

MÈMOIRE Présenté en vue de l'obtention du diplôme de INGÉNIEUR d'ÉTAT

de

L'Institut National d'Aéronautique de Blida

Spécialité : Propulsion et Structure

EFFET ET OPTIMISATION DES Caracteristiques Structurales d'Aile d'Avion

<u>Réalisé par :</u>

Mlle MAYOUF Asma Mlle SAID KOUADRI Imene

Promoteurs:

Mr TAHI Ali Mr KHERRAT Abdel-Kader

Promotion: 2010/2011

Résumé

L'objectif principal du travail de ce mémoire est d'étudier et de mettre en pratique les techniques de pré-dimensionnement et voir l'effet des caractéristiques structurales d'une aile d'avion sur charges internes, le poids de l'aile ainsi que le volume réservé au kérosène, Notre travail consiste à utiliser en premier lieu le logiciel développé par Mr Abdel-Kader Kherrat FEM BUILDER pour générer les modèles de l'aile de l'A320 en modifiant à chaque fois :

- La flèche,
- ✤ L'effilement
- ✤ Le type de NACA ;

Et de faire après l'analyse de ses modèles par le logiciel le plus utilisé dans la construction aéronautique MSC.PATRAN et le MSC.NASTRAN, au cours de cette étude on a utilisé l'Excel pour le calcul des charges et pour le dessin des graphes

Abstract

The main aim of our work is to see the effect of the structural characteristics of wings of plane in more precise seeing the effect of the sweep, of taper ratio and the type of profile NACA on the distribution of internals load along the span, on the weight of the wing as its rigidity by using FEM-builder for the generation of the finite element models and MSC.Patran and MSC.Nastran to make the finite element analysis

REMERCIEMENTS

Al hamdou li allah on remercie en premier lieu ALLAH le tout puissant, de nous avoir donné autant de courage, de patience et de volonté pour mener ce travail à terme.

On tient à remercier le professeur Monsieur TAHI. Ali qui nous 'a toujours témoigné sa confiance. Ses conseils fructueux et sa rigueur scientifique nous ont permis de mener à bien ce travail et de comprendre "qu'il faut toujours persévérer pour obtenir des résultats toujours meilleurs". Qu'il veuille bien trouver ici le témoignage de notre profonde et sincère reconnaissance et qu'ALLAH le tout puissant le guérit inchallah pour nous et pour sa famille

On présente notre profonde gratitude et nos vifs et sincères remerciements à Mr. KHERRAT. Abdelkader Senior stress engineer à Bombardier Aerospace Canada de nous avoir encadrés pendant ce PFE. Nous le remercions également de nous avoir donné un sujet de PFE dans lequel nous avons eu la chance de découvrir beaucoup de choses très importantes pour l'ingénieur, que se soit scientifiques, techniques ou informatique. Un sujet PFE dans lequel nous avons pu réaliser jour après jour malgré les difficultés rencontrées. Son soutien et ses conseils pertinents ont énormément contribué à l'aboutissement de notre travail. Nous voudrions aussi le remercier pour la confiance dont il a fait preuve envers notre travail. La confiance qui a été pour nous une source de motivation indéniable ainsi qu'un enrichissement personnel fort. Merci de nous avoir introduits dans le monde de la conception préliminaire des avions

On remercie vivement Monsieur BELARBI Adel, pour avoir enrichi de ses points de vue et interrogations, nos réflexions. Sa vision des problèmes, l'enthousiasme et l'originalité de ses argumentations nous ont été un grand secours à plusieurs reprises.

Nous voudrons profiter de ce manuscrit pour remercier tous les enseignants et les personnels du Département d'Aéronautique qui de près ou de loin ont contribué à notre formation en aéronautique. Merci d'avoir nous encadrés, observés, aidés, conseillés et critiqués

Nous voudrons remercier Mr Djalel le technicien informatique de la sale de navigation au niveau de l'IAB, qui nous a vraiment aidé, aussi Ami Mohamed et Ami Mostapha de la SNVI et tous le personnel de ALGAL et de la SNVI, merci pour tous

Nous exprimons également nos gratitudes aux membres du jury qui ont accepté d'examiner ce travail

Nous ne termineront pas sans adresser un immense merci à nos parents pour tout ce qu'ils ont fait et pour le soutien qu'ils nous ont apporté durant toutes nos études, et à qui nous devons tout

Merci à tous les autres pour votre amitié, votre présence et votre simplicité.

Asma et Imene

Dédicac

Je suis à Allah et ce mémoire et tous ce que j'ai et pour lui Allahmdo li allah rabi pour tous ce que tu m'as offerts hamdan tamman mobarakan qui remplis inchallah les cieux et les terres. Et salat w salam ala achrafi khalki allah Mohamed alyhi afdel alsalat wa alsalam, mon prophète mon exemple et toute ma vie. Et à ma religion l'Islam dont je suis fière, et je vis chaque jours inchallah pour.

Je dédis aussi ce modeste travail à mon Algérie qui m'a donné la chance de connaitre le sens du patriotisme, qui a dédié des martyrs pour que je puisse aujourd'hui être inchallah ingénieur en aéronautique, que dieu la bénisse inchallah et la garde pour nous inchallah, a Blida où j'ai passé 6ans d'études merci Blida pour tout

Aussi à la mémoire de l'homme qui a souffert tend d'année pour que je sois Imene et non pas d'autre à baba allah yarahmo qui m'a bien éduqué et qui n'a pas cessé de me prodiguer ces soins et conseils jusqu'à le dernier jour de sa vie, à mani et amo mohamed à 3amo daddy que dieu leurs accorde son vaste paradis inchalah

À papati et mamati adorés lesquels n'ont ménagé aucun effort matériel et moral fut-il, pour me soutenir et m'encourager tout au long de mon cursus scolaire et universitaire. J'ose espérer que l'aboutissement de l'objectif que je m'étais fixé les comblera d'aise et de fierté à l'égard de leur rejeton inchallah, papi et mami vous êtes le soleil de m'a vis ma source de douaa qu' Allah Le Très Haut, vous accordez santé, bonheur et longue vie et faire en sorte que jamais je ne vous déçoive inchallah.

A tout mes frères Mohamed, Adilla et Fouad que j'aime plus que tout, avec qui j'ai passé les plus beaux moments de ma vie. je vous souhaite une vie pleine de bonheur et de succès, et qu' Allah Le Tout Puissant, vous protège et vous garde. inchlalah khawti nhabkom

A mes très chère tantes Naima et ZOZO qui mon soutenue et aider depuis ma tendre enfance, je vous aime beaucoup et vous le savez.

A mabida, bouyachikh, , amo noro, khalo belkacem, amo mezien et amo abdnour , faiza et zahia. A mes frère et sœurs, abdou , hanena, riad , mimo amelo , iko, foufa, mira et khalil ; mon bébé mamado et amel ; Sabrina

A ma jumelle, sœur, amie, chrikti et binôme Asma a sa mère qui est ma mère Latifa à laquelle je dois beaucoup qu'Allah inchallah la garde pour nous et amo Ali et toute la famille MAYOUF et BEN RAHMANI. surtout chaima, marie, hajer khalto saliha; amino, aballah , najib et Faiza et au nouveau membre de la famille la petite latifa ryme qu'Allah inchallah rend d'elle une fille merveilleuse inchallah à toute la famille TERFAS : radia amo Salah ; et les garçons fath allah ; hassan, houcine et nucha

A tout mes profs à l'IAB, à Mr kherrat et sa famile ; Mr Bentrad et sa famille ; Mr Tahi et sa famille et tout les autres.

Au père de la construction d'avion en Algérie Adel Belarbi, frère tu es merveilleux et inchallah un jour je deviendrais comme toi

A mes encadreurs de stage à air Algérie Mr AZZI et Mr ZEBBAR.

A tata Nacima que j'aime beaucoup et toute sa famille surtout meriem et mohamed.Ami ali Mes amis chacun par son nom surtout aichouch sihem ; bilel, Racim, Hasni, Abdelkader ; rechach ; khaled labadi ; abdelhak, papaya kamel elhayel , widdad, sarah, houcine, smail, Karima , bibicha , yacine , mahraz, nasrou, racim, maamer, ismahane ; ouiza, samy , abdrahmen, karim , redouan et hmiza ; ishak ; hicheme, tayfour et alhadi qui m'on vraiment aidé dans l'installation de patran

A mes amis les étudiant plus particulier ceux de la promotion DEUA 2007/2008 et ING 2010/2011 propulsion et structure

A toutes ces personnes je dis : vous avez à jamais ma gratitude

IMENE

Dédicace

Hamdoulah rabi mon dieu le tout puissant . Ce travail est dédié à la mémoire de mon très cher oncle et mes grands parents. Spéciale dédicace à la personne qui m'est la plus chère au monde: ma douce mère à qui je dois beaucoup de respect, qui m'a aidé péniblement pendant toute ma vie et m'a soutenu toujours, ainsi mon père.

Dédicace spéciale a la petite LATIFA que j'adore

Je dédie ce modeste travail aussi à : Mes Très chers frères et sœurs ;Chouchou,Minouya,Tirou,Hadjer "Mary,Mimi,Radia,Sabah,Zohra,Samira,Youcef et coucouwa pour mes deux très chers AHMED et MOHAMED.

mes neveux qui je l'adore tous et spécialement pour les trois mousquetaires ;Hassen,Houssin et Fethelleh . mes tantes et mes oncles.

Mes sœurs ,amies et copines « mon binôme 3zizti »**IMENA** . A ;Mhammed ,Adel, Ma deuxième famille(" groupe choc "): **« papahoume» kamel, smail ,aicha, sihem, sarah, hocine, abdelhake**

TOUTES LES FAMILLES QUE NOUS ONT Considéré COMME LEURS FILLES A LA FAMILLE Said Kouadri ; amo **Hmida** et tata **djazia**,tata Naima,Zozo,Hanina,Abdou,Foufou,Adila,Mhammed,Mamadou,Foufa,riado

tout les amis :yacine,racime, abdrahmen,abdelkader,khaled mohamed.R,mohamed.L*,bilelou,maamer,oussama,mehrez,wided,Ismahane,* manina, bibicha, mahraz, nasrou, ouiza et samy

> Toute la promotion de 5ème année aéronautique notamment l'option PROPULSION.et STRUCTURE

> > A TOUS CEUX QUE J'AIME.

АЅМА

TABLE DES MATIERES

REMERCIMENT	i iii
RESUME	iv v ix xiv
	1
CHAPITRE 1 : Les caractéristiques d'une aile d'avion	4-19
1.1 Introduction	4
1.2 Caractéristiques d'une aile d'avion	4
1.2.1 Les caractéristiques externes	4
1 .2.1.1. Géométrie de l'aile	4
1.2.1.2. Surface de référence	5
1.2.1.3. Profil de référence	5
1 .2.1.4. L'allongement	5
1 .2.1.5. Effilement	6
1 .2.1.6. Angle de flèche	7
1.2.1.7. L'épaisseur relative	8
1 .2.1.8. Les dispositifs hypersustentateur	9
1 .2.1.8.1 Les volets	9
1 .2.1.8.2 Les becs	11
1.2.2 Les caractéristiques internes	12
1.2.2.1. Les longerons	12
1.2.2.1.1.Configuration des longerons	12
1.2.2.1.2.Les différents types de longerons	13
1.2.2.1.3.Positions des longerons	14
1.2.2.2. Les nervures	14
1.2.2.2.1Configuration de nervure	15
1.2.2.2.2.L'espacement de nervure	16
1.2.2.3.Orientation des nervure	17
1.2.2.3. Les lisses	19
CHAPITRE 2 : MODELISATION PAR ELEMENTS FINIS(FEM)	21-56
2.1 Introduction	21

2.2.Logiciels Nastran/Patran24
2.2.1 Présentation MSC-PATRAN24
2.2.1.1 La base des modèles Patran25
2.2.1.2 Gestion de fichiers et configuration
2.2.1.3. Touches rapides27
2.2.1.4. Fonctions principales d'exécution
2.2.2. Présentation MSC/NASTRAN
2 .2.2.1. Historique
2.2.2.2 La structure de MSC/NASTRAN
2.2.2.2.1 Modules pour créer des modèles
2.2.2.2.2 Modules utilitaires
2.2.2.2.3 Modules d'entres/sortie
2.2.2.2.4 Système de contrôle
2.2.2.2.5 Format rigides les plus utilisés
2.2.2.2.6 Préprocesseurs compatible
2.2.2.2.7Structure du fichier de travail de NASTRAN (data deck).38
2.2.2.2.8 Paramètres standards des commandes NASTRAN38
2.2.2.2.9 Les éléments de NASTRAN pour l'analyse des
structures
2.2.2.2.10 Les commandes importants de MSC/NASTRAN
2.3.Modélisation des éléments de l'aile
2.3.1 Modélisation des lisses
2.3.2 Modélisation des longeron45
2.3.3 Modélisation des nervure46
2.4.FEM-Builder
2.4.1Topologie
2.4. 1.1.Etape1 « maillage étendue »47
2.4. 1.2.Etape2 « nettoyage des éléments »
2.4.1 .3.Etape3« projection sur la frontière de l'aile »
2.4.1.4.Etape4 « projection sur les revêtements »
2.4.2.Description du FEM-Builder52

CHAPITRE 4 : SIMULATIONS ET INTERPRETATIONS DES RESULTAS.......76-112

4.1. Introduction	.76
4.2. Objectif de la simulation	.76
4.3. Les dimension de l'aile de l'A320	.76
4.4. Exemple complet d'une simulation avec résultat et graphes	78
4.4.1.Génération du fichier bdf par FEM-Builder	78

4.4.2.Calcul des endloads de la configuration	86
4 .4.3. Visualisation de la rigidité de la configuration	89
4.4.4 .Calcul du poids de l'aile et du volume que l'aile peut contenir pour le	
kérosène	91
4.4.4.1.Le poids de l'aile	91
4.4.4.2.Le volume réservé au kérosène	93
4.5. Etude de l'effet de la flèche et l'effilement sur les charges internes	98
4.6. Etude de l'effet de la flèche et l'effilement sur la rigidité et la masse et le volume de	
l'aile10)7
4.6.1.Etude de l'effet de la flèche et l'effilement sur la rigidité10	07
4.6.1.1.Effet de l'effilement sur la rigidité10	38
4 .61.2.Effet de la flèche sur la rigidité10)9
4.6.2.Etude de l'effet de l'effilement et la flèche sur poids1'	10
4.7.Etude de l'effet du profil sur les charges internes	11
4.8. Etude de l'effet du profil sur la rigidité et la masse et le volume de l'aile1	14
4.8.1.Etude de l'effet du profil de rigidité1	14
4.8.2.Etude de l'effet du profil sur le poids et volume1	15
4.9 Conclusion des résultats1	17
CONCLUSION1	118

BIBLIOGRAPHIE11

Annexe A . Le profile de l'A320

Annexe B. Validation du bon fonctionnement de MSC.Patran et MSC.Nastran dans notre micro-ordinateur

- B.1 Problème choisit
- **B.2** Solution analytique du problème choisit
- B.3 Conclusion

Annexe C Résultats et autres simulations

- C.1 Les valeurs pour les lisse du revêtement supérieur
- **C.2** Les valeurs et les courbes pour les lisses du revêtement inferieur
- C.3 Exemple d'application d'un moment de flexion a l'extrémité de l'aile

Table des figures

Fig. N°	Nom de la figure	page
1.1	caractéristiques externes de la géométrie de l'aile	4
1.2	effet de l'allongement sur la distribution de portance	6
1.3	effet de l'effilement sur la distribution de portance	6
1.4	effet de la flèche sur la diminution de la vitesse	7
1.5	effet de la flèche sur la stabilité	8
1.6	Les dispositifs hypersustentateurs	9
1.7	Les types des dispositifs bord de fuite	10
1.8	effet des volets sur la courbe de $C_{+} = f(\alpha)$	10
1.9	Les types des dispositifs bord d'attaque	11
1.10	effet des becs sur la courbe de $C_{\bullet} = f(\alpha)$	11
1.11	La structure multi longerons	12
1.12	construction de nervure	12
1.13	les différents types de longerons	13
1.14	position du longeron avant et arrière	14
1.15	La structure multi longerons	15
1.16	construction de nervure	15
1.17	les shear ties	16
1.18	optimisation d'espacement de nervure	16
1.19	Orientation des nervures	17
1.20	quelque types de profilé de lisse	18
1.21	configuration lisses parallèles au longeron arrière	19
2.1	maillage d'une aile	21
2.2	cas de chargement d'une aile	22
2.3	Fonctionnement et fichier de MD Patran-MD Nastran	24
2.4	Fenêtre de PATRAN	25
2.5	Le menu principal	26
2.6	Gestion de fichiers	26
2.7	Touches Rapides	27
2.8	Touches des vues	28
2.9	les fonctions principales	28
2.10	comment créer une géométrie	29
2.11	réalisation d'un maillage	30
2.12	les différentes étapes de création de Nœuds/Élément	30
2.13	création des matériaux	31
2.14	Création des Propriétés des éléments	31
2.15	Contrainte de déplacement	32
2.16	Application des charges externes	33
2.17	Création des cas de chargement	33
2.18	l'analyse	34
2.19	le résultat	34
2.20	Séquence type d'utilisation de Nastran	35
2.21	La structure de MSC.Nastran	36
2.22	model d'une aile complète	42
2.23	les élément constituant un caisson d'une aile	43
2.24	la présentation des lisses	44

2.25	exemple pour la lisse supérieur 4 dans la baie 3	44
2.26	la présentation des longerons	45
2.27	exemple pour le rear spar dans la baie 12	45
2.28	exemple pour la nervure 6 avec 4 lisses	46
2.29	Les caractéristique de la plateforme de l'aile	46
2.30	Maillage étendu	47
2.31	Configuration possibles des orientations des lisses	48
2.32	Nettoyage des éléments et catégorisation des éléments retenus	49
2.33	Technique des angles	49
2.34	Projection des nœuds des éléments de frontière sur la frontière	50
2.35	Les cas de scenarios possible et les actions a entreprendre pour	50
	le nettoyage et le remplissage	
2.36	Les profils pour différentes stations(i) de l'aile	51
2.37	Projection des nœuds sur le revétement	51
2.38	Le menu principal du FEM-Builder	52
2.39	Le guide d'utilisation du FEM-Builder	52
2.40	Le panneau de control	53
2.41	Définition de l'aile	53
2.42	La plateforme de l'aile	54
2.43	Définition du profil de l'aile	54
2.44	Topologie de l'aile	55
2.45	Dimensionnement de la lisse	55
2.46	Orientation et espacement des nervures	56
2.47	Les accès de l'aile	56
3.1	les principaux efforts appliqués sur la voilure	58
3.2	la direction de la résultante aérodynamique lorsque l'avion est	59
	au sol	
3.3	la direction de la résultante aérodynamique lorsque l'avion est	59
	en vol	
3.4	errorts exerces sur I alle dans le cas ou les propulseurs sont	01
	instantes sous i ane « avion D/4/ »	
3.5	installés à la partie arrière du fusalage « avien P727 »	02
3.6	nosition du contra clastique	
5.0	position du centre elastique	00
3.7	La distribution de l'effort tranchant due à portance	67
3.8	point d'application de la force de cisaillement du moment de	68
	flexion et de torsion	
3.9	les charges entre les nervures	69
3.10	Caisson de l'aile réel	70
3.11	La géométrie assumée de caisson de l'aile	71
3.12	Le format des Grid point force balance dans le fichier bdf	72
3.13	Analyse de contraintes Endload	73
3.14	Le format de Summation of Element Oriented Forces on	73
	Adjacent Elements dans le fichier bdf	
3.15	Interprétation des charges du MEF	74
3.16	Représentation lisse revêtement	74
4.1	Un dessin simplifié de la plateforme de l'A320	77
4.2	Le profil de l'A320 dessiné par Excel	77
4.3	Le menu START et control-Panel du FEM-Builder	78

4.4	Le menu Wing Definition	78
4.5	Le menu Wing Platform	79
4.6	Le menu Wing Profil Definition	79
4.7	Le menu de donnée du profil	80
4.8	Le menu Wing Topology	80
4.9.a	La juste configuration d'orientation de lisses	81
4.9.b	La fausse configuration d'orientation de lisses	81
4.10	La partie program du stringer definition	81
4.11	La configuration d'orientation de nervure	82
4.12	Les données à entrer dans le FEM-Builder	82
4.13	Le dessin d'orientation de nervure	83
4.14	L'espacement entre les nervures par rapport au longeron avant	83
	et diffete	
4.15	Partie program de la carte finaterieu	
4.10	Les étanes d'avégution du program EEM Duilder	04 9/
4.17	Les étapes d'exécution du frogram FEM-Bunder	04 95
4.10	Les étapes d'execution du fichier bui par Patran	00
4.19	Les reunes que contient le speadsneet « recherche endioads»	00
4.20	La feuille CROD	00
4.21	la feutile Endioad F06 DATA	00
4.22	la reutile endloads	0/
4.23	DATA	87
4.24	les feuilles que contient le spreadsheet courbes	87
4.25	la feuille DATA et les fonctions de calcul utilisées	88
4.26	variation des forces par les lisses de chaque baies et des forces	88
	moyennes dans les lisses par baies dans le revêtement supérieur l'aile de l'A320	
4.27	variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies dans le revêtement inférieur l'aile de l'A320	88
4.28	Le menu principal du Patran qui contient analysis	89
4.29	les étapes suivis pour faire une analyse	89
4.30	sélection du fichier résultats	90
4.31	l'icône résultats	90
4.32	le chois du résultat Displacements, translation	90
4.33	le résultat de l'analyse et lecture de la déflexion	91
4.34	sélection de Tools et de Masse Properties	91
4.35	le menu demandé	92
4.36	sélection de default- group	92
4.37	le tableau masse et volume	93
4.38	L'icône groupe	93
4.39	le menu de création de groupe	94
4.40	l'icône preferences	94
4.41	le menu de preferences par défaut	95

4.42	le choix de l'option « Enclose entire Entity »	95
4.43	la sélection des éléments CQUADs	96
4.44	menu création d'une surface mesh	96
4.45	l'icône à cliquer	97
4.46	menu pour effacer les FEM	97
4.47	la surface de la 1ere nervure	97
4.48	le menu « show surface attribute information »	98
4.49	les configurations des ailes choisis	98
4.50	définition des paramètres à calculer pour les dessins des	99
	configurations	
4.51	variation des forces par les lisses de chaque baie et des forces	100
	moyennes dans les lisses par baies dans le revêtement supérieur	
	de la configuration flèche5° effilement 26.77%	
4.52	variation des forces par les lisses de chaque baie et des forces	100
	moyennes dans les lisses par baies dans le revêtement supérieur	
	de la configuration flèche5° effilement 34.41%	
4.53	variation des forces par les lisses de chaque baie et des forces	101
	moyennes dans les lisses par baies dans le revêtement supérieur	
	de la configuration flèche5° effilement 55%	
4.54	variation des forces par les lisses de chaque baie et des forces	102
	moyennes dans les lisses par baies dans le revêtement supérieur	
	de la configuration flèche15° effilement 26.77%	
4.55	variation des forces par les lisses de chaque baie et des forces	102
	do lo configuration, flocha 15° offilement 24 410/	
4.56	urriation des forces per les lisses de cheque heie et des forces	102
4.50	variation des forces par les lisses de chaque bale et des forces	102
	de la configuration, flèche 15° effilement 55%	
4 57	variation des forces par les lisses de chaque haie et des forces	103
1.07	movennes dans les lisses par baies dans le revêtement supérieur	100
	de la configuration flèche25° effilement 26.77%	
4.58	variation des forces par les lisses de chaque baie et des forces	103
	movennes dans les lisses par baies dans le revêtement supérieur	
	de la configuration flèche25° effilement 34.41%	
4.59	variation des forces par les lisses de chaque baie et des forces	104
	moyennes dans les lisses par baies dans le revêtement supérieur	
	de la configuration flèche25° effilement 55%	
4.60	géométrie simplifiée d'une aile	104
4.61	application d'une force au bout de l'aile	105
4.62	Géométrie réelle et la géométrie approximée	105
4.63	La fonction endload moyenne	106
4.64	effet de l'effilement sur la rigidité	108
4.65	effet de la flèche sur la rigidité	109
4.66	variation d la masse ne fonction de la variation d'effilement	110
4.67	variation du ratio la masse en fonction de l'effilement	111
4.68	le NACA 65-215	111
4.69	le NACA 4415	112
4.70	le NACA 2415	112
4.71	variation des forces par les lisses de chaque baie et des forces	112
	moyennes dans les lisses par baies du revêtement supérieur	
I	dans le NACA 65- 215	

4.72	variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur dans le NACA 2415	113
4.73	variation des forces par les lisses de chaque baies et des forces moyennes dans les lisses par baies du revêtement supérieur dans le NACA 4415	113
4.74	variation de la rigidité des profils NACA par rapport au profil de l'A320	114
4.75	superposition du profil de l'A320 avec le NACA 2415	115
4.76	Courbe de la variation de la masse d'aile ainsi que le volume de l'aile par rapport au profil de l'A320 dans les différents profils NACA	116

Table des tableaux

Tableau N°	Nom du tableau	Page N°
2.1	Types d'éléments utilisés pour FEM global	23
4.1	caractéristique de l'A320	77
4.2	déflexion maximale de chaque configuration	107
4.3	Ratio de déflexion par apport à l'effilement 26.77%	108
4.4	ratio de déflexion par apport à la flèche 25°	109
4.5	masse et ratio de masse par apport à la masse de l'A320	110
4.6	déflexion maximale et ratio de déflexion par apport à la	114
	déflexion de l'aile de l'A320 %	
4.7	masse, volume, ratio de masse et de volume par rapport à	115
	la masse et le volume de l'A320	

Nomenclature

* <u>Lettres latines</u>

Symbole	Unité	Définition
А		L'allongement de l'aile
Arod	<i>m</i> ²	l'aire de la lisse ou la semelle des longerons
Arod	<i>m</i> ²	la somme de toutes les aires des lisses et des
		semelles d'un des revêtements
b	m	Envergure de l'aile
С	m	Corde de l'aile
ē	m	Corde aérodynamique moyenne
C _T	m	Corde à la section centrale ou de l'emplanture
c_t	m	Corde à l'extrémité
Cl		Coefficient de moment de roulis
Cm		Coefficient de moment de tangage
Cn		Coefficient de moment de lacet
Cx		Coefficient de traînée
Cz		Coefficient de portance
Czman		Coefficient de portance maximale
dFz	N	force de portance locale
dP	N	poids de la structure de la section d'aile
dPc	N	poids du Carburant contenu dans cette section d'aile
Fa		Le facteur adimensionnel de surface de la section du profil entre le longeron avant et arrière
$F_{A,S(i+1)}$	N	Force appliques à la station « i +1»
Fr		Le facteur qui explique la perte due à l'expansion
		du carburant et à la structure
Fcorr		Facteur de correction de poids
Fx	N	La trainée de l'aile
Fz	N	La force de portance
l(z)	N/m	portance linéique d'une distribution elliptique
LA	N.m	Moment de roulis
LIFIS		L'indice de charge pour les âmes du longeron
		avant
LI _{R/S}		L'indice de charge pour les âmes du longeron
		arrière
LI _{SKIN}		Indice de charge pour le panneau de revêtement
LI _{Strg(cap)}		Indice de charge pour les lisses et les semelles des
		longerons
M_{2}, M_{1}		Moment fléchissant
MA	N.m	Moment de tangage
MASI	N.m	Moment correctif appliqué à la station « i »

Mstr	Lbs .in	Moment du MEF dans la lisse
$M_{T,S(i+1)}$	N.m	Moment fléchissant Théorique a la station « i +1»
n		Facteur de charge
NA	N.m	Moment de lacet
Neng		Le nombre de moteurs
Nsft		Nombre de réservoirs de carburant séparés
nult		Facteur de charge extrême de l'avion
Р	N	Poids de l'aile
Pstr	lbs	La charge du MEF dans la lisse
q	N/m^2	Pression dynamique
R	N	La résultante aérodynamique
S	<i>m</i> ²	Surface de référence de l'aile
T_{2}, T_{1}	N.m	Moment de torsion
tru	т	Épaisseur maximale à l'emplanture de l'aile
V	m/s	la vitesse relative du fluide non perturbé par
17.17	D.	
V2, V1	IN N	
VT,SI	N	Effort Tranchant theorique a la station « 1 »
$V_{D,B1}$	N	Effort Tranchant Discrétisé à la baie « i »
$V_{F_{w}}$	m^3	Le volume maximum du réservoir du carburant des ailes
Werew	kg	Masse de l'équipage
W_E	kg	Masse à vide de l'avion
WFmaxw	kg	masse maximale du carburant limité par le volume du réservoir du carburant
Wfds	kg	La masse de la vidange du carburant
Wfarorenb	kg	La masse du carburant de torenbeek
W _{MZF}	kg	Masse maximale de l'avion sans carburant
W _{p1}	kg	Masse de la charge utile
Wplexp	kg	La masse dépensée de la charge utile
Wtfo	kg	La masse du carburant et l'huile non consommable
Wtfs	kg	La masse du ravitaillement en vol du carburant
WWTorenb	kg	La masse de l'aile donnée par Torenbeek
<i>y</i> ₁	m	La coordonné de l'axe élastique de l'emplanture
y2	m	La coordonné de l'axe élastique de l'extrémité

* Lettres Grecques

Symbole	Définition		
и	Incidence locale du profil		
ŋ	Station adimensionnelle selon l'envergure de la position réservoir du carburant à la demi- envergure d'aile		
ղ _լ , ղ _թ	Station adimensionnelle de l'envergure aux bords intérieurs et extérieurs de l'aile		
$\Pi_{\rm LF}$	Station adimensionnelle selon l'envergure de la position réservoir de carburant à la demi- envergure d'aile du bord intérieur de l'aile		
η _{οF}	Station adimensionnelle selon l'envergure de la position réservoir de carburant à la demi- envergure d'aile du bord extérieur de l'aile Effilement		
$\Lambda_{1,E}$	Fleche au bord d'attaque		
ATE	Fleche au bord de fuite		
PF	La densité du carburant		

* <u>Abréviations</u>

Nom	Définition
COSMIC	Computer Software Management Information Center
FEA	Finite Element Analysis
FEM	Finite Element model
MSC	MacNeal-Schwendler Corporation
NACA	National Advisory Committee for Aeronautics
NASA	National Aeronautics and Space Administration
PCL	Patran Command Language

Introduction

La conception d'un avion est un processus long impliquant plusieurs départements où une décision sans accord d'un groupe aura un impact majeur sur le reste. Des fois, ces décisions tardives peuvent nuire considérablement sur le développement en augmentant le coût et en affectant la cédule.

