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Abstract

In this master thesis, we tackle the problematic of pedagogically illuminating the link
between the theoretical framework of quantum field theory and actual experiments in
high energy physics (HEP) especially in the electroweak sector. To do that, we briefly
review the theoretical structure of the electroweak standard model theory and its quan-
tized Lagrangian, then revisit the ideas behind renormalization with applying the on-shell
renormalization scheme to the theory. Application to a leptonic process eνµ → eνµ was
made by the use of symbolic computation tools called FeynCalc[26, 37], FeynArts and
FormCalc packages of Mathematica software.
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Introduction

The standard model of elementary particles as we know it, is a result of many years of
developments and progress of which a lot of physicists of the past 50 years or so have
contributed to its now flourishing state. This model so far, is humanity’s best attempt to
understand how our universe works at an infinitesimal level. By now, it is a known fact
that there are four fundamental forces of nature that governs the dynamics of the few basic
structures of matter called fundamental particles. Three of these forces (electromagnetic,
strong and weak forces) are embedded in the standard model where it has been tested
against experimental measurements and passed with flying colors. This triumph over
many experiment made the model known as a well-tested physical theory. This model
can be summarized in the following figure
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Figure 1: Elementary particles

The root to this piece of work was brought in 1960’s by Weinberg[43], Salam[33] and
Glashow[13] unifying the electromagnetic and the weak interactions into one. Before then
the weak interaction was known to be carried only by two gauge bosons W+ and W−

while the electromagnetic by the photon, the key idea that made the unification possible
is the existence of an additional electrically neutral and massive particle called Z boson.
This latter was first confirmed experimentally[19] in 1973 by observing a scattering event
between neutrinos and electrons which wouldn’t have happened if the Z boson doesn’t
exist.
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Figure 2: Tree level Feynman diagram of the process e−νµ→ e−νµ

In this thesis, we are interested in the process of eνµ→ eνµ for its historical and theo-
retical importance to achieve the goal of clarifying the connection of the purly theoretical
model of EWSM to real experimental process. Surely, the full treatment of this process
was done before by a lot of physicists [34, 5, 22, 44]. We are interested in performing its
tree as well as its one-loop radiative corrections calculations only by the modern tech-
niques utilizing symbolic and numerical packages for Mathematica software, FeynArts
and FeynCalc [7] for symbolic manipulations, and FormCalc [18] for numerical result.
The former is fully automatic compared to the other two. For the radiative corrections,
we need to eliminate the divergences that appears from loop diagrams. The procedure
of which does the job is renormalization. For a brief historical notes, ultraviolet diver-
gences were first stumbled upon in the 1930’s in quantum electrodynamics (QED) when
physicists tried to include the contributions of loop diagrams to get a more precise results
than the tree level. The absurdity and persistence of these infinities made many physi-
cists believe that there must be something wrong in the fundamental principles of physics
and they had to abandon QED, until the late 1940’s when Feynman[12], Schwinger[36],
Tomonaga[40] and many other physicists proposed a solution that yields to theoretical
results which agrees with experiments to a great deal of accuracy in QED. This solution is
none other than renormalization. Its basic idea is absorbing the divergences by redefining
the physical quantities. At first these redefinition seemed to have no justifications and
that they are nothing but an ad-hoc solution just to get rid of the nuisance of infinities.
This method however was only justifiable by experiments. This was the case till around
1955, the concept of renormalization was embraced as an important and self-consistent
mechanism of physics thanks to the work of Lehmann, Symanzik and Zimmerman[25] on
their reduction formalism. Back to the renormalization constants of electroweak theory,
the renormalization constant are fixed by the on mass shell conditions (p2 = m2). Hence
the on-shell scheme, also known as the physical scheme. In summary, the plan of this
thesis to reach our objective is as follows

• Chapter 1

We briefly review the structure of the electroweak standard model from gauge prin-
ciple, and introduce masses of particles with the Higgs mechanism. Then we derive
the LSZ reduction formula for real scalar fields for the purpose of illustrating the
idea behind redefining the physical quantities and introducing the notion of renor-
malization constants. We finish this chapter by listing some selected Feynman rules
for EW theory.

• Chapter 2

We reveal the source of the loop diagrams from the perturbation series of Green’s
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functions, discuss the different regularization schemes that are used to render the
divergent integrals convergent. Then briefly review some of the most commonly
used renormalization schemes to fix the counter-terms. Next we apply the on-shell
scheme for EWSM. So we finish the second chapter by providing a FeynCalc (and
FeynArts) codes for computing some selected EWSM renormalization constants as
an illustrative example.

• Chapter 3

This chapter consists of applying the established knowledge of the first two chapters
to a real scattering unpolarized process of eνµ → eνµ by first computing the tree
level approximation of the total cross section through the use of FeynCalc and
FeynArts. Then include the one-loop radiative corrections with the help of the
automatic package FormCalc after knowing and explaining the necessary steps that
must be done to obtain the finite and desired result. Idem a result free from any
UV or IR divergences.

Finally we draw our conclusion. Some computational details, proofs and examples are
deferred as appendices

"The miracle of the appropriateness of the language of mathematics

for the formulation of the laws of physics is a wonderful gift which

we neither understand nor deserve"

in the words of Eugene Wigner



Chapter 1

Electroweak standard model theory

The standard model theory of the electroweak interaction is a Yang-Mills gauge theory
which means that it is based on a gauge invariance under a certain Lie group of local
transformations, in this case it is the SUI3(2) × UY (1) group1. To make the theory
realistic the fields must acquire mass and that is when the role of the Higgs mechanism
comes into place. In this chapter we will be addressing these notions of the theory along
with the Lehmann-Symanzik-Zimmermann reduction formula[25] (LSZ for short) and its
consequences. At the end of this chapter, we shall provide some selected Feynman rules
of the theory.

1.1 Lagrangian of the electroweak SM theory

To construct the lagrangian that describes the electroweak dynamics[1], we start with the
gauge principle and then perform the canonical quantization in covariant gauge. By then
the constructed lagrangian will be of a massless particles. To adjust this issue we will be
introducing the Higgs mechanism and spontaneous electroweak symmetry breaking.

1.1.1 Gauge principle and quantization

It has been known for a long time[11] that the weak theory is describable by a current-
current lagrangian of the form:

LW =
GF√

2
j+
µ j

µ. (1.1.1)

With jµ being the weak charged current. To keep things simple we shall restrict our
argument to one generation of leptons only. For the full generalization incorporating
quarks and multi-generations it is a straightforward inclusion process. In this case of
inters the current takes the form:

jµ = ψeγµ(1− γ5)ψν , (1.1.2)

1Note that the full standard model is based on the SUC(3)× SUI3
(2)×UY (1) group symmetry but

in this work we restrict our selves to only the SUI3
(2)×UY (1) part which correspond to the electroweak

interaction (no QCD)

4



CHAPTER 1. ELECTROWEAK STANDARD MODEL THEORY 5

where ψe (ψν) represent the electron (electron-neutrino) field. By other side the electro-
magnetic interaction of charged leptons is expressed by:

LEM = ejem
µ Aµ, (1.1.3)

With Aµ being the photon field and jem
µ the electromagnetic current of the form:

jem
µ = ψeγµψe. (1.1.4)

Accordingly the weak and electromagnetic interactions are expressible by their respective
currents jµ and jem

µ .
By readjusting the composition of the currents jµ and jem

µ , one can find that they can be
reformulated so they would have an explicit SUI3(2)×UY (1) transformations properties.
Actually we would have:

jµ = 2(J1
µ− iJ2

µ), (1.1.5)

jem
µ = J0

µ− J3
µ, (1.1.6)

Where J0
µ and Jn

µ (n = 1,2,3) are given by:

J0
µ = ψeγµ

1 + γ5

2
ψe +

1
2
ψ̄γµ

1− γ5

2
ψ, (1.1.7)

Jn
µ = ψγµ

1− γ5

2
τn

2
ψ, (1.1.8)

With ψ = (ψν ,ψe) and τn/2 the SU(2) generators in the fundamental representation.
The currents J0

µ and Jn
µ may be associated with the above mentioned SUI3(2)× UY (1)

symmetry. Left-handed fermions (1−γ5)
2 ψ are classified in doublet representation under

SU(2) symmetry. In another hand right-handed fermions (1+γ5)
2 ψ are classified in singlets

representation. This remark suggests that weak and electromagnetic interactions upholds
the SUI3(2)×UY (1) symmetry. From now on we shall take the SUI3(2)×UY (1) symmetry
as the main local gauge symmetry of which we will be building the lagrangian upon.

Denoting the su(2)×u(1) algebra elements as Tn and Y we than can write:

[T l,Tm] = iǫlmnTn, (1.1.9)

[Tn,Y ] = 0.

Here εlmn is the Levi Civita tensor with ε123 = +1 (ε213 =−1), and we are making use of
Einstein summation convention of which repeated indices are summed over. To combine
the two equation in 1.1.9 into one, we define Y as:

T 0 ≡ Y/2. (1.1.10)

So that 1.1.9 becomes:
[T a,T b] = ifabcT c. (1.1.11)

Where her f0bc = 0 and fabc = εabc (a,b,c = 1,2,3). The Y eigenvalues are known as
weak hypercharge and their values are determined by the relation Q = T 3 + Y/2 that
often referred to as Gell-Mann-Nishijima relation, where Q̂ is the electric charge operator
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and T̂ 3 being the isospin with eigenvalues of +1/2 (−1/2) for ψνL (ψeL) and 0 for any
right-handed fermion.

Since the lepton fields of e and νe are taking with respect to SUI3(2) to be a doublet
in left handed case and a singlet in the right handed case we adopt from now on the
following notation:

R = ψeR , L=

(

ψνL

ψeL

)

, (1.1.12)

With ψR,L = 1±γ5
2 ψ being the left-handed and right-handed parts of field ψ.

Now we construct the classical lagrangian based on gauge principle which dictates that
the lagrangian must be invariant under the following locale field transformations:

δψ(x) = igaθa(x)T aψ(x), (1.1.13)

δW a
µ = ∂µθ

a− gafabcθbW c
µ, (1.1.14)

Where θ(x)a’s are the space-time dependent parameters of the gauge transformation, W a
µ

are the SUI3(2)×UY (1) gauge fields while ga’s are defined as:

ga =

{

g for a= 1,2,3,
g′ for a= 0.

(1.1.15)

With g (g′) as the SU(2) (U(1)) gauge coupling constant. One should bear in mind that
these transformations are the infinitesimal versions while their full form is given by:

ψ(x)→ ψ′(x) = Uψ(x), (1.1.16)

W a
µT

a→W ′a
µ T

a = UW a
µT

aU†− i(∂µU)U†, (1.1.17)

Where U = eig(a)θa(x)T a
is the transformation operator.

At this stage the classical lagrangian contains only two main parts, the gauge part
which is the pure gauge fields lagrangian also known by the Yang-Mills part, and the
fermionic part that describes the dynamics of the fermion fields:

L= LG +LF , (1.1.18)

LG =−1
4
F a

µνF
µν
a , (1.1.19)

LF = iL̄ 6D LL+ iR̄ 6D RR. (1.1.20)

Where we have used the following expression for:

F a
µν = ∂µW

a
ν − ∂νW

a
µ + g(a)fabcW b

µW
c
ν , (1.1.21)
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And made use of the Feynman’s slash notation /D = γµDµ with:

DLµ = ∂µ− ig(a)T aW a
µ , (1.1.22)

DRµ = ∂µ− ig′T 0W 0
µ . (1.1.23)

This form of the lagrangian is no where near what the processes obey due to the lack of
fermions and bosons mass terms, because these terms spoils the gauge invariance of the
lagrangian. For addressing this issue we shall make use of two very important ideas. Spon-
taneous symmetry breaking and Higgs mechanism. For the time being we will continue
the progress through quantization and its consequences. In order to perform a covariant
canonical quantization in the operator formalism[1, 23], we are required [41] to introduce
a gauge fixing term, and by doing so the local gauge invariance of the lagrangian is no
longer preserved. To restore this invariance latter it is necessary to add the well-known
(by now) gauge compensating Faddeev-Popov[10] ghost term(LF P = L(c, c̄) where c(x)
and c̄(x) are Grassman fields[41, 15]) so we would have:

L′ = L+LGF +LF P , (1.1.24)

Where in the gauge term we have:

LGF =BaF a
i φ

i +
α

2
(Ba)2. (1.1.25)

We have used the auxiliary field Ba(x)(This is referred to as the Lautrup-Nakanishi
formalism[24, 28] 2) that fulfills the Euler-Lagrange equation of motion:

F a
i φ

i +αBa = 0, (1.1.26)

With F a
i φ

i being the general gauge fixing condition having Fi = (∂µ,∇,∂0...) an operator
applied to φi =W a

µ the gauge fields3.
This lagrangian however is not gauge invariant under the classical gauge transformation
but it is invariant under the quantum version of these transformation i.e.replacing the
parameter θa(x) by λ̃ca(x) for the ordinary fields W a

µ and ψ(x), where λ̃ is a Grassman
constant which anti-commutes with c(x), c̄(x) and ψ(x). Adding a transformation proper-
ties for c(x), c̄(x) and B(x) that was stated by Becchi, Rouet and Stora[2], L′ is invariant
under the following infinitesimal transformations:

δBRSψ(x) = iλ̃g(a)caT aψ(x), (1.1.27)

δBRSW a
ν (x) = λ̃Dab

ν c
b(x), (1.1.28)

δBRS c̄a = λ̃Ba(x), (1.1.29)

δBRSca =− λ̃
2
g(a)fabccb(x)cc(x), (1.1.30)

δBRSBa(x) = 0. (1.1.31)

2this formalism is seen as a generalization of the Gupta-Bleuler formalism [17, 4]
3for example in the QED F a

i φi = ∂µAµ(x)
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The origin of Faddeev-Popov term was given by Faddeev and Popov using the Feynman
path-integral method[10]. Now thanks to the requirement of the total lagrangian L be
invariant under BRS transformation, we can now determine LF P by:

δBRSL′ = δBRSL+ δBRSLGF + δBRSLF P = 0. (1.1.32)

It is obvious that δBRSL= 0. Therefore we get:

δBRSL′ = δBRSLGF + δBRSLF P

= λ̃Baδb(F a
i φ

i)cb + δBRSLF P

= δBRS(c̄a)δb(F a
i φ

i)cb + δBRSLF P

= δBRS(c̄aδb(F a
i φ

i)cb)− c̄aδBRS(δb(F a
i φ

i)cb) + δBRSLF P .

Where we used the following definitions for δa, Dab
µ and δBRS:

δa =
δ

λ̃δca
, (1.1.33)

Dab
µ = δab∂µ− g(a)fabcW c

µ, (1.1.34)

δBRS = λ̃caδa. (1.1.35)

And because of δBRS(δb(F a
i φ

i)cb) = 0 (for more details on calculation see appendix).
We identify LF P as:

LF P =−c̄aδb(F a
i φ

i)cb. (1.1.36)

Where in a covariant global gauge symmetry:

F a
i φ

i = ∂µW a
µ . (1.1.37)

Performing the integration by parts, we find:

LF P = (∂µc̄a)Dab
µ c

b. (1.1.38)

Note that the lagrangian L′ is the proper lagrangian from which the Feynman rules are
inferred.

1.1.2 Higgs mechanism and mass terms

To make the theory realistic fermions and weak gauge bosons must acquire finite masses
while preserving the gauge invariance, we need to apply a new mechanism, that is the
Higgs mechanism[20, 3].

It is necessary to hypothesize the existence of a complex scalar doublet field in SUI3(2)
with Y = 1. It interact with the gauge fields is given through the covariant derivative:

|DµΦ|2 = |(∂µ− igaT aW a
µ )Φ|2. (1.1.39)
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We also suppose that this field is subject to a potential of the form:

V (Φ) = µ2|Φ|2 + λ|Φ|4. (1.1.40)

The lagrangian of the Higgs part than takes the form:

LH = (DµΦ)†(Dµ
Φ)−V (Φ). (1.1.41)

The field Φ can be expressed as:

Φ =

(

φ†(x)
φo(x)

)

. (1.1.42)

The potential V (Φ) presents an extremum determined by solving the following criterion:

∂V (Φ)
∂|Φ| = 2(µ2|Φ|+ 2λ|Φ|3) = 0. (1.1.43)

This condition is fulfilled when |Φ| takes the values:

|Φ1|= 0 or |Φ2|=
√

−µ2

2λ
. (1.1.44)

We should restrict our self to the case µ2 < 0 and λ > 0, |Φ1| is a maximum and |Φ2| is a
minimum, and this minimum is degenerate by a phase β. Hence, let’s take:

Φo =< 0|Φ|0>=




0
v√
2



eiβ . (1.1.45)

But in reality the field will choose one distinct direction since the electroweak symme-
try has to be spontaneously broken.
The theory is then constructed such that the classical ground state of the scalar field
satisfies.

|Φ0|=
√

−µ2

2λ
=

v√
2
. (1.1.46)

In perturbation calculation we develop the fields around the ground state, to take into
account quantum fluctuations with respect to the vacuum. Hence the following expression
for Φ:

Φ =
1√
2

(

χ2(x) + iχ1(x)
v+H(x)−χ3(x)

)

=
1√
2
e

i−→σ . −→χ
v

(

0
v+H(x)

)

. (1.1.47)

With bearing in mind that χ1,χ2,χ3 and H are small fluctuation and χi(i= 1,2,3) (called
the Nambu-Goldstone fields) are non-physical owing to a specific gauge transformation
called unitary gauge:

e− i−→σ . −→χ
v Φ =

1√
2

(

0
v+H(x)

)

(1.1.48)

This gauge makes the Goldstones disappear except for the H(x) field and that’s what
makes it physical Higgs boson with a mass:

MH =
√

−2µ2 =
√

2λv. (1.1.49)
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The ground state Φo breaks the SUI3(2) and UY (1) symmetries as a result of not being
invariant under each group transformation separately, however if we would choose the
transformation operator as:

U = e
i(σ3+Y )θ

2 . (1.1.50)

The ground state Φo would be invariant:

e
i(σ3+Y )θ

2 ≃ (1 +
i(σ3 + Y )θ

2
)Φo (1.1.51)

=

(

1 + i 0
0 1

)


0
v√
2



=




0
v√
2



= Φo. (1.1.52)

And since the electric charge is:

Q= T 3 +
Y

2
. (1.1.53)

We see that U(1)em is the residual symmetry:

SU(2)I ⊗U(1)Y → U(1)em. (1.1.54)

Through LH the gauge boson mass matrix is generated as follows:

Lmass =MabW
a
µW

bµ, (1.1.55)

Mab =

W1 W2 W3 W0

W1 g2 0 0 0
W2 0 g2 0 0
W3 0 0 g2 gg′

W0 0 0 gg′ g′2

× v
2

8
.

