REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

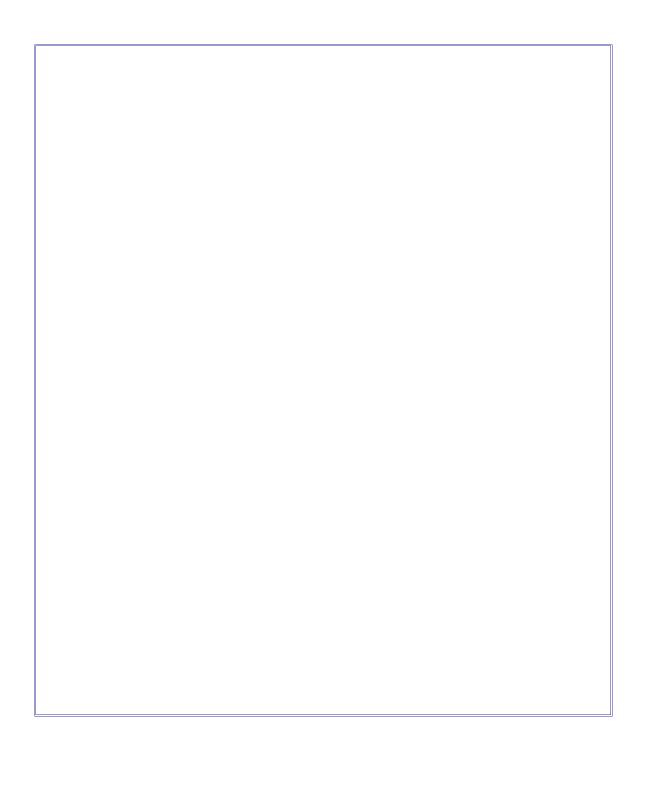
UNIVERSITE SAAD DAHLEB DE BLIDA

DEPARTEMENT D'AERONAUTIQUE

Mémoire de Fin d'Etude

En vue de l'obtention du Diplôme d'Ingénieur d'Etat En Aéronautique **Option :** Opérations Aériennes

THEME


ETUDE DE L'OUVERTURE DE LA LIGNE AERIENNE ALGER-PEKIN AVEC L'A330-200

Organisme d'accueil : AIR ALGERIE

Réalisé par : Mlle HAIMED LAMIA Mlle AHMED SERIR WAHIBA Dirigé par : Mr DRIOUECHE MOULOUD Mr TERMLIL FARID

Promotion juin 2008

Résumé:

L'étude de cette ouverture Alger-Pekin basée sur la mesure de la consommation de carburant et le temps nécessaire pour effectuer un vol avec une optimisation sur la masse au décollage afin d'assurer une charge payante maximale d'une part ; et sur les différents coûts d'exploitation pour obtenir une ligne rentable d'une autre part.

Abstract:

This opening study is based on the measuring of consumption fuel and necessary time to carry an optimum flight in take off weight in order to assure a maximum pay load on the one hand and in the different costs for get a profitable line on the other hand.

•

دراسة افتتاح هذا الخط الجوي تعتمد على قياس كمية الوقود والوقت اللازمين للقيام من المسافرين من جهة و ذات قيم استغلال معقولة أيضا من اجل الحصول على خط عالى المردود من جهة أخرى.

Remerciements

Il n'est meilleur remerciement que notre reconnaissance a Dieu qui nous a donné du courage et de la volonté pour pouvoir accomplir ce modeste travail.

Ensuite, nous tenons à remercier:

Notre promoteur Mr DRIOUECHE MOULOUD pour leurs modesties et leurs aides si précieuses.

Le sous-directeur des opérations aériennes Mr TERMELLIL FARID qui n'a cessé de nous encourager et de nous aider, sans oublier tous les ingénieurs de la DOA et surtout : NABIL SOFIANE et RAFIK.

A Mohamed, Akram, Djaafar, Samia, LARBI ainsi que toute l'équipe du département de la PVD.

Wahiba et Lamia.

Dédicaces

Je dédier ce modeste travail et les fruits de tous mes années d'étude à :

Mes très chère parents en gage de leur amour, patience, et sacrifice dont ils ont fait preuve durant toute cette dure période pour m'enseigner et faire de moi ce que je suis aujourd'hui.

Et que je souhaite que le « DIEU » ils me garder, protéger et leurs donner une longue vie et très bonne santé.

A ma sœur et ma deuxième mère : « HASSINA » et à ma chère sœur « FAIZA » aussi.

A mes deux chère frères : « MOHAMED ET KARIM ».

A mon future marie « LAMINE » qui ma toujours soutenu et encouragé.

A mes deux chères tantes et tous mes oncles.

A mes deux belles sœurs.

A ma chère cousine et ma sœur « SOUMIA » et à tous mes cousins et mes cousines ; tous en leur souhaitant un meilleur parcourus et une bonne continuation scolaire.

A mes deux chères nièces : « MARWA et WISSEM ».

A mon beau père : « Dr LARBAOUI», à ma belle mère et à toute leur petite famille.

A mon binôme « WAHIBA » et toute sa famille.

A mes amies: HASSEN, NARIMENE, SOUMIA, AIDA, MOHAMED, HADJIRA, SOFIANE et AUTRES...

A toute ma promotion: KHALED, SOFIANE, HADIA, NESRINE, SIMRAZ, MOUNIA, SARAH et AUTRES...

LAMIA.

DEDICACES

Je dédie ce modeste travail a mes très chers parents, de leurs patience et sacrifice dont ils fait preuve durant toute ma vie, surtout les moments difficiles pour m'enseigner les vraies valeurs de la vie et faire de moi un symbole de réussite.

A tout les personnes qui m'ont aidé de prés ou de loin, Commençant par :

- Mon futur marí:AMINE;
- Mes sœurs : HADJER, NADJET, LAMIA, mon cher frère MOHAMED et toute la famille AHMED SERIR;
- ♣ Mes amís (es): RAZIKA, NARIMENE, AIDA, ACHRAF, KHALED et SOFIANE.
- Mon bínôme : LAMIA ;

Et; toute la promotion 2008.

Wahiba.

SOMMAIRE

Introduction générale

Intérêt de l'ouverture de la ligne «ALGER-PEKIN»

Chapitre	: Présentation des deux	pays et accessibilité des deux
aérodrom	es	

.1. Présentation des deus pays	01
.1.1. Présentation de l'ALGERIE	01
.1.2. Présentation de la CHINE.	03
.2. Accessibilité des deux aérodromes	05
.2.1. Introduction	05
.2.2. L'aérodrome d'ALGER.	05
.2.3. L'aérodrome de PEKIN.	07
Chapitre I : Présentation de la compagnie AIR ALG l'appareil A330-200	ERIE et de
I .1. Présentation de la compagnie	09
I .1. Présentation de la compagnie	
	09
I .1.1. Historique.	
I .1.1. Historique	
I .1.1. Historique.I .1.2. Objectif de la compagnie ;I .1.3. Réseau de la compagnie.	
 I.1.1. Historique. I.1.2. Objectif de la compagnie ; I.1.3. Réseau de la compagnie. I.1.4. Organisme de la compagnie. 	
 I.1.1. Historique. I.1.2. Objectif de la compagnie; I.1.3. Réseau de la compagnie. I.1.4. Organisme de la compagnie. I.1.5. Flotte d'AIR ALGERIE. 	
 I.1.1. Historique. I.1.2. Objectif de la compagnie; I.1.3. Réseau de la compagnie. I.1.4. Organisme de la compagnie. I.1.5. Flotte d'AIR ALGERIE II.2. Présentation de l'appareil «A330-200». 	

Chapitre II : Etude opérationnelle de la ligne

III.1. ASPECT THEORIQUE	21
III.1.1. Introduction.	21
III.1.2. Choix de routes	21
III.1.3 Les routes possibles	22
III.1.3.1. Les routes directes;	22
III.1.3.2. La route avec escale.	.25
III.1.4. Carburant réglementaire	32
III.1.4.1. Quantité réglementaire de carburant à embarquer	32
III.1.4.2. Quantité de carburant au lâcher des freins	33
III.2. ASPECT PRATIQUE;	35
III.2.1. Détermination de quantité de carburant, temps de vol et la masse de	
décollage	35
Chapitre IV : procédure de dépressurisation IV.1. ASPECT THEORIQUE	52
IV.1. ASPECT THEORIQUE	52
IV.1. ASPECT THEORIQUE	52
IV.1. ASPECT THEORIQUE. IV.1.1. Introduction. IV.1.2. Systèmes d'oxygène.	52
IV.1. ASPECT THEORIQUE. IV.1.1. Introduction. IV.1.2. Systèmes d'oxygène. IV.1.3. Types de dépressurisation.	52 52 53
IV.1. ASPECT THEORIQUE. IV.1.1. Introduction. IV.1.2. Systèmes d'oxygène. IV.1.3. Types de dépressurisation. IV.1.3.1. Dépressurisation lente.	52 53 . 53
IV.1. ASPECT THEORIQUE. IV.1.1. Introduction. IV.1.2. Systèmes d'oxygène. IV.1.3. Types de dépressurisation. IV.1.3.1. Dépressurisation lente. IV.1.3.2. Dépressurisation rapide ou explosive.	52 53 . 53 . 54
IV.1. ASPECT THEORIQUE. IV.1.1. Introduction. IV.1.2. Systèmes d'oxygène. IV.1.3. Types de dépressurisation. IV.1.3.1. Dépressurisation lente. IV.1.3.2. Dépressurisation rapide ou explosive. IV.1.3.3. profil de vol.	52 53 53 54 54 55
IV.1. ASPECT THEORIQUE IV.1.1. Introduction IV.1.2. Systèmes d'oxygène IV.1.3. Types de dépressurisation IV.1.3.1. Dépressurisation lente IV.1.3.2. Dépressurisation rapide ou explosive IV.1.3.3. profil de vol IV.1.3.4. Franchissement d'obstacle, cas de dépressurisation	52 53 53 54 54 55

IV.1.4.3. Obstacles à considérer.	. 59
IV.2. Aspect pratique	65
IV.2.1. Procédure de dépressurisation.	67
IV.2.2. Procédures panne moteur (Drift down)	73
Chapitre V : Etude économique de la ligne	
V.1. ASPECT THEORIQUE	74
V .1.1. Etude de la rentabilité de la ligne V .1.1.1. Etude des coûts d'exploitation	74 75
V .1.1.2. Etude des recettes.	81
V.2. Aspect pratique	82
V.2.1. Coûts directs.	82
V.2.1.1. Coûts carburant.	82
V.2.1.2. Coût équipage (PNT, PNC)	.82
V.2.1.3. Coût maintenance	83
V.2.1.4. Redevance de survol	83
V.2.1.5. Redevances aéroportuaires	85
V.2.2. Coûts indirects.	86
V.2.2.1. Les assurances	86
V.2.2.2. Amortissement de l'avion	86
V.2.2.3. Les charges financières.	86
V.2.2. Les recettes	88
V.2.3. Calcul de la rentabilité.	89
Conclusion générale	90

Bibliographie

SOMMAIRE DES TABLEAUX

Tableau I.1. Caractéristiques de l'aéroport d'ALGER
Tableau I.2. Caractéristiques de l'aéroport de PEKIN
Tableau II.1. Le réseau domestique 12
Tableau II.2. Le réseau international
Tableau III.1. Bilan de l'Allée Alger-Pékin avec M.82. 39
Tableau III.2. Bilan de Retour Pékin-Alger avec M.82. 40
Tableau III.3. Bilan d'Allée et Retour avec M.82 et LRC 41
Tableau III.4. Bilan d'Allée Alger-Dubaï avec M.82 et LRC
Tableau III.5. Bilan d'Allée Dubaï-Pékin avec M.82 et LRC 45
Tableau III.6. Bilan de Retour Pékin-Dubaï avec M.82 et LRC
Tableau III.7. Bilan de Retour Dubaï-Alger avec M.82 et LRC
Tableau IV.1. Procédures de dépressurisation avant PNR 62
Tableau IV.2. Procédures de dépressurisation après PNR. 63
Tableau IV.3. Procédures de dépressurisation avant PNR 64
Tableau IV.4. Procédures de dépressurisation après PNR 64
Tableau IV.5. Procédures de dépressurisation avant PNR1 65
Tableau IV.6. Procédures de dépressurisation entre PNR1 et PNR2
Tableau IV.7. Procédures de dépressurisation entre PNR2 et PNR3
Tableau IV.8. Procédures de dépressurisation après PNR3
Tableau IV.9. Procédures panne moteur avant PNR 69
Tableau IV.10. Procédures panne moteur après PNR
Tableau IV.11. Procédures panne moteur avant PNR
Tableau IV.12. Procédures panne moteur après PNR. 71
Tableau IV.13. Procédures panne moteur avant PNR1 72
Tableau IV.14. Procédures panne moteur entre PRN1 et PRN2
Tableau IV.15. Procédures panne moteur entre PRN2 et PRN3

Tableau IV.16. Procédures panne moteur après PNR3	73
Tableau V.1. Redevance de survol pour la ligne directe	84
Tableau V.2. Redevance de survol pour la ligne avec escale	85
Tableau V.3. Redevances aéroportuaires	86
Tableau V.4.tableau récapitulatif des coûts	87
Tableau V.5.tableau récapitulatif des recettes	89

SOMMAIRE DES FIGURES

Figure I. 1. L'aéroport d'ALGER	07
Figure I. 2. L'aéroport de PEKIN	08
Figure II.1. Organisme de la compagnie	13
Figure II. 2. L'AIRBUS A330-200	17
Figure II. 3. Plan de la cabine.	20
Figure III.1. La plus courte route ALGER-PEKIN	23
Figure III.2. La route ALGER-DUBAI.	25
Figure III.3. La route DUBAI-PEKIN.	26
Figure III.4. La route ALGER-PEKIN dans les cercles de 60mn	29
Figure III.5. La route ALGER-DUBAI dans les cercles de 60mn	30
Figure III.6. La route DIBAI-PEKIN dans les cercles de 60mn	31
Figure III. 7. Quantité réglementaire de carburant à embarquer	32
Figure III.8. Principe de l'ETF.	42
Figure III. 9. Préparation avec ETF.	43
Figure IV.1. Profil de descente (A330-systeme 22 min).	50
Figure IV.2. Franchissement d'obstacle, cas de dépressurisation	51
Figure IV.3. Procédures drift down, cas de panne moteur	52
Figure IV.4. Trajectoire brute et nette	53
Figure IV.5. Franchissement latéral des obstacles	54
Figure IV.6. Franchissement vertical des obstacles (marge 1 000 ft)	55
Figure IV.7. Franchissement en descente des obstacles (marge 2 000 ft)	56
Figure IV.8. Le PNR situé après le point B	58
Figure IV.9. Le PNR situé avant le point B	59
Figure IV .10. Profil de vol ALGER-PEKIN	60

Figure IV .11. Profil de vol ALGER-DUBAI	
Figure IV.12. Profil de vol DUBAI-PEKIN	
Figure V.1. Couts d'exploitation (ligne directe)	
Figure V.2. Couts d'exploitation (ligne avec escale)88	

INTRODUCTION GENERALE:

Vu le développement économique, social et politique que le monde a connu ces dernières décennies, et vu son orientation vers la mondialisation, l'Algérie en tant que pays de ce monde est influencé par ces mutations et elle s'oriente vers l'économie du marché.

Le but final de cette étude est l'ouverture de la ligne aérienne ALGER – PEKIN et d'effectuer des vols commerciaux compatibles à celles des performances de l'AIRBUS 330-200.

La réalisation de cette ligne nécessite des interventions dans de nombreux domaines sur le plan technique tel que :

- S'assurer que l'avion peut bien réaliser cette ligne; Les performances de l'avion, au décollage et aussi à l'atterrissage, permettent le bon déroulement du vol suivant la réglementation;
- Définir les différentes routes possibles qui pourront être suivies en fonction des conditions météorologiques;
- S'assurer également que les performances en croisière sont compatibles avec les routes;
- Déterminer la quantité réglementaire de carburant et le temps de vol nécessaire afin d'optimiser la masse de décollage et d'assurer une charge offerte maximale.
- Déterminer les différentes procédures à appliquer en cas de panne moteur ou de dépressurisation ;
- Déterminer et définir les déférents couts d'exploitation et les différentes recettes pour étudier la rentabilité de la ligne.
- Négocier avec les services assurant la régularisation des créneaux horaires appropriés;

En fin il faut que toutes les conditions nécessaires à l'ouverture d'une ligne doivent être assurées.

INTERETS DE L'OUVERTURE DE LA LIGNE «ALGER-PEKIN»

Le projet de l'ouverture d'une liaison aérienne entre les deux capitales algérienne et chinoise s'inscrit dans le cadre d'un accord aérien signé le 12 juillet 2006 entre les deux directeurs de l'aviation civile (DAC) algérien et chinois.

Des dizaines de milliers de chinois travaillent actuellement en Algérie, essentiellement dans le secteur de l'habitant, dans le cadre du projet gouvernemental de construction d'un million de logements.

La ligne Alger- Pékin d'Air Algérie pourrait entrer en service cette année selon certains responsables de la compagnie aérienne nationale qui estiment que sa rentabilité sera assurée au vu de la croissance du partenariat économique entre l'Algérie et la Chine.

Le premier souci à prendre en compte est la préservation des parts du marché algérien qui faut-il le reconnaître, est en plein développement. Quant à l'ouverture d'une ligne Alger- Pékin qu'Air Algérie ne pourrait ignorer l'importance du marché chinois.

De cette manière, les transporteurs peuvent étendre leurs réseaux internationaux et offrir aux passagers un meilleur accès au marché mondial.

La nouvelle desserte Alger-Pékin, viendra booster, à coup sûr, les rapports économiques et politiques entre les deux pays. Ainsi que la communauté chinoise se concentre de plus en plus en Algérie, en raison de la forte participation des entreprises chinoises dans la réalisation des infrastructures de base.

La ligne Alger- Pékin ouvrira aussi d'autres horizons à Air Algérie et à la classe économique et touristique algérienne.

I.1. PRESENTATION DES DEUX PAYS:

I.1.1. Présentation de l'ALGÉRIE:

DRAPEAU:

NOM OFFICIEL: République démocratique populaire d'Algérie

(Jumhuriya al-Jazairiya ad-Dimuqratiya ash-Shabiya)

LANGUE OFFICIELLE: ARABE

RELIGION D'ETAT: ISLAM

CARTE DE SITUATION:

REGION: AFRIQUE (hémisphère nord)

CAPITALE: ALGER

SUPERFICIE: 2 381 741 Km²

POPULATION: 32 814 000 hab (en 2005)

DENSITE POPULATION: 13.78 hab/km²

ESPERENCE DE VIE:

Total: 70,8 années (en 2008)

Femme: 72,3 années (en 2008)

Homme: 69,4 années (en 2008)

Dinar algérien (DZD) **MONNAIE NATIONALE:**

FUSEAU HORAIRE: GMT + 1

DOMAINE INTERNET: .dz

I.1.2. Présentation de la CHINE :

DRAPEAU:

NOM OFFICIEL: République populaire de Chine

(Zh nghuá Rénmín Gònghéguó)

LANGUE OFFICIELLE: Mandarin

RELIGION D'ETAT: Le bouddhisme, le taoïsme

CARTE DE SITUATION:

REGION: L'ASIE

CAPITALE: PEKIN

PLUS GRANDE VILLE: **SHANGHAI** **SUPERFICIE**: 9 634 057 km²

POPULATION: 1 321 851 888 hab. (en 2008)

DENSITE POPULATION: 136 hab. /km²

ESPERENCE DE VIE:

Total: 81 année (en 2008)

MONNAIE NATIONALE : yuan Renminbi (<u>CNY</u>)

FUSEAU HORAIRE: UTC + 8

DOMAINE INTERNET: .cn

I.2. ACCESSIBILITE DES DEUX AERODROMES :

I.2.1. Introduction:

Un aérodrome accessible est un aérodrome qui répondre aux exigences suivantes:

- Il est ouvert aux opérations de la compagnie;
- Il possède les équipements et les services nécessaires à l'atterrissage de l'avion;
- Il faut que l'équipage possède la compétence requise et la documentation nécessaire pour y atterrir;
- Les conditions météorologiques prévues à l'atterrissage au moins égale aux minima opérationnels.