La performance d'un avion a un lien direct avec le poids. Ce dernier est souvent estimé au début de projet basé sur des méthodes et techniques statistiques entre autre celle de NASA GASP, Roskam, Torenbeek, Raymer et autres... C'est avec ces valeurs que les clients potentiels et le manufacturier s'entendent et signent des contrats. Des pénalités financières seront appliquées si le manufacturier ne respectera pas les performances promises. Le département d'ingénierie souvent héritera de ces estimations et doit rencontrer le poids cible de chaque composante. Il faut dire que, 1% d'erreur sur le poids promu impliquera une réduction de la charge utile c.-à-d. des passagers en moins, ou une distance franchissable de l'avion moins longue. Ces implications sont inacceptables par les operateurs. Un Boeing 747 avec un excès de poids de 1% impliquera 20 passagers de moins avec les mêmes performances.

De plus en plus, les manufacturiers impliquent tôt le département de structure dans le processus de développement (préparation du cahier de charge) pour être sûr que les estimés sont plus précises et du fait rencontrer les engagements. Des techniques plus élaborées et plus précises sont introduites au stade de l'étude conceptuelle afin d'optimiser le poids et avoir une configuration la plus légères possible. Pour ça, nous aurons besoins des outils plus performants tels les éléments finis. Il faut savoir que la génération d'un modèle d'éléments finis d'une aile prendra de plusieurs jours à quelques semaines. S'il faut rajouter l'exploration de plusieurs configurations, cela pourra prendre des mois. Donc un générateur d'élément fini est plus que nécessaire.

Un Générateur automatique du modèle d'éléments finis « FEM Builder » d'une aile a été développé pour répondre à ce besoin. Ce générateur crée un modèle au même niveau de précision et standard que celui utilisé pendant la phase de la certification. Cet outil génère en quelques secondes tout le modèle d'aile d'avion. Plusieurs configurations pourront être explorées dans un temps record, en plus, nous aurons un dimensionnement du niveau de la phase de certification, donc une estimation très précise.

Ce FEM Builder a été utilisé dans cette étude pour générer toutes les configurations possibles pour faire l'analyse structurale par MSC.Nastran et MSC.Patran et ainsi voir l'effet des caractéristiques structurales d'une aile d'avion sur la distribution de charge le long de l'envergure, sur le poids de l'aile ainsi que sa rigidité.

En plus précis des courbes seront dressées montrant l'effet de l'effilement, la flèche, le type de profil NACA sur la sur la distribution de charge le long de l'envergure, sur le poids de l'aile et sa rigidité. Ces courbes aideront lors de prise de décision sur le choix de ces paramètres caractéristiques aérodynamiques et structuraux d'une aile d'avion.

Le travail présenté est subdivisé en quatre chapitres.

Chapitre 1 : Est une généralité sur les caractéristique d'une aile d'avion.

- Chapitre 2 : Est consacré pour la modélisation par éléments finis : MSC.Patran et MSC.Nastran et le FEM- Builder
- Chapitre 3: contient les principales charges externes et internes appliquées sur une aile d'avion

Chapitre 4: simulations et interprétations des résultats.

Ce travail s'achève par une conclusion générale.

1.1) Introduction:

Ce chapitre dresse une vue d'ensemble des caractéristiques externes et internes d'une aile d'avion. Il dresse aussi les principaux aspects aérodynamiques et structuraux contribuant à la conception préliminaire d'une voilure.

Les ailes représentent le cœur de l'avion, vu qu'elles assurent la sustentation en vol, grâce à des réactions aérodynamiques que l'air exerce sur elles.

Ancrée sur le fuselage, l'aile sert de réservoir de carburant, supporte des dispositifs permettant la manœuvrabilité de l'avion, elle peut aussi servir de point d'attache pour les blocs propulseurs, le train d'atterrissage et des emports militaires (missiles, bombes, roquettes).

1.2) <u>Caractéristiques d'une l'aile d'avion :</u>

1.2.1) Les caractéristiques externes :

Les caractéristiques externes de l'aile représentent sa géométrie.

1.2.1.1) <u>Géométrie de l'aile :</u>

La forme en plan des surfaces portantes joue un rôle important pour la détermination des caractéristiques aérodynamiques. La figure (1.1) illustre ceci et inclut les noms des symboles des divers paramètres de la géométrie de la forme en plan.

Figure (1-1) caractéristiques externes de la géométrie de l'aile [1]

b : Envergure de l'aile

c : Corde

- *c* : Corde aérodynamique moyenne
- $c_{\mathbf{r}}$: Corde à la section centrale ou de l'emplanture
- c_t : Corde à l'extrémité
 - : Effilement
- $\Lambda_{\mathbb{L}}$: Fleche au bord d'attaque
- $\Lambda_{\mathbb{T}}$: Fleche au bord de fuite
- n, m : Station adimensionnelles de la corde en fonction de c

 η_1 , η_u : Station adimensionnelle de l'envergure aux bords intérieurs et extérieurs de l'aile

1.2.2.2) Surface de référence :

La surface de référence d'un avion est la surface projetée sur un plan horizontal des deux ailes et de la partie du fuselage comprise entre ces deux ailes.

Pour une aile trapézoïdale la surface de référence est donnée par la relation suivante

$$S = \frac{h}{2}c_{T}(1+\lambda)$$
(1.1)

1.2.2.3) Profil de référence :

Sur les avions modernes le profil diffère au fur et au mesure que l'on s'éloigne du fuselage. On dit que l'aile est vrillée ou elle procède un angle de torsion.

Généralement les profils de référence sont choisis au niveau de l'encastrement de l'aile dans le fuselage. Une aile souvent possède plusieurs et différents profils cherchant les caractéristiques optimales pour chaque section de l'aile le long de l'envergure.

1.2.2.4) L'allongement : aspect ratio A

L'allongement d'une voilure est défini par le rapport :

$$A = \frac{b^2}{S}$$
(1.2)

Pour une aile trapézoïdale son allongement est égale à :

$$A = \frac{2 b}{c_r (1 + \lambda)}$$
(1.3)

Cette grandeur sans dimension joue un rôle important dans l'étude de la trainée induite et peut varier beaucoup selon les avions.

- La portance augmente avec l'allongement de l'aile voir figure (1.2)
- Le poids de l'aile augmente proportionnellement avec la racine carrée de l'allongement de l'aile

L'angle d'attaque au décrochage augmente au fur et à mesure que l'allongement de l'aile diminue,

Figure (1-2) : effet de l'allongement sur la distribution de portance [2]

1.2.2.5) *Effilement*: taper ration,

L'effilement est le rapport de la corde de l'extrémité de l'aile sur la corde à l'emplanture

Figure (1-3) : effet de l'effilement sur la distribution de portance [3]

- L'effilement affecte principalement la distribution de la portance sur l'envergure de l'aile
- Sur une aile possédant flèche arrière ; les bouts d'ailes sont surchargés à cause de l'écoulement latéral de l'air. Pour obtenir une trainée induite minimum, l'effilement de l'aile doit diminuer.
- Un effilement trop faible (0 .2 sauf pour une aile DELTA) augmentera le risque de décrochage en bout de l'aile)
- = 1 pour les ailes rectangulaires
- = 0.5 pour les ailes moyennement effilées
- = 0 pour les ailes DELTA

Il existe des ailes d'effilement inverse supérieur à 1

1.2.2.6) <u>Angle de flèche :</u>

La flèche est l'angle formé entre une ligne de référence longitudinale de la voilure et de la perpendiculaire au plan de symétrie de l'avion à une fraction donnée en général 25% de la corde à partir du bord d'attaque

$$M_{e_j} = M_{\infty} \cos(\Lambda_{\rm L}) \tag{1.5}$$

$$M_c \propto \frac{1}{\cos^{11}\Lambda}$$
 (1.6)

- C'est pour cette raison qu'elle est utilisée pour réduire les effets de l'écoulement transsonique et supersonique
- 4 L'angle de flèche réduit la pression dynamique ressentie :

$$q_{e_j} = q_{\infty} \cos^2(\Lambda_L)$$
 (1.7)

L'angle de flèche augmente le poids de l'aile :

$$N_{\rm W}$$
 tan²() (1.8)

- La flèche de l'aile augmente la stabilité de l'avion.
- Plus la flèche de l'aile augmente ; plus la tendance à avoir un moment de tangage positif (nez vers le haut) augmente voir figure ci-dessous.

Figure (1-5) : effet de la flèche sur la stabilité [2]

1.2.2.7) L'épaisseur relative :

L'allongement élevé souhaitable pour l'avion de transport à vitesse réduite peut être réalisé seulement si la profondeur à la racine d'aile disponible, est suffisante où le moment de flexion pendant le vol est maximum. L'épaisseur relative est représentée par le rapport de l'épaisseur de la corde à l'emplanture par la corde moyenne de l'aile

L'épaisseur relative a un effet directe sur :

La trainée en régime subsonique

- Le nombre de mach critique
- La portance maximum
- 4 Les caractéristiques de décrochage
- Le poids de la structure de l'aile
- ✓ Le poids de la structure de l'aile est inversement proportionnel à la racine carrée de l'épaisseur relative ; c'est pour ça qu'on doit avoir le plus grand rapport d'épaisseur relative pour diminuer le poids de la structure

1.2.2.8) Les dispositifs hypersustentateurs :

Lors des phases d'approche et de décollage un avion doit disposer d'une portance optimale. Car au décollage l'avion doit pouvoir quitter le sol et s'élever le plus rapidement possible donc il lui faut une bonne portance et une faible traînée. Alors qu'à l'atterrissage, il s'agit de se poser avec la vitesse la plus faible possible ce qui impose la portance la plus grande possible. Les dispositifs hypersustentateurs sont deux sortes.

Figure (1-6): Les dispositifs hypersustentateurs [5]

Les dispositifs hypersustentateurs perdent de leur efficacité sur les ailes à grande flèche; car plus l'aile a une grande flèche, l'hypersustentation est difficile à réaliser.

1.2.2.8.1) Les volets :

Se sont des gouvernes aérodynamiques qui utilisent les réactions de l'air, constituées comme les autres gouvernes, de volets mobiles articulés sur des charnières. Leurs braquages ne modifie pas l'assiette de l'avion autant qu'un aileron ou un gouvernail de profondeur donc il engendre toutefois un couple piqueur, mais change le caractère aérodynamique habituel de l'aile en créant une portance supplémentaire.

Les volets permettant ainsi de voler à un angle d'attaque plus grand, donc à vitesse plus faible ce qui facilite l'atterrissage et braqués à un moindre degré, facilite le décollage pour les mêmes raisons. Les principaux systèmes sont :

Figure (1-7) Les types des dispositifs bord de fuite [5]

***** $<u>Courbe de C_z = f(\alpha):</u>$

Tous les dispositifs hypersustentateurs de BF translateront la courbe $C_z = f(\alpha)$ vers le haut

4 L'augmentation de C_{z_m} se fait à u de C_{z_m} constant

4 On note même une légère diminution de a de C_{z_m}

Figure (1-8) : effet des volets sur la courbe de $C_{\mathbb{Z}} = f(\alpha)$ [6]

1.2.2.8.2) <u>Les becs :</u>

Se sont des dispositifs amovibles sur le bord de fuite, les becs jouent le même rôle que les volets mais ils n'interviennent qu'au vol au deuxième régime pour retarder le décrochage, donc les becs représentent un remède au décrochage. Ces systèmes sont :

Figure (1-9) Les types des dispositifs bord d'attaque [5]

***** $<u>Courbe de C_z = f(u):</u>$

Tous les dispositifs hypersustentateurs de bord d'attaque retardent le décollement extrados prolongeront la courbe de $C_z = f(\alpha)$

- 4 L'augmentation de C_{z_m} est toujours liée à une augmentation α de C_{z_m}
- 4 La visibilité vers l'avant risquera d'en partir en approche

Figure (1-10) : effet des becs sur la courbe de $C_z = f(\alpha)$ [6]

1.3) Les caractéristiques internes :

Les caractéristiques internes de l'aile englobent la boite aile qui représente la structure de l'aile qui supporte les différentes charges de cisaillement de torsion et le moment de flexion ; elle se compose de plusieurs éléments :

Figure (1-11) La structure multi longerons [7]

1.3.1) Les longerons :

Le longeron est l'élément le plus important de l'aile. Il supporte la majorité des contraintes de flexion, traction et compression, il assure la rigidité globale.

Dans certains ailes les constructeurs placent un faux langerons, semblable au longeron principale, il assure plus de rigidité.

1.3.1.1) Configurations de longerons :

La partie principale d'un longeron est l'âme, c'est le membre qui soutient la charge de cisaillement, qui est la fonction principale du longeron. Afin de soutenir la charge de compression établie par le flux de cisaillement sur le bord de l'âme, des semelles sont créées sur l'extrémité supérieure et inférieure de l'âme et les nervures sont attachées à chaque fin verticale de l'âme avec un poteau vertical résistant à la même charge de compression.

Figure (1-12) : construction de nervure [8]

Quand l'espacement de nervure est tel que les panneaux d'âme de longeron sont trop longs, des raidisseurs droits sont ajoutés comme briseur de panneau. Ceci a également l'effet de réduire le flambement dans les semelles de longeron rapportées si l'âme flambe.

1.3.1.2) Les différents types de longerons sont :

Longerons simples :

Pour des raisons de faciliter la construction, on utilise comme longerons, des tubes de déférente forme profilée du V, U, I et L.

Longerons composés :

Les longerons composés sont :

-les longerons composés à semelle et à âme unique.

-les longerons à semelle et à âme double ou longerons caissons.

Les âmes sont toujours à partir de la rédie.

Longerons monoblocs :

Ces formes sont forgées ou usinées. Ils peuvent avoir une épaisseur continuellement décroissant vers l'extrémité de l'aile.

Figure (1-13) : les différents types de longerons [9]

1.3.1.3) Positions des longerons :

L'emplacement des longerons se fait principalement pour déterminer les dimensions de la « Wing box ». Ils sont positionnés de manière à maximiser le volume de celle-ci pour ainsi permettre une plus grande rigidité en torsion et du même coup une plus grande capacité des réservoirs d'essences dans les ailes.

Le longeron avant est positionné à (15-20%) de la corde de l'aile, ce qui est à la limite standards lors de la conception d'ailes d'avions. D'autre part, le longeron arrière sera positionner à (60-70%) de la corde soit la limite standards. Lors du positionnement du longeron arrière, il faut toujours s'assurer que celui-ci n'allait pas interférer avec les « flaps » des ailes.

Figure (1-14) : position du longeron avant et arrière [10]

1.3.2) <u>Les nervures :</u>

Ce sont les éléments transversaux de la structure de l'aile et de l'empennage ; c'est eux qui donnent le profil désiré et leurs but principal est de transmettre la force de portance ou le cisaillement vertical aux longerons ainsi que d'autre fonctions secondaire se qui rendent leurs analyse beaucoup plus complexe :

- Ecrasement de charge : quand le caisson de l'aile est soumis aux charges de flambement, ce flambement du caisson tend à produire des charges internes temporaires sur les nervures d'aile donc la nervure assure le maintient de la forme
- La tension diagonale : quand le revêtement flambe, la nervure résiste à la compression provenant de la tension diagonale du revêtement
- Redistribuer la charge : dans le cas d'une charge concentrée comme celle du train d'atterrissage principal, la nervure redistribue la charge au-dessus du caisson d'aile.
- Séparateur de réservoir de carburant : afin d'éviter que le carburant rentre dans l'aile extérieure pendant les manœuvres de roulement, certains des nervures peuvent être employées en tant que séparateur de réservoir de carburant. Dans ce cas, la nervure va éprouver un chargement normal de pression venant du carburant.

1.3.2.1) Configuration de Nervure :

La partie principale d'une nervure est l'âme qui est le membre qui soutient la charge de cisaillement et afin de soutenir le flambement causé par la charge normale distribuée, des talons sont créés sur l'extrémité supérieure et inférieure de l'âme. Les nervures sont attachées verticalement à chaque fin d'âme pour transférer le cisaillement aux longerons.

Figure (1-15) La structure multi longerons [9]

Les nervures peuvent être assemblées ou usinées selon la taille de la nervure et le matériel choisi

Les lisses sont attachées aux nervures par des brides de fixations qui transmettent la force de portance aux nervures, en même temps ces brides font passer la charge de compression de la nervure écrasée (effet de flambement). Afin de bien réagir cette charge de compression/tension entre les lisses inférieur et les lisses supérieures, des raidisseurs verticaux sont employés pour les relier. Ces poteaux sont utilisés également pour stabiliser l'âme en cisaillement et en compression et pour distribuer la charge concentrée dans l âme.

Figure (1-16) : construction de nervure [11]

Les revêtements sont attachés à la nervure en utilisant des shear ties pour le transfert de cisaillement entre le revêtement et l'âme de nervure

Figure (1-17) : les shear ties

1.3.2.2) <u>L'espacement de nervure</u>

L'espacement et l'orientation de nervure diffère d'un avion à autre et il peut être optimisé. L'optimisation est faite entre tout le poids de nervure et poids de revêtement -lisses. Si l'espacement de nervure est grand, tout le nombre de nervures est réduit et donc le poids total d'elles. Cependant de l'autre latéral, faire augmenter ainsi la longueur de colonne de la longueur du revêtement -lisse. Si la longueur augmente l'inertie de revêtement -lisse devra être augmentée pour la stabilité en compression et donc leur poids augmentera. L'espacement optimum de nervure peut ne pas s'adapter dans la structure réelle puisque la position de nervures est également dictée par la charge concentrée qui a besoin de structure auxiliaire d'accès pour redistribuer la charge dans le caisson d'aile (train d'atterrissage principal, pylône de moteur...).

Figure (1-18) optimisation d'espacement de nervure [11]

1.3.2.3) Orientation des nervures :

Différents arrangements d'orientation de nervure ont été employés dans le passé, chacun ayant une logique relative ; les orientations les plus utilisées jusqu'à nos jours sont :

- Nervures perpendiculaires au longeron arrière
- Nervures parallèle à l'écoulement « streamwise »
- Solution alternatives avec une zone de transitions

Figure (1-18) Orientation des nervures

* <u>Nervures perpendiculaires au longeron arrière :</u>

<u>Avantage :</u>

- Pour le même espacement des nervures, elles sont plus courtes donc moins pesantes
- Espacement constant de bout en bout

Inconvénient :

- il faut ajouter d'autre structure pour supporter les voles et les moteurs car ils ne sont pas aligner avec les nervures
- * <u>Nervures parallèle à l'écoulement « streamwise » :</u>

<u>Avantage :</u>

- ces nervures sont utilisées pour donner un bon support pour les moteurs et les volets.
- Espacement constant de bout en bout

Inconvénient :

Pour le même espacement, les nervures sont plus longues (dons plus pesantes).

* Solution alternatives avec une zone de transitions

Ceci présente un défi: l'espacement augmente au longeron avant dans la zone de transition avant de revenir à l'état normal.

1.3.3) Les lisses :

Se sont des pièces de grande longueur et de faible section. Les lisses sont attachées aux nervures par des brides de fixations qui transmettent la force de portance aux nervures. Afin de bien réagir la charge de compression/tension entre les lisses inférieures et les lisses supérieures, des raidisseurs verticaux sont employés pour les relier.

Les lisses sont orientées ou bien parallèles au longeron arrière ou parallèles au longeron avant ; la première configuration est la plus utilisés pour une raison simple est que le plus chargé des longerons est le longeron arrière; donc si on a une fissure dans la semelle du longerons arrière alors on aura la lisse adjacentes qui prendra le relais et on sais très bien

qu'elle sera le long de l'envergure de l'aile pas coupe a mi-chemin comme sur le longeron avant.

Et à cause de la flèche et l'effilement les lisses meurent dans le longeron avant, et on les appelle lisse run-out.

Figure (1-18) : configuration lisses parallèles au longeron arrière [3]
2.1) Introduction :

Le chapitre présente une vue détaillé sur la modélisation par FEM qui aujourd'hui ne cesse de se développer en se basant sur le plus puissant des logiciels utilisés dans l'industrie aéronautique MSC. NASTRAN, et MSC. PATRAN

De nombreuses recherches ont été faites pour diminuer le temps d'analyse, dans ce sens Mr KHERRAT a développé un logiciel très intelligent qui peut générer un model élément finie en quelque seconde. Nous allons vous présenté dans ce chapitres ces deux logiciels.

La modélisation par éléments finis est utilisée de façon intensive dans l'industrie aéronautique. Dès le début d'un projet, la création d'un modèle complet de l'avion est une des tâches prioritaires du département de contraintes. Ce modèle va aider à prendre des décisions critiques sur les choix de design. Il est utilisé dans la conception de nouveaux produits, existants et perfectionnement du produit

Il ya généralement deux types d'analyse qui sont utilisés dans l'industrie: modélisation 2D, et la modélisation 3D. Bien que la modélisation 2D conserve la simplicité et permet l'analyse à être exécuté sur un ordinateur normal relativement, il tend à produire des résultats précis de moins. Modélisation 3D, en revanche, produit des résultats précis tout en sacrifiant plus de la capacité de courir sur tous les ordinateurs les plus rapides, mais efficace. Dans chacun de ces programmes de modélisation, le programmeur peut insérer de nombreux algorithmes (fonctions) qui peuvent rendre le système se comporte de façon linéaire ou non linéaire ; les systèmes linéaires sont beaucoup moins complexes et généralement ne tiennent pas compte de la déformation plastique.

L'analyse par élément fini utilise un système complexe de points appelés nœuds qui font une grille appelée maillage voir figure (2.1). Ce maillage est programmé pour contenir le matériau et les propriétés structurales qui définissent la façon dont la structure va réagir à certaines conditions de charge

Figure (2.1) : maillage d'une aile

Les nœuds sont affectés à une certaine densité dans le matériau en fonction des niveaux de stress imaginé d'un domaine particulier. Les régions qui reçoivent de grandes quantités de stress ont généralement un nœud de densité plus élevés que ceux dont l'expérience ou pas peu de stress.

Points d'intérêt peut être constitué de point de rupture du matériau testé précédemment, filets, coins, des détails complexes et les zones de stress élevé.

Un large éventail de fonctions objectives (variables au sein du système) est disponible pour la minimisation ou la maximisation:

- Masse, volume, la température
- énergie de déformation, contrainte-déformation
- Force, de déplacement, vitesse, accélération
- Synthétique (définis par l'utilisateur)

Il existe plusieurs conditions de chargement qui peuvent être appliquées à un système. Quelques exemples sont présentés:

Figure (2.2):cas de chargement d'une aile

- Point, de la pression, thermique, la gravité et centrifuge charges statiques
- les charges thermiques de la solution d'analyse de transfert de chaleur
- Déplacements forcés
- Le flux de chaleur et convection
- Point, pressions et aux charges de gravité dynamique

Chaque programme FEA peut être livré avec une bibliothèque d'éléments, ou l'un est construit au fil du temps. Certains éléments de l'échantillon sont les suivants:

	Eléments Rossort	Eléments Line	Eléments surface	Eléments Solide	Eléments Mul (MPC)	ltiple contrainte
Comportement Physique	Rossort Simple	Rod(charge axial),Beam	Cisaillement, Membrane, Plat	Brique, Tetrahedron	Elément Corp Rigide	Elément De Contrainte d'Interpolation
MSC/NASTRAN Nom d'Elément	CELASI	CROD CBAR	CQUAD4 CTRIA3	CHEXA CTETRA	RBE1 RBE2	RBE3
Propriétés d'Entré Associe	PELAS	PROD PBAR	PSHELL	PSOLID	None	None
Exemple d'utilisation	Connexion entre surface de contacte et l'avion	Représentation simple des lisses de fuselage	Représentation de revêtements de fuselage et l'aile	Les composants Nie d'abeille	Représentation De machine	Distribution de charges
	12		\square		<	\times

 Tableau (2.1): Types d'éléments utilisés pour FEM global [12]

De nombreux programmes de FEA sont également équipées de la capacité d'utiliser des matériaux multiples au sein de la structure telle que:

- Isotrope,
- Orthotrope, identiques à 90 degrés
- anisotrope.

Types d'analyse d'ingénierie

Analyse **structurale** des modèles linéaires. Les modèles linéaires utilisent des paramètres simples et supposent que le matériau n'est pas déformé plastiquement.

Analyse **vibrationnelle** est utilisé pour tester un matériau contre les vibrations aléatoires, le choc, et l'impact. Chacun de ces incidences peut agir sur la fréquence de vibration naturelle de la matière qui à son tour, peut entraîner de résonance puis la rupture.

4 Résultats de l'analyse par éléments finis

FEA est devenu une solution à la tâche de prédire l'échec en raison de contraintes inconnues en montrant les problèmes dans un matériau et permettant aux concepteurs de voir toutes les contraintes théoriques.

Cette méthode de conception des produits et des essais aide à optimiser les coûts de fabrication qui serait réalisé si chaque échantillon a été effectivement construit et testé.

2.2) Logiciels Nastran/Patran :

Logiciels Nastran/Patran proposent un ensemble de solutions pour l'analyse de structures qui répond à la fois aux besoins des ingénieurs, des concepteurs et des experts calcul expérimentés. Ces solutions aident les entreprises à relever leurs défis industriels en permettant aux ingénieurs d'avoir une meilleure compréhension du comportement de leurs produits grâce aux tests virtuels. Les ingénieurs qui utilisent les solutions d'analyse de structures de Nastran et Patran sont à même d'évaluer de nombreuses variantes de conception, ce qui confortera leur choix de conception pour répondre aux exigences définies, avant même que le produit physique ne soit construit. De la pièce unique aux grands systèmes complexes, de la statique linéaire aux problèmes dynamiques non-linéaires, les solutions d'analyse de structures de Nastran et Patran sont conçues pour évoluer avec le besoin, optimiser le coût de possession, et accompagner les entreprises dans la réalisation de leurs objectifs.

Figure (2-3) : Fonctionnement et fichier de MD Patran-MD Nastran

2.2.1) Présentation MSC-PATRAN :

Patran est un environnement complet de pré- et post-traitement dédié à l'analyse par éléments finis, qui permet aux ingénieurs de développer et tester virtuellement des conceptions de produits. Utilisé par les leaders mondiaux comme standard pour la création et l'analyse de modèles de simulation, Patran associe conception, analyse et évaluation des résultats au sein d'un environnement unique.

Patran permet d'importer directement des géométries de n'importe quel logiciel de CAO, puis de définir les charges, les conditions limites et les propriétés des matériaux, afin de procéder à diverses simulations dans des conditions différentes, de visualiser les résultats et,

enfin, de mieux comprendre le lien entre les décisions de conception et les caractéristiques de performances des produits, telles que les contraintes, les déformations, les vibrations, le transfert thermique et bien d'autres.

Grâce au langage de commande Patran PCL (Patran Command Language), les ingénieurs peuvent compléter les puissantes fonctionnalités de modélisation et d'analyse par leurs propres applications, commandes et menus personnalisés. Les utilisateurs de Patran peuvent facilement et efficacement réitérer et évaluer différentes options de conception, ou réutiliser des conceptions et des résultats existants, sans perdre de temps à effectuer un nettoyage manuel ou à recréer les données.

Figure (2-4) : Fenêtre de PATRAN

2.2.1.1) La base des deux modèles :

* <u>Mode géométrique :</u>

- 1) Point
- 2) Courbe
- 3) Surface
- 4) Volume
- 5) Plan
- 6) Système de coordonnée

* Mode d'éléments finis :

- 1) Nœuds
- 2) Éléments
- 3) MPC
- 4) Propriétés élémentaires et matérielles
- 5) Conditions aux limites

Le menu principal est ce qui apparaît lorsque Patran est lancé.

Figure (2-5) : Le menu principal

Ce menu se divise en 4 segments:

- 1. Gestion de fichiers et configuration
- 2. Touches rapides
- 3. Divers
- 4. Fonctions principales d'exécution

2.2.1.2) Gestion de fichiers et configuration :

File	Group	Viewport	Viewing	Display	Preferences	Tools
				([†])	(°)	

Figure (2-6) :: Gestion de fichiers

1) *File* : ce menu sert à créer une nouvelle data-base ou ouvrir une existante, il sert aussi pour importer des fichiers et imprimer.

2) *Group* : Patran nous permet d'assembler des items ensemble pour faciliter la visualisation et les gros travaux. Ces groupes d'éléments ne sont associés que pour la visualisation et un même élément peut faire parti de plusieurs groupes simultanément. Ce menu est expliqué plus en détail plus loin dans le document.

3) *Viewport* : ce menu sert à configurer la fenêtre de visualisation.

4) *Viewing* : ce menu est complémentaire au menu 3.

5) *Display* : ce menu sert à configurer la visualisation des différents éléments géométriques et FEM. Ce menu sera aussi vu plus en détail plus loin dans le document.

6) **Préférences** : le menu préférence donne les paramètres de fonctionnement globaux de Patran comme la sensibilité de la souris, le type d'analyse (statique, dynamique, thermique...) et les paramètres de capture de la souris.

7) *Tools* : ici sont mises certaines fonctionnalités bien spécifiques qui ont été programmées par MSC à la demande des utilisateurs mais ne sont pas encore intégrées dans les menus principaux. On verra plus tard dans ce document comment utiliser une fonction de «Tools» pour déterminer les propriétés comme le volume de la structure modélisée, sa masse, son centre de gravité et autres.

2.2.1.3) Touches Rapides :

Ce menu diffère d'un ordinateur à l'autre et peut contenir différent symbole. Chacun de ces symboles exécute une fonction directe et précise. En voici quelque un.