Then by redefining the W a
µ gauge fields as follows:

W±
µ = (W 1

µ ∓ iW 2
µ)/
√

2 (1.1.56)

Zµ = (gW 3
µ − g′W 0

µ)/
√

g2 + g′2 (1.1.57)

Aµ = (g′W 3
µ + gW 0

µ)/
√

g2 + g′2, (1.1.58)

Where W±
µ and Zµ represent the physical weak boson and Aµ the photon.

By doing so the mass matrix is diagonalized and generates the bosons masses:

Lmass =M2
WW+

µ W
−µ +

1
2
M2

ZZµZ
µ +

1
2

(0)2AµA
µ. (1.1.59)
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With the below identifications45.

MW =
1
2
gv , MZ =

1
2

√

g2 + g′2
� v. (1.1.60)

Now for the fermion fields mass terms it is provided by the Yukawa interaction:

LY =−fL̄ΦR− fR̄Φ†L. (1.1.61)

Which generates fermion mass terms:

Lmass =−f(v/
√

2).ψ̄eψe. (1.1.62)

Here f is the Yukawa coupling parameter which has to be related to the mass of the
electron as an experimental input.

Now we finally arrive at the full lagrangian from which we will consider later its
renormalization:

L′ = LG +LF +LGF +LF P +LH +LY , (1.1.63)

LG =−1
4
F a

µνF
µν
a ,

LF = iL̄ 6D LL+ iR̄ 6D RR,

LGF =Ba∂µW a
µ +

α

2
(Ba)2,

LF P = (∂µc̄a)Dab
µ c

b,

LH = (DµΦ)†(Dµ
Φ)−V (Φ),

LY =−fL̄ΦR− fR̄Φ+L.

It worthwhile to say here that the lagrangian L′ is constructed by first assuming that
all introduced fields are associated to isolated point like particles (fermions and bosons)
and that the interactions are mediated by gauge bosons through covariant derivative. Also
the masses of particles are acquired through Higgs mechanism and spontaneous breaking
of electroweak symmetry.

1.2 LSZ reduction formalism

In particle physics the most efficient way to test a theory is by studying the outcome of
collisions of particles. With that we can determine a lot of information on the physical

4for the electric charge would be identified by

e = gg′/
√

g2 + g′2

5there is a relation between MW and MZ

cosθW =
MW

MZ
, sinθW =

√

1−M2

W

M2

Z
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world and compare it with the predictions of the theory. The most important measur-
able quantity in these experiments is the cross section which is related to the scattering
amplitude of the studied process. The latter encodes the information on how and what
the interaction should look like. In order to be able to compare correctly the theoretical
results with experimental ones, we need a relation that links the scattering amplitude
with the fields of the theory. This relation is non other than the famous LSZ reduction
formalism[25].
In this section which is strongly influenced by the Srednicki book[38] and the lecture from
Perimeter Institute of Theoretical Physics web site6 we shall derive this relation for the
Klein-Gordon real field (scalar field) only. Than we will give the final result for other
types of fields due to the similar reasoning in their derivation. Finally we will provide an
explanation on why we need renormalization.

1.2.1 Derivation of LSZ formula for real scalar fields

The scattering amplitude are transition amplitudes of some number of particles from
initial state to some other number of particles of final state:

< f |S|i >H=< f,+∞|i,−∞>s, (1.2.1)

With |i > and |f > as the initial and final particle states respectively while S being the
scattering matrix. the subscripts S (H) point out the Schrodinger (Heisenberg) picture.
The S-matrix embeds all the information about how the initial states |i > can shift into
final states |f >. In a free theory, i.e no interaction, the S-matrix is just the identity
operator, so we can write S as:

S = 1 + iT . (1.2.2)

Where T is the transfer matrix, since we are interested in the interacting theory, we only
need the transfer matrix part:

< f |S−1|i >= i < f |T |i > . (1.2.3)

All we know about T is that it should vanish if the total 4-momentum is not conserved.
Thus T is proportional to a momentum conserving delta function:

iT = (2π)4δ4(Σp)iM. (1.2.4)

And therefore, we are interested in computing the matrix element of M.

< f |S−1|i >= (2π)4δ4(Σp)i < f |M|i >
= (2π)4δ4(Σp)iMi→f . (1.2.5)

From now to the end of this section, we shall consider the case of 2→ 2, scattering process
of scalar particles with identical masses7.

6
http://perimeterinstitute.ca/training/perimeter-scholars-international/lectures/2014/2015-psi-lectures

7for general case it is a straightforward generalization of the final result

http://perimeterinstitute.ca/training/perimeter-scholars-international/lectures/2014/2015-psi-lectures
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In the free theory the action of a creation operator a†(k) on the vacuum state results
in 1 particle state:

|k >= a†
k(t)|0> . (1.2.6)

In the Klein-Gordon theory, we have the following relation8.

a†
k(t) =−i

∫

d3x e−ikx←→∂0 φ(x). (1.2.7)

While the action of the annihilation operator on |0> gives:

ak(t)|0>= 0. (1.2.8)

The free theory vacuum stat has the unit norm:

< 0|0>= 1. (1.2.9)

Now we want to create a particle that is localized near k1 in momentum space and near
the origin (x= 0) in position space at time t→ 0. To do that we define the wave packet:

a†
1 ≡

∫

d3k f1(k)a†
k(t), (1.2.10)

With f1(k) having the Gaussian form with some width σ.

f1(k)∝ e−(k−k1)2/4σ2

. (1.2.11)

So now, we would have the following state:

a†
1(t)a†

2(t)|0>= |k1,k2 > , k1 , k2. (1.2.12)

It is a two particles state localized at the origin without interacting with each other since
we are on the scope of the free theory.
If we time-evolve this state, the wave packet will spread out and the two particles are
now localized far from the origin, this state can be identified as finale and initial states
as shows:

|i >= lim
t→−∞

a†
1(t)a†

2(t)|0>,

|f >= lim
t→+∞

a†
3(t)a†

4(t)|0> . (1.2.13)

This is true for free theory, but what we are interested in is the interacting theory where
all the interesting stuff happens. In order for us to switch to the interacting theory we
have to make some assumptions to drive the desired formula, these assumptions at first
hand may seem to be unintuitive but we shall proceed with them, and once we derive
the formula we will return and discuss under what circumstances these assumptions are
valid.

8where
←→
∂0 is defined by:

A
←→
∂0 B = A(∂0B)− (∂0A)B
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The first thing occurs when we are considering the interacting theory is that the vacuum
changes due to the change of the Hamiltonian when taking into account the interaction,
the ground state changes, so we introduce the new vacuum state:

|0>−→ |Ω > . (1.2.14)

We assume that a†
1(±∞)|Ω > are still one particle states, it is an assumption by reason of

in interacting theory the number of particles is not conserved so we could have a transition
between a one particle state and a multi particle state thus we assume that in the far
future or past the particles are far from each other. So we could talk about one particle
state. With this assumption in mind the initial and final states can be expressed as:

|i >= a†
1(−∞)a†

2(−∞)|Ω >,

|f >= a†
3(+∞)a†

4(+∞)|Ω > . (1.2.15)

Our aim is to compute the scattering amplitude for the 2 → 2 scattering process <

f |S − 1|i >, for that matter we will make use of the following relation, it is the key
identity to derive the desired result:

a†
1(+∞)− a†

1(−∞) =−i
∫

d3k f1(~x)
∫

d4xeikx(∂2 +m2)φ(x) (1.2.16)

≡ I†
1 (short hand notation for simplicity).

At first glance, we can see the Klein-Gordon operator acting on the field, this would give
zero for a free theory but in our case (interacting theory) it is non-zero (∂2 +m2)φ = J .
For the full proof of this identity please see appendix.
In the proof of this relation we also made the assumption of the relationship between
a†

k(t) and φ(x) is the same in the interaction theory as in the free theory:

a†
k(t) =−i

∫

d3xeixk←→∂0 φ(x). (1.2.17)

What is going to change is the time dependence of the operators.
In the scattering amplitude expression we don’t only have the creation operators, but we
also have an annihilation operators, for that we are in need for a similar relation for the
annihilation operators, to do so we only need to calculate the complex conjugate of 1.2.16,
we get:

a1(+∞)− a1(−∞) = i
∫

d3k f1(~x)
∫

d4xe−ikx(∂2 +m2)φ(x) (1.2.18)

≡ I1.

Now we are ready to compute our scattering amplitude:

< f |S−1|i >=<Ω|a4(+∞)a3(+∞)a†
1(−∞)a†

2(−∞)|Ω > . (1.2.19)

We notice that the creation and annihilation operators are already time ordered, so we can
introduce the time ordering symbol T, where its function is to move the latest operators
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to the left:

< f |S−1|i >=<Ω|T(a4(+∞)a3(+∞)a†
1(−∞)a†

2(−∞))|Ω > . (1.2.20)

At this stage we use 1.2.16 and its complex conjugate:

a†
1(−∞) = a†

1(+∞)− I†
1 (1.2.21)

a1(+∞) = I1 + a1(−∞), (1.2.22)

We get:

< f |S−1|i >=<Ω|T(a4(+∞)a3(+∞)a†
1(−∞)a†

2(−∞))|Ω >

=<Ω|T((I4 + a4(−∞))(I3 + a3(−∞))(a†
1(+∞)− I†

1)(a†
2(+∞)− I†

2))|Ω >

=<Ω|T(a4(−∞)a3(−∞)a†
1(+∞)a†

2(+∞))|Ω >

+ · · ·+<Ω|T(I4I3I
†
1I

†
2)|Ω > . (1.2.23)

Due to the time ordering operator, the annihilation operators will act on |Ω > the vacuum
state and gives zero as a consequence all the terms vanish except for the last one.
Now the wave packet no longer play an important role we take f1(

−→
k )→ δ3(

−→
k − −→k1 ) (we

can do that by taking the limit σ→ 0 in the equation 1.2.11) then I+ well as I, becomes:

I†
1 =−i

∫

d4x1e
−ik1x1(∂2

1 +m2)φ(x) ; ∂1µ =
∂

∂xµ
1

(1.2.24)

I1 = i
∫

d4x1e
ik1x1(∂2

1 +m2)φ(x). (1.2.25)

Now we finally arrive at the LSZ reduction formula:

< f |S−1|i >=i2+2
2+2∏

j=1

(∫

d4xje
−iǫkjxj(∂2

j +m2)
)

×<Ω|T(φ(x1)φ(x2)φ(x3)φ(x4))|Ω >, (1.2.26)

With,

ǫ=

{

+1 for final state

−1 for initial state
(1.2.27)

Now that we have derived the formula for the real Klein-Gordon field we shall provide
the corresponding result for the spinor type of fields because in real scattering processes,
matter particles are the most types of scattering dealt with in experimental research in
particle physics. So for the spinors Ψαi(xi) with spin si (i= 1,2,3,4) we have the relation
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as follows9.

< f |S−1|i >= i2+2
∫

d4x1

∫

d4x2

∫

d4x3

∫

d4x4

× e−ik3x3[ūs3(p3)(−i 6∂ 3 +m)]α3

× e−ik4x4[ūs4(p4)(−i 6∂ 4 +m)]α4

×<Ω|T(Ψα4(x4)Ψα3(x3)Ψα1(x1)Ψα2(x2))|Ω >

× [(i
←−6∂ 1 +m)us1(p1)]α1e

−ik1x1

× [(i
←−6∂ 2 +m)us2(p2)]α2e

−ik2x2.

Now that we have reached our goal on deriving the relevant formula, we get back to
the main assumption that we have began with. We shall examine whether the state
a†

1(±∞)|Ω > is indeed a one particle state in the interacting theory, and since we assumed
that the relation between the creation (or annihilation) operator and the fields is the same
in the interacting theory as in the free theory. Then φ(x)|Ω > is also a one particle state
(if this is the case). To check that this is the case we want the one-particle state to be
orthogonal with the vacuum state (no overlap between the two states), that means it
should verify:

<Ω|φ(x)|Ω >=<Ω|eipxφ(0)e−ipx|Ω >

=<Ω|φ(0)|Ω >

?= 0.

Where in the first equality we expressed φ(x) by the space-time translation operator
acting on φ(0), and in the second line we use the property of the vacuum state that is
if we space-time translate a vacuum state it would still be a vacuum state. In general
<Ω|φ(0)|Ω > have no reason be zero because in interacting theory there could be some
overlap between one-particle state and vacuum state.
Let’s say that it have some constant value v:

<Ω|φ(0)|Ω >= v. (1.2.28)

This is easily fixed all we have to do is to shift our field and redefine it as:

φ̃(0) = φ(0)− v. (1.2.29)

By doing so our main assumption is verified:

<Ω|φ̃(0)|Ω >= 0. (1.2.30)

Therefore if we want to use the LSZ formula we need to shift our fields. This condition
alone is not ebough, we need for the one particle state to be very well normalized, that
is:

< k|φ(x)|Ω >
?= eikx, (1.2.31)

9we also consider the 2→ 2 scattering process of identical masses
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Where |k > being a one particle stale with 4-momentum k. This is true for the case of
a free theory. We want it to be true also for the interacting theory. In general it is not
true, without specifying the theory we can see that it gives:

< k|φ(x)|Ω >=< k|eip̂xφ(0)e−ip̂x|Ω >

= eikx< k|φ(0)|Ω >
︸              ︷︷              ︸

extra factor

. (1.2.32)

Again we have written the field φ(x) as a space-time transformation of φ(0) (it is more like
a relativistic generalization of switching between Heisenberg and Schrodinger picture)10

and use the action of eip̂x on |k > would give the eigenvalue of the operator p̂ which is
k. This extra factor is Lorentz invariant number so it is just a constant that can depend
on some parameters of the theory11, we would like for it to be equal to one if we want in
interacting field theory a†

1(±∞) to create a correctly normalized one-particle state. Again
we can fix this by rescaling (renormalizing) our field and redefining it as:

φ̃(x) = Z1/2φ(x), (1.2.33)

Where we identify:
Z−1/2 ≡< k|φ(0)|Ω > . (1.2.34)

Now that we have shifted and rescaled our field they obey, by construction:

<Ω|φ̃(x)|Ω >= 0, (1.2.35)

< k|φ̃(x)|Ω >= eikx. (1.2.36)

And by that the fields in the LSZ formula are these new defined fields.
Doing that alone is not enough because we would still have to be able to distinguish a
one-particle state from a multi-particle state. Going with the naive approach, we would
get:

< p,n|φ(x)|Ω >=< p,n|eik̂xφ(0)e−ik̂x|Ω >

= eipx< p,n|φ(0)|Ω >
︸                 ︷︷                 ︸

,0

. (1.2.37)

Where the multi-particle state < p,n| is represented by the total 4-momentum p and for
any other (discrete or continue) parameter the label n, again (in general) this has no
reason to be zero, unlike the previous times this is not easy due to the many different
states, it is not clear what can be done (like shifting or rescaling) to make it vanish. So
we shall give this extra-quantity a a specify name:

An(p) =< p,n|φ(0)|Ω > . (1.2.38)

In fact making An(p) = 0 is a too strong of a condition. What we really want is to

10Since in relativistic theory we deal with space and time as the same entity
11 when we look at it we may think it depends on k but since it is Lorentz invariant it can only be a

function of k2 which is equals to a constant m2
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distinguish a one-particle state in the far past and the far future that is:

< p,n|a†
1(±∞)|Ω >

?= 0. (1.2.39)

Also we need to test the overlap against normalizable state, in view of the fact that non-
normalizable states brings on a lot of conflict as a consequence we define the normalizable
multi-particle state as:

|ψ >=
∑

n

∫

d3pψn|p,n > . (1.2.40)

And the symbol
∑

n is just the sum or integral if the parameter is continues over all of
the parameters of the state with the φn(~p)’s as wave packets for the total momentum ~p.
Now what we really need to examine is:

< ψ|a†
1(±∞)|Ω >

?= 0. (1.2.41)

At first, we refrain from taking the limit t→±∞ and use 1.2.17 for the creation operator,
we get:

< ψ|a†
1(t)|Ω >=−i

∑

n

∫

d3pψ∗
n(~p)

∫

d3kf1(~k)
∫

d3xe−ikx←→∂0 < p,n|φ|Ω >

=−i
∑

n

∫

d3pψ∗
n(~p)

∫

d3kf1(~k)
∫

d3x(e−ikx←→∂0 e
ipx)An(p)

=−i
∑

n

∫

d3pψ∗
n(~p)

∫

d3kf1(~k)
∫

d3x(i(p0 + k0)ei(p−k)x)An(p)

=
∑

n

∫

d3pψ∗
n(~p)

∫

d3kf1(~k)(p0 + k0)(2π)3δ3(~p−~k)An(p)ei(p0−k0)t

=
∑

n

∫

d3pψ∗
n(~p)f1(~p)(p0 + k0)(2π)3An(p)ei(p0−k0)t. (1.2.42)

Where in the first line we use the |ψ > and a†
1 definitions. In the second line we replaced

< p,n|φ(x)|Ω > by eipxAn(p) and calculated the
←→
∂0 on the third line. And we did the

x integration in the forth line. Finally, we arrived at an expression that looks like the
following form:

< ψ|a†
1(t)|Ω >=

∫

d3pf(p)ei(p0−k0)t, (1.2.43)

Where12 p0 = (~p2 +M2)1/2 > k0 = (~p2 +m2)1/2. Now we take the limit t → ±∞ and
according to Riemann-Lebesgue Lemma13 this integral goes to zero. As a result there is

12because of M ≥ 2m > m as the mass of the multi-particle state
since: p2 = M2 and k2 = m2

13If f(x) is integrable on [−π,π], then:

lim
t→∞

∫ π

−π

f(x)sin(tx)dx→ 0,

And

lim
t→∞

∫ π

−π

f(x)cos(tx)dx→ 0.
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no overlap between the two states just as desired to be:

< ψ|a†
1(t)|Ω >= 0. (1.2.44)

Physically this means that as t → ±∞ the spread out of the one-particle wave packet
differ from the spread out of the multi-particle state. So at the far future of the far past
we can track our particle of study without the contribution of the multi-particle state.

