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Abstract 

 
This thesis is dedicated to the study of Acoustic Scene Classification systems. The primary 

goal is to provide researchers and practitioners with guidelines that describe key steps for 

developing efficient scene classification systems. To this end, we have carried out two 

experimental case studies using a large set of sound scenes DCASE 2016 dataset. We have 

supported our analysis using numerous statistical tests. In the first one, we have conducted a 

comparative study among various systems, which were trained using 3 learning paradigms (Feed-

Forward Neural Network (FNN), Support Vector Machine (SVM) and K-nearest neighbors 

(KNN)) on 3 sets of features (Mel Frequency Cepstral Coefficients (MFCC), MFCC+ΔMFCC, 

and Spectrogram). The obtained results indicate that ΔMFCCs do not have significant impact on 

the predictive performance. Moreover, FNN exhibits very robust and high scores compared with 

the other learning paradigms. In the second case study, we have tested the use of feature selection 

in order to reduce the computational cost of training. Our analysis shows the positive role of feature 

selection in this case. Specifically, we can conclude that systems that were built using 40% 

ΔMFCC and 60% MFCC can increase the generalization ability of FNN. 

Keywords:  Acoustic Scene Classification, Machine Learning, Feature Extraction, Feature 

Selection, Statistical Tests. 

 

 

 

 

 

 

 

 

 



  

  

Résumé 

 
Cette thèse est dédiée pour une étude des systèmes de classification de scènes sonore. Le 

premier but est de pouvoir apporter aux chercheurs et aux appliquant des guides qui décrivent les 

étapes essentielles pour le développement d'un système performant pour la classification des 

scènes. Pour cela, nous avons réalisé deux cas d'études différents en utilisant une très large base 

de données proposée par DCASE 2016. Pour des fins d'analyse, nous avons utilisé plusieurs 

méthodes de calcul de statistiques. Pour le premier cas, nous avons réalisé une étude comparative 

de multiples systèmes, lesquels ont été entrainés en utilisant trois paradigmes d'apprentissage 

(Réseau de neurones à propagation avant (FNN), Machine à vecteurs de support (SVM) et 

l'algorithme de k plus proches voisins (KNN)) sur trois ensembles de caractéristiques (Coefficients 

de fréquence de Mel (MFCC), MFCC+ ΔMFCC et Spectrogramme). Les résultats obtenus 

indiquent que ΔMFCC n'ont pas un grand impact pour l'amélioration des performances de 

prédiction. De plus, FNN est très performant et donne de très bons résultats par rapport aux autres 

paradigmes d'apprentissage. Pour le deuxième cas, nous avons testé l'utilité de la sélection des 

caractéristiques dans le but de réduire le coût d'exécution de la phase d'entrainement. Dans ce cas, 

nos analyses montrent l'effet positif de la sélection des caractéristiques. Nous pouvons conclure 

que les systèmes qui ont été fondés en utilisant 40% des ΔMFCC et 60% des MFCC peut améliorer 

la généralisation des FNN. 

Mots clés :  Classification de Scenes Sonores, Apprentissage Automatique, Extraction des 

Caracteristiques, Selection des Caracteristiques, Testes Statistique. 

 

 

 

   

 

 



  

  

 

 

 ملخص
 تصف بأدلة والمنفذين الباحثين تزويد هو الأول الهدف .الصوتية المشاهد تصنيف أنظمة لدراسة مخصصة الأطروحة هذه

 كبيرة بيانات قاعدة باستخدام مختلفتين تينحال ةدراس أدركنا السبب، لهذا .المشاهد لتصنيف قوي نظام لتطوير الأساسية الخطوات

 دراسة  أجرينا الأولى، للحالة بالنسبة .الإحصائيات لحساب طرق عدة استخدمنا تحليلية، لأغراض .DCASE 2016 اقترحتها جداً

 من مجموعات ثلاث على ((KNN) (،SVM) (،FNN)) تعليمية نماذج ثلاثة باستخدام تدريبها تم متعددة، لأنظمة مقارنة

 MFCCΔ أن إلى عليها الحصول تم التي النتائج تشير (.)Spectrogram (و MFCC، (MFCCΔ+MFCC))))  الخصائص

 التعلم بنماذج مقارنة للغاية جيدة نتائج ويعطي للغاية فعال FNN ذلك، على علاوة .التنبؤ أداء تحسين على كبير تأثير لها ليس

 تظهر الحالة، هذه في .التدريبية المرحلة تنفيذ تكلفة تقليل أجل من Selection) (Feature فائدة اختبرنا الثانية، للحالة .الأخرى

 ٪ 60و MFCCΔ من ٪ 40 باستخدام إنشاؤها تم التي الأنظمة أن نستنتج أن يمكننا .الأخيرة لهذه الإيجابي التأثير تحليلاتنا

 MFCCأداء تحسن أن يمكن FNN. 

 .الإحصائيات التصنيف، أنظمة الصوتية، المشاهد تصنيف أنظمة :المفاتيح كلمات
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Introduction 

  
1. Context and problem statement 

Enabling devices to make sense of their environment through the analysis of sounds is the 

main objective of research in Acoustic Scene Classification (ASC). ASC systems perform 

analogous processing tasks to the human auditory system, and are part of a wider research theme 

linking fields such as Machine Learning, Robotics and Artificial Intelligence. ASC refers to the 

task of associating a semantic label to an audio stream that identifies the environment in which it 

has been produced. It uses computational algorithms that attempt to automatically recognize scenes 

using Signal Processing and Machine Learning Methods.  

ASC has a major impact in a wide range of applications. We can cite: audio surveillance and 

noise pollution monitoring [1]. Unlike video monitoring, acoustic or audio surveillance can be 

advantageous in many scenarios, since sounds travel through obstacles, is not affected by lighting 

conditions, and capturing sound typically consumes less power. Moreover, many potentially 

dangerous events can only be detected at an early stage through the analysis of an audio stream. 

For instance, the detection of specific sound sources such as gunshots, screams, and sirens. Noise 

pollution is one of the topmost qualities of life issues for urban residents worldwide. Exposure to 

harmful levels of noise has proven effects on health such as sleep disruption, stress, hypertension, 

and hearing loss.  

The process of classifying an acoustic scene is divided into two major steps (Figure 1.1): 

Feature Extraction and Machine Learning. First, sound pre-processing step, a sound file is 

decomposed into small frames of a certain length; then, a feature extraction method is applied 

on each frame to extract a vector of data that specifies the pattern of that exact frame, each vector 

of data is associated to the scene label that corresponds. Existing sound representations often 

include: Mel-frequency Cepstral Coefficients and other low-level Spectral Descriptors or more 

specialized features such as histograms of sound events or histogram of gradients learned from 

time-frequency representations. Second, machine learning model maps the extracted vector of 

features (sound frame) to its textual label. Finally, predictions are merged together to form the 
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final decision based on majority vote. Many classification algorithms have been introduced in the 

literature, such as Neural Networks (FNNs), Support Vector Machines (SVMs) and more 

recently deep learning-based approaches. These latter are characterized by a high computational 

complexity and often have a large number of parameters. Diagram below show the overall 

mechanism of acoustic scene classification system. 

A possible way of improving predictions, while decreasing the computational burden, 

consists of including a Feature Selection step before invoking a classification algorithm. Feature 

selection aims at finding a compact and effective subset of features. The thrust consists of reducing 

the number of features while maintaining or even improving the generalization power of the 

learning model. Given a set of n features, one straightforward strategy consists of searching for a 

subset that best optimizes a criterion indicative of the generalization accuracy. This task involves 

evaluating 2n − 2 subsets (excluding the empty set and the entire set), which becomes intractable 

for moderate and large number of features [2]. To cope with this shortcoming, numerous filter-

based approaches have been developed in the literature such as Mutual Information Feature 

Selection (MIFS) [3], Conditional MIFS (CMIFS) [4], min-Redundancy Max-Relevance (mRMR) 

[5], and the well-known Joint Mutual Information (JMI) [6]. 

 

…

Features

Feature
Extraction Classification 

Algorithm

Final Decision

Scene 1

Scene 1

Scene 2

Scene 1

Scene 1

Predictions

…

Sound wave

Figure 1.1. Overall mechanism of acoustic scene classification system 
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2. Related work 

Khunarsal, Lursinsap, and Raicharoen have conducted their works based on Environmental 

Sound Classification using K-Nearest Neighbor classifier and Feed Forward Neural Network by 

dividing their dataset into 5-Folds cross-validation [7]. They have used combination of 

Spectrogram, Mel Frequency Cepstral Coefficients (MFCCs), Linear Prediction Coefficients 

(LPCs) and matching pursuit (MP) features as feature extraction approaches with varying the 

window size in each time. For that, they concluded that Both k-NN and feed-forward neural 

network can effectively classify unstructured environmental sound. In particular, the feed-forward 

neural network gave the best result in their experiments. Using a neural network and K-NN, the 

average accuracy of the spectrogram + LPC + MP features combination is the best of all. They 

obtained an overall accuracy of 86% and 94.98% for FNN and K-NN respectively. 

 Shuiping, Wang & Zhenming, Tang & Shiqiang, Li. Have used Short-Time Average Zero-

Crossing Rate, Short-Time Energy, Centroid of audio frequency spectrum, Sub-Band Energy and 

MFCC features as the characteristic parameters and designed an audio classification system based 

on SVM. They achieved an overall accuracy 90.43% for MFCC [8]. 

3. Contributions 

Sound scene classification has been a subject of mounting interest in the last decade. Incredible 

efforts have been deployed into building such systems. The challenge consists of extracting the 

features that best represent the problem at the hand, and fitting the most effective classification 

model. To put it simply, the aim is to find the best combination of a feature extraction approach 

and a classification algorithm.  This problem has been addressed by the research community using 

various methodologies. The aim of this thesis is to derive guidelines for researchers and 

beginners in this field to assist them in building effective scene classification systems. To this 

end, we have carried out experimental comparisons among various scene classification systems. 