Figure (2-7) : Touches Rapides :

- 1- Set le bouton du centre de la souris en rotation XY.
- 2- Set le bouton du centre de la souris en rotation Z.
- 3- Set le bouton du centre de la souris en déplacement.
- 4- Set le bouton du centre de la souris en zoom.
- 5- Zoom encadré
- 6- Fit view
- 7- Centrer le modèle dans la fenêtre par rapport à un point
- 8- Centrer le modèle dans la fenêtre par rapport à son centre
- 9- Centrer le modèle dans la fenêtre par rapport à un point
- 10- Zoom In fixe.
- 11- Out fixe
- 12- Visualization en Wire.
- 13- Visualisation en Hiddenlines
- 14- Visualisation en Ombragé
- 15- Tous les identificateurs visibles
- 16- Tous les identificateurs invisibles

La figure suivante montre les touches des vues :

Figure (2-8) : Touches des vues

- 1- Vue Devant
- 2- Vue Derrière
- 3- Vue Dessus
- 4- Vue Dessous
- 5- Vue Côté Droit
- 6- Vue Côté Gauche
- 7- Vue Iso1
- 8- Vue Iso2
- 9- Vue Iso3
- 10- Vue Iso4
- 11- Plot/Erase Cette fonctionnalité est très utile et est décrite en détail plus loin
- 12- Gère les identificateurs a l'écran. Pour voir le numéro des nœuds ou éléments
- 13- Grossir/Réduire la grosseur des points
- 14- Grossir/Réduire la grosseur des nœuds
- 15- Visualiser les surfaces avec/sans lignes intermédiaires.

2.2.1.4) *Fonctions* principales d'exécution :

Figure (2-9) : les fonctions principales

1) *Geometry* : Patran traite de façon indépendante tous les aspects géométriques des aspects FEM. La géométrie est définie comme étant le support sur lequel nous allons bâtir le FEM, elle est constituée de points, lignes et surfaces. Ce menu sert à créer et modifier tous ce qui touche la géométrie

2) *Elements* : Ce menu traite tous ce qui concerne les éléments finis, c'est-à-dire les nœuds et éléments.

3) *Loads/BCs* : C'est ici que l'on définit les conditions frontières du modèle ainsi que les charges externes qui lui seront appliquées.

4) *Materials* : les matériaux sont créés et modifiés à l'aide de ce menu.

5) *Properties* : Lorsque les éléments et matériaux sont créés, il faut attribuer aux éléments leur propriété spécifiant le type d'élément, l'épaisseur ou l'aire, les inerties...

6) *Load Cases* : Une fois les conditions frontières et charges définies, elles sont assemblées en cas de chargement. Un cas de chargement comprend des conditions frontières ET diverses charges, cette combinaison est faite à l'aide de ce menu.

7) *Fields* : Patran nous offre la possibilité d'utiliser des champs 2D ou 3D pour définir certains paramètres de chargement ou simplement condenser de l'information. Plusieurs menus peuvent se référer aux champs créés ici. Ce menu ne nous sera toutefois pas utile dans le cadre du projet.

8) Analysis : C'est ici que l'on exécute l'analyse Nastran et importons les résultats de celle-ci.

9) *Results* : Une fois les résultats importés, ce menu nous offre toutes les possibilités pour visualiser les résultats.

	al
Action: Create Object ✓ Point Method: Surface Print ID Fiel Sufface 1 Coord Pane Vodcr Coord 0 Pane Vodcr Vodcr	Action Create Objec: Point Method Point D List Point D List Point D List Point D List Refer, Coord Othect Pierce Project
Point Counchoales 1 st [[0 0 0] _Apply.	Point Cocrdinales List [000] -Apoly-
Deemetry	Secnetry

✤ <u>Géométrie :</u>

Figure (2-10) : comment créer une géométrie

ACTION : Ce que l'on veut faire

OBJECT: Sur quel type de géométrie

Method : Comment le faire

* Modèle par Élément Finis

4 <u>Maillage :</u>

Aellon. Crecte		Action.	Asente 👻
object. Med	accel .	Congraduate a	Mean Seed 🔫
Type: Meal		tonic.	🛹 thulumu
Lux Nill			Two Way Dias
i lecter	a cmont		Cuty Dased
MPC		-Deumot La	
CULT	det etter		
Thursday of Clause 4	94 ⁻	🗢 Istanber	of Flements
C Elenia i La elli (L)		C Lieben	LI ADKID U J
tsaa alama 🔤		Istanber	13
	X	1.000000000	
🗟 Jaalo 🛏 e e a ce		July Auto Eve	south
Curve Livi		Surve List	
0		<u>p</u>	
	7 7	100	14 M
-App	427-		-#19.00-
	1640		
aller I becamales		Tolles Photos	tex .

Figure (2-11) : réalisation d'un maillage

OBJECT: Sur quel type de Maillage?

Method : Comment le faire?

En FEM, 5 types d'objet nous intéressent : Mesh Seed ; Mesh , Node, Element

Création de Nœuds/Éléments

(<u></u>		- 10.4
ection: <u>Stocic ♥</u> Stject: <u>Stocic ♥</u>	An III Chester T	Alti Lasta T
ArcCintor ander: 1 tor 90000235 In Crows		Type: Construction Analysis Free Bond O seef() Code: XI Cycle: O seef() Type: SI Cycle: O seef() Type: SI Cycle: O seef() Siding Surface BD-2
Arayan.Cr Gauss C Jorrindie Flane	L prompy Cousts	аполова
IF consistents Sectors IF consistents	-trap Name Tr Engl T-bar 8. Questio Soluci Establing(*-pp	Rh-I NF RTER T RDCR RTER TI RDCNT
Zana Trinder Ind	Concerne de la conservación	
	NL-ck: 1 d-ck: 4	
Ente Tements	Firle Elemente	Drite Depente

Figure(2-12) : les différentes étapes de création de Nœuds/Élément

	Lourthon 👻		Central andream =	
roperty hame	Veke		Mernos' Marka hour 🔫	1
næði í Klin Ernæk 🖛	CC000131	~	Frading Viderada	
osso i Kato e	ICCOMP21		15ATL 2010	2
hour Worklas +	SIMIO			
enoty=	11			
her Hal Espan. Coeffi	T15-CUS			-
huch rai Pemping Coent			1	1000
eterence l'emperature	r.		I STAT	
			1	1
naaler ins DearGode Venstle	elta.		Mr. Dornal New av	
nasarina JaaMada Vanahk	, pita		First to read bloc a -	-
naalar i ta SabAbda Vatable	, elta		Facestight 1.1	
naswore JeaMade Verskie	, alta		First of the second sec	-1
naeter (rei Jeandinde Venetie	, alta			-1
nae vr (rel DeaMinde Vienetie I renz Constitutive Models:	. etta		Parardphan Parardphan Lung 42 45 11 1100	-1
naeler (m. Seardinde Menselle Frenk Constitutive kladels: Sear Flagton (m. 1116) (2011ke)	e14		Proversit Nove	
naeler (m. SearMode Menselle Tent Constitutive Klodels: near Flaerer (m.). (Arthre)	e14		Protocold Normal	
nae se ma Deardede Vieneble rent Constitutive Klodels: rent Dearce (), ((Artibe)	etta		I und the preton	

* <u>Création des matériaux</u>

Figure (2-13) : création des matériaux

Material Name: Identification de la carte matérielle

Input Properties: Définir les propriétés du Matériel → Module d'élasticité, coefficient de poisson, densité ...

Input Properties			12 日間	a la
General Sector Rock (1930) Encact # Sunce	- Main	V de styp		Asin <u>izate v</u>
dirini, Sariji	AND IN	ма у рыст	33	Oned 20 -
Aucu	C.3510100	Rud Sch		
(Torskina Constant)		Real Goala	112 -	Flap Sets Dy Jame 💌
There Schedure Charles		1.5emil 5.5cmin		prod.4031501 prod.4001506
No. 16- 17 III. 16- 16- 16- 16- 16- 16- 16- 16- 16- 16-		Mi addacaa.+		prod.4001601 prod.4001606
				w 124,1001701
×				1 84
				Property Soft-Jame
				Ophiar-
				mn 🔻
				Marilan I -rm lati-n *
h dh. I e Mele eithir i X-M	dia manangka ku na na		4	
			-	Splect Appleation Region
X	ü 50		nest	
				Clement Froperties

* <u>Création des Propriétés des éléments :</u>

Properties Name: Identification de la carte Propriété

Input Properties: Définir les propriétés → Matérielles associées, Épaisseur/Aire ...

- ✤ <u>Création des conditions aux limites :</u>
- **4** Contrainte de déplacement (SPC) :

New Set Data: Identification de la carte SPC

Input Data: Définir la carte SPC Translation, Rotation (Normale) ...

Select Application Region: Définir la localisation de la SPC→ FEM, Géométrie ...

Figure(2-15) : Contrainte de déplacement

✤ <u>Application des charges externes :</u>

New Set Data: Identification de la carte FORCE

Input Data: Définir la carte force → Module de la force, Orientation (Normale)

Select Application Region: Définir la localisation de la force → FEM, Géométrie ...

Dard/HC Set Scale Factor		
4.	Type: Nodel T	
Fora: «F1 F2 F3#		
·:∪., 10000., 0.:- Moment ⊂M1 M2 M3⊂	Corrent Loud Save, Detaut	1
ј Еписа Риаза Аврт Вр2 Вр3А	Type: Static	
Moment Phase «Mp1 Mp2 Mp3»	Existing Sets	
L	Sec. 1	
ipalial Fichdes		
14		
lise.		
e		-
C PEM Dependent Data	New Set Name	•
C PEM Dependent Data	June Set Maine	
CEM Dependent Data CEM Dependent Data Auglysis Coundinals France Coord U	New Set Name	
CEM Dependent Data Analysis Coundinals France Coord U OK i Preset	hyport Units	
Cord U Cox i Record	New Set Name	

Figure(2-16): Application des charges externes

4 Création des cas de chargement

Existing Ly	and Cuses	
DEFAULT Potout	1.361	
1401		8
Fills	a 1	
oad Case	a Naine	
V Make (n	8
	Topoat Dialia	
	e Seale Factor	

Figure (2-17) : Création des cas de chargement

Load Case Name: Identification du cas de chargement

Input Properties: Définir le cas de chargement → Condition aux frontières, Charges appliquées

* <u>Analyse:</u>

Avec ce mode, on peut

- 1) Générer de fichiers NASTRAN BDF
- 2) Lancer le solveur NASTRAN
- 3) Lire les fichiers BDF
- 4) Lire les résultats de Nastran

* <u>Résultats</u>

Avec ce mode, on peut visualiser les résultats générés par Nastran (op2 ou xdb).

Object. I nine Model 🖛	Action. Create *
Method. Latt Ran 🔫	objestr <u>Gulok Pibt</u> 💌
Codo: MSC Nostron	
Type: Structural	Select Result Cases
	DL. AULT/3/01 (AtriStatic Subcase (A)
Available Jobs Wing a020 Swp 5 ett 05	
	Select Fringe Result
Job Name Wing_s320_Svvp_5_eff_35 Job Docorlption (TITLE)	Constraint Forces, Translational Displacements, Translational (And Perm Lorces, Applied Loads Grid Pein, Forces, Constraint Forces Grid Pein, Forces, Internal Forces
siruuri L	
	Select Detormation Result
	Constraint Forces, Franslational
Translation Parameters 'Solution Type	Origi Point Forces, Apolloc Loods Origi Point Forces, Apolloc Loods Origi Point Forces, Constraint Lordes Origi Point Forces, MP2 Tordes
Translation Parameters Solution Type Direct Text Input	Displacements, Transtational Orid Point Porces, Apolloc Loods Orid Point Porces, Constraint Lorces Orid Point Porces, MPC Porces
Translation Parameters Solution Type Direct Text Input Select Superclementy	Displacements, Transtational Orid Point Porces, Apolloc Loads Orid Point Porces, Constraint Lonces Orid Point Porces, MPC Porces S Orid Point Porces
Translation Parameters Solution Type Direct Text Input Select Superclements Subcases	Displacements, Translational Ord Point Forces, Apolloc Loads Ord Point Forces, Constraint Lonces Origi Point Forces, MPC Torces
Translation Parameters 'Kolistion Type Direct Text Input Select Superclements Subcases Subcase Select	Displacements, Transfalio rai

Figure (2-18) : l'analyse

Figure (2-19) : le résultat

2.2.2) <u>Présentation MSC/NASTRAN :</u>

2.2.2.1) <u>HISTORIQUE</u>

NASTRAN (NAsa STRuctural ANalysis) est un logiciel conçu et développé par la NASA dans les années 1960, pour satisfaire au besoin d'un logiciel d'éléments finis universellement disponible. À l'origine le logiciel devait être indépendant du type d'ordinateur pour en faciliter sa diffusion. Cet objectif devait cependant se révéler utopique à cause des différences importantes qui existaient entre les différents systèmes informatiques de l'époque telles que la longueur des mots de mémoire, les structures internes et les systèmes d'exploitation. Trois versions différentes furent développées pour les ordinateurs les plus populaires.

En 1969 une première version commerciale devient disponible par l'intermédiaire de la société "Computer Software Management Information Center" (COSMIC). Initialement le programme peut être acheté mais les versions subséquentes ne seront disponibles que sur une base de location, comme c'est toujours le cas aujourd'hui. En plus de COSMIC/NASTRAN supportée par la NASA, il existe plusieurs autres versions protégées de NASTRAN. La plus populaire est MSC/NASTRAN qui a été développée et qui est maintenue par MacNeal-Schwendler Corporation. MSC/NASTRAN et COSMIC/NASTRAN ont une origine commune mais, même si ces programmes ont des ressemblances superficielles, ce sont en fait des programmes différents. MSC/NASTRAN est considéré comme le standard NASTRAN à cause de sa diffusion importante, de ses possibilités avancées et du service offert à la clientèle. Le programme est continuellement remis à jour.

Figure (2-20) : Séquence type d'utilisation de Nastran

2.2.2.2) <u>LA STRUCTURE DE MSC/NASTRAN :</u>

Le programme génère et manipule une base de données pour la résolution de problèmes, en utilisant une méthode matricielle d'analyse structurale. Il n'est pas limité uniquement à l'analyse des contraintes. On peut l'utiliser pour résoudre des problèmes dans tous les domaines de la mécanique du continu.

Figure (2-21) : la structure de MSC.Nastran [13]

2.2.2.2.1) <u>Modules pour créer des modèles :</u>

Ensemble de sous-routines pour générer les modèles numériques à partir des données de base d'un problème. Banque d'éléments pour poutres, solides 3D, solides axisymétriques, membranes, plaques en flexion, coques, etc....

2.2.2.2.2) <u>Modules utilitaires :</u>

Ensemble de sous-routines pour effectuer les opérations arithmétiques. Multiplication de matrices, inversion, transformation, extraction des valeurs propres, ... etc.

2.2.2.3) <u>Modules d'entrée/sortie :</u>

Sous-routines pour la lecture et l'interprétation du fichier d'exécution, la préparation des fichiers de sortie, l'exécution des sorties graphiques, etc...

2.2.2.2.4) Système de contrôle :

C'est le programme principal qui contrôle l'exécution du travail. Ce contrôle est en fait exercé par l'usager à l'aide d'un langage particulier à NASTRAN appelé DMAP (Direct Matrix Abstraction Programming).

Des ensembles, appelés Formats rigides, préprogrammés en langage DMAP sont disponibles dans le programme de base pour effectuer les tâches les plus fréquentes.

Le langage DMAP offre à l'usager la possibilité d'exploiter le logiciel au maximum. Cette connaissance de DMAP n'est cependant pas essentielle, puisqu'avec les formats rigides une seule directive dans le fichier de travail NASTRAN est suffisante pour effectuer une tâche.

2.2.2.5) Format rigides les plus utilisés :

- Analyse statique (101)
- Fréquences naturelles et modes de vibration (103)
- Analyse dynamique transitoire (109)
- Réponse dynamique en fonction de la fréquence (108)
- Analyse de flambement (105)

Les formats rigides peuvent aussi être modifiés par l'usager pour des besoins particuliers.

2.2.2.2.6) <u>Préprocesseurs compatibles :</u>

Plusieurs logiciels servant à la modélisation des solides sont compatibles avec MSC/NASTRAN. Ces logiciels contiennent des modules pour la génération plus ou moins automatique des maillages et pour l'interprétation des résultats. Les plus connus sont :

- MSGMESH Module optionnel de MSC/NASTRAN
- MSC/XL
- CAED/I-DEAS
- MSC/GRASP
- PATRAN, MSC/NASTRAN for WINDOWS
- SUPERTAB, FAST DRAW, UNISTRUC, etc.

Structure du fichier de travail de NASTRAN (Data deck) : 2.2.2.2.7) NASTRAN ID, A, B EXECUTIVE CONTROL DECK Commandes pour le contrôle de l'exécution d'une tâche Programme en DMAP ou la directive vers un format rigide CEND CASE CONTROL DECK Instructions nécessaires pour l'analyse Choix des données, cas de chargement, les résultats désirés, etc.. **BEGIN BULK BULK DATA** Données de base pour l'analyse Matériaux, nœuds, éléments, contraintes, charges, etc. **ENDDATA**

2.2.2.8) Paramètres standards des commandes NASTRAN :

- SID Set ID (Set identification number)
- EID Element ID (Element identification number)
- PID Property ID
- MID Material ID
- CID Coordinate ID
- G Grid point (no. de nœud)
- C Degree of freedom (no. de degré de liberté)

Degré de liberté	Tx	Ту	Tz	Rx	Ry	Rz
Numéro	1	2	3	4	5	6

2.2.2.2.9) Les éléments de NASTRAN pour l'analyse des structures :

1 Dimension PELAS (CELAS), PROD (CROD), PBAR (CBAR), PBEAM (CBEAM), PBEND (CBEND)

2 Dimensions PSHEAR (CSHEAR), PSHELL (CTRIA3, CQUAD4, CTRIA6,

CQUAD8)

3 Dimensions PSOLID (CPENTA [15 nœuds], CHEXA [20 nœuds])

C Connection card (Commande pour connecter un élément)

P..... Property card (Commande donnant les propriétés d'un élément)

2.2.2.2.10) Les commandes importantes de MSC. Nastran :

GRID (Définition d'un nœud)

La commande **GRID** est utilisée pour définir un nœud dans un maillage d'éléments finis.

GRID, ID, CP, X1, X2, X3, CD, PSPC

- ID no. d'identification du nœud. Ce no. de nœud doit être unique
- CP no. d'identification du système de coordonnées utilisé pour positionner le nœud (Coordinate Position)
- CD no. d'identification du système de coordonnées utilisé pour orienter les degrés de liberté du nœud. Les six degrés de liberté du nœud, Tx, Ty, Tz, Rx, Ry et Rz, seront orientés dans la direction des axes de ce système de coordonnées(Coordinate Déplacements)
- X1, X2, X3 les trois coordonnées du nœud, par exemple x, y, z dans le système cartésien.
 - PSPC série de chiffres sans espace identifiant les degrés de liberté du nœud qui sont fixés à zéro (Permanent Single Point Constrains).

MAT1 (Propriétés d'un matériau)

Pour les matériaux linéaires, élastiques, homogènes et isotropiques

MAT1,	MID,	Е,	G,	NU,	RHO, A,	TREF,	GE,
	, ST,	SC,	SS,	MCSI	D		
MID	no. d'i	dentific	ation d	u matéri	au		

E module de Young

G	module de rigidité en cisaillement
NU	coefficient de Poisson
RHO	Densité massique, utilisé par GRAV
А	coefficient de dilatation thermique
TREF	température de référence pour les calculs des charges thermiques
GE	coefficient d'amortissement du matériau
ST, SC, SS	contraintes limites: tension, compression, cisaillement
	(pour le calcul de la marge de sécurité: M.S.)
MCSID	"Material coordinate system identification number. Utilisé seulement PARAM, CURV processing",

Si seulement deux des trois constants élastiques sont données (E, G, et NU), la troisième est calculée à l'aide de la relation suivante: G=E/2(1+v)

PBAR (Propriétés d'une section de poutre)

La commande PBAR sert à définir les propriétés de la section d'une poutre. La poutre, comme tous les éléments, possède son propre système local d'axes. L'axe local x correspond à l'axe longitudinal de la poutre. Les deux autres axes locaux y et z devraient normalement correspondre aux axes principaux de la section de la poutre.

PBAR,	PID,	MID,	A,	Izz,	I yy,	J,	NSM	
,	Cy,	Cz,	Dy,	Dz,	Ey,	Ez,	Fy,	Fz
,	Kz,	Ky,	Iyz					

- PID no. d'identification des propriétés de la section de la poutre (Property ID).
- MID no. d'identification du matériau de la poutre (Material ID).
- A aire de la section de la poutre.
- Izz moment d'aire (second moment) de la section de la poutre par rapport à son axe local z.
- Iyy moment d'aire de la section de la poutre par rapport à son axe local y.
- J constante de torsion de la section de la poutre.

NSM masse non structurale (Non Structural Mass). C'est la masse par unité de longueur de la poutre qui ne participe pas à la rigidité. Par exemple, une charge

de glace ou de l'isolant thermique.

- Cy, Cz, etc. coordonnées locales de quatre points de la section de la poutre pour le calcul de la contrainte x.
 - Kz rapport de l'aire effective en cisaillement pour de la flexion autour de l'axez local induite par un effort tranchant sur l'aire totale de la section de la poutre.
 - Ky rapport de l'aire effective en cisaillement pour de la flexion autour de l'axey local induite par un effort tranchant sur l'aire totale de la section de la poutre.
 - Iyz moment produit (produit d'inertie) de la section de la poutre.
 - Left (élément poutre)

La commande **CBAR** est utilisée pour connecter un élément de poutre entre deux nœuds d'un maillage d'éléments finis. La poutre possède deux extrémités A et B. L'origine du système local d'axe de la poutre est à l'extrémité A. L'axe local x passe par le centroïde de la section de la poutre et il est positif de l'extrémité A vers l'extrémité B. Pour définir l'orientation dans l'espace des axes locaux y et z de la section de la poutre, on utilise un vecteur d'orientation V qui doit être dans le plan local xy, du coté positif de l'axe y. Les trois composantes de ce vecteur V sont définies par rapport aux coordonnées de déplacement du noeud GA. Autrement dit, le vecteur V prend son origine au nœud GA.

CBAF	R,	EID,	PID,	GA,	GB,	V1 ou	G0,	V2,	V3
,	PA,	PB,	Z1A,	Z2A,	Z3A,	Z1B,	Z2B,	Z3B	
EID	no. d'i	dentific	ation de	e l'élém	ent de p	outre.			
PID	no. d'ie	dentific	ation de	e la sect	ion de l	a poutr	e (carte	PBAR).
GA	nœud	sur lequ	iel est c	onnecté	l'extré	mité A	de la po	outre.	
GB	nœud	sur lequ	iel est c	onnecté	l'extré	mité B	de la po	outre.	
V	vecteu	r serva	nt à déf	inir l'or	ientatio	n des a	xes loc	aux y e	t z de l

- vecteur servant à définir l'orientation des axes locaux y et z de la section de la poutre. Ce vecteur doit être dans le plan local xy de la section de la poutre, du coté positif de l'axe local y. Ce vecteur est défini par rapport aux coordonnées de déplacement du noeud GA. Comme alternative, nous pouvons aussi donner, dans le champ V1, le no. d'un noeud qui serait situé dans le plan local xy, du coté positif de l'axe y. Connaissant les coordonnées de ce noeud et de GA, NASTRAN calculera lui-même le vecteur d'orientation V.
- PA codes des degrés de liberté libres à l'extrémité A de la poutre. C'est une série de chiffres sans espace indiquant les degrés de liberté à l'extrémité A de la poutre qui ne seront pas connectés au noeud GA (Forceless Degrees of Freedom). Par défaut, lorsque ce champ est libre, tous les degrés de liberté sont connectés

rigidement au noeud. Par exemple, si les rotations autour des axes locaux x et z de l'extrémité A de la poutre sont libres et entièrement indépendantes de celles du noeud GA (charnières autour des axes locaux x et z) nous aurons PA = 46.

- PB codes des degrés de liberté libres à l'extrémité B de la poutre.
- ZA vecteur d'excentricité à l'extrémité A de la poutre. Ce vecteur a son origine au noeud GA et va jusqu'au centroïde de la section à l'extrémité A de la poutre. Les trois composantes2 de ce vecteur sont définies par rapport au système de coordonnées utilisé pour le déplacement du nœud (CP de la carte GRID). Ce vecteur représente un lien totalement rigide entre le noeud et l'extrémité de la membrure.
- ZB vecteur d'excentricité à l'extrémité B de la poutre.

2.3) Modélisation des éléments de l'aile :

Le modèle de l'aile inclus les revêtements, les lisses pleine hauteur, les nervures, longerons, winglet, parties structurales du bord d'attaque fixe, attaches et surfaces de contrôle (volets, becs et aileron). Toutes les ouvertures significatives comme les portes d'accès, trappe de remplissage, etc. sont représentées.

Figure (2-22) : model d'une aile complète [12]

La numérotation des éléments et des nœuds est aussi très importante. C'est elle qui nous permettra d'automatiser la procédure de prise de données pour nos différents calculs. Et aussi il faudra suivre à la lettre la nomenclature fournie ici-bas afin d'éviter toute erreur sur la prise de données.

1) La valeur minimale donnée à un élément/nœud est de un million.

2) Un range de 10 000 est assigné pour chaque baie

3) Une baie commence à une nervure et inclue ainsi que toute la structure qui s'étend jusqu'a la prochaine nervure (incluant les revêtements, les lisses, ...).

4) La numérotation de la baie (NB) est simplement obtenue en prenant le numéro de la rib multiplie par 10 000 auquel on ajoute un million (NB=1000000 + no.rib x 10 000).

- 5) La numérotation est ensuite définie comme suit:
- la nervure est numérotée de NB a NB+999
- le longeron avant est numéroté de NB+1000 a NB+1999
- le longeron arrière est numéroté de NB+2000 a NB+2999
- le revêtement supérieur est numéroté de NB+3000 a NB+3999
- la revêtement inférieur est numéroté de NB+4000 a NB+4999
- les semelles de lisses supérieurs sont numérotées de NB+5000 a NB+5999
- les âmes de lisses supérieurs sont numérotées de NB+6000 a NB+6999
- les semelles de lisses inférieur sont numérotées de NB+7000 a NB+7999
- les âmes de lisses inférieur sont numérotées de NB+8000 a NB+8999

Figure (2-23) : les éléments constituant un caisson d'une aile [14]

2.3.1) Modélisation des Lisses :

Les lisses sont modélisées pleine hauteur. Les semelles extérieures et intérieures sont modélisées avec des éléments CROD. L'âme est modélisée par des éléments CQUAD4, avec leur nœud 1 et 2 sur les contours extérieurs, le nœud 2 étant à l'extérieur du nœud 1.

Figure(2-24) : la présentation des lisses [12]

* Modélisation par éléments finis (détail de numérotation) :

Les 2 derniers chiffres de tous les nœuds et éléments faisant parti des stringers sont utilisés pour identifier le numéro du stringer. Dans une même baie, le nœud/élément out board du premier nœud/élément est incrémenté de 100 a chaque fois jusqu'a la prochaine nervure. Les nœuds/éléments intérieurs sont incrémentés de 500 par rapport aux nœuds/éléments extérieurs.

Figure (2-25) : exemple pour la lisse supérieur 4 dans la baie 3 [12]

2.3.2) Modélisation des Longeron :

Les semelles de longeron sont modélisées par des éléments CROD. L'âme est modélisée par des éléments CQUAD4. Le nœud 2 est à l'extérieur du nœud 1 et la normale de l'élément pointe à l'extérieur du caisson de l'aile. Les détails représentant la pénétration des rails dans le longeron doivent être représentés.

Figure (2-26) : la présentation des longerons [12]

* Modélisation par éléments finis (détail de numérotation):

Les longerons sont constitués de 4 éléments de haut par 4 éléments de long à chaque baie. Pour tous les nœuds/éléments, le point de départ est le premier nœud/élément top inboard, l'incrément de haut en bas est de 1 alors que l'incrément inboard vers outboard est de 100. Les éléments plaques utilisent les numéros de 000 à 499, et les éléments bar utilisent les numéros entre 500 et 999.

2.3.3) Modélisation des Nervure :

Les semelles de nervure sont modélisées par des éléments CROD. L'âme est modélisée par des éléments CQUAD4 et les attaches en cisaillement sont modélisées par des éléments CSHEAR.

* Modélisation par éléments finis (détail de numérotation) :

Les ribs sont constituées de 4 éléments de haut par le nombre de stringers. Ainsi, la numérotation est rattachée à celle des stringers, de l'arrière vers l'avant, et l'incrément de haut en bas est de 100. Les éléments plaque utilisent le numéro des stringers, les éléments rod horizontaux sont incrémentés de 500 alors que les éléments rod verticaux sont incrémentés de 50.

1051404 - 1050504	10605004 1060503	1065003 1060502 3888883 1868888	3886868 1868681	065001 1080500 1062001 0650001 10500500 10620001
1050035 1050604 1050195 1050104 1050195 1050104	1060104 1060103 1060104 1060700	1060153 1960102 1060103 1060702	1060152 1060101 306 <u>0102 1060701</u>	
1050255 1050264 1050255 1050264 1050355 1050804 1050355 1050394 1050394	1060264 1050203	1060253 1060202 J RENERAL 19ERSRF	1050252 1050201	1050201 1060200 A 062004 1050201 1060300 1060350 1050351 1060360 1062006
DE D	hoazaa4 taanaa;	1067000	1057000 1050001	9 0P2004 - 1000000. *

Figure (2-28) : exemple pour la nervure 6 avec 4 lisses [12]

2.4) <u>FEM-BUILDER</u> :

L'outil « FEM Builder » qui a été développé par Abdel-kader Kherrat chez Bombardier est programmé en VBA sous la plateforme de MS-Office Excel génère le modèle d'éléments finis automatique en spécifiant les paramètres caractéristiques d'une aile à savoir la flèche, les dimensions de la plateforme de l'aile etc. La figure (2.29) décrit un sommaire des paramètres nécessaire pour :

Figure (2.29): Les caractéristiques de la plateforme de l'aile. [15]

2.4.1) Topologie

Cette section décriera brièvement une description sommaire de la topologie suivie par le logiciel « FEM Builder ». La topologie employée suit 4 étapes :

- 1) Etape 1 : « Maillage étendue »
 - du plan de la plateforme ; Maillage au delà de la limite de l'aile
- 2) Etape 2 : « Nettoyage des Eléments »:
 - Elimination des éléments des éléments a l'extérieur de la limite de l'aile
- 3) Etape 3 : « Projection sur la frontière de l'aile les éléments frontaliers»:
 - Projection des nœuds des éléments de frontière sur la frontière de l'aile (les longerons).
- 4) Etape 4 : « Projection sur les revêtements ».
 - Tous les éléments du plan de l'aile seront projetés sur les deux revêtements (extrados et intrados).