I.2.2. L'Aérodrome d'Alger:

> Introduction:

L'aéroport d'Alger, ou aéroport Houari Boumediene, est situé à environ 20 km d'ALGER la capitale de l'ALGERIE. Il s'agit du plus important de tous les aéroports algériens. Sa capacité actuelle est d'environ 12 millions de passagers par an pour un flux réel de plus ou moins 4 millions. Il est composé d'une aérogare pour les vols intérieurs, et d'une nouvelle aérogare inaugurée le 5 juillet 2006 pour les vols internationaux Sa capacité est de ~6 millions de passagers/an, et devient, en conséquent, le troisième terminal africain de part sa capacité derrière celui de Johannesburg et du Caire.

L'aérogare est divisée en deux Halls :

- Hall 1 : Destinations des services par la compagnie nationale, Air Algérie.
- Hall 2 : Destinations des servic

es par des compagnies internationales telle que: Air France, Iberia, Aigle Azur.

Des autobus relient l'aéroport au centre-ville d'Alger toutes les 30 minutes.

Compagnies aériennes:

L'aéroport est desservi par la compagnie nationale Air Algérie ainsi que les compagnies :

Air France ;Aigle Azur ;Air Algérie ;Air Niger;Alitalia;British Airways ; Egypt Air;Iberia ;KLM (Dès 2007) ;Lufthansa ;Royal Air Maroc ;Saudi Arabian Airlines ;Spanair (Dès 2007) ;Syrianair ;ufthansa ;Libyan Arab Airlines ;Qatar Airways ;Tassili Airlines ;Tunis Air ;Turkish Airlines ;Air Canada (Dès 2007) .

> Caractéristiques de l'aéroport :

CODE OACI	DAAG
CODE IATA	ALG
Type d'aéroport	Civil
Gestionnaire	EGSA/Alger
Altitude (m)	16
Latitude	36°41 28 N
Longitude	03°12 55 E
m) 23/05 Piste)	3500

m) 27/09 Piste)	3500

Tableau I.1. Caractéristique de l'aéroport d'ALGER.

Figure I.1. L'aéroport d'ALGER.

I.2.3. L'aérodrome de PEKIN:

> Introduction:

L'aéroport international de Pékin est le principal aéroport de PEKIN, capitale de la Chine. Il est situé à une vingtaine de kilomètres au nord-est du centre de la ville, il est disposé de deux terminaux opérationnels actuellement. Le troisième a été construit et fut inauguré le 29 février 2008.

- Le terminal (1) est réservé aux vols domestiques China Southern et Xiamen Airlines;
- Le terminal (2) est utilisé pour sa partie domestique par les autres compagnies domestiques et sert aussi pour les vols internationaux;

- Le terminal (3) a été construit pour répondre aux difficultés que rencontre l'aéroport lié à son accroissement de fréquentation depuis le boom économique. Il permettra aussi de faire face au probable augmentation des passagers due à l'organisation des Jeux Olympiques d'été 2008. Il porte à 76 millions le nombre de voyageurs potentiels par an.

> Caractéristiques de l'aéroport :

CODE OACI	ZBAA
CODE IATA	PEK
Type d'aéroport	CIVIL
m)Altitude)	43.5
Latitude	39° 54' 20" N
Longitude	E "29 '23 °116
Piste 01/19	3800
R36/L18 Piste	3800
L36/R18 Piste	3200

Tableau I.2. Caractéristiques de l'aéroport de PEKIN.

Figure I.2. L'aéroport de PEKIN.

III.1. ASPECT THEORIQUE:

III.1.1. Introduction:

La mise en ligne d'un nouvel avion nécessite une maîtrise de toutes ses performances pour le réseau de ligne desservi par la compagnie.

L'étude d'une ligne : c'est l'étude des paramètres suivants :

- Consommation de carburant;
- Temps de vol;

Dans ce chapitre on s'intéresse à la quantité de carburant (bloc fuel) et le temps de vol (bloc time) nécessaire pour nos étapes et cela en optimisant au maximum la masse au décollage d'où une charge payante maximale.

Pour notre cas on a choisi des étapes long - courriers (Alger - Pékin - Alger ; Alger - Dubaï - Pékin ; Pékin - Dubaï - Alger) que AIR ALGERIE peut les réaliser par l'A330-200.

Pour ce faire, nous avons utilisé le FCOM de A330-200 ; un manuel qui dispose des tableaux de marche (Quick Détermination of F-PLN) ; ces derniers sont établis pour différentes configurations et conditions d'utilisations.

III.1.2. choix de la route aérienne :

Pour le bon choix de la route aérienne « l'itinéraire » il faut s'assurer que :

- Elle soit la plus courte en terme de distance ou en temps de vol;
- Elle soit établit d'une façon à assurer le niveau minimal de sécurité exigé;
- Des procédures doivent être vérifiées pour les vols de long courrier avec les bimoteurs pour l'amélioration de cette route.

III.1.3. Les routes possibles :

III.1.3.1. Les routes directes :

DAAG UA411 MORJA UM978 TUC UM725 SPL UL5 LAMIT UN978 TP UA279 KHR UA137 GOBUN B921 ROGLA A279 BENAG B924 ABLOR B365 SL G549 LP A122 RG G540 LANTO R480 LF A497 NR R480 NOSPI A575 MU B208 NIXAL G343 TMR B458 TZH KMOLA ZBAA

La distance sol de cette route (Dsol) = 5235NM

DAAG UA411 MORJA UM978 TUC ATS CBN UL869 KRK UM600 TSL UM603 EKI ATS BKZ UM702 IBN UW90 SIN UW96 ODIRA G487 ATR A371 DZG R366 URGII G22 UGOBI G82 URGAM B330 SILUS G343 TMR B458 TZH A596 KM KMOIA ZBAA

La distance sol de cette route (Dsol) = 5156NM

DAAG SID3 BOURI UG26 REQIN UM986 ALG UL5 LAMIT UN978 TP UA279 KHR UA137 GOBUN B921 ROGLA A279 BENAG B924 ABLOR B365 SL G549 LP A122 RG G540 LANTO R480 LF A487 NR R480 NOSPI A575 MU B208 NIXAL G343 TMR B458 TZH A596 KM KM01A ZBAA.

La distance sol de cette route (Dsol) = 5066NM

Donc ; la dernière route est celle qui est choisie « en terme de distance ».

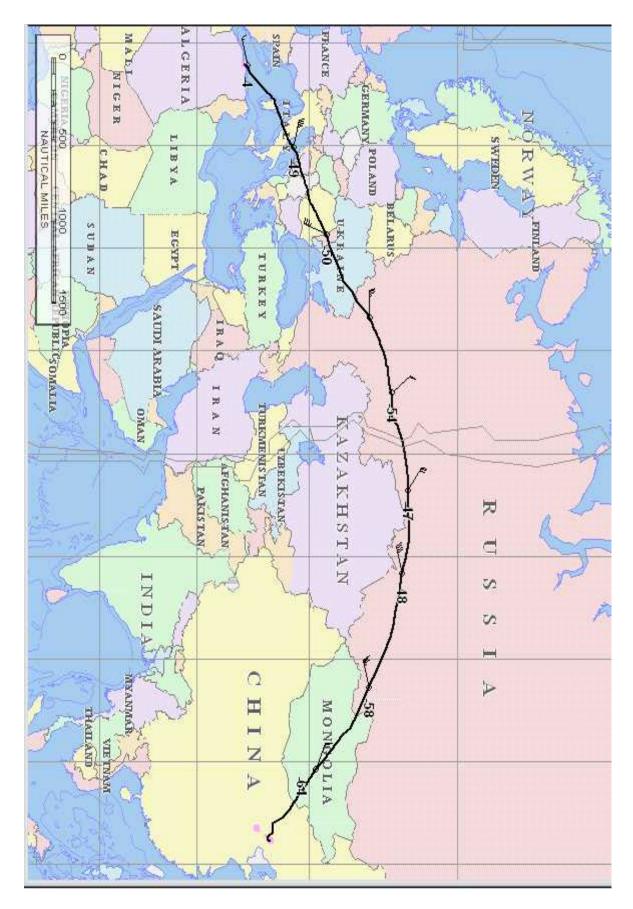


Figure III.1. La plus courte route directe ALGER-PEKIN.

III.1.3.2. route avec escale en DUBAI:

a) ALGER-DUBAI

DAAG SID4 BJA UA411 MORJA UA411 TUC UM978 LCA UR655 BALMA R655 CAK J222 BASEM R785 ZELAF UR785 TRE UP559 LOTIT A791 DESD4V OMDB

La distance sol = 2833 NM;

b) DUBAI-PEKIN

OMDB LALD2E LALDO A791 JT G325 PURPA B215 NUKTI W66 DKO A596 KM KMOIA ZBAA

La distance sol =3450 NM;

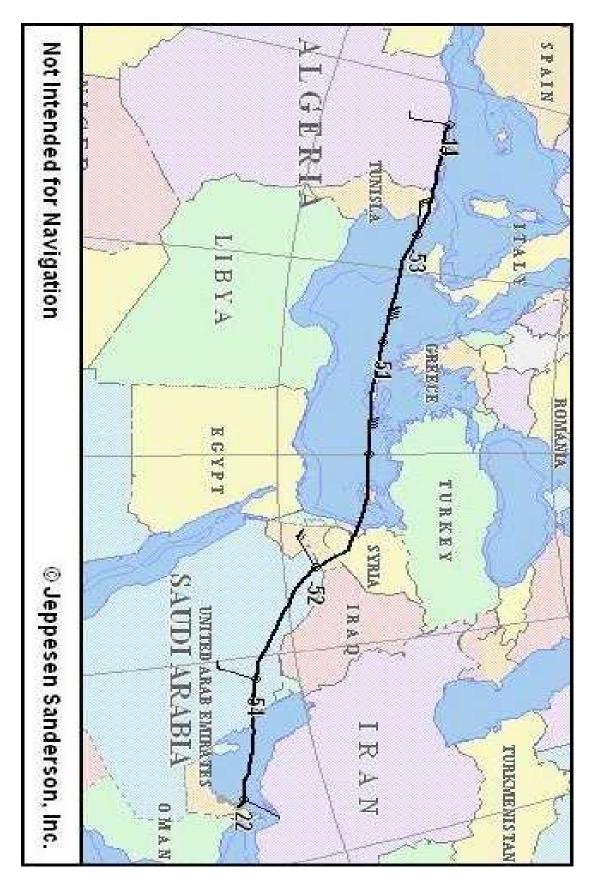


Figure III.2. La route ALGER-DUBAI.

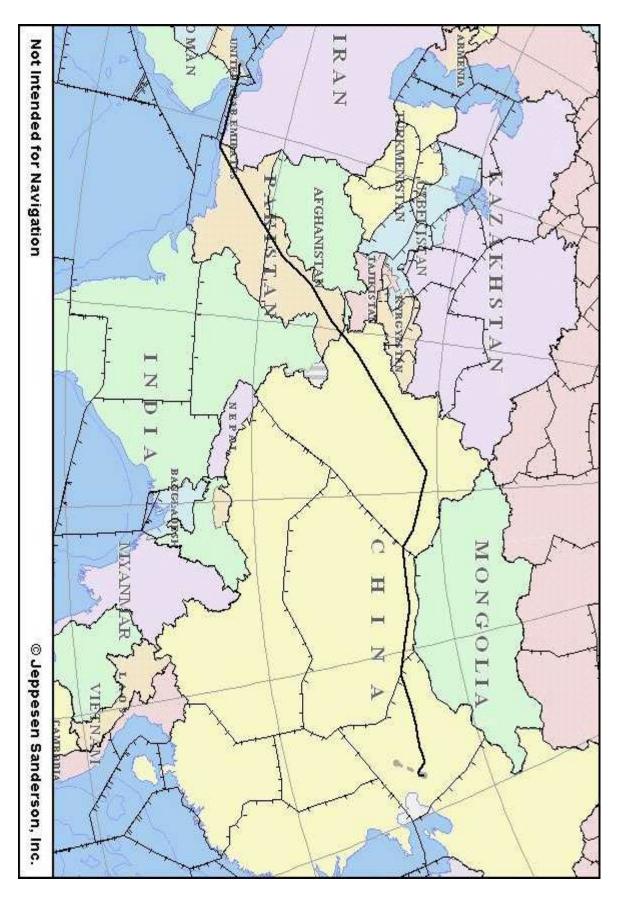


Figure III.3. La route DUBAI-PEKIN.

- Remarque:

Pour définir la nature de la route nous devons vérifier si le vol est normal ou ne peut se faire qu'avec une autorisation ETOPS, pour le déterminer il faut tracer d'abord les cercles de 60 MN et vérifier les conditions nécessaires pour effectuer ce vol.

> Généralités :

ETOPS est l'acronyme de (Extended Twin engins Operating) qui qualifie l'exploitation sur tout les vols des appareils bimoteurs, sur une route comprenant un point situé à plus d'une heure «60 min» de vol à la vitesse monomoteur approuvée, d'un aérodrome adéquat, en conditions standards «ISA» et vent nul.

> Aérodrome adéquat ETOPS :

C'est un aérodrome adéquat sauf que :

- Le service de la circulation aérienne doit être assuré par la tour de control "TWR".
- Le niveau SSLIA doit au moins être égal à 4.

> Aérodrome accessible ETOPS :

Un aérodrome accessible ETOPS est un terrain confirmé déjà comme adéquat ETOPS et satisfait les minima météorologiques ETOPS majorée en termes de plafond et de visibilité durant une duré de validité allant de 1H avant la première heure jusqu'à 1H après la dernière heure d'utilisation de cet aérodrome.

> Détermination de la zone d'opération ETOPS :

- Relever les aérodromes adéquats autour de la route prévue ;
- Tracer les cercles de rayon de 60 mn monomoteur centré sur chaque aéroport adéquat ;
- Si la route prévue est dans les cercles de 60mn, le vol ne nécessite pas une autorisation ETOPS (c'est un vol normal).
- Si elle sort de ces cercles le vol en ETOPS est nécessaire ;

Figure III.4. La route ALGER-PEKIN dans les cercles de 60mn.

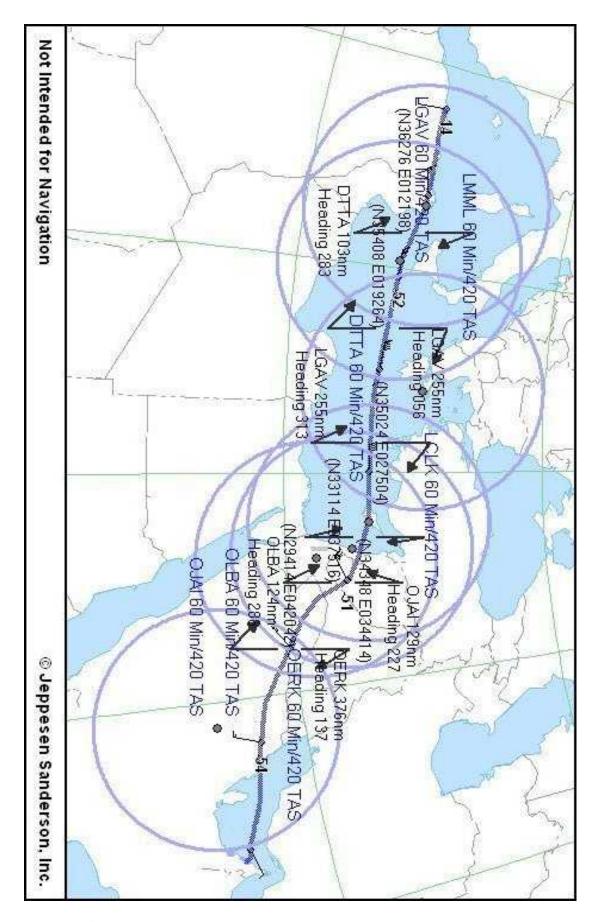
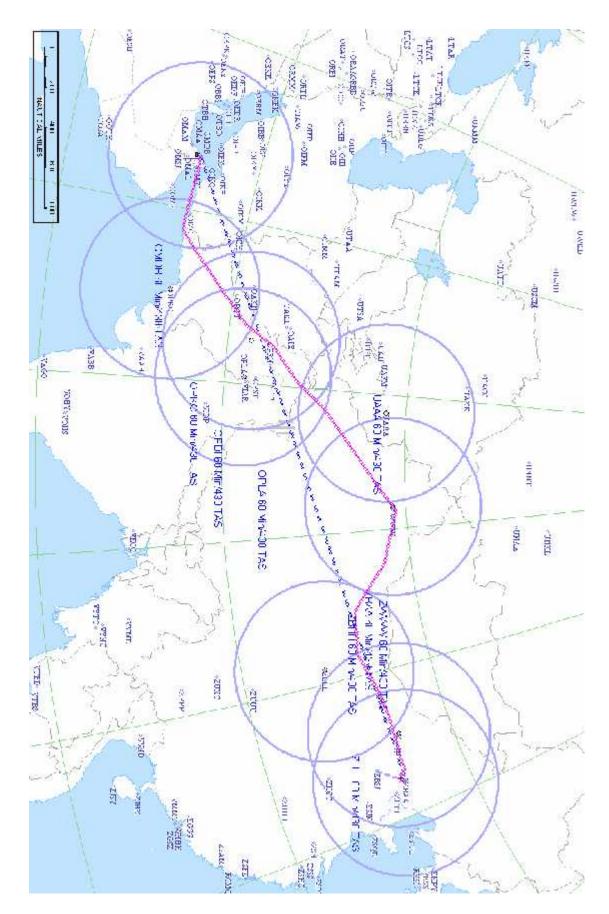
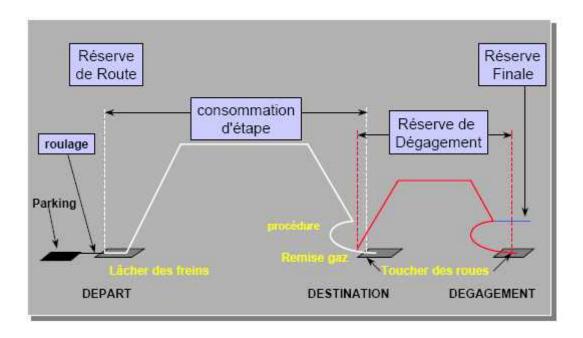



Figure III.5. La route ALGER-DUBAI dans les cercles de 60mn.

FigureIII.6. La route DUBAI-PEKIN dans les cercles de 60mn.


III.1.4. Carburant réglementaire

La planification d'un vol doit reposer sur les conditions d'exploitations dans lesquelles le vol doit être effectué :

- Masses estimées ;
- Conditions météo prévues ;
- Restrictions et procédures ATC.

III.1.4.1. Quantité réglementaire de carburant à embarquer(Qemb) :

Ces quantités sont fixées par l'arrête de 5 NOVEMBRE 1987, paragraphe 7.10 ; chapitre 3 du transport aérienne.

FigureIII.7. Quantité réglementaire de carburant à embarquer.

III.1.4.2. Quantité de carburant au lâcher des freins :

Le « Qlf » est la quantité de carburant au lâcher des freins qui doit être égale à la somme des 4 quantités suivantes :

- Délestage d'étape (d);
- Réserve de dégagement (RD);
- Réserve de route (RR);
- Réserve finale (RF).

Délestage de l'étape « d » :

Quantité de carburant nécessaire depuis le lâcher des freins à l'aérodrome de départ, jusqu'au toucher des roues à l'aérodrome de destination, incluant toutes contraintes prévisibles sur la route (circulation aérienne, météorologie, performances avion....).

Réserve de dégagement « RD » :

Destinée à couvrir la consommation depuis le début de la « REMISE DE GAZ » à l'aérodrome de destination, jusqu'au toucher des roues à l'aérodrome de dégagement le plus éloigné, compte tenu de toutes les contraintes prévisibles.

Cas où il n'est pas nécessaire de prévoir de terrain de dégagement, les conditions suivantes doivent être simultanément remplies :

- a) Durée de vol n'excède pas 3 heures ;
- b) L'aérodrome de destination comporte 2 pistes utilisables par l'avion ;
- c) Pendant les 2heures qui précèdent ou qui suivent l'heure prévue d'atterrissage à destination :

- La visibilité est ≥ 5 km;
- Le plafond est au moins égal à la plus élevée des 2 valeurs suivantes :
- $1500 \mathrm{ft}$ au dessus de la DH ou de la MDH correspondant au type d'approche prévue ;
 - 2000ft au dessus de l'aérodrome.

