}\right)} \begin{cases} A_n \left[\left(-n^2 + 4n - \frac{7}{4}\right) \sin\left(\left(n - \frac{3}{2}\right)\theta\right) + \left(n^2 - \frac{1}{4}\right) \sin\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ + B_n \left[\left(-n^2 + 4n - \frac{7}{4}\right) \cos\left(\left(n - \frac{3}{2}\right)\theta\right) + \left(n - \frac{1}{2}\right) \left(n - \frac{3}{2}\right) \cos\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \end{cases} \right) \\ \left(r^{(n-1)} \begin{cases} C_n \left[\left(-n^2 + 3n\right) \sin\left((n - 1)\theta\right) + n(n - 1) \sin\left((n + 1)\theta\right) \right] \\ + D_n \left[\left(-n^2 + 3n\right) \cos\left((n - 1)\theta\right) + n(n + 1) \cos\left((n + 1)\theta\right) \right] \end{cases} \right) \end{cases}$$
(I. 1)

$$\sigma_{r\theta} = \sum_{n=1}^{\infty} \left(-(n - \frac{1}{2})r^{(n - \frac{3}{2})} \left\{ \begin{array}{l} A_n \left[\left(n - \frac{3}{2} \right) \cos \left(\left(n - \frac{3}{2} \right) \theta \right) - \left(n + \frac{1}{2} \right) \cos \left(\left(n + \frac{1}{2} \right) \theta \right) \right] \right\} \right\} + B_n \left[-\left(n - \frac{3}{2} \right) \sin \left(\left(n - \frac{3}{2} \right) \theta \right) + \left(n - \frac{3}{2} \right) \sin \left(\left(n + \frac{1}{2} \right) \theta \right) \right] \right\} \right\} + \left(-nr^{(n-1)} \left\{ \begin{array}{l} C_n \left[(n - 1) \cos \left((n - 1) \theta \right) - (n - 1) \cos \left((n + 1) \theta \right) \right] \\ + D_n \left[-(n - 1) \sin \left((n - 1) \theta \right) + (n + 1) \sin \left((n + 1) \theta \right) \right] \right\} \right\} \right\}$$
(I. 2)

Pour $n \in \mathbb{N}$

Avec A_n, B_n, C_n et D_n des constantes a déterminer, dépendant du chargement et de la géométrie.

Au lieu de la série infinie (I. 1) et (I. 2), on utilise les séries tronquées suivantes :

$$\sigma_{rr} \simeq \sum_{n=1}^{N} \left(r^{\left(n-\frac{3}{2}\right)} \begin{cases} A_n \left[\left(-n^2 + 4n - \frac{7}{4}\right) \sin\left(\left(n - \frac{3}{2}\right)\theta\right) + \left(n^2 - \frac{1}{4}\right) \sin\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ + B_n \left[\left(-n^2 + 4n - \frac{7}{4}\right) \cos\left(\left(n - \frac{3}{2}\right)\theta\right) + \left(n - \frac{1}{2}\right) \left(n - \frac{3}{2}\right) \cos\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \end{cases} \right) \\ \left(r^{(n-1)} \begin{cases} C_n \left[\left(-n^2 + 3n\right) \sin\left((n - 1)\theta\right) + n(n - 1) \sin\left((n + 1)\theta\right) \right] \\ + D_n \left[\left(-n^2 + 3n\right) \cos\left((n - 1)\theta\right) + n(n + 1) \cos\left((n + 1)\theta\right) \right] \end{cases} \right) \end{cases}$$
(I. 3)

$$\sigma_{r\theta} \simeq \sum_{n=1}^{N} \left(-\left(n - \frac{1}{2}\right) r^{\left(n - \frac{3}{2}\right)} \left\{ \begin{array}{l} A_n \left[\left(n - \frac{3}{2}\right) \cos\left(\left(n - \frac{3}{2}\right)\theta\right) - \left(n + \frac{1}{2}\right) \cos\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \right\} \\ + B_n \left[-\left(n - \frac{3}{2}\right) \sin\left(\left(n - \frac{3}{2}\right)\theta\right) + \left(n - \frac{3}{2}\right) \sin\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \right\} \right\} \\ \left(-nr^{\left(n-1\right)} \left\{ \begin{array}{l} C_n \left[(n-1) \cos\left((n-1)\theta\right) - (n-1) \cos\left((n+1)\theta\right) \right] \\ + D_n \left[-(n-1) \sin\left((n-1)\theta\right) + (n+1) \sin\left((n+1)\theta\right) \right] \right\} \right\} \right) \right\}$$
(I. 4)

N est appelé nombre de termes du développement.

On constante dans (I.3) et (I.4) que les facteurs multiplicatifs devant C_1 (n=1) s'annulent. Cela veut dire que (I.3) et (I.4) contient 4N-1 constantes à déterminer $A_1 \dots A_N$, $B_1 \dots B_N$, $C_2 \dots C_N$ Et $D_1 \dots D_N$

<u>Remarque</u>: le premier terme de (I.3) et (I.4) (n=1) donne l'expression asymptotique des contraintes en pointe de fissure.

En effet, on posant
$$K_{I} = B_{1}\sqrt{2\pi}$$
 (I. 5)

$$K_{\rm II} = A_1 \sqrt{2\pi} \tag{I. 6}$$

On obtient:

$$\sigma_{rr} = r^{\left(-\frac{1}{2}\right)} \begin{cases} \frac{K_{II}}{\sqrt{2\pi}} \left[\left(\frac{5}{4}\right) \sin\left(\left(-\frac{1}{2}\right) \theta \right) + \left(\frac{3}{4}\right) \sin\left(\left(\frac{3}{2}\right) \theta \right) \right] \\ + \frac{K_{I}}{\sqrt{2\pi}} \left[\left(\frac{5}{4}\right) \cos\left(\left(-\frac{1}{2}\right) \theta \right) + \left(-\frac{1}{4}\right) \cos\left(\left(\frac{3}{2}\right) \theta \right) \right] \end{cases}$$
(I. 7)

$$\sigma_{r\theta} = -\left(\frac{1}{2}\right) r^{\left(-\frac{1}{2}\right)} \begin{cases} \frac{K_{II}}{\sqrt{2\pi}} \left[\left(-\frac{1}{2}\right) \cos\left(\left(-\frac{1}{2}\right)\theta\right) - \left(\frac{3}{2}\right) \cos\left(\left(\frac{3}{2}\right)\theta\right) \right] \\ + \frac{K_{I}}{\sqrt{2\pi}} \left[\left(-\frac{1}{2}\right) \sin\left(\left(-\frac{1}{2}\right)\theta\right) + \left(-\frac{1}{2}\right) \sin\left(\left(\frac{3}{2}\right)\theta\right) \right] \end{cases}$$
(I.8)

 $K_{\rm I}$ et $K_{\rm II}$ sont les FIC en mode I et II respectivement.

I.4. Facteur de forme [4] :

En général le FIC dépend de chargement appliqué de la géométrie et de la longueur de la fissure.

Il s'écrit sous la forme suivante :

$$K = Y\sigma\sqrt{\pi a} \tag{I.9}$$

Avec

Y : Facteur de forme (ou de géométrie) sans unité

 σ : Chargement appliqué

a : Longueur de la fissure

Le facteur de forme est donné par :
$$Y = \frac{K}{\sigma\sqrt{\pi a}}$$
 (I. 10)

Chapitre II

Méthode de collocation de frontière et méthode des moindres carrés.

Chapitre II

Méthode de collocation de frontière et méthode des moindres carrés.

II.1.Introduction :

Dans ce chapitre, on présente la méthode de collocation de frontière. Cette méthode aboutit à un système d'équation linéaire surdéterminé. Sa résolution doit se faire par la méthode des moindres carrées. Nous présentons donc également cette méthode.

II.2. La Méthode de collocation de frontière [5]:

La méthode de collocation de frontière est une méthode de calcul du facteur d'intensité de contrainte basée sur le développement des contraintes en série infinie.

L'idée générale est qu'étant donné les conditions aux limites en contraintes pour un problème, on exprime les contraintes en un nombre fini de positions sur la frontière, appelée points de collocation, à l'aide du développement des contraintes avec des coefficients inconnus.

Pour chaque point de collocation, on obtient une équation (ou plusieurs) pour les coefficients inconnus. Le nombre de points de collocation doit être tel que le nombre d'équations soit au moins égal au nombre d'inconnues. Le système d'équations obtenu est résolu afin de déterminer les constantes du développement des contraintes.

La valeur de coefficient correspondant au terme $r^{-1/2}$ de l'expansion du champ de contraintes est le facteur d'intensité de contrainte (r est la distance à la pointe de fissure).

II.2.1. Cas de l'élasticité plane :

Soit une section quelconque fissurée sa frontière est soumise à un chargement connu.