2.4.1.1) Etape1 : « Maillage étendue »

Une topologie simple et plus efficace a été suivis qui concerne a, une fois que la plateforme de l'aile est connue, mailler avec des éléments quadrilatère un domaine qui dépasse la limite de l'aile. Cette façon a pour but de projeter un maillage simple sur une géométrie quelconque. La figure (2.30) décrit le maillage étendue et de sa structure:

Figure (2.30): Maillage étendu. [15]

Les paramètres qui vont contrôler le maillage seront l'orientation des lisses et l'orientation des nervures.

La figure (2.31), montrent les différentes possibilités des orientations des lisses. La configuration b) qui spécifie que les lisses sont parallèles au longeron arrière est la configuration recommandée pour des raisons de certification : « Fail safe ». Il faut avoir un

concept qui prévoit des défaillances : s'il y a une défaillance ou bris de la semelle du longeron arrière qui est souvent le plus chargé pour les ailes avec une flèche arrière plus prononcée. Les lisses adjacentes au longeron arrière prennent la relève une fois défaillance et il faut que ces lisses soient continues le long de l'envergure de l'aile.

Figure (2.31) : Configuration possibles des orientations des lisses. [15]

La configuration a) et d) sont peu employées mais existe. Cependant, la configuration c) est non recommandée et n'existe pas dans les configurations des ailes existantes jusqu'à maintenant.

La raison est simple car une telle configuration est contre nature et pauvre et générera un excès de poids. Cette configuration montre que des lisses naissent le long de l'envergure on s'en allant vers le saumon (de la racine vers le saumon) sur le longeron arrière. Le moment fléchissant baisse de la racine vers le saumon, donc ce n'est pas nécessaire d'avoir des lisses qui naissent mais plutôt une diminution de lisse pour optimiser le poids de l'aile.

2.4.1.2) Etape 2 : « Nettoyage des Eléments » :

Lors de cette étape, On éliminera tous éléments qui sont à l'extérieur de la frontière de l'aile. La figure suivante décrit cette étape et montre aussi les éléments gardés en hachure.

Figure (2. 32) : Nettoyage des éléments et catégorisation des éléments retenus [15]

Apres nettoyage, on catégorisera les éléments en 4 groupes :

- 1) Groupe 1 : Elément dont ces 4 nœuds sont tous à l'intérieur de la frontière
- 2) Groupe 2 : Elément dont ces 3 ou 4 nœuds sont a l'extérieur de la frontière
- 3) Groupe 3 : Elément sur la frontière du longeron avant
- 4) Groupe 4 : Elément sur la frontière du longeron arrière

La technique des angles est employée pour déterminer et connaître combien de nœuds sont a l'intérieur de la frontière ou a l'extérieur. La figure suivante décrit l'évaluation des angles. Ces angles calculés seront comparées aux angles de la frontière délimitée par le longeron avant et arrière.

Figure (2.33) : Technique des angles [15]

2.4.1.3) Etape 3 : « Projection sur la frontière de l'aile les éléments frontaliers»:

Le maillage résultant de l'étape 2 aura une géométrie/maillage en pallier si on le compare à la frontière. Ce maillage doit épouser la géométrie réelle de l'aile. Pour ce faire, la prochaine étape sera de projeter ces nœuds à l'extérieur de la frontière sur la frontière délimitée par le longeron avant et arrière comme le montre la figure suivante.

Figure (2. 34) : Projection des nœuds des éléments de frontière sur la frontière. [15]

Apres cette opération, il va y avoir des vides dans le maillage. Il faut prévoir remplir ces vides par des triangles. L'opération de remplissage et les actions a entreprends éventuellement sont résumées par la figure suivante :

Figure (2.35) : Les cas de scenarios possible et les actions à entreprendre pour le nettoyage et le remplissage [15]

2.4.1.4) Etape 4 : « Projection sur les revêtements » :

Avant d'expliquer la projection sur le revêtement. Il faut savoir que le profil de l'aile exigé par le département d'aérodynamique sera sous forme de profil pour un certain nombre limité de station le long de l'envergure.

Figure (2.36): Les profils pour différentes stations (i) de l'aile. [15]

Avec ces profils, on génèrera le revêtement et sa forme par une interpolation avec des splines (Lofting)

Une fois que le maillage est complété sur le plan de l'aile. Ce maillage sera projeté sur les deux revêtements (extrados et Intrados). La projection d'un nœud sur le revêtement doit suivre les étapes suivantes comme la montre la figure ci-dessous :

Figure (2.37): Projection des nœuds sur le revêtement. [15]

Les étapes à suivre sont résumés comme suit :

- 1) Déterminer la localisation du nœud par rapport à la corde a la station « y » (x/c).
- 2) Déterminer les épaisseurs du profil des stations adjacentes (i et (i+1))
- 3) Interpoler et déterminer l'épaisseur à la station « y » de l'extrados et l'intrados

2.4.2) <u>Description du FEM-BULDER :</u>

Une fois le FEM-BUILDER est lancé on aura la figure ci-dessous

Figure (2.38) : Le menu principal du FEM-BUILDER [16]

En cliquant sur Getting started User's Guide , c'est l'icône qui contient le guide d'utilisation

Red Zone	ت است ۲۰		Crean Treas
10010	wegoethniaer humage rectinger	titeraries	Harter lans
	Bley 1 Diey 2	Chap D	The Chi
	All Scheme Date of	al Sitep 4	10108 241
	PDI noof a Depet		Development Top Services
	-102 Rate	AUX	Parriertort
	Contractor Tunique	Carlor Acta	within family factories Branches (and)
	Flat leg for - BEST M	n Tocette	i internet in the second se
	Photosing big	T Fielasty tip	Profited
	Cuellerysee	Flori Destinite	
Part of the	572		Serverale HDMAshed
Blue Lone	if easilye	lay ting	
	F BENY (4)	10mm	tin.
13			
Red Zwne			Bigs Zone
\$2+0	L Daline the wine Geometry		Selbtor of the FEM component resulted by the uners;
	all Ving Plasform Delinition		Bito selection lean mace Only UKS Side king will be generated
	oliving Profil shape oliPates Topplore		
	d) Wing Access cut-our topology		Green Zone
	<) Sinksyma Tepology		Option for Hypersian application connet:
50	2:Define the Foodage Decretor		Note #Higherster is releated. No stringers will be outputed on FEMode
	al Faceloge Frame locations		1 23 23 23 20 20
	c)Foer delinition		Parale Zone
	d) Wing Embaded sone		Define conce to reinnersproperties.
	Displander Tilden plant von	Long servic Critical aged pro-	Bij difinelt: cantalog į definites by ribs and stringerafopar cago jurili be considered ao diferente on
Strep	3 Teleatha HPSuh Secontry		
	a)HiStab Plasform Delection		
	v]H\$Slab Fruilishage		2004
	d) Stringers Tepology		Fetwr.
	Ing 2 New This step management		

Figure (2.39) :Le guide d'utilisation du FEM –BUILDER [16]

En cliquant sur START on aura :

Le Control-panel ou panneau de control qui est décrit la figure ci-dessous :

Ayt Reference Flastic Aris	I Zune's nosiby fotbuit ing Zone's Definition (hyperides Coest)
WILG	(Fypersize Loes)
LI HS WING Flox	
Contor Wing Box F Well connection F Contor H/STA3 F RHS Wing Box F RHS Wing Box F RHS H/STA3 F RHS H/STA3 F RHS H/STA3 F RHS H/STA3	Stab Zone's Definition (Fyperatory Larra)
REE3 F Load Discretisation F REE3 F Load Discretisation F Load Discretisation F Load Discretisation	led, Mode
Life J E EIGJ of LHE Side Wing	ram FFM Model

Figure (2.40) : Le panneau de control [16]

Etape 1 : en cliquant sur Wing definition qui contient la définition d'aile on aura

Wing Planform Seometry	who Profile Shape
Wins T	ndary
	10027
- Topolo _z y	
19ps 1 opology	Access Lut put
	1

Figure (2.41) : Définition de l'aile [16]

<u>Etape 2</u> : on choisit Wing planform definition dans cette partie on va définir la plateforme de l'aile donc choisir la corde à l'emplanture, la corde au saumon l'angle de flèche, position du longeron avant et du longeron arrière etc...

Figure (2.42) : La plateforme de l'aile [16]

Etape 3: choisir Wing profile definition dans cette feuille est pour définir le profil de l'aile choisit.

NAC	A Profie ?
Wing Profile from Files	Wing Frofie Data

Etape 4 : wing Topologie ; c'est dans cette section qui faut faire entrer le nombre de lisses, le nombre de nervure leurs orientations et leurs types :

Figure (2.44) : Topologie de l'aile [16]

Pour la définition des lisses choisir Stringer Dim :

Figure (2.45) : Dimensionnement de la lisse [16]

Etape 5: pour définir la topologie de la nervure cliquant sur Rib Topology cette partie permet de choisir l'orientation des nervure ainsi l'espacement entre chaque nervure par rapport au longeron avent et le longeront arrière.

Figure (2.46) : Orientation et espacement des nervures [16]

Etapes 6 : définir les accès de l'aile en choisissant Wing Access Cut-out Topology donc cette section définie les compartiments d'accès de l'aile ainsi que les lisses qui vont être coupées.

Figure (2.47) : Les accès de l'aile [16]

Le fichier généré par FEM- BUILDER est de types bdf donc il peut être lu directement par MSC.NASTRAN ou MSC. PATRAN.
3.1) <u>Introduction :</u>

Dans ce chapitre, nous avons présenté les principales charges appliquées sur la voilure en donnant une représentation mathématique des phénomènes subits par l'aile au cours de sa mission

Aux cours des évolutions de l'avion au sol ou dans l'air, il subit des forces d'origine aérodynamique, vibration et poids et supporte les effets des accélérations engendrées par les changements de trajectoire. Les différentes parties de la structure et notamment les ailes et le fuselage sont soumis à des contraintes de nature variées

La traction
 La compression
 La flexion
 Le cisaillement
 torsion

3.2) Les charges externes appliquées sur la voilure :

Chaque section dx de la demi-voilure est soumise à l'action de 3 forces :

dFz : force de portance locale

dP : poids de la structure de la section d'aile

dPc : poids du Carburant contenu dans cette section d'aile:

Figure (3-1) : les principaux efforts appliqués sur la voilure [17]

Ces trois forces ont une résultante aérodynamique dirigée :

- 🜲 Vers le bas
- 🜲 Vers le haut

Vers le bas : lorsque l'avion est au sol Fz = 0

- L'extrados de la voilure travaille en traction
- L'intrados de la voilure travaille en compression

Figure (3-2) : la direction de la résultante aérodynamique lorsque l'avion est au sol [17]

Vers le haut : lorsque l'avion est en vol

- L'extrados de la voilure travaille en compression
- L'intrados de la voilure travaille en traction

Figure (3-3) : la direction de la résultante aérodynamique lorsque l'avion est en vol [17]

$$R_2 = \frac{F}{2} - P_2 \tag{3.1}$$

$$R_3 = \frac{F}{2} - P_3 \tag{3.2}$$

3.2.1) <u>La portance :</u>

La portance d'une aile d'avion n'est pas uniforme sur toute sa longueur. Elle est maximale au niveau de l'emplanture et minimale au niveau des saumons. La variation de portance ne décroît pas de façon linéaire et plusieurs modèles mathématiques peuvent être utilisés.

$$F = \int_{-D/2}^{D/2} l(z)d$$
 (3.3)

Fz : c'est la portance totale de l'aile dans le cas d'une distribution elliptique (N)

l(z) : c'est la portance linéique d'une distribution elliptique

 $b_{\rm W}$: L'envergure de l'aile

Aussi on peut calculer la portance de cette façon :

$$F_{\rm z} = \frac{1}{2} \cdot C_{\rm Z} \cdot \mu \cdot S \cdot V^2$$
 (3.4)

Cz : le coefficient de portance, un nombre sans unité qui dépend de Re et de

 μ : la masse volumique du fluide s'écoulant, en kg.m-³

S : Surface projeté au sol de l'objet, en m²

V : la vitesse relative du fluide non perturbé par rapport au mobile, en m.s-1

La portance dépend aussi du facteur de charge

$$F_{\rm z} = n \,.\, m \tag{3.5}$$

n : c'est le facteur de charge

m g : c'est le poids de l'avion en (N)

Le facteur de charge n est égale :

$$\overline{n} = \frac{\sum \left(\overline{F_A} + \overline{F_P} + \overline{F_G}\right)}{|m|}$$
(3.6)

3.2. 2) *La traînée :*

La traînée représente la force engendrée par la résistance de l'air, qui tend à freiner le mouvement de l'avion dans l'atmosphère. Elle doit être équilibrée par la poussée du moteur et peut être réduite en profilant l'appareil.

$$F_x = \frac{1}{2} \cdot C_x \cdot \mu \cdot S \cdot V^2$$
 (3.7)

Fx: définissant la trainée, en Newton

C_z : le coefficient de trainée, un nombre sans unité qui dépend de R_e et de

3.2.3) Le moment aérodynamique :

Les moments appliqués sur un avion peuvent être décomposés en moment crée par la distribution de la charge aérodynamique et que la force propulsive ne s'applique pas au centre de gravité.

Les composantes des moments des forces aérodynamiques sont données en termes de coefficients adimensionnels, pression dynamique, surface de référence et une longueur caractéristique, comme suit : [18]

Moment de roulis :

$$L_A = C_l \cdot q \cdot S \cdot l \tag{3.8}$$

Moment de tangage :

$$M_A = C_m \cdot q \cdot S \cdot l \tag{3.9}$$

Moment de lacet :

$$N_A = C_n \cdot q \cdot S \cdot l \tag{3.1}$$

La longueur caractéristique l qui est prise comme l'envergure de l'aile pour les moments de roulis et de lacet, et comme la corde moyenne pour le moment de tangage

3.2.4) Effort exercés par les propulseurs sur la voilure :

La résultante des forces horizontales agissant sur la voilure provoque la flexion horizontale de la voilure.

- Si les propulseurs, sont installés sous la voilure, celle-ci est soumise en vol à une flexion horizontale vers l'avant
- Le bord d'attaque de l'aile travaille en compression
- Le bord de fuite de l'aile travaille en traction.

Figure (3-4) : efforts exercés sur l'aile dans le cas où les propulseurs sont installés sous l'aile « avion B747 » [17]

- Si les propulseurs sont installés à la partie arrière du fuselage, la voilure est soumise en vol à une flexion horizontale vers l'arrière :
- Le bord d'attaque travaille en traction
- le bord dé fuite travaille en compression

Figure (3-5) : efforts exercés sur l'aile dans le cas où les propulseurs sont installés à la partie arrière du fuselage « avion B727 » [17]

3.2.5) Efforts localisés

Aux efforts répartis et supportés par l'ensemble de la structure viennent s'ajouter des efforts localisés en certains points de l'aile : attaches de train d'atterrissage, de gouvernes, de volets, d'aérofreins, de spoilers, de réacteurs. Appliquées en des points précis, ces charges seront encaissées par des éléments forts de la voilure prévus à cet effet.

Toutes les ouvertures pratiquées dans l'aile (logements d'atterrisseurs par exemple) affaiblissent localement sa résistance; des renforcements au moyen d'encadrements sont nécessaires de manière à conserver la résistance générale de la voilure.

3.2.6) La masse de l'aile :

La distribution de la masse totale de l'aile est réalisée au long de l'envergure de l'aile selon la corde correspondant au profil de chaque bande. Plusieurs auteurs proposent des équations empiriques, semi analytiques ou analytiques. En général, ces équations ont une précision variant de 5 à 20 %, selon leur complexité, et selon la gamme d'avions aux quels elles s'appliquent

* La méthode de Torenbeek pour le calcul de la masse de l'aile :

Cette méthode est appliquée aux avions de transport avec la masse au décollage audessus de 12.500 livres (55.603 N). [10]

La masse de l'aile est donné par cette relation :

$$W_{W_T} = 0.0017(1 + F_c) W_M n_u^{-0.5} \left(\frac{b_W}{\cos \frac{L}{Z_W}}\right)^{0.7} X \quad (3.1)$$

Où :

 F_c : Facteur de correction de poids

 W_M : Masse maximale de l'avion sans carburant

 $b_{\rm W}$: L'envergure de l'aile

*n*_u Facteur de charge extrême de l'avion

 $_{\mathbb{L}/\mathbb{Z}_{W}}$: L'angle de flèche au demi de la corde de l'aile

X : c'est une variable

$$X = \left\{ 1 + \left(\frac{6.3 \ c}{b_W} \right)^{0.5} \right\} \left(\frac{b_W S_W}{t_{\tau_W} W_M \ c} \right)^{0.3}$$
(3.1)

Tel-que :

 b_{w} : L'envergure de l'aile

 $_{\mathbb{Z}/\mathbb{Z}_W}$: L'angle de flèche au demi de la corde de l'aile

 S_{w} : La surface de l'aile

 W_M : Masse maximale de l'avion sans carburant

 t_{T_W} : Épaisseur maximale à l'emplanture de l'aile

On donne :

$$t_{r_W} = \left(\frac{t}{c}\right)_{r_W} \left(\frac{2S_W}{b_W(1+w)}\right)$$
(3.1)

Masse maximale de l'avion sans carburant

$$W_M = W_E + W_c + W_P + W_{Pe} + W_t$$
(3.1)

 W_E : Masse à vide de l'avion

 W_c : Masse de l'équipage

- W_P : Masse de la charge utile
- W_{P} : La masse dépensée de la charge utile
- W_t : Le poids du carburant et l'huile non consommable

4 Facteur de correction de poids est donné par :

 $F_{c} = F_{c} + F_{c} + F_{c} + F_{c} + F_{c}$ (3.1)

Où :

 $F_c = 2\%$ si l'avion a des spoilers et des aérofreins

 F_c = -5 % Si l'avion est équipé de 2 moteurs monté sous l'aile

- F_c = -10 % Si l'avion est équipé de 4 moteurs monté sous l'aile
- F_c = -5 % si le train d'atterrissage n'est pas monté sous l'aile
- F_c = 2 % si l'aile a des flaps Fowler

3.2.7) <u>Masse de carburant dans les ailes et position des réservoirs du</u> <u>carburant :</u>

Les contraintes maximales sur les composantes d'un avion n'apparaissent pas toujours lorsque l'avion est utilisé à sa masse maximale. Pour un avion avec sa charge maximale de carburant dans les ailes s'en volant à un certain facteur de charge, le moment de flexion induit dans les ailes est moins important que lorsque l'avion vole au même facteur de charge mais sans carburant dans les ailes. Le carburant placé dans une aile crée une réduction de la contrainte de flexion à la racine de l'aile. Plus le carburant est localisé près du bout d'aile, plus le moment de flexion à la racine de celle-ci sera réduit.

Si le mouvement de roulis est considéré, il faudra analyser l'effet de la pression de carburant sur la paroi extérieure du réservoir, qui est la pression créée par la force centrifuge ainsi que par le déplacement du carburant (fuel sloshing) qui va introduire des efforts non négligeables sur la structure de l'aile.

Calcul de la masse du carburant par la méthode de torenbeek :

Pour les avions équipés de réservoirs de carburant intégrés dans les ailes ; le poids du carburant est donné par la relations suivante : [10]

$$W_{f_T} = 80 \left(N_{e} + N_S - 1 \right) + 15 \left(N_S \right)^{0.5} \left(\frac{W_{F_{m_w}}}{\rho_F} \right)^{0.3} + W_t + W_f \quad (3.1)$$

 N_{e} : Le nombre de moteurs

 N_s : Nombre de réservoirs de carburant séparés

 $W_{F_{m}}$: La masse maximale du carburant limité par le volume du réservoir du carburant

 ρ_F : La densité du carburant

- W_t La masse du ravitaillement en vol du carburant
- W_f : La masse de la vidange du carburant

🜲 <u>Le poids maximum du carburant limité par le volume du réservoir du carburant :</u>

$$W_{F_{m}} = \left(\frac{1g}{0.13368 f^{-3}}\right) \rho_F V_{F_{W}}$$
(3.1)

Tel-que :

 $\frac{1}{0.1}$: Facteur de conversion

 $V_{F_{W}}$: Le volume maximum du réservoir du carburant des ailes

Le volume maximum du réservoir du carburant des ailes est donné par la relation suivante :

$$V_{F_W} = 10 F_F b_W F_a c_{r_W}^2 \left[\left(\frac{t}{c}\right)_r - \left(\frac{t}{c}\right)_r - \left(\frac{t}{c}\right)_t - \frac{t}{2} + \frac{(1 - w)\left(\frac{t}{c}\right)_r}{2} \right]^2 + \frac{(1 - w)\left(\frac{t}{c}\right)_r}{3} \left[\left(\frac{t}{c}\right)_r - \left(\frac{t}{c}\right)_t - w \right]^{T_c} \right]^2$$

$$(3.1)$$

 F_F Le facteur qui explique la perte due à l'expansion du carburant et à la structure

- F_{u} Le facteur adimensionnel de la surface de la section du profil entre le longeron avant et arrière
 - : Station adimensionnelle selon l'envergure de la position réservoir du carburant à la demi-envergure d'aile
 - Station adimensionnelle selon l'envergure de la position réservoir de carburant à la demi-envergure d'aile du bord extérieur de l'aile
 - II : Station adimensionnelle selon l'envergure de la position réservoir de carburant à la demi-envergure d'aile du bord intérieur de l'aile

3.2.8) Le centre élastique :

Chaque section de l'aile possède un centre élastique autour duquel elle tourne par rapport à la section voisine quand est soumise à un moment de torsion, Le centre élastique est situé à environ 30 à 35-% du bord d'attaque

Figure (3-6) : position du centre élastique

La coordonné de l'axe élastique de l'emplanture est égale : [10]

$$y_1 = c_r \left(\frac{x_E}{c}\right)_r \tag{3.1}$$

 C_{T_W} : La corde de l'aile à l'emplanture

 $\left(\frac{x_E}{c_W}\right)_{\tau}$: Position de l'axe élastique sur la corde de l'aile à l'emplanture

La coordonné de l'axe élastique de l'extrémité [20]:

$$y_2 = \frac{b_w}{2} \tan\left(LE_w \right) + c_r \left(\frac{x_E}{c} \right)_t$$
 (3.2)

L w : La flèche de l'aile du bord de fuite

 $\left(\frac{x_E}{c}\right)_t$: Position de l'axe élastique sur la corde de l'aile à l'extrémité

La ligne élastique est le lieu géométrique des centres élastiques; ce n'est géométriquement un axe que dans le cas des ailes droites ou trapézoïdales.

La résultante des forces aérodynamiques ne passe généralement pas par l'axe élastique. Il en résulte que l'aile est soumise à un moment de torsion variable. Ce moment est transmis en partie par des efforts de cisaillement dans la périphérie de la section.

3.2.9) <u>Calcul de la distribution de L et M. et intégration le long de l'axe de</u> <u>référence:</u>

Une fois que la distribution de la portance et le moment aérodynamique le long de l'envergure sont connue. Il faut intégrer cette distribution pour déterminer la distribution de l'effort tranchant due à portance.

Figure (3-7) La distribution de l'effort tranchant due à portance [19]

- L'effort tranchant correspond à des contraintes de cisaillement.
- Le moment fléchissant correspondent à une contrainte de traction (intrados en vol) et une contrainte de compression,(extrados en vol).

L'effort tranchant et le moment fléchissant étant maximum à l'emplanture, c'est donc l'emplanture qui aura la plus grosse épaisseur.

3.2.9.1) Les équations à utiliser sont: [20]

L'effort tranchant

$$V_z - V_1 = -\int_{x_1}^{x_z} q(x) d$$
 (3.2)

La distribution du moment fléchissant :

$$M_2 - M_1 = -\int_{x_1}^{x_2} V(x) d \qquad (3.2)$$

Distribution de la torsion :

$$T_{z} - T_{1} = -\int_{x_{1}}^{x_{2}} \left[q_{z}(x) \ y(x) - q_{y}(x) \ z(x) \right] d \qquad (3.2)$$

3.2.10) La discrétisation des charges externes :

La force de cisaillement, le moment de flexion et le moment de torsion sont calculés le long d'un axe de référence ; l'axe de chargement est employé pour représenter les forces externes appliquées à la structure d'avions.

Figure (3-8) : point d'application de la force de cisaillement du moment de flexion et de torsion

À un certain point, la charge externe doit être appliquée aux avions, vrai (article d'essai) ou virtuel (modèle d'élément fini) pour réaliser les valeurs calculées de cisaillement, de flexion et de torsion.

Les charges externes sont principalement de type continu qui est très difficile à l'appliquer sur un article d'essai et presque impossible pour un FEM avions. Sur le type ponctuel opposé de charge il est relativement facile de l'appliquer. Par conséquent les forces aérodynamiques, de pesanteur et d'inertie, qui sont de type continu, sont discrétisés dans le processus de charge.

La discrétisation consiste à remplacer la charge continue par une série de charges ponctuelles. Puisque les éléments principaux structuraux d'un avion sont de type semi monocoque, la charge ponctuelle discrétisée ne peut pas être appliquée n'importe où ; elle doit être appliquée où le revêtement- lisse est soutenu : armatures ou faisceau de plancher pour le fuselage et nervures pour l'aile et l'empennage.

Lorsque la charge est discrétisée, Cela signifie que le cisaillement, la flexion et la torsion calculés ne sont pas assortis parfaitement. Par conséquent dans le procédé de discrétisation, la charge externe existe sous trois formes différentes :

- Théorique : C'est le cisaillement, la flexion et torsion calculés qui sont visés dans le procédé de discrétisation.
- Discrétisé : C'est le cisaillement, la flexion et la torsion résultants de la discrétisation des forces externes.
- Appliqué : C'est la charge ponctuelle appliquée au lieu de la charge continue.

3.2.10.1) <u>Procédure de calcul des charges discrétisés pour appliquer au modèle</u> <u>d'élément finis à chaque nervure :</u>

Figure (3-9) : les charges entre les nervures

3.2.10.2) Détermination de l'effort Tranchant discrétisé entre les nervures :

Le cisaillement discrétisé dans une baie « i » est donné par l'équation suivante : [21]

$$V_{D,B} = \frac{V_{T,S} + V_{T,S(l+1)}}{2}$$
(3.2)

 $V_{T,S}$: Effort Tranchant théorique à la station « i »

 $V_{D,B}$: Effort Tranchant Discrétisé à la baie « i »

3.2.10.3) Détermination de la charge appliquée :

La charge appliquée ponctuelle recherchée à la station « i+1 » pour réaliser la charge discrétisée au baie « i » est donné par l'équation suivante : [21]

$$F_{A,5(i+1)} = V_{D,B} - V_{D,B(i+1)}$$
(3.2)

 $F_{A,5(i+1)}$: Force appliquée à la station « i +1»

3.2.10.4) Calcul de la torsion :

Puisque la force appliquée est appliquée directement sur l'axe de référence de charge, aucun moment de torsion ne peut être induit par son application et un moment de torsion consacré doit être appliqué à chaque station. Une valeur moyenne dans la baie est prise comme la valeur à atteindre. [21]

$$T_{D,B} = \frac{T_{T,S} + T_{T,S(l+1)}}{2}$$
(3.2)

$$F_{A,5(l+1)} = V_{D,B} - V_{D,B(l+1)}$$
(3.2)

3.2.10.5) Calcul du moment de flexion appliqué :

Le moment fléchissant est une conséquence de l'effort tranchant. Cependant puisque la force de cisaillement n'est pas assortie parfaitement, un moment appliqué est exigé pour corriger le moment de flexion résultant de la force de cisaillement. Avec cette correction, le moment de flexion théorique et le moment de flexion discrétisé est le même pour chaque station mais entre les stations le moment de flexion discrétisé divergent progressivement du théorique. L'appliqué, où la correction du moment est calculé avec l'équation suivante : [21]

$$M_{A,S} = M_{T,S} - (M_{T,S(l+1)} - V_{D,B} \{S_{(l+1)} + S_l\})$$
(3.2)

S₁ : Coordonnée de la station« i »

 $S_{(l+1)}$: Coordonnée de la station « i +1»

 $M_{T,5(l+1)}$: Moment fléchissant Théorique a la station « i +1»

 $M_{A,S}$ Moment correctif appliqué à la station « i »

3.3) Charges internes:

3.3.1) Charges internes estimées :

3.3.1.1) L'indice de charge :

L'indice de charge est une méthode simple qui permet d'estimer les charges internes sans passer par les éléments finis ; cette méthode utilise les principes de la RDM. Cette étape peut être très utile car elle donne un ordre de grandeur des dimensions des différentes composantes de l'aile comme les revêtements, les lisses et les longerons (âme et semelles).

On utilisera ces valeurs pour démarrer les itérations, mais par la suite c'est avec l'outil des Éléments finis qu'on pourra avoir les charges internes plus représentatif et plus précis. [23]

Figure (3-10) : Caisson de l'aile réel [21]

Les prétentions de base pour l'indice de chargement d'un caisson de l'aile sont :

- 4 Le cisaillement vertical est réagi seulement par les âmes de longeron.
- La torsion est réagie par une boîte fermée créée par le revêtement et les semelles de longeron. La boîte est rectangulaire assumée avec une longueur égale à la distance entre les informations de longeron et la profondeur étant la profondeur moyenne des longerons.
- La flexion est réagie par les lisses efficaces et les semelles de longerons rapportées ; la surface des lisses efficaces et des semelles de longerons rapportées inclue la surface du revêtement efficace.