➤ Réserve de route « RR » :

Destinée à couvrir les écarts entre les conditions réelles du vol et les conditions prévues ; elle présente 5% de délestage de l'étape selon la réglementation JAR OPS (OACI).

➤ Réserve final « RF » :

C'est une réserve forfaitaire destinée à couvrir les besoins imprévus dans la phase finale du vol.

Elle correspond à un vol de 30minute à la vitesse d'attente en température STANDARD à 1500ft au dessus de l'aérodrome de dégagement ou de destination si dégagement pas nécessaire.

Donc:
$$Qlf = d + RD + RR + RF$$

\triangleright Roulage « r »:

C'est la quantité de carburant nécessaire pour assurer la mise en route et le roulage jusqu'au point du lâcher des freins.

Pour l'A330-200 la quantité exigée pour le roulage est de 300 kg.

Donc:
$$Qemb = r + Qlf$$

III.2. ASPECT PRATIQUE:

III.2.1. Détermination de la quantité de carburant, temps de vol et masse de décollage de l'avion pour cette ligne :

Exemple de calcul:	age de l'uvion pour cette agne v
Données:	
	Distance (ALGER-PEKIN)=5066NM;
	T=ISA;
	M.82;
	FL370;
	Vent = +10KT (montée, croisière, descente)
> On a:	
TAXI. W	Γ
	_
TAXI. FU	EL (r)
	=
T/off.WT (ETOW)
	_
ТРІР	P.FUEL (d)
TKII	.r oll (u)
=	Ξ
LANDING.W7	Γ (LW) (at. Destination)
_	_
ΔITF	UEL (RD)
=	CLL (ND)
LANDING	.WT (at. Alternat)
	-
HOL	DING (RF)
L	
ZF	= W (Mb+C/P)

- En faisant le chemin inverse c.à.d ; on commence par ZFW (masse sans carburant), et on arrive à déterminer ETOW (masse estimée pour le décollage) pour l'étape de l'Allée:

Supposant que:

L'avion Full \Rightarrow Nombre de passagers=269;

Alors:

$$PLD = (M + m) \times 269 + M *$$

PLD : la charge payante (C/P = 32t ; pour l'Allée)

M: masse de pax (80 kg);

m : masse de bagage pour un pax (on prend 1bagage de (32 kg) pour l'Allée) ;

M : masse cargo + mail (1500 + 300) kg.

> On a:
$$ZFW = BASIC.WT + PLD$$

 $BASIC.WT(MB) = 122000Kg$ (Caracterestiques de l'A330-200)

$$PLD = (80 + 32) \times 269 + 1800$$

$$PLD = 32000$$

$$\Rightarrow ZFW = 122000 + 32000$$

$$\Rightarrow ZFW = 154000Kg$$

$$LANDING.WTat(alt) = ZFW + HOLDING$$

On prend la Réserve Finale (HOLDING) RF = 2400kg (voir annexe)

$$\Rightarrow LW(alt) = 154\ 000+2\ 400$$

= 156\ 000Kg.

- Calcul de la réserve de Dégagement (ALT.FUEL) (RD) =??
 - ➤ On a: La distance sol pour atteindre l'aérodrome de Dégagement de PEKIN égale à : Dsol= 176 NM

FL 230 (pour le Dégagement on Prend ce niveau pour les deux étapes)

⇒ Dair=??

FCOM 2.05.60 P5		+50	+10	0
	Pour 100	88		100
	Pour 200	177		200
- Par double interpolation:	Pour 176		172NM	

FCOM 2.05.50 P3		Fuel (kg)	Time (h/min)	Correction
	Pour 150	2880	00/31	8
	Pour 200	3463	00/40	10
- Par interpolation:	Pour 172	3137	00/35	8.88

$$ALT.FUEL(corr) = 3137 + corr \times (LANDING.WT(alt) - REF.LANDING) \div 1000$$

= $3137 + 8.88 \times (156400 - 140000) \div 1000$
= 3283 Kg.

LANDING.WT(dest) = 156400 + 3283 = 159683Kg

TRIP.FUEL (d) =??
Dair=??

FCOM 2.05.60 P3		+50	+10	0
	Pour 5 000	4522		5 000
	Pour 5 500	4974		5 500
- Par double interpolation:	pour 5 066		4970	

FCOM 2.05.40 P8		Fuel (kg)	Time (h/min)	Correction
	Pour 4 900	54 282	10/39	192
	Pour 5 000	55 471	10/52	198
- Par interpolation:	Pour 4 970	55 115	10/48	196.2

$$TRIP.FUEL(d) = 55115 + 196.3 \times (159683 - 140000) \div 1000$$

 $= 58 977 \text{kg}.$
 $T/OFF.WT(ETOW) = LANDING.WT(dest) + TRIP.FUEL(d)$
 $= 159683 + 58 977$
 $= 218 660 \text{Kg}.$
 $TAXI.WT = ETOW + TAXI.FUEL(r)$
 $= 218 660 + 300$
 $= 218 960 \text{Kg}.$

- Remarque:

On remarque que La masse estimée pour le décollage Mdéc (ETOW) est inférieure à la masse maxi de structure décolletage MMSD donc ; on est toujours dans les limites certifiées ;

Telle que : 218t<230t.

> On change le niveau de vol : FL390

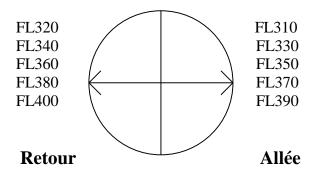
FL330

Et on obtient le tableau suivant :

	FL330	FL370	FL390
Délestage (kg)	63 324	58 977	59 218
RR (kg)	3 167	2 949	2 961
RD (kg)	3 283	3 283	3 283
RF (kg)	2 400	2 400	2 400
Qlf (kg)	72 174	67 609	67 862
r (kg)	300	300	300

Bloc fuel (kg)	72 474	67 909	68 162
Bloc time (h/min)	12/15	12/25	12/25
ETOW (kg)	223 007	218 977	218 901

Tableau III.1. Bilan de l'Allée Alger-Pekin avec M.82.


Commentaire:

Si on compare le **bloc fuel** et le **bloc time** des trois niveaux (trois FL), on remarque que pour l'étape de l'Allée le FL370 est **le meilleur** (en terme de consommation carburant).

> On refait le calcul pour le Retour:

- On prend les mêmes conditions avec un Vent = -10kt.

Espace RVSM

$$PLD = (M+m)*269+M$$
;

M: masse pax (80) kg;

m: masse bagage pour un pax (64 kg pour 2 bagage pour le Retour);

M: masse cargo + mail (5000+300) kg pour le Retour.

$$Arr$$
 On a: $PLD = (80 + 64) \times 269 + 5300 = 44t$;

Mais ; avec cette charge on remarque que la masse estimée pour le décollage Mdéc (ETOW) dépasse la MMSD, donc soit

- On diminue la charge payante transportée « PLD » ; ou
- Une escale technique facultative « ETF »doit être assurée;

➤ Solution (1): Diminuer la PLD

- Si on suppose que : PLD=37t;

On obtient le tableau ci-dessous :

	FL340	FL380	FL400
Délestage (kg)	67 106	63 440	63 913
RR (kg)	3 356	3 172	3 196
RD (kg)	3 909	3 909	3 909
RF (kg)	2 400	2 400	2 400
Qlf (kg)	76 771	72 921	73 418
r (kg)	300	300	300
Bloc fuel (kg)	77 071	73 221	73 718
Bloc time (h/min)	12/51	12/52	12/52
ETOW (kg)	232 415	228 749	229 222

Tableau III.2. Bilan de Retour Pekin-Alger avec M.82.

Commentaire:

- L'ETOW pour le niveau de vol FL340 a dépassé la limite certifiée et on ne peut pas diminuer la PLD plus, donc on peut prendre ce niveau mais avec une ETF
- Il y a un gain dans la consommation au niveau FL380 par rapport au FL400 et on remarque que le temps de vol reste le même sur les deux niveaux.
- **On a l'intérêt** de survoler le FL380 en retour car on a un gain de consommation en carburant d'environ 497kg.

Donc:

Il est préférable de survoler le FL370 pour l'Allée et le FL380 pour le Retour (selon l'espace RVSM).

> On change le régime de vol en LRC pour l'étape ALGER-PEKIN-ALGER et on obtient:

	M.82		L	RC
	FL370	FL380	FL370	FL380
Délestage (kg)	63 324	63 440	58 421	63 045
RR (kg)	3 167	3 172	2 922	3 153
RD (kg)	3 283	3 909	3 283	3 909
RF (kg)	2 400	2 400	2 400	2 400
Qlf (kg)	72 174	72 921	67 026	72 507
r (kg)	300	300	300	300
Bloc fuel (kg)	72 474	73 221	67 326	72 807
Bloc time	12/15	12/52	12/41	13/13
(h/min)				
ETOW (kg)	223 007	228 749	218 104	228 354

Tableau III.3. Bilan d'Allée et Retour avec M.82 et LRC.

Commentaire:

On remarque qu'il y a un gain dans la consommation de carburant en FL370 d'environ 5148 kg en régime LRC par rapport au régime M.82 et de même pour FL380 où on à minimiser d'environ 414kg en LRC.

Donc; il est intéressant de voler en régime LRC en FL370 (pour l'étape de l'Allée) avec 32t, et FL380 (pour le Retour) avec 37t.

> Solution (2): Faire une escale technique facultatif (ETF) :

a) L'intérêt de l'ETF:

Utilisée sur étapes longues lorsqu'il y a des problèmes de :

- limitation décollage;
- limitation capacité réservoir.

b) Le but de l'ETF:

Elle permet de diminuer la quantité de carburant à embarquer, soit d'augmenter la charge, soit pour une charge donnée d'augmenter le rayon d'action.

c) Principe de l'ETF:

Au lieu de déposer un plan de vol sur l'étape (AB), il est déposé sur le trajet (ARC) de manière à diminuer la quantité de carburant à embarquée.

Le point (R) retenu comme point de décision

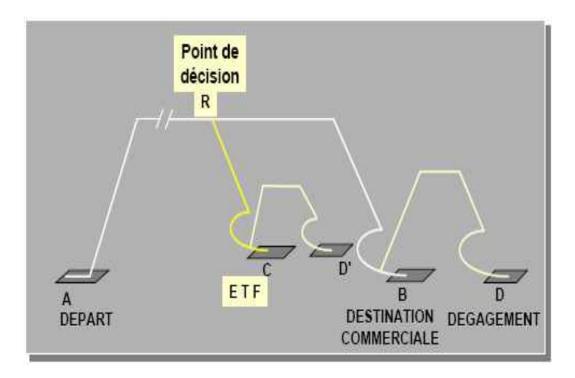


Figure III.8. Principe de l'ETF.

d) Conditions pour le choix de (C) :

Le terrain choisi comme ETF doit :

- Être suffisamment prés de (B) pour que l'avion ne soit pas limité à l'atterrissage en (C).
 - Être suffisamment prés de la route (AB).

e) Préparation avec ETF:

- Vol prévu : AB dégagement D

- ETF : C dégagement D'

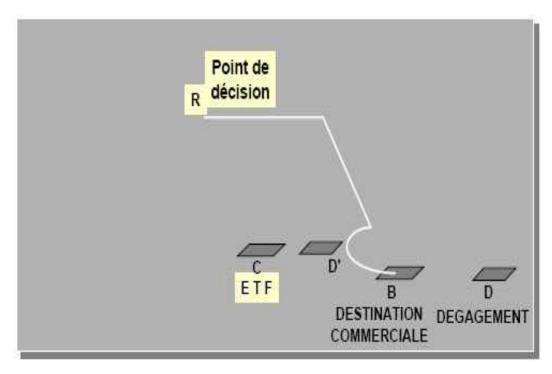


Figure III.9. Préparation avec ETF.

> ALLEE: ALGER - DUBAI

- Données:

Dsol (dest) = 2833 NM Dair (dest) = 2779 NM

Dsol (déga) = 204 NM Dair (déga) = 200 NM

T=ISA

FL370

Vent = +10KT

- **On prend PLD = 32t:**

	M.82	M.82		
	Fuel (kg)	Time (h/min)	Fuel (kg)	Time (h/min)
d	32 099	06/08	31871	06/21
RR	1 605	00/18	1594	00/19
RD	3627	00/40	3627	00/40
RF	2400	00/30	2400	00/30
Qlf	39731	_	39492	_
r	300	_	300	_
Bloc fuel	40031	_	39792	_
Bloc time		07/36		07/50
ETOW	192126	_	191898	_

Tableau III.4. Bilan d'Allée Alger-Dubaï avec M.82 et LRC.

Commentaire:

- On remarque qu'on a un gain de consommation en régime LRC par rapport au régime M82 en FL380 et une petite perte de temps de vol sur les mêmes régimes et le même FL.
- On remarque aussi que l' ETOW en régime LRC est inférieure à celle du régime M82 et inférieure aussi à la MMSD; qui nous permet d'ajouter ce gain de consommation à la charge payante transportée;

Donc; dans ce cas là, il est préférable de voler avec le régime LRC que le régime M82.

➤ ALLEE: DUBAI – PEKIN

- Données:

Dsol (dest) =3450NM

Dair (dest) = 3384NM

Dsol (déga) = 176 NM

Dair (déga) = 172 NM

T = ISA

FL370

Vent = +10KT

→ On prend PLD= 32t

	M .82	M .82		RC
	Fuel (kg)	Time (h/min)	Fuel (kg)	Time (h/min)
D	39272	07/25	38950	07/40
RR	1964	00/22	1948	00/23
RD	3283	00/22	3283	00/25
RF	2400	00/30	2400	00/30
Qlf	46919	_	46581	_
r	300	_	300	_
bloc fuel	47219	_	46881	_
bloc time	_	08/52	_	09/08
ETOW	198955	_	198633	_

Tableau III.5. Bilan d'Allée Dubai-Pekin avec M.82 et LRC.

Commentaire:

Mêmes remarques que l'étape précédente.

➤ RETOUR : PEKIN – DUBAI

- Données:

Dsol (dest) = 3450NM

Dsol (déga) = 204 NM

Dair (dest) = 3532NMDair (déga) = 210 NM

T = ISA

FL380

Vent= - 10KT

- On prend PLD = 44t:

	M .82		LRC		
	Fuel (kg)	Time (h/min)	Fuel (kg)	Time (h/min)	
d	42895	07/44	42906	07/55	
RR	2145	00/23	2146	00/23	
RD	3875	00/41	3875	00/41	
RF	2400	00/30	2400	00/30	
Qlf	51315	_	51327	-	
r	300	_	300	_	
bloc fuel	51615	_	51627	_	
bloc time	_	09/18	_	09/30	
ETOW	215170	_	215181	_	

Tableau III.6. Bilan de RETOUR Pekin-Dubai avec M.82 et LRC.

Commentaire:

- On remarque qu'on a un petit gain sur la consommation et le temps de vol en FL380
- ainsi qu'en régime M82 par rapport au régime LRC;
- Ce bénéfice due au changement de régime de vol (M82 au lieu de MLRC);
- On remarque aussi que l' ETOW en régime M82 est inférieure à celle du régime LRC qu'est inférieure aussi à la MMSD; qui nous permettra d'ajouter ce gain de consommation à la charge payante transportée;
- Ce que implique dans notre étape **l'intérêt** de voler en régime M82.

> RETOUR : DUBAI – ALGER

- Données:

Dsol (dest) = 2833 NM

Dair (dest) = 2900 NM

Dsol (déga)= 190 NM

Dair (déga) = 200 NM

T = ISA

FL380

Vent = -10 KT

- On prend PLD = 44t:

	M.82		LRC		
	Fuel (kg)	Time(h/min)	Fuel (kg)	Time (h/min)	
d	34881	06/24	34982	06/34	
RR	1744	00/19	1749	00/20	
RD	3747	00/40 3747		00/40	
RF	2400	00/30 2400		00/30	
Qlf	42772	_	42878	_	
r	300	_	300	_	
bloc fuel	43072	_	43178	_	
bloc time	_	07/53	_	08/03	
ETOW	205545	_	207129	_	

Tableau III.7. Bilan de RETOUR Dubai-Alger avec M.82 et LRC.

Commentaire:

Mêmes remarques que l'étape précédente.

Conclusion:

D'après notre étude opérationnelle de la ligne nous avons jugé que pour bénéficie plus de carburant, de temps de vol et de charge transportée ; il est préférable de suivre le régime LRC pour l'étape de l'Allée, et le régime M82 pour l'étape de Retour.

II.1. PRESENTATION DE LA COMPAGNIE:

II.1.1. Historique:

La compagnie aérienne a vu le jour quinze ans avant l'indépendance. En effet, la compagnie AIR ALGERIE a été crée en 1947 pour l'exploitation du réseau de lignes aériennes entre l'Algérie et la France.

Ce même réseau été desservi par la société AIR TRANSPORT dont les lignes s'étendaient jusqu'à l'ex Afrique occidentale française.

En 1953, à la suite de la fusion de ces deux organisations, la compagnie du transport aérien AIR ALGERIE entre en activité.

1954 : début de la guerre de libération nationale AIR ALGERIE dispose d'une flotte composée de quatre avions conventionnels à pistons DOUGLAS (DC4).

1956 : l'introduction des LOKHEED « constellation » porte le nombre de la flotte à 10 avions.

1957 : acquisition de deux autresDC4, ainsi que deux DC3 et deux Nord Atlas cargo.

1959 : mise en service de la première caravelle, avion propulsé par des turboréacteurs.

1962 : a cette date, ou l'Algérie acquiert l'indépendance nationale après la guerre de libération nationale qui l'a opposé à la France. La flotte existante à ce moment là est composée de :

- 04 Caravelles;
- 10 DC4;
- 03 DC3.

En 1963, AIR ALGERIE devient une compagnie nationale sous tutelle du ministère des transports.

L'indépendance de l'Algérie va entraîner les départs des personnels de nationalité Française et une « Algérianisation progressive ». AIR ALGERIE a développé son réseau progressivement grâce à des nouvelles lignes internationales à destination des pays avec lesquels l'Algérie a établit des relations diplomatiques et commerciales (Europe, Afrique et moyen Orient) 35 destinations vers l'étranger et 26 destinations intérieur.

1966 : l'Algérianisation du personnel navigant commercial est menée à son terme.

1968 : les actions encore détenues par les sociétés étrangères sont rachetées par l'état algérien.

Acquisition de quatre CONVAIR G60 et retrait des DC4 et DC3.

1971 : mise en service des premiers SUPERJET BOEING, l'effort fourni pour la formation de personnel navigant algérien permettra la composition des premiers équipages entièrement algériens.

1972 : nouveau succès pour la compagnie ; Au sein des ateliers de maintenance de DAR EL BEIDA (la première grande visite sur un appareil de type CARAVELLE).

1984 : à cette date l'Algérianisation du personnel navigant technique peut être considéré comme achevés : 98% de l'effectif du personnel de conduite est composé de nationaux.

II.1.2. Objectifs d'Air Algérie :

La compagnie **Air Algérie** est soucieuse d'améliorer la prestation de ses services et de développer ses activités de transport et de travail aérien, tels sont conçus les objectifs selon les principaux points suivants :

- > Satisfaire de manière ponctuelle et régulière la demande de la clientèle;
- Fidéliser la clientèle et en attirer davantage;
- Améliorer la qualité de service notamment en matière de sécurité, hygiène et confort;

- Mettre en place les méthodes et techniques de production notamment la base de maintenance;
- L'entreprise doit aussi répondre aux objectifs de la politique national dans le domaine du transport à savoir :
 - Soutenir l'action de la décentralisation;
 - Contribuer à l'équilibre régional;
 - Répondre aux besoins d'une coopération internationale multiforme.

II.1.3. Réseaux:

Le réseau d'Air Algérie se décompose en deux :

- Réseau Domestique;
- Réseau International.