Afin d'établi le système d'équations permettant de calculer K_I etK_{II}, on choisit C points de collocations sur la frontière (Fig. II.1) :

Où : \vec{T}_p : Vecteur contrainte en p

..... (II.2)

Pour chaque point de collocation P, on a deux équations :

En utilisant (I.3) et (I.4), on réécrit (II.1) de la manière suivante :

$$\Sigma_{n=1}^{N} \left(r_{p}^{\left(n-\frac{3}{2}\right)} \left\{ \begin{array}{l} A_{n} \left[\left(-n^{2}+4n-\frac{7}{4}\right) \sin \left(\left(n-\frac{3}{2}\right) \theta_{p} \right) + \left(n^{2}-\frac{1}{4}\right) \sin \left(\left(n+\frac{1}{2}\right) \theta_{p} \right) \right] \\ + B_{n} \left[\left(-n^{2}+4n-\frac{7}{4}\right) \cos \left(\left(n-\frac{3}{2}\right) \theta_{p} \right) + \left(n-\frac{1}{2}\right) \left(n-\frac{3}{2}\right) \cos \left(\left(n+\frac{1}{2}\right) \theta_{p} \right) \right] \right\} \right) \\ \Sigma_{n=1}^{N} \left(r_{p}^{\left(n-1\right)} \left\{ \begin{array}{l} C_{n} \left[\left(-n^{2}+3n\right) \sin \left(\left(n-1\right) \theta_{p} \right) + n(n-1) \sin \left(\left(n+1\right) \theta_{p} \right) \right] \\ + D_{n} \left[\left(-n^{2}+3n\right) \cos \left(\left(n-1\right) \theta_{p} \right) + n(n+1) \cos \left(\left(n+1\right) \theta_{p} \right) \right] \right\} \right) \\ = \sigma_{p} \end{array} \right\}$$

$$\begin{split} & \sum_{n=1}^{N} \left(-(n-\frac{1}{2})r_{p}^{(n-\frac{3}{2})} \left\{ \begin{aligned} & A_{n} \left[\left(n-\frac{3}{2}\right)\cos\left(\left(n-\frac{3}{2}\right)\theta_{p}\right) - \left(n+\frac{1}{2}\right)\cos\left(\left(n+\frac{1}{2}\right)\theta_{p}\right) \right] \\ & + B_{n} \left[-\left(n-\frac{3}{2}\right)\sin\left(\left(n-\frac{3}{2}\right)\theta_{p}\right) + \left(n-\frac{3}{2}\right)\sin\left(\left(n+\frac{1}{2}\right)\theta_{p}\right) \right] \right\} \end{aligned} \right\} + \\ & \sum_{n=1}^{N} \left(-n r_{p}^{(n-1)} \left\{ \begin{aligned} & C_{n} \left[(n-1)\cos\left((n-1)\theta_{p}\right) - (n-1)\cos\left((n+1)\theta_{p}\right) \right] \\ & + D_{n} \left[-(n-1)\sin\left((n-1)\theta_{p}\right) + (n+1)\sin\left((n+1)\theta_{p}\right) \right] \right\} \end{aligned} \right\} = \tau_{p} \\ & = 1 \text{ a C} \end{split}$$

(II.2) est un système de 2C équations .à 4N-1 inconnues. On choisit C et N tels que 2C >4N-1. Le système obtenu est un système surdéterminé, Il sera résolu par la méthode des moindres carrés.

Remarque :

Dans la suite du travail, on prendre la valeur minimale pour C : C=2N.

II.3. La Méthode des moindres carrés [6]:

La méthode du maximum de vraisemblance et celle des moindres carrés sont les outils de la théorie des erreurs ou de l'estimation, utilisés tous les jours dans toutes les sciences d'observation.

La théorie des erreurs a été développée pour résoudre trois problèmes :

- ✓ Combiner les erreurs pour choisir une valeur "juste milieu".
- ✓ Trouver la loi de densité de probabilité des erreurs.
- ✓ Choisir une démarche pour déterminer des quantités dans un système d'équations surdéterminé.

L'estimation du maximum de vraisemblance est une méthode statistique courante utilisée pour inférer les paramètres de la distribution de probabilité d'un échantillon de mesures donné.

Par ailleurs, la recherche de la valeur la plus probable d'une quantité observée par diverses mesures donne le

résultat suivant : la valeur la plus probable est telle que la somme des carrés des différences entre les observations et cette valeur est minimum.

La première publication de la méthode des moindres carrés (destinée à déterminer des quantités dans un système d'équations surdéterminé) est due à Legendre en1805 et gauss en 1809.

On souhaite que d (\hat{b} = Ax; b) soit minimale, ce qui s'écrit :

$$\min_{x \in \mathbb{R}^n} ||Ax - b||^2 \qquad (II. 3)$$

II.3.1. Forme standard :

Définition : on appelle forme standard d'un problème de moindre carrés la donnée de :

• La matrice A =
$$\begin{pmatrix} V_{1.1} & V_{1.2} & \dots & V_{1.n} \\ V_{2.1} & V_{2.2} & \dots & V_{2.n} \\ \vdots & \vdots & \ddots & \vdots \\ V_{m.1} & V_{m.2} & \dots & V_{m.n} \end{pmatrix} \in Mmn \text{ appelée matrice des données}$$

• Le vecteur réponse b =
$$\begin{cases} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{cases}$$
 . $\in \mathbb{R}^n$

• L'expression du critère : on cherche x =
$$\begin{cases} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_m \end{cases}$$

Réalisant : $\min_{x \in \mathbb{R}^n} ||Ax - b||^2$

II.3.2. Solution analytique :

Soit $E(x) = ||Ax - b||^2$ la fonction erreur. On sait que E(x) est minimale $\Rightarrow E'(x) = 0$.

Si E est strictement convexe, alors :E(x) \Leftrightarrow E'(x) = 0

On cherche donc $x \in \mathbb{R}^n$ tel E'(x) = 0. Donc, les dérivées partielles par rapport a tous les paramètres du vecteur x doivent être nulles :

$$\frac{\partial E}{\partial x} = \begin{pmatrix} \frac{\partial E}{\partial x_1} \\ \frac{\partial E}{\partial x_2} \\ \vdots \\ \vdots \\ \frac{\partial E}{\partial x_n} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
(II.4)

Ou on peut faire autrement :

Prendre le système surdéterminé Ax=b, et effectuer le produit à gauche par la matrice transposée de A :

$$A'Ax=A'b (II.5)$$

Le système (II.5) sera résolu par les méthodes classiques.

Exemple :

$$\begin{cases} 2x + 3y = 4\\ 3x - 2y = 2\\ 4x + 5y = 3 \end{cases}$$
 (II. 6)

(II.6) est un système surdéterminé de 3 équations à de inconnues (x, y) cela va le résoudre approximativement par la méthode des moindres carrés. On a (x_*, y_*) tel que :

$$2x_* + 3y_* \approx 4$$

$$3x_* - 2y_* \approx 2$$

$$4x_* + 5y_* \approx 3$$

(II.7)

On cherche le couple (x_*, y_*) tel que l'erreur soit minimale

 $\mathbf{E} = (2x_* + 3y_* - 4)^2 + (3x_* - 2y_* - 2)^2 + (4x_* + 5y_* - 3)^2$

On annule les dérivées partielles par rapport a x_* et a y_*

 $\begin{cases} \frac{\partial \mathbf{E}}{\partial x_*} = \mathbf{0} \\ \frac{\partial \mathbf{E}}{\partial y_*} = \mathbf{0} \end{cases}$ (II.8)

On obtient :

$$\begin{cases} 29x_* + 20y_* = 26\\ 20x_* + 38y_* = 23 \end{cases}$$

Une autre manière d'obtenir (II.9) est de réécrire le système (II. 6) sous forme matricielle :

$$\begin{pmatrix} 2 & 3\\ 3 & -2\\ 4 & 5 \end{pmatrix} \begin{pmatrix} x_*\\ y_* \end{pmatrix} = \begin{pmatrix} 4\\ 2\\ 3 \end{pmatrix}$$
(II.10)

(II.9)

On effectue le produit par la matrice transposée

$$\begin{pmatrix} 2 & 3 & 4 \\ 3 & -2 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & -2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x_* \\ y_* \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 3 & -2 & 5 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

On aboutit au même système que (II.9) :

$$\begin{pmatrix} 29 & 20\\ 20 & 38 \end{pmatrix} \begin{pmatrix} x_*\\ y_* \end{pmatrix} = \begin{pmatrix} 26\\ 23 \end{pmatrix}$$
(II.11)

(II. 8) ou (II.11) sont résolus par les méthodes classique, la solution est donnée par :

$$x^* = \frac{264}{351}$$
 $y^* = \frac{147}{702}$ (II.12)

En remplaçant dans (II.7) on trouve :

$$\begin{cases} 2x_* + 3y_* = 2.132\\ 3x_* - 2y_* = 1.838\\ 4x_* + 5y_* = 4.056 \end{cases}$$
 (II.13)

Ces observe à partir de (II.13) que (II.12) n'est que approximation de (II.6).