The contribution of our work is two folds: 

− First, we have conducted extensive experimental comparison among sound analysis methods 

using a large set of sound scenes DCASE 2016 dataset [9]. We have thoroughly examined 3 

acoustic features (Mel Frequency Cepstral Coefficient, a combination of Mel Frequency 

Cepstral Coefficient with the delta coefficients, and Spectrograms) and 3 classification 
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paradigms (Feed Forward Neural Network, K Nearest Neighbors, Support Vector Machine).  

We have backed our analysis and conclusions based on well-known statistical tests. 

− Second, we have investigated the effect of the number of features on the generalization 

performance. Specifically, we have invoked a feature selection approach, namely JMI [6] in 

order to automatically determine the optimal set of extracted features. To the extent of our 

knowledge, only very few attempts have considered incorporating feature selection step 

into the design of their systems. 

4. Structure of the thesis 

This thesis is divided into 2 parts: 

− In the first part, we survey the background knowledge surrounding sound representations 

and machine learning that are relevant to the enquiries pursued in this thesis. We present, 

in Chapter 1, basic notions on acoustic scene classification, starting from pre-processing to 

feature extraction. Then, in Chapter 2, we provide a throughout description of some relevant 

classification concepts.  

− In the second part, we present the setup and the experimental results of our enquiries. We 

provide, in Chapter 3, a description the methodology that we have followed for comparing 

sound scene classification approaches. Finally, in Chapter 4, we present the results of the 

experimental comparisons, while backing our analysis and discussions based on robust 

statistical tests. 
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Fundamentals of Acoustic Scene 

Classification 

Acoustic scene classification aims at characterizing the environment of an audio stream by 

selecting a semantic label for it. This process involves two primary steps: Feature Extraction, 

Machine Learning. Feature extraction consists of transforming the signal into a representation 

which maximizes the sound recognition performance of the analysis system. The acoustic features 

provide a numerical representation of the signal content relevant for machine learning, 

characterizing the signal with values which have connection to its physical properties, for example, 

signal energy, its distribution in frequency, and change over time. On the other hand, machine 

learning is an application of artificial intelligence that provides systems the ability to automatically 

learn and improve from data, the result of the learning process is known as machine learning 

model, this latter takes as an input a set of features extracted from a sound scene and assigns a 

label to it. The first part of this thesis covers state-of-the-art surrounding feature extraction 

techniques and machine learning models that are necessary for comprehending the ideas discussed 

in this thesis. 
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Chapter 1: Sound Representation 

1.1. Introduction 

 Sound Analysis has become a large educated domain in our days, it gets an important 

attention from physicians and also other scientists trying to understand its nature and behavior in 

the environment, in the purpose of making it understandable in machines. It has been known that 

the audio sounds have multiple representative parameters (Temporal, Cepstral, Spectral, 

Spectrogram) which can be used for recognition. 

In this Chapter, we describe some theory behind sound representation and signal processing 

principles that are required for perceiving this work. We begin by introducing the process of sound 

acquisition in Section 1.2. Then, we briefly discuss time/frequency representations, Fourier 

transform, and some preprocessing mechanisms in Sections 1.3 and 1.4, respectively. Finally, we 

provide some acoustic features that have been widely employed in the literature in Section 1.5. 

1.2. Signal/Sound Acquisition 

Sound is the result of a vibration that propagates as waves through a medium such as air or 

water. Sounds can be recorded under the form of an electric signal x.t/ where t represents the time 

by means of an electroacoustic transducer such as a microphone. This analog signal x.t/ can then 

be converted to a digital signal x(n) n being the digital signal and stored on a computer before 

further analysis. The necessary steps to perform this analog-digital conversion include: 

• A filtering stage: the analog signal x.t/ is low-pass filtered in order to limit its frequency 

bandwidth in the interval (0; B) where B is the cut-off frequency of the low-pass filter.  

• A sampling stage: the low-passed analog signal is then digitally sampled at a sampling 

rate fs D 2B to avoid the well-known frequency aliasing phenomenon.  

• A quantification stage: the obtained digital signal is then quantized (e.g. the  

amplitude of the signal can only take a limited number of predefined values to preserve 

storage capacity).  
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1.3. Time/Frequency representation 

Time-frequency representations such as Short Time Fourier Transform were designed 

mainly according to mathematical rules leading, for example, to linear-frequency scales. Human 

perception studies have shown that we do not perceive sound similarly in each region of the 

spectrum and that the resolution of the human ear also varies along the frequency axis. Therefore, 

non-linear-frequency scales have been introduced in an attempt to mimic human perception and 

provide a better way to extract information from sound signals. The Figure below represents the 

frequency in function of time. 

 

 

 

 

 

 

 

 

Figure 1.1. Representation of frequency in function of time. 

1.4. Fourier transform 

All the signals observed in the nature can be decomposed into a sum of pure sinusoids with 

different frequencies. Fourier Transform is a mathematical technique for obtaining the spectral 

composition of the signal by decomposing it into pure frequencies that make up the original signal 

[10]. The resulting sinusoids of Fourier Transform on a signal represented as a function of time is 

a complex value, whose imaginary part represents the phase off-set of the pure sinusoid and its 

absolute value represents the corresponding frequency component. Applying inverse Fourier 
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Transform on the resulting signal reconstructs the original signal when the condition provided for 

sampling theorem is satisfied.  

Fast Fourier Transform (FFT) converts a signal from the time domain to the frequency 

domain as shown in Figure 1.2 below. Each frame having 𝑁𝑚 samples are converted into frequency 

domain [10]. Fast Fourier transform is a fast algorithm to apply Discrete Fourier Transform (DFT) 

on the given set of 𝑁𝑚 samples as shown below: 

𝐷𝐾 = ∑ 𝐷𝑚𝑒
−𝑗2𝜋𝑘𝑚

𝑁𝑚

𝑁𝑚−1

𝑚=0

   

where, k = 0….𝑁𝑚 − 1 and 𝐷𝑚 represents the DFT of a frame given m. where, k = 0….𝑁𝑚 −

1  and 𝐷𝑚 represents the DFT of a frame given 𝑚. It is worth mentioning that the DFT algorithm 

has a complexity of O(𝑁²), whereas, the Fast Fourier transform implementation has a quasi-

logarithmic complexity O(𝑁𝐿𝑜𝑔2𝑁). 

Here are two plots that show the effect of the FFT function applied to a simple raw audio 

waveform, it finds out the frequency domain representation of a time domain signal (see Figure 

1.2). 

Figure 1.2. Graphical representation of the effect of DFT on raw audio wave form. 

1.5. Pre-processing 

Audio is prepared and processed for machine learning algorithms in the audio processing 

phase of the overall system design. Pre-processing is applied to the audio signal before the process 
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of machine learning starts. The main role of this stage is to enhance certain characteristics of 

the incoming signal in order to maximize audio analysis performance in the later phases of the 

analysis system. For instance, this is achieved by reducing the effects of noise or by emphasizing 

the target sounds in the signal [11]. 

1.6. Feature engineering 

Feature engineering consists of extracting features from raw data and transforming them into 

formats that are suitable for the machine learning model. It is a crucial step in the machine learning 

process, because the right features can ease the difficulty of modeling, therefore, it can improve 

the performance of a scene classification system [11]. Practitioners agree that the vast majority of 

time in building such systems is spent on feature engineering and data processing. 

1.7. Temporal features 

These features are computed directly on the temporal waveform. Therefore, usually rather 

straightforward to compute. A large number of features has been introduced for audio signals the 

energy of signal, zero crossing rate (ZCR), Time domain Envelope and Temporal waveform 

moments. But few examples of acoustic features that are frequently used by the research 

community. 

1.8. Spectral features 

Spectral features are obtained by converting the time-based signal into the frequency domain 

using Fourier Transform thus it we can obtain other features as: spectral centroid, spectral flux, 

spectral envelop, spectral roll-off, etc. These features can be used to identify the notes, pitch, 

rhythm, and melody [11]. 

1.9. Cepstral features 

Cepstral features allow decomposition of the signal according to the so-called source-filter 

model widely used to model audio sound production [12]. The signal is decomposed into a carrier 

(source) and modulation (filter). Mel Frequency Cepstral Coefficients (MFCC) are the most 

common used cepstral coefficients. They are obtained as the inverse discrete cosine transform 

(DCT) of the log energy in Mel Frequency bands [12].  
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𝑚𝑓𝑐𝑐(𝑡, 𝑐) = √
2

𝑀𝑚𝑓𝑐𝑐
∑ log (�̃�(𝑡)) cos (

𝑐 (𝑚 −
1
2) 𝜋

𝑀𝑚𝑓𝑐𝑐
)

𝑀𝑚𝑓𝑐𝑐

𝑚=1
   

 

where 𝑀𝑀𝐹𝐶𝐶  is the number of Mel Frequency bands, m the frequency band index, �̃�𝑚 is the energy 

in the 𝑚𝑡ℎ Mel Frequency band and c is the index of the cepstrum coefficient (𝑐 ∊

{1,2, … , 𝑀𝑀𝐹𝐶𝐶}). An example of 𝑴𝑭𝑪𝑪 features as shown below (see Figure 1.3). 

 

 

 

 

 

 

Figure 1.3. MFCCs features of an Office Scene example. 

A common implementation uses a triangular filter bank where each filter is spaced according 

to a Mel Frequency scale. The energy coefficients �̃�𝑚(𝑡)  in the band m are obtained as a weighted 

sum of the spectral amplitude components |�̃�(𝑡, 𝑓)| (where the weights are given according to the 

amplitude value of the corresponding triangular filter). 

