**REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE** MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE





UNIVERSITE SAAD DAHLAB DE BLIDA 1 FACULTE DE TECHNOLOGIE DEPARTEMENT DE MECANIQUE

Projet de Fin d'Etudes Pour l'obtention du Diplôme de Master en **Construction mécanique** 

Thème :

Calcul de *K<sub>I</sub>* pour une section elliptique fissurée par la méthode de collocation de frontière

Proposé et encadré par : Pr.FERDJANI Hicheme Réalisé par : MEKKAOUI Ahmed BELHADJ Mokrane

#### Nomenclature général

#### Symboles latins :

- $\theta$  et r : composants du repère polaire
- a et b : rayons (axes) de la section elliptique
- X et Y : composantes de repère cartésien
- f : longueur de la fissure
- KI, KII : facture d'intensité de contrainte respectivement en mod 1 et 2
- C : nombre de points de collocation
- N : nombre de terme
- $\sigma: contraints \ normal$
- **τ** : contrainte tangentiel
- Y : facture de forme

#### Sommaire

| REMERCIEMENTS                                                                              |        |
|--------------------------------------------------------------------------------------------|--------|
| Liste des figures                                                                          |        |
| Liste des tableaux                                                                         |        |
| Introduction générale                                                                      | 1      |
| Chapitre 1 : Rappels Théoriques sur la mécanique de la rupture                             | 2      |
| I.1.Introduction                                                                           | 3      |
| I.2. Définition de la mécanique de la rupture [1]                                          | 3      |
| I.2.1. Modes de rupture [3]                                                                | 3      |
| I.3. Développement des contraintes en série infinie en élasticité plane dans un milieu fis | suré 4 |
| I.4. Facteur de forme [4]                                                                  | 6      |
| Chapitre 2 : Méthode de collocation de frontière et méthode des moindres carrés            | 7      |
| II.1.Introduction                                                                          | 8      |
| II.2. La Méthode de collocation de frontière [5]                                           | 8      |
| II.2.1. Cas de l'élasticité plane                                                          | 8      |
| II.3. La Méthode des moindres carrés [6]                                                   | 10     |
| II.3.1. Forme standard                                                                     | 10     |
| II.3.2. Solution analytique                                                                | 10     |
| Chapitre 3:Problèmes Traités                                                               | 13     |
| III.1 Introduction                                                                         | 14     |
| III.2 Cas de Fissure centrale                                                              | 14     |
| III.2.1 Résultats                                                                          | 15     |
| III.2.2 Détermination de l'expression analytique du facteur de forme                       | 16     |
| III.2.3 Confirmation de la validité de l'expression Y en fissure central                   | 18     |
| III.3. Cas de Fissure centrale                                                             | 19     |
| III.3.1 Résultats                                                                          | 20     |
| III.3.2 Détermination de l'expression analytique du facteur de forme                       | 21     |
| III.3.3 Confirmation de la validité de l'expression Y en fissure central                   | 23     |
| Conclusion général                                                                         | 24     |
| Références                                                                                 |        |

Annexes 1: Les programmes de calcul du FIC dans une section elliptique fissurée

A1-1Programme pour fissure central

A1-2Programme pour fissure non central.

#### Annexe 2 : Les programmes pour les expressions du facteur de forme

A2-1Programme pour fissure central

A2-2Programme pour fissure non central.

#### Annexe 3 : Résultats pour le cas d'une fissure centrale

Résultats pour b/a=0.6

Résultats pour b/a= 0.7

Résultats pour b/a = 0.8

Résultats pour b/a = 0.9

Résultats pour b/a=1

Résultats pour b/a = 1.1

Résultats pour b/a= 1.2

Résultats pour b/a= 1.3

Résultats pour b/a = 1.4

Résultats pour b/a= 1.5

#### Annexe 4 : Résultats pour le cas d'une fissure non centrale

Résultats pour f=0.7

Résultats pour f = 0.8

Résultats pour f = 0.9

Résultats pour f=1

Résultats pour f= 1.1

Résultats pour f=1.2

Résultats pour f=1.3

Résultats pour f=1.4

Résultats pour f= 1.5

Résultats pour f= 1.6

#### Annexe 5 : Déduction du développement des contraintes

#### Liste des figures :

Figure I- 1 Les trois modes de rupture

Figure I- 2 Champ de contrainte

Figure II-1 Exemple de points de collocation.

Figure III- 1 section fissuré sous chargement normal uniforme

Figure III- 2 Points de collocation

Figure III- 3 Section elliptique avec une fissure non centrale sous chargement normal uniforme

Figure III- 4 Points de collocation

Figure A3- 1 Facteur de forme Y en fct de N (b/a=0.6)

Figure A3- 2 Facteur de forme Y en fct de N (b/a=0.7)

Figure A3- 3 Facteur de forme Y en fct de N (b/a=0.8)

Figure A3- 4 Facteur de forme Y en fct de N (b/a=0.9)

Figure A3- 5 Facteur de forme Y en fct de N (b/a=1)

Figure A3- 6 Facteur de forme Y en fct de N (b/a=1.1)

Figure A3-7 Facteur de forme Y en fct de N (b/a=1.2)

Figure A3- 8 Facteur de forme Y en fct de N (b/a=1.3)

Figure A3- 9 Facteur de forme Y en fct de N (b/a=1.4)

Figure A3- 10 Facteur de forme Y en fct de N (b/a=1.5)

Figure A4-1 Facteur de forme Y en fct de N (f=0.7).

Figure A4- 2 Facteur de forme Y en fct de N (f=0.8).

Figure A4- 3 Facteur de forme Y en fct de N (f=0.9)

Figure A4- 4 Facteur de forme Y en fct de N (f=1)

Figure A4- 5 Facteur de forme Y en fct de N (f=1.1)

Figure A4- 6 Facteur de forme Y en fct de N (f=1.2).

Figure A4- 7 Facteur de forme Y en fct de (f=1.3)

Figure A4-8 Facteur de forme Y en fct de N (f=1.4)

Figure A4- 9 Facteur de forme Y en fct de N (f=1.5)

Figure A4- 10 Facteur de forme Y en fct de N (f=1.6). Figure A5- 1

#### Liste des tableaux :

Tableau III-1 résultats de KI et Y pour différentes valeurs de b/a

Tableau III-2 comparaison entre l'expression Y avec les résultats obtenus par MATLAB

Tableau III-3 comparaison entre l'expression Y avec les résultats obtenus par MATLAB

Tableau III-4 résultats de KI et Y pour différentes valeurs de f/a

Tableau III-5 comparaison entre l'expression Y avec les résultats obtenus par MATLAB

Tableau III-6 comparaison entre l'expression Y avec les résultats obtenus par MALAB

Tableau A3-1 Y en fct de N (b/a=0.6)

Tableau A3- 2 Y en fct de N (b/a=0.7)

Tableau A3- 3 Y en fct de N (b/a=0.8)

Tableau A3- 4 Y en fct de N (b/a=0.9)

Tableau A3- 5 Y en fct de N (b/a=1)

Tableau A3- 6 Y en fct de N (b/a=1.1)

Tableau A3-7 Y en fct de N (b/a=1.2)

Tableau A3- 8 Y en fct de N (b/a=1.3)

Tableau A3- 9 Y en fct de N (b/a=1.4)

Tableau A3- 10 Y en fct de N (b/a=1.5)

Tableau A4-1 Y en fct de N (f=0.7)

Tableau A4- 2 Y en fct de N (f=0.8)

Tableau A4- 3 Y en fct de N (f=0.9)

Tableau A3- 4 Y en fct de N (f=1)

Tableau A4- 5 Y en fct de N (f=1.1)

Tableau A4- 6 Y en fct de N (f=1.2)

Tableau A4-7 Y en fct de N (f=1.3)

Tableau A4- 8 Y en fct de N (f=1.4)

Tableau A4- 9 Y en fct de N (f=1.5)

Tableau A4- 10 Y en fct de N (f=1.6)

#### **Introduction générale**

La fissuration des pièces et des structures est un problème très courant en industrie. En effet, presque la totalité des structures contiennent des fissures même si certaines ne se voient pas à l'œil nu. Ce qui a poussé les ingénieurs à étudier ces fissures et leurs propagations, pour bien comprendre et savoir laquelle de ces fissures ne représente pas de danger. En la résumant cette étude est une nouvelle branche qui est la mécanique de la rupture. Le facteur d'intensité de contrainte (FIC) permet de quantifier la nocivité d'une fissure dans une structure sous un chargement donné. Il existe plusieurs méthodes numériques de détermination du FIC. La méthode de collocation de frontière est une des méthodes les plus utilisées.

Plusieurs travaux ont été consacrés à cette méthode. Bouras et Bouza [12] ont étudié une section circulaire fissurée en mode I. Deux cas ont été étudiés : fissure centrale et non centrale. Mezouani [9] a calculé le FIC en mode III d'une section circulaire avec une fissure centrale.

L'objectif de ce travail est de calculer le FIC en mode I d'une section elliptique fissurée, à l'aide de la méthode de collocation de frontière. Deux cas seront considérés : fissure centrale et non centrale. Nous déduisons des expressions analytiques du facteur de forme en suivant la méthode utilisée par Benkrira [11]. Le mémoire se divise en trois chapitres :

- Le premier chapitre présente les principaux concepts de la mécanique de la rupture utilisés dans notre travail, à savoir : modes de rupture, facteur d'intensité de contrainte et facteur de forme.
- Dans le deuxième chapitre, on parlera de la méthode de collocation de frontière et la méthode des moindres carrés.
- Le troisième chapitre présente le problème d'une section elliptique fissurée ainsi que les différents résultats numériques obtenus dans les deux cas : fissure centrale et non centrale. Il contient également la détermination d'une expression polynomiale du facteur de forme pour différentes valeurs du rapport (petit axe /grand axe) dans le cas d'une fissure centrale, et du rapport (longueur de la fissure /grand axe) pour le cas d'une fissure non centrale.
- Nous terminons par une conclusion générale.

# **Chapitre I** Rappels Théoriques

#### I.1.Introduction :

Dans ce chapitre, nous présentons les bases théoriques de notre travail en deux parties:

- > Dans la première, nous visitons quelques notions de la mécanique de la rupture.
- La seconde partie présente le développement des contraintes en série infinie, qui sera utilisé dans la méthode de collocation de frontière. Elle présente également la définition du facteur de forme.

#### I.2. Définition de la mécanique de la rupture [1] :

La théorie de la mécanique de la rupture est un moyen pour estimer la stabilité des fissures qui peuvent survenir à cause des défauts. Elle permet de prévoir l'évolution de la fissure jusqu'à la ruine de la structure. L'objet de mécanique de la rupture est l'étude de la propagation de la fissure en fonction des chargements appliqués et des caractéristiques du matériau constituant.