Mais c'est la meilleure approximation possible au sens des moindres carrés.

Chapitre III Problèmes Traités

Chapitre III

Problèmes Traités

Dans ce chapitre, nous appliquons la méthode de collocation de frontière au calcul du facteur de forme Y, d'une section fissurée en mode I. Plusieurs cas de chargement et de longueur de fissure seront considérés.

I-Fissure Centrale Débouchante dans une Section Circulaire : T, T

I-1-Cas d'un chargement uniforme : Т R On considéré une section circulaire de rayon R, contenant une fissure centrale de longueur R, et sous chargement radial $\sigma_p = T$, $\tau_p = 0$ Figure (III-1) Т TOn reprend le système (II-2) avec Т $r_p = R$, et $\sigma_p = T$ et $\tau_p = 0$ Figure III- 1 Fissure centrale, chargement uniforme $\begin{pmatrix} R^{\left(n-\frac{3}{2}\right)} \begin{cases} A_n \left[\left(-n^2 + 4n - \frac{7}{4}\right) \sin\left(\left(n - \frac{3}{2}\right)\theta_p\right) + \left(n^2 - \frac{1}{4}\right) \sin\left(\left(n + \frac{1}{2}\right)\theta_p\right) \right] \\ + B_n \left[\left(-n^2 + 4n - \frac{7}{4}\right) \cos\left(\left(n - \frac{3}{2}\right)\theta_p\right) + \left(n - \frac{1}{2}\right)\left(n - \frac{3}{2}\right) \cos\left(\left(n + \frac{1}{2}\right)\theta_p\right) \right] \end{pmatrix} \end{pmatrix} \end{cases}$ $+\sum_{n=1}^{N} \left(R^{(n-1)} \left\{ \begin{array}{c} C_n \left[(-n^2 + 3n) \sin\left((n-1)\theta_p \right) + n(n-1) \sin\left((n+1)\theta_p \right) \right] \\ +D_n \left[(-n^2 + 3n) \cos\left((n-1)\theta_p \right) + n(n+1) \cos\left((n+1)\theta_p \right) \right] \end{array} \right\} \right\} = T$ (III.1)

$$\sum_{n=1}^{N} \left(-\left(n - \frac{1}{2}\right) R^{\left(n - \frac{3}{2}\right)} \left\{ \begin{array}{l} A_n \left[\left(n - \frac{3}{2}\right) \cos\left(\left(n - \frac{3}{2}\right) \theta_p\right) - \left(n + \frac{1}{2}\right) \cos\left(\left(n + \frac{1}{2}\right) \theta_p\right) \right] \right\} \\ + B_n \left[-\left(n - \frac{3}{2}\right) \sin\left(\left(n - \frac{3}{2}\right) \theta_p\right) + \left(n - \frac{3}{2}\right) \sin\left(\left(n + \frac{1}{2}\right) \theta_p\right) \right] \right\} \\ + \sum_{n=1}^{N} \left(-nR^{(n-1)} \left\{ \begin{array}{l} C_n \left[(n-1) \cos\left((n-1)\theta_p\right) - (n-1) \cos\left((n+1)\theta_p\right) \right] \\ + D_n \left[-(n-1) \sin\left((n-1)\theta_p\right) + (n+1) \sin\left((n+1)\theta_p\right) \right] \right\} \right\} = 0 \end{array} \right.$$
(III.2)

Nous choisissons des points de collocation équidistants, repartis uniformément sur la frontière du cercle (Figure III.1). L'angle θ_p pour chaque point est calculé par la formule suivante :

$$\theta_p = \frac{2\pi p}{2N+1} - \pi$$
 (III.3) p=1 à 2N

Remarque :

Cette répartition des points de collocation sera utilisée pour tous les problèmes traités dans ce chapitre.

La formule (III.3) a été écrite de telle sorte à éviter les angles $-\pi et + \pi$. Car en ces points la normale, et par conséquent, le vecteur contrainte ne sont pas définis.

D'après les équations (I.7) et (I.5), le facteur de forme est donné par :

$$Y = \frac{B_1 \sqrt{2}}{T \sqrt{R}}$$
(III.4)

Résultats :

Nous effectuons plusieurs calculs, en augmentant à chaque fois le nombre de terme N jusqu'à convergence. Les résultats sont présentés dans le Tableau III.1 et la Figure III.2 ci-dessous. Le programme Matlab correspondant est donné en [Annexe 1]

Ν	Y	Ν	Y	Ν	Y
1	1.0887	11	3.1750	21	3.1729
2	2.8060	12	3.1746	22	3.1728
3	3.0892	13	3.1743	23	3.1727
4	3.1539	14	3.1740	25	3.1726
5	3.1710	15	3.1737	29	3.1724
6	3.1754	16	3.1735	33	3.1723
7	3.1763	17	3.1734	41	3.1722
8	3.1762	18	3.1732	53	3.1722
9	3.1758	19	3.1731	65	3.1722
10	3.1754	20	3.1730	77	3.1722

Tableau III-1 Y en fonction N pour une fissure centrale sous chargement uniforme

Figure III- 2 Evolution de Y en fct de N, pour le chargement uniforme

Discussion des résultats :

On constate sur le tableau III-1 et la figure III-2, que le facteur de forme converge à partir de N=41 vers la valeur de 3.1722

I-2-1er cas de chargement non uniforme :

On reprend le système (II-2) avec $r_p = R$, et $\sigma_p =$ $T | \cos \theta_p |$ et $\tau_p = 0$

Figure III- 3 section fissuré avec chargement variable

$$\sum_{n=1}^{N} \left(R^{\left(n-\frac{3}{2}\right)} \begin{cases} A_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \sin\left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n^2 - \frac{1}{4} \right) \sin\left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \\ + B_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \cos\left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n - \frac{1}{2} \right) \left(n - \frac{3}{2} \right) \cos\left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \right] \\ + \sum_{n=1}^{N} \left(R^{(n-1)} \begin{cases} C_n \left[(-n^2 + 3n) \sin\left((n - 1) \theta_p \right) + n(n - 1) \sin\left((n + 1) \theta_p \right) \right] \\ + D_n \left[(-n^2 + 3n) \cos\left((n - 1) \theta_p \right) + n(n + 1) \cos\left((n + 1) \theta_p \right) \right] \right] \right) \\ = T |\cos \theta_p| \end{cases}$$

(III.5)

$$\sum_{n=1}^{N} \left(-(n-\frac{1}{2})R^{\left(n-\frac{3}{2}\right)} \begin{cases} A_{n} \left[\left(n-\frac{3}{2}\right)\cos\left(\left(n-\frac{3}{2}\right)\theta_{p}\right) - \left(n+\frac{1}{2}\right)\cos\left(\left(n+\frac{1}{2}\right)\theta_{p}\right) \right] \\ +B_{n} \left[-\left(n-\frac{3}{2}\right)\sin\left(\left(n-\frac{3}{2}\right)\theta_{p}\right) + \left(n-\frac{3}{2}\right)\sin\left(\left(n+\frac{1}{2}\right)\theta_{p}\right) \right] \right] \\ + \sum_{n=1}^{N} \left(-nR^{(n-1)} \begin{cases} C_{n} \left[(n-1)\cos\left((n-1)\theta_{p}\right) - (n-1)\cos\left((n+1)\theta_{p}\right) \right] \\ +D_{n} \left[-(n-1)\sin\left((n-1)\theta_{p}\right) + (n+1)\sin\left((n+1)\theta_{p}\right) \right] \right] \end{cases} \right) = 0 \end{cases}$$
(III.6)

Résultats :

Nous effectuions plusieurs calculs, en augmentant à chaque fois le nombre de terme N jusqu'à convergence. Les résultats sont présentés dans le Tableau III.2 et la Figure III.4 ci-dessous. Le programme Matlab correspondant est donné en [Annexe 1]

Ν	Y	Ν	Y	Ν	Y
1	0.5443	11	1.7208	29	1.7163
2	0.8992	12	1.7175	30	1.7162
3	1.6961	13	1.7229	34	1.7161
4	1.8461	14	1.7227	37	1.7162
5	1.8356	15	1.7195	38	1.7161
6	1.7531	16	1.7173	34	1.7161
7	1.7177	17	1.7186	43	1.7163
8	1.7224	20	1.7172	45	1.7161
9	1.7398	25	1.7166	80	1.7161
10	1.7329	26	1.7165	100	1.7161

Tableau III- 2 Y en fonction de N pour le 1er cas du chargement non uniforme

Discussion des résultats :

On constate sur le tableau III-2 et la figure III-4, que le facteur de forme converge à partir de N=45 vers la valeur de 1.7161