Now that we have examined our assumptions (which are all about what is a one-
particle state is an interacting theory) and made the fields satisfying them by shifting and
rescaling, as a consequence of that, the lagrangian must also change. To give an example
for that let us consider a simple lagrangian of a scalar real φ3 theory of the form:

L=
1
2
∂µφ∂

µφ− 1
2
m2

0φ
2 +

1
3!
g0φ

3. (1.2.45)

In order to apply the LSZ reduction formula, for processes described by this theory, the
field must be redefined (to satisfy the assumption that was made) and the parameter
(mass and coupling) must be adjusted on the observed ones at asymptotic states. By
doing so the lagrangian will change as well giving rise to new coefficients and a new term
as follows:

⇒







L= 1
2∂µφ∂

µφ− 1
2m

2
0φ

2 + 1
3!g0φ

3

φ→ φ̄− v
L= 1

2∂µφ̄∂
µφ̄− 1

2m
2
0φ̄

2 + 1
3!g0φ̄

3 + Y (v)φ̄
, (1.2.46)

φ̃= Z
1/2
φ φ̄ ; m2

0 = Z2
mm

2 ; g0 = Zgg,

L=
1
2
Zφ∂µφ̃∂

µφ̃− 1
2
Z2

mm
2Zφφ̃

2 +
1
3!
ZggZ

3/2
φ φ̃3 + Y (v)Z1/2

φ φ̃, (1.2.47)

L=
1
2
∂µφ̃∂

µφ̃− 1
2
m2φ̃2 +

1
3!
gφ̃3

+
1
2

(Zφ− 1)∂µφ̃∂
µφ̃− 1

2
(Z2

mZφ− 1)m2φ̃2 +
1
3!
g(ZgZ

3/2
φ − 1)φ̃3

+ Y (v)Z1/2
φ φ̃. (1.2.48)

Let us define:

δZφ = Zφ− 1 ; δm2 = (Z2
mZφ− 1)m2 ; δg = g(ZgZ

3/2
φ − 1) ; Ỹ = Y Z

1/2
φ ,

Hence:

L=
1
2
∂µφ̃∂

µφ̃− 1
2
m2φ̃2 +

1
3!
gφ̃3

+
1
2
δZφ∂µφ̃∂

µφ̃− 1
2
δm2φ̃2 +

1
3!
δgφ̃3 + Ỹ φ̃, (1.2.49)

L= LR +LCT , (1.2.50)
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where,

LR =
1
2
∂µφ̃∂

µφ̃− 1
2
m2φ̃2 +

1
3!
gφ̃3 (1.2.51)

LCT =
1
2
δZφ∂µφ̃∂

µφ̃− 1
2
δm2φ̃2 +

1
3!
δgφ̃3 + Ỹ φ̃. (1.2.52)

We notice that L and LR have the same structure, therefore Feynman rules of LR

would be similar to that of L with the only change is the parameter of mass (m0,g0 for
L and m,g for LR).

Therefore if we would like to consider studying a real process (interacting theory) we
are required to renormalize.

In the next chapter we shall delve deeper into the details of renormalization. The
term Ỹ φ̃ which is the tadpole term is only present in the counter term part, where the
bare lagrangian1.2.45 which is the original lagrangian of the theory, does not contain such
term, therefore a condition is imposed to eliminate it.

Y (v) = 0. (1.2.53)

1.3 Selected tree level Feynman rules of the electroweak

SM theory

In this section and for future use in dealing with scattering process (see chapter 3),
we introduce some selected tree level Feynman rules and their corresponding Feynman
diagrams[1][35] in the framework of EWSM theory.

External lines

We begin by presenting the external lines[35]:

u(p;mI,i)

u(p;mI,i)

v(p;mI,i)

v(p;mI,i)

γµ

εµ(p)
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Propagators

Some of the propagators of the theory[1].

ψj ψi −i
m− k− iǫ =

m+ k

m2− k2− iε
Zν Zµ −i

k2 + iε−M2
Z

Vertices

The vertices between the Z-boson and fermionic particles[1] (ψI for up fermion flavor and
ψi for down fermion flavor).

Zα

ψIψI

ieMZ

2MW

√

M2
Z −M2

W

γα(1
2 − 2QI

M2
Z−M2

W

M2
Z
− 1

2γ5)

Zα

ψiψi

ieMZ

2MW

√

M2
Z −M2

W

γα(−1
2 − 2Qi

M2
Z−M2

W

M2
Z

+ 1
2γ5)

γα

ψiψi

ieQiγα



Chapter 2

Electroweak On-Shell Renormalization

The development of experimental physics lead to an unprecedented precision in measure-
ment, putting us in need for an equivalent advancement in the theoretical framework. The
leading order (LO) in perturbation theory is not enough any more, we need to go a step
further and include the next to leading order (NLO) perturbation terms. When we try
and do the calculation of the NLO, we encounter an unpleasant infinities. The procedure
of which we get rid of these infinities is called renormalization. In this chapter we shall
see the origin of these infinities and give a brief introduction of different renormalization
schemes and the philosophy behind each one. Then we apply the on-shell scheme to
EWSM1. Finally, we provide the way to calculate the EWSM renormalization constants
with explicitly giving some results2.

2.1 Renormalization and regularization schemes

2.1.1 The origin of infinities and regularization schemes

As we have said before, scattering processes are the most commonly used method to probe
the physical world, and that gets us to the need of evaluating the n-point functions (Green
functions). For a scalar interacting theory we can write:

G(n)(x1, · · · ,xn) =<Ω|T (φ(x1) · · ·φ(xn))|Ω > (2.1.1)

Where φ’s are interacting fields on which we do not have a detailed knowledge.
It would be better if the Green functions were expressed in terms of free vacuum states
and free fields that we understand better and know how to manipulate. Fortunately there
is such a relation (for details on its derivation see[41]) and it is as follows3:

G(n)(x1, · · · ,xn) =
< 0|T (φ0(x1) · · ·φ0(xn)e−i

∫ +∞

−∞
dτHint(τ ))|0>

< 0|Te−i
∫+∞

−∞
dτHint(τ )|0>

(2.1.2)

Where φ0(xi) (i = 1 · · ·n) are the asymptotic fields satisfying the free field equation
(∂2 +m2)φ0(xi) = 0 and Hint is the Hamiltonian interaction part expressed in term of

1the renormalizability of EWSM was proved by t’Hooft[21] in 1971
2From now on, we adopt the definition of the physical mass as the isolated pole of the exact propagator
3we are considering a real scalar fields

22
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asymptotic fields and their canonical conjugate. In the case of the 2-point function,

G(2)(x1,x2) =
< 0|T (φ0(x1)φ0(x2)e−i

∫ +∞

−∞
dτHint(τ ))|0>

< 0|Te−i
∫ +∞

−∞
dτHint(τ )|0>

. (2.1.3)

By inserting the Taylor expression of the exponential function, we obtain the perturbative
series of the 2-point function (this holds for any n-point function):

G(2)(x1,x2) =N
∞∑

k=1

(−i)k

k!

∫

d4y1 · · ·d4yk < 0|T (φ0(x1)φ0(x2)Hint(y1) · · ·Hint(yk))|0>

(2.1.4)
Where the normalization factor N describes the unobservable vacuum fluctuations, there-
fore it can simply be ignored as long as we don’t take into account the disconnected vacuum
bubles when evaluating 2.1.4:

N =< 0|Te−i
∫

dτHint(τ )|0>

= 1+ + + · · ·
(2.1.5)

And the graphical representation of 2.1.4 is given by:

G = + × + + · · ·
(2.1.6)

Figure 2.1: Perturbation series of 2 point Green function

The first thing, we can see is that the zeroth order of the perturbation series is non
other than the tree level Feynman propagator (the free propagator):

G(2)(x1,x2)≃
∫

d4pei(x1−x2)p 1
p2−m2 + iε

(2.1.7)

If we carry on the calculation with this order (which is the LO) of the perturbation, we
are going to reproduce the exact tree level approximation that is given by the Lagrangian
(for example we continue with the same Lagrangian as in the previous chapter):

Ltree =
1
2
∂µφ∂

µφ− 1
2
m2φ2 +

1
3!
gφ3 (2.1.8)

Now when we go further to include the first order of perturbation, we encounter a loop
diagrams that we must include its contribution to the scattering amplitude. To show a
practical example of this contribution, we position ourselves in a QED vacuum polarization
diagram which is the first order correction to the photon propagator

Applying QED Feynman rules, gives us:

G(1)
µν (k) =G

(0)
µµ′(k)iΠµ′ν′(k)G(0)

ν′ν (2.1.9)
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k k

p

p+ k

Figure 2.2: Photon self interaction

Where the free propagator G(0)
αβ(k) is as usual:

G
(0)
αβ(k) =−i

[

gαβ

k2 + iε
+ (ξ− 1)

kαkβ

k2 + iε

]

=

kα β

(2.1.10)

And iΠαβ(k) called the polarization operator is expressed as follows:

iΠαβ(k) =−(ie)2
∫

d4p

(2π)4
Tr

(

γα
i

6p−m+ iε
γβ

i

6p+ 6k −m+ iε

)

=−4e2
∫

d4p

(2π)4

pαpβ + pαkβ + pβkα− gαβ(p2 + pk−m2)
(p2−m2 + iε)((p+ k)2−m2 + iε)

(2.1.11)

We can see by simple power counting that this integral is divergent, it is of the form:

iΠαβ ∼
∫

d4p
p2

p4
∼
∫

pdp=∞

This type of divergence is ultraviolet divergence as a result of (p→∞) adding up the
fluctuations of very large momenta scales4. This would mean that the theoretical value
for the cross section is infinite, while in reality, what we measure is a finite value.

The physical reality is not just the first order of perturbation series or the second
one, it is the whole thing, it is all the terms of the perturbation series and it is finite.
Thus taking in principle the correction of the first order, it would only result in a more
precise prediction. According to this reasoning, the nature of these divergences is nothing
but a flaw in our understanding. In fact, it is a consequence of trying to compare an
incomparable quantities, the physical quantities that are the observable ones (such as the
mass of a dressed electron or its charge) with the ones inaccessible by any experiment
(unobservable) and called bare quantities and on which our constructed theories were
based upon. In other words, what we actually measure as a mass is in reality a whole
package of constantly self interacting particle with a bare mass m0. With taking that into
account, adjustments5 are made to the Lagrangian of the theory.We can write:

L0(m0,g0,φ0, · · ·) = LR(mR,gR,φR, · · ·) +LCT (δm,δZg, δZφ, · · ·) (2.1.12)

4this divergence manifests it self in any loop diagrams
5we have seen what kind of adjustment we need to perform in the LSZ formalism section
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These adjustments are going to be the key ingredients to the process of eliminating the
relevant divergences rendering any higher order contribution finite. The renormalization
recipe is encapsulated as follows:

• First, we choose a set of independent bare parameters of the relevant theory
(e.g. g0, m0, · · ·)

• Introduce renormalization constant by re-defining the bare parameters and fields in
terms of a renormalized ones (e.g. m2

0 =m2
R + δm2,φ0 = Z

1/2
φ φR, · · ·)

• Choose a suitable renormalization scheme to fix the counter terms (i.e. fixing the
renormalization conditions)

• Calculate the amplitudes of the relevant loop diagrams with appropriate regulariza-
tion scheme

• Eliminate all the divergences by the predetermined counter terms for chosen renor-
malization scheme

At this point, the physical quantities (such as the cross section) are expressed as a function
of the renormalized parameters, where their numerical values are not fixed yet, so the next
thing would be

• Choosing experimental data to fix the values of the renormalized parameters.

The result of applying this procedure will yield to finite and well defined quantities. We
have mentioned in the fourth step of the above procedure that we need to make use
of an appropriate regularization scheme, this is for the reason of rendering the relevant
loop integrals convergent. There are several types of regularization procedures for that
objective, we shall briefly mention some of these methods.

1. Cut-off method

The cut-off method is considered the simplest one, it simply restrict the boundaries of
the integral:

∫ +∞

−∞
d4k→

∫

|k2|<Λ2
d4k

With that, the source of the divergence is eliminated. This regularization however, does
not maintain gauge invariance, hence this method is not suitable for gauge theories.

2. Lattice regularization

This particular method relays on discretizing space-time in a way it would be made of
small blocks of size a, the lattice constant.

x= a(n0,n1,n2,n3)

Where ni (i = 0,1,2,3) are integers. According to that, the contribution of short dis-
tances6 is eliminated in the space-time integration, this correspond to cutting off the
high momentum scales which result to a convergent momentum integrals. This method
preserves gauge invariance, but for the space-time symmetries (Lorentz invariance), it no
longer holds true, hence it is not ideal for relativistic theories.

6distances that are smaller than the lattice constant a



CHAPTER 2. ELECTROWEAK ON-SHELL RENORMALIZATION 26

3. Pauli-Villars regularization

The main idea of this scheme is to substitute the propagator in the divergent integral by:

1
k2−m2

→ 1
k2−m2

− 1
k2−Λ2

=
m2−Λ

2

(k2−m2)(k2−Λ2)

Where Λ is the UV-cutoff, this is equivalent to adding unphysical scalar Grassmann fields
with mass Λ to the Lagrangian and choosing the interaction of these fields to make the
loop integrals finite. This method is Lorentz invariant and for the case of quantum elec-
trodynamics (QED), it is gauge invariant, that makes it ideal for the whole treatment of
QED. It is also applicable to massless non-abelian gauge theories (e.g. quantum chromo-
dynamics), but when considering the massive case like the EWSM theory, this method
does not maintain gauge invariance, consequently it can not be regularized by this method.

4. Dimensional regularization

The philosophy of this method lies in the fact that divergent specific dimensional integrals
would be finite for lowering (or rising in some cases) dimensions continuously. So for the
4-dimensions space-time, we assign a continuous parameter d such for example the integral
in 2.1.11 would be:

iΠαβ(k) =−4e2µǫ
∫

ddp

(2π)d

pαpβ + pαkβ + pβkα− gαβ(p2 + pk−m2)
(p2−m2 + iε)((p+ k)2−m2 + iε)

(2.1.13)

Where we have redefined the electric charge7 as:

e→ eµǫ/2

{

µ : mass scale
ǫ= 4− d

This integral is convergent for a small enough value of d. When carrying out the calcula-
tion a pole of the form 1

ǫ appears (ǫ→ 0 for d→ 4) which represent the UV-divergence of
the original integral. Since in this method nothing has been violated, all the physical re-
quirements are maintained therefore making it the most suitable regularization scheme for
gauge theories. In fact, the calculation of one-loop radiative corrections have been done in
this thesis with a symbolic software Mathematica through a package called FeynCalc[7].
And this package utilizes the dimensional regularization scheme in its internal code. For
more details on how this method works, we have treated as an example the QED vacuum
polarization in appendix C

2.1.2 Renormalization schemes

In the example of QED vacuum polarization treated in details in appendix C, the full
photon propagator reads as:

iGµν = (gµν −
kµkν

k2
)

1
k2(1 +Π(k))

+ ξ
kµkν

k4

= P T
µν

1
k2(1 +Π(k))

+ ξ
kµkν

k4
= iGT

µν + iGL
µν (2.1.14)

7this is due to the dimensionful of the coupling constant [e] = 4−d
2

in mass scales
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Where Π(k) is given by(seeC.0.26):

Π(k) =
2α
π

∫ 1

0
dxx(1−x)

[

2
ǫ
− γ+ ln(4π)− ln

(

m2−x(1−x)k2

µ2

)]

(2.1.15)

Since the longitudinal part of the full propagator does not matter (is not observable), we
shall consider only the transversal part, so after introducing the photon-field renormal-
ization constantZ3 (A0

µ =
√
Z3Aµ) then the renormalized photon-propagator:

iGT,R
µν = Z−1

3 iGT
µν

= iGT
µν(1 + δZ3)−1

=
P T

µν

k2

1
1 +Π(k)

1
1 + δZ3

(2.1.16)

Taking
δZ3 = δZ

(1)
3 (α) + δZ

(2)
3 (α2) + · · · (2.1.17)

and considering only the α order:

1
1 +Π(k)

1
1 + δZ3

=
1

1 +Π + δZ3
(2.1.18)

Then the renormalized photon (transversal) propagator will take the form:

iGT,R
µν = P T

µν
1
k2

1
1 +Π(k) + δZ3

(2.1.19)

In this equation 2.1.19, the renormalized propagator should be finite (no divergence)
as a result Π(k)+δZ3 must be finite. Therefore the divergence in Π(k) must be canceled
by the one in δZ3. This condition determines the constant δZ3 up to a finite additive
constant. Fixing this arbitrary constant requires an additional condition. The choice of
this condition is what establishes a renormalization scheme.

1. Minimal (MS) and modified minimal (MS) subtraction schemes

This subtraction scheme is specific to dimensional regularization only. The condition of
this scheme is for the renormalization constant to be exactly the divergent part of the
Green function, which is only the term that contains the pole 1

ǫ . this simple condition
results in a simplest form of the renormalization constant. In this scheme we would have
in the case of photon propagator in QED,

δZMS
3 =−2α

3π
1
ǫ

(2.1.20)

Which yields to the following form for the photon propagator:

iGT,R,MS
µν (k) = P T

µν
1
k2

[

1 +
2α
π

∫ 1

0
dx x(1−x)

(

−γ+ ln(4π)− ln

(

m2−x(1−x)k2

µ2

))]−1

(2.1.21)
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Due to its clean cut condition, it is frequently used in many applications of QCD and
some other gauge-field theories.

As for the (MS) scheme, the only difference from the (MS) is, instead of eliminating
only the 1

ǫ term, the renormalization will eliminate additional constant terms that al-
ways appear, due to dimensional regularization namely γ and ln4π. The renormalization
constant δZ3 then, in the MS scheme, becomes:

δZMS
3 =

α

3π

(2
ǫ
− γ+ ln(4π)

)

(2.1.22)

And the renormalized propagator shows:

iGT,R,MS
µν (k) = P T

µν
1
k2

[

1− 2α
π

∫ 1

0
dx x(1−x) ln

(

m2−x(1−x)k2

µ2

)]−1

(2.1.23)

This MS scheme offers a relatively compact expression for the propagator, while keeping
the simpleness of the MS scheme.

2. On-shell (OS) and off-shell (MOM) subtraction schemes

The on-shell scheme is specified by most natural condition. The idea is to join the asymp-
totic state particles which are on-shell observable. So:

lim
k2→0

k2GT,R
µν (k) = 1·P T

µν (2.1.24)

This imply that:

δZOS
3 =−Π(0)

=− α

3π

(

2
ǫ
− γ+ ln(4π)− ln

(

m2

µ2

))

(2.1.25)

And the renormalized propagator would be:

iGT,R,OS
µν (k) = P T

µν
1
k2

[

1− 2α
π

∫ 1

0
dx x(1−x) ln

(

m2−x(1−x)k2

m2

)]−1

(2.1.26)

This is the conventional renormalization scheme used for QED and even for the EWSM,
this is because of its naturaless for obtaining physical quantities (e.g. cross section, decay
width · · ·). If for instance, we give k2an unphysical (off mass shell) value, k2 = λ2, the
2.1.24 condition would take instead the form:

lim
k2→λ2

k2GT,R
µν (k) = 1·P T

µν (2.1.27)

Thus we are now applying the prescription of the off-shell renormalization scheme, which
is often referred to as the momentum-space subtraction scheme (MOM). The renormal-
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ization constant δZ3 is then:

δZMOM
3 =−Π(λ)

=−2α
π

∫ 1

0
dx x(1−x)

[

2
ǫ
− γ+ ln(4π)− ln

(

m2−x(1−x)λ2

µ2

)]

(2.1.28)

The renormalized propagator acquire the form:

iGT,R,MOM
µν (k) = P T

µν
1
k2

[

1− 2α
π

∫ 1

0
dx x(1−x) ln

(

m2−x(1−x)k2

m2−x(1−x)λ2

)]−1

(2.1.29)

These different renormalization schemes produce contrasting forms of renormalized prop-
agators. This is called the renormalization scheme dependence. Applying any one of
these renormalization schemes, we get rid of all ultraviolet divergences. However, when
including the radiative correction of the one-loop diagrams, one does not only encounter
UV-divergences, but we confront another type of divergences, an infra-red (IR) diver-
gences. this kind of divergences appears whenever there is a photon in a loop diagram
due to the null photon mass. This kind of divergences are not eliminated by any pro-
cedure of renormalization. We shall see how to deal with it in the next chapter when
considering a leptonic scattering process. In the next section, we shall exploit the EWSM

renormalization conditions in the form of the (OS) scheme.

