RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> UNIVERSITÉ de BLIDA 1 Faculté de Technologie Département de Génie des Procédés Laboratoire de Génie Chimique

Mémoire

En vue de l'obtention du diplôme de

MASTER EN GENIE DES PROCEDES

Spécialité : Génie Chimique

Intitulé du mémoire

Etude de la section de dessalage à l'unité de traitement de HASSI MESSAOUD (CINA)

Présenté par :

Encadré par :

BOUSSOURA Abdelhak

Pr. KHALAF Hussein

Année universitaire 2017/2018

Remerciements

Je remercie en premier lieu Dieu de m'avoir donné le courage et la volonté pour réaliser ce travail.

Je tiens à exprimer mes remerciements à Monsieur KHALAF Hussein pour avoir dirigé ce mémoire, je lui exprime toute mes reconnaissances pour m'avoir initiée et accompagnée tout au long de mon travail et pour la confiance qu'il m'a accordée durant cette période de préparation du mémoire.

Je remercie chaleureusement mesdames et messieurs les membres du jury d'avoir accepté de consacrer de leur temps pour juger ce travail.

Je remercie les travailleurs du Complexe Industriel NAILI Abdelhalim (CINA) pour leur accueil et leur aide durant le stage que j'ai effectué dans leurs structures.

Dédicace

Je dédie ce modeste travail à :

Mes très chers parents pour leur amour, patience, confiance, éducation et sacrifice, et sans leur soutien je ne serais pas arrivé à ce que je suis.

Mes chers grand- mères, que díeu les protègent ;

Mes chers frères ;

Mes oncles, tantes, cousíns et cousínes ;

Tous mes amis de cartier;

A tous ce qui me connaisse de prêt et de loin.

RESUME

En théorie, le problème de dessalage est simple, puisque le sel est de loin plus soluble dans l'eau que dans le pétrole brut, l'essentiel du dessalage est résolu par les opérations de déshydratation.

Dans le cadre de notre stage de fin d'étude, nous avons essayé de résoudre le problème de satisfaction des normes contractuelles de vente causé par les sels au niveau du complexe NailiAbdelhalim de SONATRACH.

A cet effet nous avons fait une étude d'efficacité des dessaleurs, puis on a proposé deux solutions pour résoudre la problématique, et enfin on a fait une étude technique des deux propositions suivie par une étude économique afin de choisir la solution idéale.

Mots clés : dessalage, sels, pétrole brut, dessaleur.

ملخص

ي دو نظريا أن مثرك لن عالاً ال حبد بسي ط، ومذا راج عي س ملي ة احال ف ي ال ماء قي الن قطيق ول، لي مذا ي لمحن أن ل خص حل مذا الم شرك ف ي ن عكمي ة ال مي اه ال موجوة ف ي الهت رول.

ف ي إطار هذا الترب ص ق ف الب م حاول ة عي جاد ال لح ول اال زمة ل محصن ن عن الأ ال حقص د مطلقة ال مو طف ات ال مطوية ف ي عي و د المي ع الم م م في م مت و ى ال مرك العرن اعي ز طلي عبد ال لحي م.

وف ي هذا للص ددق ف لب إجراء دراس قسطي ة لأج مزة ن زع الأ ال حشماق تربخا الحين إل شكلي وف ي الأخير ق ف ا ب دراس قتوي في الحين الجين الجب عي ن بدراس فاقتص الية قص د التي ار لل حل الألجل. الحلمات الفهتلجي ة: ن زع الا ال ح، اله ال ح، للهت رول ، ن ازع الا ال ح.

ABSTRACT

In theory, the problem of desalting is simple, since salt is more water soluble by far than in the crude oil, the main part of desalting is performed by dehydration operations or operation of desalting is solved by the operations of dehydration. During our training course practices, we tried to solve the problem of satisfaction of the contractual standards of sale caused by salts at the complex NailiAbdelhalim of SONATRACH.

For this purpose, we made adesalter efficiency study, then we proposed two solutions to solve the problem, finally we madea technical study of the two proposals followed by afeasibility studyin order to choose the ideal solution. **Keywords:**desalting, salts, crude oil, dessalter.

TABLE DES MATIERES

INTRODUCTION GENERALE

CHAPITRE I : PRESENTATION DU COMPLEXE CIN	A
I.1. HISTORIQUE	1
I.2. DESCRIPTION DES DIFFERENTES SECTIONS DE L'UNITE	
TRAITEMENT	3
I.2.1. Unité de séparation par détente UP1	3
I.2.2. Unité d'optimisation USS1	7
CHAPITRE II : GENERALITES SUR LE DESSALAGE DU PE	ETROLE
II.1. LE PETROLE	12
II.2. L'EMULSION	12
II.2.1. Les émulsions dans l'industrie pétrolière	13
II.2.2. Stabilité des émulsions	14
II.3. INCONVENIENTS DES SELS	14
II.3.1.Bouchage des tubes de process	14
II.3.2. Corrosion	14
II.3.3. Altération	15
II.4. DESSALAGE DU PETROLE BRUT	15
II.4.1. Diffusion des sels	16
II.4.2. Coalescence	17
II.4.3. Décantation	18
II.5. PRINCIPAUX EQUIPEMENTS DANS LA SECTION DE DESSALAC	JE 18
II.5.1. Dessaleurs	18
II.5.1.1. Paramètre de réglage du dessaleur	19
II.5.1.2. Fonctionnement d'un dessaleur électrostatique	21
II.5.2. Les ballons tampons	22
II.5.3. Les échangeurs de chaleur à faisceau et à calandre	