I-3-2eme Cas de chargement non uniforme :

Figure III- 5 Section fissurée avec une fissure centrale, dans le 2éme cas du chargement non uniforme

$$\sum_{n=1}^{N} \left(R^{\left(n-\frac{3}{2}\right)} \begin{cases} A_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \sin\left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n^2 - \frac{1}{4} \right) \sin\left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \\ + B_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \cos\left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n - \frac{1}{2} \right) \left(n - \frac{3}{2} \right) \cos\left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \right] \\ + \sum_{n=1}^{N} \left(R^{(n-1)} \begin{cases} C_n \left[(-n^2 + 3n) \sin\left((n - 1) \theta_p \right) + n(n - 1) \sin\left((n + 1) \theta_p \right) \right] \\ + D_n \left[(-n^2 + 3n) \cos\left((n - 1) \theta_p \right) + n(n + 1) \cos\left((n + 1) \theta_p \right) \right] \right] \\ = T |\sin \theta_p| \end{cases} \end{cases}$$

(III.7)

$$\sum_{n=1}^{N} \left(-(n-\frac{1}{2})R^{\left(n-\frac{3}{2}\right)} \left\{ \begin{array}{l} A_{n} \left[\left(n-\frac{3}{2}\right)\cos\left(\left(n-\frac{3}{2}\right)\theta_{p}\right) - \left(n+\frac{1}{2}\right)\cos\left(\left(n+\frac{1}{2}\right)\theta_{p}\right) \right] \right\} \\ + B_{n} \left[-\left(n-\frac{3}{2}\right)\sin\left(\left(n-\frac{3}{2}\right)\theta_{p}\right) + \left(n-\frac{3}{2}\right)\sin\left(\left(n+\frac{1}{2}\right)\theta_{p}\right) \right] \right\} \\ + \sum_{n=1}^{N} \left(-nR^{(n-1)} \left\{ \begin{array}{l} C_{n} \left[(n-1)\cos\left((n-1)\theta_{p}\right) - (n-1)\cos\left((n+1)\theta_{p}\right) \right] \\ + D_{n} \left[-(n-1)\sin\left((n-1)\theta_{p}\right) + (n+1)\sin\left((n+1)\theta_{p}\right) \right] \right\} \right\} = 0 \end{array}$$
(III.8)

Résultats :

Nous effectuions plusieurs calculs, en augmentant à chaque fois le nombre de terme N jusqu'à convergence. Les résultats sont présentés dans le Tableau III.3 et la Figure III.6 ci-dessous. Le programme Matlab correspondant est donné en [Annexe 1]

N	Y	Ν	Y	Ν	Y
1	0.9428	9	2.3422	17	2.3424
2	2.6465	10	2.3426	18	2.3428
3	2.4646	11	2.3426	22	2.3427
4	2.3310	12	2.3430	32	2.3427
5	2.3718	13	2.3422	33	2.3428
6	2.3360	14	2.3429	56	2.3428
7	2.3500	15	2.3423	79	2.3428
8	2.3411	16	2.3429	100	2.3428

Tableau III- 3 Y en fonction de N pour le 2éme cas du chargement non uniforme

Figure III- 6 Facteur de forme Y en fct de N. pour 1er cas de chargement non uniforme

Discussion des résultats :

On constate sur le tableau III-3 et la figure III-6, que le facteur de forme converge à partir de N=33 vers la valeur de 2.3428

Comparaison entre les 3 cas :

On constate pour les 3 cas une convergence rapide des résultats. On constate également que le facteur de forme est le plus élevé dans le cas du chargement uniforme (3.1722). Concernant le cas non uniforme, on observe que le facteur de forme est plus important dans le cas $\sigma_p = T |\sin \theta|$ (2.3428). La raison est que dans ce le chargement normal à la fissure $\left(\theta = \frac{\pi}{2}\right)$ et maximal, contrairement au cas $\sigma_p = T |\cos \theta|$ où il est minimal.

II-Fissure non Centrale Débouchant dans une Section Circulaire :

Une section circulaire comporte une fissure non centrale débouchant sous charge uniforme normale à la frontière de la section. (*Figure III-7*)

Figure III- 7 section circulaire fissurée avec une fissure non centrale

D'après le schéma on a

$$\sigma_p = T\cos(\theta_p^0 - \theta_p) \qquad \qquad \tau_p = T\sin(\theta_p^0 - \theta_p)$$

1. Résolution du problème :

 θ_p^0 est calculé avec la même formule précédemment utilisé :

$$\theta_p^0 = \frac{p\pi}{2N+1} - \pi \qquad p = 1:2N$$

 $r_p \ et \ \theta_p$ sont données par les formules suivantes :

$$r_p = \sqrt{(R\sin\theta_p^0)^2 + (R - a + R\cos\theta_p^0)^2}$$
$$\theta_p = Atan2(R\sin\theta_p^0, R - a + R\cos\theta_p^0)$$

On reprend le système (II-2) :

$$\sum_{n=1}^{N} \left(\left(r_{p}^{(n-\frac{3}{2})} \begin{cases} A_{n} \left[\left(-n^{2} + 4n - \frac{7}{4} \right) \sin \left(\left(n - \frac{3}{2} \right) \theta_{p} \right) + \left(n^{2} - \frac{1}{4} \right) \sin \left(\left(n + \frac{1}{2} \right) \theta_{p} \right) \right] \\ + B_{n} \left[\left(-n^{2} + 4n - \frac{7}{4} \right) \cos \left(\left(n - \frac{3}{2} \right) \theta_{p} \right) + \left(n - \frac{1}{2} \right) \left(n - \frac{3}{2} \right) \cos \left(\left(n + \frac{1}{2} \right) \theta_{p} \right) \right] \right) \\ + \left(r_{p}^{(n-1)} \left\{ \begin{array}{c} C_{n} \left[(-n^{2} + 3n) \sin \left((n - 1) \theta_{p} \right) + n(n - 1) \sin \left((n + 1) \theta_{p} \right) \right] \\ + D_{n} \left[(-n^{2} + 3n) \cos \left((n - 1) \theta_{p} \right) + n(n + 1) \cos \left((n + 1) \theta_{p} \right) \right] \right) \right) \\ = T \cos \left(\theta_{p}^{0} - \theta_{p} \right) \end{cases}$$

/TT	T	\mathbf{a}
$(\Pi$	-1	9)

$$\sum_{n=1}^{N} \left(\left(-(n-\frac{1}{2})r_p^{(n-\frac{3}{2})} \left\{ \begin{array}{l} A_n \left[\left(n-\frac{3}{2}\right)\cos\left(\left(n-\frac{3}{2}\right)\theta_p\right) - \left(n+\frac{1}{2}\right)\cos\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] \right] \right) \\ + B_n \left[-\left(n-\frac{3}{2}\right)\sin\left(\left(n-\frac{3}{2}\right)\theta_p\right) + \left(n-\frac{3}{2}\right)\sin\left(\left(n+\frac{1}{2}\right)\theta_p\right) \right] \right] \right) \\ + \left(-nr_p^{(n-1)} \left\{ \begin{array}{l} C_n \left[(n-1)\cos\left((n-1)\theta_p\right) - (n-1)\cos\left((n+1)\theta_p\right) \right] \\ + D_n \left[-(n-1)\sin\left((n-1)\theta_p\right) + (n+1)\sin\left((n+1)\theta_p\right) \right] \right\} \right) \right) \\ = T\sin(\theta_p^0 - \theta_p) \end{array} \right)$$

(III-10)

Le facteur de forme est donné par :

$$Y = \frac{B_1 \sqrt{2}}{T \sqrt{a}} \tag{III-11}$$

Résultats :

Nous effectuions plusieurs calculs en variant à chaque fois la valeur 'a' dans l'intervalle]0, R]. Pour chaque valeur de 'a' nous augmentons N à partir de 1 jusqu'à convergence.

Les résultats détaillés pour chaque valeur de 'a' ainsi que le programme correspondant sont présentés en [Annexe 3].

Nous présentons ci-dessous (Tableau III-4 et Figure III-7) la variation de Y en fct du rapport a/R :

a/R	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Y	3.4850	3.3638	3.0830	2.8754	2.5180	2.4430	2.3733	2.2840	2.2228	2.1804
a/R	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1
Y	2.1595	2.1599	2.1831	2.2331	2.3153	2.4343	2.5925	2.7830	3.0958	3.1722

Tableau III- 4 le facteur de forme Y pour chaque rapport a/R

Nous présentons également Tableau III-5 et Figure III-8, la variation du FIC adimensionnalisé

$$k_1 = \frac{K_I}{T\sqrt{\pi R}} = Y\sqrt{\frac{a}{R}}$$
 en fct de $\frac{a}{R}$.

a/R	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
k 1	0.7793	1.0637	1.1940	1.2859	1.3150	1.3742	1.4041	1.4445	1.4911	1.5418
a/R	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1
k ₁	1.6015	1.6731	1.7601	1.8683	2.0051	2.1773	2.3902	2.6402	3.0174	3.1722

Tableau III- 5 le facteur d'intensité K1 pour chaque rapport a/R

Discussion de résultats :

Nous observons que l'évolution du facteur de forme Y suit deux phases :

- Une première phase décroissante $0 < \frac{a}{R} \le 0.55$ avec un minimum pour $\frac{a}{R} = 0.55$ égal à 2.1595.
- Une deuxième phase croissante pour $0.55 \le \frac{a}{R} \le 1$.