> Réseau domestique :

Actuellement 29 villes du territoire national sont reliées par les lignes de la compagnie entre le Nord et le sud du pays, le tableau ci-dessous (II.1) résume le réseau domestique :

LES VILLES DU NORD	LES VILLES DU SUD
ALGER	ADRAR
ANNABA	BECHAR
BATNA	BISKRA
BEJAIA	BORDJ BADJI MOKHTAR
CONSTANTINE	DJANET
JIJEL	EL GOLEA
MASCARA	EL OUED
ORAN	GHARDAIA
TEBESSA	HASSI MESSAOUD
TIARET	ILLIZI
TLEMCEN	IN AMENAS
SETIF	IN SALAH
	OUARGLA
	TAMANRASSET
	TIMIMOUN
	TINDOUF

Tableau II.1. Le réseau domestique.

> Réseau international :

Le réseau international d'Air Algérie est un réseau très vaste, il constitue les escales suivantes :

FRANCE	EUROPE 1	EUROPE 2	M et M.O.	AFRIQUE
PARIS CDG	MADRID	BERLIN	TUNIS	NIAMEY
MARSEILLE	BARCELONE	PRAGUE	CASABLANCA	BAMAKO
LILLE	PALMA	SOFIA	TRIPOLI	CONAKRY
METZ	ALICANTE	MOSCOU	CAIRE	LAGOS
LYON	ROME	ISTANBUL	DJEDDA	OUAGADOUGOU
TOULOUSE	GENEVE		BAHRAYN	ABIDJAN
NICE	FRANKFURT		AMMAN	NOUAKCHOUTT
BORDEAUX	BRUXELLES		DAMAS	
CHARLEROI	LONDRES		BEYROUTH	
	GATWICK		DUBAI	

Tableau II.2. Le réseau international.

II.1.4. Organisme de la compagnie :

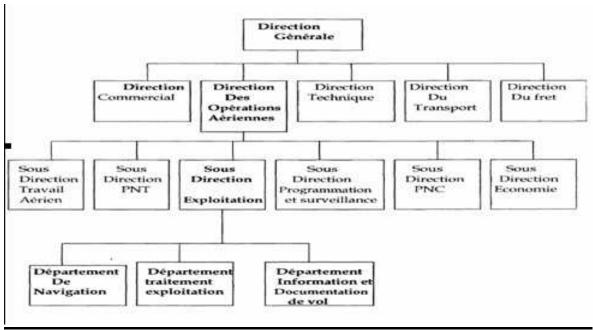


FIGURE II .1. . ORGANISME DE LA COMPAGNIE

II.1.5. La flotte d'Air Algérie :

La flotte est renouvelée par l'acquisition de nouveaux avions tels que les Boeing 737 - 800, 737 - 600, les ATR - 72-500 et par des Airbus A330 - 200.

A ce jour, Air Algérie compte une flotte de 29 avions composées de :

- Passagers:

B737 – 800 10 Avions

B737 – 600 5 Avions

B767 – 300 3 Avions

ATR 72 6 Avions

A330 – 200 5 Avions

- Cargo:

B737 – 200 1 Avion

L 382 G 1 Avion

1-1/FLOTTE D'AIR ALGERIE

AVION	IMMAT.	MOTEUR	MTOW	MLW	MZFW	BRUIT	VITESSE
B727-200	7T-VEB	JT8-D9A	78 200	68 100	62 600	li .	
	7T-VEI 7T-VEM 7T-VEP 7T-VET 7T-VEU 7T-VEV 7T-VEW 7T-VEX 7T-VEH	JT8-D15	86 410	72 600	63 900		0.8
	7T-VEF	JT8-D9A					
B737-200 2D6	7T-VEG 7T-VEJ 7T-VEK 7T-VEL 7T-VEN 7T-VEO 7T-VEQ 7T-VER 7T-VEY	JT8-D15	52 400	46 720	43 100		0.74
8737-200	7T-VED	JT8-D9A	52 400	46 720	43 100	11	0.74
2D6C	7T-VES	JT8-D15					30.2
B737-200 2T4	7T-VEZ 7T-VJA 7T-VJB	JT8-D17	56 473	48 400	43 100		0.73
B737-800 8D6	7T-VJJ 7T-VJK 7T-VJL	Cfm56- 7826	78 244	65 317	61 688	III III	0.78
B737-800 806	7T-VJM 7T-VJN 7T-VJO 7T-VJP	Cfm56- 7B24	72 802	65 317	61 688		0.78
B737-600 6D6	7T-VJQ 7T-VJR 7T-VJS 7T-VJT 7T-VJU	Cfm56- 7B22	65 090	54 657	51 482	Ш	
B767-300	7T-VJG 7T-VJH 7T-VJI	Cf6- 80C2B2F	156 489	136 077	126 098		8.0
A310-203	7T-VJC 7T-VJD	CF6-80A3	138 600	121 500	111 500	III	0.8
L 382 G	7T-VHG 7T-VHL	501-D22A	70 077	61 155		III.	HSC
F27-400 M	7T-VRV 7T-VRQ 7T-VRL 7T-VRU 7T-VRJ 7T-VRK 7T-VRR	RR536- 7R	20 250	18 597	17 917		LRC

F = FOKKER; L = LOOCKEED; B = BOEING; A = AIRBUS.

II.2. PRESENTATION DE L'APPAREIL:

II.2.1. Introduction:

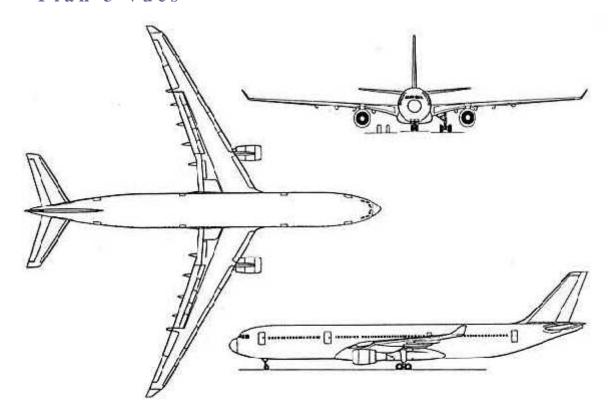
Pour le choix de l'appareil il faut prendre en considération plusieurs paramètres :

- La consommation du carburant;
- Performance de l'avion;
- Le réseau (court ou long courrier);
- La demande (nombre de passagers).

Pour notre étude de la ligne ALGER –PEKIN on a choisit l'avion A330-200.

II.2.2. Historique:

L'Airbus A330-200 est un biréacteur gros porteur, moyen et long-courrier. Cet appareil bénéficie des technologies les plus modernes et notamment des commandes de vol électriques.


L'A330-200 figure parmi les avions de ligne les plus avancés à l'heure actuelle, construit par AIRBUS INDUSTRIE lancé en NOVEMBRE 1995 pour concurrencer surtout le marché américain (BOEING).

Bien que l'A330 était le plus gros porteur au monde c'est aussi celui qui réalise plus de succès auprès des autres compagnies ; grâce à son équipement très sophistiqué.

Figure II.2. L'AIRBUS A330-200.

Plan 3 vues

II.2.3. Fiche de présentation technique :

- **Type d'avion :** Avion de ligne

- Constructeur: Airbus

- Pays: Europe

- Année du premier vol : 1992

> Caractéristiques :

Motorisation: biréacteurs.

Configuration: 269 à 361 passagers.

Dimensions:

- Dimension de la cabine :

Longueur: 45.00m.

Hauteur: 2.25m.

Largeur: 5.28m.

- Dimension extérieure :

Longueur: 59.00 m.
Envergure: 60.30 m.
Hauteur: 17.80 m.

Diamètre du fuselage: 05,64 m.

Poids:

Poids maximal au décollage: 233 tonnes.

Poids maximal à l'atterrissage: 182 tonnes.

Poids maximal structure sans carburant: 168 tonnes.

Masse de base: 122 tonnes.

Charge offerte maximale: 046 tonnes.

Capacité maximale de carburant: 139 100 litres.

Fournisseurs:

Moteurs : General Electric en partenariat avec la

SNECMA 2 CF6-80E1A3 de 72 000 livres chacun

Galleys: Sogerma et Muehlenberg

Système de réfrigération galleys : BE Aerospace

Sièges: Sicma (Première et Tempo), Recaro

(Affaires)

Système Vidéo : Rockwell **Groupe auxiliaire de puissance (APU) :** Honeywell

Roues et freins : Goodrich-Messier

Avionique : Rockwell et Honeywell

Pneus: Michelin

Performances:

Vitesse de croisières : 850 km/h.

Distances franchissable : 10 800 km.

Autonomie : 12000 km.

> Plan de la cabine :

Figure II.3. Plan de la cabine

IV.1. Aspect théorique:

IV.1.1. Introduction:

En vol, les problèmes de dépressurisation ou panne moteur, sont potentiels, c'est pour cela qu'une étude opérationnelle doit être établie avant l'ouverture d'une nouvelle ligne (survolant une région importante).

Ces problèmes ont un impact important sur les altitudes des vols.

- En cas de dépressurisation cabine, la descente d'urgence est nécessaire pour des raisons de contraintes du système d'oxygène et non pas opérationnelles.

La descente ne peut pas être toujours actionnée dans les mêmes conditions, car dans les zones montagneuses une étude de route est nécessaire pour évaluer si une procédure de déroutement est nécessaire ou pas.

- En cas de panne moteur durant le vol la poussée disponible est en général insuffisante pour maintenir le niveau de vol normal, le pilote doit afficher le régime d'urgence (maxi continu MCT), et effectue une descente vers un niveau de vol plus bas appelé niveau de rétablissement.

IV.1.2. Systèmes d'oxygène:

Les deux principaux systèmes d'oxygène qui existent sont :

➤ Le système chimique :

Le système chimique est caractérisé par :

- Générateur indépendant, qui se déclenche lorsque les masques d'oxygène sont tirés ;
- Un débit d'oxygène et une pression de fourniture qui sont indépendants par rapport à l'altitude cabine ;

- Une fourniture en oxygène aux passagers pour une période spécifique qui peut être 15 ou 22 minutes ;
- Un profil de vol maximal qui est prédéterminé par un tel système.

➤ Le système gazeux :

Le système gazeux a certains avantages plus que le système chimique :

- Il est modifiable car on peut sélectionner le nombre de bouteilles d'oxygène à haute pression (plus de 14 cylindres A 330) ;
- Le débit et la pression d'oxygène fourni dépendent de l'altitude ;
- Le débit est contrôlé par un altimètre de régulation de débit sur chaque masque, il permet une consommation optimale d'oxygène par les passagers (altitude basse on aura une consommation moindre d'oxygène);
- Le temps d'alimentation en oxygène dépend du profil de vol, et de nombre de cylindres installés ;
- Il n y a plus d'approvisionnement d'oxygène au dessous de FL 100.

IV.1.3. Types de dépressurisation :

IV.1.3.1 Dépressurisation lente :

Elle se caractérise par une diminution de pression cabine, donc un taux de montée cabine (Vzc) continu, qui peut être élevé, par exemple +1000 ft/min.

La détection de l'anomalie d'un vario cabine élevé peut être initialement physiologique au niveau des oreilles (sensation d'avoir mal aux oreilles) .dans le cas d'une dépressurisation très lente ($V_ie=+200\ a+300\ ft/min$) seul un « scanning» des systèmes, régulier dans le temps (par exemple toutes les 30 minutes en croisière ou à chaque point tournant), permet de détecter assez tôt une anomalie, avant d'atteindre des altitudes cabines excessives.

A titre d'exemple, un avion volant au FL 390 avec une Δ pmax = 8 PSI a en croisière une altitude cabine Zc = 8000 ft.Un vario cabine de +1000 fi/min laisse à l'équipage 2 min Avant les alarmes à 10 000 fi cabine et 6 min avant la chute des masques à oxygène.

À la suite de la détection, une annonce << ennuis de pressurisation » permet de

recentrer l'équipage sur un même projet d'action le commandant de bord décide alors de la répartition de taches : qui a en charge la trajectoire (pilotage et télécommunication) et qui traite l'incident.

IV.1.3.2. Dépressurisation rapide ou explosive :

La décompression rapide se traduit par un vario cabine très élevé laissant peu de temps de réaction à l'équipage avant l'alarme altitude cabine excessive.

La décompression explosive est une décompression brutale et immédiate suite à une avarie de structure (perte d'un hublot, ouverture d'une porte, crique fuselage, explosion à bord ...). Elle se caractérise par :

- Le bruit d'une forte déflagration;
- Du brouillard en cabine (poussières en suspension, vapeur d'eau) ;
- Sensation de froid important;
- Le fait d'avoir mal aux oreilles, aux yeux.

IV.1.3.3. profil de vol:

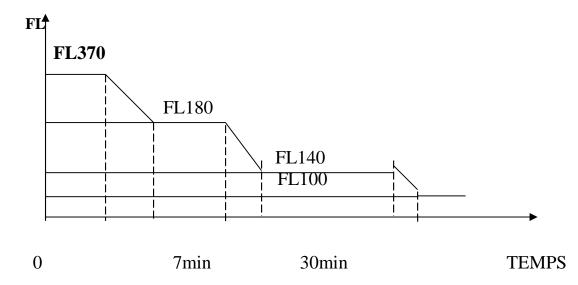


Figure IV.1. Profil de descente (A330-systeme 22 min).

Suite à une dépressurisation cabine, l'altitude pression doit être considérée comme étant identique à celle de l'avion, en conséquence il est possible d'établir un profil de vol pour l'avion qui va prendre en considération les exigences en oxygène.

Ce profil dépend du système d'oxygène installé :

- **Système chimique :** c'est un profil fixé publié dans le (FCOM pour AIRBUS), (FPPM pour BOEING) ;
- **Système gazeux** dépend du nombre de bouteilles d'oxygène, et l'emplacement d'obstacles. Ce profil représente le niveau maximal qui peut être suivi en respectant la capacité de système d'oxygène.

IV.1.3.4. Franchissement d'obstacle, cas de dépressurisation :

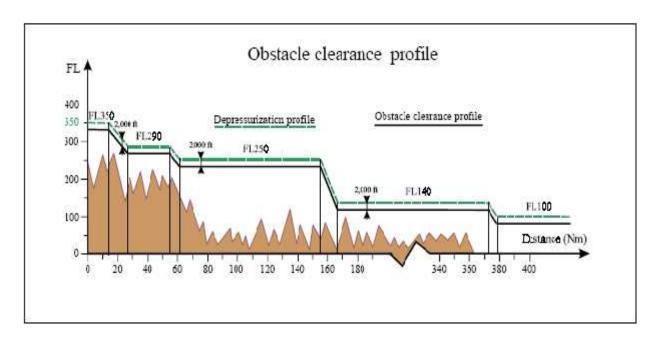


Figure IV.2. Franchissement d'obstacle, cas de dépressurisation.

La trajectoire nette n'est pas exigée en cas de dépressurisation cabine, la trajectoire nette doit être considéré comme une marge sécuritaire, quand il y'a un risque que l'avion ne puisse pas maintenir les performances de descente.

En cas de dépressurisation cabine, le profil de descente doit effacer n'importe quel Obstacle avec une marge de 2000 ft.

Engine failure (MCT) Drift down ceiling

IV.1.4. procédures drift down, cas de panne moteur :

Figure IV.3. Procédures drift down, cas de panne moteur.

Lorsqu'on a une panne moteur à l'intérieur d'une région montagneuse pendant la croisière, on doit appliquer les procédures suivantes :

- Choisir MCT sur le moteur restant ;
- Ralentissement à la vitesse (green dot AIRBUS) (drift down BOEING);
- Descendre à cette la vitesse jusqu'a atteindre le nouveau plafond.

IV.1.4.1 exigence réglementaire :

> En route – un moteur en panne :

(a) L'exploitant doit s'assurer que les données relatives à la trajectoire nette en route, un moteur en panne figurant dans le manuel de vol, compte tenu des conditions météorologiques prévues pour le vol, sont conformes aux

dispositions de l'un ou l'autre des deux paragraphes (b) ou (c) en tout point de la route. La trajectoire nette de vol doit présenter une pente positive à une hauteur de 1 500 ft au-dessus de l'aérodrome prévu pour l'atternissage suite à une panne de moteur. Si les conditions météorologiques requièrent l'utilisation de systèmes de protection contre le givrage, l'influence de leur utilisation sur la trajectoire nette de vol doit être Prise en compte.

- **(b)** La pente de la trajectoire nette de vol doit être positive à 1 000 ft au-dessus du sol et de tous les obstacles situés le long de la route, jusqu'à une distance de 9,3 km (5 NM) de part et d'autre de la route prévue.
- (c) La trajectoire nette de vol doit permettre à l'avion de poursuivre son vol, de l'altitude de croisière jusqu'à un aérodrome, où il peut, la trajectoire nette de vol présentant une marge verticale, d'au moins 2000 ft, au-dessus du sol et de tous les obstacles situés le long de la route, jusqu'à une distance de 9,3 km (5 NM) de part et d'autre de la route à suivre conformément aux dispositions des paragraphes (1) à (4) ci-dessous :
 - (1) le moteur est supposé tomber en panne à l'instant le plus critique de la route;
 - (2) il est tenu compte des effets du vent sur la trajectoire de vol;
 - (3) la vidange du carburant est autorisée pour autant que l'avion puisse atteindre l'aérodrome avec les réserves de carburant requises et à condition qu'une procédure sûre soit appliquée;
 - (4) l'aérodrome où l'avion est supposé attenir après une panne de moteur doit être conforme aux critères suivants :
 - Les exigences en matière de performances en égard à la masse prévue à l'atterrissage sont Satisfaites ;
- Les messages ou prévisions météorologiques ou toute combinaison des deux, ainsi que les informations sur les conditions au terrain indiquent que l'avion peut se poser en toute sécurité à l'heure prévue pour l'atterrissage ;
 - l'exploitant doit augmenter les limites de largeur indiquées aux paragraphes (b) et (c) Ci-desso

us à 18,5 km (10 NM) si la précision de navigation n'est pas respectée à 95 %.

IV.1.4.2 Performances fournies par le constructeur :

Figure IV.4. Trajectoire brute et nette.

- Trajectoire brute: c'est le chemin de vol réellement piloté par avion après la panne du

moteur. La trajectoire brute de vol doit être déterminée à n'importe quelle vitesse choisie avec :

- Le centre de gravité le plus défavorable ;
- Le moteur critique inopérant.
- **Trajectoire nette:** ces trajectoires nettes sont fournies pour toutes masses, altitudes pression et température, la configuration d'essai étant la suivante :
 - Centrage le plus défavorable ;
- Les moteurs restants, à la poussée Maxi-continu (vitesse choisie par le constructeur mais qui est en général celle de finesse max. avec et sans dégivrage).

- cas d'un moteur hors de fonctionnement :

Les pénalisations en pente étant les suivantes :

Bimoteur	Trimoteur	Quadrimoteur
1,1%	1,4%	1,6%

IV.1.4.3. Obstacles à considérer :

> Franchissement latéral des obstacles :

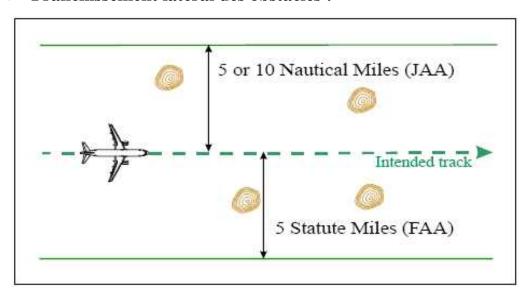
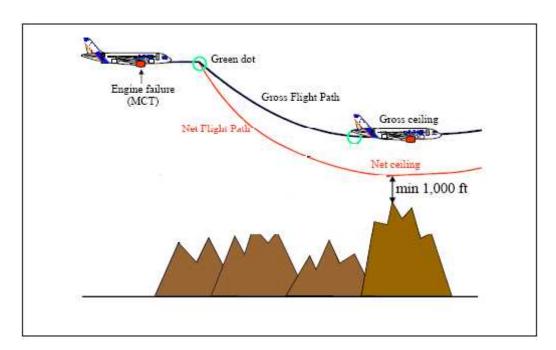


Figure IV.5. Franchissement latéral des obstacles.

Les obstacles à prendre en considération le long de la route sont ceux qui sont situés à :


- 5 Nautical Miles de part et d'autre de la route (JAA) ;
- 5 Statue Miles de part et d'autre de la route (FAA).