II.5.3.1. La calandre	. 23
	~ (
11.5.3.2. Le faisceau	. 24

CHAPITRE III : PARTIE EXPERIMENTALE

III.1 ETUDE DE L'EFFICACITE ET LES SOLUTIONS PROPOSES	25
III.1.1 Le suivi de la salinité et l'efficacité	
III.1.2 Interprétation des graphes	
III.1.3 Solutions proposés	
III.2 GENERALITE SUR LA PARTIE CALCUL	31
III.2.1 Les dessaleurs	
III.2.2 Les échangeurs	
III.3. PREMIER CAS D'ETUDE	
III.3.1. Dimensionnement du dessaleur	
III.3.1.1. Bilan de matière	
III.3.1.2. Calcul de la vitesse de décantation	
III.3.1.3. Dimension du dessaleur	
III.3.1.4. Hauteur minimal de l'interface	40
III.3.1.5. Calcul de la rampe de distribution	
III.3.1.6. Calcul des caractéristiques électriques	
III.3.2. Efficacité du dessaleur et de dessalage	
III.3.2.1. Calcul de la teneur en sel théorique	
III.3.2.2. Calcul de l'efficacité du dessaleur	45
III.3.2.3. Calcul de l'efficacité de dessalage	45
III.3.3. Résumé des résultats	45
III.3.4. Interprétation des résultats	45
III.3.5. Comparaison des résultats	46
III.3.6. Interprétation des résultats de la comparaison	46
III.4. DEUXIEME CAS D'ETUDE	
III.4.1. Les dessaleurs	

III.4.2. Dimensionnement des échangeurs EA 2609A/B	48
III.4.2.1. Bilan thermique	48
III.4.2.2. Surface d'échange	49
III.4.2.3. Géométrie de l'échangeur	50
III.4.2.4. Différents coefficient de transfert thermique	52
III.4.2.5. Pertes de charge	58
III.4.3. Résultats de calcul des premiers échangeurs	60
III.4.4. Dimensionnement des échangeurs EA2610A/B	60
III.4.5. Interprétation des résultats	61
III.4.6. Comparaison entre les deux solutions proposées	62

CHAPITRE IV : ETUDE TECHNICO-ECONOMIQUE

IV.1. HYPOTHESES DE CALCUL	63
IV.2. COUTS D'INVESTISSEMEN DES DEUX VARIANTES	63
IV.2.1. Décomposition des prix des biens et services variante N°1 6	63
IV.2.2. Décomposition des prix des biens et services variante N°2	64
IV.3. DELAI D'AMORTISSEMENT DES DEUX VARIANTES (Pay-out) 6	65
IV.3.1. Variante N°1	65
IV.3.2. Variante N°26	65
IV.4. RESULTATS ET DISCUSSION DE L'ETUDE	
TECHNICO-ECONOMIQUE	65
IV.5. ANALYSES DES RISQUES D'INVESTISSEMENTS	66
IV.5.1. Description6	66
IV.5.2. Résultats 6	67
IV.5.3. Discussion des résultats	67

CONCLUSION

REFFERENCES BIBLIOGRAPHIQUE

ANNEXES

LISTE DES ABREVIATIONS

AFNOR	Association Française de Normalisation
BP	Basse Pression
BSW	Basic Sediment and Water (teneur en eau et en sédiments)
BWG	Birmingham Wire Gage
CFPA	Compagnie Française des Pétroles Algérie
CINA	Centre Industriel Naili Abdelhalim
CIS	Centre Industriel Sud
GPL	Gaz du Pétrole Liquéfié
HEH	Haoud El Hamra
HP	Haute Pression
LCV	Level Control Valves (vanne de régulation du niveau)
LDHP	Ligne Directe Haute Pression
LDMP	Ligne Directe Moyenne Pression
MP	Moyenne Pression
PPM	Partie Par Million
SNREPAL	Société Nationale de Recherche et d'Exploitation de Pétrole en Algérie
TEMA	Tubular Exchanger Manufacturers Association (Association des fabricants d'échangeurs tubulaires)
TRT	Traitement du pétrole brut
TVR	Tension de vapeur Reid
UP1	Unité de Production 1
USS1	Unité de Stripping et de Stabilisation 1.

LISTE DES FIGURES

Figure	Titre	Page
I.1	Schéma représentant la situation du complexe CINA	1
I.2	Schéma simplifiée de l'unité up 1	4
I.3	Schéma représentatif de l'unité d'optimisation USS1	8
I.4	Schéma simplifié de la section stripping.	9
I.5	Schéma simplifié de la section absorption.	10
I.6	Schéma simplifié de la section de stabilisation	11
II.1	Les différents types d'émulsions	13
II.2	Emulsion eau – pétrole vue au microscope	13
II.3	Dégradation des émulsions	16
II.4	Vue en coupe d'un dessaleur	19
II.5	Dessaleur électrostatique	22
II.6	Ballon tampon	22
II.7	Calandre type E (une passe)	24
II.8	Le faisceau de tubes	24
III.1.1	La salinité du dessaleur A en fonction du temps	26
III.1.2	La salinité du dessaleur B en fonction du temps	27
III.1.3	Schéma Proposé (premier cas d'étude)	29
III.1.4	Schéma Proposé (deuxième cas d'étude)	30
III.3.1	Schéma simplifiée d'un dessaleur	34
III.3.2	Représentation des différents niveaux à l'intérieur du dessaleur	40
III.3.3	Une division de la rampe	42
III.3.4	Représentation des électrodes à l'intérieur du dessaleur	43
III.4	Schéma simplifiée d'un échangeur tubulaires à tète flottante	48
IV.1	Résultats de l'étude technico-économique	66
IV.2	Risque d'investissement	67