Figure (3-11) : La géométrie assumée de caisson de l'aile [21]

L'indice de chargement pour les âmes de longeron et les panneaux de revêtement sont des flux de cisaillement. L'indice de chargement pour les lisses et les semelles de longeron rapportées sont les charges axiales.

Ces prétentions mèneront aux équations suivantes d'index de chargement [21]:

 <u>Les âmes de longeron :</u>

$$L_{F/S} = Q_V \pm Q_T = \frac{L_2 \cdot V}{H_1(L_1 + L_2)} \pm \frac{T}{(H_1 + H_2)(L_1 + L_2)}$$
(3.2)

$$L_{R/S} = Q_V \pm Q_T = \frac{L_1 \cdot V}{H_2(L_1 + L_2)} \pm \frac{T}{(H_1 + H_2)(L_1 + L_2)}$$
(3.3)

L'addition ou la soustraction des flux de cisaillement (cisaillement et torsion) dépendra de la convention de signe de torsion. Pour un longeron ce sera une addition tandis que pour l'autre longeron ce sera une soustraction.

<u>Panneaux de revêtement</u>

$$L_S = Q_T = \frac{T}{(H_1 + H_2)(L_1 + L_2)}$$
 (3.3)

Lisse (et semelles de longeron rapportées) :

$$L_{S}(c) = \frac{2M}{(H_1 + H_2)} \cdot \frac{A_r}{A_t}$$
(3.3)

 A_{p} : est l'aire de la lisse ou la semelle des longerons

 A_{t_i} : est la somme de toutes les aires des lisses et des semelles d'un des revêtements

3.3.2) Charges internes de Nastran

End loads :

Comme son nom l'indique, les Grid Point Force Balance sont la balance de toutes les charges agissant sur un nœud (grid point) ; ceci est un diagramme de corps libre d'un nœud. La somme des forces agissant sur un nœud devrait toujours être nulle, procurant un état d'équilibre au nœud entre les charges externes et forces internes.

Le format des Grid Point Force Balance peut varier en fonction des besoins de l'analyste. Le résultat par défaut de Nastran est produit pour chaque nœud, la contribution de charge provenant de chaque élément est donnée individuellement.

a	RID	p (TRIC	FO	R C	E	вд	L	A	N C	Ξ										
	POINT-ID		ELEMENT-I	D	50	ORCE					n		72		T2		81		92		23
	2000001		200000	0	QUA	24			4.	5930	57E+0	1	-1.8291128-01	-2.9	427918+03	2.0	03993E-01	-2.5	10-25768-01	2.	3008912-02
	2008001		200000	1	QUA	54			1.	6033	03E+0	3	-3.165838E-01	4.7	477328+02	2.3	762238-01	2.1	17207E-01	-3.	686045E-01
	2000001		200010	0	QUA	54		1	.2.	6816	121E+0	2	-1.5387868-01	-6.0	095152+01	-2.6	62475E-01	-6.	091964E-01	4.	7983558-01
	2008001		200010	1	QUA	54			3.	514	7238+0	3	-5.9429578-02	3.1	868012+03	-1.8	023468-01	٤.	0277308-01	-1	3426508-01
	2008001		200600	1	QUA	54			2.	5093	65E+0	0	-7.1699098+00	-1.9	200182+01	-2.2	19086E-03	-6.	0353408-05	-2	1254198-03
	2000001		300600	1	QUA	54			2.	7485	29E+0	9	7.754001E+00	-1.9	210528+01	2.7	9616E-03	-2.3	194014E-04	2	150526E-03
	2008001		200005	1	200	ù -		- 3	-2.	0087	708E+0	ō.	0.0	-5.5	214358+02	0.0		۵.	0	0.	0
	2000001		200015	1	BOD			- 9	2.	8830	161E-0	1	0.0	-6.9	577878+01	0.0		٥.	0	٥.	.0
	2008001		200550	1	ROD				-1.	3802	73E+0	Ģ.	4.1539738+00	7.3	346362-01	0.0		0,1	0	0.	0
	2000001		300550	1	ROD			- J	4.	3373	73E+0	0	-4.024261E+00	7.1	056062-01	0.0		0.	0	٥.	.0
	2000001				•10	TALS	•		3.	6603	61E-1	9	-4.112266E-13	-8.4	567382-10	-4.1	93867E-14	-9,	6302828-14	-6	1670892-13

Figure (3-12) : le format des Grid Point Force Balance dans le fichier bdf [13]

Comme il peut être vérifié dans l'exemple ci-haut, la somme des charges sur un nœud est toujours nulle, incluant les charges externes. Donc, si un nœud est chargé par une force externe, la somme des contributions des éléments sera égale à cette charge externe.

Le format de résultat standard de Bombardier est différent, il est appelé "End Load" ou "Summation of Element Oriented Forces on Adjacent Elements". Ce résultat fournit la charge totale passant d'un nœud à un autre en sommant la charge de chaque élément connectant ces deux nœuds.

La figure suivante montre le principe général autour des EndLoad utilisé pour une analyse de contraintes typique.

Figure (3-13) : analyse de contraintes Endload [13]

La charge en livre est donnée à un nœud spécifique (G1). La charge à G1 provenant de G2 peut être différente de celle à G2 provenant de G1, ceci ne reflète que la variation de la charge provenant de tous les éléments y contribuant.

```
SUMMATION OF ELEMENT ORIENTED FORCES ON ADJACENT ELEMEN
7.5
                                        ( ONE AND TWO DIMENSIONAL ELEMENTS ONLY )
                                         POINT-ID
                                                    ORIENT-ID
                                                                  TENSION + (+)
                                                      2000002
                                          2000001
                                                                 -1.954555E+03
                                          2000001
                                                       2000101
                                                                 -4.037839E+03
                                                       2002002
                                           2000001
                                                                  -1.9436588+03
                                                       2005001
                                          2000001
                                                                 -3.9972098+03
                                                       2005601
                                                                 -3.283913E+00
                                          2000001
                                                      2000001
                                                                  7.5482808+01
                                          2000002
                                          2000002
                                                      2000003
                                                                 -2.5910868+03
```


dans le fichier bdf [13]

Interprétation des End Load :

Les charges du MEF sont compilées à un point de référence en utilisant les charges du point a et b:

$$Pstr = Pa + Pb \tag{3.3}$$

$$Mstr = Pb * Hf$$
 (3.3)

Figure (3-15) : interprétation des charges du MEF [13]

Ces charges sont alors transférées à l'axe neutre de l'assemblage (A/N), et redistribuées sur la structure concernée avec:

$$= P_{I} \wedge A + M_{A/N} \times C \wedge I \qquad (3.3)$$

Où : I est l'inertie à partir de l'axe neutre

C est la distance à l'axe neutre

Figure (3-16) : représentation lisse revêtement [13]

4.1) Introduction :

Ce chapitre est le fruit de notre travail il contient les différentes simulations faites par FEM-BUILDER, le MSC.NASTRAN et le MSC.PATRAN, le dessin des courbes, l'interprétation des résultats ainsi que les conclusions de chaque simulation.

Lors de la conception d'une aile, le département aérodynamique avancé propose une enveloppe de tout l'avion. Vu que le segment du vol en croisière est le plus long de la mission d'un avion. Toute optimisation de la performance doit se concentrer sur ce segment afin de réduire la consommation de kérosène. Cette enveloppe externe de l'avion est la forme estimée et souhaitée en condition de croisière.

Une fois que l'enveloppe externe de fabrication d'une aile est déterminée, le département structure doit générer le modèle d'élément finis basé sur cette forme. La manière actuelle est souvent manuelle. Cette façon de génération prend de quelques jours à quelques semaines. S'il le faut refaire des études sur d'autres configuration pour différent enveloppe ou estimer l'effet d'un paramètre, il faut refaire l'exercice alors la manière manuelle deviendra désuète et même décourageante. La nécessité d'avoir un outil de génération automatique de modèle d'éléments finis est plus que nécessaire.

4.2) Objectif de la simulation

Le but de ce projet est d'étudier et de mettre en pratique les techniques de prédimensionnement et voir l'effet des caractéristiques structurales d'une aile d'avion sur les charges internes ,le poids de l'aile ainsi que le volume réservé au kérosène, en appliquant une charge vert le haut suivant l'axe Y au saumon de l'aile et de contrôler le nombre de lisses donc on va optimiser la structure et ainsi que le niveau de charge moyenne par baie qui restera presque constant pour que la structure soit la plus efficace. Le modèle étudié sera l'aile de l'A320.

Notre travail consiste à utiliser en premier lieu le logiciel développé par Mr Kherrat FEM BUILDER pour générer les modèles de l'aile de l'A320 en modifiant à chaque fois :

- 📥 La flèche,
- 🕹 L'effilement
- 📕 Le type de NACA ;

Et après on fait l'analyse de ses modèles par le logiciel le plus utilisé dans la construction aéronautique MSC.PATRAN et le MSC.NASTRAN, qui est très puissant dans les éléments finis et aussi facile à utiliser, au cours de cette étude on a utilisé l'Excel pour le calcul des charges et pour le dessin des graphes.

4.3) Les dimensions de l'aile de l'A320 :

Les caractéristiques de cette aile ont été tirées de la Plateforme originale de l'A320 où on a retiré ses dimensions et on les a bien mentionnées dans la figure et le tableau ci-après :

Figure (4.1) : un dessin simplifié de la plateforme de l'A320

	Emplanture	Cassure	Тір
corde	239,00	181,74	64,00
FS %	15%		15,00%
RS%	65,00%	65%	65%
ws	73,54	261,5	648

Tableau (4.2): caractéristique de l'A320

Le profil de l'aile a été tiré aussi de la forme en plan de l'aile est pour cella on été obligé de passer par des étapes pour l'avoir à la fin comme dans la figures ci-dessous , pour plus de détaille voir annexe A

Figure (4.3) : le profil de l'A320 dessiné par Excel

4.4) *Exemple* complet d'une simulation avec résultat et graphes

4.4.1) Génération du fichier bdf par FEM- BUILDER

Après avoir déterminé toute la géométrie de l'A320 on passe maintenant au logiciel développé par Mr Kharrat qui est le FEM BUILDER pour générer le fichier bdf

Apres avoir faire START on aura le control- panel qui est le panneau de control

	Ecotrol, panel			
	dig Thiles	Fring, 't feilm	Kan Denit	lipesierios's Cras ⊂ No
	- Eldrendy Say 1	CD × 11 i Fish Ai		10 ¹⁴ fead Jone's F Zona or Misal
	Notice R. J. 3 white Dax F. Tondar (dag Bas	lusesge Fusebar Fa ^{nta} armenan	11500 Г 1 3 клир Г Смат-6747	Historia Land Historia Land Historia Canada Historia Land
	Fishington Fishington Fish Fishington	Г 1853 Ранса Г наса Ранка П пай Сконската	F Kilo (344 F FeellessingElge F ReE F Las Decension	crude Todat
Start Set gives		FISI FICInčIESSko wing	1	Geracie 10° × ale

Figure (4.3) : le menu START et Control- Panel du FEM-BUILDER

On clique sur Wing Definition on aura

	y Topology
- spokgy	
Ribe Topology	Access Cut-out

Figure (4.4) : le menu Wing Definition

Pour faire enter les différentes caractéristiques de cette aile, on clique sur wing Planform Geometry on aura la figure ci-dessous

	NACA Profie	2
Wing Profile from Fi	les	Wing Profie Data

On clique maintenant sur Wing Profile from Files où le FEM BUILDER va parcourir le fichier. dat qui contient les x/c et y/c qui sont ordonnés du plus petit au plus grand pour les intégrer dans le programme.

1	Root Profil G7k			Kink Profil G	i7k	3	Tip Profil G7k			
2	202 Data	g i	Points	202 D	lata	Points	202 Data	(Fonts	A320 Profil
3	1	0	C	1	0	0		0	0	
4	2	0,01	0,017515	2	0,01	0,017515	2	0,01	0,017515	
5	3	0,02	0,023112	3	0,02	0,023112	3	0,02	0,023112	
6	4	0,03	0,028408	4	0,03	0,028408	L	0,03	0,028405	(m
7	5	0,04	0,033416	5	0,04	0,033416	5	0,04	0,033415	
8	5	0,05	0,038152	6	0,05	0,038152	6	0,05	0,038152	_
9	7	0,06	0,042628	7	0,06	0,042625	7	0,06	0,042628	
10	3	0.07	0,046857	8	0,07	0,046857	8	0,07	0,046857	
11	9	3,08	0,050851	9	0,08	0,050851	9	0,08	0,050851	
12	10	0,09	0,054621	10	0,09	0,054621	10	0,09	0,054621	
13	11	0,1	0,058178	11	0,1	0,058178	511	0,1	0,058175	
14	12	1 11	0.061633	+0	0.11	0.061693	10	0.11	0.061633	

Figure (4.7) : le menu de donnée du profil

On passe maintenant à Wing Topology, où on va faire entrer le nombre de nervures, de lisses leurs orientations et leurs types :

Figure (4.8) : le menu Wing Topology

On a fait entrer le nombre de nervures qui est égale à 42 ; le nombre de lisses égale à 28 et l'angle d'orientation de lisse qui est égale à 31° cet angle est par rapport à l'axe horizontale (même repère que la flèche de l'aile) donc on aura des lisses parallèles au

longeron arrière ; La seule contrainte de l'orientation, et qu'il faut que l'angle des lisses soit compris entre l'angle du longeron arrière et l'angle du longeron avant car sinon on aura une configuration de ce type. C.-à-d. que des lisses qui naissent dans le longeron arrière. On devrait avoir que les lisses qui meurent dans les longerons et non l'inverse. Voir figures cidessous

Figure (4.9.a) : la juste configuration d'orientation de lisses

On passe maintenant au Stringer Definition on laisse la case vide et on ouvre la macro correspondante on choisit une aire constante égale à 0.05in² pour les Pshell et les Prod cella veut dire que les lisses choisis ont une aire constate égale à 0.05in²

```
Frint #2, "CROD"; Tak (9); Trim(ELID_CKOD); Tab (17); Trim(ELIL_CROD); Tab (25); <u>Trim(G4</u> ID); Tab (33); Trim(G3
Frint #8, "PROD"; Tak (9); Trim(ELID_CKOD); Tab (17); Trim(11C1); Tab (25); Trim(D.D5)
```

Figure (4.10) : la partie program du Stringer Definition

On passe à RIB Topology où on définira l'orientation des nervures et l'espacement entre chaque nervure par rapport au longeron arrière et avant.

Chaque nervure est repérée par sont alpha (angle) et sa position WS (Wing Station) (donc c'est les deux seules entrées de l'utilisateur. Une fois qu'on choisi ces deux paramètres (pour déterminer les références des plans des nervures), le programme déterminera l'intersection de cette droite (alpha et WS) avec la ligne des longerons et il calcule les espacements (pitch) entre les nervures

La configuration des nervures choisis est celle où les nervures sont placées parallèlement à l'écoulement à la racine vus que cette configuration représente un avantage dans le montage des moteurs et des volets. Mais cette configuration n'est pas la plus optimum du point de vue poids car les nervure sont plus longues. Pour cella on adopte une autre configuration une fois qu'on dépasse les moteurs, on revient à une configuration plus optimum à savoir les nervures plus courtes possible donc perpendiculaire au longeron arrière. Pour passer d'une configuration à une autre, il y a une zone de transition qu'il faut contrôler.

Figure (4.11) : la configuration d'orientation de nervure

Le programme qu'on a, calcule l'espacement entre les nervures au longeron avant et au longerons arrière pour donner un indice à l'utilisateur quelle est l'espacement et le problème devient un problème en terme de stabilité. Autrement dit l'espacement est dicté par la stabilité et donc le contrôle de la zone de transition

Exemple :

	Input					
Rib	CL.	WS				
1	90	73.54				
2	80	100.2				
25		130 88				
4	90	145.52				
5	80	108.51				
f i	HD	193 51				
7	90	210.83				
8	90	220.5				
5.3	HO	237.410				
10	95	281.5				
11	100	276.01				
1.2	1414.	12945-2010				
1.3	110	319.47				
14	116	343.46				
15	1 14:	199735-443				
16	1 1 1 1	3354 735				
17	116	403.44				
18	116	121.77				
1.53	118	444 11				
20	116	467.43				
21	116	192.75				
22	118	510 75				
23	118	528.07				
24	116	553.4				
25	1.16	5// 39				
26	118	802.72				
27	116	626.71				
28	1 145	15411-04				

Figure (4.12) : les données à entrer dans le FEM-BUILDER

Figure (4.13) : le dessin d'orientation de nervure

Donc on peut facilement et visuellement voir que le pitch (espacement) est maximale la nervure 9 et il est de moins de 35 pouces. On peut alors jouer avec l'orientation pour diminuer ce pitch mais ceci demande que la transition soit plus répondu et pénalisante en terme de poids.

On passe à la carte matériau, puisse que le but du FEM-BUILDER et de générer le fichier .bdf donc dans sa programmation il existe la carte matériau qui est remplis directement de la macro correspondante donc on fait entrer les caractéristiques du matériau.

Figure (4.15) : partie program de la carte matériau

Et maintenant c'est au tour de la carte force qui est aussi remplis directement dans la macro correspondante dans notre étude nous voulons voir l'effet en premier lieu d'une force unitaire de 100000lbs appliqué au bout de l'aile.

```
'si force Unitaire
' force_disc = 0
' force_disc = 0
' force_disc = 0 ' Force unitaire de 100000 lbs au bout de l'aile
Sate de fors
N_& R335 = . + S000000
free_id = Frestrimere(), "ass0."
Fins IS. "tokCF" Tab(0): 1: Tab(0): 1: Tab(0): Tab(2): 1: Ta
```

Figure (4.16) : Partie program de la carte force

Maintenant, on a terminé toute cette étape on exécute le program en cliquant sur Generate FEM Model ; on clique sur Ok pour LHS Wing FEM généré par défaut après sur oui pour si tu veux construire ton model FEM, on passe à renommer le fichier et on clique sur OK pour exécution complète

Hisal	(Hypersizer User:)	PUSCaD
Microsoft Excel	Hjotab Johe's Lefintion (Hypersizer User:)	Building your FEM
		20 Do you want to Build your FEM ?
Tecsation	Check Model	Oui Non
	Conevato FEM Model	T RBE3
S Side Wina		Load Discretisation
Contract Contract	пураты	- H/Stab
Huilding your HTM Foter the file unae without extention		Building your FEM 🔯
	Annuler -	Run Completed
[1000 OF 00 77		ок
19.320 25 22.77		

Figure (4.17) : les étapes d'exécution du program FEM- BUILDER

Et on aura notre fichier bdf généré ; qu'on peut le lire par Patran en suivant ces étapes :

On ouvre un nouveau fichier Patran, on le donne un nom A320_25_26.77 on clique sur import, on choisit type de fichier NASTRAN-input ; ces étapes sont déterminées dans la figura ci-dessous

Figure (4.18) : les étapes d'exécution du fichier bdf par Patran

A la fin vous voyez la configuration qu'on a dessiné complète avec maillage et charge appliqué, maintenant la configuration est prête à l'étude.

4.4.2) calcul des endloads de la configuration :

On exécute le fichier *bdf* généré par FEM BUILER dans Nastran et ce dernier va nous générer le fichier *F06* qui contient toutes les sorties demandées, ce qui nous intéresse sont les endloads qui sont des charges internes présentées dans des éléments. Nastran génère plusieurs types de endloads, mais celles que nous utiliserons sont issues de la section « SUMMATION OF ELEMENT ORIENTED FORCES ON ADJACENT ELEMENT » on a déjà dis au par avant qu'on a utilisé Excel comme outil de programmation pour diminuer les calculs et les itérations à la main.

La spreadsheet contient trois feuilles :

- 1) « CROD » \rightarrow on mit toutes cartes des CROD de notre modèle à partir du F06
- 2) « Endloads F06 DATA »→ Ici on mit nos résultats des endloads à partir du F06

3) « Endload »

 \rightarrow Cette feuille qui va nous donner toutes les endloads que nous

cherchions.

30 CR	OD	4035013	4035013	4033014	4033114	
14 4 1	₩] CI	ROD Endload	FOS DATA	Endload	100	
Prêt	Fam					Mo

Figure (4.19) : les feuilles que contient le spreadsheet « recherche endloads »

Les CROD sont toutes recopiées dans la feuille CROD à partir du fichier f06 cet exemple contient 4449 CROD

1	3	7 - 64 - 🖼		* recherchi	e_endload_U	pdated 25 EFF.
	meet	ten [streett	on husee	straids it	ormines	COUNTRACT IN
		Atial	- 10 -	A* A*		
c	oller 1	GIS	-11 663 -11 40	A .		- 600 (HA)
87.4	ALC: LA		Pulice	1.	Aburner	nerst.
	110	·	6 3	S		
	A	U U	C	D	. L.	1
1	GROD	ID	Prop	61	G2	
2	CROD	4031501	4031501	4033001	403310	1
3	CROD	4031506	4031506	4034001	4034101	1
-4	GROD	4031601	4031601	4033101	403320	1
5	CROD	4031606	4031606	4034101	4034201	1
6	GROD	4031701	4031701	4033201	4033302	2

Figure (4.20) : la feuille CROD

Et on passe après à la deuxième feuille endload F06 data qui contient SUMMATION OF ELEMENT ORIENTED FORCES ON ADJACENT ELEMENT

	A B	8	C	0	E	F		G	H		J	K	L
1		SUN	MATION	OI LLLN	LNI	ORILN	120	ORC	L 5 0	N ADJA	CLN	LLLM	_NIS
2				ONE AN	D TWC	D D MENSIO	NAL FI	EMENTS	SON Y)				
3						11							
4	POIN	1-11 (ORIENT-0	ILNSION =(+)									
5	403	1002	4031003	1494645E103									
6	403	1002	4031102	-1.869202E-03									~
7	403	1002	4033001	1.494645E+03									ą.

Figure (4.21) : la feuille Endloads F06 DATA

La troisième feuille qui cherche les endloads il faut faire entrer

Figure (4.22) : la feuille endloads

1) Numéro de ligne du premier stringer : C'est la première ligne où nous avons commencé à entrer les CROD des lisses que nous cherchions les résultats donc pour les lisses supérieures 4035001 et pour lisses inférieures 4038001 cella est bien sur pour la première baie et comme dans notre études nous avons choisis 4 baies à étudier baie 1, baie 5 baie 10 et baie 20 donc on doit compléter les différents données

2) Le nombre de ligne maximum des résultats sur la feuille Endload F06 DATA ou plus. Dans ce cas nous avons 32914

32912	4:1062:32	4304031	1.578220L+03
32913	4306232	4306132	1.578220E+03
32911	1306232	4306231	0.0

Figure (4.23) : le nombre de la dernière ligne dans la feuille Endload F06 DATA

3) Le nombre de recherche voulu est égal à 120

Et pour exécuter il faut seulement cliquer sur le bouton baie1, baie5 ... etc.

Une fois qu'on a remplis tout les données et exécuté le program on passe maintenant à un autre spreadsheet qui calcule les charges moyennes par lisses et par baie et trace les courbes correspondantes.

Ce deuxième spreadsheet contient 2 feuilles

41		
12	DATA Courbes	_
Prêt 🛅		

Figure (4.24) : les feuilles que contient le spreadsheet courbes

 La première feuille appelé DATA contient les endloads calculés aux part avant mais en plus calcule les charges moyennes par lisses et par baie en utilisons les fonctions d'Excel « moyenne et somme »

Figure (4.25) : la feuille DATA et les fonctions de calcul utilisées

2) La deuxième feuille courbe contient un résumé de ces charges moyennes calculées dans la première feuille et les courbes donc

4 la charge moyenne de chaque lisse dans une baie

La charge moyenne par baie

Pour les lisses du revêtement supérieur

Figure (4.27) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies dans le revêtement inférieur l'aile de l'A320

<u>Remarque :</u>

La force de 10000lbs appliqué à l'extrémité de l'aile à causé une compression au niveau des lisses du revêtement supérieur et une tension au niveau des lisses du revêtement inferieur ce qui est très logique

4.4.3) <u>Visualisation de la rigidité de la configuration :</u>

Action : Access Results

Ce n'est qu'une simple visualisation des résultats dans Patran:

En a déjà cité les étapes d'ouvrir un fichier bdf par Patran, une fois que c'est fait, on passe aux étapes suivantes

1) Etape1 : Cliquer sur Analysis

7 Patran	2007 12	l.												EN	Anglais ()	Ìtors L	nisi 😰
File Group	freed	Viewių	Cisplay	Fiele	ne ues l	icos Cinci	n fan s	ei Liie	l								
	8 7	\$ 5	2.6	5	♣ ⋕	0 0 Q	A	1 1 H	23 8	1 2 5	ាធ ថា :	6 13	12 13	\$ \$	影影	1	6 3
Secrebo) Jenencs	Loads/E	L Se Nati	ř. H ials) Popetie	s Load Cal.	E Fiels		Res 13	irsight (Nr Pos						
= 25 off	22.77.4	b - defai	ult viev	roort	- defaul	it eroup -	Cottity	A SUSS	Results	1, 214 (A- 6.	. Po i					

Figure (4.28) : Le menu principal du Patran qui contient analysis

2) Etape 2 : Choisir

. . .

Chiaty20 Chi	Aution, Access Results * Dect: Attach XDR * Veli ud Result Entries *
Code: M.X. Nastien	Code: VtBLINestran Type: For let arel
Avolobils Joos Fleche _25_et filemen26.77	Avaliable : nbs Flect e_25_ef ilemanl_26.77
Inf Description (TIT-F)	Fliabil_25_:://irenan_26.77 Job Description (IIILL)
124	

Figure (4.29) : les étapes suivis pour faire une analyse

3) Etape 3: Selection « Select Results File » et choisir le fichier que nous voulions attacher pour visualisation et puis on clique sur « Apply »

· · · r	1 1 1 1 1 1 1 1 1
Available .	loba
I leche_2	effilement_20.77
<	
lob Name	
1	
Job Descri	ption (111LL)
SUBTITLE	
LABEL	
	Select Results File
1.	regelation Haramaters
	ansiation renameters
	Apply

Figure (4.30) : sélection du fichier résultats

4) Etape 4: Sélection Results :

Figure (4.31) : l'icône résultats

5) **Etape 5 :** on choisit le résultat que nous voulons voir est les déplacements

Disject	Marchel Mot 📼	
<u></u>		the set of
-		
Ment Rea	Sult Cases	
_		
e	11 C	2
	2015 Mar.	
alend Fra	ngee Péresoall	
Ionstrain	t Forces, Translational	
Find Point	t Loroes, Applied Loads	
Fiel Point	t Forces, Constraint Forces	1 . AN
	standard and a state of the second state of th	2
1 ************************************		
e .	Manufactor T	
uantity:	Marguntrades 🔫	
e uantity: elect Det	Magnitude 🔫 formation Result	
elect Det Ionstrain	Maquitude T	-
elect Der Jonstrain Brid Poin	Magnitude T	
Constrain Sect Det Constrain Said Poin Said Poin Said Poin	Maguitude T formation Result tr Forces, Translational menus, Transpolational trends, Canadraud Forces Forces, Applied Loads Forces, MPS Forces	× 3
Constrain elect Der Constrain Sind Point Sind Point Sind Point	Magnitude T formation Result formation Result forces, Transibilitional menus; Transibilitional t Forces, Applied Loads I Forces, MPC Forces	× 3
Constrain onstrain onstrain onstrain onstrain onstrain onstrain onstrain onstrain onstrain onstrain onstrain onstrain	Magnitude T formation Result Int Forces, Translational mends, Translational tronces, Applied Loads I Forces, Applied Loads I Forces, MPC Forces	× 3

Figure (4.32) : le chois du résultat Displacements, translation

6) Etape 6 : En cliquant sur « Apply » on aura

Figure (4.33) : le résultat de l'analyse et lecture de la déflexion

La déflexion maximale est égale 40.9 in

4.4. 4) <u>Calcul du poids de l'aile et du volume que l'aile peut contenir pour le</u> <u>kérosène :</u>

4.4.4.1) <u>Le poids de l'aile :</u>

Pour calculer le poids total de l'aile ainsi que son volume par Patran il faut suivre les étapes suivantes :

1) Etape 1 : Sélectionner Tools :

Puis : Mass Properties

1 ile	Group	Viewport	Viewing	Display	Pref	erences	Lools	Insight Control 11	elp Uti	lities		
		C 10	🗠 🛝 .	ol. 🕵	1 EP	€ ₩ +++	Mind	.Fabijoe		-71	14 PA	¥.
Geo	metry	Elements	Loads/Bi	Es Mate	rials	Propert	Lan Rui Aus	ninate Modeler Idoo Analysis Ilysis Manauer	*	sis	P.C	sults
-	le25 e	11 22.77	.db - del	hault_vi	iewp	ort - de	EM	· · · · ·				
		a second provide the second		all a second	and the state of the		List					
							Mas	ss Properties				
							BHA	un Library	_			

Figure (4.34) : sélection de Tools et de Masse Properties

On aura donc ce menu :

∧ction: Dimension	Show -	
12	Define Ragion	1
Retative in	r Countinale Frame	
Coord 0		
ann tuilt	constrated lines	
Use: Element	of Promotics	- 1
	of the other states of the sta	
l finskarensesen	e/Areae/NSM	21
Use Liemer	e/Areae/NSM nt Properties	-
Undkreissen Use Liemer	e/Areae/NSM ht Properties	<u>•</u>]
Use Llemer	nt Properties	-
Use Llemer	ncipal Axes at CG Princ: Cound From	<u>-</u>
Use Llemer	ncipal Axes at CG Princ: Count From Difference Count	<u>.</u>
F Plot Pri F Plot Pri F Creatie Voite in	ncipal Axes at CG Princ Court From D'August File	•]

Figure (4.35) : le menu demandé

Sélectionnant « Define Region »

On aura ce menu :

Negion.	<u>camp</u>	
Include:	FFM V	
Group Filto	e)	
	Filter	
Select Crou	ipa	
default_gr	oup	1
and the second		
		3
<	2	12
<u>(</u>	(>	112
Display Ma	thod	12
Display Ma Summar Group	thod ry	12
Diaplay Ma Summar Group	thod Y	2
Diaploy Mo Summai Group	thod 'Y	10

Figure (4.36) : sélection de default- group

	CG(CD C)	39(CD 3)	l-Frropel	Radiot Gyr.	Mass	The
2	-2914112	-2 SIE+332	25496+LL?	1 ESSE#JJ2	\$ 33354002	\$ 3334555-003
?	£ 451E+DD1	8.4515-001	2.492E+007	1 634E+002		
3	E \$81E+332	6.9315-002	7.868E+CC5	2903E+001		

Sélectionner le groupe « Default_group ». Puis « OK ». Puis « Apply »

Figure (4.37) : le tableau masse et volume

On aura la masse et le volume de toute l'aile. Ce volume qu'on parle est le volume du matériel donc de l'aluminium.