The MFCC contains the information of only the power spectral envelope of a signal frame, 

but it fails to capture the temporal dynamics of the audio signal. Delta features are used to capture 

these dynamics. They are basically time derivative of the MFCC features. Delta-Mel Frequency 

cepstral coefficients or ΔMFCCs is also referred as differential coefficients [13]. It has been widely 

used in the field of sound Analysis, where generally they are used in conjunction with MFCC 

feature vectors. Delta coefficients are calculated from MFFCs in the following equation below: 

𝑑𝑒𝑙𝑡𝑎 =  
∑ 𝑛(𝑐𝑇 − 𝑐𝑡)𝑁

𝑛=1

2 ∑ 𝑛²𝑁
𝑛=1
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Where 𝐶𝑛 is the MFCC vector corresponding to 𝑛𝑡ℎ signal frame. MFCC vectors for frames 

ranging from (n – l) to (n + l) are utilized to compute delta coefficient vector 𝒅𝒆𝒍𝒏 for 𝒏𝒕𝒉 frame, 

l being the window size. An example of Δ𝑀𝐹𝐶𝐶 features is given (see Figure 1.4).  

 

 

 

 

 

 

Figure 1.4. ΔMFCC features of an Office Scene example 

1.10. Spectrogram features 

Features can also be extracted from the time-frequency representation of a sound scene [14]. 

Spectrogram features rely on techniques inspired by computer vision to characterize the shape, 

texture and evolution of the time-frequency content in a sound scene. An example of Spectrogram 

features is given below (see Figure 1.5). 

 

Figure 1.5. Spectrogram features 
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1.11. Other approaches 

Studies on human perception have allowed for a better understanding of the human hearing 

process. Some results from these studies have been exploited in feature engineering and led to 

widely used features such as Mel Frequency Cepstral Coefficients (MFCC) [11]. However, 

there is still a large variety of perceptual properties that could be exploited in feature extraction:  

• Loudness is the amplitude of a sound wave determines its loudness or volume. A larger 

amplitude means a louder sound, and a smaller amplitude means a softer sound. 

• Sharpness can be interpreted as a spectral centroid based on psychoacoustic principles. It 

is commonly estimated as a weighted centroid of specific loudness. 

• Perceptual spread is a measure of the timbral width of a given sound. It is computed as 

the relative difference between the largest specific loudness and the total loudness. 

1.12. Conclusion 

In this chapter, we have reviewed the basic concepts of sound representation that are 

necessary to understand the ideas treated in this work. We have presented various sound features 

(temporal, spectral, cepstral features and others) that are widely discussed by the research 

community. These features are prepared to be used as an input for a learning algorithm. In the next 

chapter, we will give an overview of basic machine learning notions, including classification steps, 

classifiers algorithms, some evaluation measurements and statistical tests. 
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Chapter 2: Machine Learning for Acoustic 

Scene Classification 

2.1. Introduction 

Machine learning is about programming computers to optimize a performance criterion 

using example data or past experience. It is used in cases where we cannot directly write a 

computer program to solve a given problem, but need example data or experience. Different 

categories of machine learning approaches have been introduced in the literature. They fall into 

three primary categories: Supervised Learning, Unsupervised Learning, and Semi-Supervised 

Learning. Supervised learning takes as an input a set of labeled data and learns a classification 

model. Unsupervised learning deals with input data that is not labeled. Semi-supervised learning 

builds a model from data made of a mixture of labeled and unlabeled examples. We undertake a 

supervised learning approach to address scene classification problem. 

2.2. Fundamentals of classification 

Machine learning has multiple fundamentals and rules which can be used to process and 

structure the Acoustic data that goes into system algorithms. The most rules used are described 

below. 

In machine learning each data from the dataset refers to a specific scene which is tagged to 

its own label. These class labels are accompanied with more data called features (so-called 

dimensions) and they act as the input of the system [11]. New features can also be obtained from 

the oldest using a method known as ‘feature engineering’. 

Machine learning algorithms are described as learning a target function that maps input 

variables (features) to an output variable (class label). The most common objective of machine 

learning is to learn the mapping (training) 𝑌 = 𝑓(𝑋) to make predictions (testing) of 𝑌 for new 𝑋 
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on 𝑓 mapping function (learning algorithms) [11]. This is called predictive modeling or 

predictive analytics and the goal is to make the most accurate predictions possible. 

While training, the learning algorithm maps the training samples with their class labels in 

order to build a model. The model obtained is tested on unseen samples (testing data). The output 

consists of a list of predictions that are used to get measurements referring to the model 

performance. 

Generalization is an important fundamental in machine learning [15]. It refers to how well 

the approximation of the target function generalizes a new data. Generalization works best if the 

signal or the sample that is used as the training data has a high signal to noise ratio. If that is not 

the case, generalization would be poor and we will not get good predictions.  

The classification step has gotten two major problems like overfitting or underfitting. A 

model is overfitting if it fits the training data too well and there is a poor generalization of new 

data. As well a model is underfitting if it fits the training data is not enough to get important results. 

The main goal in this phase is building a model with favorable fitting and gives good performances. 

Cross-validation is an important statistical method that helps to get meaningful results about 

the machine learning models included in the system [11, 11]. It consists of splitting data into 

training and testing sets. The most used method is K-Fold Cross-validation. 

After building all desired models, it is important to differentiate between them and to be able 

to do that, statistical tests are used. These tests use models’ performances obtained previously to 

compare each model with the others. “Friedman Test”, “Nemenyi Test” and “Wilcoxon signed 

Rank Test” are applied. 

2.2.1 Common classifiers 

A. Feed Forward Neural Network  

Artificial Neural Networks (ANNs), also known simply as neural networks (NNs), are 

computing systems that process information by their dynamic state response to external inputs 

[16]. In its fundamental structure, a NN is a network of interconnected nodes called neurons, 

weighted connections join the neurons and scale the strength of the transmitted signals, 
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representing the synapses in the brain. An ANN can be described as mapping an input space to an 

output space [17]. 

ANNs in general are composed of nodes or units connected by directed links. A link from 

unit to another unit serves to propagate the activation. Each link also has a numeric weight 

associated with it, which determines the strength and sign of the connection. Each unit j first 

computes a weighted sum of its inputs, then it applies an activation function on this sum to derive 

the output [18]. Three activation functions are cited below (Sigmoid, ReLU, Softmax):  

• Sigmoid Function 

The sigmoid function is the most common form of activation function used in the 

construction of neural networks. It is a strictly increasing function, which holds an excellent 

balance between linear and non-linear behavior. It is defined by: 

𝑆(𝑥) =
𝑒𝑥

𝑒𝑥 + 1
   

• Rectified linear unit (ReLU) 

ReLU is an activation function that scales the output linearly. ReLU function has output 0 if 

the input is less than 0, and raw output otherwise. That is, if the input is greater than 0, the output 

is equal to the input. It is defined by: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 
  

• Softmax function 

Softmax function computes the probabilities of each scene over all possible scenes. The 

output is equivalent to a categorical probability distribution. It measures the probability that any 

of the classes are true. It is defined by: 
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𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑗) =
𝑒𝑥𝑗

∑ 𝑒𝑥𝑘𝐾
𝑘=1

 
  

where 𝑥 is a vector of inputs to the output layer, 𝑗 indexes the output units, so 𝑗 =  1, 2, . . . , 𝐾. 

NNs use generally a procedure called Backpropagation, which is the practice of learning 

the weights of a neural network based on the error rate obtained from the previous training epoch. 

Proper tuning of the weights ensures lower error rates and makes the model reliable.  

NNs use another method called dropout. It is a technique where randomly selected neurons 

are ignored during training. (randomly “dropped-out”). This means that their contribution to the 

activation of neurons is temporarily removed on the forward pass and any weight updates are not 

applied to the neuron on the backward pass. 

The effect is that the network becomes less sensitive to the specific weights of neurons. This 

in turn results in a network that is capable of better generalization and is less likely to overfit the 

training data [19]. 

Figure 2.1. Multi-Layers Neural Network Structure 

 

Figure 2.1 shows a simple structure of a Multi-Layer Neural Network, 𝐼𝑛 represents input 

features which get through the different layers (input layer, hidden layers and finally output layer) 

passing by nodes in each layer and attributed with weights 𝑤𝑖,𝑗, i and j are nodes indexes.  
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Feed Forward Neural Network or FNN is a NN that does not contain any feedback 

connection(loops), i.e., each layer receives inputs only from the previous layer. It is a directed 

graph, where information is always traveling forward. There are many architectures of FNN, one 

of the most used in classification is Multi-Layer Perceptron (MLP). MLP can partition the input 

space into exponentially more linear regions than a shallow network with the same number of 

neurons. For this reason, they can more easily represent highly structured and complex functions. 

MLP have obtained excellent results in speech and sound classification [20]. 

B. Support Vector Machine  

Support Vector Machine (called SVM) constructs a hyperplane or set of hyperplanes in a 

high or infinite dimensional space. A good separation is achieved by the hyperplane that has the 

largest distance to the nearest training-data point (these points are known as Support vectors) of 

any class (so-called functional margin). Generally, the generalization error of the classifier 

decreases as the margin gets larger [21]. 

It is believed that mapping data into higher dimensional spaces could make data easily 

separated or better structured. This procedure is known as Kernel trick. We describe in what 

follows two Kernel methods that have been widely used in machine learning experiments. 

• Polynomial Kernel  

Polynomial kernels are well suited for problems where all the training data is normalized. It 

has adjustable parameters are the slope 𝜶, the constant term c and the polynomial degree d as 

below: 

𝑘(𝑥, 𝑦) = (𝛼𝑥𝑦 + 𝐶)𝑑 
  

• Radial Basis Function Kernel 

Radial basis function kernel (RBF) is a function whose value depends on the distance from 

the origin or from some point. It is defined in the following formula (2.5):  
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𝑘(𝑥, 𝑦) = exp (−
‖𝑥 − 𝑦‖²

2𝜎²
)   

The parameter 𝝈 plays a major role and should be carefully set to the problem at hand. 