LISTE DES TABLEAUX

Tableau	Titre	Page
I.1	Les normes d'une huile stabilisée	3
I.2	La capacité de traitement du 1 ^{er} étage de séparation	5
I.3	La capacité de traitement du 2 ^{ème} étage de séparation	5
I.4	La capacité de traitement du 3 ^{ème} étage de séparation	6
I.5	La capacité de traitement du 4 ^{ème} étage de séparation	6
III.1.1	Analyse de la salinité du 1 ^{er} dessaleur FA 2609 A	26
III.1.2	Analyse de la salinité du 2 ^{éme} dessaleur FA 2609 B	27
III.2.1	Paramètres de marche des dessaleurs FA 2609A/B	31
III.2.2	Données de calcul des dessaleurs FA 2610A/B	31
III.2.3	Données de calcul des échangeurs EA 2609A/B	32
III.2.4	Données de calcul des échangeurs EA 2610A/B	32
III.3.1	Diamètre de particule d'eau en fonction de la teneur en eau	36
III.3.2	Le coefficient de résistance en fonction du régime	36
III.3.3	Résultats de la variation du niveau d'interface eau-brut	41
III.3.4	Résultats de calcul du dessaleur	45
III.3.5	Comparaison entre un dessaleur Algérien et Iranien	46
III.4.1	Dimensions des tubes	50
III.4.2	Dimensions des échangeurs EA 2609A/B	60
III.4.3	Dimensions des échangeurs EA 2610A/B	61
IV.1	Prix des équipements et des services pour le 1 ^{er} cas d'étude	64
IV.2	Prix des équipements et des services pour le 2 ^{ème} cas d'étude	64
IV.3	Résultats de l'étude technico-économique	65
IV.4	Résultats de l'analyse des risques d'investissements	67

Symboles	Désignations	Unité
А	Surface d'échange	m ²
Ab	Facteur relatif à la phase légère	m ²
As	Section droite de la calandre	mm ²
At	Section droite d'un tube	mm ²
C _{pc}	Chaleur spécifique côté calandre	J/kg °C
C _{pf}	Chaleur spécifique côté faisceau	J/kg °C
D	Diamètre de dessaleur	m
D 1	Distance entre l'électrode supérieure et la paroi	m
D ₂	Distance entre l'électrode inferieure et le niveau d'eau	m
De	Distance entre les deux électrodes	m
D _p	Diamètre de la particule d'eau	m
D _b	Diamètre du faisceau	mm
Ds	Diamètre de la calandre	mm
d_0	Diamètre externe des tubes	m
de	Diamètre équivalent	mm
di	Diamètre interne des tubes	m
Е	Efficacité	%
E_1	Champ électrique entre les deux électrodes	V/cm
E ₂	Champ électrique entre le niveau d'eau et l'électrode inférieure	V/cm
Ft	Facteur correctif de température	/
g	Accélération de la pesanteur	m/s ²
he	Niveau d'émulsion	m
hi	Niveau d'interface eau-brut	m

LISTE DES SYMBOLES

h _{ed}	Coefficient d'encrassement du film externe	W/m ² °C
h _{id}	Coefficient d'encrassement du film interne	W/m ² °C
hi	Coefficient de transfert thermique du film interne	W/m ² °C
hs	Coefficient de transfert thermique du film externe	W/m ² °C
i	Distance entre les centres de deux trous	mm
jh	Facteur de transfert thermique	/
jf	Coefficient de friction	/
k _f	Conductivité thermique du brut	W/m°C
L	Longueur de dessaleur	m
ł	Longueur de la rampe de distribution	m
Le	Longueur d'un tube	m
L _b	Espacement entre les chicanes	mm
М	Débit massique du fluide côté calandre	kg/h
'n	Débit massique du fluide côté faisceau	kg/h
n	Nombre de trous par rangée	/
N	Normalité	Mol/l
N _p	Nombre de passe côté tube	/
Nt	Nombre totale des tubes	/
Nu	Nusselt	/
Pr	Prandtl	/
Q	La chaleur transférée par unité de temps	W
Qb	Quantité de brut à dessaler	m ³ /h
Qd	Quantité de brut dessalé	m ³ /h
QT	Débit volumique total	m ³ /h
Qw	Débit d'eau de lavage	m^3/h

Q _w ,	Débit d'eau de purge	m ³ /h
Q _{wb}	Débit d'eau contenue dans le brut	m ³ /h
r	Rapport de la longueur sur le diamètre du dessaleur	/
Re	Reynolds	/
S	Salinité	mg/l
Se	Salinité du brut à l'entrée de dessaleur	mg/l
Ss	Salinité du brut à la sortie de dessaleur	mg/l
S _{th}	Salinité optimale théorique	mg/l
Sw	Salinité de l'eau	mg/l
S	Surface d'un tube	m ²
T ₁	Température d'entrée côte calandre	°C
T ₂	Température de sortie côté calandre	°C
t _d	Temps de décantation	min
t1	Température d'entrée côté faisceau	°C
t2	Température de sortie côté faisceau	°C
U	Tension entre les électrodes	Volts
U _{ass}	Coefficient global du transfert thermique assimilé	W/m² °C
Uc	Vitesse linéaire côté calandre	m/s
U _{cal}	Coefficient global de transfert thermique	W/m ² °C
U_{f}	Vitesse linéaire côté faisceau	m/s
V	Volume	m ³
Vd	Vitesse de décantation	m/s
VL	Volume du liquide	m ³
VT	Volume total du dessaleur	m ³
X	Teneur en eau dans le brut	%
Y	Taux de lavage	%