C'est sur que l'aile du A320 a un poids beaucoup plus élevé que ça, vu que :

- Dans notre analyse, nous avons qu'une moitie de l'aile entre les deux longerons et non incluant la partie centrale a l'intérieur du fuselage, on parle de la masse du Wing box que la boite aile
- dans les propriétés de nos éléments nous avons pris des épaisseurs de 0.050 pouces (1.25 millimètres) et l'aire de la lisse aussi de 0.050 pouces carrés.
- Le poids de l'aile de l'A320-200 est de 19403 lbs

Mais ce que nous voudrions le comparer est le ratio, en reparlera de ce point en dessous lors des comparaisons

4.4.4.2) Le volume réservé au kérosène

Deuxième donnée aussi à montrer est le volume que l'aile peut contenir pour le Kérosène ; le ratio des volumes peut être estimé en faisant le ratio des aires de la surface de la nervure 1

Pour calculer l'aire de la nervure 1 il faut suivre les étapes suivantes :

1) Etape 1 : Créer un groupe avec la sélection des éléments de la nervure.

File	Group	Viewport	Viewing	Cisplay Pr	eferences To	ob Insight	Contro H	lelp Utilities		
Ge	o netry	Elements	Loads/BC	s Material	⊳ Properties	Load Ca	E Fields	Analysis	Results) in:
		1 <i>8</i> b	n 🖞 🖉	<u> </u>	6 8 7	8	8	0 (H	ର୍ ଭ୍	P.H
X	DD	$\sim 10^{-1}$	DØ	• 🏨						

Figure (4.38) :L'icône groupe

On aura donc ce menu

Action:	Create 🔻		
Vetto	Select Entity	-1	
Existing Ca	oup Nomca	1	
de'scl_g	ioup		0
			-
C 1		2	
File	. J-	1	
New Group	Name		
T Vake Ci	arrent f	Pusled	
Vinpuet	Al Char Group	•	
Group Con Add Lett	lionta / Selection	-1	
Er lily Set	action		-1

Figure (4.39) : le menu de création de groupe

Aller maintenant sur Préférences et choisir « Picking »

Figure (4.40) :l'icône preferences
Et on aura ce menu :

ntity Picking Curso	or	5-3 -
Rectangle/Polygo	n Picking - entity	
Enclose any p	ortion of en	fily
C Lociose centre	oid	
Precelection Sett	i torm loot monua 2 loons inue	
T I abol Highligh	hting	
T Entity Highligh	hting	
14	1	
Node/Delet Elze	10	

Figure (4.41) : le menu de preferences par défaut

Choisir alors dans la zone « Entity Picking Cursor » l'option « Enclose entire Entity »

Centroic	£1	
Ce ELULY		
.rtty Picking	Cursor	21
Hectangle/	Polygon Hicking	i .
· Enclose	entire entity	
C Freibac	any portion of	ontity
C Frehao	controld	
🗸 tycky	ucking torm	
🔽 Horizon	ntal selas, menu	36
E Show	Pioluing Icona	
Peseectu	n Settings	
LabelH	Sahilahtina	
🖙 Frtty H	lighlighting	
¥		-
Node/Point S	lize 10	
	Close	1

Figure (4.42) : le choix de l'option « Enclose entire Entity »

On clique sur Close

Puis on sélectionne les éléments CQUAD de la première nervure un par un

Figure (4.43) : la sélection des éléments CQUADs

Et en Cliquant sur OK et nous aurons un groupe d'élément incluant que les CQUADs de la rib1.

Maintenant on va créer une surface basée sur tous les éléments du maillage de la rib :

Cliquer sur Geometry :

Action : Create

Object : Surface

Method : Mesh

Surface IL	Lat
1	autour,
Delete	Original Elements
1 ement	Lind
Eim 4.15	0000 4030059 4030 00 4030
V Cycle	to Next Corner
Cuter Co	orner Nodes
4	2
153	
Enur	
	in vertex vodes
<u>P</u>	
Surface C	reation Methods
Contract Cont	rametrization 🗮

Figure (4.44) : menu création d'une surface mesh

Sélectionnant tous les CQUADS de la rib et puis cliquer sur Apply.

Ne visualiser que la géométrie :

Cliquer sur cet icône

Figure (4.45) :l'icône à cliquer

On clique maintenant sur Erase du FEM

Coord Posters	Filler
Steomery Phil Phil Phil Phil Phil Phil Phil	Erase
	Erose
-FM PIOT	Erase
Piot	Erose
4.1 Piot	Erase
	Erose
	<u>ur </u>

Figure (4.46) : menu pour effacer les FEM

Nous allons avoir ceci :

Figure (4.47) : la surface de la 1ere nervure

Pour analyser cette surface : il faut revenir à Geometry :

Action : Show

Object : Surface

Info : Attributes.

En sélectionnant cette surface créée nous allons avoir ceci :

Surface 10	Verlices	Etyn	Area	Cerduid
*.	*	4	3%10%121	(-73.10*300 55.300568 520.256465
Summany			390' 096' 21	

Figure (4.48) : le menu « show surface attribute information »

4.5) <u>Etudes de l'effet de la flèche et l'effilement sur les charges internes :</u>

On commence par la génération des modèles : Les configurations à dessiner sont :

Figure (4.49) : les configurations des ailes

Pour le dessin de toute ces configurations on a besoins de quelque donnés à entrer dans le FEM-BUIDER, tel-que la corde au bout de l'aile ainsi que la corde au kink c'est la corde à la cassure de l'aile

Figure (4.50) : définition des paramètres à calculer pour les dessins des configurations

Pour Effilement 55%

	α_{LE}	Chord_Tip	Chord_Root	Kink Ref	Span	L	α_{TE}	I.
Config	5	131,45	239	187,96	574,46	181,7087	-5,70	203,8103
Config	15	131,45	239	187,96	574,46	285,3761	4,62	203,8103
Config	25	131,45	239	187,96	574,46	399,3251	15,59	203,8103

Pour Effilement 34.41%

	α LE	Chord_Tip	Chord_Root	Kink Ref	Span	L	α τε	1
Config	5	82,25	239	187,96	574,46	132,5087	-10,50	187,7123
Config	15	82,25	239	187,96	574,46	236,1761	-0,28	187,7123
Config	25	82,25	239	187,96	574,46	350,1251	10,95	187,7123

✤ Pour Effilement 26.77%

	α_{LE}	Chord_Tip	Chord_Root	Kink Ref	Span	L	α TE	I.
Config	5	64	239	187,96	574,46	114,2587	-12,25	181,741
Config	15	64	239	187,96	574,46	217,9261	-2,10	181,741
Config	25	64	239	187,96	574,46	331,8751	9,18	181,741

- Les courbes :
- ✤ <u>Flèche 5</u>•
 - 📥 Effilement 26.77%
 - 📥 Effilement 34.41%
 - \rm Effilement 55%

Figure (4.51) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur de la configuration flèche5° effilement 26.77%

Figure (4.52) variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur de la configuration flèche5° effilement 34.41%

Interprétations des configurations de la flèche 5•:

4 Pour effilement 26,77 %

On remarque que la charge moyenne augmente d'une baie à autre donc y'a pas de créations de nouvelles lisses à l'extérieur ce qui rend le poids de la structure minimum et permet de chargé la structure d'avantage d'autre part cette augmentation implique que la charge n'est pas presque constante le long de l'envergure ce qui diminue l'efficacité de l'aile.

4 Pour effilement 34,41%

On remarque la charge moyenne est presque constante le long de l'envergure ce qui rend cette structure très efficace, mais d'autre part cette aile est moins chargé que la première mais travaille à haut niveau partout ; toute ces remarques rend de cette structure la plus optimum malgré la légère diminution de charge moyenne par baie qui a surement engendré une augmentation de poids.

4 Pour effilement 55%

On remarque que la charge moyenne baisse de 5407 à 3429 à cause que nous avons plus de lisses a l'extérieur avec un moment plus faible ce qui rend la structure pesante mais avec des charges très faible tout cella implique que cette structure n'est pas du tout efficace.

 Pour plus de détaille sur les valeurs exacte de ces charges représentées dans les graphes ci-dessus voir annexe C

Flèche 15•

- 🕹 Effilement 26.77%
- 📥 Effilement 34.41%
- 📥 Effilement 55%

Figure (4.54) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur de la configuration flèche15° effilement 26.77%

Figure (4.55) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur de la configuration flèche15° effilement 34.41%

Figure (4.56) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur de la configuration flèche15° effilement 55%

Interprétations des configurations de la flèche 15•

L'augmentation de flèche à 15° à provoqué une augmentation de charge d'un stringer à autre le long de la baie et aussi une augmentation de charge moyenne d'une baie à autre se qui diminue l'efficacité de l'aile d'une part et augmente le poids de la structure d'une autre part

Toujours l'aile d'effilement 34.41% est la plus optimum malgré cette augmentation de charge, et après vient celle d'effilement 26,77% ; et la plus mauvaise des structure est celle d'effilement 55%

 Pour plus de détaille sur les valeurs exactes de ces charges représentées dans les graphes ci-dessus voir annexe C

Flèche 25•

- 🕹 Effilement 26.77%
- Liffilement 34.41%
- 🕹 Effilement 55%

Figure (4.58) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur de la configuration flèche25° effilement 34.41%

Figure (4.59) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur de la configuration flèche25° effilement 55%

Interprétations des configurations de flèche 25•:

C'est les mêmes remarques qu'avant donc cette remarquable augmentation de flèches a causé une remarquable augmentation de charges d'un stringer à autre le long de la même baie ainsi que la charge moyenne d'une baie à autre ; se qui diminue l'efficacité de l'aile d'un coté et augmente le poids de la structure d'un autre coté

Toujours l'aile d'effilement 34.41% est la plus optimum malgré cette augmentation de charge, et après vient celle d'effilement 26,77% ; et la plus mauvaise des structures est celle d'effilement 55%

 Pour plus de détaille sur les valeurs exacte de ces charges représentées dans les graphes ci-dessus voir annexe C

> <u>Remarque importante :</u>

Mais il reste toujours comme question est que pourquoi l'effilement 34.41% a donné une tendance presque constante le long de l'envergure pour cella voici une simple démonstration avec de simple équations.

<u>Géométrie :</u>

Figure (4.60) : géométrie simplifiée d'une aile

$$C = C = C (1 - (1 - \lambda)x)$$
 (4.1)

$$\lambda = \frac{c}{c} \tag{4.2}$$

Moment appliqué :

Figure (4.61) : application d'une force au bout de l'aile

<u>**0** < x</u> < 1

$$M = F$$
 × $(1 - x)\frac{b}{2} = M$ (1 - x) (4.3)

Tel-que

$$M = f \qquad \times \frac{b}{2} \tag{4.4}$$

Endload :

$$e \qquad m \qquad = \frac{\sum e \qquad E}{N \qquad d \ li} \tag{4.5}$$

$$\sum e = \frac{M}{t_m}$$
(4.6)

 $t_m \propto t_m$

 $\propto c$

 $t_m = A C (1 - (1 - \lambda)x)$ (4.7)

$$N_{h} = \frac{c_{h}}{p} \frac{R \neq F}{h} = \frac{(65\% - 15\%)c_{h}}{p}$$
$$= \frac{50\% C (1 - (1 -)x)}{p}$$
(4.8)

$$e \qquad m \qquad = \frac{M (1-x)}{(n\iota \quad d \ li \quad m \)(1-(1-)x) \ A \ C \ (1-(1-)x)} \quad (4.9)$$

$$e_m = C = \frac{1-x}{(1-(1-\lambda)x)^2}$$
 (4.1)

$$C = \frac{M}{(n\iota \quad d \quad li \quad m) A C}$$
(4.1)

$$N \qquad d \quad li \qquad m \qquad = \frac{5\% \ c}{p \ h} \tag{4.1}$$

En variant $\lambda = 0.15, 0.25, 0.35, 0.45, 0.55$ et $0 < \pi < 1$

1	0;: F		0,25		0.35		0.45		0.55
x	End ood	х	Enc odd	х	Encload	X	Encload	x	Encload
0.1	1.07498	3,1	1.021863	U,1	1.029403	U,t	1.00.49**	U,*	0,986815
0.2	161272	0,2	1 107268	0,2	1 056943	0.2	1 009973	0.2	0,966087
0.3	1 201204	0,0	1 105453	0,2	1 000205	0,3	1,00398	0,3	0,935547
0.4	1 37741	0.4	1 22449	0.4	1 39569	0.4	0 988 93	0.4	0.882326
0.5	512287	3.5	1,28	11.5	1 09/204	11.5	0.954240	0.5	0,232466
0.6	685973	B.C	1 322314	0.6	1 37498	0.6	0 891087	0.6	0.75081
0.7	- 828989	0,7	1 32964	0.7	1 0100:5	0.7	0 793: 79	0,7	0,639352
30	953125	3.0	1.25	8.0	0 868058	0.8	0 837755	0.8	0.488281
5.5	510774	3,5	0.046746	0,0	0.580535	0.9	0.357118	0.9	0,382455
1	U	10	U	100	U	2.	U	100	U

<u>Remarque :</u>

Ces figures représentent bien la tendance observée par les simulations avec Nastran

- On remarque ici que pour l'effilement de 35% la fonction présente un plateau (variation de moins de 10% avec tendance ascendante et descendante)
- Pour un effilement < à 35%, on voit une augmentation de la endload moyenne en s'en allant vers le saumon de l'aile.
- \blacksquare Et pour des effilements > à 35% c'est l'inverse qu'on observe.
- Donc cette fonction représente bien la tendance de la endload moyenne le long de l'envergure.
- Les courbes de la fonction démontrent que cette tendance permet d'avoir une endload moyenne presque constante jusqu'a une envergure de 70% et nous avons tracé les endloads jusqu'a la baie 20
- Conclusion

Du point de vue structure pour une faible flèche à un effilement de 34.41 % permet d'avoir une meilleure distribution de charge le long de l'envergure donc une meilleure efficacité de l'aile et aussi un poids optimum

4.6) <u>Etude de l'effet de la flèche et l'effilement sur la rigidité et la masse et le</u> volume de l'aile :

4.6.1) Etude de l'effet de la flèche et l'effilement sur la rigidité:

En exécutant les fichiers dans Patran et en suivant les étapes indiqué au par avant on a remplis le tableau ci-dessous qui contient la déflexion maximale de chaque configuration

Fleche	Effilement	Defl Max
Deg	%	in
5	26,77	33,5
5	34,41	27,7
5	55	20,6
15	26,77	34,6
15	34,41	29,2
15	55	22,3
25	26,77	40,9
25	34,41	35,2
25	55	27,4

 Tableau (4.2): déflexion maximale de chaque configuration

On sait que la rigidité est inversement propositionnelle au déplacement, donc plus la déflexion est grande plus la rigidité de l'aile diminue donc plus sa flexibilité est grande

4.6.1.1) Effet de l'effilement sur la rigidité :

Puisque l'aile originale de l'A320 a un effilement de 26.77% donc on la prend comme référence, donc on calcule toujours par rapport a son effilement

Fleche	Effilement	% / Ref
Deg	%	26.77%
5	26,77	0
5	34,41	-17.31%
5	55	-38.51%
15	26,77	0
15	34,41	-15.61%
15	55	-35.55%
25	26,77	0
25	34,41	-13.94%
25	55	-33.01%

 Tableau (4.3):
 ratio de déflexion par apport à l'effilement 26.77%

Figure (4.64) : effet de l'effilement sur la rigidité

≻ <u>Remarque</u>

- 4 l'aile la plus rigide est celle qui a un effilement de 55%
- 4 l'aile la moins rigide est celle de l'A320 qui a un effilement de 22.77%
- 4 plus l'effilement est grand plus la rigidité de l'aile augmente

4.6.1.2) Effet de la flèche sur la rigidité :

Puisque l'aile originale de l'A320 a une flèche de 25° donc on la prend comme référence, donc on calcule toujours par rapport à sa flèche

Fleche	Effilement	% / Ref
Deg	%	25°
5	26,77	-18.09%
15	26.77	-15.40%
25	26.77	0
5	34,41	-21.31%
15	34,41	-17.40%
25	34.41	0
5	55	-24.82
15	55	-18.61%
25	55	0

Tableau (4.4): ratio de déflexion par apport à la flèche 25°

Figure (4.65) : effet de la flèche sur la rigidité

➢ <u>Remarque :</u>

- L'aile la plus rigide est celle qui a la plus petite flèche
- L'aile la plus flexible est celle de l'A320
- I plus la flèche est grande plus l'aile est flexible

➢ Conclusion :

On peut conclure que l'aile de l'A320 avec sa configuration de flèche 25° effilement 26.77% est la moins rigide ; donc c'est le coté aérodynamique qui a importé sur l'aspect structure rigidité

4.6.2) Etude de l'effet de l'effilement et la flèche sur poids :

On calcule la masse de chaque configuration et on calcule un ratio par rapport à la masse de la configuration réelle de l'A320 et on fait la comparaison

Flèche °	Effilement%	Masse	%/à M A320
5	22.77	923.6	-1.04
5	34.41	985.8	-1.24
5	55	1166	1.44
15	22.77	924.9	-0.9
15	34.41	987.4	-1.08
15	55	1170	-1.10
25	22.77	933.3	0
25	34.41	998.2	6.95
25	55	1183	26.75

Tableau (4.5): masse et ratio de masse par apport à la masse de l'A320

Figure (4.67) : variation du ratio la masse en fonction de l'effilement

Commentaire :

- Une flèche moins prononcé réduit le poids d'une aile de presque 1%.
- On remarque qu'une flèche de 15 degrés est moins sensible après un effilement de 35%.
- Un effilement aura un impact considérable sur l'augmentation du poids. Tendance presque linéaire.

Conclusion :

Une augmentation de l'effilement entraine une remarquable augmentation de la masse de l'aile.

4.7) Etudes de l'effet du profil sur les charges internes

Cette fois ci on va changer les types de profils nous avons choisis des profils qui ont la même épaisseur mais de différents combure donc de différent performance et de différents chiffre NACA. Les NACA choisis sont :

Figure (4.68) : le NACA 65-215

Figure (4.69) : le NACA 4415

On choisit pour l'étude de ces profils la configuration de l'aile de l'A320 qui a une flèche de 25° et un effilement de 26.77 %

Les courbes:

En suivant les mêmes étapes qu'avant on a tracé les courbes ci-dessous :

Figure (4.71) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur dans le NACA 65- 215

Figure (4.72) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur dans le NACA 2415

Figure (4.73) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur dans le NACA 4415

Commentaire :

- On remarque que du point de vue charge moyenne dans les lisses elle reste semblable. Donc on peut tirer une conclusion quand un profil est de même ratio "tmax/corde ", on obtient la même distribution de la charge moyenne. Cependant, il y a une différence dans la distribution des charges dans les stringers de la même baie.
- Le profil NACA 65-215 montre une variation plus gentil d'un stringer a un autre. Le pire est le profil NACA 4415.

 Pour plus de détaille sur les valeurs exactes de ces charges représentées dans les graphes ci-dessus voir annexe C

Conclusion :

Pour des profils à même épaisseur relative maximale on a :

- 4 la même distribution de charge moyenne
- 🖊 une différence dans la distribution de charge dans les lisses de la même baie

4.8) Etude de l'effet du profil sur la rigidité et la masse et le volume de l'aile

4.8.1) Etude de l'effet du profil de rigidité :

De même on a remplis le tableau ci-dessous qui contient la déflexion maximale de chaque configuration

Flèche	Effilement	NACA	Max	% / réf
	%		déflexion	A320
25	22.77	65-215	45.7	11.74%
25	22.77	2415	45.4	11.00%
25	22.77	4412	45.8	11.98%

Tableau (4.6): déflexion maximale et ratio de déflexion par apport à la déflexion de l'aile del'A320 %

Commentaire :

On remarque que le profil NACA 2415 est plus rigide que le NACA 65-215 et le NACA 4415 ; et on remarque bien que le profil original de l'A320 est le plus rigide comparativement au profil NACA de 15% épaisseur maximale car d'un coté on sait qu'il est le plus épais.

Le profil le plus proche dans ce cas au profil de l'A320 est le NACA 2415 et c'est claire si on superpose les deux profils.

Figure (4.75) : superposition du profil de l'A320 avec le NACA 2415

4.8.2) Etude de l'effet du profil sur le poids et volume :

On a calculé le poids et le volume réservé au kérosène de chaque configuration et on a remplis un tableau.

Profil	Masse lbs	Volume in ²	%M/MA230	%V/VA230
A320	933.3	4106	0	0
NACA 65-215	907.9	3885	-2.72%	-5.38%
NACA 2412	917	3901	-1.75%	-4.99%
NACA 4415	917.7	3905	-1.67%	-4.90%

Figure (4.76) : courbe de la variation de la masse d'aile ainsi que le volume de l'aile par rapport au profil de l'A320 dans les différents profils NACA

Constations :

On remarque qu'avec les mêmes paramètres même flèche 25°et même effilement 26.77% :

- Le poids de l'aile de l'A320 est de 2.72% qu'une aile pareil avec un profil NACA 65-215. Cependant, elle offre un gain de volume de 5.38%
- Le poids de l'aile de l'A320 est de 1.75% qu'une aile pareil avec un profil NACA 2415. Cependant, elle offre un gain de volume de 4.99%
- Le poids de l'aile de l'A320 est de 1.67% qu'une aile pareil avec un profil NACA 4415. Cependant, elle offre un gain de volume de 4.90%
- L'aile la plus légère est celle de profil NACA 65-215. L'aile de l'A 320 est la plus pesante mais elle garantie un grand volume pour le kérosène

Conclusion :

Vus les caractéristiques du profil de l'aile de l'A320 qu'on déjà cité il est le plus épais donc l'aile est plus rigide, plus de volume pour les réservoirs.

Pour des configurations de profil qui ont la même épaisseur relative maximale donne la même distribution de la charge moyenne par baie.

4.9) <u>Conclusion des résultats :</u>

- Donc ; pour une faible flèche à un effilement de 34.41 % on a une meilleure distribution de charge le long de l'envergure donc une meilleure efficacité de l'aile et aussi un poids optimum tout ça est du point de vus structural
- La rigidité de l'aile augmente avec l'augmentation de l'effilement
- 4 Une aile qui a grande flèche est très flexible

D'autre part il ne faut jamais oublier le coté aérodynamique et oublié le rôle de la flèche et d'un petit effilement

- L'augmentation de flèche réduit la perte de portance, aussi elle augmente la stabilité de l'avion
- **Un petit effilement permet d'avoir une trainée induite minimale**

Donc il faut trouver un compromis entre la structure et l'aérodynamique autrement dit dans le choix de configuration, c'est toujours une étude de compromis entre plusieurs départements, Structure, Aérodynamique et performance.

- Une variation de l'épaisseur relative maximale entraine une variation dans la charge moyenne par baie.
- La distribution de charge d'une lisse à autre varie même si qu'on utilise des profils à même épaisseurs relatives maximales.
- Le profil supercritique comme celui de l'A320 garanti
 - ✓ Une grande épaisseur relative maximale
 - ✓ Une grande rigidité pour l'aile
 - ✓ Une structure pesante relativement
 - ✓ Un grand volume pour le kérosène

<u>Remarque :</u>

Le calcul des endloads de l'intrados de toutes les configurations est bien détaillé dans l'annexe C

On a traité d'autres exemples comme le cas d'un moment appliqué à l'extrémité de l'aile pour en savoir sur cette simulation voir annexe C

Conclusion

La conception et le développement d'une aile est une activité complexe qui fait intervenir un grand nombre de disciplines complémentaires les unes des autres. Le choix d'une architecture ou d'un concept fonctionnel est toujours le fruit d'une réflexion qui vise à satisfaire une multitude d'impératifs souvent contradictoires. C'est là qu'intervient l'essentiel du savoir-faire du concepteur qui saura proposer la solution optimale

Les éléments finis sont indispensables pour la définition et l'optimisation d'une aile d'avion. Actuellement, les entreprises cherchent à développer aussi rapidement que possible et avec le minimum de référence aux expériences, des configurations économiques et optimisées, qui auront une bonne performance dans certaines conditions de vol. Alors le besoin de la conception d'un outil d'éléments finis fiable et puissant est évident et indispensable.

Vu que nous avons aboutis des résultats concrets pour les différents cas de configuration alors l'objectif de départ qui est l'utilisation du FEM Builder pour génération toutes les configurations possibles ainsi de faire l'analyse structurale par MSC.Nastran et MSC.Patran et à la fin de voir l'effet des caractéristiques structurales d'une aile d'avion sur la sur la distribution de charge le long de l'envergure, sur le poids de l'aile et sa rigidité.

Ce travail est fait d'une manière comme étant un tutorial détaillé pour les futurs promotions, qui peuvent l'utiliser comme un support de cours de modélisation par éléments finis, et d'autre part ce projet été trop bénéfique pour nous de nous avoir acquis une bonne connaissance concernant la simulation, la modélisation et l'analyse par éléments finis FEM et FEA, et aussi des compétences d'utilisation des logiciels FEM-builder MSC.Patran et MSC.Nastran et des notions de la programmation par Excel.

Concernant les difficultés rencontrées au cours de notre projet :

- L'installation du logiciel Patran/Nastran.
- L'obtention de la plateforme de l'aile de l'A320.
- **Wodification des fichiers bdf généré par le FEM-builder.**
- **W** Nettoyage des surfaces de l'aile généré par le FEM-builder dans Patran.
- 4 Apprendre la programmation par Excel.

Pour notre perspective, on propose aux futurs étudiants en fin de cycle de compléter ce modeste travail en faisant une étude de stabilité structurale pour le dimensionnement de la voilure et de faire d'autre simulation avec plusieurs types de Profil NACA, donc varier un paramètre et quantifier son effet et ainsi de suite jusqu'à qu'ils couvrent toute la famille des profils NACA. En fin notre projet est une simple contribution qui peut les aider dans leurs PFE inchallah.

Références

[1]	Ref 1. Jan Roskam . Airplane Flight Dynamics and Automatic Flight Controls Part I DARcorporation . 2001
[2]	Marc Villeneuve. Caractéristiques de l'avion. Ecole Polytechnique de Montréal. 1993
[3]	Egbert Torenbeek. Synthesis Of Subsonic Airplane Design Delft University Press . 1976
[4]	Jean François Viau, AE4950 Conception d'aéronefs. Bonbardier Aéronautique 2008
[5]	Charles Pigaillem. Dispositifs hypersustentateurs.BIA
[6]	Daniel Cauvin. Aérodynamique, Mécanique du Vol. Institue d'aéronautique Jean Mermoz 1983
[7]	Jean Pierre Joli et Laetitia Souteyrat. Structure et Construction. BIA
[8]	Michael Chun-Yung Niu, Airframe Structural Design, 1988
[9]	Belarbi Adel, Ben Kbayli Hamoud, Bouzid Hichem, Conception et réalisation d'un avion léger en bois CHIRRAD- 1A . Bentrad Houcine. Stouf Mohamed IAB 2006
[10]	Advanced Aircraft Analysis AAA Version 2.5, 2004 DARcorporation.
[11]	René L'Heureux et Abdel-Kader Kherrat . AE4165 Analyse des contraintes en
	aéronautique II. Rib Design. Ecole Polytechnique De Montréal. 2005
[12]	Pascal Laplante . AE4155 Structure aéronautique I Modélisation par éléments
	finis en aéronautique. École Polytechnique de Montréal. 2008
[13]	MSC.Nastran 2001 - Quick Reference Guide, MSC.Software Corporation
[14]	Khaled Lamia . Dunne Pablo-Julian . Amaral Steeve ,AE4165:Structure II
	Optimisation d'une aile, Ecole Polytechnique de Montréal. Abdel-kader Kherrat
[15]	Abdel-Kader Kherrat . GFEM Mesher. Bonbardier 2011
[16]	Abdel-Kader Kherrat. FEM-BUILDER. Bonbardier 2011
[17]	A. Poujade. Cellule et Systemes Institue d'aéroanutique Jean Mermoz 1985
[18]	A . Boisson L'aérodynamique du vol de l'avion .DUNOD 1969
[19]	Pascal Lortie. AE4155 Structure aéronautique I. Wing Box Analysis. Ecole Polytechnique de Montréal.2008
[20]	Pascal Lortie. AE4155 Structure aéronautique I Charges Externes. École Polytechnique de Montréal. 2008
[21]	Abdel-kader Kherrat . AE4160 Analyse des contraintes en aéronautique II
	Charges Externes et Internes. École Polytechnique de Montréal 2009
[22]	MSC.Software Corporation, Linear Static, Normal Modes, and Buckling
	Analysis Using MD Nastran R2 and MD Patran R2 (NAS120 Course Notes)
	December 2007
[23]	MSC.Software Corporation, Linear Static, Normal Modes, and Buckling
	Analysis Using MD Nastran and MD Patran R2 (NAS120 Workbook),
	December 2007
[24]	Abdel-Kader Kherrat MSC-NASTRAN École Polytechnique de Montréal, 2008
[25]	Abdel-Kader Kherrat MSC-NASTRAN École Polytechnique de Montréal, 2008

[26]	e,Book - MSC Patran MSC Nastran Preference Guide - Volume 1 - Structural
	Analysis
[27]	MSC PATRAN - Reference Manual - fem_modeling
[28]	Abdel-Kader Kherrat. AE4160. Analyse des contraintes en aéronautique II
	Session Théorique 2,,Panneaux Raidis 1- Stabilité . École Polytechnique de
	Montréal 2009
[29]	O.T.Osmanov . VBA in Excel for engineers. École Polytechnique de Montréal
	2008
[30]	E.L. Houghton and P.W. Carpentes Aerodynamics for Engineering Students,
	Butterworth-Heinemann 2003

A) Le profil de l'A320 :

Le profil de l'A320 a été tiré de la plateforme, les étapes qu'on a suivit pour l'avoir sont :

Figure (A.1) : le dessin du profil sur la Plateforme de l'aile

Apres nettoyage du dessin par le *paint* on a eu le dessin ci-dessous :

Figure (A.2) : le profil de l'A320 après nettoyage dans paint

Et à la fin en utilisant un logiciel appelé *Digitizer* on a pus retiré les points qui définisse ce profil et on l'a dessiné par Excel

Figure (A.3) : le profil de l'A320 dessiné par Excel

L'A320 a un profil supercritique whitcomb et qui a comme caractéristiques :

- Sa courbe moyenne présente une double courbure;
- Forte épaisseur relative de l'ordre de 17%
- Le longeron avant et longerons arrière de ce profil ont presque les même dimensions
- Avantage décisif, à vitesse équivalente le profil peut être plus épais : aile plus rigide, plus grande envergure possible, plus de volume pour les réservoirs.