2.2 On-Shell renormalization conditions for EWSM

In the following we generalize the EWSM further to include quarks and different gen-
erations of fermions. Then we choose the set of physical parameters to renormalize and
provide their on-shell renormalization condition.

1. Taking into account quarks and multi-generations in EWSM Lagrangian

In first chapter we have constructed the EWSM Lagrangian for the first generation of
leptons only, and we said that it is a straight forward generalization to include quarks
and other generations. Now we will do that[1]. As has been mentioned before, we define
fermions as follows:

Ri = (ψi)R , RI = (ψI)R , Li=I =

(

ψI

ψi

)

L

(2.2.1)

Fermions are taking to be in singlet representation of SUI3(2) if right handed, and doublet
if left handed.
Where the indices i,I(= 1,2,3) indicates the 3-generations of leptons and i,I(= 4,5,6)
indicates the 3-generations of quarks8 with ψi and ψI correspond to the up (T 3 = 1/2)
and down (T 3 = −1/2) type of the fermion respectively. While suffixes R and L are as
in the first chapter symbolizing right-handed and left-handed fermions component. With
this extension, only the parts where there are fermions will change, the rest9 is unchanged.

8the notation i = I in L doublet means that there is no generation mixing between left-hand fermions
9LG,LGF ,LFP and Lh don’t change
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Thus LF and LY are the only changing parts taking the following forms:

LF = i
∑

I

LI=i 6D LLI + i
∑

n=i,I

Rn 6D RRn (2.2.2)

LY =−
∑

i

fiLI=iΦRi−
∑

I

fILI=i(iτ2Φ
∗)RI + h.c. (2.2.3)

Where fi and fI are the Yukawa coupling constants and h.c. is an abbreviation for her-
mician conjugate (h.c. of the first two terms). We can see that up type fermions do not
interact with the Higgs field as the down type do. Also one should note that the standard
model does not prohibit neutrinos from having mass, it was ruled out by construction.
The masses of the fermions generated by(2.2.3) are given by[1]:

mi,I = fi,I v/
√

2 (2.2.4)

Now, with this generalization, we present the full form of the Lagrangian once again:

L′ = LG +LF +LGF +LF P +LH +LY (2.2.5)

LG =−1
4
F a

µνF
µν
a

LF = i
∑

I

LI=i 6D LLI + i
∑

n=i,I

Rn 6D RRn

LGF =Ba∂µW a
µ +

α

2
(Ba)2

LF P = (∂µc̄a)Dab
µ c

b

LH = (DµΦ)+(Dµ
Φ)−V (Φ)

LY =−
∑

i

fiLI=iΦRi−
∑

I

fILI=i(iτ2Φ
∗)RI + h.c.

This Lagrangian embeds the dynamics and all the information of the electroweak theory.
We see that it is expressed in terms of the parameters { g,g′,µ,λ,v,fi and fI }. However,
the set of parameters that we will choose for the renormalization program is the one
accessible by laboratory. This means that EWSM must be first incorporated to get a
Lagrangian in term of masses and coupling {e,MZ ,MW ,mH ,mi and mI }. We draw
attention that the number of the first set of parameters is seven, while we only have six
physical parameters to replace independent parameters. Although it was introduced as
if it were independent. The V term (1.1.40) will produce a linear term in H(x) (the
Higgs field) which will generate the tadpole diagrams. We require that the tadpole term
disappears which implies that the coefficient of the term linear in H vanishes, we identify
this coefficient by :

T = v(µ2−λv2) (2.2.6)

So we have introduced the parameter v as an independent parameter, and added the
condition that tadpole= 0 which will give us the tadpole counter term T .
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The relation between these sets of parameters is given by identification, it reads[1]:

g = e
Mz

√

M2
Z −M2

W

g′ = e
MZ

MW

v = 2
MW

√

M2
Z −M2

W

eMZ

λ=
e2M2

Z

8M2
W (M2

Z −M2
W )



m2
H −

eTMZ

MW

√

M2
Z −M2

W



 (2.2.7)

µ2 =
m2

H

2

fi,I =

√
2mi,I

v

Going now to the next step in the renormalization recipe. We introduce the renormaliza-
tion constants as follows:

W±
0 = Z

1/2
W W± , (W±

µ = (W 1
µ ∓ iW 2

µ)/
√

2)






Z0µ = Z
1/2
ZZZµ +Z

1/2
ZAAµ

A0µ = Z
1/2
AZZµ +Z

1/2
AAAµ

,







Zµ = gW 3
µ−g′W 0

µ√
g2+g′2

Aµ = g′W 3
µ+gW 0

µ√
g2+g′2

H0 =Z1/2
H H

ψn
0,R =(Z1/2

R )nmψm
R

ψn
0,L =(Z1/2

L )nmψm
L

M2
W,0 =M2

W + δM2
W

M2
Z,0 =M2

Z + δM2
Z

m2
H,0 =m2

H + δm2
H

mn,2 =mn + δmn

e0 =Zee (2.2.8)

Where quantities with index 0 denote bare quantities, and those without, are the
renormalized ones. Since the renormalization constants of the unphysical fields (FP ghost
and Goldstons) do not affect the Green functions of physical particles, they are not pre-
sented10

Noting that if a renormalization constant Zα connect the bare and the renormalized
same fields, then: Zα − 1 = δZα as for ZW = 1 + δZW and Znn

L = 1 + δZnn
L . And if it

connects the bare and renormalized different fields, then Zα = δZα as for ZAZ = δZAZ

and Zmn
L = δZmn

L , m , n. We have also Ze = 1 + δZe

So the bare Lagrangian of the EWSM L0 can be split into a renormalized Lagrangian LR

and a counter term Lagrangian LCT ,

10for the treatment of these fields see Aoki[1]
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L0(e0,MW,0,MZ,0,mH,0,mn,0,ψ0) = LR(e,MW ,MZ ,mH ,mn,ψ)

+LCT (e,MW ,MZ ,mH ,mn,ψ,Ze, δM
2
Z , δM

2
W , δm2

H , δmn,Z) (2.2.9)

Where here ψ and Z represent all the relevant fields and their respective renormalization
constants and we have ignored mixing between fermion generations. As the title of this
section suggests, the scheme that we will apply to determine the relevant renormalization
constants and renormalized quantities is the on-shell renormalization scheme. The on-shell
conditions are presented as follows11[1]

W boson Self-energy

This case of the W boson will be treated in detail to serve as an example on how to
determine the Feynman rules for the counter terms from the Lagrangian. So we pick only
the term that correspond to the propagator of the W boson which is [1]:

L0 =W+
µ,0[(gµν

�− ~∂
µ~∂ν) +

1
α

~∂
µ~∂ν +M2

µ,0g
µν ]W−

ν,0 (2.2.10)

In the t’Hooft gauge (α= 1) it reduces to:

L0 =W+
µ,0[gµν

�+M2
µ,0g

µν ]W−
ν,0 (2.2.11)

This is the bare Lagrangian which correspond to the inverse propagator of W . Apply-
ing(2.2.8), we get:

L= ZWW+
µ [gµν(�+M2

µ + δM2
W )]W−

ν (2.2.12)

Writing now the operator � as −k2 due to the correspondence change[9][41]:

~∂µ→−ikµ ; ~∂
µ→ ikµ

⇒ �= ~∂µ
~∂µ→−k2

That gives:

L0 = (1 + δZW )W+
µ [−k2 +M2

W + δM2
W ]gµνW−

ν

=W+
µ [−gµν(k2−M2

W )]W−
ν

+W+
µ [−gµνδZW (k2−M2

W − δZ2
W ) + gµνδM2

W ]W−
ν (2.2.13)

11we have excluded the tadpole diagrams since they have no contribution in actual calculation
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Which yield to:

W
+
µ Z

−

ν

= gµν(k2−M2
W )

+

W
+
µ W

−

ν =−igµν [δZW (k2−M2
W )− δM2

W ]

=−i
(

gµν − kµkν

k2

)

[δZW (k2−M2
W )− δM2

W ]

−ikµkν

k2 [δZW (k2−M2
W )− δM2

W ]

And with the self-energy diagram,

Wµ Wν

=
(

gµν − kµkν

k2

)

AW (k2) + kµkν

k2 BW (k2)

The on-shell condition is defined according to:

• The pole of the propagator is at the physical mass, (for the W boson at M2
W ) this

implies
AW (M2

W ) = 0 (2.2.14)

• The residue of the renormalized propagator mus be aqual to the residue free prop-
agator which implies the second condition

A′W (M2
W ) = 0 (2.2.15)

with these two conditions we obtain :

δZW , δM2
W

Same reasoning is applied to every other propagator. We give their condition as follows

A and Z bosons self-energies[1][6]

Zµ Zν

=
(

gµν − kµkν

k2

)

AZ(k2) + kµkν

k2 BZ(k2)

+

Zµ Zν =−i
(

gµν − kµkν

k2

)

[δZZZ(k2−M2
Z)− δM2

Z ]

−ikµkν

k2 [δZZZ(k2−M2
Z)− δM2

Z ]
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Zµ Aν

=
(

gµν − kµkν

k2

)

AZA(k2) + kµkν

k2 BZA(k2)

+

Aµ Zν

=− i
2

(

gµν − kµkν

k2

)

[δZZA(k2−M2
Z) + δZAZk

2]

− i
2

kµkν

k2 [δZZA(k2−M2
Z) + δZAZk

2]

Aµ Aν

=
(

gµν − kµkν

k2

)

AA(k2) + kµkν

k2 BA(k2)

+

Aµ Aν =−i
(

gµν − kµkν

k2

)

δZAAk
2

−ikµkν

k2 δZAAk
2

Their corresponding renormalization are :

AZ(M2
Z) = 0 , A′Z(M2

Z) = 0

AA(0) = 0 , A′A(0) = 0

AZA(M2
Z) = 0 , AZA(0) = 0

From where we extract their relevant renormalization constants

δZZZ , δZZA , δZAZ , δZAA , δZZ

Charged lepton self-energy

For the fermions, we present their renormalization conditions for the specific case of
charged leptons self-energies due to its importance for the application on the next chapter.

ψl ψl

= Σ
l
1(k2)1 +Σ

l
γ(k2) 6k +Σ

l
5γ(k2) 6k γ5

+

ψl ψl = i[−δml1 + 1
2

(

δZ l
L + δZ l

R

)

(6k −ml)1

−1
2

(

δZ l
L− δZ l

R

)

6k γ5]

We get :
δZ l

L , δZ l
R , δml
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By the following conditions :

Σ
l
1(m2

l ) +mlΣ
l
γ(m2

l ) = 0

Σ
l
5γ(m2

l ) = 0

2ml

(

Σ
′l
1 (m2

l ) +mlΣ
′l
γ(m2

l )
)

+Σ
l
γ(m2

l ) = 0

Neutrino self-energy part (for any type)

Here we suppose the neutrinos have zero mass, so we have:

ψν ψν

= Σν(k2) 6k (1− γ5)

+

ψν ψν = 1
2δZ

ν
L 6k (1− γ5)

Where the condition that determines Zν
L is :

Σγ(0) +
1
2
Zν

L = 0 (2.2.16)

Higgs self-energy diagram

H H

+
H H = Σ

H
R (k2)

Where,

H H = i[δZH(k2−m2
H)− δm2

H ]

With the conditions:

Σ
H
R (m2

H) = 0

Σ
′H
R (m2

H) = 0

That determines:

δZH , δm2
H

Charge renormalization constant δZe

This constant can be determined by any charged particles vertex with the photon due to
the universality of the on-shell electric charge[1]. We will consider the eeA vertex for δZe

For extracting the counter term connected to the vertex aaA, since there is a mixing
between Z and A. We need to pic both the eeA and eeZ terms in the bare fermionic
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interaction lagrangian,

Lint
F (e),0 =

g0g
′
0

√

g2
0 + g′2

Qeψ̄e,0γ
αψe,0Aα,0

+

√

g2
0 + g′2

2

{

ψ̄e,0γ
α

(

1− γ5

2
− 2Qeg

′2
0

g2
0 + g′2

)

ψe,0

}

Zα,0 (2.2.17)

Where we have:

Qe =−1 , g0 = e0
MZ,0

√

M2
Z,0−M2

W,0

, g′
0 = e0

MZ,0

MW,0

⇒
√

g2
0 + g′2 = e0

M2
Z,0

MW,0

√

M2
Z,0−M2

W,0

g′2
0

g2
0 + g′2 = 1−

M2
W,0

M2
Z,0

g0g
′
0

√

g2
0 + g′2

0

= e0

Then, Lint
F (e),0 becomes:

Lint
F (e),0 =− e0ψ̄e,0γ

αψe,0Aα,0

+
e0M

2
Z,0

2MW,0

√

M2
Z,0−M2

W,0

{

¯ψe,0γ
α

[

1− γ5

2
+ 2

(

1−
M2

W,0

M2
Z,0

)]

ψe,0

}

Zα,0 (2.2.18)

Now, with the fact that ψe can be written in terms of left and right components:

ψe,0 = ψeL,0 +ψeR,0

¯ψe,0 = ¯ψeL,0 + ¯ψeR,0

with:
{

ψeL,0 = 1−γ5
2 ψe,0

ψeR,0 = 1+γ5
2 ψe,0

;

{

ψ̄eL,0 = ψ̄e,0
1−γ5

2

ψ̄eR,0 = ψ̄e,0
1+γ5

2

(2.2.19)

Substituting in 2.2.18 we get:

Lint
F (e),0 =−e0(ψ̄eL,0 + ψ̄eR,0)γα(ψeL,0 +ψeR,0)Aα,0

+
e0M

2
Z,0

2MW,0

√

M2
Z,0−M2

W,0

{

(ψ̄eL,0 + ψ̄eR,0) γα 1− γ5

2
(ψeL,0 +ψeR,0)Zα,0

+ 2

(

1−
M2

W,0

M2
Z,0

)

(ψ̄eL,0 + ψ̄eR,0) γα(ψeL,0 +ψeR,0)Zα,0} (2.2.20)
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Omitting the vanishing combination we obtain:

Lint
F (e),0 =−e0ψ̄eL,0γ

αψeL,0Aα,0− e0ψ̄eR,0γ
αψeR,0Aα,0

+
e0M

2
Z,0

4MW,0

√

M2
Z,0−M2

W,0

{

ψ̄eL,0γ
α(1− γ5)ψeL,0Zα,0

+ 2

(

1−
M2

W,0

M2
Z,0

)
(

ψ̄eL,0γ
αψeL,0 + ψ̄eR,0γ

αψeR,0

)

Zα,0} (2.2.21)

Introducing now the renormalization constants and the renormalized quantities,

Zα,0 = Z
1/2
ZZZα +Z

1/2
ZAAα ; Aα,0 = Z

1/2
AZZα +Z

1/2
AAAα

ψeL,0 = Z
e 1

2
L ψeL ; ψeR,0 = Z

e 1
2

R ψeR

M2
Z,0 =M2

Z + δM2
Z ; M2

W,0 =M2
W + δM2

W

e0 = Zee

Applying these redefinition into Lint
F (e),0 we get:

Lint
F (e),0 =−ZeeZ

e
Lψ̄eLγ

αψeL(Z1/2
AZZα +Z

1/2
AAAα)

−ZeeZ
e
Rψ̄eRγ

αψeR(Z1/2
AZZα +Z

1/2
AAAα)

+
Zee(M2

Z + δM2
Z)

4(M2
W + δM2

W )1/2(M2
Z + δM2

Z −M2
W − δM2

W )1/2

×
{

Ze
Lψ̄eLγ

α(1− γ5)ψeL (Z1/2
ZZZα +Z

1/2
ZAAα)

+ 2

(

1−M
2
W + δM2

W

M2
Z + δM2

Z

)
(

Ze
Lψ̄eLγ

αψeL +Ze
Rψ̄eRγ

αψeR

)

×
(

Z
1/2
ZZZα +Z

1/2
ZAAα

)}

(2.2.22)

Since we are looking only for eeA vertex, we pick only the terms that are proportional to
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Aα:

Lint
F (eeA),0 =−ZeeZ

e
Lψ̄eLγ

αψeLZ
1/2
AAAα−ZeeZ

e
Rψ̄eRγ

αψeRZ
1/2
AAAα

+
Zee(M2

Z + δM2
Z)

4(M2
W + δM2

W )1/2(M2
Z + δM2

Z −M2
W − δM2

W )1/2
{Ze

L ψ̄eLγ
α(1− γ5)ψeLZ

1/2
ZAAα

+ 2

(

1−M
2
W + δM2

W

M2
Z + δM2

Z

)

(Ze
Lψ̄eLγ

αψeL +Ze
Rψ̄eRγ

αψeR)Z1/2
ZA Aα}

=− (1 + δZe)e(1 + δZe
L)ψ̄eLγ

αψeL(1 + δZ
1/2
AA)Aα

− (1 + δZe)e(1 + δZe
R)ψ̄eRγ

αψeR(1 + δZ
1/2
AA)Aα

+
(1 + δZe)e(M2

Z + δM2
Z)

4(M2
W + δM2

W )1/2(M2
Z + δM2

Z −M2
W − δM2

W )1/2

×{(1 + δZe
L) ψ̄eLγ

α(1− γ5)ψeLδZ
1/2
ZAAα

+ 2

(

1−M
2
W + δM2

W

M2
Z + δM2

Z

)

((1 + δZe
L)ψ̄eLγ

αψeL + (1 + δZe
R)ψ̄eRγ

αψeR)δZ1/2
ZA Aα} .