• K-Nearest Neighbor 

K-Nearest neighbor algorithm called KNN is one of the most popular learning techniques. 

KNN classifier is a supervised learning algorithm based on clustering. It divides data inputs into 

clusters that defines class labels or categories [22].  

KNN is a sample-based learning algorithm or lazy learner. It uses all the training data to 

predict the class labels of testing data [23]. 

KNN works by finding the distances between test data and all the training data, then selecting 

the specified number (K) closest to the test. Finally, it votes for the most frequent label. These 

distances are computed using different functions as like as: Euclidean, Manhattan and Minkowski 

Distance. A simple example of KNN classifier is given by Figure 2.2. White points are data labeled 

to the class A, black points are data which belongs to class B and the blue point represents the 

testing data. Distances are computed between test data (blue) and all other data (white and black) 

using a distance function. KNN gets all distances smaller than k chosen; then, it votes for the most 

frequent label present in these distances.  

 

 

 

 

 

 

Figure 2.2.  KNN classification 
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This approach is effective, non-parametric and easy to implement. However, the prediction 

takes too long due to its high calculation complexity. Furthermore, the performance is dependent 

only on the training set there is no weight difference among samples. 

2.3. Evaluation of acoustic scene classification models 

2.3.1 Cross-validation 

Cross-validation is a statistical method, also known as resampling procedure, used to 

estimate the skill of a machine learning model on a limited data sample. It is commonly used in 

applied machine learning to compare and select a model for a given predictive modeling problem. 

Several resampling techniques have been introduced such as k-fold cross validation, leave-one-

out, 5×2 cross validation, and 10×10 cross validation.  

K-Fold Cross-validation is an iterative approach: during iteration 𝑖, it randomly divides the 

set of observations into 𝐾 groups or folds, of approximately equal size. Fold 𝑖 is treated as a testing 

set, and the remaining 𝐾 −  1 folds assigned as a training set. This procedure is repeated 𝐾 times 

as shown below (see Figure 2.3): 

 

 

 

 

 

 

 

 

Figure 2.3.  5-Fold Cross-validation. 
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The results of a k-fold cross-validation runs are often summarized with the mean of the 

model skill scores. It is also good practice to include a measure of the variance of the skill scores, 

such as the standard deviation or standard error. The choice of K is usually 5 or 10, but there is no 

formal rule [24]. 

Stratification is a technique where we rearrange the data in a way that each fold has a good 

representation of the whole dataset. It forces each fold to have at least m instances of each class. 

This approach ensures that one class of data is not overrepresented especially when the target 

variable is unbalanced, which is depicted in Figure 2.4. 

 

 

 

 

Figure 2.4.  Stratified K-Fold Cross-validation. 

 

2.3.2 Performances metrics 

The choice of the metrics used to evaluate machine learning model is very important. It 

influences how the performance of a learning algorithm is measured and compared. Numerous 

performance metrics have been used in machine learning experiments. In what follows, we 

describe some of them [25]. 

Confusion Matrix 

The Confusion matrix is one of the most intuitive and easiest metrics used for finding the 

correctness and accuracy of a model. It is a matrix of 𝑛 × 𝑛, where n represents the number of 

classes. The row dimension is called Ground truth, whereas the column is known as Predicted. 

Table 2.2 provides a representation of the confusion matrix with 𝑛 = 2. 
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Table 2.1.  Confusion Matrix 

 

I.  Predictions 

 Classes 0 1 

Ground 

Truth 

0 TN FP 

1 FN TP 

where: 

• True Positives (TP) are the cases when the actual class of the data point was 1 (True) and 

the predicted is also 1 (True). 

• True Negatives (TN) are the cases when the actual class of the data point was 0 (False) 

and the predicted is also 0 (False). 

• False Positives (FP) are the cases when the actual class of the data point was 0 (False) and 

the predicted is 1 (True).  

• False Negatives (FN) False negatives are the cases when the actual class of the data point 

was 1 (True) and the predicted is 0 (False).  

• Accuracy/error rate 

         Accuracy is the ratio between the number of correct predictions made by the model 

and the total number of instances. Accuracy can be computed using the previous metrics (TP, TN, 

FP, FN) is given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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• Precision and recall 

Precision also called positive predictive is the fraction of predicted positives which are 

actually positive. Recall is the fraction of actual positives which are correctly predicted. We can 

calculate them from the confusion matrix using the equations (2.8-2.9) below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

  

The precision and recall can be used in multi-class problems to measure the predictive 

performance of the classifier for a particular scene. 

• F1 Score 

F1 Score is the average between precision and recall. It measures how precise the classifier 

is (how many instances it classifies correctly), as well as how robust it is (it does not miss a 

significant number of instances). It is given by the following formula (2.10): 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
   

High precision but lower recall, gives an extremely accurate, but it then misses a large 

number of instances that are difficult to classify. The greater the F1 Score, the better is the 

performance of our model. 

2.3.3 Statistical tests 

Given multiple learning algorithms, model evaluation aims at identifying which algorithm 

produces the most accurate classifiers. This concern is one among the fundamental issues in 

machine learning [4]. In order to address it, García et al. [26] [13], and Japkowicz et al. introduced 

several statistical tests such Friedman, Nemenyi and Wilcoxon for performance comparison [27]. 
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A. Friedman test 

The Friedman test is useful for comparing several algorithms over multiple domains. It first 

ranks the techniques for each dataset separately according to the generalization measure in 

descending order. The best performing technique gets the rank 1, the second best gets rank 2... etc. 

In case of ties, average ranks are assigned. Let 𝑟𝑖
𝑗
 be the rank attributed to the 𝑗𝑡ℎ algorithm on the 

𝑖𝑡ℎ dataset; and let 𝑅𝑗 denote the average rank of algorithm 𝑗 ∈ {1, … , 𝑡} over 𝑁 datasets. Under 

the null hypothesis, it is assumed that all techniques are equivalent; hence, their average ranks 

should be equal. 

𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗

𝑁

𝑖=1

 
  

𝑥𝐹
2 =

12𝑁

𝑡(𝑡 + 1)
[∑ 𝑅𝑖

𝑗
−

𝑡(𝑡 + 1)²

4

𝑘

𝑗=1
] 

  

The test statistic is given in equation (2.12) chi-squared distribution with 𝑡 − 1 degrees of 

freedom for sufficiently large 𝑁 and 𝑡 (usually 𝑁 > 10 and 𝑡 > 5). This test provides only an 

assessment whether the observed differences in the performances are statistically significant. 

B. Nemenyi test 

This test is invoked when all techniques are compared with each other. The performance of 

two methods is significantly different if their corresponding average ranks differ by at least the 

critical difference 𝐶𝐷 

𝐶𝐷 = 𝑞𝛼√
𝑡(𝑡 + 1)

6𝑁
   

where the critical value 𝑞𝛼 is defined based on the Studentized range statistic divided by √2. 

C. Wilcoxon signed rank test 

Wilcoxon signed-ranks test is a non-parametric test. It is considered the best strategy to 

compare two algorithms over multiple domains. The formulation of this test is the following. We 
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designate by 𝑑𝑖 the differences between the performance scores of two techniques on 𝑁 datasets, 

𝑖 ∈ {1 … 𝑁}. We first rank these differences according to their absolute values; in case of ties 

average ranks are attributed. Then, we compute the sum of ranks for the positive and the negative 

differences, which are denoted as 𝑅+ and 𝑅−, respectively. Their formal definitions are given by: 

𝑅+ = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖>0

+
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0

   

𝑅− = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖<0

+
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖).

𝑑𝑖=0

   

Notice that the ranks of 𝑑𝑖 = 0 are split evenly between 𝑅+ and 𝑅−. Finally, the statistics 𝑇𝑤  

is computed as 𝑇𝑤  =  𝑚𝑖𝑛(𝑅+, 𝑅−). The statistics 𝑧 follows the normal distribution with 1 mean 

and 0 variance. For instance, the hypothesis which states that two approaches perform equally is 

rejected if 𝑧 ≤  −1.96 at a 5% significance level. 

 

2.4. Feature Selection 

Feature Selection is the process of determining what inputs should be presented to a 

classification algorithm. Originally feature selection was performed by domain experts as they 

chose what properties of an object should be measured to try and determine the class label. Modern 

classification problems attempt to collect all possible features, and then use a statistical feature 

selection process to determine which features are relevant for the classification problem.  

Feature selection algorithms of all kinds rely upon a single assumption about the data, that 

the feature set contains irrelevant and/or redundant features. Irrelevant features contain no useful 

information about the classification problem, and redundant features contain information which is 

𝑧 =
𝑇 −

1
4

𝑁(𝑁 + 1)

√ 1
24 𝑁(𝑁 + 1)(2𝑁 + 1)
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already present in more informative features. It may also improve classification performance by 

reducing the potential for overfitting when shrinking the feature set. The strongly relevant features 

are not redundant as each one contains useful information that is not present in any other 

combination of features. 

2.4.1 Joint Mutual Information 

An information theoretic filter algorithm is one that uses a measure drawn from Information 

Theory as the evaluation criterion. Evaluation criteria are designed to measure how useful a feature 

or feature subset is when used to construct a classifier. We will use J to denote an evaluation 

criterion which measures the performance of a particular feature or set of features in the context 

of the currently selected set. The most common heuristic evaluation criteria in information 

theoretic feature selection is simply Joint Mutual Information (JMI). The JMI score for feature 𝑋𝑘 

is: 

𝐽𝐽𝑀𝐼(𝑋𝑘) =  ∑ 𝐼(𝑋𝑘𝑋𝑗; 𝑌)

𝑋𝑗 ∈ 𝑆

   

 

This is the information between the target and a joint random variable 𝑋𝑘𝑋𝑗 , Defined by 

pairing the candidate 𝑋𝑘 with each feature previously selected. The idea is if the candidate feature 

is complementary' with existing features, we should include it [28]. 