Nous remarquons également que pour $\frac{a}{R} = 1$ nous retrouvons la valeur de 3.172 qui est celle-ci trouvée pour la fissure centrale.

Concernant le FIC adimensionnalisé k_1 , nous constatons qu'il est croissant avec la longueur de la fissure. Ce qui est logique, car plus une fissure est longue plus elle devient dangereuse.

Conclusion

Ce mémoire est une présentation et application de la "Méthode de collocation de frontière " en élasticité plane. Les principaux résultats obtenus sont les suivants :

- Les facteurs de forme pour une section circulaire chargée radialement avec une fissure centrale ont été calculés pour un chargement uniforme et non uniforme.
- Les facteurs de forme et les FIC adimensionnels ont été détermines pour une section circulaire avec une fissure non centrale chargée radialement avec un chargement uniforme. Plusieurs longueurs de fissure ont été considérées.
- La convergence a été rapide et régulière dans le cas de la fissure centrale. Pour la fissure noncentrale, nous avons constaté une certaine instabilité numérique pour les faibles valeurs de N.

Les principales insuffisances dès ce travail sont les suivantes :

- Les résultats obtenus n'ont pas été comparés avec d'autres méthodes. Nous envisageons dans un autre travail, de les comparer avec la méthode des éléments finis (logiciel ABAQUS).
- Le système d'équation obtenue est un système surdéterminé. Le nombre de points de collocation C et le nombre de termes N sont liés par la relation suivante2*C* > 4*N* − 1. Nous avons travaillé avec la valeur minimale de C ; C=2N. il serait intéressant de refaire les calculs en augmentant la valeur de C, afin de quantifier l'influence de ce paramètre. Ça sera l'objet d'un futur travail.

Annexe 1

Les programmes de calcul du facteur de forme dans une Section Circulaire avec une Fissure Centrale Débouchante

Chargement uniforme :

```
clear all
clc
 T=1;r=1;
Nmax=input('nombre des termes maximal =' ) ;
for p=1:Nmax %nbre de termes
    C=2*p; % nombre de points de collocation
           %calculer les facteurs des termes du développement
for N=1:p
for k=1:C
           teta=2*pi*k/(C+1)-pi ;
            %s1:coefs de sigma(rr)
       sA1(k,N) = -r^{(N - 3/2)} (sin(teta^{(N - 3/2)}) (N^2 - 4^{(N + 7/4)})
sin(teta*(N + 1/2)) * (N^2 - 1/4)); % coef de An
       sB1(k,N) = -r^{(N - 3/2)} (\cos(teta^{(N - 3/2)}) (N^2 - 4^{(N + 7/4)})
\cos(teta*(N + 1/2)) * (N - 1/2)*(N - 3/2)); % coef de Bn
       sC1(k,N)=r^{(N-1)}(sin(teta^{(N-1)})^{(3*N-N^2)} +
N*sin(teta*(N +
                                                1))*(N - 1)); %coef de Cn
       sD1(k, N) = r^{(N - 1)} (cos(teta*(N - 1))*(3*N - N^2))
+N*cos(teta*(N + 1))*(N + 1)); % coef de Dn
            %s2:oefs de sigma(ro)
       sA2(k, N) = r^{(N - 3/2)} (\cos(teta (N + 1/2)) (N + 1/2) - \cos(teta)
(N - 3/2) \times (N - 3/2) \times (N - 1/2); % coef de An
       sB2(k,N) = -r^{(N - 3/2)} (sin(teta*(N + 1/2)) - sin(teta*(N-3/2)))
*(N - 1/2)*(N - 3/2);%coef de Bn
       sC2(k, N) = -N*r^{(N - 1)}(cos(teta*(N - 1)) - cos(teta*(N + 1)))
*(N - 1);%coef de Cn
       sD2(k,N)=N*r^{(N-1)}(sin(teta*(N-1))*(N-1) - sin(teta*(N+1)))
1))*(N + 1));%coef de Dn
            %vecteur des contraintes
           F1(k) = T;
                                F2(k) = 0;
end
end
      S=[sA1 sB1 sC1 sD1;sA2 sB2 sC2 sD2]
      F=[F1';F2'];
      M=[S(:,1:2*p),S(:,2*p+2:4*p)] ;%la matrice sans la colonne nulle
%moindre carre
           L=M'*M;
           G=M'*F;
%resoudre par la methode directe
           H=inv(L)*G;
 %affichage vecteur des solutions
KI(p) = H(p+1) * sqrt(2);
KII(p) = H(1) * sqrt(2);
end
ΚI
p=1:P;
figure
plot(p,KI(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur de forme "Y" ')
```

1^{er} cas de chargement non uniforme:

```
clear all
clc
T=1;r=1;
Nmax=input('nombre des termes maximal =' ) ;
for p=1:Nmax % nombre de termes
         C=2*p; % nombre de pts de collocation
for N=1:p
%calculer les facteurs des termes du développement
for k=1:C
                          teta=2*pi*k/(C+1)-pi ;
                          %s1:sigma(rr)
                          sA1(k,N) = -r^{(N - 3/2)} (sin(teta^{(N - 3/2)}) (N^2 - 4N + 7/4) -
sin(teta*(N + 1/2))*(N^2 - 1/4)); % coef de An
                          sB1(k,N) = -r^{(N - 3/2)} (\cos(teta^{(N - 3/2)}) (N^2 - 4^{(N + 7/4)})
cos(teta*(N + 1/2))*(N - 1/2)*(N - 3/2));%coef de Bn
                          sC1(k,N)=r^(N - 1)*(sin(teta*(N - 1))*(3*N - N^2) + N*sin(teta*(N +
1))*(N - 1));%coef de Cn
                          sD1(k,N)=r^(N - 1)*(cos(teta*(N - 1))*(3*N - N^2) + N*cos(teta*(N +
1))*(N + 1));%coef de Dn
                          %s2:sigma(ro)
                          sA2(k,N)=r^{(N - 3/2)*(cos(teta*(N + 1/2))*(N + 1/2) - cos(teta*(N - 1/2))*(N + 1/2)) - cos(teta*(N - 1/2))*(N + 1/2)) - cos(teta*(N - 1/2))*(N + 1/2)) + cos(teta*(N - 1/2))) + cos(teta*(N - 1/2))) + cos(teta*(N - 1/2)) + cos(teta*(N - 1/2)) + cos(teta*(N - 1/2))) + cos(teta*(N - 1/2)) + cos(teta*(N - 1/2)) + cos(teta*(N - 1/2))) + cos(teta*(N - 1/2)) + cos(teta*(N - 1/2))) + cos(teta*(N - 1/2)) + cos(teta*(N - 1/2))) + cos(teta*(N - 1/2))) + cos(teta*(N - 1/2))) + cos(teta*(N 
3/2))*(N - 3/2))*(N - 1/2);%coef de An
                          sB2(k, N) = -r^{(N - 3/2)} (sin(teta^{(N + 1/2)}) - sin(teta^{(N - 3/2)})) (N - 3/2))
- 1/2)*(N - 3/2);%coef de Bn
                          sC2(k,N) = -N*r^{(N-1)}(cos(teta*(N-1)) - cos(teta*(N+1)))*(N-1)
1);%coef de Cn
                          sD2(k, N) = N*r^{(N - 1)}(sin(teta*(N - 1))*(N - 1) - sin(teta*(N + 1)))
1))*(N + 1));%coef de Dn
                          %vecteur des contraintes
                          F1(k) = abs(cos(teta));
                                                                                   F2(k) = 0;
end
end
                S=[sA1 sB1 sC1 sD1;sA2 sB2 sC2 sD2];
                F=[F1';F2'];
                M=[S(:,1:2*p),S(:,2*p+2:4*p)] ;%la matrice sans la colonne nulle
%moindre carre
                         L=M'*M;
                                                                    G=M'*F;
%resoudre par la methode directe
                          H=inv(L)*G;
%affichage vecteur des solutions
KI(p)=H(p+1)*sqrt(2);
KII(p)=H(1)*sqrt(2);
end
 ΚI
p=1:P;
figure
plot(p,KI(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur de forme "Y" ')
```