(2.2.23)

And with further simplification, we find:

e

e

Aµ

= Γµ(p′
e,pe)

+

e

e

Aµ

=−eγµ

(

1 + δZe + δZ
1/2
AA + δZe

L+δZe
R

2 − δZe
L−δZe

R
2 γ5

)

+ eδZ
1/2
ZA γµ

4MW

√
M2

Z−M2
W

(3M2
Z − 4M2

W +M2
Zγ5)≡ Γ

CT
µ

And the constant δZe is determined by :

u(me)ΓR
µ u(me)|kµ=0 = 0

Where
Γ

R
µ (p′

e,pe) = Γµ(p′
e,pe) + Γ

CT
µ

In the next section we shall provide some results.
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2.3 Computation of δZZA and δZAZ

In this section we will provide a Mathematica (FeynCalc and FeynArts) program to show
how to calculate some of the renormalization constants12 of EWSM. We start by a code
that calculates the ZZA and ZAZ renormalization constants. This correspond to the
diagrams of Z−A transition self-energy diagrams.
First, we start by generating the corresponding Feynman diagrams by the aid of FeynArts.
But before that, we need to load FeynCalc and FeynArts in Mathematica. The codes for
that would be:

1 $LoadFeynArts = True ;

2 << FeynCalc ‘

3

Now we can generate the Feynman diagrams by

1 za = CreateTopo log ie s [ 1 , 1 −> 1 , ExcludeTopolog ies −> Tadpoles ] ;

2 za f = I n s e r t F i e l d s [ za , {V[ 2 ] } −> {V[ 1 ] } ,

3 I n s e r t i o n L e v e l −> { P a r t i c l e s } , Model −> "SM" ,

4 Exc ludePar t i c l e s −> { } ] ;

5 Paint [ za f , ColumnsXRows −> 5 ]

6 Paint [ DiagramSelect [ za f , IRDivergentQ ] ]

7

The first line create the different topologies for a two external lines with one loop. And
we have excluded those of which they have tadpoles because they don’t contribute in
calculations. The second line specify13 which particle is going in, and which is going out.
Also, we specify the model of which the particles obeys. The third line command is for
displaying all the diagrams. Where in the fourth line we check whether there are diagrams
that contains IR-divergence and paint them. If there aren’t any, it won’t do anything.
The result of these commands is

Next we execute

1 SetOptions [ PaVeReduce , A0ToB0 −> True ] ;

2 $LimitTo4 = True

3 wr = {SMP[ "sin_W" ] −> Sqrt [ 1 − SMP[ "m_W" ]^2/SMP[ "m_Z" ] ^ 2 ] ,

4 SMP[ "cos_W" ] −> SMP[ "m_W" ] /SMP[ "m_Z" ] }

5

Since FeynCalc is programmed with the Passarino-Veltman[14] scheme. The first line is
then just a command to replace in the results A0 by B0. And the second line takes the

12This program (and the appendix D programs) was possible to do only after we were able to understand
the work of Jorge.C.Romao[30][31]

13For the full table of symbols of particles see [guide FeynArts]
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Figure 2.3: Z-A transition process

parameter D of the dimensional regularization scheme to be 4 when ever is possible. For
the third line, it is just a substitution of the Weinberg angle by the weak bosons masses,

cos2(θW ) =
M2

W

M2
Z

(2.3.1)

sin2(θW ) = 1−M
2
W

M2
Z

(2.3.2)

After that, we demand for FeynArts to create the Feynman amplitudes for all the diagrams
of the process. Then convert these amplitudes to FeynCalc input for further treatment.
This is done by the below commands14

1 zaamp = FCFAConvert [

2 CreateFeynAmp [ zaf , Truncated −> True , PreFactor −> I (4 Pi ) ^−2] ,

3 IncomingMomenta −> {k } , OutgoingMomenta −> {k } ,

4 LoopMomenta −> {q} ,

5 LorentzIndexNames −> {\ [Mu] , \ [Nu ] , \ [Rho ] , \ [ Sigma ] , \ [ Alpha ] , \

6 \ [ Beta ] } , SMP −> True , DropSumOver −> True ,

7 UndoChi r a lSp l i t t ing s −> True ] / . wr ;

8

The result of this command is given as a list of amplitudes. To sum all of them and

14the prefactor i
16π2 is added because it is not included in the code definition of the loop integral
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perform the loop integration we define:

1 za [n_] := zaamp [ [ n ] ] / . DiracTrace −> Tr // S imp l i fy

2 za r e s [n_] := −I /Pi^2 OneLoop [ q , za [ n ] ] // PaVeReduce

3 pt [ \ [Mu]_, \ [Nu ]_] :=

4 MT[ \ [Mu] , \ [Nu ] ] − FV[ k , \ [Mu] ] FV[ k , \ [Nu ] ] / SP [ k , k ]

5 zasum = Sum[ za r e s [ n ] , {n , 1 7 } ] ;

6 zas = MT[ \ [ Alpha ] , \ [Mu ] ] zasum pt [ \ [ Alpha ] , \ [Nu ] ] ; / ( 3 ) // Contract

7

Where the first line is to extract the n-th element of the list and perform the Mathe-
matica trace (Tr) instead of FeynCalc’s "Dirac trace. The second line calculates the loop
integral by the dimensional regularization scheme. The result is given in terms of the
scalar functions B0(k2,m2

1,m
2
1). In the third line, we defined the transversal operator

P T
µν =

(

gµν − kµkν
k2

)

to obtain the transversal part of the self-energy operator only. With
the fourth and fifth lines we get the transversal part of the Z-A transformation self-energy
operator AT

ZA(m2). Adding the contribution of the counter term, the renormalized oper-
ator is then:

AT,R
ZA (k2) = AT

ZA(k2) + δZ
1/2
ZA (M2

Z − k2)− δZ1/2
AZ k

2 (2.3.3)

And with the on-shell conditions:

AT
ZA(M2

Z)−M2
ZδZ

1/2
AZ = 0 (2.3.4)

AT
ZA(0)−M2

ZδZ
1/2
ZA = 0 (2.3.5)

We get the explicit relations for δZAZ and δZZA as:

δZ
1/2
AZ =

AT
ZA(M2

Z)
M2

Z

(2.3.6)

δZ
1/2
ZA =−A

T
ZA(0)
M2

Z

(2.3.7)

Implementing that to the program by:

1 Zaz = zas /SMP[ "m_Z" ]^2 / . Sca la rProduct [ k , k ] −> SMP[ "m_Z" ]^2

2 aux = −zas /SMP[ "m_Z" ]^2 / . Sca la rProduct [ k , k ] −> k2

3 Zza = Limit [ aux , k2 −> 0 , Ana lyt i c −> True ]

4

Due to the scalar functions B0, the results can not be simplified even with the command
"Simplify". Therefore, to compare with the analytically calculated results of [1] or any
other reliable papers, we first need to replace in the obtained results the expressions of
the scalar function and simplify. Fortunately for us, we were able to compare the result
of the renormalization constant δZZA with what Aoki found in his paper[1], our result is:

ouroutput = −
e2mWmZ

√

1− m2
W

m2
Z

B0

(

0,m2
W ,m2

W

)

8π2
(

m2
W −m2

Z

) (2.3.8)
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And Aoki’s result was:

δZ
1/2
ZA =− e2MW

8π2
√

M2
Z −M2

Z

(

CUV − ln(M2
W )
)

(2.3.9)

Where CUV is the divergent part given by:

CUV =
1
ǫ
− γ+ ln(4π) (2.3.10)

To show that they are identical expressions, we have to replace B0 by its explicit expres-
sion:

B0(0,m2,m2) = CUV − ln(M2
W ) (2.3.11)

In the case of m=MZ and µ2 = 115, we get:

ouroutput = − e2MW

8π2
√

M2
Z −M2

Z

(

CUV − ln(M2
W )
)

(2.3.12)

This shows that this structure of few lines of commands is a powerful tool to facilitate the
enormous complications of calculations. With a similar programs (see appendix D) like
this one, we have calculated {δZZZ , δZAA, δZW , δM2

W , δM2
Z , δZ

e
L, δZ

e
R, δZ

ν
L, δZ

ν
R, δme and

δZe }. But unfortunately and due to the long and complicated results, we were unable to
compare with Aoki’s results. And we let this verification for future work. The following
diagram gives an overview of the connection between the renormalization constants, and
from where we extract them.

These renormalization constants were calculated in appendix D for their importance
in a practical real process of scattering particles. The treatment of this process is the
main subject of the next chapter.

15in Aoki’s paper[1], he took µ2 = 1 in his calculations.



Chapter 3

Application to e−νµ→ e−νµ process

In this final chapter we shall consider the electron muon-neutrino scattering process
(e− νµ → e− νµ). First we calculate the tree level total cross section with the help
of FeynCalc package of Mathematica, then we will include the radiative correction via
another package, FormCalc[18]

3.1 Tree level total cross section

We start immediately with the FeynCalc program by loading it in Mathematica.

1 $LoadFeynArts = True ;

2 << FeynCalc ‘

Then we generate the relevant Feynman diagram of the process by:

1 en = CreateTopo log ie s [ 0 , 2 −> 2 ] ;

2 enf = I n s e r t F i e l d s [ en , {F[ 2 , {1} ] , F [ 1 , {2} ]} −> {F[ 2 , {1} ] , F [ 1 , {2} ]} ,

I n s e r t i o n L e v e l −> { P a r t i c l e s } , Model −> "SM" , Exc ludePar t i c l e s −> { } ] ;

3 Paint [ en f ]

Where these commands are the same as in the previous chapter except that it creates
a 2 by 2 topology with zero loop. Then insert the corresponding fields of the process. Its
output is then:

e

νµ

e

νµ

Z

Figure 3.1: Tree level of the process e−νµ→ e−νµ

Next we define the same substitutions as in the last code with an additional one. This
latter correspond to introducing the iε1 (I \[Epsilon] in the program) prescription of

1note here that the ε is just a notation, ε does not mean a small value

43
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the propagator2. Also we have identified:

(p2− k2) = t (3.1.1)

Where t is a Mandelstam variable[29]. There are three variables in 2 by 2 scattering
processes and they are defined as follows:

k1(E,~k)

k2(E,−~k)

p1(E,−~p)

p2(E,~p)

θ

Figure 3.2: Kinematics of 2 by 2 scattering in the center of mass frame

s= (k1 + k2)2 = (p1 + p2)2 (3.1.2)

t= (k1 + p1)2 = (k2 + p2)2 (3.1.3)

u= (k1 + p2)2 = (k2 + p1)2 (3.1.4)

With a relation between these variables:

s+ t+ u=
4∑

i=1

m2
i (3.1.5)

They are preferred to work with, because of their frame independence (i.e. Lorentz
invariant). So we write:

1 wr = {SMP[ "sin_W" ] −> Sqrt [ 1 − SMP[ "m_W" ]^2/SMP[ "m_Z" ] ^ 2 ] , SMP[ "cos_W" ] −>

SMP[ "m_W" ] /SMP[ "m_Z" ] , PropagatorDenominator [ p2−k2 ,SMP[ "m_Z" ]]−>1/(t −
SMP[ "m_Z" ]^2 + I \ [ Eps i lon ] ) }

Now we generate the Feynman amplitude of the diagram by practically the same lines of
codes as in the Z-A transition program.

1 enamp = FCFAConvert [ CreateFeynAmp [ enf , PreFactor −> 1 ] , IncomingMomenta −> {

k1 , k2 } , OutgoingMomenta −> {p1 , p2 } ,LoopMomenta −>{q } , LorentzIndexNames

−> {\ [Mu] , \ [Nu ] , \ [Rho ] , \ [ Sigma ] , \ [ Alpha ] , \ \ [ Beta ] } , SMP −> True ,

DropSumOver −> True , UndoChira lSp l i t t ings−> True ] / . wr // Contract

As mentioned before, the output is a list of one element, which is the wanted amplitude.
We extract it from the list by:

2this is a crucial detail for obtaining the correct total cross section due to the pole at M2

Z
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1 im = enamp [ [ 1 ] ] // S imp l i fy

To calculate the cross section of this process, where in the CM3 frame have the form [16]

dσ

dΩ
=

(

~c

8π(E1 +E2)

)2 |pf |
|pi|
|M|2 (3.1.6)

Where in the relativistic limit (m≃ 0) and with Mandelstam variables, it reduces to:

dσ

dΩ
=

(~c)2

64π2s
|M|2 (3.1.7)

Where dΩ is the differential solid angle (dΩ = dcosθdφ) and ~ (c) being the reduced
Plank’s (speed of light in vacuum) constant, while M is the Feynman amplitude which
we have obtained from the last line of code. According to 3.1.7 we need to calculate the
square of the amplitude. This is done by the following lines:

1 ims = FCRenameDummyIndices [ ComplexConjugate [ im ] ]

2 msqrd = im ims // PropagatorDenominatorExpl ic it

Where the first line is for calculating the complex conjugate and renaming its dummy
indices (Lorentz indices). And the second line calculates their product, which gives us
|M|2. Now, to employ Mandelstam variables and average over fermions sums4. We
execute:

1 FCClearScalarProducts [ ] ;

2 SetMandelstam [ s , t , u , k1 , k2 , −p1 , −p2 , 0 , 0 , 0 , 0 ] ;

3 r e s = FermionSpinSum [ msqrd , ExtraFactor −> 1/4 ] / . { DiracTrace −> Tr} //

Contract // PropagatorDenominatorExpl ic it // S imp l i fy

4 r e s = r e s / . SMP[ "m_e" ] −> 0

Here the first command is just for clearing any previous definitions of scalar products.
Where the second command defines the Mandelstam variables (s, t,u) in terms of incoming
(k1,k2) and outgoing momenta (p1,p2)5 and sets them on-shell.

k2
1 =m2

e (3.1.8)

k2
2 = 0 (3.1.9)

p2
1 =m2

e (3.1.10)

p2
2 = 0 (3.1.11)

But since they are scattering at high energy (50 to 2500 GeV ), it is a good approximation
setting the electron’s mass (that’s of the order 0,511 GeV ) to be zero. The third line is

3center of mass
4averaging over initial and final fermions spins is a result of the ignorance on the initial and final spin

states of the fermions, thus it’s an unpolarized process
5note the "Set Mandelstam" command defines t = (k1 + p1)2 and u = (k1 + p2)2, hence the minus "-"

signs for p1 and p2 in the command
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for evaluating the trace method which is based on the relation:

1
2

∑

s
uα(p,s)Aαβuβ(p,s) = Tr(6p A) (3.1.12)

And computes the traces. Then outputs the result in terms of Mandelstam variables. The
fourth line is just to ensure that there are no electron mass terms. We got the following
output:

e4m4
Z

(−4m2
W m2

Z

(
3tm2

e + s2 + 2u2
)

+ 4m4
W

(
2tm2

e + s2 + u2
)

+ m4
Z

(
4tm2

e + s2 + 4u2
))

16m4
W

(
m2

W −m2
Z

)
2
(−2tm2

Z + m4
Z + t2 + ε2

) (3.1.13)

We see that it is in terms of all three Mandelstam variables. But these variables are not
independent. Only two of them are. In the case of zero mass, and in the CM frame, the
relation of t and u in terms of s(which is the square of the total energy of collision) and
the angle of diffusion θ, is given by:

t=−s
2(1−x)

u=−s
2(1 + x)

; {x= cosθ (3.1.14)

Substituting these relations in the obtained result is done by:

1 ans0 = r e s . { t −> −s /2 (1 − x) , u −> − s /2 (1 + x) } // S imp l i fy

We now have the desired expression to calculate the total cross section.

σT OT (
√
s) =

2π(~c)2

64π2s

∫

f(s,x)dx (3.1.15)

Where here f(s,x) is the result of |M|2 in term of s and x(= cosθ). The 2π factor comes
from the integration aver dφ. The next lines of commands are:

1 hbarc2 = (0.19732697∗10^−13) ^2∗10^36;

2 ans = ans0 ∗2 Pi ( hbarc2 ) /(64 Pi^2 s ) / . {SMP[ "m_Z" ] −> 91 , SMP[ "m_W" ] −>

80 , SMP[ " e " ] −> Sqrt [ 4 Pi /137 ] , s −> y^2} // S imp l i fy

We want for the cross section to be in Pico-barn unit. This is taken care of by the first
line. The second command is just dσ

dx , where we have substituted the masses and the
electric charge by:

MZ = 91 GeV

MW = 80 GeV

e2 =
4π
137

In addition to that, we made a change of variable s→ y2 for the purpose of plotting the
graph of σT OT (Figure3.3) in terms of

√
s. Finally, by executing the following lines:

1 r e s f = I n t e g r a t e [ ans , x , Assumptions −> {x , y} \ [ Element ] Reals ] ;
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2 i n t1 = r e s f / . x −> −0.99;

3 i n t2 = r e s f / . x −> 0 . 9 9 ;

4 r e s0 = int2 − i n t1 / . \ [ Eps i lon ] −> 200 // S imp l i fy ;

5 gr = Plot [ res0 , {y , 50 , 2000} , PlotTheme −> " S c i e n t i f i c " , PlotRange −> Ful l

]

Where we have performed the x(= cosθ) integration over the interval [−0.99 , 0.99] with
the value of ε to be 200 GeV6. We obtain:

0 500 1000 1500 2000 2500

2

3

4

5

6

s /GeV

σ
/
p
b

Figure 3.3: Total cross section of tree level

6the value of ε is irrelevant in the final result
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Now that we have calculated the tree level total cross section with the help of Feyn-
Calc(and FeynArts), we shall consider in the next section the electroweak radiative cor-
rections of one-loop order.

3.2 Next to Leading Order (NLO) total cross section

• Steps for NLO calculation:

The plan to carry out, to perform Next to Leading Order (NLO) calculation for the
process eνµ→ eνµ, can be drawn up as follows:

1. Draw all Feynman diagrams for the process eνµ → eνµ up to one loop using Fey-
nArts.

2. Introduce through FeynArts Feynman rules of EWSM to create Feynman amplitude
Mtree for tree diagram and Mloop for all the loops diagrams. Here we introduce a
fictitious mass for the virtual photons.

3. Generate through FormCalc Feynman amplitude MCT for self energies and vertex
counter terms appearing in our process.

4. The loop contribution jointed to counter terms is then: δM=Mloop +MCT .

5. We can than get the total amplitude by:

Mv =Mtree + δM=Mtree +Mloop +MCT

which is UV divergences free.

6. We then get:
dσv

dΩ
=

(~c)2

64π2s
|Mv|2 and σv =

∫
dσ

dΩ
dΩ (3.2.1)

|Mv|2 = |Mtree + δM|2 ≃ |Mtree|2 + 2Re(MtreeδM) (3.2.2)

this σv is still IR divergent.

7. To get rid of this IR divergence, we have to introduce initial and final soft photon
radiations connected to the charge fermionic line of the process eνµ→ eνµ.