#### I.2.1. Modes de rupture [3] :

Une fissure est définie comme une surface séparant localement un solide en deux parties. Le champ des déplacements est alors discontinu à travers cette surface et les trois composantes vectorielles de cette discontinuité forment les trois modes de rupture (Figure. I.1) :

Le mode I : pour une ouverture normale.

Le mode II : pour un glissement plan (dans un cas tridimensionnel).

Le mode III : pour un glissement anti-plan). Le cas réel est une superposition de ces modes, on parle alors de mode mixte.



Figure I- 1 Les trois modes de rupture

#### I.3. Développement des contraintes en série infinie en élasticité plane dans un milieu fissuré :

Considérons une fissure droite, avec un repère (O, x, y) avec O confondu avec la pointe et les coordonnées polaires (r,  $\theta$ ) correspondantes (Fig. I.2).



Figure I-2 Champ de contrainte

Nous allons présenter ci-dessous, les expressions de  $\sigma_{rr}$ ,  $\sigma_{\theta\theta}$  et  $\sigma_{r\theta}$  en fonction de r et  $\theta$ . On peut établir que l'expression générale de  $\sigma_{rr}$ ,  $\sigma_{\theta\theta}$  et  $\sigma_{r\theta}$  en élasticité plane pour une structure fissurée, est donnée par (voir la justification en Annexe 5) :

$$\sigma_{rr} = \sum_{n=1}^{\infty} [A_n E_1(r, n, \theta) + B_n F_1(r, n, \theta) + C_n G_1(r, n, \theta) + D_n H_1(r, n, \theta)] \quad \cdots (I.1)$$

$$\sigma_{r\theta} = \sum_{n=1}^{\infty} [A_n E_2(r, n, \theta) + B_n F_2(r, n, \theta) + C_n G_2(r, n, \theta) + D_n H_2(r, n, \theta)] \dots (I.2)$$

$$\sigma_{\theta\theta} = \sum_{n=1}^{\infty} [A_n E_3(r, n, \theta) + B_n F_3(r, n, \theta) + C_n G_3(r, n, \theta) + D_n H_3(r, n, \theta)] \dots (I.3)$$

Avec  $n \in \mathbb{N}$  et où les fonctions  $E_i(r, n, \theta)$ ,  $F_i(r, n, \theta)$ ,  $G_i(r, n, \theta)$ ,  $H_i(r, n, \theta)$  i = 1..3, sont données par :

$$\begin{split} E_{1}(r,n,\theta) &= r^{\left(n-\frac{3}{2}\right)} \left[ \left( -n^{2}+4n-\frac{7}{4} \right) sin\left( \left(n-\frac{3}{2}\right) \theta \right) + \left(n^{2}-\frac{1}{4} \right) sin\left( \left(n+\frac{1}{2}\right) \theta \right) \right] \\ F_{1}(r,n,\theta) &= r^{\left(n-\frac{3}{2}\right)} \left[ \left( -n^{2}+4n-\frac{7}{4} \right) cos\left( \left(n-\frac{3}{2}\right) \theta \right) + \left(n-\frac{1}{2} \right) \left(n-\frac{3}{2} \right) cos\left( \left(n+\frac{1}{2}\right) \theta \right) \right] \\ G_{1}(r,n,\theta) &= r^{(n-1)} \left[ (-n^{2}+3n) sin\left( (n-1)\theta \right) + n(n-1) sin\left( (n+1)\theta \right) \right] \\ H_{1}(r,n,\theta) &= r^{(n-1)} \left[ (-n^{2}+3n) cos\left( (n-1)\theta \right) + n(n+1) cos\left( (n+1)\theta \right) \right] \end{split}$$

$$\begin{split} E_{2}(r,n,\theta) &= -\left(n - \frac{1}{2}\right) r^{\left(n - \frac{3}{2}\right)} \left[ \left(n - \frac{3}{2}\right) cos\left(\left(n - \frac{3}{2}\right)\theta\right) - \left(n + \frac{1}{2}\right) cos\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ F_{2}(r,n,\theta) &= -\left(n - \frac{1}{2}\right) r^{\left(n - \frac{3}{2}\right)} \left(n - \frac{3}{2}\right) \left[ -sin\left(\left(n - \frac{3}{2}\right)\theta\right) + sin\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ G_{2}(r,n,\theta) &= -nr^{(n-1)}(n-1) \left[ cos((n-1)\theta) - cos((n+1)\theta) \right] \\ H_{2}(r,n,\theta) &= -nr^{(n-1)}[-(n-1)sin((n-1)\theta) + sin((n+1)\theta)(n+1)] \\ E_{3}(r,n,\theta) &= \left(n^{2} - \frac{1}{4}\right) r^{\left(n - \frac{3}{2}\right)} \left[ sin\left(\left(n - \frac{3}{2}\right)\theta\right) - sin\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ F_{3}(r,n,\theta) &= \left(n^{2} - \frac{1}{4}\right) r^{\left(n - \frac{3}{2}\right)} \left[ cos\left(\left(n - \frac{3}{2}\right)\theta\right) - \frac{n - \frac{3}{2}}{n + \frac{1}{2}} cos\left(\left(n + \frac{1}{2}\right)\theta\right) \right] \\ G_{3}(r,n,\theta) &= (n^{2} + n)r^{n-1} \left[ sin((n-1)\theta) - \frac{n - 1}{n + 1} sin((n+1)\theta) \right] \\ H_{3}(r,n,\theta) &= (n^{2} + n)r^{n-1} \left[ cos((n-1)\theta) - cos((n+1)\theta) \right] \end{split}$$

Avec  $A_n$ , B,  $C_n$ , et Dn des constantes dépendant du chargement et de la géométrie. Au lieu de la série infinie (I. 1), (1.2) et (I. 3), on utilise les séries tronquées suivantes :

$$\sigma_{rr} \approx \sum_{n=1}^{N} [A_n E_1(r, n, \theta) + B_n F_1(r, n, \theta) + C_n G_1(r, n, \theta) + D_n H_1(r, n, \theta)] \cdots \cdots (I.4)$$
  

$$\sigma_{r\theta} \approx \sum_{n=1}^{N} [A_n E_2(r, n, \theta) + B_n F_2(r, n, \theta) + C_n G_2(r, n, \theta) + D_n H_2(r, n, \theta)] \cdots \cdots (I.5)$$
  

$$\sigma_{\theta\theta} \approx \sum_{n=1}^{N} [A_n E_3(r, n, \theta) + B_n F_3(r, n, \theta) + C_n G_3(r, n, \theta) + D_n H_3(r, n, \theta)] \cdots \cdots (I.6)$$

N est appelé : nombre de termes du développement.

On constante dans (I.4), (I.5) et (I.6) que les facteurs multiplicatifs devant  $C_1$  s'annulent  $(G_1(r, 1, \theta) = G_2(r, 1, \theta) = G_3(r, 1, \theta) = 0)$ . Cela veut dire que le système (I.4), (I.5) et (I.6) contient 4N-1 constantes à déterminer  $A_1 \dots A_N$ ,  $B_1 \dots B_N$ ,  $C_2 \dots C_N$  Et  $D_1 \dots D_N$ .

**Remarque :** les premiers termes de (**I.4**), (**I.5**) et (**I.6**) (n=1) donnent les expressions asymptotiques des contraintes en pointe de fissure.

En effet, en posant :

$$K_I = B_1 \sqrt{2\pi} \tag{I.7}$$

$$K_{II} = A_1 \sqrt{2\pi} \tag{I.8}$$

On obtient:

$$\sigma_{rr} = r^{\left(-\frac{1}{2}\right)} \begin{cases} \frac{K_{II}}{\sqrt{2\pi}} \left[ \left(\frac{5}{4}\right) sin\left( \left(-\frac{1}{2}\right) \theta \right) + \left(\frac{3}{4}\right) sin\left( \left(\frac{3}{2}\right) \theta \right) \right] \\ + \frac{K_{I}}{\sqrt{2\pi}} \left[ \left(\frac{5}{4}\right) cos\left( \left(-\frac{1}{2}\right) \right) + \left(-\frac{1}{4}\right) cos\left( \left(\frac{3}{2}\right) \theta \right) \right] \end{cases}$$
(I. 9)  
$$\sigma_{r\theta} = -\left(\frac{1}{2}\right) r^{\left(-\frac{1}{2}\right)} \begin{cases} \frac{K_{II}}{\sqrt{2\pi}} \left[ \left(-\frac{1}{2}\right) cos\left( \left(-\frac{1}{2}\right) \theta \right) - \left(\frac{3}{2}\right) cos\left( \left(\frac{3}{2}\right) \theta \right) \right] \\ + \frac{K_{I}}{\sqrt{2\pi}} \left[ \left(-\frac{1}{2}\right) sin\left( \left(-\frac{1}{2}\right) \theta \right) + \left(-\frac{1}{2}\right) sin\left( \left(\frac{3}{2}\right) \theta \right) \right] \end{cases}$$
(I. 10)  
$$\sigma_{r\theta} = \frac{1}{4\sqrt{2\pi r}} \left\{ K_{I} \left( 3cos\left(\frac{\theta}{2}\right) + cos\left(\frac{3\theta}{2}\right) \right) + K_{II} \left( -3sin\left(\frac{\theta}{2}\right) - sin\left(\frac{3\theta}{2}\right) \right) \right\}$$
(I. 11)

 $K_I$  et  $K_{II}$  sont les **FIC** en mode I et II respectivement.

#### I.4. Facteur de forme [4] :

En général le FIC dépend de chargement appliqué de la géométrie et de la longueur de la fissure.

Il s'écrit sous la forme suivante :

$$K=Y\sigma\sqrt{\pi a}$$
 (I. 9)

Avec

Y : Facteur de forme (ou de géométrie) sans unité

 $\sigma$  : Chargement appliqué

a : Longueur de la fissure

Le facteur de forme est donné par :  $Y = \frac{K}{\sigma \sqrt{\pi a}}$  (I.10)

## Chapitre II Méthode de collocation de frontière et méthode des moindres carrés

#### **II.1.Introduction :**

Dans ce chapitre, on présente la méthode de collocation de frontière. Cette méthode aboutit à un système d'équation linéaire surdéterminé. Sa résolution doit se faire par la méthode des moindres carrées. Nous présentons donc également cette méthode.

#### II.2. La Méthode de collocation de frontière [5]:

La méthode de collocation de frontière est une méthode de calcul du facteur d'intensité de contrainte basée sur le développement des contraintes en série infinie.