Pour effectuer une étude détaillée de la route, une carte topographique sera employée, et les obstacles les plus élevés à l'intérieur de la largeur du couloir exigé seront déterminés.

> Franchissement vertical des obstacles :

\rightarrow Condition 1: (marge 1000 ft)

Cette règle nous permet de survoler l'obstacle verticalement avec une marge de 1000 ft.

Figure IV.6. Franchissement vertical des obstacles (marge 1 000 ft).

- La méthode utilisée :

- À partir d'une carte topographique, déterminer 'obstacle le plus pénalisant dans le couloir et ajouter 1000 ft, pour obtenir la hauteur **H1**;
- \rightarrow Déterminer le plafond net de descente appelé \mathbf{H}_2 avec une masse constante, par exemple choisir la masse de l'avion la plus pénalisante (grande) lorsque l'avion entre dans la zone montagneuse.

- Conclusion:

Si \mathbf{H}_2 est plus grand que \mathbf{H}_1 l'étude de route est complète et le franchissement d'obstacle est assuré à tout moment.

Si \mathbf{H}_2 est inférieure à $\mathbf{H1}$, une étude plus détaillée doit être faite en se basant sur la deuxième condition, ou une limitation de masse au décollage doit être effectuée, ou une nouvelle route doit être trouvée.

→ Condition 2 : (marge 2000 ft)

Cette règle nous permet de survoler l'obstacle avec une marge de 2000 ft, mais avec une descente.

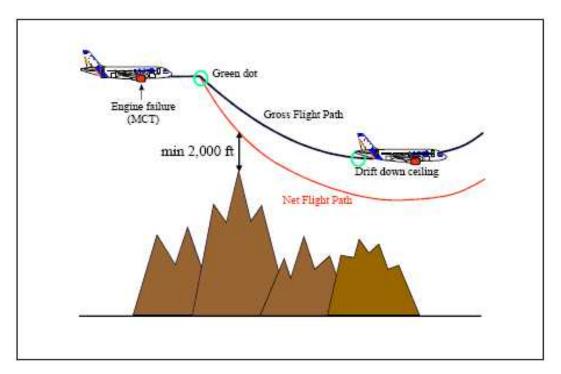


Figure IV.7: Franchissement en descente des obstacles (marge 2 000 ft).

Dans ce cas le CDB peut appliquer l'un des trois procédures suivantes :

- Faire un demi- tour;
- Détourner;
- Continuer son chemin.

- La méthode utilisée :

Identifier le point critique (A) dans la route: c'est le point pour lequel si une panne moteur est survenue, la trajectoire nette doit effacer l'obstacle le plus pénalisant avec une marge de 2000 ft au minimum.

La masse de l'avion au point critique est la plus élevée qui peut être assumée en ce point dans les conditions météorologiques les plus pénalisantes, ce point peut être :

- Le point de non retour (PNR) A : c'est le point après lequel, il est impossible de retourner, autrement la marge de 2000 ft de la trajectoire nette n'est pas respectée.
- Le point de continuité B : c'est le point après lequel, il est possible de continuer dans la route, car la marge de 2000 ft est respectée.
- Repérer dans le couloir tous les obstacles pénalisants qui va les survoler durant la descente, et superposer ces obstacles sur le graphe, avec la distance sur l'axe horizontal et la hauteur sur l'axe vertical.
- Déterminer la trajectoire nette de retour (prend en considération l'altitude et le temps perdus durant le retour), et la trajectoire nette pour continuer la route en prenant en compte des conditions de vent défavorable, et pour la masse on utilise la masse instantanée (au moment de la panne).
- Superposer les trajectoires nettes sur le graphe précédent ainsi les obstacles pénalisants et vérifier que la trajectoire nette efface l'obstacle avec une marge au Minimum 2000 ft.

- Conclusion

Si le point (PNR) A est obtenu après le point B, la procédure doit être Comme suit :

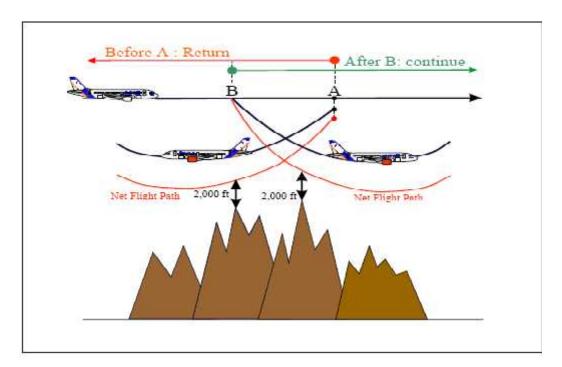


Figure IV.8. Le PNR situé après le point B.

- Avant A: retourner.
- Après B : continuer.
- Entre A et B : retourner ou continuer.

Sinon une autre procédure appropriée doit être trouvée (aéroport de dégagement proche, procédure de déroutement...).

Si le point **PNR-A** est obtenu avant le point **B**, la procédure doit être comme suit :

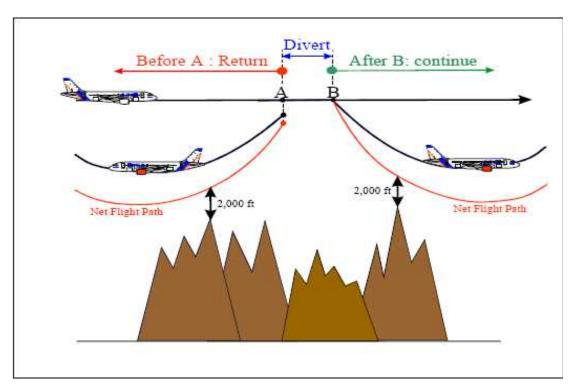


Figure IV.9. Le PNR situé avant le point B.

- Avant A: retourner;
- Après B : continuer ;
- Entre A et B : établir une procédure de déroutement, en respectant la marge de franchissement d'obstacle.
- Si se n'est pas possible, une réduction de masse au décollage doit être établie.
- Sinon une autre procédure approprie doit être établie.

IV.2. ASPECT PRATIQUE :(à partir de jet plan)

Profils de vol (vue de face des obstacles):

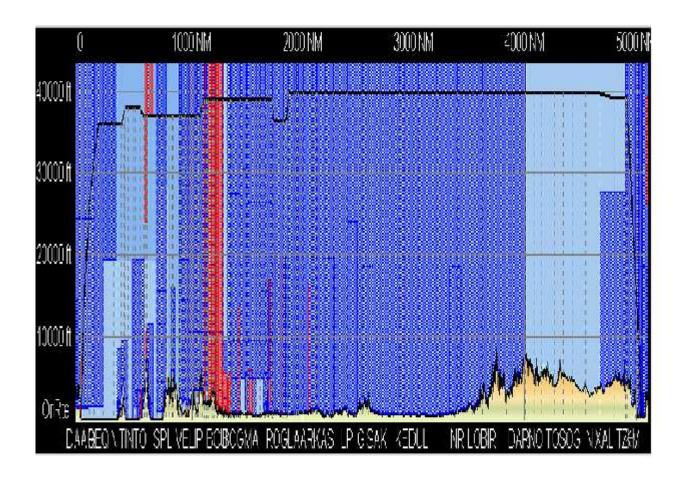


Figure IV.10. Profil de vol ALGER-PEKIN.

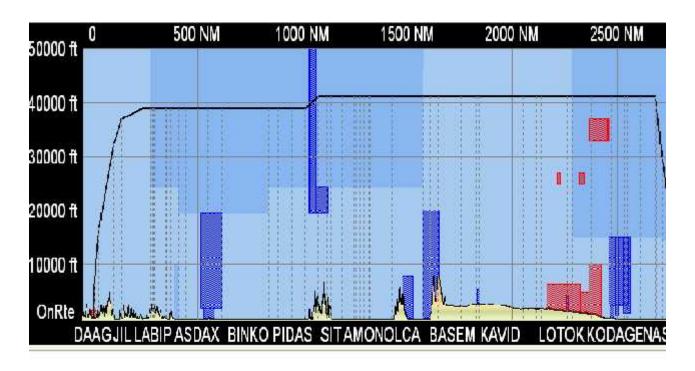


Figure IV .11. Profil de vol ALGER-DUBAI

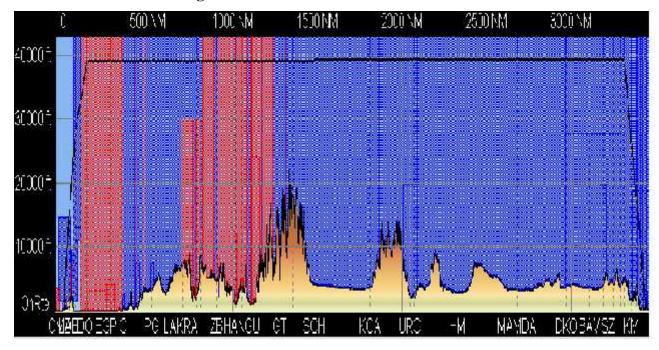


Figure IV.12. Profil de vol DUBAI-PEKIN.

NOTE:

Dans notre étude, nous prenons en considération seulement les obstacles situés dans les 5NM de part et d'autre de la route ;

Donc avec ces hypothèses nous devons étudier les procédures de dépressurisation et de panne moteur.

IV.2.1. Procédure de dépressurisation:

> Etape : ALGER-PEKIN (ALG-PEK)

Les procédures sont appliquées à partir de :

NOKOLOKTI R480 NILAN R480 NOSPI

Dans le cas de dépressurisation la procédure drift Down doit être appliquée et basée sur la définition des points de non retour :

PNR= 55 NM après NOVOLOKI.

Dépressurisation avant PNR					
Procédure	Retourner à G	H via R480 en	descendant au	niveau de réta	blissement:
	Option1: procéder à (NSK/UNNT) via R480 GH R480 DCT NSK.				
	Option2: procéder à (BU/UNBB) via R480 NOVOLOKTI A91L AZOUO DCT BU				
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100
vol	FL180		FL140		
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO
temps		7mn		30mn	

Tableau IV.1. Procédures de dépressurisation avant PNR.

Dépressurisation après PNR						
Procédure	Descendre au	Descendre au niveau de rétablissement:				
	Option1: procéder à (ABK/UNAA) via R480 UNWW A91 LARNA A308 DCT ABK.					
	Option2: procéder à (KRS/UNKL) via R480 UNWW A91 KEDRA A91P ZAGORIA B151B DCT KRS.					
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100	
vol	FL180		FL140			
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO	
temps		7mn		30mn		

Tableau IV.2. Procédures de dépressurisation après PNR.

Etape: ALGER - DUBAI (ALG-DXB)

La procédure est appliquée à partir de :

CAK J222 BASSEM UR785 ZELAF UR785 TRF UP559 LOTIT A791 DESDI DESD4V OMDB.

Dans le cas de dépressurisation la procédure drift Down doit être appliquée et basée sur la définition des points de non retour :

PNR=28NM Après CAK.

Dépressurisat	Dépressurisation avant PNR				
Procédure	Retourner à C	AK via J222 e	n descendant a	u niveau de rét	ablissement:
	Option1: procéder à (KAD/OLDB) via R222 CAK W201 DCT KAD.				
	Option2: procéder à (LCA/LCLK) via J222 CAK R655				
	BALMA UR6555 DCT LCA.				
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100
vol	FL180		FL140		
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO
temps		7mn		30mn	

Tableau IV.3. Procédures de dépressurisation avant PNR

Dépressurisation après PNR						
Procédure	Descendre au	Descendre au niveau de rétablissement:				
	Option1: proc	éder à (DAM/	OSDI) via J22	22 LATEB J222	2 BASEM	
	R785 ABBAS	S G202 SOFIA				
	Option2: procéder à (TRF/OUTR) via J222 LATEB J 222 BASEM R785 ZELAF UR785 RASLI DCT TRF.					
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100	
vol	FL180		FL140			
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO	
temps		7mn		30mn		
-			•			

Tableau IV.4. Procédures de dépressurisation après PNR.

Etape: DUBAI - PEKIN (DXB - PEK)

Durant le vol DUBAI - PEKIN, à partir de PURPA B215 KCA B215 XBL NUKTI W66 DKO, (c'est le secteur critique par rapport au terrain le plus haut de la route).

Alors, dans le cas de dépressurisation la procédure Drift down doit être appliquée et basée sur la définition des points de non retour:

PNR1=18NM après ADINA;

PNR2=90NM après PURPA;

PNR3=180NM après KCA.

Dépressurisation avant PNR1					
Procédure	Retourner à A	DINA via G32	25 en descenda	nt au niveau de	;
	rétablissemen	t:			
	Option1: proc	éder à (DI/OP)	DI) via G325 <i>A</i>	ADINA M881 I	FIRPO DCT
	DI.				
	Option2: proc	éder à (QT/OP	QT) via G325	KARAM J115	DCT QT.
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100
vol	FL180		FL140		
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO
time		7mn		30mn	

Tableau IV.5. Procédures de dépressurisation avant PNR1.

Dépressurisation entre PNR1 et PNR2						
Procédure	Descendre au	Descendre au niveau de rétablissement:				
	Option1:procéder à (PS/OPPS) via G325 HNGO P500 G325 DCT PS.					
	Option2:procéder (RN/OPRN) via G325 HANGO J165 J139 JABAR					
	J165 J183 DCT RN.					
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100	
vol	FL180 FL140					
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO	
Time		7mn		30mn		

Tableau IV.6. Procédures de dépressurisation entre PNR1 et PNR2.

Dépressurisation entre PNR2 et PNR3					
Procédure	Descendre au	niveau de réta	blissement:		
	Option1: procéder à (KHG/ZWSH) via B215 SCH A364 DCT KHG.				
	Option2: proc	eéder à (ALM/V	UAAA) via B2	15 KCA A460	REVKI B142
	NIGET DCT ALM.				
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100
vol	FL180		FL140		
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO
Time		7mn		30mn	

Tableau IV.7. Procédures de dépressurisation entre PNR2 et PNR3.

Dépressurisat	Dépressurisation après PNR3				
Procédure	Descendre au	Descendre au niveau de rétablissement:			
	Option1:procéder à (URC/ZWWW) via B215 DCT URC.				
	Option2:procéder à (ZGC/ZLLL) via B215 FKG B215 YBL B330 JTA DCT ZGC.				
Phase de	Des à	CRZ180	Des à	CRZ140	CRZ100
vol	FL180		FL140		
Vitesse	MMO/VMO	VMO	VMO	VMO	VMO
Time		7mn		30mn	

Tableau IV.8. Procédures de dépressurisation après PNR3.

IV.2.2. Procédures panne moteur (Drift down):

> Exemple de calcul :

- Généralités:

Pour les avions airbus, à partir des tableaux de marche, on peut avoir la trajectoire brute de descente qui varie en fonction de la température ISA; ces tableaux nous permettent de savoir :

- La distance air en NM;
- Le temps en MIN;
- La vitesse initiale de descente en KT;
- Délestage en KG;
- Altitude de rétablissement en FT;
- Masse maximale Estimée au décollage ETOW;
- Niveau de vol initial FL;

- La masse au moment de la panne.

- Exemple DUBAI- PEKIN (la zone la plus critique dans notre étude):

Données:

```
ETOW = 198,633.00 Kg;

Delestage (Depart-PNR) = 16,241.00 Kg;

La masse au moment de la panne = 182,392.00 Kg;

Température : ISA;

Niveau de vol = FL 370;

Vent = +10 KT;

Résultats: (voir annexe –FCOM 3.06.40.p3)

Distance = 389 NM;

Temps = 70 MIN;

Vitesse initiale (IAS) = 222 Kts;

Délestage = 4,900.00 Kg;

Altitude de rétablissement = FL 270.
```

Etape: ALGER - PEKIN (ALG - PEK)

Les procédures sont appliquées à partir de :

NOKOLOKTI R480 NILAN R480 NOSPI

Dans le cas de panne moteur la procédure drift Down doit être appliquée et basée sur la définition des points de non retour :

PNR= 55 NM après NOVOLOKI.

Panne moteur avant PNR				
Procédure	Retourner à GH via rétablissement:	Retourner à GH via R480 en descendant au niveau de rétablissement:		
	Option1: procéder à (NSK/UNNT) via R480 GH R480 DCT NSK.			
	Option2: procéder à (BU/UNBB) via R480 NOVOLOKTI A91L AZOUO DCT BU			
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir	
Vitesse	Green dot	LRC	0.82M/300KT/250KT	
Poussée	MCT	MCT	IDLE	

Tableau IV.9. Procédures panne moteur avant PNR.

Panne moteur après PNR				
Procédure	Descendre au nivea	u de rétablissement:		
	Option1: procéder à	a (ABK/UNAA) via R4	80 UNWW A91	
	LARNA A308 DC	ГАВК.		
	KEDRA A91P ZAG	Option2: procéder à (KRS/UNKL) via R480 UNWW A91 KEDRA A91P ZAGORIA B151B DCT KRS.		
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir	
Vitesse	Green dot	LRC	0.82M/300KT/250KT	
Poussée	MCT	MCT	IDLE	

Tableau IV.10. Procédures panne moteur après PNR.

Etape: ALGER - DUBAI (ALG - DXB)

La procédure est appliquée à partir de :

CAK J222 BASSEM UR785 ZELAF UR785 TRF UP559 LOTIT A791 DESDI DESD4V OMDB.

Dans le cas de panne moteur la procédure drift Down doit être appliquée et basée sur la définition des points de non retour :

PNR=28NM Après CAK.

Panne moteur avai	nt PNR				
Procédure	Retourner à CAK virétablissement:	Retourner à CAK via J222 en descendant au niveau de rétablissement:			
	Option1: procéder à KAD.	Option1: procéder à (KAD/OLDB) via R222 CAK W201 DCT KAD.			
		Option2: procéder à (LCA/LCLK) via J222 CAK R655 BALMA UR6555 DCT LCA.			
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir		
Vitesse	Green dot	LRC	0.82M/300KT/250KT		
poussée	MCT	MCT	IDLE		

Tableau IV.11. Procédures panne moteur avant PNR.

Panne moteur après PNR					
Procédure	Descendre au nivea	Descendre au niveau de rétablissement:			
	Option1: procéder à	à (DAM/OSDI) vi	ia J222 LATEB J222		
	BASEM R785 ABI	BASEM R785 ABBAS G202 SOFIA.			
	Option2: procéder à (TRF/OUTR) via J222 LATEB J 222 BASEM R785 ZELAF UR785 RASLI DCT TRF.				
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir		
Vitesse	Green dot	LRC	0.82M/300KT/250KT		
poussée	MCT	MCT	IDLE		

Tableau IV.12. Procédures panne moteur après PNR.

Etape: DUBAI - PEKIN (DXB - PEK)

La procédure est appliquée entre DUBAI et PEKIN à partir de: PURPA B215 KCA B215 YBL A596 DKO.

Dans ce cas, la procédure Drift down doit être appliquée et basée sur la définition des points de non retour:

PNR1=18NM après ADINA;

PNR2=90NM après PURPA;

PNR3=180NM après KCA.

Panne moteur avant PNR1			
Procédure	Retourner à ADINA via G325 en descendant au niveau de rétablissement:		
	Option1: procéder à (DI/OPDI) via G325 ADINA M881 FIRPO DCT DI.		
	Option2: procéder à (QT/OPQT) via G325 KARAM J115 DCT QT.		
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir
Vitesse	Green dot	LRC	0.82M/300KT/250KT
poussée	MCT	MCT	IDLE

Tableau IV.13. Procédures panne moteur avant PNR1.

Panne moteur entre PRN1 et PRN2				
Procédure	Descendre au niveau	Descendre au niveau de rétablissement:		
	Option1:procéder à (PS/OPPS) via G325 HNGO P500 G325 DCT PS. Option2:procéder (RN/OPRN) via G325 HANGO J165 J139			
	JABAR J165 J183 DCT RN.			
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir	
Vitesse	GREEN DOT	LRC	0.82M/300KT/250KT	
poussée	MCT	MCT	IDLE	

Tableau IV.14. Procédures panne moteur entre PRN1 et PRN2.