8. So we draw the tree level Feynman diagrams for the process eνµ→ eνµγ

9. We include Feynman rules to get the amplitude Msoft for all diagrams of the pre-
vious point.

10. Then we get dσR
dΩ ∼ |Msoft|2 and σR =

∫ ∆E
λ

dσR
dΩ dΩ which is also IR divergent7.

7Note that here we integrate the photon energy from the fictitious mass of photon till the calorimeter
threshold
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11. Finally, by adding all terms we get:

σ = σv + σR (3.2.3)

and thanks to Kinoshita-Lee-Neuenberg theorem[27] that ensure the IR divergent
terms then compensates them self. We get then a result simultaneously UV and IR
divergences free.

12. Those steps are incorporated in the Mathematica code listed in appendix F, written
initially by T.Hann[18] and that we adapted to the process eνµ→ eνµ.

13. The execution to this program for unpolarized particles leads to total cross section
ploted in figure 3.6

• The origin of IR divergences in loops

Since massless gauge boson propagator can be written as gµν

k2 , when contained inside a
loop, it leads to an integral of the form (in D dimension):

∫
dDk

k2
,

which is a special case of a general one,

∫ dDq

(−q2)α
; α > 0 (3.2.4)

Examining this latter by first preforming a wick rotation, we get for Q2 =−q2:

∫
dDq

(−q2)α
= i

πD/2

Γ(D/2)

∫ +∞

0
(Q2)

D
2 −α−1dQ2

= i
πD/2

Γ(D/2)




(Q2)

D
2 −α

D
2 −α





+∞

0

(3.2.5)

A first look inspection reveals, if D
2 −α > 0⇒D > 2α then 3.2.4 diverge for Q2→ +∞.

We say that we have a UV divergence. And if D
2 − α < 0 ⇒ D < 2α then 3.2.4 show

another divergent behavior for Q2 → 0. We say that we have an IR divergence. To
separate these two kinds of divergences manifests from the same integral, we cut this
integral into two parts:

∫ dDq

(−q2)α
= i

πD/2

Γ(D/2)

[
∫ Λ

2

0
(Q2)

D
2 −α−1dQ2 +

∫ +∞

Λ2
(Q2)

D
2 −α−1dQ2

]

=
iπD/2

Γ(D/2)

∫ Λ
2

0
(Q2)

D
2 −α−1dQ2 +

iπD/2

Γ(D/2)

∫ +∞

Λ2
(Q2)

D
2 −α−1dQ2

=
iπDIR/2

Γ(DIR/2)




(Q2)

DIR
2 −α

DIR
2 −α





Λ
2

0

+
iπDUV /2

Γ(DUV /2)




(Q2)

DUV
2 −α

DUV
2 −α





+∞

Λ2

(3.2.6)

Where for the first term in the right hand side of 3.2.6 DIR > 2α get a regularized
term (without divergence), and for the second term, we must take DUV < 2α to avoid
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divergence at high energies area.
Thus we have:

∫
dDq

(−q2)α
=

iπDIR/2

Γ(DIR/2)
(Λ2)

DIR
2 −α

DIR
2 −α

− iπDUV /2

Γ(DUV /2)
(Λ2)

DUV
2 −α

DUV
2 −α

(3.2.7)

by taking these definitions:

εUV =
DUV

2
−α =

DUV − 2α
2

(3.2.8)

εIR =
DIR

2
−α =

DIR− 2α
2

(3.2.9)

Then 3.2.6 becomes:

∫
dDq

(−q2)α
=

iπεIR+α

Γ(εIR +α)
(Λ2)εIR

εIR
− iπεUV +α

Γ(εUV +α)
(Λ2)εUV

εUV
(3.2.10)

We see that for DIR→ 2α and DUV → 2α, we have poles corresponding to infrared and
ultraviolet divergences.

• More details on dealing with IR divergences

Having cured the UV divergences of the process eνµ→ eνµ through renormalization pro-
cedure, we are left with only IR divergences. To fix this issue[8], we need to add the
contribution of the process eνµ → eνµγ (real soft photon emission) to the original one.
This is due to the fact that detectors have an energy threshold ∆E that must be exceeded
in order to trigger the detection of the particle.
This means that photon that are produced by the scattering event and have an energy
less than ∆E are not detected. This gap of ignorance must be taking into account and
summed over all the photon energy from 0 to ∆E.
We have then in our one-loop calculation to deal also with the process:

e(p1) + νµ(p2)→ e(p3) + νµ(p4) +A(p5) (3.2.11)

e

νμ

γ

e

νμ

e

Z

e

νμ

γ

e

νμ

Z

e

Figure 3.4: Tree level Feynman diagrams for the process eνµ→ eνµγ

A straightforward application of Feynman rules (Appendix B) results in the following
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expressions for M1(initial state radiation) and M2(final state radiation):

M1 =ie3mZ,W ūe(p3)γν
(6p 1−6p 5) +me

(p1− p5)2−m2
e
γµue(p1)

× εµ(p5)
(p2− p4)2−M2

Z

ūνµ(p4)γν

(

1− γ5

2

)

uνµ(p2) (3.2.12)

M2 =ie3mZ,W ūe(p3)γµ
(6p 3+ 6p 5) +me

(p3 + p5)2−m2
e
γνue(p1)

× εµ(p5)
(p2− p4)2−M2

Z

ūνµ(p4)γν

(

1− γ5

2

)

uνµ(p2) (3.2.13)

Where,

mZ,M =
M2

Z

2MW

√

M2
Z −M2

W

(3.2.14)

Since the external lines are taken to be on mass shell particles. The denominator of the
propagator in M1 anM2 is then:

(p1− p5)2−m2
e = p2

1 + p2
5− 2p1 ·p5−m2

e

= −2p1 ·p5 ; (p2
1 =m2

e ; p2
5 = 0)

= −2E5(E1− |~p1|cos(θ15)) ; (E5 = |~p5|)
(3.2.15)

and
(p3 + p5)2−m2

e = p2
3 + p2

5 + 2p3 ·p5−m2
e

= 2p3 ·p5

= 2E5(E3− |~p3|cos(θ35))
(3.2.16)

Which means that for photons of energy E5 going to 0, the amplitude diverges. This is
exactly what we need to extract from this process. We are interested in calculating only
the divergent part of |Msoft|2 = |M1 +M2|2. Therefore, we will take p5 = 0 wherever it
is possible (when it does not diverges). Hence we get the following expressions:

M1 =ie3mZ,W ūe(p3)γν
(6p 1 +me)
−2p1 ·p5

γµue(p1)

× εµ(p5)
(p2− p4)2−M2

Z

ūνµ(p4)γν

(

1− γ5

2

)

uνµ(p2) (3.2.17)

M2 =ie3mZ,W ūe(p3)γµ
(6p 3 +me)
2p3 ·p5

γνue(p1)

× εµ(p5)
(p2− p4)2−M2

Z

ūνµ(p4)γν

(

1− γ5

2

)

uνµ(p2) (3.2.18)

Applying now Dirac matrix properties then making use of Dirac’s equation:

(6p 1 +me)γµ = 2p1µ− γµ(6p 1−me) (3.2.19)

γµ(6p 3 +me) = 2p1µ− (6p 3−me)γµ (3.2.20)

ū(p3)(6p 3−me) = 0 (3.2.21)

(6p 1−me)u(p1) = 0 (3.2.22)
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We obtain:

M1 =− e p1µ

p1 ·p5
εµ(p5)

[

ie2mZ,W ūe(p3)γνue(p1)
1

(p2− p4)2−M2
Z

ūνµ(p4)γν 1− γ5

2
uνµ(p2)

]

(3.2.23)

M2 =e
p3µ

p3 ·p5
εµ(p5)

[

ie2mZ,W ūe(p3)γνue(p1)
1

(p2− p4)2−M2
Z

ūνµ(p4)γν 1− γ5

2
uνµ(p2)

]

(3.2.24)

The expression between brackets [· · · ] is exactly the amplitude of the eνµ→ eνµ tree level
process M, so we get:

M1 =− e p1µ

p1 ·p5
εµ(p5)Mtree (3.2.25)

M2 =e
p3µ

p3 ·p5
εµ(p5)Mtree (3.2.26)

In this infra-red approximation Mtree is written by:

MR ≡Msoft =M1 +M2

= e

[

p3µ

p3p5
− p1µ

p1p5

]

Mtree (3.2.27)

To calculate |Msoft|2 we will make use of the formula:

∑

polarization

εµ(p5)ε∗ν(p5) = gµν (3.2.28)

So the square of the soft photon amplitude is obtained by the following way:

|Msoft|2 =MsoftM∗
soft

= e2

[

p3µ

p3p5
− p1µ

p1p5

][

p3ν

p3p5
− p1ν

p1p5

]

εµ(p5)ε∗ν(p5)|Mtree|2

= e2

[

p3

p3p5
− p1

p1p5

]2

|Mtree|2

= e2

[

m2
e

(p3p5)2
+

m2
e

(p1p5)2
− 2

p1p3

p1p5p3p5

]

|Mtree|2 (3.2.29)

By this formula of |Msoft|2 the cross section can be calculated. When doing so, we must
integrate the real photon’s four-momentum p5 over the interval 0 to ∆E. If previously in
the loop integrals, IR divergences are regulated through dimensional regularization; and
over the interval λ to ∆E if we regulate through giving a fictitious mass λ to photons.
The total unpolarized cross for the process eνµ→ eνµ as seen by detectors is:

σT = σv + σsoft (3.2.30)

Where σsoft denote the real soft photon cross section, below the Hirshold resolution of
detector for seeing photons. And σv is the virtual cross section including tree level terms,
one loop terms and counter-terms.
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In summary:

Calculate the total cross section
σT = σv + σsoft

Carry on the calculation
of the amplitude δMIR

Introduce a fictitions
photon mass λ(regulator)

Identify IR-divergent
diagrams from

the previous loop diagrams

Carry on the calculation
of Msoft

Associate the same mass λ
to the real outgoing

photon

Generate all the tree
diagrams of eνµ→ eνµγ

Figure 3.5: Treatment of IR-divergences

σT is the finite cross section. It contains no UV-divergences nor IR-divergences.

• Numerical result and discussion:

Even with FeynCalc this is still a complicated time consuming task to incorporate all of
the above steps. Fortunately this is done by Tomas Hahn [18] in a more automatic Math-
ematica package called FormCalc[18]. This package deals with all of the above-mentioned
problems and eliminates them automatically giving in the end a nice finite cross section
of one-loop order correction. So we switch from FeynCalc (which is semi-automatic) to
FormCalc (the fully automatic) knowing all the internal steps of the calculation. With
the following parameter values implemented in FormCalc.
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SM parameters
α 1/137.03599907399999
Gf 1.1663786999999999× 10−5GeV −2

θW 0.22289722252391825
Gauge-boson masses

MW 80.385000000000005 GeV
MZ 91.187600000000003 GeV

Fermion masses
me 5.1099892800000001× 10−4 GeV

mνµ 0.10565837150000000 GeV
mτ 1.7768200000000001 GeV
mu 7.3559471591835346× 10−2 GeV

mc 1.2749999999999999 GeV
mt 173.21000000000001 GeV
md 7.3559471591835346× 10−2 GeV

ms 9.5000000000000001× 10−2 GeV

mb 4.6600000000000001 GeV
Higgs masses

mH 125.00000000000000 GeV

And call for LoopTools[18] to perform numerical loop integration using Passarino-
Veltmane scalar integrals[14]. For unpolarized beams, we obtain the total cross section
presented in figure3.6:

loop

tree
σ/pb

√

s/GeV
25002000150010005000

9

8

7

6

5

4

3

2

1

Figure 3.6: Total cross section for the unpolarized process eνµ→ eνµ versus
√
s
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• Discussion:

This result is what is expected to be connected with experimental data. We can see that
the tree level cross section (in figure 3.6) matches exactly our previous cross section ploted
in Figure 3.3. And the radiative corrections effects are shown by the one-loop level plot.
We notice that the contribution of these corrections varies as energy does. Where at low
energies it is practically the same as the tree level (insignificant contribution). And then
it increases until it reaches a maximum effect around 400 GeV8, afterwards the radiative
corrections contributions decreases as energy increase, but most importantly it is free
from any divergences.

8For the peak at ∼ 400 GeV, we initially obtained a resonance high peak at MZ ≈ 91 GeV. Then we
introduced the width M2

Z →M2

Z − iΓZMZ in the Z boson propagator by replacing ΓZ . By doing so the
sharp resonance become smooth with apparently low peak at around 400 GeV



Conclusion

In this master thesis, after pointing out that sticking to the picture of isolated asymptot-
ically free one particle entering in a zone of interaction provides us with a tool to absorb
UV-divergences, hence renormalization. We have presented the on-shell renormalization
method in the frame of electroweak theory to cure UV-divergences. We have provided a
computational program for determining the relevant renormalization constant and calcu-
lating the tree level cross section of a concrete unpolarized process eνµ → eνµ with the
help of the Mathematica packages FeynCalc and FeynArts. To implement the radiative
corrections of one-loop order to the cross section formula, we used another Mathematica
package FormCalc which in its internal code contains all the steps that gets rid of the
plague of infinities and gives the desired finite result. By that we believe that we have
achieved the goal of this thesis, which is to provide the necessary background knowledge
of the quantum field theory framework to be able to compare with experimental data.
Mastering thesis information, one can go further and analyses recent experimental data
and try new models, ideas and hopeful contribute to develop the current understanding
of the physical world.

"Part of the art of making progress in science is recognizing which

problems are ready to be solved."

Frank Wilczek

56



Appendix A

Some computation details

A.1 Proof of δBRS(δb(F a
i φ

i)cb) = 0

From chapter one, we have used

δBRS(δb(F a
i φ

i)cb) = 0 (A.1.1)

To determine the Faddeev-Popov Lagrangian term LF P .
Here we provide a proof for it

δBRS(δb(F a
i φ

i)cb) = λ̃caδc(δb(F a
i φ

i)cb) (A.1.2)

Where here we have used 1.1.35

δBRS(δb(F a
i φ

i)cb) = δBRS[δb(F a
i φ

i)]cb + δb(F a
i φ

i)δBRScb

= λ̃ccδcδb(F a
i φ

i)cb− λ̃
2
gbf bcdδb(fa

i φ
i)cccd

= λ̃δcδb(F a
i φ

i)cccb− λ̃
2
gbf bcdδb(fa

i φ
i)cccd

=
λ̃

2
δcδb(F a

i φ
i)cccb +

λ̃

2
δbδc(F a

i φ
i)cbcc− λ̃

2
gbf bcdδb(fa

i φ
i)cccd

=
λ̃

2
[δcδb− δbδc]
︸            ︷︷            ︸

[δc,δb]=gcfcbdδd

(F a
i φ

i)cccb− λ̃
2
gbf bcdδb(fa

i φ
i)cccd

=
λ̃

2
gcf cbdδd(fa

i φ
i)cccb− λ̃

2
gbf bcdδb(fa

i φ
i)cccd (A.1.3)

Using a cyclic change og indices {d→ b→ c→ d} on the first term

δBRS(δb(F a
i φ

i)cb) =
λ̃

2
gdfdcbδb(fa

i φ
i)cdcc− λ̃

2
gbf bcdδb(fa

i φ
i)cccd (A.1.4)

With rearranging the order of indices, we get

δBRS(δb(F a
i φ

i)cb) =
λ̃

2
(gd− gb)f bcdδb(fa

i φ
i)cccd (A.1.5)
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Now thanks to 1.1.15 and f0bc = 0, we finally find

δBRS(δb(F a
i φ

i)cb) = 0 (A.1.6)

A.2 An LSZ identity proof

In the last section of the first chapter, we have made use of the identity 1.2.16 to derive
the LSZ formula without proof, here we give its proof as follows

a†
1(+∞)− a†

1(−∞) =
∫ +∞

−∞
dt∂0a

†
1(t)

(Fundamantal theorem of calculations)

=− i
∫

d3k f1(~x)
∫

d4x∂0(e−ikx←→∂0 φ(x))

(Using 1.2.10, 1.2.17 and
∫

dt
∫

d3x=
∫

d4x)

=− i
∫

d3k f1(~x)
∫

d4xe−ikx(∂2
0 +ω2)φ(x)

(evaluation of time derivation)

=− i
∫

d3k f1(~x)
∫

d4xe−ikx(∂2
0 + k2 +m2)φ(x)

(using ω2 = k2 +m2)

=− i
∫

d3k f1(~x)
∫

d4xe−ikx(∂2
0 −
←−∇ 2 +m2)φ(x)

(writing k2 as −∇2 acting on e−ipx)

=− i
∫

d3k f1(~x)
∫

d4xe−ikx(∂2
0 −
−→∇ 2 +m2)φ(x)

(intagrating by parts two times)

=− i
∫

d3k f1(~x)
∫

d4xeikx(∂2 +m2)φ(x)

(identifuing ∂2
0 −∇2 as ∂2)

And this completes the proof of the relation 1.2.16

A.3 A relation between X0 = ZXX and X0 =X + δX

In literature, renormalization of masses and couplings can be presented into two different
equivalent pictures. We provide here a simple link between these two pictures.
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A.3.1 Link between δm2 and Zm

We have: m2
0 = m2 + δm2 and m0 = Zmm

So:

m2
0φ

2 = (m2 + δm2)φ2

m2
0φ

2 = Z2
mm

2φ2 = [m2 + (Z2
m− 1)m2]φ2

⇒ δm2 = (Z2
m− 1)m2 (A.3.1)

A.3.2 Link between δg and Zg in a φn theory

We have: g0 = g+ δg and g0 = Zgg So:

g0φ
n = (g+ δg)φn (A.3.2)

g0φ
n = Zggφ

n = [g+ (Zg− 1)g]φn

⇒ δg = (Zg − 1)g (A.3.3)



Appendix B

EWSM Feynman rules for use in the

process eνµ→ eνµ at loop level

To draw our Feynman diagrams, we should define the Feynman rules[1] which we will
assume the relation between the diagrams and the mathematical formula of the amplitude.
In this appendix, we will just exhibiting its. So we have in Feynman gauge (α = 1)

B.1 Feynman rules for tree level

External lines

u(p;mI,i)

u(p;mI,i)

v(p;mI,i)

v(p;mI,i)

Propagators

Wν Wµ −igµν

k2 + iε−M2
W

Zν Zµ −igµν

k2 + iε−M2
Z

Aν Aµ −igµν

k2 + iε

χ− χ+ −i
M2

W − k2− iε

χ3 χ3 −i
M2

Z − k2− iε

60
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H H
−i

m2
φ− k2− iε

ψj ψi −i
m− k− iǫ =

m+ k

m2− k2− iε

c̄∓ c± −i
M2

W − k2− iε

c̄Z cZ −i
M2

z − k2− iε

c̄γ cγ −i
−k2− iε

Vertices in LG

(1) three vertices

k

Zα

q

Wσ

p

Wβ

i
eMW

√

M2
Z −M2

W

{(k− p)σgαβ + (p− q)αgβσ + (q− k)βgσα}

k

Aα

q

Wσ

p

Wβ

ie{(k− p)σgαβ + (p− q)αgβσ + (q− k)βgσα}

(2) four vertices

Wα Wβ

Aσ Aδ

ie2(gασgβδ + gαδgβσ− 2gαβgσδ)