2^{éme} cas de chargement non uniforme:

```
clear all
clc
T=1;r=1;
Nmax=input('nombre des termes maximal =' ) ;
for p=1:Nmax % nombre de termes
    C=2*p; % nombre de pts de collocation
for N=1:p
%calculer les facteurs des termes du développement
for k=1:C
          teta=2*pi*k/(C+1)-pi ;
          %s1:sigma(rr)
          sA1(k,N) = -r^{(N - 3/2)} (sin(teta*(N - 3/2))*(N^2 - 4*N + 7/4) -
sin(teta*(N + 1/2))*(N^2 - 1/4));%coef de An
           sB1(k,N) = -r^{(N - 3/2)} (\cos(teta^{(N - 3/2)}) (N^2 - 4^{(N + 7/4)}) -
\cos(teta*(N + 1/2))*(N - 1/2)*(N - 3/2)); coef de Bn
           sC1(k,N)=r^(N - 1)*(sin(teta*(N - 1))*(3*N - N^2) + N*sin(teta*(N +
1))*(N - 1));%coef de Cn
           sD1(k,N)=r^{(N-1)*(cos(teta*(N-1))*(3*N-N^2))} + N*cos(teta*(N+1))*(3*N-N^2))
1))*(N + 1));%coef de Dn
           %s2:sigma(ro)
           3/2))*(N - 3/2))*(N - 1/2);%coef de An
          sB2(k,N) = -r^{(N - 3/2)} (sin(teta*(N + 1/2)) - sin(teta*(N - 3/2)))*(N)
- 1/2)*(N - 3/2);%coef de Bn
           sC2(k,N) = -N*r^{(N-1)*(cos(teta*(N-1)) - cos(teta*(N+1)))*(N-1)}
1);%coef de Cn
           sD2(k, N) = N*r^{(N - 1)}(sin(teta*(N - 1))*(N - 1) - sin(teta*(N + 1)))
1))*(N + 1));%coef de Dn
           %vecteur des contraintes
          F1(k) = abs(sin(teta));
                                         F2(k)=0;
end
end
         S=[sA1 sB1 sC1 sD1;sA2 sB2 sC2 sD2];
         F=[F1';F2'];
        M=[S(:,1:2*p),S(:,2*p+2:4*p)] ;%la matrice sans la colonne nulle
%moindre carre
          L=M'*M;
                            G=M'*F;
%resoudre par la methode directe
          H=inv(L)*G;
%affichage vecteur des solutions
KI(p)=H(p+1)*sqrt(2);
KII(p)=H(1)*sqrt(2);
end
ΚI
p=1:P;
figure
plot(p,KI(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur de forme "Y" ')
```

Annexe 2

Le programme de calcul du facteur de forme dans une Section Circulaire avec une Fissure non Centrale Débouchante

```
clear all clc
T=1; R=1;
P=input ('nombre des termes (entier et demi-entier) P=') ;
a=input ('donne la longueur de la fissure a= ')
for p=1:P
    C=2*p; % nombre de collocation
            %calculer les facteurs des termes
for N=1:p
for k=1:C
           teta0=2*pi*k/(C+1)-pi ;
           x=R-a+R*\cos(teta0);
                                                      y=R*sin (teta0);
           r=sqrt (power(x, 2) +power (y, 2));
                                                     teta=atan2 (y, x);
%s1:sigma(rr)
            sA1 (k, N)=-r^{(N - 3/2)} (sin (teta*(N - 3/2))*(N<sup>2</sup> - 4*N + 7/4)
-\sin(\text{teta}(N + 1/2)) (N^2 - 1/4)); Scoef de An
            sB1 (k, N)=-r^{(N-3/2)}(\cos(teta^{(N-3/2)})(N^2 - 4N + 7/4))
- cos (teta*(N + 1/2))*(N - 1/2)*(N - 3/2));%coef de Bn
            sC1 (k, N)=r^ (N - 1)*(sin (teta*(N - 1))*(3*N - N^2) + N*sin
(teta*(N + 1))*(N - 1));%coef de Cn
           sD1 (k, N)=r^ (N - 1)*(cos (teta*(N - 1))*(3*N - N^2) +
N*cos(teta*(N + 1))*(N + 1));%coef de Dn
%s2:sigma(ro)
sA2(k,N) = r^{(N - 3/2)} (\cos(teta^{(N + 1/2)}) (N + 1/2) - \cos(teta^{(N - 3/2)}) (N + 1/2))
-3/2) * (N -1/2); % coef de An
sB2(k,N) = -r^{(N - 3/2)} (sin(teta^{(N + 1/2)}) - sin(teta^{(N - 3/2)})) (N - 3/2))
1/2)*(N - 3/2);%coef de Bn
sC2(k,N) = -N*r^{(N-1)*(cos(teta*(N-1)) - cos(teta*(N+1)))*(N-1); %coef
de Cn
sD2(k,N) = N*r^{(N-1)}(sin(teta*(N-1))*(N-1) - sin(teta*(N+1))*(N+1))
1));%coef de Dn
%F vecteur des charges
           F1(k)=T*cos(teta0-teta);%la projection de la contrainte selon
l'axe normale de la pointe de fissure
           F2(k)=T*sin(teta0-teta);%la projection de la contrainte selon
l'axe tangentielle de la pointe de fissure
end
end
         S=[sA1 sB1 sC1 sD1;sA2 sB2 sC2 sD2] ;%matrice des coefs
         F=[F1';F2'] ;%vecteur des contraintes
         M=[S(:,1:2*p),S(:,2*p+2:4*p)];%la matrice sans la colonne nulle
%moindre carre
          L=M'*M;
          G=M'*F;
%résoudre par la méthode directe
H=inv(L)*G;
KI(p) = H(p+1) * sqrt(2/a); KII(p) = H(1) * sqrt(2/a);
End KI
p=1:P;
figure
        plot(p,KI(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur de forme "Y" ')
```

Annexe 3

Les résultats d'une Section Circulaire avec une Fissure non Centrale Débouchante pour plusieurs longueurs de fissure

Résultats pour a/R=0.05:

Figure A3-1 Facteur de forme Y en fct de N (a/R=0.05).

Ν	Y	Ν	Y	Ν	Y
1	9.6004	11	3.8074	101	3.5155
2	-0.7299	12	-0.5129	102	3.6206
3	-1.0848	24	-1.1608	104	3.7020
5	-0.9124	43	3.3562	110	3.5393
6	-0.7845	50	3.5094	115	3.5944
7	-0.6895	65	3.4850	120	3.6022
8	-0.6239	75	3.5616	127	3.4850
9	-0.5793	90	3.2470	151	3.4850
10	-0.5487	100	3.6581	294	3.4850

Tableau A3-1 Y en fct de N (a/R=0.05)

Résultats pour a/R=0.1:

Figure A3- 2 Facteur de forme Y en fct de N (a/R=0.1).

Ν	Y	Ν	Y	Ν	Y
1	6.5468	11	-0.7052	116	3.4241
2	-0.3622	12	-0.8280	122	3.0931
3	-0.6475	24	6.2440	134	3.4523
4	-0.6643	34	4.0860	145	3.3515
6	-0.5418	50	3.4747	155	3.3774
7	-0.5131	65	3.3791	160	3.3579
8	-0.5172	75	3.2586	179	3.3638
9	-0.5515	90	3.4639	226	3.3638
10	-0.6140	100	3.4022	268	3.3638

Tableau A3- 2 Y en fct de N (a/R=0.1)

Figure A3- 3 Facteur de forme Y en fct de N (a/R=0.15).

N	Y	Ν	Y	Ν	Y
1	5.1529	32	3.5274	132	3.1020
3	-0.4203	44	3.2161	144	3.1018
5	-0.4627	54	3.2064	155	3.1023
7	-0.5152	60	3.1540	168	3.0837
9	-0.8288	73	3.1358	174	3.0836
11	-1.6245	85	3.0838	194	3.0830
14	-6.5076	90	3.0003	244	3.0830
20	6.6222	100	3.0837	250	3.0830

Tableau A3- 3 Y en fct de N (a/R=0.15)

Résultats pour a/R=0.2:

Figure A3- 4 Facteur de forme Y en fct de N (a/R=0.2).

N	Y	Ν	Y	Ν	Y
1	4.3001	11	-6.4647	51	2.6569
3	-0.2573	16	5.4371	59	2.8929
6	-0.4651	21	3.8334	65	2.8965
7	-0.6450	28	3.3928	70	2.8876
8	-0.9949	33	3.2308	71	2.8754
9	-1.6534	39	2.9459	86	2.8754
10	-2.9899	45	2.9293	249	2.8754

Tableau A3- 4 Y en fct de N (a/R=0.2)

Figure A3- 5 Facteur de forme Y en fct de N (a/R=0.25).