Z	Teneur en eau du brut à la sortie du dessaleur	%
ΔTLM	Moyenne logarithmique des différences de température	°C
$\Delta P_{\rm f}$	Pertes de charge côté faisceau	N/m ²
ΔP_{c}	Pertes de charge côté calandre	N/m ²
ΔP_t	Pertes de charge totale	N/m ²
λ	Conductivité thermique	W/m°C
μ_{c}	Viscosité dynamique du brut côté calandre	Pa.s
μ_{f}	Viscosité dynamique du brut côté faisceau	Pa.s
v_{b}	Viscosité cinématique du brut	m ² /s
vc	Viscosité cinématique du brut côté calandre	m ² /s
$\nu_{\rm f}$	Viscosité cinématique du brut côté faisceau	m ² /s
τ	Temps de séjour	min
Ó	Coefficient de résistance	/
Φ	Flux massique	kg/m ² s
ρ_1	Densité de l'eau	kg/m ³
ρ ₂	Densité du brut	kg/m ³

INTRODUCTION GENERALE

INTRODUCTION GENERALE

Au cours des dernières décennies, la transformation de la structure industrielle et le développement démographique font accroître de jour en jour la demande en produits pétroliers du marché interne et externe selon des normes bien précises. Dans ces conditions, la productivité des centres de traitement du brut doive être au maximum, ce qui rend la recherche des nouveaux procédés et l'amélioration de rendement des équipements de traitement un objectif permanant.

Arrivé à la limite de satisfaction des normes de la salinité, le Service Traitement du pétrole brut / CINA, se trouve dans l'obligation d'améliorer le fonctionnement de la section de dessalage.

A cet effet, il nous a été demandé, dans le cadre de notre projet de fin d'étude, de proposer des solutions pour l'augmentation de la charge traitée dans la section de dessalage.

La section de dessalage a été installée pour traiter une certaine quantité du brut venant des champs, et envoyer le reste directement vers le stockage sans passer par cette section.

Dans ces dernières années, il a été observé que le brut expédié vers HEM ne satisfait pas les normes suite à l'augmentation de la salinité, qui est dû au manque d'une capacité de dessalage suffisante pour traiter toute la charge, pour cela service TRT (CINA) pense à traiter la totalité de la charge.

Pour pouvoir prendre la décision entre le rajout ou le remplacement des dessaleurs actuels, on se trouve dans l'obligation d'étudier l'efficacité de ces derniers.

Ainsi, nous avons organisé notre travail selon le plan suivant :

Nous présenterons dans le premier chapitre le Centre Industriel Naili Abdelhalim (CINA) et nous décrirons deux unités de ce centre.

Dans le deuxième chapitre nous aborderons quelques définitions concernant le pétrole brut, les émulsions, et leur présence dans l'industrie pétrolière, les sels et leur traitement ainsi que les procédés physiques de séparation des sels. Le troisième chapitre sera réservé pour le suivi de la salinité de brut et l'efficacité des dessaleurs et les solutions proposées. Et il regroupera toutes les données nécessaires au calcul. Et aussi il sera consacré aux calculs des dessaleurs et des échangeurs de chaleurs.

Le quatrième chapitre contiendra une approche technico-économique.

CHAPITRE I : PRESENTATION DU COMPLEXE CINA

CHAPITRE I : PRESENTATION DU COMPLEXE CINA

I.1. HISTORIQUE

Le gisement pétrolier de Hassi-Messaoud d'une superficie de 2500 km² est subdivisé géographiquement en deux zones nord et sud [1].

Cette répartition remontant à 1956 lors de la découverte et l'exploitation du champ par les deux compagnies françaises CFPA au nord et la SN REPAL au sud, a engendré la création de deux centres de production [1].

Au départ ces centres regroupaient uniquement des installations de séparation, de traitement, de stockage et expédition du pétrole brut, par la suite, d'autres unités de traitement de gaz et de réinjection sont venues s'y greffer pour étendre davantage les centres de production [1].

Le complexe industriel Naili Abdelhalim, situé au Nord du champ, est composé d'une chaîne de procédés plus ou moins complexe a pour fonction le traitement des effluents en provenance des puits producteurs. L'organigramme suivant décrit ces unités :

Figure I.1 : Schéma représentant la situation du complexe CINA [1].

Le service traitement de brut, créé entre 1957 et 1959, comprend ce qui suit [1] :

- Section de séparation UP1.
- Section de stripping et stabilisation USS1.
- Section de boosting (compression) ³/₄ étages A/B.
- Section de récupération des eaux huileuses (API).
- Section réseau torche.

Ces sections sont mises en service avec le temps comme suit [1] :

- 1960 : Mise en service de pomperie d'expédition de brut vers Haoud El Hamra HEH (ligne 20").
- 1963 : Réalisation de l'unité de stabilisation du brut de 15600 m³/jour.
- 1970 : Réalisation d'une deuxième pomperie de brut de 36000 tonne/J.

1982 : Réalisation d'une unité USS1 d'une capacité de 36000 tonne/J.

Réalisation d'une unité de compression des gaz ³/₄ étages d'une capacité de 805752 Nm³/jour.

- 1987 : Réalisation de 02 bacs de stockage de brut à toit fixe M1F/G d'une capacité de 16000 m³/h pour chacun.
- 2000 : Réalisation d'une deuxième unité de boosting de GAZ ³/₄ étages d'une capacité de 805752 Nm³/J.
- 2001 : Mise en service d'une unité de traitement des eaux huileuses.
- 2003 : Réalisation de quatre bacs de stockage de brut à toit flottant M1A/B/C/D de 8000 m³/h chacun à la place des anciens bacs à toit fixe M1A/B/C/D.
- 2009 : Réalisation d'un nouveau réseau de torches (changement).