L'idée générale est qu'étant donné les conditions aux limites en contraintes pour un problème, on exprime les contraintes en un nombre fini de positions sur la frontière, appelée points de collocation, à l'aide du développement des contraintes (équations (I-4), (I-5) et (I-6)).

La valeur de coefficient correspondant au terme  $r^{-1/2}$  de l'expansion du champ de contraintes est le facteur d'intensité de contrainte.

#### II.2.1. Cas de l'élasticité plane :

Soit une section quelconque fissurée dont la frontière est soumise à un chargement connu.

Afin d'établir le système d'équations permettant de calculer  $K_I$  et $K_{II}$ , on choisit C points de collocations sur la frontière (Fig. II.1)



Figure II- 1 Exemple de points de collocation.

Sur la Figure II-1 :

- $\overrightarrow{T_p}(\sigma_p, \tau_p)$  représente le vecteur contrainte en p.
- $\overrightarrow{n_p}(n_p^r, n_p^{\theta})$  représente la normale extérieure unitaire en p.
- $(r_p, \theta_p)$  représentent les coordonnées polaires de p.

Pour chaque point de collocation p, on a deux équations :

$$\sigma_{rr}(r_p,\theta_p)n_p^r + \sigma_{r\theta}(r_p,\theta_p)n_p^{\theta} = \sigma_p$$

En utilisant (I.4), (I.5) et (I.6), on réécrit (II.1) de la manière suivante :

$$\sum_{n=1}^{N} \left\{ \begin{array}{l} A_n [E_1(r_p, n, \theta_p) n_p^r + E_2(r_p, n, \theta_p) n_p^\theta] + B_n [F_1(r_p, n, \theta_p) n_p^r + F_2(r_p, n, \theta_p) n_p^\theta] + \\ C_n [G_1(r_p, n, \theta_p) n_p^r + G_2(r_p, n, \theta_p) n_p^\theta] + D_n [H_1(r_p, n, \theta_p) n_p^r + H_2(r_p, n, \theta_p) n_p^\theta] \end{array} \right\}$$
  
= $\sigma_p$ 

·····(II.2)

$$\sum_{n=1}^{N} \left\{ \begin{array}{l} A_n [E_2(r_p, n, \theta_p) n_p^r + E_3(r_p, n, \theta_p) n_p^{\theta}] + B_n [F_2(r_p, n, \theta_p) n_p^r + F_3(r_p, n, \theta_p) n_p^{\theta}] + \\ C_n [G_2(r_p, n, \theta_p) n_p^r + G_3(r_p, n, \theta_p) n_p^{\theta}] + D_n [H_2(r_p, n, \theta_p) n_p^r + H_3(r_p, n, \theta_p) n_p^{\theta}] \right\} \\ = \tau_p$$

#### ······(II.3) p=1 à C.

Le système (II.2)-(II.3) est un système de 2C équations à 4N-1 inconnues  $A_1...A_N$ ,  $B_1...B_N$ ,  $C_2...C_N$  et  $D_1...D_N$ . Le système ne peut être résolu qu'en prenant C et N tels que 2C >4N-1. Le système obtenu est un système surdéterminé, il sera résolu par la méthode des moindres carrés. Les FIC K<sub>I</sub> et K<sub>II</sub> s'obtiennent par les relations (I.7) et (1.8).

#### **Remarque :**

Dans la suite du travail, on prendra la valeur minimale pour C : C=2N.

#### II.3. La Méthode des moindres carrés [6]:

La méthode du maximum de vraisemblance et celle des moindres carrés sont les outils de la théorie des erreurs ou de l'estimation, utilisés tous les jours dans toutes les sciences d'observation. La théorie des erreurs a été développée pour résoudre trois problèmes :

-Combiner les erreurs pour choisir une valeur "juste milieu".

-Trouver la loi de densité de probabilité des erreurs.

-Choisir une démarche pour déterminer des quantités dans un système d'équations surdéterminé.

L'estimation du maximum de vraisemblance est une méthode statistique courante utilisée pour inférer les paramètres de la distribution de probabilité d'un échantillon de mesures donné. Par ailleurs, la recherche de la valeur la plus probable d'une quantité observée par diverses mesures donne le résultat suivant : la valeur la plus probable est telle que la somme des carrés des différences entre les observations et cette valeur est minimum. La première publication de la méthode des moindres carrés (destinée à déterminer des quantités dans un système d'équations surdéterminé) est due à Legendre en1805 et gauss en 1809.

#### **II.3.1. Forme standard :**

Définition : on appelle forme standard d'un problème de moindre carrés la donnée de :

La matrice A=
$$\begin{pmatrix} v_{1,1} & \cdots & v_{1,n} \\ \vdots & \ddots & \vdots \\ v_{m,1} & \cdots & v_{m,n} \end{pmatrix}$$
 de dimension (m×n, m>n)  
La vectrice réponse b= $\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$ .

L'expression du critère : on cherche  $x_{=}\begin{pmatrix} x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$  tel que :

 $E(x) = ||Ax - b||^2$  soit minimale.

#### **II.3.2.** Solution analytique :

Puisque E(x) est strictement convexe, alors : E(x) minimale  $\Leftrightarrow E'(x) = 0$ .

On cherche donc  $x \in \mathbb{R}^n$  tel E'(x) = 0. Donc, les dérivées partielles par rapport à tous les paramètres du vecteur x doivent être nulles :



Une autre méthode est de prendre le système surdéterminé Ax=b, effectuer le produit à gauche par la matrice transposée A' de A :

#### A' Ax=A' b (II. 6)

Dans (II.6), la matrice A'A est de dimension  $(n \times n)$  et le vecteur A'b est de dimension  $(1 \times n)$ . Le système ainsi obtenu sera résolu par les méthodes classiques.

#### **Exemple :**

Soit le système d'équations suivant :

 $\begin{cases} 2x + 3y = 4\\ 3x - 2y = 2\\ 4x + 5y = 3 \end{cases}$  (II. 7)

(II.7) est un système surdéterminé de 3 équations à deux inconnues (x, y) qui ne peut être résolue d'une manière exacte. On va le résoudre approximativement par la méthode des moindres carrés.

On cherche une solution approchée (x, y) tel que l'erreur :

$$E(x,y) = (2x+3y-4)^{2} + (3x-2y-2)^{2} + (4x+5y-3)^{2},$$

Soit minimale.

On annule les dérivées partielles par rapport à x et à y :

$$\frac{\partial E}{\partial x} = 0 \qquad \qquad \frac{\partial E}{\partial y} = 0 \qquad (II.9)$$

On obtient le système de deux équations à deux inconnues suivant :

$$\begin{cases} 29x + 20y = 26\\ 20x + 38y = 23 \end{cases} (II. 10)$$

Une autre manière d'obtenir (II.10) est de réécrire le système (II. 7) sous forme matricielle :

$$\begin{pmatrix} 2 & 3 \\ 3 & -2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} (\mathbf{II}, \mathbf{11})$$

On effectue le produit matriciel suivant :

$$\begin{pmatrix} 2 & 3 & 4 \\ 3 & -2 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & -2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 3 & -2 & 5 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

On aboutit au même système que (II.10) :

$$\begin{pmatrix} 29 & 20\\ 20 & 38 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 26\\ 23 \end{pmatrix}$$
(II. 12)

(II. 8) ou (II.12) sont résolus par les méthodes classique, la solution est donnée par :

$$x = \frac{264}{351}, y = \frac{147}{702}$$
 (II.13)

En remplaçant dans (II.7) on trouve :

$$\begin{cases} 2x + 3y = 2.132 \\ 3x - 2y = 1.838 \\ 4x + 5y = 4.056 \end{cases}$$
 (II.14)

Ces observe à partir de (II.14) que (II.13) n'est que approximation de (II.7). Mais c'est la meilleure approximation possible au sens des moindres carrés

# **Chapitre III** Problèmes traités

#### **III.1 Introduction :**

Dans ce chapitre on va calculer le facteur d'intensité de contrainte KI dans le cas d'une fissure centrale et non centrale dans une section elliptique. Pour le cas de la fissure centrale, nous calculons  $K_I$  pour plusieurs valeurs du rapport b/a (grand axe/petit axe) de l'ellipse. Pour le cas de la fissure non centrale, nous calculons  $K_I$  pour plusieurs de fissure. Nous déterminerons ensuite, pour les deux cas, les expressions du facteur de forme Y sous la forme d'une fonction polynomiale.

#### III.2. Cas d'une Fissure centrale:

On considère une section elliptique, avec a et b le grand axe et le petit axe respectivement. La section contient une fissure centrale de longueur a. La frontière de l'ellipse est soumise à un chargement normal uniforme T Figure (III-1). Dans toute la suite du chapitre, on prendra a=1 et T = 1. Les résultats seront sans dimensions.



Figure III-1 : Fissure centrale sous chargement normal uniforme.

Nous considérons des points de collocation p répartis uniformément sur la frontière de l'ellipse (Figure III-2). L'angle  $\theta_p$  sera donné par la formule suivante :

$$\theta_p = \frac{2 * \pi * p}{C+1} - \pi$$
 p= 1 à C. (III-1)

On observe dans (III-1) que  $-\pi < \theta_p < \pi$ . Les angles  $-\pi$  et  $+\pi$  sont évités car ce sont des points anguleux où la normale n'est pas définie.

La coordonnée radiale du point p est donnée par :

$$\mathbf{r}_{p}=1/\sqrt{(\cos(\theta_{p})/a)^{2}+(\sin(\theta_{p})/b)^{2}}.$$
 (III-2)

Les composantes radiales et tangentielles de la normale n<sup>p</sup> sont données par :

$$n_r^p = \frac{f(r_p, \theta_p)}{\sqrt{f(r_p, \theta_p)^2 + g(r_p, \theta_p)^2}}, \qquad n_\theta^p = \frac{g(r_p, \theta_p)}{\sqrt{f(r_p, \theta_p)^2 + g(r_p, \theta_p)^2}}, \quad (\text{III-3})$$

Avec :

$$f(r_p, \theta_p) = 2r_p \left(\frac{\cos(\theta_p)^2}{a^2} + \frac{\sin(\theta_p)^2}{b^2}\right), \quad g(r_p, \theta_p) = r_p \sin(2\theta_p) \left(-\frac{1}{a^2} + \frac{1}{b^2}\right).$$

Les composantes radiale  $\sigma_p$  et tangentielle  $\tau_p$  du vecteur contrainte en p sont données par :

$$\sigma_p = \mathbf{T} \boldsymbol{n}_r^p, \quad \boldsymbol{\tau}_p = \mathbf{T} \boldsymbol{n}_{\theta}^p. \tag{III-4}$$





Les expressions (III-1), (III-2), (III-3) et (III-4) sont injectées dans le système d'équations (II-2) et (II-3) du Chapitre II.