Wα Wβ

Zσ Aδ

i
e2MW

√

M2
Z −M2

W

(gασgβδ + gαδgβσ− 2gαβgσδ)
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Wα Wβ

Zσ Zδ

i
e2M2

W

M2
Z −M2

W

(gασgβδ + gαδgβσ− 2gαβgσδ)

Wα Wβ

Wσ Wδ

i
e2M2

W

M2
Z −M2

W

(gασgβδ + gαδgβσ− 2gαβgσδ)

Vertices in LF

Wα

ψi ψI

i
eMZ

2
√

2(M2
Z −M2

W )
γα(1− γ5)

Wα

ψiψI

i
eMZ

2
√

2(M2
Z −M2

W )
γα(1− γ5)

γα

ψiψi

ieQiγα

Zα

ψIψI

i
eMZ

2MW

√

M2
Z −M2

W

γα(1
2 − 2QI

M2
Z−M2

W

M2
Z
− 1

2γ5)
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Zα

ψiψi

i
eMZ

2MW

√

M2
Z −M2

W

γα(−1
2 − 2QI

M2
Z−M2

W

M2
Z

+ 1
2γ5)

Vertices in LH

(1) three vertices

Wα

χ±

p
H

q

i
ieMZ

2
√

M2
Z −M2

W

(p− q)α

Wα

χ±

p
χ3

q

i
∓eMZ

2
√

M2
Z −M2

W

(p− q)α

Zα

χ−

p
χ+

q

i
e(M2

Z − 2M2
W )

2MW

√

M2
Z −M2

W

(p− q)α

Aα

χ−

p
χ+

q

−ie(p− q)α

Zα

χ3
p

H
q

i
ieM2

Z

2MW

√

M2
Z −M2

W

(p− q)α
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H

Wα Wβ

i
eMWMZ

√

M2
Z −M2

W

gαβ

H

Zα Zβ

i
eM3

Z

MW

√

M2
Z −M2

W

gαβ

χ−

Wα Zβ

ie
√

M2
Z −M2

W gαβ

χ−

Wα Aβ

−ieMW gαβ

χ+

Wα Zβ

−ie
√

M2
Z −M2

W gαβ

χ+

Wα Aβ

ieMW gαβ

(2) four vertices
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φ φ

Wα Wβ

i
e2M2

Z

2(M2
Z −M2

W )
gαβ

φ φ

Zα Zβ

i
e2M4

Z

2M2
W (M2

Z −M2
W )

gαβ

χ3 χ3

Wα Wβ

i
e2M2

Z

2(M2
Z −M2

W )
gαβ

χ3 χ3

Zα Zβ

i
e2M4

Z

2M2
W (M2

Z −M2
W )

gαβ

χ χ

Aα Aβ

2ie2gαβ

χ χ

Aα Zβ

i
e2(2M2

W −M2
Z)

MW

√

M2
Z −M2

W

gαβ
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χ χ

Wα Wβ

i
e2M2

Z

2(M2
Z −M2

W )
gαβ

χ χ

Zα Zβ

i
e2(2M2

W −M2
Z)2

2M2
W (M2

Z −M2
W )

gαβ

Vertices in LM

χ+

ψI ψi

−ieMZ

2MW

√

2(M2
Z −M2

W )
U+

Ii{(mi−mI) + (mi +mI)γ5}

χ−

ψi ψI

−ieMZ

2MW

√

2(M2
Z −M2

W )
UIi{(mI −mi) + (mI +mi)γ5}

H

ψn ψn

−iemnMZ

2MW

√

2(M2
Z −M2

W )
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χ3

ψI ψI

−iemIMZ

2MW

√

2(M2
Z −M2

W )

χ3

ψi ψi

iemiMZ

2MW

√

2(M2
Z −M2

W )

Vertices in LFP

Zα

u− u−

ieMW
√

M2
Z −M2

W

Pα

Zα

u+ u+

−ieMW
√

M2
Z −M2

W

Pα

Aα

u− u−

−iePα

Aα

u+ u+

iePα



APPENDIX B. FEYNMAN RULES 68

Wα

u− uZ

−ieMW
√

M2
Z −M2

W

Pα

Wα

u− uA

iePα

Wα

u+ uZ

ieMW
√

M2
Z −M2

W

Pα

Wα

u+ uA

−iePα

B.2 Some of Feynman rules for counter terms

now, we present the Feynman rules for the counter terms, but because of the heaviness of
the task, we will just present one counter-term for the case of a propagator and one for a
vertex. For more details see Aoki[1]

Counter term of the Higgs propagator

H H −δm2
HZH + (k2−m2

H)ZH

+3TY eMZ

2mW

√
m2

Z−m2
W

G3H
−1ZH
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Counter term of WWA vertex

A

W+ W−

Y ZWZ
1/2
AA + Y G1ZWZ

1/2
ZA

We have the following definition:

G1 ≡
GW

H
; G3 ≡

GZ

GW

And

H =

√
√
√
√1 +

δM2
Z − δM2

W

M2
Z −M2

W

GW =

√
√
√
√1 +

δM2
W

M2
W

GZ =

√
√
√
√1 +

δM2
Z

M2
Z

B.3 How to draw a Feynman diagram with LATEX

To draw a Feynman diagram we need first the package \usepackage{axodraw4j} which
define the environment and the command which give as the possibility to draw our dia-
grams.
To illustrate this, we give the following example.

1 \ documentclass [ 1 2 pt , a4paper , f i n a l ] { a r t i c l e }

2

3 \ usepackage{axodraw4j }

4 \ usepackage{ p s t r i c k s }

5 \ usepackage{ c o l o r }

6

7 \ usepackage [ u t f8 ] { inputenc }

8 \ usepackage [ T1 ] { fontenc }

9

10 \ usepackage [ e n g l i s h ] { babel }

11

12

13 \ begin { cente r }

14 \ f c o l o r b o x{ black }{ white }{

15 \ begin { p i c t u r e }(400 ,200)

16 \SetWidth {1 .0}

17 \ SetColor {Black }

18 \Arc [ arrow , arrowpos =0.5 , arrowlength =5,arrowwidth=2, a r r ow ins e t

=0 .2 ] (200 ,100) (40 , 0 , 0 )
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19 \Line [ arrow , arrowpos =0.5 , arrowlength =5,arrowwidth=2, a r r ow ins e t

=0 .2 ] (165 ,80 ) (10 , 10 )

20 \Photon (165 ,120) (10 ,190) {4}{10}

21 \Line [ dash , da shs i z e =8,arrow , arrowpos =0.5 , arrowlength =5,

arrowwidth=2, a r r ow ins e t =0 .2 ] (235 ,120) (390 ,190)

22 \Line [ dash , da shs i z e =2,arrow , arrowpos =0.5 , arrowlength =5,

arrowwidth=2, a r r ow ins e t =0 .2 ] (235 ,80 ) (390 ,10)

23 \Text (20 ,190) [ lb ] {\ Black {photon , bosan W and boson Z}}

24 \Text (10 ,30 ) [ lb ] {\ Black { l eptons }}

25 \Text (280 ,190) [ lb ] {\ Black { Higgs and go ld s tone s }}

26 \Text (360 ,30) [ lb ] {\ Black { ghosts }}

27 \end{ p i c t u r e }

28 }

29 \end{ cente r }

30

31

And this code give us the following diagram

photon,bosan W and boson Z

leptons

Higgs and goldstones

ghosts

Note: before we compile, we must know certain point

• To compile our script with the package "axodraw4j" the default compiler should be
"latex→ dvips→ ps2pdf ".

• With this scheme of compilation, the command \includegraphics{../../} can’t
execute any image’s extension, the only extension that we can use is ".ps" and ".eps"



Appendix C

Computation details for QED vacuum

polarization

This is a relatively detailed example1 of on-shell renormalization scheme with the dimen-
sional regularization method on the QED vacuum polarization (photon self-energy). the
corresponding of the first order radiative correction is

k k

p

p+ k

G(1)
µν (k) =G

(0)
µµ′(k)iΠµ′ν′(k)G(0)

ν′ν(k) (C.0.1)

Where

iΠµν(k) =−(ie)2
∫ d4p

(2π)4
Tr

(

γµ
i

6p−m+ iε
γν

i

6p+ 6k −m+ iε

)

=−e2
∫

d4p

(2π)4

Tr[γµ(6p+m)γν(6p+ 6k +m)]
(p2−m2 + iε)((p+ k)2−m2 + iε)

(C.0.2)

=−4e2
∫ d4p

(2π)4

pµpν + pµkν + pνkµ− gµν(p2 + pk−m2)
(p2−m2 + iε)((p+ k)2−m2 + iε)

As we have seen in the first section of chapter 2, this integral diverges so we must reg-
ularize it first to apply the on-shell renormalization procedure on it, using dimensional
regularization, we define

ǫ= 4− d
e→ eµ

4−d
2 = eµ

ǫ
2

1This example was strongly relied on the work of Jorge.C.Romao[30]
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Then the integral would be

iΠµν(k,ǫ) =−4e2µǫ
∫ ddp

(2π)4

pµpν + pµkν + pνkµ− gµν(p2 + pk−m2)
(p2−m2 + iε)((p+ k)2−m2 + iε)

=−4e2µǫ
∫ ddp

(2π)4

Nµν(p,k)
(p2−m2 + iε)((p+ k)2−m2 + iε)

(C.0.3)

We now need to rewrite the denominator as a single term by using the Feynman param-
eterization

1
ab

=
∫ 1

0

dx

[ax+ b(1−x)]2
(C.0.4)

With

a = (p+ k)2−m2

b= p2−m2

We obtain

iΠαβ(k,ǫ) =−4e2µǫ
∫ 1

0
dx
∫

ddp

(2π)4

Nµν(p,k)
[x(p+ k)2−xm2 + (1−x)(p2−m2) + iε]2

=−4e2µǫ
∫ 1

0
dx
∫

ddp

(2π)4

Nµν(p,k)
[p2 + k·px+ xk2−m2 + iε]2

=−4e2µǫ
∫ 1

0
dx
∫

ddp

(2π)4

Nµν(p,k)
[(p+ kx)2 + k2x(1−x)−m2 + iε]2

(C.0.5)

Now that the integral is convergent for small enough d, we can perform a variable change

p→ p− kx (C.0.6)

we then get

iΠµν(k,ǫ) =−4e2µǫ
∫ 1

0
dx
∫ ddp

(2π)d

Nνµ(p− kx,k)
[p2−C + iǫ]2

(C.0.7)

C =m2− k2x(1−x)

Because of the following relations2

∫
ddp

(2π)d

pµ

[p2−C + iǫ]2
= 0 (C.0.8)

∫
ddp

(2π)d

pµpν

[p2−C + iǫ]2
=

1
d
gµν

∫
ddp

(2π)d

p2

[p2−C + iǫ]2
(C.0.9)

We only have to calculate integrals of the form

Ir,m =
∫

ddp

(2π)d

(p2)r

[p2−C + iǫ]m

=
∫ ddp− 1

(2π)d

∫

dp0 (p2)r

[p2−C + iǫ]m
(C.0.10)

2for their proofs see[32] appendix
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To evaluate this integral, we first perform a Wick’s rotation that is defined by

p0→ ip0
E ;

∫ +∞

−∞
dp0→ i

∫ +∞

−∞
dp0

E (C.0.11)

And then writes ∫

ddpE =
∫

dp̄p̄d−1dΩd−1 (C.0.12)

Where p̄ =
√

(p0
E)2 + (~p)2 and dΩd−1 is the solid angle of generalized spherical coordinates

with
∫

dΩd−1 =
2π

d
2

Γ(d
2)

(C.0.13)

And with performing the p̄ integral we finally get

Ir,m = iCr−m+ d
2

(−1)r−m

(4π)
d
2

Γ(r+ d
2)

Γ(d
2)

Γ(m− r− d
2)

Γ(m)
(C.0.14)

With the condition m− r− d
2 , 0,−1,−2, · · · . By the substitution of d = 4− ǫ in C.0.14

we get

Ir,m = i
(−1)r−m

(4π)2

(4π
C

) ǫ
2

C2+r−mΓ(2 + r− ǫ
2)

Γ(2− ǫ
2)

Γ(m− r− 2 + ǫ
2)

Γ(m)
(C.0.15)

Now, we can go back and calculate Πµν . First, from the previous change of variable C.0.6,
Nµν becomes

Nµν(p− kx,k) = 2pµpν + 2x2kµkν − gµν(p2 + x2k2−xk2−m2) (C.0.16)

And therefore we get

Nµν ≡ µǫ
∫

ddp

(2π)d

Nµν(p− kx,k)
[p2−C + iǫ]2

= (
2
d
− 1)gµνµ

ǫI1,2 + [−2x(1−x)kµkν + x(1−x)k2gµνm
2]µǫI0,2 (C.0.17)

using now the result C.0.15, we can write

µǫI0,2 =
i

16π2

(

2πµ2

C

) ǫ
2 Γ( ǫ

2)
Γ(2)

=
i

16π2

(

∆ǫ− ln

(

C

µ2

))

+O(ǫ) (C.0.18)

With the help of the expansion of Γ function

Γ(
ǫ

2
) =

2
ǫ
− γ+O(ǫ) (C.0.19)

And defined
∆ǫ =

2
ǫ
− γ+ ln(4π) ; γ: Euler constant (C.0.20)
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Similarly

µǫI1,2 =
i

16π2
C

(

1 + 2∆ǫ− 2ln

(

C

µ2

))

+O(ǫ) (C.0.21)

Substituting back into C.0.21 with expanding the quantity (2
d − 1) up to O(ǫ)

2
d
− 1 =

2
4− ǫ − 1 =−1

2
+

1
8
ǫ+O(ǫ2) (C.0.22)

We get

Nµν =gµν

[

−1
2

+
1
8
ǫ+O(ǫ2)

][

i

16π2
C

(

1 + 2∆ǫ− 2ln

(

C

µ2

))

+O(ǫ)

]

+
[

−2x(1−x)kµkν + x(1−x)k2gµν + gµνm
2
]
[

i

16π2

(

∆ǫ− ln
C

µ2

)

+O(ǫ)

]

(C.0.23)

After eliminating higher terms and simplifying, we finally get

Nµν =
i

16π2

(

∆ǫ− ln

(

C

µ2

))
(

gµνk
2− kµkν

)

2x(1−x) (C.0.24)

Now using C.0.3, we obtain

Πµν =−(gµνk
2− kµkν)Π(k2, ǫ) (C.0.25)

Where

Π(k2, ǫ)≡ 2α
π

∫ 1

0
dxx(1−x)

[

∆ǫ− ln

(

m2−x(1−x)k2

µ2

)]

(C.0.26)

Going back to the definition of the full photon propagator which is the 2-point function
2.1.4, by rearranging its terms, the propagator can be represented as

Gµν = + +

+ + + · · ·

Where

≡ iΠµν(k) = sum of all one-particle

irreducible diagrams to all orders.

(C.0.27)

And in lowest order (one-loop order) of C.0.27 we have

=

Which is that was just been calculated. Continuing now by rewriting the free propagator
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as

iG0
µν = P T

µν
1
k2

+ ξ
kµkν

k2

≡ iG0T
µν + iG0L

µν (C.0.28)

where the transversal projector P T
µν was introduced

P T
µν =

(

gµν −
kµkν

k2

)

(C.0.29)

Which satisfies {

kµP T
µν = 0

P T
µρP

T
ρν = P T

µν
(C.0.30)

the full photon propagator also can be written as

Gµν =GT
µν +GL

µν (C.0.31)

where
GT

µν = P T
µνGµν (C.0.32)

From the result of Πµν in first order, the vacuum polarization tensor is transversal

iΠµν(k) = ik2P T
µνΠ(k) (C.0.33)

In fact, this is valid to all order of perturbation theory, which means that the longitudinal
part is not renormalized

GL
µν =G0L

µν (C.0.34)

For the transversal part we obtain

iGT
µν = P T

µν
1
k2

+P T
µµ′

1
k2

(−i)k2P T
µ′ν′Π(k)(−i)P T

ν′ν
1
k2
· · ·

= P T
µν

1
k2

[1−Π(k) +Π
2(k2) + · · · ] (C.0.35)

Where after summing the geometric series, we get

iGT
µν = P T

µν
1

k2[1 +Π(k)]
(C.0.36)

To renormalize this propagator properly we must also add the contribution of the
counter terms Lagrangian

∆L=−1
4
δZ3FµνF

µν (C.0.37)

Which yields to the following Feynman rule

k k
µ ν

−iδZk2P T
µν

(C.0.38)
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We have then

iΠµν = iΠloop
µν − iδZ3k

2

(

gµν −
kµkν

k2

)

(C.0.39)

=−i(Π(k) + δZ)P T
µν (C.0.40)

Thus, we should only make the substitution

Π(k)→Π(k) + δZ3 (C.0.41)

In C.0.36, we obtain

iGT
µν = P T

µν
1

k2[1 +Π(k) + δZ3]
(C.0.42)

Now to fix the renormalization constant δZ3 with the on-shell renormalization scheme,
C.0.42 must satisfy

lim
k→0

k2iGRT
µν = 1·P T

µν (C.0.43)

This imply that
Π(k) + δZ3 = 0 (C.0.44)

From which we determine

δZ3 =−Π(0)

=−2α
π

∫ 1

0
dx x(1−x)

[

∆ǫ− ln

(

m2

µ2

)]

=−2α
3π

[

∆ǫ− ln

(

m2

µ2

)]

(C.0.45)

The renormalization photon propagator is then written as

iGµν(k) =
P T

µν

k2[1 +Π(k,ǫ)−Π(0, ǫ)]
+ iGL

µν (C.0.46)



Appendix D

Computation with FeynCalc of

renormalization constant connected to

the process eνµ→ eνµ

D.1 Photon self-energy

From this program, we obtain, from the last line of code, the result of

Zaa≡ δZ1/2
AA (D.1.1)

1 $LoadFeynArts = True ;

2 << FeynCalc ‘

3

4 aa = CreateTopo log ie s [ 1 , 1 −> 1 , ExcludeTopolog ies −> Tadpoles ] ;

5 aa f = I n s e r t F i e l d s [ aa , {V[ 1 ] } −> {V[ 1 ] } , I n s e r t i o n L e v e l −> { P a r t i c l e s } ,