Panne moteur entre PRN2 et PRN3				
Procédure	Descendre au nivea	Descendre au niveau de rétablissement:		
	Option1: procéder à KHG.	Option1: procéder à (KHG/ZWSH) via B215 SCH A364 DCT KHG.		
	Option2: procéder à (ALM/UAAA) via B215 KCA A460 REVKI B142 NIGET DCT ALM.			
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir	
Vitesse	Green dot	LRC	0.82M/300KT/250KT	
poussée	MCT	MCT	IDLE	

 Tableau IV.15. Procédures panne moteur entre PRN2 et PRN3.

Panne moteur après PNR3			
Procédure	Descendre au niveau de rétablissement:		
	Option1:procéder à (URC/ZWWW) via B215 DCT URC.		
	Option2:procéder à (ZGC/ZLLL) via B215 FKG B215 YBL		
	B330 JTA DCT ZGC.		
Phase de vol	Des au niveau de rétablissement	CRZ	Des pour atterrir
Vitesse	Green dot	LRC	0.82M/300KT/250KT
poussée	MCT	MCT	IDLE

Tableau IV.16. Procédures panne moteur après PNR3.

V.1. ASPECT THEORIQUE:

V.1.1. Etude de la rentabilité de la ligne:

> Introduction:

La notion de la rentabilité implique l'idée d'une certaine relative à l'utilisation de facteurs de production, comparée selon des modalités diverses avec le résultat que l'on compte en retirer.

La rentabilité s'exprime à travers le profit que l'agent entend obtenir des capitaux qu'il a engages dans des opérations productives.

C'est **la différence** entre **les recettes attendues** et **les coûts directes** par ligne, cette différence s'appelle : contribution brute de l'exploitation.

> La procédure pour calculer la rentabilité d'une ligne aérienne:

a) Possibilité de l'offre:

L'offre représente ici la prestation de service que peut offrir la compagnie à ses clients par rapport à leurs attentes.

Pour AIR ALGERIE, l'offre consiste en le nombre de sièges offert par semaine, et en la qualité de service à dispenser.

b) Evaluation de la demande:

Les critères principaux qui permettront une bonne évaluation sont:

- Analyse des données de la prospection du marché Chinois;
- Importance de la concurrence;
- Ciblage de la clientèle, pour se mettre au niveau de leurs services.

> Détermination du trafic:

Cette mission est confiée au département tarif de la compagnie .plusieurs critères sont pris en considération notamment celui de la distance pour aboutir finalement à ce qui est connu sous le nom de recette unitaire moyenne (RUM).

Cette dernière est obtenue après une réduction sur le tarif estimé pendant le lancement de cette ligne.

V.1.1.1. Etude des coûts d'exploitations :

> Introduction:

Les impératifs économiques liés à l'exploitation du transport aérien, ont conduit les compagnies aériennes à se soucier de la rentabilité de leurs avions en recherchant la meilleure exploitation possible dans le but de maximiser ses gains tout en minimisant les coûts d'exploitation; cependant il faut trouver les procédures les plus adéquates pour optimiser au maximum leur flotte en fixant une politique basée principalement sur les charges liées aux deux points suivants:

- Le coût de carburant.
- Le coût lié au temps de vol.

La détermination des paramètres de vol optimale nécessite une intervention directe sur:

- La vitesse de la montée en croisière, la descente, l'attente et les dégagements, ainsi que le niveau de vol et la quantité de carburant à embarquer.

Il est à noter que les coûts d'exploitation destinés ci-dessus, définissent la référence pour arrêter une stratégie dans l'alimentation de la base de données et dans le paramétrage des différents logiciels de métiers relatifs à l'optimisation des vols (cost. Index, choit d'itinéraire...) et au calcul des prix de revient de siège avion par conséquent, fixer le prix du billet passagers qui est le produit final vendu par la compagnie.

> Les coûts d'exploitation:

Ce sont les dépenses liées à l'exploitation des aéronefs pour un vol donné, nous pouvons les définir en deux catégories:

1) Coûts directs:

Se sont tous les coûts variables qui dépendent de l'exploitation du type d'avion et de la ligne desservie, ces coûts varient selon le programme arrêté.

Et qui sont les suivants :

- Coût carburant;
- Coût équipage (PNC, PNT);
- Coût maintenance;
- Coût assistance en escale;
- Les redevances de survol;
- Les redevances aéroportuaires.

> Coût carburant:

Le coût carburant est calculé selon les enlèvements théoriques et en fonction des coefficients suivants :

- La charge transportée;
- Le tarif carburant (tarif départ, destination, escale) qui est exprimé en dollar/pounds.

➤ Coût équipage (PNT, PNC) :

C'est la charge liée aux personnels techniques (**PNT**) et commerciale (**PNC**), qui est en fonction des facteurs suivants :

- La rémunération minimale du personnel navigant (PNT, PNC) à la quelle s'ajoutent les primes liées aux heures de vol et au type de vol (domestique, international).

> Coûts maintenance:

C'est toutes les dépenses liées à l'entretien des avions, pour les garder dans l'état conforme aux normes dictées par les autorités compétentes.

On distingue deux types de maintenance:

- Maintenance préventive (visite périodique);
- Maintenance curative : remise en état de marche d'un module ou plus

Cependant les coûts sont définis comme suit:

- Coût entretien des structures ; réacteur et équipements. (MP/MC);
- Coût main d'œuvres (MP/MC);
- Coût lies à l'assistance d'une tierce partie (exemple à l'étranger).

➤ Le coût assistance en escale (handling)

En Algérie, l'assistance est assurée par les services internes à la compagnie, elle ne donne lieu à aucune facturation.

En générale, les coûts rentrant dans ce dernier sont:

- Le conditionnement de l'avion;
- La petite maintenance et nettoyage de l'avion;
- Le traitement des passagers et la manutention de leurs bagages.

> Les redevances de survol:

Ce sont les frais liés à l'exploitation de l'avion de l'espace aérien survolé et aux différents FIR, elles sont calculées selon les paramètres suivants:

- La masse de l'avion au décollage;
- La distance;
- Le taux unitaire lié à la distance survol.

> Les redevances aéroportuaires:

Ce sont les frais par les autorités aéroportuaire, le calcul s'effectue en se basant sur les données suivantes:

- La masse au décollage;
- Le coefficient qui tient compte des nuisances sonores (normes bruits), cette tranche de redevance contient également les:
 - Redevance atterrissage;
 - Redevance balisage;
 - Redevance de stationnement;
 - Redevance de service passager;
 - Redevance de sûreté;
 - Redevance liée aux bruits:
 - Redevance de services terminaux de la navigation aérienne.

a) Redevance d'atterrissage:

Elle est acquittée par tout aéronef effectuant un atterrissage sur l'aéroport .Son tarif est en fonction du poids maxi au décollage (MTOW) et son taux à la tonne est autant très élevé de l'aéronef le plus lourd.

b) Redevance de services passagers:

Cette redevance est due à l'utilisation des ouvrages locaux d'usage commun servant à l'embarquement, au transit et à l'accueil des passagers voyageant sur un aéronef exploité à des fins commerciaux par une compagnie.

Elle est appliquée aux passagers au départ de l'aéroport, le taux dépend de la destination nationale ou internationale, elle fait partie des composantes du calcul du prix du billet.

c) Redevance de stationnement:

Sur tout aéroport on peut distinguer trois catégories de surface destinée au stationnement:

- Aire de trafic:

Aire utilisée pour l'embarquement et le débarquement des passagers.

- Aire de garage:

Aire ou demeure l'aéronef entre deux vols successif.

- Aire d'entretien:

Aire destinée au service d'entretien des appareils.

La redevance de stationnement est calculée en tenant compte de ces trois aires, sachant que la durée diffère selon l'aire occupée par chaque type d'appareil.

d) Redevance de sûreté:

L'OACI recommande que ces redevances soient fondées selon:

- Le nombre de passagers;
- La masse de l'avion;
- La distance du vol.

e) Redevance liée au bruit:

C'est les dépenses qui couvrent les problèmes de bruit, généré par les avions. Elles doivent être associées aux redevances d'atterrissage et de décollage.

2) Coûts indirects:

Ils ne sont pas liés directement à l'exploitation des avions, ils sont définis comme suit:

Les assurances :

- Assurance responsabilité civile;
- Assurance risque de guerre;
- Assurance corps avion.

> Amortissement de l'avion :

Il est fixé par la compagnie pour le renouvellement de la flotte, (remplacement de l'avion par un autre neuf).

> Les charges financières:

Elles sont fixées aussi par la compagnie, elles correspondent à la recette de la compagnie en cas de vente ou remplacement des équipements des avions.

V.1.1.2. Etude des recettes :

Le calcul de la recette globale par rotation est effectué en multipliant le nombre de passagers par le prix de billet en ajoutant la charge fret multipliée par le prix d'un kilogramme de fret.

Donc:

 $Rtt = Nbrepax \times prixbillet + C / F \times prixKGfret$

Pax: passagers;

C/F: charge fret.

- Prix des billets :

Le prix du billet varie avec la longueur d'étape et suivant la classe(Y, F),

- Tarif fret:

Le tarif fret varie aussi en suivant la longueur de l'étape, c'est la direction fret qui donne le prix de fret pour chaque étape.

- L'excédent bagages:

On a l'excédent bagage=1.5% du tarif économique le plus chère du pax (le billet)

V.2. ASPECT PRATIQUE:

V.2.1. Coûts directs:

V.2.1.1. Coûts carburant:

Coût de carburant par vol = prix de carburant par litre \times quantité de carburant par vol

> Pour une ligne directe :

-On a:
$$1l = 0.8kg$$
 \Rightarrow 67,326 $kg = 84,157.5l = 841.575Hl$

Prix(enAlgerie) = 93.71USD/Hl

$$C = 78,864USD$$

> Pour une ligne avec escale :

a) Alger-Dubai:

- **On a:**
$$39,792kg = 49,740l = 497.4Hl$$

Prix(enAlgerie) = 93.71USD/Hl

$$C = 46,611.35USD$$

b) Dubai-Pekin:

Prix(enDubai) = 74.70USD/Hl

$$C = 43,777USD$$

V.2.1.2. Coût équipage (PNT, PNC):

- Pour une ligne directe : C = 10,438.04 **USD.**

- Avec escale : C = 13,360.70 **USD.**

V.2.1.3. Coût maintenance:

- On a le coût de la maintenance pour l'A330 égale à :

C = 15,984,389.89 USD pour 11698 heurs de vol.

Donc: C = 31,959.00 **USD/VOL**

V.2.1.4. Redevance de survol:

FORMULE N°1 : (EUROCONTROLE)

$$R = T \times \frac{D}{100} \times \sqrt[2]{\frac{M}{50}}$$

R: Redevance;

T: Taux unitaire;

D : Distance parcourue par cent exprimer en kilomètre ;

M : Masse maxi structure au décollage ;

> Pour la ligne directe :

Les pays qu'ils ont appliqués la Formule N°1 sont les suivants :

L'ALGERIE ; LA FRANCE ; L'ITALY ; LA BOSNIE ; LA SERBIE ; LA

ROMANIE; LA MOLDOVIE; L'UKRANE;

Les autres pays, ne suivent aucune formule ; Ils nous donnent la redevance directement.

	USD)taux)	km) Distance)	USD)Redevance)
	unitaire		
ALGERIE	389.93	379.66	3175.12
FRANCE	94.49	218.53	442.88
ITALY	104.85	672.27	1511.86
BOSNIE	60.56	366.00	476.31
SERBIE	61.92	174.00	231.07
ROMANIE	61.29	572.00	752.27
MOLDOVIE	65.33	109.00	153.11
UKRANE	79.14	694.00	1179.00
RUSSIE	_	4060.00	114.24
MONGOLIE	_	1250.00	64.00
CHINE	_	700.00	350.00
TOTAL			8450.00

Tableau V.1. Redevance de survol pour la ligne directe.

> Pour la ligne avec escale :

Les pays qu'ils ont appliqués la Formule N°1 sont les suivants :

L'ALGERIE; MALTA; LA GRECE; L'ITALY; CYPRUS.

La Formule appliqué en IRAN est la suivante : $R = T \times M \times D$

La Formule appliqué en ARABIC SAOUDIT est la suivante : $R = P \times \frac{D}{100} \times M$

P: taux unitaire;

D : la distance parcourue exprimée en kilomètre ;

M : cœfficient de masse égale à 2;

Les autres pays, ne suivent aucune formule ; Ils nous donnent la redevance directement.

	USD)taux)	km) Distance)	USD)Redevance)
	unitaire		
ALGERIE	389.93	520.41	4352.24
TUNISIE	_	260.00	488.16
MALTA	34.81	826.00	955.678
GRECE	44.18	807.47	1187.72
ITALY	67.66	57.41	129.11
CYPRUS	35.61	470.40	556.77
LEBANON	_	135.20	0.099
SYRIA	_	201.87	445.54
JORDAN	_	129.64	115.71
ARBIC SAUDIT	26.66	848.21	452.28
BAHRAIN	_	798.21	100.50
UAE	_	303.72	200.00
OMAN	_	75.93	327.00
IRAN	0.0028	446.33	291.75
PAKISTAN	_	1885.33	351.55
CHINE	_	3874.38	1937.19
TOTAL			11891.30

Tableau V.2. Redevance de survol pour la ligne avec escale.

V.2.1.5. Redevances aéroportuaires :

- Redevance d'atterrissage;
- Redevance de balisage;
- Redevance de stationnement :

Note: Les premières 45 minutes sont gratuites

	ALGER	DUBAI	PEKIN
ATTERRISSAGE	1536.41	3208.50	4768.00
BALISAGE	153.64	_	476.8
TNSTATIONNEME	594.58	_	715.20
TOTAL	2284.63	3208.50	5960.00

Tableau V.3. Redevances aéroportuaires.

V.2.1.6. Coût assistance en escale :

C = 1,010.00 USD

V.2.2. Coûts indirects:

V.2.2.1. Les assurances :

C = 845,477.35 USD. pour l'année 2007

C = 1,735.00 USD/VOL

V.2.2.2. Amortissement de l'avion:

C = 1,945.00 USD/VOL

V.2.2.3. Les charges financières :

C = 1,323.57 **USD/VOL**

TABLEAU RECAPITULATIF DES COUTS:

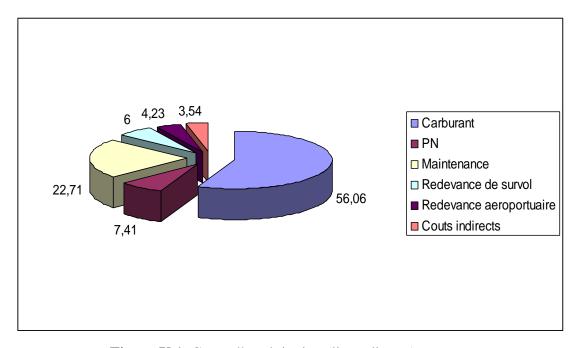

	LIGNE DIRECTE	LIGNE AVEC ESCALE
COUTS DIRECTS	135,671.04USD	157,778.03USD
COUTS INDIRECTS	5 ,003.57USD	5,003.57USD
TOTAL	140,674.61USD	162,781.50USD

Tableau V.4. Tableau récapitulatif des coûts.

Commentaire:

On remarque qu'on a un gain financière d'environ **21,096.46USD** pour une ligne directe qu'une ligne avec escale ;

Donc il est préférable de choisir le vol en ligne directe que la ligne avec escale.

Figure V.1. Couts d'exploitation (ligne directe).

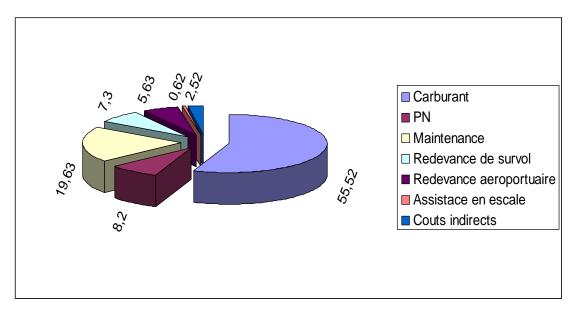


Figure V.2. Couts d'exploitation (ligne avec escale).

V.2.2. Les recettes :

Pour les deux cas (ligne directe ou avec escale) ; on a :

> Le Billet d'avion :

- Le prix du billet par pax =1183.00 USD
- Si on suppose que l'avion est full :

Rtt= 318,227.00USD/VOL.

> Les frets:

On a:

1 USD = 63.13 DA.

Rtt = 238.75DA/Kg.

Rtt = 3.78USD/Kg.

Rtt = 6,804.00USD/VOL.

> L'excédent baggage:

Rtt = 18.00 USD/KG/PAX.

- On prend aussi l'excédent bagages = 10kg/pax

Rtt = 48,420.00 USD/VOL.

TABLEAU RECAPITULATIF DES RECETTES:

	Ligne direct	Avec escale
Billet d'avion (USD)	318,227.00	318,227.00
Les frets (USD)	6,804.00	6,804.00
Excèdent bagage	48,420.00	48,420.00
(USD)		
Total (USD)	373,451.00	373,451.00

Tableau VI.5. Tableau récapitulatif des recettes.

V.2.3. Calcul de la rentabilité:

$$profit = recettes - couts$$

- Ligne directe:

$$profit = 373,451.00 - 140,674.61$$

 $profit = 232,776.39USD$

- Ligne avec escale:

Conclusion:

D'après notre étude économique ; nous concluons que la ligne en directe est plus rentable que la ligne en escale.

Donc du point de vue économique il est Préférable de prendre le vol avec une ligne directe que la ligne en escale.

CONCLUSION GENERALE:

A l'aide de ce modeste travail et de notre stage, nous pouvons dire que nous avons atteint le but recherché ; considéré à une étude d'ouverture d'une ligne aérienne avec les performances de l'Airbus 330-200.

L'intérêt principal de cette étude est de permettre d'avoir un impact économique important de consommation de carburant, de temps de vol et de différents couts d'exploitation, ce qui induira un rendement et investissement important à notre compagnie AIR ALGERIE.

AIR ALGERIE exploite l'A330-200 dans le cadre de renouvellement de sa flotte et d'augmenter l'offre de la compagnie afin d'assurer une couverture réelle des besoins de sa clientèle sur le plan qualitatif et de s'inscrire dans un contexte international de concurrence dans le plan quantitatif.

Après cette étude et notre stage, nous pouvons conclure que l'ouverture d'une ligne ou la préparation d'un vol nécessite une grande coopération et un bon travail entre tous les membres de l'équipage au sol et en vol, et cela afin d'effectuer un vol en toute sécurité, régularité et efficacité, dans le but d'améliorer le degré de perfectionnement de nos services.

Finalement, nous espérons que nous avons présenter assez de données afin d'inciter les futures ingénieurs à poursuivre ce travail pour des améliorations qui feront l'objet d'un nouveau projet.