#### **III.2.1 Résultats**

Le système d'équations est résolu numériquement à l'aide du logiciel Matlab. Le programme correspondant est présenté dans l'Annexe 1. Nous effectuons des calculs pour b  $\in$  [0.6, 1.5]. Pour chaque valeur, nous augmentons le nombre de points de collocation jusqu'à convergence du K<sub>I</sub>. Les résultats détaillés pour chaque valeur de b sont présentés dans l'Annexe III.

~ 15 ~

#### Remarque

Pour b < 0.6 ou b > 1.5, les calculs sont instables et les résultats non précis.

Nous présentons dans le Tableau III-1 ci-dessous, les valeurs de  $K_I$  et du facteur de forme Y pour différentes valeurs du rapport b/a.

| b/a | KI     | Y      |
|-----|--------|--------|
| 0.6 | 7.5699 | 4.2709 |
| 0.7 | 6.7408 | 3.8030 |
| 0.8 | 6.2056 | 3.5011 |
| 0.9 | 5.8553 | 3.3035 |
| 1   | 5.6225 | 3.1721 |
| 1.1 | 5.4652 | 3.0834 |
| 1.2 | 5.3570 | 3.0224 |
| 1.3 | 5.2812 | 2.9796 |
| 1.4 | 5.2270 | 2.9490 |
| 1.5 | 5.1874 | 2.9267 |

Tableau III-1 : résultats de KI et Y pour différentes valeurs de b/a.

#### Discussion des résultats

Nous remarquons que  $K_I$  et Y sont des fonctions décroissantes de b/a. Cela veut dire, que plus b augmente moins la fissure est dangereuse. Ce résultat est logique, car en augmentant b la structure devient plus large et donc plus résistante. On constate que la valeur obtenue pour b=1 (section circulaire) est la même que celle obtenue par Bouras et Bouza [12].

#### III-2-2 Détermination de l'expression analytique du facteur de forme :

Dans ce paragraphe, on recherche une expression analytique de Y en fonction de b/a. Nous choisissons la forme polynomiale utilisée par Benkrira [11]. Elle est donnée par :

$$Y(b/a) = \left[c_1 * (b/a)^{1/2} + c_2 * (b/a)^{3/2} + c_3 * (b/a)^{5/2} + c_4 * (b/a)^{7/2} + c_5 * (b/a)^{9/2}\right], \quad \text{(III-5)}$$

où les coefficients  $c_1...c_5$  seront déterminés par indentification avec les résultats du Tableau (III-1).

On obtient le système surdéterminé de 9 équations à 5 inconnues suivants :

$$\begin{pmatrix} c_1 * 0.6^{\frac{1}{2}} + c_2 * 0.6^{\frac{3}{2}} + c_3 * 0.6^{\frac{5}{2}} + c_4 * 0.6^{\frac{7}{2}} + c_5 * 0.6^{\frac{9}{2}} = 4.2709 \\ c_1 * 0.7^{\frac{1}{2}} + c_2 * 0.7^{\frac{3}{2}} + c_3 * 0.7^{\frac{5}{2}} + c_4 * 0.7^{\frac{7}{2}} + c_5 * 0.7^{\frac{9}{2}} = 3.8030 \\ c_1 * 0.8^{\frac{1}{2}} + c_2 * 0.8^{\frac{3}{2}} + c_3 * 0.8^{\frac{5}{2}} + c_4 * 0.8^{\frac{7}{2}} + c_5 * 0.8^{\frac{9}{2}} = 3.5011 \\ c_1 * 0.9^{\frac{1}{2}} + c_2 * 0.9^{\frac{3}{2}} + c_3 * 0.9^{\frac{5}{2}} + c_4 * 0.9^{\frac{7}{2}} + c_5 * 0.9^{\frac{9}{2}} = 3.3035 \\ c_1 * 1^{\frac{1}{2}} + c_2 * 1.3^{\frac{3}{2}} + c_3 * 1.5^{\frac{5}{2}} + c_4 * 1.7^{\frac{7}{2}} + c_5 * 1.9^{\frac{9}{2}} = 3.1721 \\ c_1 * 1.1^{\frac{1}{2}} + c_2 * 1.1^{\frac{3}{2}} + c_3 * 1.5^{\frac{5}{2}} + c_4 * 1.2^{\frac{7}{2}} + c_5 * 1.2^{\frac{9}{2}} = 3.0834 \\ c_1 * 1.2^{\frac{1}{2}} + c_2 * 1.2^{\frac{3}{2}} + c_3 * 1.2^{\frac{5}{2}} + c_4 * 1.2^{\frac{7}{2}} + c_5 * 1.2^{\frac{9}{2}} = 3.0224 \\ c_1 * 1.3^{\frac{1}{2}} + c_2 * 1.3^{\frac{3}{2}} + c_3 * 1.3^{\frac{5}{2}} + c_4 * 1.3^{\frac{7}{2}} + c_5 * 1.3^{\frac{9}{2}} = 2.9796 \\ c_1 * 1.4^{\frac{1}{2}} + c_2 * 1.4^{\frac{3}{2}} + c_3 * 1.4^{\frac{5}{2}} + c_4 * 1.4^{\frac{7}{2}} + c_5 * 1.4^{\frac{9}{2}} = 2.9490 \\ c_1 * 1.5^{\frac{1}{2}} + c_2 * 1.5^{\frac{3}{2}} + c_3 + 1.5^{\frac{5}{2}} + c_4 * 1.5^{\frac{7}{2}} + c_5 * 1.5^{\frac{9}{2}} = 2.9267 \\ \end{pmatrix}$$

Le système est résolu par la méthode des moindres carrés, le programme matlab correspondant est présenté dans l'Annexe II. Nous obtenons finalement l'expression suivante :

Y(b/a) =

 $[24.5109*(\frac{b}{a})^{1/2} - 62.0553*(\frac{b}{a})^{3/2} + 69.8218*(\frac{b}{a})^{5/2} - 36.2877*(\frac{b}{a})^{7/2} + 7.1776*(\frac{b}{a})^{9/2}]$ (III-9)

A titre de vérification, nous recalculons Y pour les valeurs de b/a du Tableau III-1 avec l'expression (III-9), et nous comparons avec les valeurs de Y du même Tableau.

| b/a   | Y               | Y       | Erreur |
|-------|-----------------|---------|--------|
|       | (Tableau III-1) | (III-9) | %      |
|       |                 |         |        |
| 0.6   | 4.2709          | 4.2647  | 0.14   |
| 0.7   | 3.8030          | 3.8165  | 0.53   |
| 0.8   | 3.5011          | 3.5001  | 0.02   |
| 0.9   | 3.3035          | 3.2941  | 0.28   |
| 1     | 3.1721          | 3.1673  | 0.15   |
| 1.1   | 3.0834          | 3.0879  | 0.14   |
| 1.2   | 3.0224          | 3.0303  | 0.26   |
| 1.3   | 2.9796          | 2.9801  | 0.02   |
| « 1.4 | 2.9490          | 2.9394  | 0.24   |
| 1.5   | 2.9267          | 2.9303  | 0.12   |

 Tableau (III-2) : Comparaison entre l'expression (III-9) et le Tableau III-1.

#### Discussion

L'erreur est très petite cela veut dire que l'expression (III-9) est valide.

#### II.2.3 Confirmation de la validité de l'expression (III-9)

Pour plus de confirmation, nous recalculons Y avec l'expression (III-9) pour d'autres valeurs de b/a, et nous comparons avec les valeurs obtenues en résolvant le système (II-2)-(II-3). Les résultats obtenus sont présentés dans le Tableau III-3.

| b/a  | Y               | Y                    | Erreur |
|------|-----------------|----------------------|--------|
|      | ((II-2)-(II-3)) | (expression (III-9)) | %      |
| 0.65 | 4.0112          | 4.0234               | 0.30   |
| 0.75 | 3.6359          | 3.6428               | 0.18   |
| 0.85 | 3.3921          | 3.3852               | 0.31   |
| 0.95 | 3.2313          | 3.2228               | 0.26   |
| 1.05 | 3.1235          | 3.1235               | 0.00   |
| 1.15 | 3.0501          | 3.0576               | 0.24   |
| 1.25 | 2.9991          | 3.0046               | 0.18   |
| 1.35 | 2.9631          | 2.9577               | 0.18   |
| 1.45 | 2.9370          | 2.9286               | 0.28   |

Tableau (III-3) : comparaison entre l'expression Y avec les résultats obtenus par MATLAB

#### Discussion

L'erreur étant très faible, le Tableau (III-3) est une confirmation supplémentaire de l'expression (III-9).

#### III.3 Cas d'une Fissure non centrale :

Nous considérons le cas d'une fissure non centrale de longueur f dans une section elliptique. La frontière de la section est soumise à un chargement normal uniforme (Figure III-3).



Figure III-3 : Section elliptique avec une fissure non centrale sous chargement normal uniforme.

Nous considérons des points de collocation p répartis uniformément sur la frontière de l'ellipse (Figure III-4). L'angle  $\theta_p^0$  sera donné par la formule suivante :

$$heta_p^0 = rac{2\pi p}{C+1} - \pi$$
 p= 1 à C.

Le rayon de l'ellipse R<sub>p</sub> en p est donné par :

$$R_p = 1/\sqrt{(\cos(\theta_p^0)/a)^2 + (\sin(\theta_p^0)/b)^2}.$$

La coordonnée radiale du point p est donnée par :

$$r_p = \sqrt{a - f + r * \cos(\theta_p^0)^2 + r * \sin(\theta_p^0)^2}$$
(III-10)

L'angle  $\theta_p$  est calculé par l'expression suivante :

$$\theta_p = \operatorname{atan2}(R_p \sin\theta_p^0, a - f + R_p \cos\theta_p^0). \tag{III-11}$$

Les composantes radiales et tangentielles de la normale n<sup>p</sup> sont données par :

$$n_{r}^{p} = \frac{ff(r_{p},\theta_{p})}{\sqrt{ff(r_{p},\theta_{p})^{2} + gg(r_{p},\theta_{p})^{2}}} \qquad n_{\theta}^{p} = \frac{gg(r_{p},\theta_{p})}{\sqrt{ff(r_{p},\theta_{p})^{2} + gg(r_{p},\theta_{p})^{2}}}$$
(III-12)

~ 19 ~

avec :

$$ff(r_p, \theta_p) = \frac{2\cos(\theta_p)(r_p\cos(\theta_p) - a + f)}{a^2} + \frac{2r_p\sin^2(\theta_p)}{b^2}$$
$$gg(r_p, \theta_p) = \frac{-2\sin\theta_p(r_p\cos\theta_p - a + f)}{a^2} + \frac{r_p\sin^2\theta_p}{b^2}$$

Les composantes radiale  $\sigma_p$  et tangentielle  $\tau_p$  du vecteur contrainte en p sont données par :

$$\sigma_p = \mathsf{T} n_r^p, \quad \tau_p = \mathsf{T} n_\theta^p. \tag{III-13}$$



Figure (III-4): Points de collocation

Les expressions (III-10), (III-11), (III-12) et (III-13) sont injectées dans le système d'équations (II-2) et (II-3) du Chapitre II.