B) <u>Validation du bon fonctionnement de MSC.Patran et MSC. NASTRAN dans notre</u> <u>micro-ordinateur :</u>

Pour valider le bon fonctionnement de MSC.Patran et MSC. Nastran « v 2007 » on a choisis le problème de l'RDM suivant :

B.1) Problème choisit:

Calculer le déplacement d'une poutre a section rectangulaire soumis à une force de 10 livres à son extrémité libre. Ces dimensions du faisceau de 12 "x 1" x 0,1 ". La poutre est construite d'un matériau isotrope avec un module d'élasticité de 30×10^6 psi et un coefficient de Poisson de 0,3.

Figure (B.1) La poutre soumise à une force de flexion

Etape 1 – Création d'une nouvelle base des données Patran (database) :

- On Clique sur *New* de menu *File*.
- On nomme la nouvelle base des données comme : *Poutre_Flexion*, puis on clique *OK*.

station along a multiple	 Rational (Property 	Research with Onlyss bound and of the
and the second		
1	Inter Hatabase	
	1	ter and the second s
	Terrokete Data tars	: 4the
	COMES CALL LOSAN	ees is CMD 2, 220-tipals do
		Change Terrabre
	1	
	3. The second s second second sec	
	P Protitelecerc	ar .
	🖓 Prdttelanero	
	17 Profile - Managera Franklandarin	er ि Tarits 2011 र 💽 🖶 🖬 मिन
	₽ Prote - reference Faquida dare ≧SMNI Wale	eer الله المراجع الله الله الله الله الله الله الله الل
	P Prote-conteners Franklindern Statistikke	eer Cartino 2 (b)
	P Prote conteners Eugenic dam Original Web Original Original	eer Cartino 2 (b) Cartino 2 (b) C
	 Prote-relever Fuged, dan Sent Wet Sent <l< td=""><td>eer Earlin 2011 • H D PP TH- Contrary 2011 • H D PP TH-</td></l<>	eer Earlin 2011 • H D PP TH- Contrary 2011 • H D PP TH-
	 Protestantesta Fragada dana Construction Con	eer Earlier 2011 • E Pry Tel- Constant 2010 · Constant 2010
	 Praticipants Frageda dam Control wate 	eer Earlie 2011 • • • • • • • • • • • • • • • • • •
	Profile - milegene Fugerdu dure Schull Weite Schull Weite Schull Weite Schull Sch	eer Dari (+ x 2 (1+)) Dari (+
	Profile - milesens Fugardu dum Scholl Web Scholl	eer Dari (1-12 [1-1]) (1-1) (1-2)

Figure (B.2) Création d'une nouvelle base des données Patran

Etape 2 – Création de la géométrie de poutre a partir des données de problème

- Sous l'onglet *Geometry*, on clique sur *Surface* et on sélectionne XYZ.
- Maintenant on entre les cotes de la surface rectangulaire <12 1 0> sous l'option *Vector Cordinate List*, puis on clique *Apply*

Figure (B.3) Création de la géométrie de la poutre

Etape 3 – Création du matériau isotrope (Elastic Modulus = 30×10^6 et Poisson Ratio = 0.3):

- On clique sur *Materials*, on sélectionne *Isotropic*.
- On entre le nom du matériau (Acier), puis on sélectionne Input Properties
- On entre le module d'Young (30×10^6) et le coefficient de Poisson (0.3), on clique sur *OK*, puis sur *Apply*.

Figure (B.4) Création du matériau isotrope

Etape 4 – Création de propriétés du surface 2D et application du matériau isotrope au modèle

- On clique sur Properties on choisit element 2D Shell
- On entre un nom de propriété comme : **Plaque_2D** sous la section *Property Set Name*, puis on clique sur *Input Properties*.
- On clique sur *Select Material* et on sélectionne sur *Acier*. On entre l'épaisseur de la plaque (*Thickness*) comme 0.1, puis on clique *OK*.
- On clique sur *Select Application Region*, puis dans *Select Members*. On sélectionne le bord gauche de la plaque par le curseur de la souris, puis on clique *Add* puis *OK*, et en fin *Apply*.

unito tene	un in son es a Milentactular april: a co	Jun		······································
	16 alfaet 1.05 41.5159 16 m 4 m a fail 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m		Bartaniana III Bartaniana Bartanian Bartaniana Bartaniana Bartaniana Bartania	B% Types "relipe" 2340. Value V

Figure (B.5) Création de propriétés de la surface 2D

Figure (B.6) Application du matériau isotrope (Acier) au modèle

Etape 5 – Création des conditions aux limites : Annulation tous les degrés de liberté de translation et de rotation à l'extrémité gauche de la poutre.

- Sous l'onglet *Load/BCs*, on sélectionne *Displacement Constraint*.
- On entre le nom : Encastrement dans *New Set Name*, puis on clique sur *Input Properties*
- On entre <0 0 0> pour *Translations* et < 0 0 0> pour *Rotations*, puis on clique sur OK.
- On clique sur *Select Application Region*, et dans *Select Geometry Entries*, et par l'option *Curve or Edge*. On sélectionne le bord gauche de la plaque par le curseur de la souris, on clique sur *Add* puis *OK* et en fin *Apply*.

Distance and the second s	taatikaanat T, Tengert Tenet 👔 📜	FR
being any anyther also is allowed by	Allen Qual T	
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	CAA - manual -1	125
weige barde aker grande bana mehre ban - a - a - a - a - a - a - a - a - a -	Tan burk ?	
🗖 partie fasia di defail, riespart defail genar Entite 🛛 💽 💽	Okt gand *	
	-Ou embod Date Extern	1
	7.94 2005	10
		1.
	27	2
	(D)	
	· · · · · · · · · · · · · · · · · · ·	
	a satu sa s	
	Droar : rem	
	S Bratha	
	Steel op dealer Te pro-	
A Deservation of the second seco		
	19.dt -	
A PARTICULAR DE LA PRESENTA DE LA PR	Stortharts 1.97	1.00

Figure (B.7) Création des conditions aux limites

Figure (B.8) Les coordonnées de déplacements et de rotations

	A Petran 2001 rJ		x) 46450 479, 🛱 🕻	
	al cargo Santan ana ang kang Santana dara sa karang kang dalam karang sa		1	
	日本新聞市市大学校 印度市村会会会 白田市市村	说话预算回道规则	网络米勒 法的原始	A A
Landy Early (* Faired Planck Planck Planck Planck Plank Plan	🗰 🙀 🛄 🕅 😡 🗰 🗰 🐼	80 E	N	
<pre>D pooles laceouple - defaul_were pert-s de aul_poole - failly Sectors laceouple - defaul_were pert-s de aul_poole - failly Skm (or here) Skm (or her</pre>	Counting Enderty mark a Polinal Provide counting Polis Animal Adults	868, . 3* "0.		
Image: The second se	poolen Henorysto - defaul _venoper1 - de auti_geory - faitig	E (6) 2	States and	10.0
			Iskit jovar *	
			- applement Tiles an	
			of a site operation.	
			Tablett	5 -
			-1 -1	8
			App order Tepto	
			in and	2 E
			·	
Serve Starts Same 5 Starts Serve Starts Same 5 Starts Beneric Same Same Same Same Starts Beneric Same Same Same Same Same Same Same Same				
Image: State State State Image: State State Image: State State Image: State State				
				- 1
			1	
Serve Starts Same S Starts Serve Starts Same S Starts EStarts Same S Starts Serve Serve Serve Starts Serve Serve Ser			Station of the second s	
Server - Franke Samer - Franke				
Rene - Franks Same - Franks E-Franks Same - Franks - Franks Manual - Manual				
Real Funds Sale Filter				
Serve Charle Same : Charles : Effected Anna Same : Charles : Brance : State : Same : Sam : Same : S				
Effective Analysis and Effective Analysis and Analysis an	Kana Politi Sala Politik			
line and a second s Manual Annual Annual Manual Annual		2		12
Commercer Stream of the second and the second s				C LEE
	Ministration	Mica wattow	STREET, ALL AND	1 10 1 1 1 1 1

Figure (B.9) Sélection de la région d'application de l'encastrement

Etape 6 – Création d'une force de 10 lb.

- On clique sur *Load/BCs*. on sélectionne distributed load
- On entre la Force_Z comme New Set Name
- On clique sur *Input Data*, et on entre la force <0,0,-10> puis on clique sur OK.
- On clique sur *Select Application Region*, .On sélectionne le bord droite de la plaque par le curseur de la souris, on clique sur *Add* puis *OK* et en fin *Apply*.

Figure (B.10) Création d'une force discrétisée

Figure (B.11) La valeur de la force

Figure (B.12) Sélection de la région d'application de la force

_

Etape 7–Génération de maillage :

- On clique sur *Element*, on sélectionne mesh et surface.
- Dans *Select Surface List*. On sélectionne la surface de la poutre par le curseur de la souris, puis on clique sur *Apply*.

Figure (B.13) Génération de maillage

Etape 8 – Analyse de probleme en utilisant MSC Nastran 2007.

Sous l'onglet *Analysis*, on sélectionne *Entire Model*. On vérifie que la case *Job Name* contient le nom de projet, puis on clique sur *Apply*.

Figure (B.14) L'analyse par par MSC. Patran

Etape 9 - Attachement du fichier des résultats génère par MSC. Nastran (.xdb) pour la lecture dans MSC. Patran .*

- On clique sur *XDB* sous le menu *Access Results*.
- On vérifie que la case Job Name contient le nom de projet, puis on clique sur Apply.
- Sous l'onglet *Results*, on sélectionne Create et Quick plot
- On choisit les graphes de *Displacements*, *Translational* et *Displacements*, *Translational*, puis on clique *Apply*.

Figure (B.15) Exécution de fichier des résultats (*.xdb)

Figure (B.16) Visualisation des résultats du déplacement.

Figure (B.17): une autre vue de la déflexion

B.2) Solution analytique du problème choisit :

Nous allons vérifier les résultats trouvés par MSC.Patran et MSC.Nastran en calculant la solution analytique.

Formule de déflexion de poutre

Figure (B.18) : la solution mathématique du problème

Les données :

P=10 lb, L=12 in, E=30e6 psi,

$$I = \frac{1 \times (0.1)^3}{12} = 8,33e - 5 i1^4$$
 (B.1)
Donc :

$$max = 2.304 \text{ inches} = 5.85 \text{ cm}$$
 (B. 2)

Résultat MD Nastran = 2.29 E+00 inches = 5.816 cm

L'erreur =
$$\left| \frac{5.8 - 5.8}{5.85} \right| x100 = 0.58 \%$$
 (**H**. 3)

B.3) <u>Conclusion :</u>

Puisque l'erreur n'est pas importante (0.5%) on a pus atteindre notre cible que les logiciels MSC.Patran et MSC.Nastran sont en bon fonctionnement dans notre matériel informatique.

C.1) <u>Les valeurs pour les lisses du revêtement supérieur :</u>

- * <u>Flèche 5</u>•
- Effilement 26.77%
- **4** Effilement 34.41%
- Effilement 55%

		Btie I	Baid	Baic 10	Baic 20		Bet	Baie 5	Baie 10	Baie 20		Baie 1	Eaicó	Bae'C	Baie 20
Nbre ce	lisse	26	20	ę	II	Nore de Lisse	26	23	20	13	Nore de Lisse	26	2	z	17
Stiller	a 1	-4463)))	©r1Upp≥i I	4170	0	0	0	Sir 1Uppe 1	-4438)	0	0
Sti 20p	px 2	-50"8))		≎ir2.Jppe 2	4828	0	0	0	Straubox 2	4261)	0	0
Sti 3Up	o. 3	-5155)))	StriCulppe G	-515	0	Û	0	SirSuppo 3	-5102	-3643	0	0
Sti \$ Up	pe \$	-5333	-3531))	≎ir∠Uppe ∠	-5254	-0878	Q	0	Strid Jppx 4	5221	-4"04	0	0
Shilp	× 5	5482	4995))	Sir 5 Upper 5	-5443	-5167	0	0	≎r5U555 5	-5311	-4930	-0048	0
Sti 5 Up	pe 3	-563"	-5420))	≎ir6_kppe 6	-5602	-5001	Û	0	%ir€Jppx 6	-5445	-5033	-2263	¢
Տոքեր	x 7	500	-5555))	©irīUoce 1	-5"11	-5546	-310	0	\$Ir7Upps 7	-5533	-5234	-2636	¢
Sti 3Up	px 3	-5830	-58"2	4626		Sir8_bpc=8	-5789	-515	-5253	0	βir€_bpx 8	-5632	-5370	-2830	0
Sti BUp	р, Э	-535"	-5055	-580")	Sir3_bpc 3	-5866	-5859	-5573	0	SirSuppo 9	-5724	-5453	-2338	0
St 10 J	с D	-5021	-5188	-5074)	\$1r10Upp 10	-554	-5367	-5832	0	\$ir 10 Upp 10	-5735	-5584	-5122	-2522
StillUp	x 1	-6042	-6283	-6303		Sinfluppe 1	-5351	-6017	-6021	0	Sinflupp 11	-5307	-5660	-524	-3220
St 12 J	p 12	-5035	-6383	-5564)	\$ir12Upp 12	-5376	-6174	-6183	0	Sir 12 Upp 12	-5802	-5632	-5322	-0075
Selfaul	r 13	-5035	-5452	-5752		Sint3Upp 13	€004	-6243	€222	0	Sir 13 Upp 13	-55	-5688	-5384	-3480
St 14 J	r 14	-6042	-5453	-5327		81r 14 Upp 12	-5374	-6212	-6031	-3335	81r14 Upp 14	-5755	-5656	-5081	-392
State U:	οS	-5037	-5457	-5337		SIT BUDD IS	-5568	·6281	-6433	5163	SintSUpp 15	5754	-5654	-5280	-3634
St 16 J	r 15	-5943	-5450	-6863	5104	\$ir 16 Upp 16	-5875	-6252	-6450	-5432	\$ir 15 Upp 16	-5633	-5650	-503"	-3663
Seli U:	o î	-5371	-6432	-5351	-6512	Sir 17 Upp 1	-5823	679	-6401	-5661	Sin 17 Upp 17	-5555	-5642	-502"	-3684
St 18 J	r 13	-5833	-6384	-5331	-6340	%ir18Upp *8	6730	-612	-6400	-5820	\$1r13Upp 18	5547	-5602	-5290	-3686
St 13 J	с 1Э с	-5704	-6233	-6833	-7201	Sint9Upp 13	-5685	€04€	€345	-5912	Sir 13 Upp 13	-5544	-5510	-523"	्रस्त
\$1200	m 2)	-5603	-5207	-5733	-7318	\$ir 20 Jpc - 20	-5570	-5565	-6303	-5552	31r 20br 20	-5474	-5383	-5152	3636
St 21.0	r 21	-5508	-5073	-5531	-7366	\$ir 21Upp 21	-5450	-5864	-6186	-5579	Str 21Upp 21	-5331	-5257	-5032	322
Sti 22 U	DE 22	-5350	-5313	-5475	-7343	\$ir 22 Jpc - 22	-5231	-5135	-60.5	-5858	3/r 22 .bc 22	-5243	-56	-4363	-3231
\$1231	nr 23	-5163	-5762	-6310	-7210	\$ir 20 Jpc - 20	-5'51	-5551	-5850	-5177	71r 20 Jpc 23	-5130	-5052	.1882	-2405
Sti 24 U	p; 24	4383	-5565	-614	-7031	\$1r24_bc 24	4868	-5017	-5"#	-5647	81r24_bc 24	5001	-451	-145	-3326
St 25U	φ3	-4331	-5310	-5356	·6886	\$ir 25 Upp 25	-4821	-5219	-5453	-5468	\$In 25 Up: 125	-4339	-1'43	-45"8	-3226
Str 25 U	pr 25	4623	-5112	-5"22	-6624	\$1r 26 Jbc 26	-4610	-5021	4283	5234	\$1r26_bc 26	-4757	-4588	-4331	0107
Fair		1	5	ŕ	20	Brin		t	n	20	p.t.			0	,,,
ree nouvele poi le	e	-5553	-5331	-5337	-5373	uce positive parties:	3454	.5732	.(912)	.00	Dik	5402) .:96:	را متفر	23 - 2499
ev ovyane parts	N	-7114	-909	-7771	-7714	nde noveme per 1872	10404	102	-94E	9212	ce moliarue bar (1980	2101	-)24)	-23.0	-0423

Figure (C.1) : Les valeurs des trois configurations de la flèche 5°

* <u>Flèche 15</u>•

- **4** Effilement 26.77%
- **4** Effilement 34.41%
- **4** Effilement 55%

	В¢	Baie 5	Bais 10	Bris 20		Baei	Bais 5	Eaix 10	Bae 20		Bic	Baet	Bac C	Baic 20
Vbre de Lisse	25	23	13	ť	Ve re celipse	26	23	20	13	Nore de Lisse	26	24	22	1
Str 10ppe - L	-335	0	((SalfUppe 1	-0250	0)	Û	©ir1Uposi I	-0581	Û))
Str 2 Lppk 2	-2031	0	(Sti 2 Upp+ - 2	-0956	0)	0	Sir2.jppe 2	-4101	Q))
Ströllppe G	-4231	0	(Stil SUppi - S	-4201	0)	Q	SkrSulppe S	-4\$"0	-0648))
Strällppe a	-4433	-0417	(Sai4Uppi 4	-4508	-3733)	Q	©ir∠Jppe ∠	-4530	-4636))
Str5 Uppe - S	-4742	-4177	(Sa Suppolis	-4145	-5015)	0	Sir5Uppe - 5	-4"3]	-4328	-3453)
Strölppe 6	-4560	-5180	(3::6Upp- 6	-2970	-51%)	Q	Sir6_ppe_6	-4362	512	-4603)
Strillppe 1	-5176	-54%	(Saluppo i	-9160	-5389	-3686	Q	©irīUope "	-5117	-5246	-4310)
Strölppe ö	-5380	-5656	-4536		Sti 8 Upp+ - 8	-sote	-575	-5216	Q	ôlr8. j ⊊pe 8	-5287	-5080	-5004)
Strällppe B	-500	-5861	-9672		Sti 9Uppi - 9	-5495	-5731	-5525	Q	Sir9_ppe 3	-5441	-5480	-5107)
Strift Upp 10	-5653	-60tE	-5329		SanCulpp 10	-56 E	-5355	-5"80	Q	©ir 10 Upp 10	-5564	-5616	-5215	-2735
Str fl Upp+ 11	-572	-6135	-6153		Sar1Upp 1	-5630	-5337	-5382	Û	Sirtiluppe 11	-5662	-5"0"	-5323	-3453
Strife Upp 12	-560	-6255	-6430		SariaUpp 12	-5785	-6107	-6142	¢	©r12055 12	-5124	-5148	-5403	-3588
Strif2 Upp 10	-5348	-6346	-6647		SartSulpp 13	-588)	-6135	-6231	¢	≎int3Upp 10	-5186	-5748	-5468	-3683
Str 14 Upp 14	-5363	-6075	-6749		Sar4Upp 14	-533	-52\$2	-6356	-0î 4 î	©ir 14 Upp 4	-5807	-5"2"	-5468	-3744
Str 15 Upp 15	-6051	-6417	-6758		Sa 5055 15	-600"	-6211	-6412	-5288	≎ir15Upp+ 15	-5857	-5134	-5463	-3732
Strift Upp 16	·6021	-6432	-6738	-5159	Saré Jop 16	-530	-5258	-6441	-534	©ir16Uco (6	-5806	-5734	-5465	-3803
StrffUpp 11	·6C26	-€442	6803	-5489	Sar7Ubb 17	-5324	-6213	-6401	-5746	©ir fî Upp⊨ 1'	-5857	-5705	-5333	-3732
Strife Upp 18	-6054	-€422	-6860	-5905	Sarit Jop 18	-6021	-6163	-6405	-5883	©ir18Uco 18	-5300	-5104	-5346	-3763
Strife Upp 13	-5366	-606-	-6833	-7182	Sa 15 Jpp 18	-552	·611	-6358	-5957	©ir 19 Uco 13	-5862	-5622	-5283	-3725
Str 20 Lpt 20	-5366	-6250	-68(7	-7295	Sti 20 Upj - 20	-5346	-6050	-6325	-6011	\$\r 20 _pp 20	-5848	-5500	-5226	-3663
Str 21 Upp - 21	-5346	-6173	-6653	-7343	Sa 21 Jpp - 21	-583)	-5352	-6212	-5550	\$ir21055 2l	-5828	-5074	-5120	-3580
S:r22Lpc 22	-5861	-6040	-6515	-7333	Sti 22 Upj 22	-58tC	-5350	-6044	335	\$\r 22 _pp 22	-5148	-524"	-4331	-3453
Str 28 Lpt 20	-574	-5302	-6400	-7213	Sti 28 Upj - 28	-5735	-5675	-5321	-5155	81r 20 _pp 20	-5682	-5121	-4373	-3345
S:r24Lpc 24	-5625	-5723	-6203	-7053	Sti 24 Upj - 24	-56 M	-53.6	-5752	-560	\$1r24_pp 24	-5608	-4383	-4731	-3235
Str 25 Jac 25	-553	-5534	-6000	-6841	Sa 25 Upp 25	-546	-5347	-5522	-541	\$\r 25 Upp 25	-5564	48.6	-4553	-3104
S:r26Lpt 26	-5442	-5325	-5805	-675	Sti 26 Upt - 26	-5411	-5150	-5341	-57	\$\r26_pp 26	-5514	-2622	-4360	-2355
Bac	•	:	10	20	Baik		5	ľ	20	Baie		5	ľ.	20
rean overne par lissa	-5407	-580	-631	-5854	conoscreptrizes	-5404	-5722	-530"	-533	ree noverne par lisse	-5082	-5003	-5030	-3437

Figure (C.2) : Les valeurs des trois configurations de la flèche 15°

* <u>Flèche 5</u>•

Effilement 26.77%

 Effilement 34.41%

4 Effilement 55%

		Bais 1	Buie 5	3aC	Brix 20		Biel	Baiz5	Eak (C	Bac 20		Bais 1	Baieš	Eak (C	Baix 20
Nbrecel	isce	26	23	19	11	Nibre de Lisse	26	23	20	13	Nbre de Lisse	26	34	ű	7
Stilloo	6 I	-2455	C	Ú)	Stillera 1	-2416	()	0	Strillippe - I	-2857	0	0)
St 2 Upp	c 2	-3153	Ċ	Ó	j	Str 2 Upp+ 2	-3'54	()	0	Str 2Uppi - 2	-3442	Q	0)
St: 3Upp	κ 3	-347)	ċ	Û	j	3tr 3 Upp + 3	-3514	()	0	Str 3 Uppi - O	-3773	-6166	0)
St- \$ Upp	ς L	-3324	-0221	Û	j	Str 4 Uppe 4	-0878	-3739)	0	Str \$ Uppi - 4	-4033	-4844	0)
Striler	. 5	-4111	4727	Ó	j	Str5Uppc 5	-4204	-5031)	0	Str 5 Upper - 5	-4330	-510	-0664)
St 5 Upp	c 6	-4433	-5157	Ó	j	Str 6 Uppe 6	-4505	-5206)	0	Str 5 Upp 6	-4627	-5225	-4860)
Striler	e '	4723	-5417	Ó	j	Str7Uppe 7	-4''ii	-5446	-3828	0	St: 7 Uppc - 1	-4847	-5474	-5034)
St-3Upp	- (8)	-4333	-5672	-4613	j	3tr 8Upp+ 8	-5001	-5662	-5363	0	Str 3Uppi - 8	-5100	-5621	-53°C)
St- 9Upp	c 3	-521"	-5917	-5755	j	Str 9Uppe 3	-5220	-5842	-5630	0	Str Ə Uppi - 3	-5332	-5150	-5418)
Str 10 Jp		-5441	-6107	-60'8	j	Str 10 Lpp 10	-5451	-6013	-5371	0	Stril0 Upp 10	·2251	-5300	-5503	-3008
St 11Upr	. 1	5524	-6247	-62"2	j	Str 11 Upp: 11	-5610	-6177	-6165	0	Strif Upp 11	-5563	-6010	-5607	-3768
Str 12 Jo	ь ¹ 2	-5816	6332	-6548	j	Str 12 Lpp 12	-5780	-6301	-6323	0	Stril2 Upp 12	-5337	-6060	-5688	-3303
Str 10 Jp	6.0	-5373	-6507	-6"83	j	3tr 13 Lpp 13	-5552	-6410	-5471	0	Strilä Upp i 10	-5370	-6012	-5755	-3333
Str. 14 Jo	62	-5035	-6569	-632	j	Str 14 Lpc 14	-6080	-6474	-5554	-4-88	Str N Upp 14	-6050	·6065	-5761	-4037
Str IS Up;	s B	-520	-6627	-634"	j	Str 15 Jpp 15	·62t	-6523	-6623	-5226	Striß Jpp 15	-6162	-6014	-5142	-4070
Strifé Jo	с б	6231	-6683	-63"5	-5350	Str 16 Lpp 16	-6251	-6546	-5555	-5183	St: 16 Upp - 16	-5203	-6013	-5128	-4064
Str fi Use	s r	-5354	-6712	-1001	-570"	\$tr1'.bo 17	-6041	-6514	-5527	-600 ⁻	Stillup 11	-6275	·606î	-5654	-4034
Str 18 Jp	с. с. 18	-6457	-6713	-101	-7125	3tr 18 Lpc 18	-6452	-6458	-6630	-6:34	Stril8 Lpp 18	-5330	-6028	-5583	-3388
Str 13 Jp	ь. Э.	-5453	-EEE5	-716	-7118	3tr 13 Lpc 13	-6435	-6407	-5586	-6153	Stril9 Lpp 13	-6405	-5342	-5514	-3323
St: 20Up	a 20	-6522	-6595	-1048	-7540	3tr 20 Upr 20	-6523	-632	-655	-6246	Str 20 Up) - 20	-5\$53	-5812	-5408	-3337
Str 21. by	n 21	6531	6490	-63°C	-7602	\$t21Lcc 21	-6560	-6262	-6444	-6220	Str 21Upp - 21	-6505	-5655	-5026	-3720
St- 22 Up	a 22	6532	-6258	-6775	-7583	3tr 22 Upr 22	-6542	-61\$3	-6283	-6'02	St: 22 Up) - 22	-6477	-500	-576	-35"0
St: 23Up	a 23	-6551	-6212	-6665	-1152	3tr 23 Upr 23	-6532	-5577	-5 48	-5947	Str 23 Upj - 20	-6461	-5256	-5041	-3430
St: 24 Up	a St	650)	6032	-64 "	-7286	3tr 24 Upr 24	-6476	-5733	-5363	-5"18	Str 24 Up) - 24	-6445	-5167	-48'8	-3235
Str 25 Lp	c 25	-6533	-532	·E238	-7058	3tr 25 Upp 25	-6485	-5602	5715	-5550	Str 25 Upp 25	-6472	-4314	-2633	গাং
St: 25 Up	a 26	-6487	-5601	-60"0	-5768	Str 26 Upr 26	-6473	-5380	-5560	-5261	Str 26 Upj - 26	-6431	-4115	-443.	-2333
										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bei.	1	t	ň	50
Btie		1	:	10	20	Bais		:	T and	20		1 2018	, 1159		-96.99
гсэлтоусын раг і эз:	2	-5497	-6025	-654	-7082	ice noyene par isse	-5489	ාන	-61%	3."	can cyan o par 1998	2740	100	-7210	•0000