2.5. Conclusion 

In this part, we have reviewed the background knowledge of classification and sound 

representations that are relevant to the enquiries pursued in this thesis. The main goal of our work 

is to design proper Machine Learning experiments for acoustic scene classification; from cross 

validation to results discussion. In the next part, we will first introduce the experimental setup and 

describe the general schema of the main step that we have followed. Then, we will present and 

discuss the obtained results based on robust statistical tests. 
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Experiments 

The challenge consists of extracting the features that best represent the problem at the hand, 

and fitting the most effective classification model. To put it simply, the aim is to find the best 

combination of a feature extraction approach and a classification algorithm.  This problem has 

been addressed by the research community using various methodologies. The aim of this thesis is 

to derive guidelines for researchers and beginners in this field to assist them in building 

effective scene classification systems. To this end, we have carried out experimental comparisons 

among various scene classification systems. Our work is two folds: 

− First, we have conducted extensive experimental comparison among sound analysis methods 

using a large set of sound scenes DCASE 2016 dataset [9]. We have thoroughly examined 3 

acoustic features (Mel Frequency Cepstral Coefficient, a combination of Mel Frequency 

Cepstral Coefficient with the delta coefficients, and Spectrograms) and 3 classification 

paradigms (Feed Forward Neural Network, K Nearest Neighbors, Support Vector Machine).  

We have backed our analysis and conclusions based on well-known statistical tests. 

− Second, we have investigated the effect of the number of features on the generalization 

performance. Specifically, we have invoked a feature selection approach, namely JMI [6] in 

order to automatically determine the optimal set of extracted features. To the extent of our 

knowledge, only very few attempts have considered incorporating feature selection step 

into the design of their systems. 
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Chapter 3: Experimental Setup 

 

3.1. Introduction 

The main goal of this thesis is to derive guidelines for researchers based on empirical 

comparisons among various scene classification systems. In this Chapter, we present the setup for 

conducting these experiments. We have carried out two case studies. We present in Section 2.2 the 

first case study: we have evaluated numerous machine learning classification systems (FNN, 

SVM, and KNN) combined with multiple feature extraction techniques (MFCC, ΔMFCC and 

Spectrogram). Then, in Section 2.3, we describe the second case study: we have tested the effect 

of feature selection on the generalization power of a given system. 

3.2. Dataset 

We have selected TUT Acoustic scenes 2016 (11 GB) dataset from the DCASE 2016 

Community [9] containing 1,560 sound files that defines 15 different scenes with 104 instances 

for each scene from the urban environment. The 15 scenes are given by: 

− Beach 

− Bus 

− Cafe/Restaurant 

− Car 

− City Center 

− Forest Path 

− Grocery Store 

− Home 

− Library 

− Metro Station 

− Office 

− Park 

− Residential 

Area 

− Train 

− Tram 

TUT Acoustic scenes 2016 dataset consists of recordings from various acoustic scenes, all 

having distinct recording locations. For each recording location, 3-5-minute-long audio recording 

was captured. The original recordings were then split into 30-second segments. For all acoustic 

scenes, the recordings were captured each in a different location: different streets, different parks, 

different homes. Recordings were made using a Soundman OKM II Klassik/studio A3, electret 
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binaural microphone and a Roland Edirol R-09 wave recorder using 44.1 kHz sampling rate and 

24 bits resolution. The microphones are specifically made to look like headphones, being worn in 

the ears. As an effect of this, the recorded audio is very similar to the sound that reaches the human 

auditory system of the person wearing the equipment. For this experimental study, we have divided 

each sound file into frames of 25 milliseconds with an overlapping of 50% of the frame length; we 

gotten then 1501 frames per sound file and around 2 million frames over the entire dataset. 

3.3. Cross-validation 

We have divided the dataset following 5 cross-validation and have gotten 5 subsets 

containing in each fold the training and testing data denoted traini, testi, i = 1...5, respectively. 

Cross Validation consists of, first, shuffling the dataset randomly. Second, it splits the dataset into 

5 folds(groups); we take each fold as a test dataset and the remaining groups as a training data set. 

Third, we fit a model on the training set and evaluate it on the test set. We repeat these three steps 

5 times. Finally, we report the mean of scores over these 5 iterations. 

3.4. Programming language and execution platform 

We have carried out our experiments using Python programming language. Python is a 

powerful programming language frequently used for conducting machine learning experiments. It 

offers a myriad of libraries such as Scikit-Learn for classification algorithms and Librosa for signal 

processing.  

DCASE 2016 is a huge dataset made of 11 Gb of acoustic scenes data. This mass entails an 

increase in the computational cost, specifically, the training time. To cope with this, we have 

decided to carry out our experiments using an online platform called Google Colab [29]. This 

platform provides a high-performance machine where we can execute a Python code and export 

results directly to Google Drive. Figure 3.1 shows a screenshot of Colab notebook.  
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Figure 3.1. Screenshot of Colab notebook 

3.5. Description of the conducted experiments 

The primary goal of this thesis is to provide researchers and beginners with some guidelines 

for developing scene classification systems. To this end, we have carried out 2 case studies.  

A. First case study 

The purpose of this case study is to compare the performances of several scene classification 

systems, varying the learning paradigms and the mechanism for extracting features. Specifically, 

we have employed 3 different classification models, namely Feed Forward Neural Network 

(FNN), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN); and 3 sets of acoustic 

features: MFCC, MFCC+ΔMFCC, SPEC. Note that we have implemented multiple variants of 

each learning model, obtained by varying hyperparameters such as number of epochs, nature of 

the kernel, etc. We have organized this case study in 3 scenarios. In each scenario, we compare 

the performances of several systems, obtained by combining multiple classifiers trained using a 

single learning algorithm with the 3 sets of acoustic features. We analyze and discuss the 

experimental scores based on statistical tests. A detailed description of these scenarios can be 

found in Figure 3.2. 
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B. Second case study 

The aim of the second case study is to investigate how the number of selected features 

affects the performance. We have carried out the following experiment: We have first trained a 

system which combines 40 MFCCs + 40 ΔMFCCs features along with FNN; we have used 3 

hidden layers and set the number of epochs to 100. We refer to this system as the control system 

(FNN-80F). Second, we have invoked Joint Mutual Information (JMI) filter to select the top 

most effective 𝐿 features. Third, we have varied 𝐿 from 15 to 75, while increasing 𝐿 by 5 each 

time. We obtained 14 scene classification systems. We refer to them as FNN-15F, FNN-20F, …, 

FNN-75F. We have tested and compared their scores using Wilcoxon signed-ranks test. Figure 

3.3 exhibits a general schema that highlight the primary steps for conducting the second case study. 

3.5.2 Case Study 1 Setup 

A. Acoustic features 

 We have extracted the Mel Frequency Cepstral coefficients (MFCCs), delta Mel Frequency 

Cepstral coefficients (ΔMFCCs) and the spectrogram features (SPEC) from the training and testing 

sound data. We have carried out this step using Librosa library [30]. Table 3.1 summarizes the 

setup of this step.  

Table 3.1. Acoustic Features Setup. 

Parameter name Value 

Sample rate 44.1 kHz 

Frame length 20ms 

Overlap [%] 50% 

MFCC coefficients 40 

ΔMFCC coefficients 40 

Spectrogram coefficients 128 
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Figure 3.2. General schema that highlight the primary steps for conducting the first case study. 
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Figure 3.3. Exhibits a general schema that highlight the primary steps for conducting the second case study.
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B. Classification models 

We have fitted our classifiers using FNN, SVM and KNN learning algorithms, varying some 

hyperparameters such as number of epochs, nature of the kernel, etc. We have invoked Scikit-

Learn library [31] and Keras [32] for implementing these models. Table 3.2, Table 3.3 and Table 

3.4 give a description of these variants.  

• FNN description 

Table 3.2. FNN Setup Description. 

 

Parameter Value 

Feature MFCC 

Number of hidden layers 2, 3 

Number of hidden neurons in hidden layers 1024 

Number of hidden neurons in output layer 15 

Activation function for hidden layer neurons sigmoid 

Activation function for output layer neurons softmax 

Dropout value for hidden layer neurons 0.5 

  

Parameter Value 

Feature MFCC + ΔMFCC 

Number of hidden layers 2, 3 

Number of hidden neurons in each layer 1024 

Number of hidden neurons in output layer 15 

Activation function for hidden layer neurons sigmoid 

Activation function for output layer neurons softmax 

Dropout value for hidden layer neurons 0.5 

  

Parameter Value 

Feature Spectrogram 

Number of hidden layers 2, 3 

Number of hidden neurons in each layer 1024 

Number of hidden neurons in output layer 15 

Activation function for hidden layer neurons sigmoid 

Activation function for output layer neurons softmax 

Dropout value for hidden layer neurons 0.5 
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• KNN description 

Table 3.3. KNN Setup Description. 

 

Parameter Value 

Feature MFCC 

Number of nearest neighbors 10, 20, 30, 40 

Distance function Euclidean distance 

  

Parameter Value 

Feature MFCC + ΔMFCC 

Number of nearest neighbors 10, 20, 30, 40 

Distance function Euclidean distance 

• SVM description 

Table 3.4. SVM Setup Description. 

 

Parameter Value 

Feature MFCC 

Kernel Radial basis function 

Regularization 1 

  

Parameter Value 

Feature MFCC + ΔMFCC 

Kernel Radial basis function 

Regularization 1 

 

 

C. Scene classification systems 

We have divided this case study into 3 scenarios: FNN scenario, SVM scenario and KNN 

scenario. Each scenario compares the performances of several systems, obtained by combining 

multiple classifiers trained using a single learning algorithm with the 3 sets of acoustic features. 

Table 3.5, Table 3.6 and Table 3.7 describe the scene classification systems that were tested in this 

case study. 
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Table 3.5. FNN Scene Classification Systems. 