#### III-3.1 Résultats

Le système d'équations est résolu numériquement à l'aide du logiciel Matlab. Le programme correspondant est présenté dans l'Annexe 1. Nous effectuons des calculs pour a=1, b=1.2 et la fissure  $f \in [0.7, 1.6]$ . Pour chaque valeur de f, nous augmentons le nombre de points de collocation jusqu'à convergence du K<sub>I</sub>. Les résultats détaillés sont présentés dans l'Annexe IV.

#### Remarque

Pour f < 0.7 ou f > 1.6, les calculs sont instables et les résultats non précis.

Nous présentons dans le Tableau III-4 ci-dessous, les valeurs de K<sub>1</sub> et du facteur de forme Y pour différentes valeurs de f.

| f   | KI      | Υ       |
|-----|---------|---------|
| 0.7 | 2.9926  | 2.0180  |
| 0.8 | 3.6155  | 2.2806  |
| 0.9 | 4.3852  | 2.6079  |
| 1   | 5.3571  | 3.0224  |
| 1.1 | 6.6140  | 3.5579  |
| 1.2 | 8.2877  | 4.2684  |
| 1.3 | 10.5971 | 5.2437  |
| 1.4 | 13.9332 | 6.6437  |
| 1.5 | 19.0578 | 8.7791  |
| 1.6 | 27.6385 | 12.3276 |
|     | 1       |         |

Tableau (III-4) : résultats pour différentes valeurs de f/a

#### Discussion des résultats

Nous remarquons que K<sub>1</sub> et Y sont des fonctions croissantes de la longueur de la fissure f.

#### III.3.2 Détermination de l'expression analytique du facteur de forme :

Dans ce paragraphe, on recherche une expression analytique de Y en fonction de f. Nous choisissons la forme polynomiale suivante utilisée par benkrira [11] :

$$Y(f) = \left[ d1(f)^{1/2} + d2(f)^{3/2} + d3(f)^{5/2} + d4(f)^{7/2} + d5(f)^{9/2} \right] (III-13)$$

Où les coefficients d<sub>1</sub>...d<sub>5</sub> seront déterminés par indentification avec les résultats du Tableau III-4. On obtient le système surdéterminé de 9 équations à 5 inconnues suivantes :

$$\begin{pmatrix} d_1 * 0.7^{\frac{1}{2}} + d_2 * 0.7^{\frac{3}{2}} + d_3 * 0.7^{\frac{5}{2}} + d_4 * 0.7^{\frac{7}{2}} + d_5 * 0.7^{\frac{9}{2}} = 2.0180 \\ d_1 * 0.8^{\frac{1}{2}} + d_2 * 0.8^{\frac{3}{2}} + d_3 * 0.8^{\frac{5}{2}} + d_4 * 0.8^{\frac{7}{2}} + d_5 * 0.8^{\frac{9}{2}} = 2.2806 \\ d_1 * 0.9^{\frac{1}{2}} + d_2 * 0.9^{\frac{3}{2}} + d_3 * 0.9^{\frac{5}{2}} + d_4 * 0.9^{\frac{7}{2}} + d_5 * 0.9^{\frac{9}{2}} = 2.6079 \\ d_1 * 1^{\frac{1}{2}} + d_2 * 1^{\frac{3}{2}} + d_3 * 1^{\frac{5}{2}} + d_4 * 1^{\frac{7}{2}} + d_5 * 1^{\frac{9}{2}} = 3.0224 \\ d_1 * 1.1^{\frac{1}{2}} + d_2 * 1.1^{\frac{3}{2}} + d_3 * 1.1^{\frac{5}{2}} + d_4 * 1.1^{\frac{7}{2}} + d_5 * 1.1^{\frac{9}{2}} = 3.5579 \\ d_1 * 1.2^{\frac{1}{2}} + d_2 * 1.2^{\frac{3}{2}} + d_3 * 1.2^{\frac{5}{2}} + d_4 * 1.2^{\frac{7}{2}} + d_5 * 1.2^{\frac{9}{2}} = 4.2684 \\ d_1 * 1.3^{\frac{1}{2}} + d_2 * 1.3^{\frac{3}{2}} + d_3 * 1.3^{\frac{5}{2}} + d_4 * 1.3^{\frac{7}{2}} + d_5 * 1.3^{\frac{9}{2}} = 5.2437 \\ d_1 * 1.4^{\frac{1}{2}} + d_2 * 1.4^{\frac{3}{2}} + d_3 * 1.4^{\frac{5}{2}} + d_4 * 1.4^{\frac{7}{2}} + d_5 * 1.4^{\frac{9}{2}} = 6.6437 \\ d_1 * 1.5^{\frac{1}{2}} + d_2 * 1.5^{\frac{3}{2}} + d_3 * 1.5^{\frac{5}{2}} + d_4 * 1.5^{\frac{7}{2}} + d_5 * 1.5^{\frac{9}{2}} = 8.7791 \\ d_1 * 1.6^{\frac{1}{2}} + d_2 * 1.6^{\frac{3}{2}} + d_3 * 1.6^{\frac{5}{2}} + d_4 * 1.6^{\frac{7}{2}} + d_5 * 1.6^{\frac{9}{2}} = 12.3276 \\ \end{pmatrix}$$

Le système est résolu par la méthode des moindres carrés, le programme matlab correspondant est présenté dans l'Annexe II. Nous obtenons finalement l'expression suivante :

$$Y(f) = [26.9393 * f^{\frac{1}{2}} - 101.9384 * f^{\frac{3}{2}} + 154.8788 * f^{\frac{5}{2}} - 102.9052 * f^{\frac{7}{2}} + 26.0773 * f^{\frac{9}{2}}] (III - 15)$$

A titre de vérification, nous recalculons Y pour les valeurs de f du Tableau III-4 avec (III-15), et nous comparons avec les valeurs de Y du même Tableau.

| f   | Υ               | Y        | Erreur |
|-----|-----------------|----------|--------|
|     | (Tableau III-4) | (III-15) | %      |
| 0.6 | 2.0180          | 2.0395   | 1.05   |
| 0.7 | 2.2806          | 2.2404   | 1.76   |
| 0.8 | 2.6079          | 2.5975   | 0.39   |
| 0.9 | 3.0224          | 3.0518   | 0.96   |
| 1   | 3.5579          | 3.5905   | 0.90   |
| 1.1 | 4.2684          | 4.2639   | 0.10   |
| 1.2 | 5.2437          | 5.2006   | 0.82   |
| 1.3 | 6.6437          | 6.6197   | 0.36   |
| 1.4 | 8.7791          | 8.8430   | 0.72   |
| 1.5 | 12.3276         | 12.3052  | 0.18   |

Tableau (III-5) : comparaison entre l'expression Y avec les résultats obtenus par MATLAB

#### Discussion

L'erreur est très petite cela veut dire que l'expression (III-9) est valide.

#### III.3.3 Confirmation de la validité de l'expression (III-15)

Pour plus de confirmation, nous recalculons Y avec l'expression (III-15) pour d'autres valeurs de f et nous comparons avec les valeurs obtenues en résolvant le système (II-2)-(II-3). Les résultats obtenus sont présentés dans le Tableau III-6.

| f    | Y               | Y                     | Erreur |
|------|-----------------|-----------------------|--------|
|      | ((II-2)-(II-3)) | (expression (III-15)) | %      |
| 0.65 | 2.1423          | 2.1155                | 1.25   |
| 0.75 | 2.4350          | 2.4040                | 1.27   |
| 0.85 | 2.8026          | 2.8146                | 0.42   |
| 0.95 | 3.2722          | 3.3091                | 1.11   |
| 1.05 | 3.8868          | 3.9043                | 0.45   |
| 1.15 | 4.7152          | 4.6879                | 0.57   |
| 1.25 | 5.8762          | 5.8323                | 0.74   |
| 1.35 | 7.5900          | 7.6064                | 0.21   |
| 1.45 | 10.3081         | 10.3874               | 0.76   |

#### Tableau (III-6) : comparaison entre l'expression Y avec les résultats obtenus par MATLAB

#### Discussion

L'erreur étant très faible, le Tableau (III-6) est une confirmation supplémentaire de l'expression (III-15).

### **Conclusion générale :**

Ce travail est une application de la méthode de collocation de frontière en élasticité plane au cas d'une section elliptique fissurée sous chargement normal uniforme. Deux cas ont été considérés : fissure centrale et non centrale. Les principaux résultats de ce travail sont les suivants :

- Dans le cas de la fissure centrale, les facteurs de forme et facteurs d'intensité de contrainte ont été calculés pour a = 1 et b ∈ [0.6,1.5]. Une expression analytique du facteur de forme en fonction de b/a a été déduite et confirmée. Les calculs sont instables pour b <0.6 ou b>1.5.
- Dans le cas de la fissure non centrale, les facteurs de forme et facteurs d'intensité de contrainte pour ont été calculés pour a = 1, b=1.2 et f ∈ [0.7,1.6]. Une expression analytique du facteur de forme en fonction de f a été déduite et confirmée. Les calculs sont instables pour f <0.7 ou f>1.6.

Le principal problème rencontré est l'instabilité des calculs pour certaines valeurs de b ou de f. Cette instabilité est probablement due à la méthode numérique utilisée pour résoudre les systèmes d'équations linéaires. En effet, nous avons utilisé la méthode directe. L'utilisation d'autres méthodes de résolution afin d'éliminer ce problème fera l'objet d'un prochain travail.

#### Référence

[1] Saïd Hariri, Mansour Afzali & Haïdar Jaffal « NOCIVITE DES DEFAUTS ET PROPAGATION DE FISSURES DANS LES EQUIPEMENTS SOUS PRESSION ». Ecole des Mines de Douai 2007

[2] Pierre-Olivier Bouchard- CONTRIBUTION A LA MODELISATION NUMERIQUE EN MECANIQUE DE LA RUPTURE ET STRUCTURES MULTIMATERIAUX -thèse de Doctorat de l'Ecole Nationale Supérieure des Mines de Paris Spécialité « Sciences et Génie des Matériaux » (20 septembre 2000).