Ν	Y	Ν	Y	Ν	Y
1	3.7047	20	3.3008	106	2.4213
3	-0.1188	32	2.7794	129	2.1723
6	-0.3338	44	2.5917	141	2.0796
7	-0.5258	51	2.5189	150	2.6941
8	-1.8877	69	2.3295	166	2.5180
9	-4.5506	81	2.2953	197	2.5180
11	13.5199	98	2.2239	278	2.5180

Tableau A3- 5 Y en fct de N (a/R=0.25)

Résultats pour a/R=0.3:

Figure A3- 6 Facteur de forme Y en fct de N (a/R=0.3).

Ν	Y	Ν	Y	Ν	Y
1	3.2566	38	2.4764	120	2.2387
3	0.0132	51	2.2273	130	2.7883
5	-0.2917	63	2.3539	140	2.4219
7	-1.5335	78	2.4605	150	2.4701
10	8.1204	88	2.3664	164	2.4430
11	5.1671	100	2.2714	362	2.4430
22	2.9139	110	2.2486	373	2.4430

Tableau A3- 6 Y en fct de N (a/R=0.3)

Figure A3-7 Facteur de forme Y en fct de N (a/R=0.35).

N	Y	Ν	Y	Ν	Y
1	2.9026	11	3.8074	122	2.3706
2	0.3279	12	3.4250	130	2.3771
3	0.1497	24	2.7236	134	2.3716
4	-0.0038	34	2.5013	140	2.3785
6	-0.8107	50	1.0345	150	2.3721
7	-2.7275	60	2.3842	155	2.3733
8	-39.6601	75	2.3889	176	2.3733
9	7.5252	90	2.3850	225	2.3733
10	4.6437	110	2.3796	230	2.3733

Tableau A3-7 Y en fct de N (a/R=0.35)

Résultats pour a/R=0.4:

Figure A3- 8 Facteur de forme Y en fct de N (a/R=0.4).

Ν	Y	Ν	Y	Ν	Y
1	2.6133	11	3.2578	122	2.2888
2	0.4389	12	3.0474	134	2.2880
3	0.2997	24	2.5783	134	2.2882
4	0.1482	34	2.4337	143	2.2881
5	-0.1357	43	2.2875	150	2.2853
6	-0.9702	50	2.3179	160	2.2869
7	-5.4743	60	2.3004	169	2.2840
8	10.6606	75	2.2942	244	2.2840
9	4.7019	90	2.2936	280	2.2840
10	3.6656	110	2.2913	300	2.2840

Tableau A3- 8 Y en fct de N (a/R=0.4)

N	Y	N	Y	Ν	Y	
1	2.3713	11	2.9554	110	2.2234	
2	0.5561	12	2.8185	113	2.2255	
3	0.4710	24	2.5063	115	2.2247	
5	0.0586	43	2.2755	122	2.2246	
6	-0.9621	50	2.6889	125	2.2237	
7	-13.1891	60	3.3493	127	2.2228	
8	5.9474	75	2.2349	180	2.2228	
9	3.7789	88	2.2282	220	2.2228	
10	3.2067	95	2.2282	250	2.2228	

Tableau A3- 9 Y en fct de N (a/R=0.45)

Résultats pour a/R=0.5:

Figure A3- 10 Facteur de forme Y en fct de N (a/R=0.5).

N	Y	N	Y	N	Y
1	2.1651	11	2.7505	122	2.1800
2	0.6833	12	2.6517	135	2.1807
3	0.6702	24	2.4162	144	2.1817
4	0.6074	34	2.2883	158	2.1814
5	0.3929	43	2.2095	162	2.1815
6	-0.5159	50	2.2211	179	2.1806
7	-22.9099	60	2.1906	180	2.1804
8	4.6914	75	2.1850	186	2.1804
9	3.3231	90	2.1847	216	2.1804
10	2.9288	110	2.1832	249	2.1804

Tableau A3- 10 Y en fct de N (a/R=0.5)

Tableau A3- 11 Y en fct de N (a/R=0.55)

Résultats pour a/R=0.6:

Figure	A2 12	Footour	do formo	Var	fot d	NICO	$\mathbf{D} = \mathbf{O} \mathbf{O}$
rigure	A3-12	гасцент	ae iorme	- r ei	I ICL (16	- IN (A	/ K=U.O).
						(o.o.).

N	Y	Ν	Y	Ν	Y
1	1.8318	16	2.2112	61	2.1611
2	0.9826	18	2.2043	73	2.1607
3	1.1652	20	2.2004	96	2.1603
4	1.3072	22	2.1979	111	2.1602
5	1.4194	25	2.1954	132	2.1601
7	1.1109	29	2.1934	145	2.1599
9	2.6758	34	2.1796	169	2.1599
12	2.2598	37	2.1662	185	2.1599
13	2.2380	49	2.1615	200	2.1599

Tableau A3- 12 Y en fct de N (a/R=0.6)

Figure A3-13 Facteur de forme Y en fct de N (a/R=0.65).

Y	N	Y	Ν	Y
1.6953	11	0.7071	122	2.1826
1.1621	12	1.2547	135	2.1826
1.4546	24	1.8928	148	2.1828
1.6957	34	1.9878	160	2.1828
1.9236	43	2.1437	170	2.1827
2.1290	50	2.1743	179	2.1833
2.3492	60	2.1689	186	2.1831
2.7072	75	2.1810	213	2.1831
3.8877	90	2.1821	248	2.1831
-4.0829	110	2.1826	300	2.1831
	Y 1.6953 1.1621 1.4546 1.6957 1.9236 2.1290 2.3492 2.7072 3.8877 -4.0829	YN1.6953111.1621121.4546241.6957341.9236432.1290502.3492602.7072753.887790-4.0829110	YNY1.6953110.70711.1621121.25471.4546241.89281.6957341.98781.9236432.14372.1290502.17432.3492602.16892.7072752.18103.8877902.1821-4.08291102.1826	YNYN1.6953110.70711221.1621121.25471351.4546241.89281481.6957341.98781601.9236432.14371702.1290502.17431792.3492602.16891862.7072752.18102133.8877902.1821248-4.08291102.1826300

Tableau A3- 13 Y en fct de N (a/R=0.65)

Figure	A3-	14	Facteur	de	forme	Y	en fo	ct d	le N	(a/R=	=0.7).
I Igui c		ТT	I acteur	uv	IOTIME	-	CII I	ci u		(-0.1).

Ν	Y	Ν	Y	Ν	Y
1	1.5746	11	3.6960	98	2.2468
2	1.3656	12	4.1066	120	2.2329
4	2.0566	21	-3.0558	130	2.2324
5	2.3123	40	2.0028	145	2.2328
7	2.7095	52	2.2208	150	2.2331
8	2.9031	63	2.2280	184	2.2331
9	3.1308	75	2.2303	224	2.2331
10	3.3784	82	2.2306	296	2.2331

Tableau A3- 14 Y en fct de N (a/R=0.7)

Résultats pour a/R=0.75:

Figure A3-15 Facteur de forme Y en fct de N (a/R=0.75).

N	Y	N	Y	Ν	Y
1	1.4677	11	3.1516	122	2.3143
2	1.5939	12	3.2098	135	2.3147
3	2.0525	24	3.8020	148	2.3148
5	2.5814	43	5.4515	175	2.3146
6	2.7321	50	2.3153	192	2.3149
7	2.8444	60	2.3182	224	2.3153
8	2.9369	75	2.3142	272	2.3153
9	3.0170	90	2.3131	329	2.3153
10	3.0879	110	2.3143	399	2.3153

Tableau A3- 15 Y en fct de N (a/R=0.75)

Figure A3-16 Facteur de forme Y en fct de N (a/R=0.8).

N	Y	N	Y	Ν	Y
1	1.3726	11	3.0388	40	3.2627
2	1.8447	12	3.0565	45	3.3137
3	2.3258	13	3.0718	53	2.9595
4	2.6010	14	3.0854	69	2.4570
6	2.8545	22	3.1667	100	2.3907
7	2.9144	26	3.1960	106	2.4343
8	2.9578	30	3.2195	130	2.4343
9	2.9912	34	3.2389	171	2.4343
10	3.0175	38	3.2553	244	2.4343

Tableau A3-16 Y en fct de N (a/R=0.8)

Résultats pour a/R=0.85:

Figure A3-17 Facteur de forme Y en fct de N (a/R=0.85).

N	Y	N	Y	Ν	Y
1	1.2881	12	3.0250	102	2.6072
2	2.1100	16	3.0409	111	2.5944
3	2.5655	22	3.0573	120	2.5940
4	2.7849	30	3.0715	139	2.5943
5	2.8892	40	3.0824	145	2.5939
6	2.9399	52	3.0899	150	2.5937
7	2.9690	66	2.8711	196	2.5925
8	2.9883	75	2.5089	208	2.5925
9	3.0019	84	2.6294	220	2.5925
10	3.0117	93	2.6245	245	2.5925

Tableau A3- 17 Y en fct de N (a/R=0.85)

Résultats pour a/R=0.9:

Figure A3- 18 Facteur de forme Y en fct de N (a/R=0.9).