 

Abbreviation Classification Model Feature Set 

FNN-100_2 

MFCC 
FNN with 100 epochs and 2 hidden layers MFCC 

FNN-100_2 

MFCC+ΔMFCC 
FNN with 100 epochs and 3 hidden layers MFCC+ΔMFCC 

FNN-100_2 

SPEC 
FNN with 100 epochs and 2 hidden layers SPECTROGRAM 

FNN-100_3 

MFCC 
FNN with 100 epochs and 3 hidden layers MFCC 

FNN-100_3 

MFCC+ΔMFCC 
FNN with 100 epochs and 2 hidden layers MFCC+ΔMFCC 

FNN-100_3 

SPEC 
FNN with 100 epochs and 3 hidden layers SPECTROGRAM 

FNN-500_2 

MFCC 
FNN with 500 epochs and 2 hidden layers MFCC 

FNN-500_2 

MFCC+ΔMFCC 
FNN with 500 epochs and 3 hidden layers MFCC+ΔMFCC 

FNN-500_2 

SPEC 
FNN with 500 epochs and 2 hidden layers SPECTROGRAM 

FNN-500_3 

MFCC 
FNN with 500 epochs and 3 hidden layers MFCC 

FNN-500_3 

MFCC+ΔMFCC 
FNN with 500 epochs and 2 hidden layers MFCC+ΔMFCC 

FNN-500_3 

SPEC 
FNN with 500 epochs and 3 hidden layers SPECTROGRAM 

 

Table 3.6. KNN Scene Classification Systems. 

 

Abbreviation Classification Model Feature Set 

KNN10 

MFCC 
KNN with K=10 MFCC 

KNN10 

MFCC+ΔMFCC 
KNN with K=10 MFCC+ΔMFCC 

KNN20 

MFCC 
KNN with K=20 MFCC 
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KNN20 

MFCC+ΔMFCC 
KNN with K=20 MFCC+ΔMFCC 

KNN30 

MFCC 
KNN with K=30 MFCC 

KNN30 

MFCC+ΔMFCC 
KNN with K=30 MFCC+ΔMFCC 

KNN40 

MFCC 
KNN with K=40 MFCC 

KNN40 

MFCC+ΔMFCC 
KNN with K=40 MFCC+ΔMFCC 

 

Table 3.7. SVM Scene Classification Systems. 

 

Abbreviation Classification Model Feature Set 

SVM 

MFCC 
SVM with radial basis function kernel MFCC 

SVM 

MFCC+ΔMFCC 
SVM with radial basis function kernel MFCC+ΔMFCC 

 

3.6. Conclusion 

In this chapter, we have described the setup used to conduct our experimental enquiries, 

starting from cross validation to classification step. We have presented two schemes that highlight 

the key steps for carrying out a proper Machine Learning experiment. In the following chapter, we 

will present the results of these experiments and analyze them in order to derive guidelines based 

on numerous statistical comparisons. 
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Chapter 4: Experimental results and 

discussion 

4.1. Introduction 

In this chapter, we have carried out two different case studies. The first case, given in Section 

4.2, consists of combining various machine learning approaches with multiple feature extraction 

methods. The aim is to evaluate the performance of these models and to derive guidelines based 

on statistical tests. In the second case, provided in Subsection 2.3, in order to alleviate the 

computational burden and reduce the complexity of data, we have included a feature selection step. 

We have run our experiments using Joint Mutual Information that automatically selects the most 

effective set of features. 

4.2. Case Study 1 

A. FNN Classifier 

Table 4.1 gives the average F1-score results of the first scenario. The last row specifies the 

mean rank of each method over all scenes. 

Analysis and discussion 

We have statistically compared the performances of these techniques using Friedman test. 

Under the null hypothesis, we assumed that all systems are equivalent and the observed differences 

are due to chance. Friedman test rejects this hypothesis with FF =  45.49 >  F(11,154)  =

 12.51 for α =  1 ×  10 − 16 (FF is distributed according to the F distribution with 12 −  1 =

 11 and (12 −  1)  × (15 −  1)  =  154 degrees of freedom), and therefore confirms the 

existence of at least one pair of scene classification systems with significantly different 

performances.  
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Table 4.1. F1 Scores using FNN.  

 Mel Frequency Cepstral Coefficient Delta Mel Frequency Cepstral Coefficient Spectrogram 

Epochs 100 100 500 500 100 100 500 500 100 100 500 500 

                 H-L 

Scenes 
2 3 2 3 2 3 2 3 2 3 2 3 

Beach 90.59 ± 3.57 91.38 ± 4.12 90.59 ± 3.57 90.59 ± 3.57 91.38 ± 4.12 90.59 ± 3.57 90.59 ± 3.57 90.59 ± 3.57 53 ± 7.10 45 ± 6.96 73 ± 15.83 73 ± 15.36 

Bus 99.13 ± 1.74 99.13 ± 1.74 99.13 ± 1.74 98.18 ± 2.24 99.13 ± 1.74 100.0 ± 0.00 99.13 ± 1.74 99.13 ± 1.74 90 ± 4.58 89 ± 7.91 93 ± 6.39 95 ± 4.13 

Cafe/Restaurant 96.36 ± 1.83 95.64 ± 2.64 95.64 ± 2.64 94.69 ± 1.52 95.64 ± 2.64 96.44 ± 1.79 95.49 ± 0.20 95.64 ± 2.64 76 ± 6.33 80 ± 4.82 86 ± 5.58 84 ± 4.74 

Car 98.26 ± 2.13 98.26 ± 2.13 98.26 ± 2.13 97.31 ± 2.2 98.26 ± 2.13 98.26 ± 2.13 98.26 ± 2.13 98.26 ± 2.13 85 ± 8.43 84 ± 7.72 89 ± 5.26 91 ± 3.92 

City Center 98.33 ± 3.33 98.33 ± 3.33 98.33 ± 3.33 98.33 ± 3.33 98.33 ± 3.33 97.46 ± 3.35 98.33 ± 3.33 98.33 ± 3.33 88 ± 2.38 87 ± 2.13 91 ± 4.60 91 ± 4.60 

Forest Path 98.95 ± 2.11 98.95 ± 2.11 96.94 ± 2.50 98.00 ± 2.46 97.90 ± 2.58 98.95 ± 2.11 98.95 ± 2.11 97.89 ± 2.58 0.0 ± 0.00 0.0 ± 0.00 39 ± 19.30 41 ± 20.66 

Grocery Store 98.95 ± 2.11 97.78 ± 4.44 96.83 ± 4.38 93.87 ± 4.03 97.78 ± 4.44 97.78 ± 4.44 95.87 ± 4.09 95.77 ± 4.11 80 ± 11.31 78 ± 14.58 85 ± 13.87 85 ± 12.28 

Home 93.23 ± 3.9 95.22 ± 2.89 94.18 ± 3.56 96.18 ± 3.46 94.28 ± 3.58 93.31 ± 2.36 95.22 ± 2.89 94.18 ± 3.56 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.00 32 ± 7.92 

Library 96.95 ± 4.03 96.95 ± 4.03 95.78 ± 5.18 95.77 ± 4.11 96.95 ± 4.03 98.00 ± 4.00 97.99 ± 2.46 95.79 ± 6.14 66 ± 13.63 67 ± 14.66 69 ± 11.95 66 ± 13.10 

Metro Station 99.05 ± 1.90 99.05 ± 1.90 98.00 ± 2.46 97.13 ± 2.36 99.05 ± 1.90 99.05 ± 1.90 97.99 ± 2.46 97.13 ± 2.36 47 ± 17.36 0.0 ± 0.00 69 ± 9.90 69 ± 9.80 

Office 96.94 ± 2.50 97.90 ± 2.58 97.03 ± 2.45 96.08 ± 3.73 96.94 ± 2.50 96.94 ± 2.50 96.94 ± 2.50 96.95 ± 4.03 52 ± 4.20 52 ± 4.29 55 ± 4.48 55 ± 3.39 

Park 93.96 ± 4.06 95.13 ± 3.18 93.67 ± 6.24 93.60 ± 5.93 93.38 ± 3.82 96.08 ± 3.73 93.67 ± 6.24 93.60 ± 5.93 61 ± 7.90 60 ± 9.91 70 ± 5.17 73 ± 7.94 

Residential Area 91.86 ± 3.86 92.82 ± 5.00 89.21 ± 3.93 89.11 ± 3.77 92.82 ± 5.00 93.67 ± 3.97 91.97 ± 5.05 91.10 ± 3.59 45 ± 9.81 39 ± 14.25 59 ± 6.71 61 ± 6.74 

Train 94.72 ± 4.73 93.45 ± 4.19 93.42 ± 6.67 92.24 ± 6.07 95.67 ± 4.13 94.50 ± 4.97 92.51 ± 5.44 89.62 ± 9.58 72 ± 9.40 71 ± 6.08 81 ± 7.38 81 ± 7.38 

Tram 94.42 ± 1.39 93.65 ± 3.36 94.43 ± 4.20 90.67 ± 5.95 94.43 ± 4.20 96.51 ± 3.17 92.69 ± 2.31 91.31 ± 6.57 81 ± 9.57 79 ± 8.84 89 ± 4.44 88 ± 4.73 

Mean Ranks 3.80 3.30 5.13 6.53 3.93 3.20 4.47 5.63 11.23 11.63 9.67 9.47 
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We have followed up the previous findings with a Nemenyi test at a 5% significance level 

with the critical value and the critical difference. The results of this test are depicted in Figure 4.1. 

 

Figure 4.1. Comparison of all systems against each other with the Nemenyi test. Groups of techniques that are not 

significantly different (at 𝜶 =  𝟎. 𝟎𝟓) are connected. 