[3] Mr Ahmed BENHAMOUDA UNIVERSITE MENTOURI CONSTANTINE FACULTE DES SCIENCES DE L'INGENIEUR « ETUDE DU COMPORTEMENT DES FISSURES DANS LES TUBES SOUS PRESSION INTERNE » mémoire de magister En Génie Mécanique (2010).

[4] cours Mr H.Ferdjani « mécanique de la rupture » Université Saad Dahleb Blida 01 (2016).

[5] Alan T.Zehnde, ph.d "lecture notes on fracture mechanics "Department of Theoretical and Applied Mechanics Cornell University, Ithaca, NY 14853,(2007).

[6] Tony Bourdier « Mathématiques Numériques» Ecole Supérieure d'informatique et applications de Lorraine (ESIAL) 2007-2008.

[7] Sofiane BENTTALAH et Wahid IZA « Exemple de calcul du facteur d'intensité de contrainte en mode III avec la méthode de collocation de frontière » mémoire d'ingénieur d'etat en génie mécanique ECOLE MILITAIRE POLYTECHNIQUE (2015)

[8] Serir Khair-Eddine « Exemple de calcul du facteur d'intensité de contrainte par la méthode de collocation de frontière en mode III » mémoire de master UNIVERSITE SAAD DAHLEB BLIDA (2011/2012).

[9] MEZOUANI Yassine « Application de la méthode de collocation de frontière au calcul du facteur d'intensité de contrainte en mode III » mémoire de master UNIVERSITE SAAD DAHLEB BLIDA (2013/2014).

[10] F.B.Leblond « Mécanique de la rupture fragile et ductile » Hermes science publications (2003)

[11] Benkrira Sara « Calcul du facteur d'intensité de contrainte pour des sections fissurées circulaire et elliptique avec ABAQUS » mémoire de master, université Saad Dahleb Blida (2017/2018).

[12] Bouza Mohamed, Bouras Zekri « Application de la méthode de collocation de frontière au calcul du facteur d'intensité de contrainte mode I » mémoire de master, Université Saad Dahleb Blida (2016/2017).

### Annexe 1

### Les programmes de calcul du FIC dans une section elliptique fissurée

#### Programme pour la fissure centrale :

```
clear all
clc
%fissure centrale
%converge pour a = 1 et 0,6<=b<=1,5
T=1;a=1;b=1.5;
Nmax=input('nombre des termes maximal =' );
for p=1:Nmax %nombre de termes
C=2*p; % nombre de points de collocation
for N=1:p %calculer les facteurs des termes du développement
for k=1:C
      teta=(2*pi*k)/(C+1)-pi;
      r=1/sqrt((cos(teta)/a)^2+(sin(teta)/b)^2);
      fr=2*r*((cos(teta)/a)^2+(sin(teta)/b)^2);
      ft=r*sin(2*teta)*(-1/a^2+1/b^2);
      gr=sqrt(fr^2+ft^2);
      nr=fr/gr;
      nt=ft/gr;
      E1=-r^(N - 3/2)*(sin(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - sin(teta*(N + 1/2)) *(N^2 -
1/4));
      F1=-r^(N - 3/2)*(cos(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - cos(teta*(N + 1/2)) *(N -
1/2)*(N - 3/2));
      G1=r^{(N-1)*(sin(teta^{(N-1)})*(3^{N}-N^{2})+N^{sin(teta^{(N+1)})*(N-1))};
      H1=r^{(N-1)*(cos(teta^{(N-1)})*(3^{N}-N^{2})+N^{cos(teta^{(N+1)})*(N+1))};
      E2=r^{(N-3/2)*(cos(teta*(N + 1/2))*(N + 1/2)-cos(teta*(N - 3/2))*(N - 3/2))*(N - 1/2);
      F2=-r^{(N-3/2)*(sin(teta^{(N+1/2)})-sin(teta^{(N-3/2)}))*(N-1/2)*(N-3/2);
      G2=-N*r^{(N-1)*(cos(teta*(N-1)) - cos(teta*(N+1)))*(N-1);
      H2=N*r^{(N-1)}(sin(teta*(N-1))*(N-1) - sin(teta*(N+1))*(N+1));
      E3=(N^2-1/4)*r^{(N-3/2)}*(sin(teta*(N - 3/2))-sin(teta*(N + 1/2)));
      F3=(N^2-1/4)*r^{(N-3/2)*(cos(teta*(N - 3/2))-(N-3/2)/(N+1/2)*cos(teta*(N + 1/2)));
      G3=N*(N+1)*r^(N - 1)*(sin(teta*(N - 1))-(N-1)/(N+1)*sin(teta*(N + 1)));
      H3=N*(N+1)*r^(N - 1)*(cos(teta*(N - 1))-cos(teta*(N +1)));
      %s1:coefs de sigma(rr)
    A1(k,N)=E1*nr+E2*nt; %coef de An
    B1(k,N)=F1*nr+F2*nt; %coef de Bn
    C1(k,N)=G1*nr+G2*nt; %coef de Cn
    D1(k,N)=H1*nr+H2*nt; %coef de Dn %s2:coifs de sigma(ro)
    A2(k,N)=E2*nr+E3*nt; %coef de An
    B2(k,N)=F2*nr+F3*nt; %coef de Bn
    C2(k,N)=G2*nr+G3*nt; %coef de Cn
    D2(k,N)=H2*nr+H3*nt; %coef de Dn
    FF1(k)=T*nr;
    FF2(k)=T*nt;
end
end
```

```
S=[A1 B1 C1 D1;A2 B2 C2 D2];
F=[FF1';FF2'];
M=[S(:,1:2*p),S(:,2*p+2:4*p)];%la matrice sans la colonne nulle
%moindre carre
L=M'*M;
G=M'*F;
%resoudre par la methode directe
H=inv(L)*G;
%affichage vecteur des solutions
KI(p)=H(p+1)*sqrt(2*pi);
KII(p)=H(1)*sqrt(2*pi);
Y(p)=KI(p)/(T*sqrt(a*pi));
end
ΚI
Υ
p=1:Nmax;
figure
plot(p,Y(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur de forme "Y" ')
```

#### Programme pour fissure non centrale :

```
clear all
clc
T=1; a=1;b=1.2;
Nmax=input; % ('nombre de termes maximal=') ;
%converge pour 0.7<=f<=1.6
f=input ('donne la longueur de la fissure f= ');
for p=1:Nmax
C=2*p; % nombre de collocation
for N=1:p %calculer les facteurs des termes
for k=1:C
teta0=2*pi*k/(C+1)-pi;
R=1/sqrt((cos(teta0)/a)^2+(sin(teta0)/b)^2);
x=R*cos(teta0)+a-f; y=R*sin (teta0);
r=sqrt (power(x, 2) +power (y, 2)); teta=atan2 (y, x);
fr=2*cos(teta)*(r*cos(teta)-a+f)/a^2+2*r*(sin(teta)/b)^2;
ft=-2*sin(teta)*(r*cos(teta)-a+f)/a^2+r*sin(2*teta)/b^2;
grad=sqrt(fr^2+ft^2);
nr=fr/grad;nt=ft/grad;
      E1=-r^(N - 3/2)*(sin(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - sin(teta*(N + 1/2)) *(N^2 -
1/4));
      F1=-r^(N - 3/2)*(cos(teta*(N - 3/2))*(N^2 - 4*N + 7/4) - cos(teta*(N + 1/2)) *(N -
1/2)*(N - 3/2));
      G1=r^{(N-1)*(sin(teta^{(N-1)})*(3^{N}-N^{2})+N^{sin(teta^{(N+1)})*(N-1))};
      H1=r^{(N-1)*(cos(teta^{(N-1)})^{(3^{N}-N^{2})}+N^{cos(teta^{(N+1)})^{(N+1)});}
      E2=r^{(N-3/2)*(cos(teta*(N + 1/2))*(N + 1/2)-cos(teta*(N - 3/2))*(N - 3/2))*(N - 1/2);
      F2=-r^(N - 3/2)*(sin(teta*(N +1/2))-sin(teta*(N-3/2))) *(N - 1/2)*(N - 3/2);
      G2=-N*r^(N - 1)*(cos(teta*(N - 1)) - cos(teta*(N + 1))) *(N - 1);
      H2=N*r^{(N-1)}(sin(teta*(N-1))*(N-1) - sin(teta*(N+1))*(N+1));
      E3=(N^{2}-1/4)*r^{(N-3/2)}(sin(teta*(N - 3/2))-sin(teta*(N + 1/2)));
      F3=(N^2-1/4)*r^{(N-3/2)*(cos(teta*(N - 3/2))-(N-3/2)/(N+1/2)*cos(teta*(N + 1/2)));
      G3=N*(N+1)*r^(N - 1)*(sin(teta*(N - 1))-(N-1)/(N+1)*sin(teta*(N +1)));
      H3=N^{(N+1)*r^{(N-1)*(cos(teta^{(N-1)})-cos(teta^{(N+1)}));}
%s1:sigma(rr)
    A1(k,N)=E1*nr+E2*nt; %coef de An
    B1(k,N)=F1*nr+F2*nt; %coef de Bn
    C1(k,N)=G1*nr+G2*nt; %coef de Cn
    D1(k,N)=H1*nr+H2*nt; %coef de Dn %s2:coifs de sigma(ro)
    A2(k,N)=E2*nr+E3*nt; %coef de An
    B2(k,N)=F2*nr+F3*nt; %coef de Bn
    C2(k,N)=G2*nr+G3*nt; %coef de Cn
    D2(k,N)=H2*nr+H3*nt; %coef de Dn
    FF1(k)=T*nr;
    FF2(k)=T*nt;
end
end
```

```
S=[A1 B1 C1 D1;A2 B2 C2 D2] ;%matrice des coefs
F=[FF1';FF2'] ;%vecteur des contraintes
M=[S(:,1:2*p),S(:,2*p+2:4*p)];%la matrice sans la colonne nulle
%moindre carre
L=M'*M;
G=M'*F;
%résoudre par la méthode directe
H=inv(L)*G;
KI(p)=H(p+1)*sqrt(2*pi); KII(p)=H(1)*sqrt(2*pi);
end
ΚI
p=1:Nmax;
figure
plot(p,KI(p),'b*')
xlabel('nombre des termes "N"')
ylabel('Facteur de forme "Y" ')
```