I.2. DESCRIPTION DES DIFFERENTES SECTIONS DE L'UNITE TRAITEMENT

L'unité de traitement Nord a pour objectif principal d'augmenter la production quantitativement et qualitativement, et d'avoir un brut stabilisé conforme aux normes contractuelles de vente indiquées dans le tableau suivant :

Grandeurs	Valeurs
Densité à 15°C	$700 < \rho < 800 \text{ kg/m}^3$
Tension de vapeur	$TVR \le 0,785$ bars
Salinité	S < 60 mg/l
B.S.W	< 0.5%

Tableau I.1 : Les normes d'un brut stabilisé [1].

Avant d'être expédiée, la production des puits subit un traitement au niveau du centre de production, ce traitement est réalisé principalement dans deux unités indépendantes, l'unité de séparation par détente UP1 et l'unité d'optimisation USS1.

I.2.1. Unité de séparation par détente UP1 :

Dans cette unité, le traitement consiste à séparer le brut en une phase gazeuse et deux phases liquides (eau-huile).

Cette séparation est basée essentiellement sur la différence des densités des phases. Ce traitement est réalisé dans des batteries de séparateurs d'une capacité globale de 36000t/j, réparti en quatre étages (phases) de séparation fonctionnant à pression constante et température ambiante [1].

Cette unité reçoit tout le brut des puits et champs Nord après un prétraitement dans des unités satellites sur champ. Le brut est reçu dans un collecteur «manifold » ; sur lignes hautes et moyennes pression.

Le brut sera conduit vers les séparateurs MP et HP pour le traitement ultérieur ; La figure I.2 donne une vue générale sur la première et la deuxième phase de traitement. Un séparateur est un réservoir qui travaille à une pression constante, régler par un Système de vannes installé sur les sorties (partie huile et partie gaz). Le rôle d'un séparateur est d'arracher le gaz soluble dans le brut par l'effet de la détente après vaporisation dans le tubing et les réseaux de collecte. Le séparateur retient les gouttelettes d'eau entraînées avec le brut par le phénomène de décantation, basé sur la différence des densités [1].

Figure I.2 : Schéma simplifiée de l'unité up 1 [1].

La section UP1 comprend les étages de traitement suivants :

a. Un Manifold :

Le manifold de brut composé de trois collecteurs :

- 1^{er} collecteur 16" LDHP (Lignes directes haute pression 15 bars) destiné pour recevoir toute la production venant des puits LDHP.
- 2^{ème} collecteur 18" LDMP (Lignes directes moyenne pression 5 bars) destiné pour recevoir toute la production venant des puits LDMP.
- 3^{ème} collecteur 16" MP destiné pour recevoir toute la production venant du séparateur sur champs.
- b. 1^{er} étage de séparation :

Il est constitué de trois séparateurs tri-phasiques HP (haute pression) de production G1C, G1D, G1H et d'un séparateur test G1E.

Cet étage reçoit toutes les lignes directes hautes pressions (LDHP). La capacité de traitement de ce dernier étage est montrée dans le tableau suivant :

Etage de séparation	Nombre de séparateurs	Repère	Quantité de brut m ³ /h	Quantité de gaz m ³ /h	Tempéra	iture °C
					Hiver	Eté
		G1C	196	33320	14	40
1 ^{er} étage	04	G1D	196	33320	14	40
		G1H	196	33320	14	40
		G1E	67	11406	14	40

Tableau I.2 : La capacité de traitement du 1^{er} étage de séparation [1].

Gaz produit (LDHP) = $3,03.10^6$ Nm³/j

Gaz produit (MP) = $2,65.10^{6} \text{ Nm}^{3}/\text{j}$

c. 2^{ème} étage de séparation :

Cet étage est constitué de :

- Trois séparateurs (G2C, G2D, G2A) traitant le produit soutiré des séparateurs HP (1^{er} étage) et d'un séparateur test G2E.
- Trois séparateurs (G2B, G2J, G2K) traitant la production qui provient de la séparation sur champs. La capacité de traitement de cet étage est montrée dans le tableau suivant :

Tableau I.3 : La capacité de traitement du 2^{ème} étage de séparation [1].

Etage de séparation	Nombre de séparateurs	Repère	Quantité de brut m ³ /h	Quantité de gaz m ³ /h	Température °C	
					Hiver	Eté
		G2C	196	12740	14	38
		G2D	196	12740	14	38
		G2H	196	12740	14	38
2 ^{ème} étage 08	G2E	067	04314	14	38	
	G2A	196	12740	14	38	
	G2B	196	12740	14	38	
		G2J	450	15000	14	38
		G2K	450	15000	14	38

Le soutirage des sept séparateurs du 2^{ème} étage alimentera l'unité d'optimisation USS1. En cas d'arrêt de cette unité le brut suivra son chemin de traitement vers le 3^{ème} étage de séparation.

d. 3^{ème} étage de séparation :

Cet étage est constitué de deux séparateurs bi-phasiques G4A et G4B, la capacité de traitement est présentée dans le tableau ci-dessous :

Etage de séparation	Nombre de séparateurs	Repère	Quantité de brut m ³ /h	Quantité de gaz m ³ /h	Température °C	
					Hiver	Eté
2 ème áta ga	02	G4A	625	2 000 000	14	38
5 etage	02	G4B	625	2 000 000	14	38

Tableau I.4 : La capacité de traitement du 3^{ème} étage de séparation [1].

e. 4^{ème} étage de séparation :

Avant d'être stockée, le brut transitera par les séparateurs surélevés du 4^{ème} étage de séparation pour être complètement dégazé.

La position surélevée de ces séparateurs permettra de desservir par gravité les bacs de stockage.