The analysis of the previous results can be summarized as follows. Nemenyi test indicates 

that FNN with MFCC or MFCC+ ΔMFCC are significantly better than SPEC ones. Specifically, 

FNN with MFCC or MFCC+ ΔMFCC require less epochs, whereas, FNN with SPEC entail more 

iterations. Additionally, we observe that ΔMFCC features do not have an important impact 

on the generalization ability of FNN. We can also conclude that FNN with SPEC may not 

have converged yet. Possibly, we can improve these results by increasing the number of epochs, 

hidden layers, by using more complex neural network architectures, or even introducing a feature 

selection step.  

B. SVM Classifier 

The results of this experiment are given in Table 4.2. Columns 2 and 3 represent the F1-

score rates scored by MFCC and MFCC+ ΔMFCC, respectively. Columns 4 specifies the 

difference in performance between these two models, whereas, column 5 indicates the rank of 

differences for each row entry.  
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Table 4.2. F1 Scores using SVM.  

 

Scenes MFCC MFCC+ ΔMFCC Difference Ranks 

Beach 85.50±09.35 86.65±10.25 1,15 7 

Bus 79.60±08.10 74.92±11.18 -4,68 -13 

Cafe/Restaurant 89.88±03.72 89.12±03.19 -0,76 -5 

Car 68.73±14.10 67.87±09.64 -0,86 -6 

City Center 91.54±04.76 92.13±03.82 0,59 3 

Forest Path 82.30±07.99 83.67±14.56 1,37 9 

Grocery Store 94.47±06.46 88.70±08.98 -5,77 -14 

Home 85.23±11.11 84.85±07.50 -0,38 -1 

Library 76.97±19.43 79.25±07.78 2,28 10 

Metro Station 96.44±03.38 89.91±06.21 -6,53 -15 

Office 93.95±05.06 92.67±03.74 -1,28 -8 

Park 86.77±07.34 86.35±08.43 -0,42 -2 

Residential Area 71.81±09.31 75.16±04.93 3,35 11 

Train 57.28±15.46 53.79±08.19 -3,49 -12 

Tram 59.17±12.50 59.90±07.29 0,73 4 

 

 

Analysis and discussion 

The next step consists of testing the influence of ΔMFCC features on the generalization 

performance of SVM using Wilcoxon signed-ranks test. We have found: the sum for ranks for 

positive and negative differences 𝑅+  = 44, 𝑅−  =  76, and the statistics 𝑧 =  −0.91 >  −1.97 

for a significance level 𝛼 =  0.05. The value of z provides a strong evidence that the observed 

differences are not significant; hence, these two models perform similarly. We can conclude that 

adding ΔMFCC features do not improve the predictive performance in this case. 

C. KNN Classifier 

Table 4.3 shows the average F1-score results of KNN Classifier. The last row designates the 

mean rank of each method over all scenes. 
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Table 4.3. F1 Scores using KNN.  

 

 MFCC MFCC+ ΔMFCC 

                      K 

Scenes 
10 20 30 40 10 20 30 40 

Beach 57.10±2.46 58.32±2.21 56.20±2.45 56.20±2.45 56.26±3.11 56.79±2.31 55.89±2.09 56.16±1.99 

Bus 92.46±6.19 91.59±6.04 91.59±6.04 91.59±6.04 92.46±6.19 91.59±6.04 91.59±6.04 91.59±6.04 

Cafe/Restaurant 86.70±4.76 85.54±4.51 85.54±4.51 84.10±7.14 85.54±4.51 85.54±4.51 85.54±4.51 84.10±7.14 

Car 98.10±2.33 97.14±2.33 97.14±2.33 97.14±2.33 98.10±2.33 97.14±2.33 97.14±2.33 97.14±2.33 

City Center 98.33±3.33 98.33±3.33 98.33±3.33 97.38±3.40 98.33±3.33 98.33±3.33 98.33±3.33 97.38±3.40 

Forest Path 97.99±2.46 97.04±2.42 97.99±2.46 97.99±2.46 97.99±2.46 97.99±2.46 97.99±2.46 97.99±2.46 

Grocery Store 86.47±4.58 86.47±4.58 86.47±4.58 85.69±4.96 86.47±4.58 86.47±4.58 86.47±4.58 85.69±4.96 

Home 87.50±8.65 86.26±10.44 84.14±8.35 83.84±10.18 87.50±8.65 85.31±9.29 84.14±8.35 83.84±10.18 

Library 81.17±5.84 79.57±5.88 77.42±6.72 76.75±7.53 79.89±5.73 78.33±7.01 77.42±6.72 77.03±8.01 

Metro Station 85.90±10.71 85.90±10.71 84.85±9.98 84.85±9.98 85.90±10.71 84.85±9.98 84.85±9.98 84.85±9.98 

Office 95.99±3.75 95.99±3.75 95.99±3.75 95.99±3.75 95.99±3.75 95.99±3.75 95.99±3.75 95.99±3.75 

Park 94.84±5.77 93.97±5.23 93.97±5.23 93.97±5.23 94.84±5.77 93.97±5.23 93.97±5.23 93.97±5.23 

Residential Area 79.80±5.28 78.37±6.48 76.90±6.24 76.90±6.24 78.33±5.39 78.37±6.48 76.90±6.24 76.90±6.24 

Train 74.48±5.46 73.42±7.52 71.98±7.23 70.91±8.78 74.48±5.46 74.25±6.41 72.81±6.26 70.91±8.78 

Tram 80.69±7.55 80.69±7.55 79.45±8.61 79.45±8.61 80.69±7.55 80.69±7.55 79.45±8.61 79.45±8.61 

Mean Ranks 2.17 3.97 5.17 6.33 2.77 4.07 5.27 6.37 

 

Analysis and discussion 

First, we statistically compared the performances of these systems using the average ranks over 

15 scenes. Friedman test rejects the null hypothesis that all systems perform similarly with 𝐹𝐹 =

 9.44 >  𝐹(7, 98)  =  9.23 for 𝛼 =  1.0 × 10−8. Then, we have tested the pairwise 

significance differences using a Nemenyi test at a 5% significance level with the critical value 

𝑞0.05  =  3.04 and the critical difference 𝐶𝐷 =  2.72.  
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Figure 4.2. Comparison of all systems against each other with the Nemenyi test. Groups of techniques that are not 

significantly different (at α = 0.05) are connected. 

The analysis of the test results, illustrated by Figure 4.2, confirms our previous findings 

regarding ΔMFCC coefficients. It provides a strong evidence that 𝚫MFCC coefficients do not 

significantly improve the predictive performance of the system in this case. Moreover, as the 

number of nearest neighbors increases, the generalization ability deteriorates significantly; for 

instance, KNN10+MFCC and KNN30+MFCC are not connected, which proves the superiority of 

the first system over the second. 

D. FNN vs SVM vs KNN 

As a final step of this case study, we have compared the performances of the top two models 

discussed in each scenario, namely FNN-100_3 MFCC and FNN-100_3 MFCC+ΔMFCC, 

KNN10 MFCC and KNN10 MFCC+ΔMFCC, with the SVM-based systems. We have conducted 

a Friedman test, assuming that all systems perform similarly. This test rejects the null hypothesis 

with 𝐹𝐹 = 32.85 >  𝐹(5,70)  =  26.78 for 𝛼 =  5.0 × 10−15. Then, we have tested the pairwise 

significance differences using a Nemenyi test at a 5% significance level with the critical value 

𝑞0.05 =  2.85 and the critical difference 𝐶𝐷 =  1.95.  
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Figure 4.3. Comparison of all systems against each other with the Nemenyi test. Groups of techniques that are not 

significantly different (at α = 0.05) are connected. 

Analysis and discussion 

The pairwise comparisons given by Nemenyi test (Figure 4.3) reveal the existence of three 

categories of systems: FNN, KNN, and SVM variants from the best performing approach to the 

worst one. Specifically, these results demonstrate the superiority of FNN over KNN and SVM, 

which is expected since FNN usually exhibits remarkable scores when enough data are provided. 

However, data are not sufficient to determine the superiority of KNN over SVM. Furthermore, 

ΔMFCC+MFCC-based systems perform similarly to MFCC ones.  

Based on this and on our previous findings, we can conclude that higher number of features 

is not always beneficial and can negatively affect the performance of the classification system. 

In the next section, we will investigate the influence of number of features on the generalization 

ability of the system. We will include before classification a feature selection step which 

automatically determines the most effective subset of MFCC and ΔMFCC coefficients. 

4.3. Case study 2 

Table 4.4 gives the average F1-score results of the second case study.
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Table 4.4. FNN F1-Scores using multiple combinations of selected features with JMI. 