Model −> "SM" , Exc ludePar t i c l e s −> { } ] ;

6 Paint [ aa f ]

7 Paint [ DiagramSelect [ aaf , IRDivergentQ ] ]

8

9 SetOptions [ PaVeReduce , A0ToB0 −> True ] ;

10 $LimitTo4 = True

11

12 wr = {SMP[ "sin_W" ] −> Sqrt [ 1 − SMP[ "m_W" ]^2/SMP[ "m_Z" ] ^ 2 ] ,SMP[ "cos_W" ] −>

SMP[ "m_W" ] /SMP[ "m_Z" ] }

13

14 aaamp = FCFAConvert [ CreateFeynAmp [ aaf , Truncated −> True , PreFactor −> (4

Pi ) ^−2] , IncomingMomenta −> {k } , OutgoingMomenta −> {k} ,LoopMomenta −> {

q} , LorentzIndexNames −> {\ [Mu] , \ [Nu ] , \ [Rho ] , \ [ Sigma ] , \ [ Alpha ] , \ \ [

Beta ] } , SMP −> True , DropSumOver −> True , UndoCh i r a lSp l i t t ing s −> True ]

/ . wr ;

15

16 aa [n_] := aaamp [ [ n ] ] / . DiracTrace −> Tr // S imp l i fy

17 aa r e s [n_] := S imp l i fy [− I /Pi^2 OneLoop [ q , aa [ n ] ] // PaVeReduce ]

18 pt [ \ [Mu]_, \ [Nu ]_] := MT[ \ [Mu] , \ [Nu ] ] − FV[ k , \ [Mu] ] FV[ k , \ [Nu ] ] / SP [ k , k ]

19 aasum = Sum[ aa r e s [ n ] , {n , 1 7 } ] ;

20 aas = MT[ \ [ Alpha ] , \ [Mu ] ] aasum pt [ \ [ Alpha ] , \ [Nu ] ] / ( 3 ) // Contract

21

22 Za0 = 1/2 D[ aas / . Sca la rProduct [ k , k ] −> k2 , k2 ]^2 // S imp l i fy
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23

24 Zaa = Limit [ Za0 , k2 −> 0 , Ana lyt i c −> True ]

25

D.2 Electron self-energy

This program calculates, from the last three lines of code

Zre≡ δZe
L (D.2.1)

Zle≡ δZe
R (D.2.2)

dme≡ δme (D.2.3)

1 $LoadFeynArts = True ;

2 << FeynCalc ‘

3 es = CreateTopo log ie s [ 1 , 1 −> 1 , ExcludeTopolog ies −> Tadpoles ] ;

4 e s f = I n s e r t F i e l d s [ es , {F[ 2 , {1} ]} −> {F[ 2 , {1} ]} ,

5 I n s e r t i o n L e v e l −> { P a r t i c l e s } , Model −> "SM" , Exc ludePar t i c l e s −> {S } ] ;

6 Paint [ e s f ]

7 Paint [ DiagramSelect [ e s f , IRDivergentQ ] ]

8 SetOptions [ PaVeReduce , A0ToB0 −> True ] ;

9 $LimitTo4 = True ;

10 wr = {SMP[ "sin_W" ] −> Sqrt [ 1 − SMP[ "m_W" ]^2/SMP[ "m_Z" ] ^ 2 ] ,SMP[ "cos_W" ] −>

SMP[ "m_W" ] /SMP[ "m_Z" ] , PropagatorDenominator [ q − k , 0 ] −>

PropagatorDenominator [ q − k , \ [Lambda ] ] } ;

11 esamp = FCFAConvert [ CreateFeynAmp [ e s f , Truncated −> True , PreFactor −> (4

Pi ) ^−2] , IncomingMomenta −> {k } , OutgoingMomenta −> {k } ,LoopMomenta −> {q

} , LorentzIndexNames −> {\ [Mu] , \ [Nu ] , \ [Rho ] , \ [ Sigma ] , \ [ Alpha ] , \ \ [

Beta ] } , SMP −> True , DropSumOver −> True , UndoCh i r a lSp l i t t ing s −> True ,

L i s t −> False ] / . wr ;

12 fesamp = Simpl i fy [ esamp / . DiracTrace −> Tr ]

13 r e s := −I /Pi^2 OneLoop [ q , fesamp ]

14 r e s1 = PaVeReduce [ res , PaVeAutoReduce −> True ] // S imp l i fy

15 r e s2 = Di ra cS imp l i fy [ res1 , D i r a cSubs t i tu te67 −> True ] // S imp l i fy

16 A1 := C o e f f i c i e n t [ C o e f f i c i e n t [ res2 , DiracS la sh [ k ] , 0 ] , DiracS la sh [ k ] .

DiracMatrix [ 5 ] , 0 ]

17 Ak := C o e f f i c i e n t [ res2 , DiracS la sh [ k ] , 1 ]

18 Ak5 := C o e f f i c i e n t [ res2 , DiracS la sh [ k ] . DiracMatrix [ 5 ] , 1 ]

19 dA1 := D[ A1 / . Sca la rProduct [ k , k ] −> k2 , k2 ] / . k2 −> SMP[ "m_e" ]^2

20 dAk := D[Ak / . Sca la rProduct [ k , k ] −> k2 , k2 ] / . k2 −> SMP[ "m_e" ]^2

21 Zre = −(Ak5 + Ak + 2 SMP[ "m_e" ] dA1 + 2 SMP[ "m_e" ]^2 dAk) / . Sca la rProduct [ k

, k ] −> SMP[ "m_e" ]^2 // S imp l i fy

22 Zle = (Ak5 − Ak − 2 SMP[ "m_e" ] dA1 − 2 SMP[ "m_e" ]^2 dAk) / . Sca la rProduct [ k ,

k ] −> SMP[ "m_e" ]^2 // S imp l i fy

23 dme = (A1 + SMP[ "m_e" ] Ak − SMP[ "m_e" ] /2 ( Z le + Zre ) ) / . Sca la rProduct [ k , k ]

−> SMP[ "m_e" ]^2 // S imp l i fy

24
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D.3 Neutrino self-energy

We obtain from the neutrino self-energy the following renormalization constant

Zln≡ δZν
L (D.3.1)

1 $LoadFeynArts = True ;

2 << FeynCalc ‘

3 ns = CreateTopo log ie s [ 1 , 1 −> 1 , ExcludeTopolog ies −> Tadpoles , CTOrder −>

0 ] ;

4 ns f = I n s e r t F i e l d s [ ns , {F[ 1 , {2} ]} −> {F[ 1 , {2} ]} , I n s e r t i o n L e v e l −> {

P a r t i c l e s } , Model −> "SM" , Exc ludePar t i c l e s −> {S } ] ;

5 Paint [ n s f ]

6 Paint [ DiagramSelect [ ns f , IRDivergentQ ] ]

7 SetOptions [ PaVeReduce , A0ToB0 −> True ]

8 $LimitTo4 = True

9 wr = {SMP[ "sin_W" ] −> Sqrt [ 1 − SMP[ "m_W" ]^2/SMP[ "m_Z" ] ^ 2 ] , SMP[ "cos_W" ] −>

SMP[ "m_W" ] /SMP[ "m_Z" ] }

10 nsamp = FCFAConvert [ CreateFeynAmp [ nsf , Truncated −> True , PreFactor −> (4

Pi ) ^−2] , IncomingMomenta −> {k } , OutgoingMomenta −> {k} ,LoopMomenta −> {

q} , LorentzIndexNames −> {\ [Mu] , \ [Nu ] , \ [Rho ] , \ [ Sigma ] , \ [ Alpha ] , \ \ [

Beta ] } , SMP −> True , DropSumOver −> True ] / . wr

11 ns [n_] := nsamp [ [ n ] ] / . DiracTrace −> Tr // S imp l i fy

12 ns r e s [n_] := −I /Pi^2 OneLoop [ q , ns [ n ] ] // PaVeReduce

13 s = ( ns r e s [ 1 ] + ns r e s [ 2 ] ) // S imp l i fy

14 k7 = DiracGamma [ Momentum[ k ] ] . DiracGamma [ 7 ]

15 s r 0 = s /k7 / . Sca la rProduct [ k , k ] −> k2

16 Zln = −Limit [ sr0 , k2 −> 0 , Ana lyt i c −> True ] // S imp l i fy

17

D.4 Z-boson self-energy

The following program gives the result of

dmz2≡ δM2
Z (D.4.1)

sqrZzz ≡ δZ1/2
ZZ (D.4.2)

1 $LoadFeynArts = True ;

2 << FeynCalc ‘

3 zz = CreateTopo log ie s [ 1 , 1 −> 1 , ExcludeTopolog ies −> Tadpoles ] ;

4 z z f = I n s e r t F i e l d s [ zz , {V[ 2 ] } −> {V[ 2 ] } , I n s e r t i o n L e v e l −> { P a r t i c l e s } ,

Model −> "SM" , Exc ludePar t i c l e s −> { } ] ;

5 Paint [ z z f ]

6 Paint [ DiagramSelect [ zz f , IRDivergentQ ] ]

7 SetOptions [ PaVeReduce , A0ToB0 −> True ] ;

8 $LimitTo4 = True

9 wr = {SMP[ "sin_W" ] −> Sqrt [ 1 − SMP[ "m_W" ]^2/SMP[ "m_Z" ] ^ 2 ] , SMP[ "cos_W" ] −>

SMP[ "m_W" ] /SMP[ "m_Z" ] }
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10 zzamp = FCFAConvert [ CreateFeynAmp [ zz f , Truncated −> True , PreFactor −> (4

Pi ) ^−2] , IncomingMomenta −> {k } , OutgoingMomenta −> {k} , LoopMomenta −>

{q} , LorentzIndexNames −> {\ [Mu] , \ [Nu ] , \ [Rho ] , \ [ Sigma ] , \ [ Alpha ] , \ \ [

Beta ] } , SMP −> True , DropSumOver −> True , L i s t −> True ] / . wr ;

11 zz [n_] := zzamp [ [ n ] ] / . DiracTrace −> Tr // S imp l i fy

12 z z r e s [n_] := −I /Pi^2 OneLoop [ q , zz [ n ] ] // PaVeReduce

13 pt [ \ [Mu]_, \ [Nu ]_] := MT[ \ [Mu] , \ [Nu ] ] − FV[ k , \ [Mu] ] FV[ k , \ [Nu ] ] / SP [ k , k ]

14 zzsum = Sum[ z z r e s [ n ] , {n , 2 4 } ] ;

15 z z s = MT[ \ [ Alpha ] , \ [Nu ] ] zzsum pt [ \ [Mu] , \ [ Alpha ] ] / ( 3 ) // Contract

16 dmz2 = −z z s / . Sca la rProduct [ k , k ] −> SMP[ "m_Z" ]^2

17 sqrZzz = 1/2 D[ zz s / . Sca la rProduct [ k , k ] −> k2 , k2 ] / . k2 −> SMP[ "m_Z" ]^2

// S imp l i fy

18

D.5 W-boson self energy

The last program provides the following constants

dmw2≡ δM2
W (D.5.1)

Zw ≡ δZW (D.5.2)

1 $LoadFeynArts = True ;

2 << FeynCalc ‘

3 ww = CreateTopo log ie s [ 1 , 1 −> 1 , ExcludeTopolog ies −> Tadpoles ] ;

4 wwf = I n s e r t F i e l d s [ww, {V[ 3 ] } −> {V[ 3 ] } , I n s e r t i o n L e v e l −> { P a r t i c l e s } ,

Model −> "SM" , Exc ludePar t i c l e s −> { } ] ;

5 Paint [ wwf ]

6 Paint [ DiagramSelect [ wwf , IRDivergentQ ] , ColumnsXRows −> 4 ]

7 SetOptions [ PaVeReduce , A0ToB0 −> True ] ;

8 $LimitTo4 = True

9 wr = {SMP[ "sin_W" ] −> Sqrt [ 1 − SMP[ "m_W" ]^2/SMP[ "m_Z" ] ^ 2 ] , SMP[ "cos_W" ] −>

SMP[ "m_W" ] /SMP[ "m_Z" ] , PropagatorDenominator [ q , 0 ] −>

PropagatorDenominator [ q , \ [Lambda ] ] }

10 wwamp = FCFAConvert [ CreateFeynAmp [ wwf , Truncated −> True , PreFactor −> (4

Pi ) ^−2] , IncomingMomenta −> {k } , OutgoingMomenta −> {k} , LoopMomenta −>

{q} , LorentzIndexNames −> {\ [Mu] , \ [Nu ] , \ [Rho ] , \ [ Sigma ] , \ [ Alpha ] , \ \ [

Beta ] } , SMP −> True , DropSumOver −> True ] / . wr ;

11 ww[n_] := wwamp [ [ n ] ] / . DiracTrace −> Tr // S imp l i fy

12 wwres [n_] := S imp l i fy [− I /Pi^2 OneLoop [ q , ww[ n ] ] // PaVeReduce ]

13 pt [ \ [Mu]_, \ [Nu ]_] := MT[ \ [Mu] , \ [Nu ] ] − FV[ k , \ [Mu] ] FV[ k , \ [Nu ] ] / SP [ k , k ]

14 wwsum = Sum[ wwres [ n ] , {n , 2 3 } ] ;

15 wws = MT[ \ [ Alpha ] , \ [Nu ] ] wwsum pt [ \ [Mu] , \ [ Alpha ] ] / ( 3 ) // Contract

16 dmw2 = −wws / . Sca la rProduct [ k , k ] −> SMP[ "m_W" ]^2

17 Zw = D[ wws / . Sca la rProduct [ k , k ] −> k2 , k2 ] / . k2 −> SMP[ "m_W" ]^2

18
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D.6 Charge renormalization constant

The Ze(= 1 + δZe) renormalization constant of the electric charge can be calculated di-
rectly from the following relation[42, 39]

δZe =−1
2
δZAA−

(

m2
Z

M2
W

− 1

)1/2

δZZA (D.6.1)

where δZAA is given in appendix D.1
and δZZA in section 2.3



Appendix E

One-loop Feynman diagrams of eν→ eν

process

Here we show in Feynman gauge Feynman diagrams of eνµ→ eνµ process generated by
FeynArts package

Tree level diagram
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Diagrams for counter-term and one loop corrections to the vertex γνν

e

νµ

e

νµ

γ

e

νµ

e

νµ

γ

W

µ µ

e

νµ

e

νµ

γ

µ

W W

Diagrams for counter-term and one loop corrections to the vertex Zνν
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Diagrams for counter-term and one loop corrections to the vertex Zee
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Diagrams for counter-term and one loop corrections to the self energy ZZ
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Diagrams for counter-term and one loop corrections to the self energy Zγ
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FormCalc code to obtain figure 3.6

The following code is T.Hann’s code that we adapted to the process eνµ→ eνµ

1 Needs [ " FeynArts ‘ " ]

2

3 Needs [ " FormCalc ‘ " ]

4

5 time1 = SessionTime [ ]

6

7 CKM = IndexDelta

8

9 Neg lect [ME] = Neg lect [ME2] = 0

10

11 proce s s = {F[ 2 , {1} ] , F [ 1 , {2} ]} −> {F[ 2 , {1} ] , F [ 1 , {2} ]}

12

13 name = " / . . / . . / Bureau/Formcalc/

14 eMeM−SM−t e s t "

15

16 SetOptions [ I n s e r t F i e l d s , Model −> "SM" , R e s t r i c t i o n s −> NoLightFHCoupling ]

17

18 SetOptions [ Paint , Pa intLeve l −> { Cla s s e s } , ColumnsXRows −> {4 , 5} ]

19

20 Pr int [ " Born " ]

21

22 tops = CreateTopo log ie s [ 0 , 2 −> 2 ] ;

23 i n s = I n s e r t F i e l d s [ tops , p ro ce s s ] ;

24 DoPaint [ ins , " born " ] ;

25 born = CalcFeynAmp [ CreateFeynAmp [ i n s ] ]

26

27 Pr int [ " Counter terms " ]

28

29 tops = CreateCTTopologies [ 1 , 2 −> 2 ,

30 ExcludeTopolog ies −> {TadpoleCTs , WFCorrectionCTs } ] ;

31 i n s = I n s e r t F i e l d s [ tops , p ro ce s s ] ;

32 DoPaint [ ins , " counter " ] ;

33 counter = CreateFeynAmp [ i n s ]

34

35 Pr int [ " S e l f e n e r g i e s " ]

36

37 tops = CreateTopo log ie s [ 1 , 2 −> 2 , Se l fEne rg i e sOn ly ] ;

38 i n s = I n s e r t F i e l d s [ tops , p ro ce s s ] ;

39 i n s = DiagramSelect [ ins , FreeQ[# , F i e ld [ 5 | 6 ] −> S ] & ] ;
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40 DoPaint [ ins , " s e l f " ] ;

41 s e l f = CalcFeynAmp [

42 CreateFeynAmp [ i n s ] ,

43 S e l e c t [ counter , DiagramType [#] == 2 &] ]

44

45 Pr int [ " V e r t i c e s " ]

46

47 tops = CreateTopo log ie s [ 1 , 2 −> 2 , TrianglesOnly ] ;

48 i n s = I n s e r t F i e l d s [ tops , p ro ce s s ] ;

49 i n s = DiagramSelect [ ins , FreeQ[# , F i e ld [ 5 ] −> S ] & ] ;

50 DoPaint [ ins , " v e r t " ] ;

51 ve r t = CalcFeynAmp [

52 CreateFeynAmp [ i n s ] ,

53 S e l e c t [ counter , DiagramType [#] == 1 &] ]

54

55 Pr int [ " Boxes " ]

56

57 tops = CreateTopo log ie s [ 1 , 2 −> 2 , BoxesOnly ] ;

58 i n s = I n s e r t F i e l d s [ tops , p ro ce s s ] ;

59 DoPaint [ ins , " box " ] ;

60 box = CalcFeynAmp [

61 CreateFeynAmp [ i n s ] ,

62 S e l e c t [ counter , DiagramType [#] == 0 &] ]

63

64 amps = {born , s e l f , vert , box}

65

66 {born , s e l f , vert , box} = Abbreviate [ amps , 6 ,

67 Preproces s −> OnSize [ 100 , S impl i fy , 500 , DenCol lect ] ]

68

69 abbr = OptimizeAbbr [ Abbr [ ] ]

70

71 subexpr = OptimizeAbbr [ Subexpr [ ] ]

72

73 d i r = SetupCodeDir [ name <> " . f o r t r a n " , Dr iver s −> name <> " . d r i v e r s " ]

74

75 WriteSquaredME [ born , { s e l f , vert , box } , abbr , subexpr , d i r ]

76

77 WriteRenConst [ amps , d i r ]

78

79 Pr int [ " time used : " , SessionTime [ ] − time1 ]
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