Cet étage est constitué de cinq séparateurs bi-phasiques (G3A, G3B, G3D, G3E, G3H). La capacité de traitement est présentée dans le tableau suivant :

Tableau I.5 : La capacité de traitement du 4^{ème} étage de séparation [1].

Etage de séparation	Nombre de séparateurs	Repère	Quantité de brut m ³ /h	Quantité de gaz m ³ /h	Température °C	
					Hiver	Eté
4 ^{ème} étage	05	G3A G3B G3C G3D G3E	358 358 194 358 194	49163 49163 08792 49163 08792	38 38 38 38 38 38	38 38 38 38 38 38

I.2.2. Unité d'optimisation USS1 :

L'unité a pour fonction la stabilisation de la charge de brut issue du champ Nord et la production d'une quantité supplémentaire de brut par la récupération des constituants lourds contenus dans les gaz de champ, ces gaz-là sont réinjectés en grande partie dans les puits ou torchés (Figure I.3).

L'unité permet d'offrir les avantages suivants :

- a- Traitement de la charge de brut et contrôle de la TVR du produit final à 0.785 bars durant toute l'année indépendamment des changements climatiques.
- b- Augmentation de la production par absorption des constituants lourds contenus dans le gaz du champ.
- c- Amélioration des quantités de la charge des unités c'est-à-dire :
 - Régularisation du débit de charge de ces unités.
 - Sélection et amélioration de la qualité des gaz pour l'alimentation de l'unité GPL (augmentation de la production C3/C4).

Ce traitement permet d'obtenir une quantité de brut conforme aux spécifications imposées par le client à savoir : Densité, TVR, Salinité.

NB : cette unité est étudiée pour traiter 36000 t/j de brut et 7.10⁶ Nm³/j de gaz [1].

Figure I.3 : Schéma représentatif de l'unité d'optimisation USS1 [1].

Cette installation est constituée par différentes sections [1] :

a. Section de stripping :

Cette section (Figure I.4) a pour but essentiel le stripping de la totalité du liquide du 2^{ème} étage et la production d'un brut pauvre pour l'absorption, elle est composée de :

- Une colonne de stripping DA2601 équipée de 16 plateaux à clapet avec un fond à double compartiment (compartiment bouteille et compartiment périphérique).
- Un four de stripping BA2601.
- Un train de préchauffage de 14 échangeurs EA2601 A/F, EA2602 A/H.
- Deux ballons décanteurs pour la récupération de l'eau contenue dans la charge de la colonne DA2601.
- Deux dessaleurs électriques FA2609A/B.

Le brut sur stabilisé produit au niveau du stripeur subit un traitement poussé dans les dessaleurs électriques FA2609 A/B pour minimiser le taux des sels, afin de protéger les équipements de l'unité contre la corrosion et le bouchage avant d'alimenter la section d'absorption.

Figure I.4 : Schéma simplifié de la section stripping [1].

b. Section d'absorption :

Son but est d'augmenter la production en pétrole brut (estimé à 700t/j) par absorption des constituants lourds contenus dans les gaz de champ (Figure I.5).

Cette opération est réalisée par la mise en contact, dans une colonne d'absorption à 11 plateaux, des deux effluents, un gaz riche provenant des champs et brut pauvre produit préalablement dans la section de stripping [1]. Cette section comprend :

- Une colonne d'absorption DA2603 ;
- Un ballon de garde FA2602.

Figure I.5 : Schéma simplifié de la section absorption [1].

c. Section de stabilisation :

Le brut riche provenant de la section d'absorption suffisamment saturée en légers sera traitée dans cette section, cette dernière est constituée d'une colonne de stabilisation DA2602, de son four de rebouillage BA2602 et un ballon de flash FA2601.

A la tête de la colonne de stabilisation, on obtient un gaz riche destiné pour l'unité GPL et au fond, un brut faiblement stabilisée qui sera détendue dans le ballon de flash afin de lui garantir une TVR conforme pour le stockage (Figure I.6) [1].

Figure I.6 : Schéma simplifié de la section de stabilisation [1].

CHAPITRE II : GENERALITES SUR LE DESSALAGE DU PETROLE

CHAPITRE II : GENERALITES SUR LE DESSALAGE DU PETROLE

Dans ce chapitre nous donnerons quelques définitions concernant le pétrole brut, les émulsions, et leur présence dans l'industrie pétrolière, les sels et leurs traitements. Nous aborderons les procédés physiques de séparation des sels. Nous parlerons également des différents équipements rencontrés dans l'industrie du traitement (section de dessalage).

II.1. LE PETROLE

Le pétrole est un liquide verdâtre, plus ou moins visqueux. C'est un mélange d'hydrocarbures, des composés de carbone et d'hydrogène uniquement. Le pétrole conventionnel contient d'autres éléments en proportion variable (généralement aux alentours de 15%). On peut ainsi y trouver des traces de soufre, d'azote, d'oxygène, de métaux et de l'eau salée sous forme d'émulsion, l'origine du mot vient du latin petra oléum (huile de roche), car il était considéré comme tel [2].

II.2. L'EMULSION

Selon Becher (1965) une émulsion est un « système hétérogène, comportant au moins un liquide non miscible intimement dispersé dans un autre liquide sous forme de gouttelettes de diamètre en général supérieur à 0,1 μ m. De tels systèmes possèdent un minimum de stabilité, celle-ci pouvant être accrue par la présence d'additifs, tels que des agents tensioactifs ou des solides finement divisés ».

La nomenclature des émulsions est standardisée par AFNOR. Le liquide dispersé est appelé phase dispersée, interne ou discontinue. L'autre liquide est appelé milieu de dispersion ou milieu externe, et encore phase dispersante ou phase continue [3].