N	Y	N	Y	Ν	Y
1	1.3726	11	3.0388	40	3.2627
2	1.8447	12	3.0565	45	3.3137
3	2.3258	13	3.0718	53	2.9595
4	2.6010	14	3.0854	69	2.4570
6	2.8545	22	3.1667	100	2.3907
7	2.9144	26	3.1960	106	2.7830
8	2.9578	30	3.2195	130	2.7830
9	2.9912	34	3.2389	171	2.7830
10	3.0175	38	3.2553	244	2.7830

Tableau A3- 18 Y en fct de N (a/R=0.9)

Résultats pour a/R=0.95:

Figure A3- 19 Facteur de forme Y en fct de N (a/R=0.95).

Ν	Y	Ν	Y	Ν	Y
1	1.1469	11	3.0968	53	3.0955
2	2.6152	12	3.0965	60	3.0955
3	2.9406	13	3.0963	61	3.0956
5	3.0793	15	3.0958	71	3.0957
6	3.0900	16	3.0957	83	3.0957
7	3.0942	17	3.0955	84	3.0958
8	3.0959	45	3.0953	90	3.0958
9	3.0967	46	3.0954	99	3.0958
10	3.0969	52	3.0954	117	3.0958

Tableau A3- 19 Y en fct de N (a/R=0.95)

Résultats pour a/R=1:

	Figure A3- 2) Facteur	de forme	Y en	fct de l	N(a/R=1)
--	--------------	-----------	----------	------	----------	----------

N	Y	N	Y	Ν	Y
1	1.0887	11	3.1750	21	3.1729
2	2.8060	12	3.1746	22	3.1728
3	3.0892	13	3.1743	23	3.1727
4	3.1539	14	3.1740	25	3.1726
5	3.1710	15	3.1737	29	3.1724
6	3.1754	16	3.1735	33	3.1723
7	3.1763	17	3.1734	41	3.1722
8	3.1762	18	3.1732	53	3.1722
9	3.1758	19	3.1731	65	3.1722
10	3.1754	20	3.1730	77	3.1722

Tableau A3- 20 Y en fct de N (a/R=1)

ANNEXE 4

Déduction du développement des contraintes

En coordonnées polaires, $\sigma_{rr}~et~\sigma_{r heta}$ sont données par

$$\sigma_{rr} = \frac{1}{r^2} \varphi_{,rr} + \frac{1}{r} \varphi_{,r} \qquad (A4 - 1)$$

$$\sigma_{r\theta} = \left(\frac{1}{r} \varphi_{,\theta}\right)_{,r} \qquad (A4 - 2)$$

Où $\varphi(r, \theta)$ est la fonction d'Airy.

Considérons le problème d'un milieu fissuré en élasticité plane (Fig A4-1) :

Il est bien connu que dans ce cas (voir par exemple [10]) $\varphi(r, \theta)$ est donnée par :

$$\varphi(r,\theta) = r^{\alpha+2} \left[A \sin(\alpha\theta) + B \cos(\alpha\theta) + C \sin((\alpha+2)\theta) + D \cos((\alpha+2)\theta) \right]$$
(A4-3)

Avec $\alpha \ge -\frac{1}{2}$ et A, B, C et D des constants.

De plus α est soit entier soit demi-entier.

Si α est entier :

 $\alpha = n-1 \quad n \in \mathbb{N} \ et \ n \geq 1$

, nous avons les relations suivants entre les constants :

$$\begin{cases} C = -A \frac{n-1}{n+1} \\ D = -B \end{cases}$$
(A4-4)

Si α est demi-entier :

$$\alpha = n - \frac{3}{2}$$
 $n \in \mathbb{N}$ et $n \ge 1$

, nous avons les relations suivants entre les constants :

$$\begin{cases} C = -A \\ D = -B \frac{n - \frac{3}{2}}{n + \frac{1}{2}} \end{cases}$$
(A4-5)

En considérant toutes les valeurs possible de α (ou n), et en utilisant les formules précédents, on aboutit aux développements suivants pour σ_{rr} et $\sigma_{r\theta}$:

 σ_{rr}

$$=\sum_{n=1}^{\infty} \left(r^{\left(n-\frac{3}{2}\right)} \left\{ \begin{aligned} A_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \sin\left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n^2 - \frac{1}{4} \right) \sin\left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \\ + B_n \left[\left(-n^2 + 4n - \frac{7}{4} \right) \cos\left(\left(n - \frac{3}{2} \right) \theta_p \right) + \left(n - \frac{1}{2} \right) \left(n - \frac{3}{2} \right) \cos\left(\left(n + \frac{1}{2} \right) \theta_p \right) \right] \right] \\ + \left(r^{(n-1)} \left\{ \begin{aligned} C_n \left[(-n^2 + 3n) \sin\left((n - 1) \theta_p \right) + n(n - 1) \sin\left((n + 1) \theta_p \right) \right] \\ + D_n \left[(-n^2 + 3n) \cos\left((n - 1) \theta_p \right) + n(n + 1) \cos\left((n + 1) \theta_p \right) \right] \right\} \right) \end{aligned} \right)$$

$$\sigma_{r\theta} = \sum_{n=1}^{\infty} \left(-(n - \frac{1}{2})r^{\left(n - \frac{3}{2}\right)} \left\{ \begin{array}{l} A_n \left[\left(n - \frac{3}{2}\right)\cos\left(\left(n - \frac{3}{2}\right)\theta_p\right) - \left(n + \frac{1}{2}\right)\cos\left(\left(n + \frac{1}{2}\right)\theta_p\right) \right] \right\} \\ + B_n \left[-\left(n - \frac{3}{2}\right)\sin\left(\left(n - \frac{3}{2}\right)\theta_p\right) + \left(n - \frac{3}{2}\right)\sin\left(\left(n + \frac{1}{2}\right)\theta_p\right) \right] \right\} \\ + \sum_{n=1}^{N} \left(-nr^{(n-1)} \left\{ \begin{array}{l} C_n \left[(n - 1)\cos\left((n - 1)\theta_p\right) - (n - 1)\cos\left((n + 1)\theta_p\right) \right] \\ + D_n \left[-(n - 1)\sin\left((n - 1)\theta_p\right) + (n + 1)\sin\left((n + 1)\theta_p\right) \right] \right\} \right\} \end{array} \right\}$$

Bibliographie :

[1] Saïd Hariri, Mansour Afzali & Haïdar Jaffal « NOCIVITE DES DEFAUTS ET PROPAGATION DE FISSURES DANS LES EQUIPEMENTS SOUS PRESSION ». Ecole des Mines de Douai 2007

[2] Pierre-Olivier Bouchard- CONTRIBUTION A LA MODELISATION NUMERIQUE EN MECANIQUE DE LA RUPTURE ET STRUCTURES MULTIMATERIAUX -thèse de Doctorat de l'Ecole Nationale Supérieure des Mines de Paris Spécialité « Sciences et Génie des Matériaux » (20 septembre 2000).

[3] Mr Ahmed BENHAMOUDA UNIVERSITE MENTOURI CONSTANTINE FACULTE DES SCIENCES DE L'INGENIEUR « ETUDE DU COMPORTEMENT DES FISSURES DANS LES TUBES SOUS PRESSION INTERNE » mémoire de magister En Génie Mécanique (2010).

[4] cours Mr H.Ferdjani « mécanique de la rupture » Université Saad Dahleb Blida 01 (2016).

[5] Alan T.Zehnde, ph.d "lecture notes on fracture mechanics "Department of Theoretical and Applied Mechanics Cornell University, Ithaca, NY 14853,(2007).

[6] Tony Bourdier « Mathématiques Numériques » Ecole Supérieure d'informatique et applications de Lorraine (ESIAL) 2007-2008.

[7] Sofiane BENTTALAH et Wahid IZA « Exemple de calcul du facteur d'intensité de contrainte en mode III avec la méthode de collocation de frontière » mémoire d'ingénieur d'etat en génie mécanique ECOLE MILITAIRE POLYTECHNIQUE (2015)

[8] Serir Khair-Eddine « Exemple de calcul du facteur d'intensité de contrainte par la méthode de collocation de frontière en mode III » mémoire de master UNIVERSITE SAAD DAHLEB BLIDA (2011/2012).

[9] MEZOUANI Yassine « Application de la méthode de collocation de frontière au calcul du facteur d'intensité de contrainte en mode III » mémoire de master UNIVERSITE SAAD DAHLEB BLIDA (2013/2014).

[10] F.B.Leblond « Mécanique de la rupture fragile et ductile » Hermes science publications (2003).