REFERENCES ET BIBLIOGRAPHIE

- -Route manual JEPSEN 323 TOME I.
 - -Cartes JEPSEN.
- -Air way Manual Services (Airport Directory).
- -Flight Crew Operation Manual.
 - -Flight preparation 2 (FCOM2).
 - -Flight preparation 3 (FCOM3).
- -Manuel des opérations ETOPS.
- -Flight Manual FM 330-202 (Airbus Industry).
- -Manuel d'exploitation (Partie A / Préparation de vol / Masse et centrage).
- -Aicraft Performance.
- -Document de l'IATA (Airoport and Air Navigation Charge Manuel)

Livres:

- -Opération Aérienne (TOME II).
- -The Air Cargo Tarif Manuel

Sites Internet:

 $\underline{WWW.airalgerie.dz}$

WWW.aviation-civil.gouv.fr

WWW. China.cn

LISTE DES ABREVIATIONS:

A - C - D

A/C: Aircraft

A/D: Aerodrome

CLB: Climb

C/O: Charge Offerte

C/P: Charge Payante

CRZ: Cruise

D: Distance

d : délestage de l'étape

DEC: Décollage

DES: Descente

DEST: Destination

DOA: Direction des Operations Aériennes

E-F-H

ETOW: Estimated Take Off Weight

ENG: Engine

FAA: Federal Aviation Administration

FL: Niveau de Vol

Ft: Feet

H: Hour

HI: High Intensity

HP: Hecto Pascal

I - J -K

ISA: Atmosphere Standard International

JAA: Joint Aviation Authorities

JAR: Joint Aviation regulation

Kg: Kilogramme

Km: Kilometre

Kt: Knot

L - M - N

LAT: Latitude

LONG: Longitude

LRC: Lang Rang Cruise

M: MACH

m: metre

MCT: Maximum

MEL: Minimum Equipment List

MTOW: Maximum Take Off Weight

MLW: Maximum Landing Weight

MMO: Mach Maximal operational

MMR: Mach Maxi Rang

Mn: Minute

MORA: Altitude Minimal de Route

NM: Nautique Miles

O - P - R

OPS: Opération

PAX: Passager

PNR: Point de Non Retour

PNT: Personnel Navigant Technique

PNC: Personnel Navigant commerciale

r: roulage

RD: Reserve de Dégagement

RF: Reserve Finale

RR: Reserve de Route

T - V - W - Z

TAXI: Quantité de roulage

TAS: True Air Speed

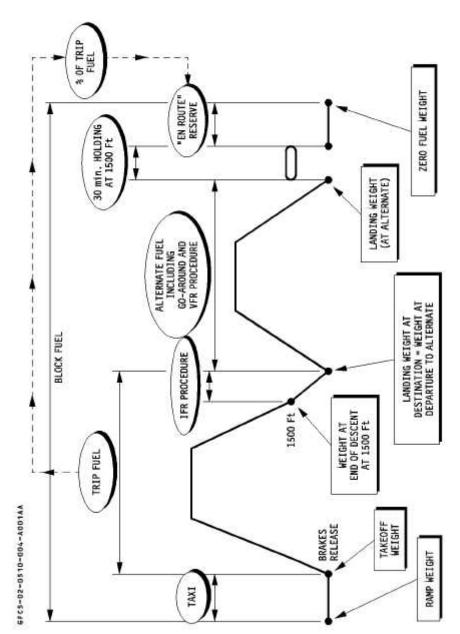
VMO: Vitesse Maximale Opérationnelle

Vs: Vitesse de Décrochage

WT: Weight

WIND: Vent

Z: Altitude


Zc: Altitude cabine

Z: Altitude Pression

ZFW: Zero Fuel Weight

FLIGHT PLANNING 2.05.10 P 4 GENERAL SEQ. 001 REV 06

2.05.10 P 2 SEQ 010 REV 06

GENERAL

MINIMUM RECOMMENDED FUEL REQUIREMENTS

The total fuel quantity required to fly a given sector is the sum of the following quantities:

TAXI FUEL

Quantity required for startup and taxi. Fuel calculation is based on a consumption of 25 kg/min or 55 lb/min Average quantity (12 minutes) → 300 kg or 660 lb

TRIP FUEL

Fuel required from departure to destination includes the following quantities:

- Takeoff and climb at selected speed.
- Cruise at selected speed.
- Descent from cruising level to 1500 feet above destination airport.
- Approach and landing. Fuel calculation is based on a consumption of

40 kg/min or 90 lb/min . Average quantity (6 minute IFR) → 240 kg or 540 lb

RESERVE FUEL

This quantity includes:

"En Route" reserve fuel (contingency fuel)

 According to national regulations and company policy (generally based on a percentage of trip fuel).

Alternate fuel

Fuel required to fly from destination to alternate airport.
 It includes go-around 500 kg or 1100 lb , climb to cruising level, cruise at long range speed, descent and approach procedure.

160 kg or 360 lb for 4 minutes VFR

Holding Fuel

Calculation of holding fuel should take into account the altitude of the alternate and the landing weight at the alternate, using holding charts of chapter 3.05.25.

A conservative quantity corresponding to 30 minute holding at 1500 feet above alternate airport elevation at green dot speed in the clean configuration is

2400 kg or 5300 lb

GROUND DISTANCE/AIR DISTANCE

2.05.60 P 3 SEQ 001 REV 11

M.82

GROUND			AIR [DISTANCE (NM)		
DIST	TAIL WIN	D	WIND	COMPONEN	T (KT)	HEA	D WIND
(MM)	+150	+100	+ 50	0	-50	-100	-150
10	8	8	9	10	11	13	15
20	15	17	18	20	22	25	2
30	23	25	27	30	34	38	4
40	30	33	36	40	45	51	5
50	38	41	45	50	56	63	7
100	76	83	90	100	112	127	14
200	152	165	181	200	224	254	29
300	228	248	271	300	335	381	43
400	304	330	362	400	447	507	58
500	380	413	452	500	559	634	73
1000	759	825	904	1000	1118	1268	146
1500	1139	1238	1357	1500	1677	1903	219
2000	1518	1651	1809	2000	2237	2537	293
2500	1898	2063	2261	2500	2796	3171	366
3000	2277	2476	2713	3000	3355	3805	439
3500	2657	2889	3165	3500	3914	4439	512
4000	3036	3302	3617	4000	4473	5073	586
4500	3416	3714	4070	4500	5032	5708	659
5000	3795	4127	4522	5000	5591	6342	732
5500	4175	4540	4974	5500	6151	6976	805
6000	4555	4952	5426	6000	6710	7610	878
6500	4934	5365	5878	6500	7269	8244	952
7000	5314	5778	6330	7000	7828	8878	1025
7500	5693	6190	6783	7500	8387	9513	1098
8000	6073	6603	7235	8000	8946	10147	1171
8500	6452	7016	7687	8500	9506	10781	1245
9000	6832	7428	8139	9000	10065	11415	1318
9500	7211	7841	8591	9500	10624	12049	1391
10000	7591	8254	9043	10000	11183	12683	1464

GROUND DISTANCE/AIR DISTANCE

2.05.60 P 5 SEQ 001 REV 11

LONG RANGE CRUISE BELOW FL250

GROUND			AIR I	DISTANCE (NM)		
DIST.	TAIL WIN	D	WIND	COMPONEN	IT (KT)	HEA	D WIND
(NM)	+150	+100	+ 50	0	-50	-100	-150
10	7	8	9	10	12	14	17
20	14	16	18	20	23	27	33
30	22	24	27	30	35	41	50
40	29	32	35	40	46	54	66
50	36	40	44	50	58	68	83
100	72	79	88	100	115	136	165
200	143	158	177	200	230	271	330
300	215	238	265	300	345	407	495
400	287	317	354	400	461	543	660
500	359	396	442	500	576	678	825
1000	717	792	884	1000	1151	1357	1651
1500	1076	1188	1326	1500	1727	2035	2476
2000	1434	1584	1768	2000	2303	2713	3302
2500	1793	1980	2210	2500	2878	3391	4127
3000	2152	2376	2652	3000	3454	4070	4953
3500	2510	2772	3093	3500	4030	4748	5778
4000	2869	3167	3535	4000	4605	5426	6604
4500	3227	3563	3977	4500	5181	6105	7429
5000	3586	3959	4419	5000	5757	6783	8254
5500	3945	4355	4861	5500	6332	7461	9080
6000	4303	4751	5303	6000	6908	8139	9905
6500	4662	5147	5745	6500	7484	8818	10731
7000	5021	5543	6187	7000	8059	9496	11556
7500	5379	5939	6629	7500	8635	10174	12382
8000	5738	6335	7071	8000	9210	10853	13207
8500	6096	6731	7513	8500	9786	11531	14033
9000	6455	7127	7955	9000	10362	12209	14858
9500	6814	7523	8397	9500	10937	12887	15684
10000	7172	7919	8838	10000	11513	13566	16509

GROUND DISTANCE/AIR DISTANCE

2.05.60 P 6 SEQ 001 REV 11

LONG RANGE CRUISE ABOVE FL250

GROUND			AIR I	DISTANCE (NM)		
DIST.	TAIL WIN	D	WIND	COMPONEN	IT (KT)	HEA	D WIND
(NM)	+150	+100	+ 50	0	-50	-100	-150
10	8	8	9	10	11	13	15
20	15	16	18	20	22	25	29
30	23	25	27	30	34	38	44
40	30	33	36	40	45	51	59
50	38	41	45	50	56	64	74
100	76	82	90	100	112	127	147
200	151	165	181	200	224	254	295
300	227	247	271	300	336	382	442
400	303	330	361	400	448	509	589
500	379	412	452	500	560	636	736
1000	757	824	903	1000	1120	1272	1473
1500	1136	1236	1355	1500	1680	1908	2209
2000	1514	1648	1807	2000	2240	2544	2945
2500	1893	2059	2258	2500	2799	3180	3681
3000	2271	2471	2710	3000	3359	3817	4418
3500	2650	2883	3162	3500	3919	4453	5154
4000	3028	3295	3613	4000	4479	5089	5890
4500	3407	3707	4065	4500	5039	5725	6627
5000	3785	4119	4517	5000	5599	6361	7363
5500	4164	4531	4968	5500	6159	6997	8099
6000	4542	4943	5420	6000	6719	7633	8836
6500	4921	5354	5872	6500	7279	8269	9572
7000	5299	5766	6324	7000	7839	8905	10308
7500	5678	6178	6775	7500	8398	9541	11044
8000	6056	6590	7227	8000	8958	10177	11781
8500	6435	7002	7679	8500	9518	10814	12517
9000	6813	7414	8130	9000	10078	11450	13253
9500	7192	7826	8582	9500	10638	12086	13990
10000	7570	8238	9034	10000	11198	12722	14726

QUICK DETERMINATION OF F-PLN

2.05.40 P 7 SEQ 115 REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB: 250KT/300KT/M.80 - CRUISE: M.82 - DESCENT: M.82/300KT/250KT

REF. LANDIN NORMAL AI ANTI ICING	R CONDIT		000 KG		37.0 %	FU	EL CONS		G)
AIR DIST.	*		FLIGHT	LEVEL			CO! FUEL	RECTION O CONSUMP (G/1000KG)	TION
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390 FL410
200	3523 0.38	3507 0,38	3502 0.38	370	390	410	11	12	FLATO
300	4717	4631 0.51	4560	4507	4475 0.51	4461 0.51	13	15	18
400	0.51 5915 1.03	5757 1.04	0.51 5621 1.04	0.51 5511 1.04	5432 1.04	5384 1.04	15	18	2
500	7134	6885	5684	6517	6392 1.17	6311	18	21	25
600	1.16 8316	1,16 8016	7750	7527	7355 1.30	7241	20	23	25
700	9521	1,29 9150	1.29 8819	1.30 8539	8323	1,30 8176	22	26	3:
800	1.41 10729 1.53	1,41 10285 1,54	9891 1.55	9554 1.55	9293 1.55	9114	24	29	3
900	11938	11424	10964	10571	10267	1.55	27	32	.4
1000	2.06 13150	12564	12041	11591	2.08 11243	11001	29	34	4
1100	2.18 14365	13708	13120	12614	12224	11949	31	37	5
1200	Z.31 15583	14854	2.33 14202	13640	13207	12902	34	40	5
1300	2.43 16804	16003	2.46 15287	2.46 14669 2.59	2.46 14194	13859	36	43	5
1400	2.56 18027	2.57 17154	2.58 16374	15701	2.59 15185	2.59 14820	39	46	6
1500	3.08 19252	3.10 18309	3.11 17465	3.12 16735	3.12 16180	3.12 15784	41	49	6
1600	3.21 20480	3.22 19466	3.24 18558	17773	3.25 17178	3.25 16754	44	52	7
1700	3.33 21712	3.35 20626	3.36 19654	3.37 18914	3.37 18180 3.50	3.37 17728	46	55	7
1800	3.46 22947	3.47 21789	3.49 20753	3.50 19858	19186	3.50 18706	49	58	8
1900	3.58 24184	4.00 22955	4.02 21856	4.03 20905	4.03 20195	4.03 19689	51	62	8
2000	4.11 25424	4.13 24124	4.15 22961	4.16 21955	4.16 21209	4.16 20676	54	65	. 9
2100	4:23 26667	4.25 25,296	4.27 24070	4.29 23009	4.29 22228	4.29 21684	57	68	9
2200	4,36 27912	4.38 26470	4.40 25181	4.41 24068	4.41 23249	4.41 22684	59	72	10
2300	4,48 29161	4.51 27647	4.53 26295	4.54 25126	4.54 24275	4.54 23689	62	76	10
2400	5.01 30412	5.03 28827	5.06 27412	5.07 26188	5.07 25304	5.07 24698	65	79	11
2500	31665	30011	5.18 28532	5.20 27254	5.20 26337	5.20 25712	67	83	11
2600	5.26 32921	5.28 31,197	5.31 29655	5.32 28324	5.32 27374	5.33 26730	70	86	12
2700	5.38 34181	5.41 32387	5.44 30782	5.45 29396	5.45 28447	5.45 27756	73	90	12
PACK FLOV	50000	AND	5,56 K FLOW HI C CARGO COOL UEL = + 1	ON	5.58 ENGINE AN		5500	UEL = + 3	222

QUICK DETERMINATION OF F-PLN

2.05.40 P 8 SEQ 115 REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.82 - DESCENT: M.82/300KT/250KT IMC PROCEDURE: 240 KG (6MIN) REF. LANDING WEIGHT = 140000 KG FUEL CONSUMED (KG) ISA NORMAL AIR CONDITIONING CG = 37.0 %ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FI 390 FL350 (NM) FL330 FL370 FL410 6.11 31558 6.24 32645 6.36 33736 6.49 6.03 36708 6.16 37975 6.28 6.09 33046 6.22 34182 6.35 6.06 5.11 6.24 31610 6.36 6.19 35974 6.24 30863 6.36 6.35 35322 6.47 6.31 37176 6.28 39246 6.41 40519 6.53 41796 7.06 43075 7.18 6.49 6.44 6.49 6.57 7.00 7.02 7.02 7.13 7.15 7.09 7.15 7.15 7.28 7.28 7.22 7.27 7.25 7.31 7.34 7.38 7.40 7.40 7.40 7.43 46936 7.56 48230 8.08 7.53 40429 8.06 41554 8.19 7.53 39155 8.06 7.5 42283 8.04 7.4. 44450 9.00 7.5 38323 4.06 8.12 8 19 8.15 8.15 40508 8.32 339 8.21 8.25 8.31 8.29 8.31 8.44* 42774 8.57* 43914 9.10* 8.44 43576 8.57 8.42 8.33 52197 8.46 8.55 8.50 8,46 53509 8.58 9.03 9.07 9.10 9.10 9.23 46955 9.35 9.11 9.20 9.15 9.23 9.23* 9.33 9.28 9.35* 47364 9.48* 9.23 9.35 9.36 9.45 9.48 9.41 9.48 9.48 9.53 9.58 10.01* 10.01 10.11 10.06 10.14* 10.18 10.24 10.27 10.27 10.26* 10.31 10.36 10.39 10.44 10.49 10.52 10.52* 10.51 10.56 11.02 11.05 11.05* 55615 11.18* 11.18 ENGINE ANTI ICE ON PACK FLOW LO PACK FLOW HI OR/ AND CARGO COOL ON TOTAL ANTI ICE ON △FUEL = - 0.5 % △FUEL = + 1.5 % ΔFUEL = + 3 %

FUP23D A330-200 CF6-80E)A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 10164 18590 FC0M-G0-02-05-40-008-115

PACK FLOW LO

∆FUEL = - 0.5 %

FLIGHT PLANNING

QUICK DETERMINATION OF F-PLN

2.05.40 P 9 SEQ 115 REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.82 - DESCENT: M.82/300KT/250KT IMC PROCEDURE: 240 KG (6MIN) FUEL CONSUMED (KG) REF. LANDING WEIGHT = 140000 KG ISA NORMAL AIR CONDITIONING CG = 37.0 %ANTI ICING OFF CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FI 390 FL350 (NM) FL330 FL370 FL410 11.41 11.53 11.56 62723 12.09 11.56* 61151 12.09* 11.54 12.09* 12.06 12.22 12,21* 12.12 12.22* 12.25 72457 12.37 73777 12.50 12.34* 12.19 12.31 68974 12.44 12.34 12.34* 12.31 77815 12.44 12.47* 65412 13.00* 12.47 12.56 13.00 13.00* 12.56 13.03 13.09 13.13 13.12* 13.13* 13.26* 69196 13.38* 70472 13.51* 71755 14.04* 13.09 82000 13.21 83404 13.34 13.15 77768 13.28 79108 13.40 13.26 71520 13.38 72798 13.51 13.25* 70044 13.38* 71340 13.50* 13.22 74115 13.35 13.35 75420 13.47 13.53 81801 14.06 13.46 14.04 14.00 14.03* 13.59 14.17 14.17* 14.11 14.29* 14.30* 14.24 14.31 14.42 14.41* 14.42* 14.36 14.44 14.51 14.55 14.54* 14.55* 14.49 14.56 15.04 15.08* 15.07* 15.08* 15.09 15.16 15.20* 15.20* 15.21* 15.33* 15.29 15.32* 15.33* 15.26 97741 15.39 15.42 15.46* 83788 15.58* 15.46* 15.45 15.47 15.55 15.58* 15.58* 16,11* 16.12 16.20 16.24* 16.24* 16.25 16.36* 16.36* 16.35* 16.46 16.37 16.49* 16.29 16.49* 16.49* 16.50 16.58 17.01*

FLIP23D A330-200 CF6-80E1A4 3420 03701 000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-009-115

ENGINE ANTI ICE ON

△FUEL = + 1.5 %

TOTAL ANTI ICE ON

ΔFUEL = + 3 %

PACK FLOW HI OR/ AND CARGO COOL ON

FUEL CONSUMED (KG)

NORMAL AI ANTI ICING		iowiid		CG =	37.0 %		TIME (
AIR DIST.			FLIGHT	LEVEL			FUEL	RRECTION CONSUMP KG/1000KG	TION
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390 FL410
8000	106689 16.54	101425 17.02	97360 17.11	94725 17.14*	93072 17.14*	92233 17.14*	309	447	559
8100	108192	102886 17.15	98815 17.24	96173 17.27*	94498 17.27*	93667 17.27	313	457	569
8200	109701 17.19	104353 17.28	100258 17.37	97629 17.39*	95934 17.40*	95111 17.40	321	468	579
8300	111215 17.32	105827 17.40	101793 17.49*	99092 17.52*	97377 17.53*	96562 17.52*	329	478	590
8400	112736 17.44	107308 17.53	103303 18.02*	100562	98830 18.05*	98020 18.05*	337	489	600
8500	114263 17.57	108799 18.06	104820 18.14	102043	100292 18.18*	99467 18.17*	342	500	611
8600	115799 18.09	110296 18.18	106344 18.27*	103532	101802 18.30*	100962 18.30*	350	511	622
8700		111801 18.31	107875 18.39*	105028	103312 18.43*	102446 18.43*	401	522	632
8800	1	113323 18.44	109415 18.52	1.06531	104829 18.55*	103939 18.55*	388	528	643
8900		114862 18.56	110964 19.04*	108060	106353	105439 19.08*	399	537	654
9000			112520 19.17*	109585	107885	106947 19.21		541	665
9100	i j		114084 19.29	111119	109425 19.33*	108465 19.33*		550	674
9200			115659 19.42	112661 19.46	110973 19.46*	109993 19.46		553	684
9300				114212 19.58	112530 19.58*	111529 19.59*		586	682
9400				115776	114095 20 11*	113074 20.11*		593	691
9500	j			- 33.0	115670 20.23*	114629 20.24*			701
9600					55.55	3,51,57			
9700									
9800									
9900									
10000									
10100									
10200		1							
10300									
10400									
10500	- 4				9				7
AFUEL = -		AND	K FLOW HI (CARGO COOL UEL = + 1	ON	ENGINE AN		11/533	AL ANTI ICE FUEL = + 3	

FUP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 f0164 18590 FC0M-G0-02-05-40-010-115

PACK FLOW LO

FLIGHT PLANNING

QUICK DETERMINATION OF F-PLN

2.05.40 P 15 SEQ 115 REV 09

PACK FLOW HI OR/ AND CARGO COOL ON △FUEL = + 1,5 % ∆FUEL = + 3 % = -0.5%FLIP23D A330-200 CF6-80ELA4 3420 63701.000011 0256300 .8001 .00000 240 0300350140 0 260169 90179 18590 FC0M-G0-02-05-40-015-115