On distingue cependant, trois types d'émulsions, cette distinction s'effectue selon la nature de la phase continue :

- les émulsions eau dans l'huile ou huileuses, E/H pour laquelle la phase interne (dispersée) est l'eau.
- les émulsions huile dans l'eau ou aqueuses, H/E pour laquelle la phase externe (milieu dispersant) est l'eau.

 les émulsions appelées doubles ou multiples, dont la phase interne est-elle même une émulsion. Les émulsions multiples peuvent être désignées comme eau-danshuile-dans-eau (E/H/E) ou huile-dans-eau-dans-huile (H/E/H).

Figure II.1 : Les différents types d'émulsions [4].

II.2.1. Les émulsions dans l'industrie pétrolière :

Dans l'industrie pétrolière, on trouve des émulsions désirables et d'autres non désirables. Des exemples d'émulsions désirables sont les fluides de forage de puits [3], les émulsions pour le transport de brut lourds [5].

Les émulsions indésirables sont principalement, celles qui se forment durant la production du pétrole brut, ce dernier est extrait des réservoirs en même temps que l'eau de gisement et l'eau injectée. Cette association de pétrole et d'eau est soumise au phénomène de cisaillement (pompe) et contribue à la formation d'émulsions bien stabilisées grâce à des émulsifiants naturels.

Il s'agit en général d'émulsions E/H contenant des gouttes de saumure susceptibles d'occasionner des problèmes de corrosion durant le transport et le raffinage (Figure II.2).

Figure II.2 : Emulsion eau – pétrole vue au microscope [6].

II.2.2. Stabilité des émulsions :

La stabilité d'une émulsion est déterminée par le comportement des gouttelettes dispersées dans la phase continue. Sous l'action de la gravité, de mouvement brownien ou d'une force (par exemple électrostatique), les gouttelettes s'entrechoquent .Si lors de leur collision les gouttelettes se coalescent et forme des gouttes plus grosses, la phase dispersée se sépare de la phase continue ; l'émulsion est instable [7].

Il est pratiquement impossible d'obtenir une émulsion stable à partir de deux liquides purs. Des études affirment que seule l'addition d'un ou de plusieurs émulsifiants permet d'augmenter la stabilité cinétique d'une émulsion [8], par contre si elles restent dispersées lors de leur collision, grâce à un troisième éliment (émulsifiant), l'émulsion est dite stable.

II.3. INCONVENIENTS DES SELS

Comme il a été décrit précédemment les sels présents dans le brut sont dissous dans l'eau, le sel prédominant dans le brut est chlorure de sodium NaCl mais il est toujours accompagné de sels de calcium, potassium, magnésium, baryum, sous forme de sulfate, carbonates, chlorures et iodure [9], ces composants provoquent plusieurs problèmes lors de traitement du brut parmi lesquels on cite [10] :

II.3.1. Bouchage des tubes de process :

Sous certaines conditions de pression et de température, les sels précipitent et se déposent en augmentant la différence de pression et, comme ils sont de mauvais conducteurs de chaleur, ils diminuent la capacité d'échange dans les fours d'où le risque de provoquer des points chauds [10].

II.3.2. Corrosion :

Les sels s'hydrolysent sous l'effet de la température en donnant un hydroxyde et un acide comme suit [10] :

- Le NaCl s'hydrolyse à une température très élevée selon la réaction :

NaCl +H₂O → NaOH +HCl

- Le CaCl₂ s'hydrolyse à partir d'une température supérieure à 130°C selon la réaction :

 $CaCl_2 + 2 H_2O \longrightarrow Ca(OH)_2 + 2 HCl$

- Le MgCl₂ s'hydrolyse à partir d'une température supérieure à 120°C selon la réaction :

 $MgCl_2 + 2 H_2O \longrightarrow Mg(OH)_2 + 2 HCl$

La corrosion provoquée par la condensation des vapeurs HCl (HCl en solution aqueuse) surtout en tête de colonne et dans les condenseurs de tête où le fer est attaqué par ces vapeurs comme suit :

 $Fe + 2HCl \longrightarrow FeCl_2 + H_2$

Cette corrosion devient encore plus importante en présence de H₂S :

 $Fe + H_2S \longrightarrow FeS + H_2$

 $FeS + 2 HC1 \longrightarrow FeCl_2 + H_2S$

Cette corrosion est accélérée par l'augmentation de la température. Pour éviter la corrosion par H_2S et HCl, qui se forme aux cours de chauffage de pétrole brut, on injecte :

- L'ammoniac à l'état gazeux dans la zone d'épuisement et dans la ligne de vapeur de tête de la colonne pour neutraliser l'HCl.
- Un inhibiteur de corrosion formant un film protecteur.

II.3.3. Altération :

Certains composés minéraux sont des poisons pour les catalyseurs de craquage et de reformage, la concentration des sels dans les résidus augmentent leurs teneurs en cendre et diminuent leur valeur marchande, les bitumes trop salés s'émulsionnent mal et ne conviennent pour certaines applications pour l'industrie routières [10].

II.4. DESSALAGE DU PETROLE BRUT

La séparation de l'eau et du pétrole brut appelée couramment dessalage ou déshydratation, est une étape importante pour la production du pétrole satisfaisant les spécifications commerciales. Les raffineries traitent uniquement le pétrole dont la teneur en eau et en sels est très basse [11].

Le dessalage du brut comporte trois étapes successives :

- La diffusion des sels du brut dans l'eau de lavage ;
- La coalescence des gouttelettes d'eau ;
- La décantation.

 Emulsion
 Floculation
 Coalescence
 Décantation

Figure II.3 : dégradation des émulsions [4].