 

                  SF 

Scenes 
FNN-15F FNN-20 F FNN-25 F FNN-30 F FNN-35 F FNN-40 F FNN-45 F FNN-50 F FNN-55 F FNN-60 F FNN-65 F FNN-70 F FNN-75 F FNN-80 F 

Beach 87.57±6.62 89.74±5.13 91.38±4.12 89.75±5.82 90.54±5.65 90.59±3.57 90.59±3.57 90.59±3.57 91.38±4.12 91.38±4.12 90.59±3.57 90.59±3.57 90.54±5.65 90.59±3.57 

Bus 91.60±3.52 93.59±2.19 95.32±0.17 95.32±2.88 95.57±4.77 99.13±1.74 99.13±1.74 99.13±1.74 99.13±1.74 99.13±1.74 99.13±1.74 99.13±1.74 99.13±1.74 100.0±0.00 

Cafe/Restaurant 83.01±6.45 91.59±3.76 92.23±4.57 94.59±1.50 94.59±1.50 94.44±1.80 94.69±3.25 96.44±1.79 96.44±1.79 95.64±2.64 96.44±1.79 95.49±2.88 95.64±2.64 96.44±1.79 

Car 96.51±3.17 98.26±2.13 98.26±2.13 97.31±3.62 97.31±3.62 96.26±3.69 97.39±2.13 98.26±2.13 98.26±2.13 98.26±2.13 98.26±2.13 98.26±2.13 98.26±2.13 98.26±2.13 

City Center 95.56±3.91 95.72±5.44 97.38±3.40 96.52±4.27 96.51±3.17 96.52±4.27 95.72±5.44 99.13±1.74 96.51±3.17 98.33±3.33 97.46±3.35 98.33±3.33 96.51±3.17 97.46±3.35 

Forest Path 96.94±2.50 96.95±4.03 96.94±2.50 98.95±2.11 97.89±2.58 97.89±2.58 98.95±2.11 98.95±2.11 97.89±2.58 98.95±2.11 97.89±2.58 98.95±2.11 98.95±2.11 98.95±2.11 

Grocery Store 82.53±7.26 92.05±5.12 94.51±3.22 92.88±6.16 95.16±4.44 97.28±3.47 95.96±4.08 96.91±4.35 96.91±4.35 96.91±4.35 98.95±2.11 98.00±4.00 96.83±4.38 97.78±4.44 

Home 86.73±8.52 89.49±6.19 90.98±4.25 93.23±3.90 91.20±4.16 92.18±3.92 93.13±3.85 92.18±3.92 93.23±3.90 94.18±4.76 93.31±2.36 92.18±3.92 94.28±3.58 93.31±2.36 

Library 88.28±4.33 91.52±6.11 93.47±4.71 94.26±2.15 94.33±3.43 95.13±3.18 96.08±3.73 96.08±3.73 96.08±3.73 97.13±3.94 96.95±4.03 96.08±3.73 96.95±4.03 98.00±4.00 

Metro Station 91.47±7.11 92.80±5.57 95.99±3.75 93.67±6.24 96.94±2.50 97.05±3.98 95.99±3.75 97.99±2.46 97.99±2.46 97.99±2.46 99.05±1.90 99.05±1.90 97.99±2.46 99.05±1.90 

Office 96.94±2.50 96.07±1.99 97.89±2.58 96.94±2.50 96.94±2.50 96.94±2.50 96.95±4.03 96.94±2.50 95.99±3.75 96.94±2.50 97.89±2.58 95.99±3.75 96.94±2.50 96.94±2.50 

Park 91.07±6.19 92.33±6.72 93.96±4.06 96.94±2.50 94.11±4.89 94.18±3.80 96.94±2.50 95.05±4.47 97.03±2.45 95.05±4.47 93.97±6.11 95.77±4.11 96.08±3.73 96.08±3.73 

Residential Area 86.19±5.76 89.35±3.35 90.84±4.00 92.40±2.86 90.51±3.96 93.67±3.97 91.65±5.09 95.04±5.22 92.82±5.00 93.87±5.78 93.77±4.00 92.92±5.04 91.76±3.78 93.67±3.97 

Train 81.69±8.77 86.11±3.23 88.04±4.39 93.45±4.19 92.62±2.62 93.45±4.19 94.50±4.97 94.62±3.52 95.67±4.13 95.67±4.13 93.31±5.85 95.67±4.13 93.45±4.19 94.50±4.97 

Tram 79.24±6.83 84.31±4.07 86.35±3.23 90.62±2.67 92.19±4.94 90.15±4.66 92.62±3.26 94.43±3.45 96.33±3.24 94.43±4.20 92.84±4.76 95.39±4.78 94.52±4.22 96.51±3.17 
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Analysis and discussion 

Because we are only interested in testing whether feature selection significantly improves 

the predictive performance, we have carried out pairwise comparisons between FNN-80F (system 

with 80 features) with each of the above systems. Due to its robustness, we have considered using 

the Wilcoxon signed-ranks tests. A summary of this test statistics is shown in Table 4.4. The first 

row specifies the number of win/tie/loss of the system in the row over the system in the column. 

The second shows the p-values; it is worth noting that 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 ≤ 0.05 indicates that the system 

in the column is significantly worse than the system in the row at 5% significance level i.e. feature 

selection step has a negative effect on the predictive performance. 

Table 4.5. Summary of Wilcoxon signed-ranks test statistics. Differences at 5% significance level are marked with ∗, and 

at 1% with +. 

 

  Number of selected features 

F
N

N
-8

0
F

  FNN-20F FNN-25F FNN-30F FNN-35F FNN-40F FNN-45F 

W/T/L 0/1/𝟏𝟒 2/1/𝟏𝟐 1/2/𝟏𝟐 0/1/𝟏𝟒 0/3/𝟏𝟐 2/3/𝟏𝟎 

p-value 7.2 × 10−4+
 2.9 × 10−3+

 2.4 × 10−3+
 7.2 × 10−4+

 1.2 × 10−3+
 7.6 × 10−3+

 

F
N

N
-8

0
F

  FNN-50F FNN-55F FNN-60F FNN-65F FNN-70F FNN-75F 

W/T/L 3/5/𝟕 3/2/𝟏𝟎 5/3/𝟕 3/𝟔/𝟔 3/4/𝟖 1/4/𝟏𝟎 

p-value 2.2 × 10−1 8.8 × 10−2 3.06 × 10−1 2.2 × 10−1 1.2 × 10−1 1.06 × 10−2∗
 

Based on the test results, we can reach the following conclusions. Selecting less than 60% 

(around 47 features) of the number of features considerably deteriorates the F1-score results, 

whereas, keeping more than 60% results in systems with statistically similar performances.  

In order to get an insight into the nature of the most relevant features, we represent in Figure 

4.4 the rate of MFCC et ΔMFCC chosen for each system. 



 

 46 

 

 
Figure 4.4. Rate of selected MFCC and ΔMFCC for each system 

Figure 4.4 indicates that the selection criterion JMI promotes MFCCs over ΔMFCC. Most 

importantly, the rate of selected MFCC ranges from 50% to 60%, while the ΔMFCC falls between 

40% and 50%. Recall that the systems trained with number of features between 47 to 70 are 

statistically similar to FNN-80F. These approaches were built using 40% ΔMFCC and 60% 

MFCC. Moreover, as the number of selected ΔMFCC increases, the generalization ability of these 

systems deteriorates considerably. 

4.4. Execution time 

As the high complexity of the data used for these experiments, it took a very long time to 

finish the execution, especially during the training phase. For each model, it took around 6-7 hours 

to train it on a single fold. It also took around 8-9 hours to upload all the data to the Google 

Drive. 

4.5. Conclusion 

In this chapter, we have presented the results of our experimental enquiries. Several lessons 

can be derived from our analysis: 

• FNN-based systems have demonstrated superiority over SVM and KNN ones. However, data 

are not sufficient to determine which one is significantly better KNN or SVM. 
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• ΔMFCC features do not significantly improve the predictive performance of system built using 

FNN, SVM, or KNN.  

• As the number of nearest neighbors increases, the generalization ability of KNN deteriorates 

significantly. We recommend using less neighbors K≤10. 

• Higher number of features is not always beneficial and can negatively affect the performance 

of the classification system. 

• Selecting less than 60% (around 47 features) of the number of features considerably 

deteriorates the F1-score results, whereas, keeping more than 60% results in systems with 

statistically similar performances. 

• Systems that were built using 40% ΔMFCC and 60% MFCC can increase the generalization 

ability of FNN. 
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Conclusion 
 

This thesis is devoted to study Acoustic Scene Classification systems. The initial goal was to 

provide beginners in this field with practical guidelines for building such systems. To address this 

matter, we have designed several experimental case studies using a huge dataset made of thousands 

of sound files. Our contributions are two folds: 

First, we have conducted extensive experimental comparison among sound analysis methods. We 

have thoroughly examined 3 acoustic features (MFCC, MFCC+ΔMFCC, and Spectrograms) and 

3 classification paradigms (Feed Forward Neural Network, K Nearest Neighbors, Support Vector 

Machine), while varying their parameters.  Four lessons can be learned from the analysis of the 

obtained results: 

− FNN-based systems have demonstrated superiority over SVM and KNN ones. However, data 

are not sufficient to determine which one is significantly better KNN or SVM. 

− ΔMFCC features do not significantly improve the predictive performance of system built using 

FNN, SVM, or KNN.  

− As the number of nearest neighbors increases, the generalization ability of KNN deteriorates 

significantly. We recommend using less neighbors K≤10. 

− Higher number of features is not always beneficial and can negatively affect the performance 

of the classification system. 

Second, we have investigated the effect of the number of features on the generalization 

performance. Specifically, we have invoked a feature selection approach, namely JMI, in order to 

automatically determine the optimal set of extracted features. To the extent of our knowledge, only 

very few attempts have considered incorporating feature selection step into the design of their 

systems. Based on our analysis, we can conclude that selecting less than 60% (around 47 features) 

of the number of features considerably deteriorates the F1-score results, whereas, keeping more 

than 60% results in systems with statistically similar performances. Most importantly, systems that 

were built using 40% ΔMFCC and 60% MFCC can increase the generalization ability of FNN. 

Limits and Future work 

This thesis has revealed several interesting areas for improvement. The first area is based 

upon the insights gained from the first case study.  We can improve the results of FNN with SPEC 
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by increasing the number of epochs, hidden layers, by using more complex neural network 

architectures, or even introducing a feature selection step. Another extension of this work would 

be testing other learning paradigms such as Gaussian Mixture Model (GMM) and ensemble-based 

learners like Adaboost, Bagging, Arcing; or even training using other feature sets. 

Another appealing work direction would be to study in depth the impact of feature selection 

on the performance of scene classification systems, using other approaches like Mutual 

Information Feature Selection (MIFS) [3], Conditional MIFS (CMIFS) [4], min-Redundancy Max-

Relevance (mRMR) [5]. 

During this project, we have encountered many struggles. The training of the learning 

models took a very long time due to the lack of dedicated computational platforms. In addition, 

when performing model selection, storing the trained classifiers caused a considerable increase in 

the usage of memory space.  
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