ENGINE ANTI ICE ON

TOTAL ANTI ICE ON

QUICK DETERMINATION OF F-PLN

2.05.40 P 16 SEQ 115 REV 09

ef. Landin Ormal Ai NTI ICING	R CONDIT	T = 1400	MC PROC	IS	ISA FU CG = 37.0 %			IEL CONSUMED (KG) TIME (H.MIN)			
AIR DIST.			FLIGHT	LEVEL			COF FUEL	RRECTION (CONSUMP KG/1000KG	TION		
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390		
2800	31695 6.59	30886 6.48	30161	29409 6.24	28817 6.18	28364 6.14	136	135	15		
2900	32846 7.13	32005 7.01	31249 6.44	30465 6.37	29856 6.31	29392 6.27	141	143	15		
3000	34001 7.28	33129 7.15	32342 6.57	31525 6.50	30898 6.44	30428 6.40	146	149	16		
3100	35162 7.42	34258 7.28	33439 7.10	32652 7.03	31946 6.57	31472 6.53	151	157	17		
3200	36328 7.56	35393 7.42	34627 7.22	33728 7.16	32999 7.10	32522 7.06	156	159	.17		
3300	37499 8.10	36532 7.55	35743 7.35	34809 7.29	34058 7.22	33579 7.18	166	154	18		
3400	38674 8.24	37787 8.07	36865 7.48	35896 7.42	35122 7.35	34644 7.31	172	164	19		
3500	39855 8.38	38948 8.20	37992 8.01	36988 7.55	36192 7.48	35716 7.44	185	168	19		
3600	41042 8.52	40115 8.33	39125 8.14	38085 8.08	37267 8.01	36794 7.57	185	173	20		
3700	42377 9.04	41288 8.46	40264 8.27	39187 8.21	38348 8.14	37879 8.09	191	177	21		
3800	43587 9.18	42467 8.59	41409 8.40	40295 8.34	39434 8.27	38971 8.22	190	182	22		
3900	44804 9.32	43647 9.12	42560 8.52	41408 8.46	40526 8.39	40070 8.35	196	187	22		
4000	46028 9.45	44831 9.25	43705 9.05	42528 8.59	41625 8.52	41203	202	192	23		
4100	47255 9.58	46021 9.37	44853 9.19	43651 9.12	42729 9.05	42317 9.01	207	197	24		
4200	48491 10.12	47217 9.50	46004 9.32	44777 9.25	43839 9.18	43438 9.14*	212	202	24		
4300	49733 10.25	48420 10.02	47161 9.45	45909 9.38	44953 9.31	44564 9.27*	217	207	25		
4400	50982 10.38	49629 10.15	48324 9.58	47047 9.51	46072 9.44	45695 9.39*	223	213	26		
4500	52237 10.52	50844 10.27	49492 10.11	48191 10.03	47198 9.56	46831 9.52*	228	218	26		
4600	53499 11.05	52065 10.39	50665 10.24	49341 10.16	48332 10.09	47974 10.05*	233	223	27		
4700	54769 11.18	53293 10.51	51843 10.37	50496 10.29	49471 10.22	49123 10.18	239	228	28		
4800	56046 11.31	54527 11.03	53027 10.50	51657 10.42	58617 10.35	50277 10.31*	244	234	29		
4900	57321 11.44	55768 11.16	54216 11.03	52825 10.55	51769 10.47	51438 10.44*	250	239	30		
5000	58601 11.57	57013 11,28	55412 11.16	53998 11.07	52927 11.00	52605 10.57*	256	245	30		
5100	59888 12.09	58259 11.40	56613 11.29	55178 11.20	54093 11.13	53777 11.10	262	252	31		
5200	61181 12.22	59512 11.53	57824 11.42	56365 11.33	55311 11.26	54958 11,23*	267	259	32		
5300	62481 12.35	60772 12.05	59042 11.55	57557 11.45	56495 11.38	56144 11.36*	272	265	33		
PACK FLOV	LOW LO PACK FLOW HI AND CARGO COO			ON ON	ENGINE AN	ITI ICE ON		AL ANTI ICE UEL = + 5			

FUP29D A350-200 CF6-80E1A4 3420 03701.000011 0250900 .8001 .00000 240 0300350140 0 260169 80179 18590 FC0M-G0-02-05-40-016-115

QUICK DETERMINATION OF F-PLN

2.05.40 P 17 SEQ 115 REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB: 250KT/300KT/M.80 - LONG RANGE CRUISE - DESCENT: M.80/300KT/250KT

ref. Landin Iormal Ai			000 KG		37.0 %	FU	EL CONS	UMED (K	G)	
ANTI ICING							TIME (H.MIN)	O-V-V	
AIR DIST.	1940		FLIGHT	LEVEL			CORRECTION ON FUEL CONSUMPTION (KG/1000KG)			
(7)/8/8/(0)	V2000/20	2000		A000,4,45000.	0.004.00	2002-00-0	FL310	FL350	FL390	
(NM)	310 63787	330 62037	350 60265	370 58753	390 57692	410 57336	FL330 278	FL370 272	FL410	
5400	12.47	12.18	12.08	11,58	11.51	11.49*	1,563,000	780701	11000	
5500	65101 13.00	63310 12:30	61496 12.20	59958 12.11	58918 12.04*	58535 12.02*	283	279	35	
5600	86422 13.12	64589 12.43	62734 12.33	61166 12.24	60137 12.17*	59741 12.14	288	288	36	
5700	67750 13.24	65874 12.55	63978 12.46	62383 12.37	61362 12.30*	60953 12.27*	293	295	36	
5800	69086 13.37	67167 13.07	65228 12.59	63507 12.49	62592 12.43*	62175 12.40*	299	302	37	
5900	70428	68467	56485	64837	63838	63406	305	310	38	
6000	13.49 71769	13.20 69775	13.11 67749	13.02 66148	12.56* 65083	12.53* 64644	311	317	39	
	73118	13.32 71086	13.24 59020	13.15 67397	13.09* 66334	13.06* 65890	317	324	4.0	
6100	74473	13.44 72399	13.36 70299	13.28 68656	13.21* 67592	13.19* 67143	323	328	41	
6200	14.24	13.57	13.49	13.40	13.34*	13.31*				
6300	75837 14.36	73719 14.09	71578 14.02	69922 13.53	68856 13.47*	58405 13.44	329	339	41	
6400	77207 14.47	75047 14.22	72859 14.14	71195 14.06	70128 14.00*	69677 13.57*	334	347	47	
6500	78585 14.59	76383 14.34	74244 14.27	72474 14.18	71406 14.13*	70955 14.10*	344	357	43	
6600	79969 15.10	77724 14.47	75545 14.39	73761 14.31	72691 14.26*	72276 14.23*	349	361	44	
6700	81362 15.22	79202 14.59	76854 14.52	75058	73984 14.39*	73575	362	369	45	
6800	82914	80567	78170	14.44 76362	75285	14.35* 74885	368	378	46	
6900	15.31 84328	15.11 81941	15.05 79493 15.17	14.56 77675	14.52* 76593	14.48* 76204	367	386	47	
	15.43 85746	15.23 83324	15.17 80823	15.09 79037	15.04* 77908	15.01* 77533	373	395	48	
7000	15.55 87171	15.36 84699	15.30 82163	15.22* 80379	15.17* 79230	15.14* 78878	370	403	48	
7100	16.07	15.48	15.42	15.35*	15.30*	15.26*	- 58		1 108	
7200	88606 16.18	86069 16.01	83510 15.55	81729 15.47*	80559 15.43*	80220 15.39*	375	412	45	
7300	90049 16.30	87446 16.14	84868 16.08	83086 16.00*	81898 15.56*	81569 15.52*	360	422	-50	
7400	91500 16.42	88831 16.27	86238 16.20	84450 16.13*	83244 16.09*	82925 16.05*	385	431	51	
7500	92961 16.53	90223 16.40	87618 16.32	85829 16.26*	84598 16.21*	84287 16.17*	390	438	52	
7600	94430 17.05	91622 16.52	89007 16.45	87197 16.39*	85964 16.34*	85657 16.30*	395	446	50	
7700	95909	93029	90406	88583	87339	87034	401	454	54	
7800	17.16 97398 17.28	17.05 94444	16.57 91813	16.51* 89976	16.47* 88756	16.43* 88419	406	463	55	
7900	98869	17.18 95868	17.10 93228	17.04* 91376	17.00* 90155	16.56* 89811	412	471	58	
PACK FLOY	17.40 W LO	17.31 PAC	17.22 K FLOW HI C	17.17* DR/	17.12* ENGINE AN	17.09* ITI ICE ON	TOTA	AL ANTI ICE	ON.	
∆FUEL = -	0.5 %	ANU	CARGO COOL EL = + 1.5	ON	ΔFUEL =	+ 3 %	ΔF	UEL = + 5	%	

FLIP23D A330-200 CR6-80ELA4 3420 03701 000011 0250300 .8001 .00000 240 0300350140 0 260169 90179 18590 FC0M-00-02-05-40-017-115

QUICK DETERMINATION OF F-PLN

2.05.40 P 18 SEQ 115 REV 09

REF. LANDIN NORMAL AI ANTI ICING	R CONDIT	T = 1400	MC PROC	ISA FU CG = 37.0 %			EL CONSUMED (KG) TIME (H.MIN)			
AIR DIST.		17	FLIGHT			COI FUEL	RRECTION	CTION ON NSUMPTION		
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390 FL410	
8000	100343 17.53	97299 17.43	94655 17.34	92784 17.30*	91564 17.25*	91210 17.21*	420	480	576	
8100	101825 18.05	98745 17.56	96092 17.47	94199 17.42*	92982 17.38*	92617 17.34	428	492	586	
8200	103316	100204 18.08	97539 17.59	95623 17.55*	94411 17.50*	94032 17.47*	437	502	597	
8300	104815 18.30	101674 18.20	98991 18.11	97055 18.08*	95852 18.03*	95459 18.00*	445	511	608	
8400	106323 18.43	103154 18.33	100442 18.24	98495 18.21*	97302 18.16*	96891 18.12*	453	520	615	
8500	187839 18.55	104643 18.45	101904 18:37	99943 18.33*	98763 18.28*	98331 18.25*	462	531	625	
8600	109366 19.07	106141 18.57	103463 18.49*	101399 18.46*	100237	99780 18.38*	470	540	636	
8700	110901 19.20	107649 19.10	104953 19.02*	102865	101724 18.54*	101237 18.51*	480	550	646	
8800	112458 19.32	109169 19.22	106450 19.15	104339	103218	102704	475	560	658	
8900	114032 19.44	110698 19.34	107956 19.27*	105822	104786 19.19*	104160 19.16*	487	570	667	
9000	115622 19.56	112235 19.46	109471	107348	106202 19.32*	105667 19.29*	502	576	677	
9100	1-2.000	113767	110993 19.53*	188865 19.50*	107786 19.45*	107170 19.42*	518	585	687	
9200		115398 20.11	112524 28.06*	110392 20.02	109220 19.57*	108686 19.54*	542	593	698	
9300		120.11	114063 20.18*	111929 20.15*	110741 20.10*	110212 20.07*		595	708	
9400			115612	113477 20.28*	112271 20.23*	111749 20.19*		607	704	
9500			2000	115038 20.40*	113808 20.35*	113296 20.32*		645	715	
9600				20.10	115356 20.48*	114856 20.45*			727	
9700					337					
9800										
9900										
10000	Ť				ij					
10100										
10200										
10300	- 9								i i	
10400						Î				
10500										
AFUEL = -		AND	K FLOW HI C CARGO COOL JEL = + 1.5	ON	ENGINE AN			AL ANTI ICE UEL = + 5		

FLIP29D A330-200 CF6-B0E1A4 3420 03701 000011 0250900 8001 .00000 240 0300350140 0 260169 00179 18590 FC0M-G0-02-05-40-018-115

ALTERNATE

2.05.50

P 3

SEQ 115

REV 09

F. LDG WT DRMAL AII NTI ICING	R CONDITI	140000 KG ONING		CG = 3	200000	FUEL CONSUMED (KG) TIME (H.MIN)			
AIR DIST.		FL	IGHT LEVEL			FUEL	RRECTION O CONSUMPT KG/1000KG)		
(NM)	230	270	310	350	390	FL230 FL270	FL310 FL350	FL390	
150	2880 0.31	2913 0.30	- Coloredon			8			
200	3463 0.40	3459 0.38	3484 0.36	3508 0.36		10	- 11	- 0	
250	4048 0.48	4007 0.46	3998 0.44	3992 0.43	4000 0.42	12	13	14	
300	4633 0.57	4555 0.54	4513 0.52	4478 0.50	4460 0.49	14	15	16	
350	5220 1.06	5104 1.02	5029 0.59	4964 0.57	4921 0.55	17	18	-18	
400	5808 1,14	5655 1.11	5546 1.07	5451 1.04	5383 1.02	19	20	20	
450	6398 1.23	6207 1.19	5064 1.14	5940 1.11	5847 1.09	21	22	23	
500	6988 1.31	6760 1,27	6584 1.22	6429 1.18	6311 1.15	23	24	25	
550	7580 1.40	7315 1.35	7104 1.29	6919 1.25	6776 1.22	26	26	27	
600	8173 1.49	7870 1.43	7626 1.37	7411 1.32	7242 1.28	28	29	29	
650	8768 1.57	8427 1.51	8149 1.44	7904 1.39	7709 1.35	30	31	31	
700	9364 2.06	8985 1.59	8673 1.51	8398 1.46	8177 1.42	33	33	34	
750	9961 2.14	9545 2.07	9198 1.59	8892 1.54	8646 1.48	35	35	36	
800	10559 2.23	10105 2.15	9724 2.06	9388 2.00	9116 1.55	37	38	38	
850	11159 2.31	10667 2.23	10251 2.14	9885 2.07	9587 2.01	39	40	40	
900	11.760 2.40	11230 2.31	19779	10383 2.14	18059 2.88	42	42	43	
950	12363 2.48	11795 2.39	11309 2.28	10883 2.21	10532 2.15	44	44	45	
1000	12966 2.57	12360 2.47	11839 2.36	11383 2.28	11006 2.21	46	47	4	
1050	13571 3.05	12927 2.55	12371 2.43	11884 2.35	11481 2.28	49	49	.49	
1100	14178 3.14	13495 3.03	12904 2.50	12387 2.42	11957 2.34	51	51	-52	
1150	14786 3.22	14065 3.11	13439 2.58	12890 2.49	12435	53	54	54	
1200	15395 3.31	14636	13974	13395 2.56	12913	56	56	56	

FLIP23D A330 200 CF6-80EI A4 3520 03001 300010 500250300 ,8001 .00000 160 0300350140 0 217179100169 18590 FC0M G0-02 05-50-003-115

SINGLE ENGINE OPERATION GROUND DISTANCE/AIR DISTANCE

3.06.70 P 2 SEQ 001 REV 12

LONG RANGE SPEED

GROUND			AIR D	ISTANCE (I	NM)		
DIST.	TAIL WIN	D	WIND C	OMPONENT	S (KT)	HEA	D WIND
(NM)	+150	+100	+ 50	0	-50	-100	-150
10	7	8	9	10	12	14	17
20	14	16	18	20	23	28	35
30	21	23	26	30	35	42	52
40	28	31	35	40	47	56	69
50	35	39	44	50	58	70	87
60	42	47	53	60	70	84	104
70	49	55	61	70	81	98	121
80	56	62	70	80	93	111	139
90	63	70	79	90	105	125	156
100	70	78	88	100	116	139	173
200	141	156	175	200	233	279	347
300	211	234	263	300	349	418	520
400	281	312	351	400	466	557	694
500	351	390	438	500	582	697	867
600	422	468	526	600	699	836	1040
700	492	546	613	700	815	975	1214
800	562	624	701	800	931	1114	1387
900	632	702	789	900	1048	1254	1561
1000	703	780	876	1000	1164	1393	1734
1100	773	858	964	1100	1281	1532	1907
1200	843	936	1052	1200	1397	1672	2081
1300	913	1014	1139	1300	1514	1811	2254
1400	984	1092	1227	1400	1630	1950	2428
1500	1054	1170	1315	1500	1746	2090	2601
1600	1124	1248	1402	1600	1863	2229	2774
1700	1194	1326	1490	1700	1979	2368	2948
1800	1265	1404	1577	1800	2096	2508	3121
1900	1335	1482	1665	1900	2212	2647	3294
2000	1405	1560	1753	2000	2329	2786	3468

SINGLE ENGINE OPERATIONS

OBSTACLE STRATEGY

3.06.40 P 3 SEQ 115 REV 09

MAX. CO PACK FLO	NTINUOU			IS CG=3	A	GREEN D DISTANC INITIAL S	E (NM) PEED(KT)	TIN FUEL(ME (MIN 1000KG
ANTI-ICI							FF (FT)		
	INITIAL FLIC								
(1000KG)	250	270	290	310	330	350	370	390	410
130						228 42 190 2.3 33400	290 54 192 2.8 33500	329 60 194 3.1 33500	358 69 196 3.3 33500
140					202 38 194 2.2 31900	276 51 196 2.9 32000	318 58 198 3.3 32000	349 64 200 3.5 32100	375 6 202 3. 32100
150				160 30 198 1.9 30400	258 48 200 3.0 30500	306 57 202 3.4 30600	339 62 204 3.7 30600	366 66 206 3.9 30700	388 70 208 4.0 30700
160			68 13 202 .9 28900	236 44 204 2.9 29200	291 54 206 3.5 29200	329 61 208 3.9 29300	356 65 210 4.1 29300	382 69 212 4.3 29300	402 7: 214 4: 29400
170			204 38 208 2.7 27800	276 51 210 3.6 27900	318 59 212 4.0 28000	348 64 214 4.3 28000	373 68 216 4.5 28100	396 71 218 4.7 28100	416 7- 220 43 28100
180		151 29 212 2.2 26500	256 48 214 3.6 26700	304 56 216 4.1 26700	339 62 218 4.5 26800	366 67 220 4.7 26800	389 70 222 4.9 26800	409 73 224 5.1 26900	428 7/ 226 5.2 26900
190		211 39 218 3.1 25400	288 53 220 4.2 25500	327 60 222 4.6 25600	357 65 224 4.9 25600	380 69 226 5.1 25600	401 72 228 5.3 25700	422 75 230 5.5 25700	437 7 232 5.5 25700
200		149 27 224 2.3 25100	197 36 226 2.9 25100	231 41 228 3.3 25100	261 46 230 3.6 25100	284 50 232 3.8 25100	304 53 234 4.0 25100	324 56 236 4.2 25100	
210	178 33 228 3.0 24300	237 43 230 3.9 24400	271 49 232 4.3 24400	298 53 234 4.6 24500	321 57 236 4.8 24500	340 59 238 5.0 24500	357 62 240 5.1 24500	374 64 242 5.2 24500	
220	245 44 234 4.3 23200	291 52 236 4.9 23300	321 57 238 5.3 23300	348 62 240 5.6 23300	368 65 242 5.8 23400	389 68 244 6.0 23400	406 70 246 6.1 23400		
230	285 51 240 5.1 22100	322 58 242 5.6 22100	351 62 244 6.0 22200	375 66 246 6.2 22200	396 69 248 6.4 22200	414 72 250 6.6 22200	431 74 252 6.7 22300		2
240	315 56 246 5.8 21000	349 62 248 6.3 21000	374 66 250 6.6 21100	396 69 252 6.8 21100	413 72 254 7.0 21100	433 75 256 7.1 21100			
CORRECT	IONS	DISTA	NCE	TIF	ME	FU	EL	LEVEL	. OFF
ENGINE A	NTHICE ON	+ (1 %		1	+ 1	1%	- 10	D FT
TOTAL AN	ITI ICE ON	+ !	5 %	+ 3	5 %	+ !	5 %	- 400	D FT

^{11.0-08}F0A330-200 CF6-80E1A4 2350001CC6KG300 D 018590 D 0 3 .D .D .D 0 D 02 1.000 1.000 .000 D FC0M-G0-03-06-40-003-015

Chapitre I:

Présentation des deux pays et accessibilité des deux aéroports

Chapitre II:

Présentation de la Compagnie AIR ALGERIE et de l'appareil A330-200.

Chapitre III:

Etude opérationnelle de la ligne.

Chapitre IV:

PROCEDURES DE DEPRISSURISATION ET DE PANNE MOTEUR,

Chapitre V:

Etude économique de la ligne.

CONCLUSION GENERALE

INTRODUCTION GENERALE

ANNEXES ET ABREVIATION