## Annexe 2

### Les programmes pour les expressions du facteur de forme

#### Programme de facteur de forme pour la fissure centrale

```
clear all
clc
F=[4.2709;3.8030;3.5011;3.3035;3.1721;3.0834;3.0224;2.9796;
2.9490;2.92671;
M = [0.6^{0.5} \ 0.6^{1.5} \ 0.6^{2.5} \ 0.6^{3.5} \ 0.6^{4.5};
   0.7^0.5 0.7^1.5 0.7^2.5 0.7^3.5 0.7^4.5;
   0.8^0.5 0.8^1.5 0.8^2.5 0.8^3.5 0.8^4.5;
   0.9^0.5 0.9^1.5 0.9^2.5 0.9^3.5 0.9^4.5;
   1^0.5 1^1.5 1^2.5 1^3.5 1^4.5;
   1.1^0.5 1.1^1.5 1.1^2.5 1.1^3.5 1.1^4.5;
   1.2^0.5 1.2^1.5 1.2^2.5 1.2^3.5 1.2^4.5;
   1.3^0.5 1.3^1.5 1.3^2.5 1.3^3.5 1.3^4.5;
   1.4^0.5 1.4^1.5 1.4^2.5 1.4^3.5 1.4^4.5;
   1.5^0.5 1.5^1.5 1.5^2.5 1.5^3.5 1.5^4.5];
%moindre carre
D=M';
L=D*M;
G=D*F;
%resoudre par la methode directe
    A=[L G];
n=size(A,1);
for k=1:n-1 ;
for i=k+1:n ;
w=A(i,k)/A(k,k);
for j=k:n+1;
A(i,j) = A(i,j) - w * A(k,j);
end
end
end
A ;
for i=n:-1:1 ;
s=0;
for j=i+1:n ;
s=s+A(i,j)*x(j);
end
x(i) = ((A(i, n+1) - s) / A(i, i));
end
H=x'
%vecteure du facteur de forme
a=input ('a=')
y=+24.5109*(a) ^0.5-62.0553*(a) ^1.5+69.8218*(a) ^2.5-
36.2877* (a) ^3.5+7.1776* (a) ^4.5
```

```
Programme de facteur de forme pour la fissure non centrale
clear all
clc
F=[2.0180;2.2806;2.6079;3.0224;3.5579;4.2684;5.2437;6.6437;8.7
791;12.3276];
M = [0.7^{0.5} \ 0.7^{1.5} \ 0.7^{2.5} \ 0.7^{3.5} \ 0.7^{4.5};
   0.8^0.5 0.8^1.5 0.8^2.5 0.8^3.5 0.8^4.5;
   0.9^0.5 0.9^1.5 0.9^2.5 0.9^3.5 0.9^4.5;
   1^0.5 1^1.5 1^2.5 1^3.5 1^4.5;
   1.1^0.5 1.1^1.5 1.1^2.5 1.1^3.5 1.1^4.5;
   1.2^0.5 1.2^1.5 1.2^2.5 1.2^3.5 1.2^4.5;
   1.3^0.5 1.3^1.5 1.3^2.5 1.3^3.5 1.3^4.5;
   1.4^0.5 1.4^1.5 1.4^2.5 1.4^3.5 1.4^4.5;
   1.5^0.5 1.5^1.5 1.5^2.5 1.5^3.5 1.5^4.5;
   1.6^0.5 1.6^1.5 1.6^2.5 1.6^3.5 1.6^4.5];
%moindre carre
D=M';
L=D*M;
G=D*F;
%resoudre par la methode directe
    A=[L G];
n=size(A,1);
for k=1:n-1 ;
for i=k+1:n ;
w=A(i,k)/A(k,k);
for j=k:n+1;
A(i,j) = A(i,j) - w * A(k,j);
end
end
end
Α;
for i=n:-1:1 ;
s=0;
for j=i+1:n ;
s=s+A(i,j)*x(j);
end
x(i) = ((A(i, n+1) - s) / A(i, i));
end
H=x'
%vecteure du facteur de forme
a=input('a')
y= 26.9393*(a) ^0.5-101.9384*(a) ^1.5+154.8788*(a) ^2.5-
102.9052*(a) ^3.5+26.0773*(a) ^4.5
```

### Annexe 3

# Résultats pour le cas d'une fissure centrale



Figure A3-1 facteur de frome Y en fct de N (b/a=0.6)

| N  | Y       | Ν   | Y      |  |
|----|---------|-----|--------|--|
| 1  | 0.8808  | 55  | 4.1722 |  |
| 2  | 1.8579  | 95  | 4.2132 |  |
| 3  | 28.4498 | 133 | 4.2718 |  |
| 4  | 28.6938 | 180 | 4.2677 |  |
| 5  | 4.2386  | 207 | 4.2710 |  |
| 6  | 2.9994  | 230 | 4.2631 |  |
| 7  | 3.7068  | 257 | 4.2911 |  |
| 8  | 5.4561  | 277 | 4.2709 |  |
| 9  | 4.9444  | 286 | 4.2709 |  |
| 10 | 3.9817  | 288 | 4.2709 |  |

Tableau A3-1 Y en fct de N





Figure A3-2 facteur de frome Y en fct de N (b/a=0.7)

| N  | Y      | Ν   | Y      |  |
|----|--------|-----|--------|--|
| 1  | 0.9424 | 56  | 3.8022 |  |
| 2  | 2.1148 | 81  | 4.0403 |  |
| 3  | 6.7977 | 127 | 3.7794 |  |
| 4  | 5.6626 | 191 | 3.8024 |  |
| 5  | 4.1034 | 212 | 3.8029 |  |
| 6  | 3.4969 | 227 | 3.8024 |  |
| 7  | 3.6704 | 141 | 3.8053 |  |
| 8  | 3.9173 | 283 | 3.8030 |  |
| 9  | 3.8797 | 291 | 3.8030 |  |
| 10 | 3.8056 | 295 | 3.8030 |  |

Tableau A3-2 Y en fct de N



Figure A3-3 facteur de frome Y en fct de N (b/a=0.8)

| N  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 0.9970 | 20  | 3.5023 |
| 2  | 2.3896 | 55  | 3.5011 |
| 3  | 4.2275 | 150 | 3.5012 |
| 4  | 4.0607 | 151 | 3.5009 |
| 5  | 3.6774 | 160 | 3.5015 |
| 6  | 3.4730 | 166 | 3.5005 |
| 7  | 3.4957 | 169 | 3.5011 |
| 8  | 3.5224 | 192 | 3.5011 |
| 9  | 3.5171 | 196 | 3.5011 |
| 10 | 3.5104 | 197 | 3.5011 |

Tableau A3-3 Y en fct de N

#### Résultats pour b/a=0.8



Résultats pour b/a=0.9



| N  | Y      | N   | Y      |
|----|--------|-----|--------|
| 1  | 1.0454 | 11  | 3.3082 |
| 2  | 2.6476 | 12  | 3.3072 |
| 3  | 3.3938 | 13  | 3.3065 |
| 4  | 3.4624 | 20  | 3.3044 |
| 5  | 3.3653 | 100 | 3.3035 |
| 6  | 3.3198 | 133 | 3.3035 |
| 7  | 3.3157 | 145 | 3.3035 |
| 8  | 3.3137 | 169 | 3.3035 |
| 9  | 3.3113 | 198 | 3.3035 |
| 10 | 3.3095 | 197 | 3.3035 |

Tableau A3-4 Y en fct de N



Figure A3-5 facteur de frome Y en fct de N (b/a=1)

| N  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.0887 | 11  | 3.1750 |
| 2  | 2.8060 | 12  | 3.1746 |
| 3  | 3.0892 | 20  | 3.1729 |
| 4  | 3.1539 | 55  | 3.1722 |
| 5  | 3.1710 | 57  | 3.1722 |
| 6  | 3.1754 | 85  | 3.1721 |
| 7  | 3.1763 | 97  | 3.1721 |
| 8  | 3.1762 | 150 | 3.1721 |
| 9  | 3.1758 | 199 | 3.1721 |
| 10 | 3.1754 | 200 | 3.1721 |

Tableau A3-5 Y en fct de N



Figure A3-6 facteur de frome Y en fct de N (b/a=1.1)

| Ν  | Y      | N   | Y      |
|----|--------|-----|--------|
| 1  | 1.1273 | 11  | 3.0845 |
| 2  | 2.7635 | 12  | 3.0847 |
| 3  | 3.0607 | 20  | 3.0842 |
| 4  | 2.9894 | 55  | 3.0835 |
| 5  | 3.0534 | 57  | 3.0334 |
| 6  | 3.0669 | 60  | 3.0834 |
| 7  | 3.0769 | 75  | 3.0834 |
| 8  | 3.0809 | 150 | 3.0834 |
| 9  | 3.0830 | 199 | 3.0834 |
| 10 | 3.0840 | 200 | 3.0834 |

Tableau A3-6 Y en fct de N



Figure A3-7 facteur de frome Y en fct de N (b/a=1.2)

| N  | Y      | N   | Y      |
|----|--------|-----|--------|
| 1  | 1.1619 | 11  | 3.0219 |
| 2  | 2.5057 | 12  | 3.0226 |
| 3  | 3.2938 | 37  | 3.0226 |
| 4  | 2.9326 | 44  | 3.0225 |
| 5  | 2.9758 | 53  | 3.0226 |
| 6  | 2.9878 | 61  | 3.0224 |
| 7  | 3.0068 | 73  | 3.0224 |
| 8  | 3.0137 | 195 | 3.0224 |
| 9  | 3.0181 | 196 | 3.0224 |
| 10 | 3.0206 | 197 | 3.0224 |

Tableau A3-7 Y en fct de N



Figure A3-8 facteur de frome Y en fct de N (b/a=1.3)

| N  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.1929 | 11  | 2.9776 |
| 2  | 2.1453 | 12  | 2.9787 |
| 3  | 4.0232 | 22  | 2.9804 |
| 4  | 2.9927 | 37  | 2.9799 |
| 5  | 2.9051 | 49  | 2.9797 |
| 6  | 2.9194 | 54  | 2.9796 |
| 7  | 2.9566 | 99  | 2.9796 |
| 8  | 2.9660 | 120 | 2.9796 |
| 9  | 2.9721 | 197 | 2.9796 |
| 10 | 2.9760 | 200 | 2.9796 |

Tableau A3-8 Y en fct de N



Résultats pour b/a=1.4



| N  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.2207 | 11  | 2.9457 |
| 2  | 1.8076 | 12  | 2.9463 |
| 3  | 6.9220 | 20  | 2.9500 |
| 4  | 3.2334 | 37  | 2.9490 |
| 5  | 2.8100 | 61  | 2.9490 |
| 6  | 2.8357 | 97  | 2.9493 |
| 7  | 2.9213 | 169 | 2.9493 |
| 8  | 2.9351 | 180 | 2.9493 |
| 9  | 2.9401 | 197 | 2.9493 |
| 10 | 2.9453 | 199 | 2.9493 |