Figure (C.3) : Les valeurs des trois configurations de la flèche 25°

- ✤ Les trois profils NACA
- 🔸 NACA 65- 215
- NACA 2415
- 📥 NACA 4415

	Baie 1	Etitő	EaiciC	Bae20		Btiel	Baie 5	Baix 10	Ba∢ 20		Brie 1	Baie 5	Baie 10	Eaic 20
Nork de Lisse	25	23	÷	"1	Nore de Lisse	38	23	÷	1	Nore de Lisse	38	23	19	1
Sir 10ppa	-2076	0)	0	©r1Uppe 1	-3046	¢	0)	Sir 1Uppe 1	-2"88	Q	()
Sir 2 Jope - 2	335	Ō	Ĵ	Ó	\$In 2 Upps - 2	-3132	0	0)	Sir 2 Uppol 2	-3585	Û	()
Stri3 Jppe - S	-3373	0)	Û	©r€Ubox 3	-414	0	0)	Str:SUpport 3	-3304	Q	()
Stri4 Jppe 4	-3744	-3441)	Û	≎ir4Ubox \$	-4452	-3850	0)	Str 4 Uppc 4	-4262	3110-	()
Sin5 Uppel 5	405	-4713)	Û	©ir5Upp: 5	-1700	-5455	0)	©ir5Upps 5	-4588	-5243	()
≎ir6.Jppe €	-4334	5202)	Û	≎in€Ubox 5	-4388	-587	0)	Sin EUppx 5	-4352	-5851	()
≎irîUpps î	-4580	-5434)	Û	©ir7Upp≥ 7	-5240	-5366	0)	Sir7Upps 7	-5233	-617	()
≎ir8.Jppe 8	-4322	-5726	-4536	Q	≎ir€Uox 3	-5460	-6160	-5254)	≎ir8Uppx 3	-5550	·6188	-501)
Str 3 Uppe - S	5305	-5340	-5733	0	%irSUbox ∂	-5652	-630	-5355)	SirSUppo B	-5"4\$	-6295	-5347)
≎ir 10 Upp - 10	5449	-6145	-6145	Q	≎ir 10 Upp - 10	-5850	-6551	-6671)	Sir 10 Upp 10	-601	-6510	-6701)
Sinfluppe 1	-5573	-6341	-6332	0	Sinfl Jpp 11	-6026	-6177	-5336)	\$ir11_pp=11	-5185	-6852	-5384)
©ir t2Upp 12	-5372	-6485	-558"	Q	\$1r 12 Upp - 12	-5172	-6864	-7230)	\$ir 12 Upp 12	-6323	-"0"1	-7210)
©ir t3Upp −13	-653	-5543	-5746	0	©ir 13 Upp − 13	-632"	-6862	-7272)	©ir 13 Upp 13	-5431	-1001	-7313)
©ir 14 Upp _ 14	-5320	-6810	-6342	Q	81r 14 Upp 14	-6380	-6823	416-)	Sir 14 Upp 14	-6544	-7043	-7322)
≎ir15Upp+ IS	6006	-6353	-7063	Q	©rtSLpp 15	-6443	-6554	-7160)	©ir15Upp 15	-66"8	-1081	-7333)
≎ir16Upp 16	-5544	-7053	-7172	-5406	≎ir 15 Upp 15	-6508	-6585	-7333	-6051	ôir 15 Upp 15	-6"23	-1104	-7544	-5308
≎ir fî Upp∝ li	-6813	-7110	-732"	-6*62	Sirti'Lpp fi	-5558	-6301	-7473	-7415	Sir 17 Upp 17	-6805	-7130	-7654	-"086
≎ir 18Upp - 18	-6841	-7122	-7505	-7°S	≎ir 13 Upp 13	-6608	-6811	-7333	-**26	≎ir 13 Upp 13	-5321	-1018	-7525	-"803
©ir t9Upp −13	-7061	-7122	-7583	-1450	©ir 13 Upp 13	-6633	·681	-7305	-"835	©ir 13 Upp 13	-6825	-6501	-7450	-8044
Stri20 Upp (20	-7123	-7037	-7562	- 684	Str 20 Upp - 20	-554	-6705	-7108	·8003	Str 20 Jpg - 20	-53li	-6730	-730\$	-3123
©r 21Upp - 21	-7122	-7013	-7450	-"856	©ir 21 Upp - 21	-5731	-656	-5332	-767	Sir21Upp 21	-6847	-6613	-7131	-8083
\$kr 22 Upp - 22	-7132	-661	-7366	-1970	\$tr 22 Uop - 22	-66"8	·64¶	-5347	-"835	0ir 22 Jpc - 22	-5755	-6527	-5323	-"992
8/r 20 Jpp - 23	·itta	-6754	-7308	-8025	\$tr 20 Upp 23	-6624	-6224	-5573	-1612	0ir 20 Jpp - 23	-6663	-6346	-5735	-7856
\$1r24 Jpp 54	-7373	-6631	-7222	-1346	8tr 24 Uop 24	-666°	-6036	-5434	-7223	81r 24 Upp 24	-5551	-612	-655	-76°E
\$tr 25 Upp 25	-7031	-5435	-7004	-1128	\$tr 25 Upp - 25	-5501	-5844	-5238	-7165	0r2505: 25	-554	-5846	-5329	-"268
≎ir 26 Jpp, 26	-7349	-6251	-5531	-7451	Str 26 Upp (25)	-55"\$	-5613	-5032	-5771	0ir 26 Jpp - 25	-546	-597	-5045	-6856
P.				"	P.L		,			Buiu	1	r	10	sr
D30:	1) :224	1	26		-100	:		20	ice per cost is c	-5877	6299	.3929	.731
rice no jarne par lista	-9133	-5324	-5551	-204	ce no (laue bar 1860	-202	-022	-2227	-14)	icento(aneparitise	-70		-3023	-174

Figure (C.4) : Les valeurs des trois configurations des trois profils NACA

C.2) Les valeurs et les courbes pour les lisses du revêtement inférieur :

✤ <u>Flèche 5</u>•

- Effilement 26.77%
- Effilement 34.41%
- Effilement 55%

		Baie 1	Baes	Baie 10	Bais 20			Baie 1	Baci	Baie (C	Baic 20		Baix 1	Baie 5	Bais 10	Baik 20
	Nore of Lisse	26	20	19	11	Nbre de Liza	ie.	25	23	20	13	Abre de Lisse	26	24	22	r
	%rikva I	5087	0	Q	0	Str 1 lower	١	4333)	0	0	St Hover	500	Û	Û	
	Str2lower 2	5725	0	Q	0	Str 2 over	2	5541)	0	0	Sti 2 lower - 2	553	Ó	ů.	i
	Strälover S	5603	0	Q	0	Str 3 over	\$	5548)	0	0	Sti 3 lower - 3	555	403	ů.	ċ
	Sirklower 4	5591	3519	Û	0	Str 4 over	Ł	5535	43 3	0	0	Su\$lover 4	5454	508	0	- i l
	Str5 over - S	5605	5433	Û	0	Str5kwa	5	5530	555 C	0	0	Rijpva S	5441	5175	3743	ċ
	Sirólower 6	5623	5780	Û	0	Strift over	6	5555	5624	0	0	Sublower 6	545	5224	4355	ċ
	\$ir" over "	5592	5843	Û	0	Str 7 kwa	•	5530	5688	4156	0	Ruilbar i	5405	5208	130	ċ
	Strölover ö	5631	5507	5174	0	Strib over	8	5563	5100	5728	0	Sti Blover – 8	5358	5264	4395	ċ
	Sirðlover ð	5636	5362	6'61	0	Str Slover	3	5563	5116	52	0	Ωr∂lovar S	5375	5212	5053	Ċ
	StriClove 10	5547	6001	273	0	Str 10 love	10	5511	58.5	5322	0	Stillione 1	5257	5257	5104	2825
	©rftbwa 1	5623	EC32	64t	0	Str fillower	1	5558	Σu	5554	0	Sulf evail 1	5302	5261	5032	3477
	Stri2 over 12	5563	6063	64tî	0	Str 12 love	12	5563	5853	6064	0	Stillione 12	5350	332	5005	3523
	StriBlove 13	5486	EC03	5082	0	Str 13 love	13	5484	5858	6063	0	Relatione to	5232	5236	5003	3543
	Strid over 14	5434	5364	5445	0	Str 14 love	Į2	5463	5821	6052	- 120	Stillione 14	5215	573	5020	354.0
	Sir Skya IS	5504	5366	645	0	Str 15 Iowa	15	5451	5801	6020	5551	Stillove S	521	5277	5023	3533
	Sin'Elove (6	5433	5343	6416	5713	Str 15 lowe	16	5410	5784	5362	552	Stilllore to	5135	5268	4385	3518
	l≎r:7kva l'	5431	5917	5066	6732	Str 17 Iowa	ľ	5003	5100	5303	55X	St Playe 1	567	5242	1366	3433
	Siričiova iš	5031	5836	5008	6303	Str 13 love	18	5130	5886	5383	5504	Sulôlone tê	5141	5153	4330	3453
	Strift over 19	5346	580	5270	355	Str 13 love	13	5214	5536	5811	555	St 13 1000 15	5142	5153	4353	3420
	Str 20 Iow - 20	5243	5765	5233	6332	Str 20 low	20	514	5551	5308	52	R X Ky X	5110	5112	1332	3332
	Str21 over 21	5205	5736	6137	6374	Str 21 love	21	5165	5522	5757	- 501	St 2110AC 2	5104	5340	1211	3313
	Str 22 Ibay 22	515°	5645	505	6734	Str 22 low	22	5035	5450	5701	5445	$\mathfrak{A}(\mathbb{Z} \mathbf{k}\mathbf{v})/\mathbb{Z}$	5018	1586	\$753	3231
	Str2815A- 20	5085	553	5036	5741	Str 20 low	20	5057	5019	5526	542E	31 2 kv 2	5058	1228	103	3211
	Str 24 Ibay 24	4323	505	572	6527	Str 24 low	24	4353	5236	5553	392	3:34 kv: 24	4532	4252	4352	31
	Str 25 low 25	4877	5455	578	5518	Str 25 ove	25	4300	5231	5488	5261	N Slove 2	4560	1222	1585	318"
	Sir 26 Ibay 26	4305	5051	5336	5413	Str 26 low	26	4352	5140	5324	5137	≷i žikvi 26	5035	1745	4532	314.9
	Bac	1	5	10	30	Baie		1	5	ť	x		1	;	n	21
rec nego	nne par lisee	5403	5727	6171	6560	ace noveme par lisse		5039	5568	5737	35	una po para por lizzo	5243	503	138	3352
										-147		neerioyene ooriese	2643	203	•332	1425

Figure (C.5) : Les valeurs des trois configurations de la flèche 5°

Figure (C.6) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche5° effilement 26.77%

Figure (C.7) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche5° effilement 34.41%

Figure (C.8) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche5° effilement 55%

* <u>Flèche 15</u>•

- Effilement 26.77%
- Effilement 34.41%
- **4** Effilement 55%

	2.1	D 1 F	E-1-10	D.1.66		Brie 1	EaicS	Eaic 10	Eak 20		Bael	Baie 5	Baie 10	Baie 20
	29()	Dated	Eacily	B3620										
Attect lite	ж	25	Ľ		Abraceliase	26	20	20	\$	Abre of Lipse	36	24	22	1î
16055600		24	~	"										
Salever 1	4115	Û	Û	Û	Still over	1 0066)))	Sticver '	4304	0 A	0 Å	0 A
Sti 2 love 2	4538	Ō	Ó	ů l	Sti 2 love:	2 3612)))	St. 510%er - 5	\$5(3	Ų	Ų	Ų
Sti3love 3	4608	Ō	Ó	0	Sti Slove:	3 0805)))	Str Stower C	4(25	4013	Ų	Ų
Stitlone 4	4715	3710	Ó	0	Sti 4 love:	\$ 2026	2068))	37.\$10 <i>8</i> 0° 4	400	5000	0	Ų
Sti Slovei - S	4601	52.4	Ó	0	Sti Slover	5 4204	523))	37.)10931 : St. 11	4000	5120	1555	Ų
Stiblowe 6	4307	551°	0	0	Sti 6 love:	5 2206	5408))	Strolower E	1040	5106	4351	Ų
Stillova i	4355	5585	0	0	Su Nova	7 4546	5524	4216)	3° (1093) - 1 Stational - 6	4363	5163	5001	Ų
StiBlowe 8	5135	5633	5030	0	St flower	3 4122	5617	577)	37:510//e° č	0035	240	50055	Ų
Sti Blowe (B	5173	5761	5581	0	Sti Blove:	Э 486"	5658	5826)	37. 510//er - 2	5UD 2022	2222	:111	
Still ovi 10	5173	5315	6033	0	Sti 10 ove 1) 4969	2.9.	5865)	310 ove 1)03J	2222	:10) Maa	3000
Stillbac II	50B	5610	6246	0	St flove	1 5142	5858	5592)	3° 110% of 1	501)35J ->::	5132	1535
St 12 ov 12	5321	5328	6210	0	Sti 2 cvc 1	P 5308	5524	5116)	30° 12' 0Ve 12	221) E100	2222	1000	CITZ
Still over 13	5329	5906	6210	0	Still over 1	3 509	5972	6.54)	3010 0Ve 12	2024	2222	2003	910 @@@
Stil4 over 14	540	5315	6334	0	Stir2 over 1	4 5526	5552	6153	2233	30° 4 0Ve 4	2234	2000	2002	3000
Sulfikwe 15	5434	5321	6325	0	Sti 15 lowe	Б 5656	60°î	5151	5106	SCIERVO E	2622	2242)))))	3001
Still ov: 16	554	5326	6341	5567	Stil6 over 1	5 5150	6004	6:00	5810	37 16 ove t)333	3343	3040	3625
Qulikes 17	70	<u> 70-6</u>	6011	202	Stilfi love	6 202	6002	6031	5892	30° H KWO H	5001	2220	3016	0150 0150
St 18 ov: 18	533	5863	6268	5337	Sti 18 dVk 1	3 581	6021	60°6	584"	30" 10 OV C	>>33	5215	4040	301) 0450
St 13 ov: 13	567	58"0	6243	5397	Still cve	B 5976	5569	6033	5184	3013 OV C	2124	20	4030 4920	3400
Sti 2015#120	565	58"2	6240	584	Sti 2016/M 2	0 553	5533	6056	573.	31 27 27 DW 20)404 5740	121f 1421	4012 4000	3400
St 21 ov - 21	5645	5848	6163	5324	Still over 2	1 6210	5500	6025	5693	30° 21 ove 21	24(0	:04	4630	3345
Sti 2215#122	5550	5'88	6t28	5750	Sti 2210// 2	2 6276	5844	59°8	563"	30° 22 D/K 22	5012	:10)	400	3200
3u 2015w - 20	2070	7"40	CC00	Ci11	Sti 23 low 2	3 642	5186	5520	5587	30° 25 D/K 20)013	(00)	¥(≤¥	2100
Sti 24 Ib# - 24	577	56"2	6054	5503	Sti 24 Iow - 2	4 6410	5134	584"	5505	30° 24 D/X 24	2021))))	4000	0141 ccc4
Sti 25169 - 25	5627	5600	5360	5503	Sti 25 lov:	5 662"	5676	5180	5098	30° 2010 V2 20	2002	4023	1000	2021
Sti 2515# - 26	5322	5541	5650	6412	Sti 2510// 2	5 6358	5569	5104	5264	3, 30 CE 20	2354	1 631	4041	3023
E-i-		t	۴	20	E.I.		r	••		Erie	,	ţ	n	20
	5270	7 ((%	615.4	6619	Ea(1) 1204	. U	20	TERT CHOILER IN	5215	455	1887	2413
ve novene par rese	201	70 Q	064	0.0	ree noyene par lese	1200)120	:044	»1	source of the second	1677	.07	1001	CHD.

Figure (C.9) : Les valeurs des trois configurations de la flèche 15°

Figure (C.10) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche 15° effilement 26.77%

Figure (C.11) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche 15° effilement 34.41%

Figure (C.12) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche 15° effilement 55%

* <u>Flèche 25</u>•

- Effilement 26.77%
- \rm Effilement 34.41%
- **4** Effilement 55%

	Biel	Btis5	Bais 10	Bais 20		Bais 1	Bid	Baie 10	Bais 20		Etik 1	Btip5	Baic 10	Bais 20
Nbre de Lisse	36	23	13	1	Vibre de Lose	26	20	20	13	Nibre de Lisse	æ	24	22	17
≎tr1bear 1	3110	Q	0	0	Sallover 1	0065)	0	0	Salf over if	3463	0)	0
\$tr2 over 12	3525	0	0	0	Sa 2 lowor - 2	3512)	0	0	\$a 2 lova - S	XC2	0)	0
Str 3 over 3	3787	0	0	0	Sa 3 lower - S	3835)	0	0	\$a \$lbxa - S	4085	4103)	0
\$tr 4 over 1	\$ 00	3864	0	0	Sa \$ lower - \$	4045	4068	0	0	©a∔b∧a 4	\$242	5117)	0
Strikva 5	422	5101	0	0	Stabilower 5	4234	5231	0	0	Sa Slover - 5	44 08	5245	40 5	0
Str6 over 5	4406	5426	0	0	Sablowar 6	4405	5408	0	0	\$a.615Aa - E	258°	5347	5178	0
Stikva 7	4551	5534	0	0	Saillower i	2526	5524	421E	0	Sa Nover i i	4603	5378	5266	0
Str 8 over 3	\$728	5573	5064	0	Sa Blower - 8	2"22	5617	517	0	3 avd8 c\$	\$23	5457	5081	0
Str 9 over - 9	4871	5777	6017	0	Sa Ələwari i B	4867	9 88	5326	0	\$1 BACK 6	4301	5536	5400	0
Str10 kwa 10	224	5365	5144	0	Sa l0 love 10	4363	5.9.	56	0	Sa follow i C	4365	5604	5400	32 \$ 8
Strillower "1	5133	5352	5201	0	Saltikwa iti	5142	5858	5332	0	Sa filove i fi	5137	5630	555	3376
Stri2kva 12	5235	6036	6366	0	Sal2love 12	5008	5224	615	0	\$a 12 low 12	5255	5625	5283	3338
Strt3kwa 13	5011	3078	5275	0	Sa IGlove 13	5331	5972	654	0	Sa tolow, 13	5231	5516	5283	3378
Str 14 kwa - 14	5457	6084	6 44 C	0	Sa 14 love 14	5526	522	653	4435	\$314 low 14	240	5521	5015	3341
≎trBlower B	5611	5122	6451	0	Salt over 15	5656	60'î	6:51	5705	Sa 5 events	33 2	5633	5021	3336
\$tr16kwa 15	5752	5133	5431	- 306	Saliblove lib	5750	6004	6tX	5370	Sa folow i fe	32	5643	\$210	3350
ិ២ពីlower ពី	3 4 6	5144	312	22	Sali over 17	5"83	6002	E08 [.]	5832	\$afi evel li	53	5531	5204	3775
≎tr18kvei 13	5214	5124	546	706	Sa lõlove ilõ	53I °	6021	506	5347	St Wolft no	5248	5582	583	3733
StriBikwa 13	6383	5139	6432	773	Sa 19 love 19	5976	5363	5033	5734	St Blow 15	32	5562	511	3634
\$tr 20 love 20	5134	653	5441	7067	Sa 20 kwy 20	5999	5233	393	5731	\$a 2015#120	6010	5463	5014	3555
Str 21 kwa - 21	6266	6141	6384	700	Sa 2Hove - 21	6210	5200	502	5633	\$3 2Horx - 21	6135	5425	5020	3472
\$tr 22 love - 22	335	5103	6366	6360	Sa 22 lovy 22	62"6	5244	572	5537	\$3 2215# - 22	3284	5354	4564	3375
\$tr 20 love 23	26	ΧX	6343	5513	Sa 23 lovy 23	6414	5786	5323	5537	\$a 23 by 123	3386	5235	4500	3231
\$tr24 love 2\$	6451	5331	6320	6324	Sa 24 lovy 24	64"3	5134	534)	5505	\$3 2\$ lov 24	5382	5211	4842	3238
\$tr 25 ov: 25	6611	5 3 65	5676	5728	Sa 25 bac - 25	6627	5676	5783	5333	\$:: 25 lose - 25	6530	5114	4112	3132
\$tr 26 lowe 25	6332	5350	525	6528	Sa 25 lovy 26	6358	5553	5704	5254	\$a 2515w - 26	š83	5013	122	3045
Baie	Ι	5	10	30	Baix	1	5	10	20	Baik	1	:	t.	20
госточатеры іззе	520	5326	6384	6308	жесточете раніза	5233	5126	5334	571	ice neverne par lisse	5341	5335	502	3532

Figure (C.13) : Les valeurs des trois configurations de la flèche 25°

Figure (C.14) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche 25° effilement 26.77%

Figure (C.15) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche 25° effilement 34.41%

Figure (C.16) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur de la configuration flèche 25° effilement 55%

* <u>Les trois profils NACA</u>

- NACA 65- 215
- 📕 NACA 2415
- NACA 4415

			Bacl	Baie S	Baix 10	Etis 20		E	is1	Baie S	Exis 1 0	Etis 20		Baal	Bið	Sviv D	Baie 20
n	ore de Lese		ž	20	19	1	Nora de Lisse	2	26	23	ŧ	t	Nore de Lisse	X	23	IJ	I
\$	ini over	۱	δX	0	(Û	≎ir i over	1 36	05)	0	0	ölriover 1	dĩô)	(Û
\$	r2baa	2	3127	0	(0	Str 2 lower	2 5	36)	0	0	\$ir 2 lower 2	4303)	0	Û
\$	r\$bw	\$	3333	0	(0	Str S lower	3 42	35)	0	0	Str Slover - S	4368)	(Q
\$	r∔b∧r	L	373C	X78	(0	Str & lower	1 4	24	400"	Ó	Ó	≎ir∔lover ∔	4534	4152	(Û
\$	ir Slover	5	\$ 338	4111	(0	Str 5 lover	5 6	'31	5635	0	0	\$4r5loner 5	\$ £81	5801	C	Q
\$	r6baa	6	433	520"	(0	Str 6 Jonu	6 48	20	5895	0	Ó	≎ir6lova 6	48M	6065	(Û
\$	ir "lover	'	45%	5441	(0	Зіг ^а Іолег	1 50	ייו	6015	0	0	ůr lonar i	ιx,	6.58	(Ú
\$	r8baa	ô	4536	5566	4721	0	Str 8 lower	8 %	28	6.86	5546	0	ůtrôlova ô	<u>3</u> 07	6.93	5763	Û
\$	rábar	\$	500	5303	5802	Ó	Str 3 lower	3 23	33	6034	£îtê	Q	Str 9 hvevi – 9	5118	6216	6877	Ĥ
\$	ir Olove	0	53X	6106	6127	0	StriBlona 1	10 55	5.8	6444	6810	0	Stri0lone 10	5251	6221	6833	0
\$	h'flova	1	5341	5203	6377	0	Similary:	1 !!	32	6416	5860	0	Smillers 1	531	6214	6321	Û
\$	ir "2 love	2	515	6351	6523	0	Stri2lova 1	12 93	38	6501	5866	Q	\$4°21066 12	<u>22</u>	6310	6837	Ŷ
\$	ir Glove	\$	5332	548"	66 4 E	0	StriBlona 1	13 51	"5	653"	5618	0	StriBload 13	555	6023	6737	Û
ů	ir V love	7	ΰĔ	ić3	6731	0	Stri±land 1	14 58	45	6564	5895	0	Sir 2 long 14	5745	6023	6752	0
\$	hit eve	15	6272	6821	6355	0	Strift over 1	15 53	181	6582	5554	0	≎irtiove 15	58X	6004	6"33	Û
\$	h'6love	6	36	5502	1:00	2007	Sir 16 Ionai - 1	16 60	12	6558	1004	5422	Siriblona 16	3 30	631"	6718	6510
\$	h'î eve	ľ	6500	5263	1277	5770	Sin'i over	11 b	l	£204	3242	(612	≎triiova 17	5354	6005	6645	7583
\$	ir 18 love	°8	5776	7025	* \$53	'033	Sir 18 Ionau 1	18 62	24	6412	6881	7552	Str 18 lone - 18	3661	6003	6593	7522
\$	ir 13 love	Э.	6302	7047	*3 55	* 356	Sir 19 Jones - 1	13 63	371	6460	685 [.]	7650	şır əlona iə	5133	6282	6775	7442
\$	r 20 love 1	20	$\mathcal{D}^{*}_{\mathcal{C}}$	7054	1374	7521	Str 20 km 2	20 64	.00	6433	5803	δX	\$tr23kv: 20	62)	6224	6503	7340
\$	ir 21 love	21	108	7014	7413	'806	Str 21 Jona - 2	21 64	24	6032	ente:	7577	Str 21 load 21	6251	61""	6473	7134
\$	r 22 low i 1	22	'058	6315	1377	ាះព	?1r22kus 2	2 6/	93	6025	5601	1125	\$Ir22ko: 22	6236	613	6450	7035
\$	r23bw (ŝĵ	m	6831	7234	'344	Str 23 km 2	3 65	94	6216	6552	7234	\$Ir 23 kv: 23	5573	6051	6433	705
\$	r24lber	2	765	610	7185	'834	3ir 24 kws - 2	4 66	50	6083	5446	70%	\$tr 24 kov: - 24	6565	5234	63X	6881
\$	ir 25 Ioac	25	'2 22	5540	7030	1122	Sir 25 lower B	25 6	•••	:350	\$233	300)	\$tr 25 lower 25	355	5918	6252	6156
\$	ir 25 low 1	26	'3 \$2	5052	68 3 C	63	\$\r25\cvc_2	26 63	••	5818	6212	5680	ölr 25 km; 26	7182	X36	6183	66'î
					Iń	x									_		
	и "			1	ĮV , sur	1	Biz		1	5	r	x	D) (5	10	20 100
C:: Doyano	epar lisse		965C	3 210	6513	.32	orce negative par less	56	ų,	6191	5685	725	roe noyenne par lisse))X	6080	6553	(23)

Figure (C.17) : Les valeurs des trois configurations des trois profils NACA

Figure (C.18) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur dans le NACA 65- 215

Figure (C.19) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur dans le NACA 2415

Figure (C.20) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement inférieur dans le NACA 4415

➢ <u>Remarque :</u>

On remarque que pour le revêtement inferieur c'est pareil donc un effilement de 34 .41 % a donné une distribution de charges presque constante le long de l'envergure et l'augmentation de flèche a engendrée une augmentation de charge par lisses

Pour les profils de même épaisseur maximale relative on a

- **4** même distribution de charge moyenne
- une différence dans la distribution de charge dans les lisses de la même baie

C.3) Exemple d'applications d'un moment de flexion à l'extrémité de l'aile :

Nous voulons voir l'effet d'un moment de flexion constant appliqué à l'extrémité de l'aile sur les charges internes et aussi de savoir comment affectera la force de cisaillement appliquée au par avant qui égale à 10000lbs sur les charges internes car à la racine cette force va créer le même moment fléchissant.

 $M_f = 10000 \times 612.5825 = 6125825 \, ll$.

612.5825in est la distance entre RBE3 9000001et RBE3 9000028

Le moment concentré de 6125825 lbs.in constant sur toute l'aile

From Node IC	To Node IC	Cistoreo	Dote << 9.2>	Roferoneo C
ແດງງ	\$00028	6 2 53252	4571 80. 207 > 0101cm) 457 (Global Reclan)
	-			
2 249	c'3 Listenne			
2	c' 3 II:stance			Tiese:
	c'3 L'stanne			Tese:
2 2499 T	c' 3 L'stans			v AutoEvecure Frost Node List
2 2499 T	c' 3 L'Stenne			AutoEvenue Frot Noxio List Noce 6000001

Figure (C.21) : La distance calculée par MSC. Patran

La carte force :

Le seul changement été au niveau de la carte force donc on prend les mêmes fichiers bdf générés pour la configuration flèche 5° effilement 26.77%.

	orce - Wo	ordPad				
Fichier Editio	n Afficha	ge Insertion F	Format	?		
0 🛩 🖬	<i>s</i> b	网发电	R +	- B		
\$111111	1}22222	22}3333333) 4444	444) 5555555) 6	666666}	
MOMENT	1	9000028	0	6125825.0.	Ο.	-1.
LOAD	101	1.	1.	1		

Figure (C.22) : La carte force

Les résultats :

			Baie 1	Baie 5	Baie 10	Baie 20
	Nbre de Lis:	se	26	23	19	11
	Str 1 Upper	1	-2932	0	0	0
	Str 2 Upper	2	-3824	0	0	0
	Str 3 Upper	3	-4121	0	0	0
	Str 4 Upper	4	-4503	-3749	0	0
	Str 5 Upper	5	-4839	-5905	0	0
	Str 6 Upper	6	-5156	-6456	0	0
	Str 7 Upper	7	-5461	-6801	0	0
	Str 8 Upper	8	-5737	-7151	-6847	0
	Str 9 Upper	9	-5980	-7493	-8601	0
	Str 10 Uppe	10	-6214	-7772	-9094	0
	Str 11 Uppe	11	-6397	-7983	-9554	0
	Str 12 Uppe	12	-6608	-8198	-10064	0
	Str 13 Uppe	13	-6779	-8379	-10532	0
	Str 14 Uppe	14	-6889	-8494	-10850	0
	Str 15 Uppe	15	-7040	-8629	-10990	0
	Str 16 Uppe	16	-7069	-8722	-11110	-16699
	Str 17 Uppe	17	-7122	-8800	-11248	-21611
	Str 18 Uppe	18	-7205	-8844	-11486	-23541
	Str 19 Uppe	19	-7168	-8837	-11677	-25080
	Str 20 Upp	20	-7201	-8814	-11659	-26110
	Str 21 Uppe	21	-7237	-8739	-11511	-26955
	Str 22 Upp	22	-7172	-8616	-11397	-27504
	Str 23 Upp	23	-7068	-8478	-11346	-27596
	Str 24 Upp	24	-6916	-8300	-11133	-27485
	Str 25 Upp	25	-6827	-8104	-10927	-27159
	Str 26 Upp	26	-6673	-7885	-10656	-26663
	Baia		1	5	10	20
be moyen	ne par lisse		-6159	-7876	-10562	-25128
-	•					

Figure (C.23) : Les valeurs de charges donnée par l'application d'un moment fléchissant

Figure (C.24) : variation des forces par les lisses de chaque baie et des forces moyennes dans les lisses par baies du revêtement supérieur pour le cas d'un moment appliqué en bout d'aile

Remarque :

On remarque que ce moment a engendré une remarquable augmentation de charge dans les lisses ainsi les charges moyenne par baies, surtout pour la baies 20

Figure (C.25) : superposition de la variation des forces par les lisses de la baie 1 du revêtement supérieur pour le cas du moment fléchissant et de la force de cisaillement

Remarque :

On remarque que la distribution de charges internes est affectée de plus par l'application d'un moment fléchissant que par un effort tranchant.