Tableau A3-9 Y en fct de N





| Ν  | Y        | Ν   | Y      |
|----|----------|-----|--------|
| 1  | 1.2457   | 11  | 2.9215 |
| 2  | 1.5456   | 12  | 2.9191 |
| 3  | -18.0778 | 37  | 2.9251 |
| 4  | 3.8760   | 50  | 2.9276 |
| 5  | 2.6677   | 42  | 2.9267 |
| 6  | 2.7088   | 80  | 2.9267 |
| 7  | 2.9030   | 109 | 2.9267 |
| 8  | 2.9302   | 121 | 2.9267 |
| 9  | 2.9203   | 181 | 2.9267 |
| 10 | 2.9252   | 197 | 2.9267 |

Tableau A3-10 Y en fct de N

### Annexe 4

### Résultats pour le cas d'une fissure non centrale



#### Résultats pour f=0.7

Figure A4-1 facteur de frome Y en fct de N (f=0.7)

| Ν  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.4236 | 11  | 2.0110 |
| 2  | 1.9097 | 12  | 2.0136 |
| 3  | 1.9801 | 49  | 2.0184 |
| 4  | 1.9028 | 60  | 2.0182 |
| 5  | 1.9321 | 82  | 2.0181 |
| 6  | 1.9573 | 87  | 2.0180 |
| 7  | 1.9785 | 94  | 2.0180 |
| 8  | 1.9923 | 121 | 2.0180 |
| 9  | 2.0013 | 157 | 2.0180 |
| 10 | 2.0072 | 200 | 2.0180 |

#### Tableau A4-1 Y en fct de N





Figure A4-2 facteur de frome Y en fct de N (f=0.8)

| N  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.3079 | 11  | 2.2772 |
| 2  | 2.0659 | 12  | 2.2788 |
| 3  | 2.2780 | 44  | 2.2894 |
| 4  | 2.1734 | 50  | 2.2808 |
| 5  | 2.2082 | 63  | 2.2807 |
| 6  | 2.2324 | 64  | 2.2806 |
| 7  | 2.2516 | 85  | 2.2806 |
| 8  | 2.2630 | 133 | 2.2806 |
| 9  | 2.2701 | 168 | 2.2806 |
| 10 | 2.2745 | 200 | 2.2806 |

Tableau A4-2 Y en fct de N

#### Résultats pour f=0.9



Figure A4-3 facteur de frome Y en fct de N (f=0.3)

| Ν  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.2217 | 11  | 2.6064 |
| 2  | 2.2676 | 12  | 2.6076 |
| 3  | 2.6934 | 29  | 2.6084 |
| 4  | 2.5101 | 54  | 2.6080 |
| 5  | 2.5484 | 55  | 2.6082 |
| 6  | 2.5689 | 56  | 2.6079 |
| 7  | 2.5867 | 85  | 2.6079 |
| 8  | 2.5958 | 109 | 2.6079 |
| 9  | 2.6013 | 181 | 2.6079 |
| 10 | 2.6046 | 200 | 2.6079 |



#### Résultats pour f=1



Figure A4-4 facteur de frome Y en fct de N (f=1)

| Ν  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.1619 | 11  | 3.0219 |
| 2  | 2.5057 | 12  | 3.0226 |
| 3  | 3.2938 | 25  | 3.0230 |
| 4  | 2.9326 | 41  | 3.0226 |
| 5  | 2.9758 | 50  | 3.0225 |
| 6  | 2.9878 | 53  | 3.0224 |
| 7  | 3.0068 | 88  | 3.0224 |
| 8  | 3.0137 | 158 | 3.0224 |
| 9  | 3.0181 | 198 | 3.0224 |
| 10 | 3.0206 | 200 | 3.0224 |



#### Résultats pour f=1.1



Figure A4-5 facteur de frome Y en fct de N (f=1.1)

| Ν  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.1282 | 11  | 3.5578 |
| 2  | 2.7647 | 12  | 3.5584 |
| 3  | 4.2257 | 30  | 3.5583 |
| 4  | 3.4720 | 45  | 3.5580 |
| 5  | 3.5281 | 56  | 3.5580 |
| 6  | 3.5190 | 57  | 3.5579 |
| 7  | 3.5474 | 109 | 3.5579 |
| 8  | 3.5514 | 145 | 3.5579 |
| 9  | 3.5548 | 190 | 3.5579 |
| 10 | 3.5568 | 200 | 3.5579 |
| -  |        |     |        |



#### Résultats pour f=1.2



Figure A4-6 facteur de frome Y en fct de N (f/a=1.2)

| Ν  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.1226 | 11  | 4.2682 |
| 2  | 3.0212 | 12  | 4.2689 |
| 3  | 5.8627 | 25  | 4.2689 |
| 4  | 4.1749 | 37  | 4.2686 |
| 5  | 4.2691 | 49  | 4.2685 |
| 6  | 4.2039 | 73  | 4.2684 |
| 7  | 4.2659 | 97  | 4.2684 |
| 8  | 4.2629 | 109 | 4.2684 |
| 9  | 4.2654 | 145 | 4.2684 |
| 10 | 4.2676 | 200 | 4.2684 |

![](_page_56_Figure_4.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_57_Figure_1.jpeg)

Figure A4-7 facteur de frome Y en fct de N (f/a=1.3)

| N  | Y      | Ν   | Y      |
|----|--------|-----|--------|
| 1  | 1.1496 | 11  | 5.2425 |
| 2  | 3.2459 | 12  | 5.2442 |
| 3  | 9.5210 | 25  | 5.2441 |
| 4  | 5.1068 | 50  | 5.2438 |
| 5  | 5.3128 | 61  | 5.2438 |
| 6  | 5.0951 | 85  | 5.2437 |
| 7  | 5.2646 | 109 | 5.2437 |
| 8  | 5.2378 | 121 | 5.2437 |
| 9  | 5.2397 | 145 | 5.2437 |
| 10 | 5.2428 | 200 | 5.2437 |

Tableau A4-7 Y en fct de N

![](_page_58_Figure_0.jpeg)

![](_page_58_Figure_1.jpeg)

Figure A4-8 facteur de frome Y en fct de N (f/a=1.4)

| Ν  | Y       | Ν   | Y      |
|----|---------|-----|--------|
| 1  | 1.2169  | 11  | 6.6389 |
| 2  | 3.4094  | 12  | 6.6458 |
| 3  | 25.8311 | 37  | 6.6439 |
| 4  | 6.3462  | 55  | 6.6438 |
| 5  | 6.8757  | 56  | 6.6440 |
| 6  | 6.2431  | 64  | 6.6437 |
| 7  | 6.7479  | 73  | 6.6437 |
| 8  | 6.6329  | 109 | 6.6437 |
| 9  | 6.6367  | 169 | 6.6437 |
| 10 | 6.6429  | 200 | 6.6437 |
| -  |         |     |        |

Tableau A4-8 Y en fct de N

#### Résultats pour f=1.5

![](_page_59_Figure_1.jpeg)

Figure A4-9 facteur de frome Y en fct de N (f=1.5)

| Ν  | Y        | Ν   | Y      |
|----|----------|-----|--------|
| 1  | 1.3372   | 11  | 8.7586 |
| 2  | 3.4935   | 12  | 8.7945 |
| 3  | -31.3942 | 37  | 8.7794 |
| 4  | 7.9383   | 69  | 8.7792 |
| 5  | 9.3903   | 84  | 8.7793 |
| 6  | 7.6342   | 92  | 8.7791 |
| 7  | 9.1924   | 141 | 8.7791 |
| 8  | 8.7387   | 217 | 8.7791 |
| 9  | 8.7656   | 250 | 8.7791 |
| 10 | 8.7792   | 300 | 8.7791 |

Tableau A4-9 Y en fct de N

#### Résultats pour f=1.6

![](_page_60_Figure_1.jpeg)

Figure A4-10 facteur de frome Y en fct de N (f=1.6)

|    |         | 1   |         |
|----|---------|-----|---------|
| N  | Y       | Ν   | Y       |
| 1  | 1.5307  | 11  | 12.2276 |
| 2  | 3.5080  | 12  | 12.4325 |
| 3  | -8.6590 | 37  | 12.4407 |
| 4  | 9.7323  | 69  | 12.3270 |
| 5  | 13.7227 | 84  | 12.3285 |
| 6  | 9.0172  | 163 | 12.3276 |
| 7  | 13.9619 | 222 | 12.3276 |
| 8  | 12.0949 | 232 | 12.3276 |
| 9  | 12.2889 | 312 | 12.3276 |
| 10 | 12.3178 | 340 | 12.3276 |

Tableau A4-10 Y en fct de N

### Annexe 5

### Déduction du développement des contraintes

En coordonnées polaires,  $\sigma_{rr}$ ,  $\sigma_{r\theta}$  et  $\sigma_{\theta\theta}$  sont données par

$$\sigma_{rr} = \frac{1}{r^2}\varphi_{,rr} + \frac{1}{r}\varphi_{,r} \tag{A5-1}$$

$$\sigma_{r\theta} = \left(\frac{1}{r} \, \varphi_{,\theta}\right)_r \tag{A5-2}$$

$$\sigma_{\theta\theta} = \varphi_{,rr} \tag{A5-3}$$

Où  $\varphi(r, \theta)$  est la fonction d'Airy.

Considérons le problème d'un milieu fissuré en élasticité plane (Fig A 5-1) :

![](_page_62_Figure_6.jpeg)

Figure A 5-1

On peut montrer que dans ce cas  $\varphi(r, \theta)$  est donnée par (voir par exemple [3]):

$$(r, \theta) = r^{\alpha+2}[(\alpha\theta) + Bc(\alpha\theta) + Csin((\alpha+2)\theta) + Dcos((\alpha+2)\theta)]$$
(A4 - 3)

Avec  $\alpha$ , A, B, C et D des nombres réels.

Pour que l'énergie de déformation soit finie, il faut que  $\alpha \ge -1/2$ . De plus, on peut montrer que  $\alpha$  est soit entier soit demi-entier [3].

Si  $\alpha$  est entier :

 $\alpha = n - 1$   $n \in \mathbb{N}$  et  $n \ge 1$ ,

nous avons les relations suivantes :

$$\begin{cases} C = -A\frac{n-1}{n+1} \\ D = -B \end{cases}$$
(A4-4)

Si  $\alpha$  est demi-entier :

$$\alpha = n - \frac{3}{2} \quad n \in \mathbb{N} \ et \ n \ge 1,$$

nous avons les relations suivantes :

$$\begin{cases} C = -A \\ D = -B \frac{n - \frac{3}{2}}{n + \frac{1}{2}} \end{cases}$$
(A4-5)

En considérant toutes les valeurs possible de  $\alpha$  (ou n), et en utilisant les formules précédents, on aboutit aux développements (I-1), (I-2) et (I-3) du chapitre I.

![](_page_64_Picture_0.jpeg)