II.4.1. Diffusion des sels :

Il s'agit de faire passer dans l'eau les cristaux de sels contenus dans le brut. L'objectif étant d'atteindre tous les cristaux de sels [12].

Le mélange eau-brut s'effectue normalement à travers une vanne de mélange placée à l'entrée du dessaleur. Pour améliorer la diffusion des cristaux de sels dans l'eau, on injecte souvent l'eau [12].

L'émulsion eau-brut ainsi formée entre dans le dessaleur et les cristaux de sels commencent à se dissocier selon les réactions ci-dessous sous l'effet commun de l'eau ajoutée et du champ électrique appliqué entre les électrodes [12] :

- $NaCl \rightarrow Na^++Cl^-$
- $\text{FeCl}_2 \rightarrow \text{Fe}^{2+}+2\text{Cl}^-$

 $FeCl_3 \rightarrow Fe^{3+}+3Cl^-$

 $MgCl_2 \rightarrow Mg^{2+}+2Cl^{-}$

 $MgSo_4 \rightarrow Mg^{2+}+So_4^{2-}$

Les ions produits au cours de cette opération tels que Na⁺, Fe²⁺, Fe³⁺, Mg²⁺, Cl⁻, So²⁻₄.... Sont moins stables, ils se trouvent en plus entourés de molécules d'eau qu'on a injectée. Les molécules d'eau jouent parfaitement ce rôle à cause de leur polarité qui leur permet de se mettre autour de ces ions. Etant donné que la plupart des
sels sont entièrement solubles dans l'eau, donc les ions libérés plus haut se trouvent enfin solvatés par les molécules d'eau selon la réaction chimique suivante :

 $Na^+ Cl^-_{cristal ionique}$ (en présence de l'eau) $\rightarrow Na^+_{aqueux} + Cl^-_{aqueux}$

II.4.2. Coalescence :

La coalescence est provoquée par un champ électrostatique. Elle s'effectue par le biais des forces d'attraction des gouttelettes entre elles, dues à la polarité des molécules d'eau (qui tendent à s'orienter) et de l'agitation créée par le champ électrique [12].

La force d'attraction F de gouttelette alignée, d'égale dimension, est égale à [12] :

$$\mathbf{F} = \mathbf{K}^2 \mathbf{E}^2 \mathbf{r}^2 \left[\frac{\mathbf{r}}{\mathbf{d}}\right]^4$$

Avec r : rayon de la gouttelette ;

d : distance entre les centres des gouttelettes (m) ;

E : gradient de tension (V/m);

K : constante.

La coalescence dépend aussi du taux d'injection d'eau de lavage, ainsi la vitesse de coalescence est donnée par la formule suivante :

$$V_{\rm c} = \frac{{\rm K'.~Y}^{\frac{3}{4}}}{\mu}$$

Avec :

 V_c : Vitesse de coalescence ;

Y : Taux d'eau de lavage ;

 μ : Viscosité dynamique du brut ;

K': Constante.

Donc on peut conclure que la coalescence dépend de :

• Du champ électrique ;

- Du taux d'injection d'eau de lavage ;
- De la température du dessalage.

II.4.3. Décantation :

Sous l'effet du champ électrique les gouttelettes d'eau se rassemblent et donnent de grosses gouttelettes qui, sous l'effet de leur densité supérieure à celle du brut, décantent au fond du dessaleur [12].

La vitesse de décantation est donnée par la formule de Stokes [12] :

$$V_{\rm d} = \frac{g \,.\, D_{\rm p}^2 \,(\rho 1 - \rho 2)}{18 \mu_{\rm b} \,.\, \rho 2}$$

Avec :

V_d: Vitesse de décantation (m/s) ;

 D_p : Diamètre de la goutte d'eau (m) ;

 ρ_1 : Densité de la phase dispersée (kg/m³);

 ρ_2 : Densité de la phase continue (kg/m³);

 μ_b : Viscosité dynamique de la phase continue (Pa.s).

II.5. PRINCIPAUX EQUIPEMENTS DANS LA SECTION DE DESSALAGE

II.5.1. Dessaleurs :

La figure II.4 donne une vue en coupe d'un dessaleur, avec la répartition de l'émulsion eau-brut des champs mis en œuvre dans le dessaleur, à savoir [12] :

- Un champ d'environ 200 V/cm, appelé « champ primaire », qui agit entre l'interface eau-brut et la première électrode ;
- Un champ appelé « champ secondaire », qui agit entre les électrodes.

II.5.1.1. Paramètre de réglage du dessaleur et leur influence :

a) Température :

La température est le paramètre le plus important dans le procédé de dessalage, elle intervient dans la vitesse de coalescence par l'intermédiaire de la viscosité dynamique qui est très sensible à ce paramètre, elle conditionne le terme [12] :

 $(\rho_{eau} - \rho_{brut})$ Qui caractérise la vitesse de décantation.

Une température trop basse augmente la viscosité et gêne donc la décantation, par contre une température trop haute rend le brut trop conducteur ce qui diminue l'efficacité du champ électrique [12].

b) Niveau d'interface eau-brut :

Le niveau d'eau décantée forme avec l'électrode la plus basse le champ primaire de potentiel zéro. Et toute variation du niveau d'eau perturbe le champ primaire qui est régi par la loi [12] :

$$E_1 = \frac{U}{h}$$

Avec

E₁ : Champ primaire (V/cm) ;

U : Tension entre les électrodes (V) ;

h : Distance entre l'interface et l'électrode basse (m).

- Si le niveau d'eau est trop élevé, le champ électrique augmente et le temps de décantation diminue et on aura des entraînements d'eau dans le brut dessalé donc perturbation de la stabilisation [12].
- Si le niveau d'eau est trop bas, le brut n'aura pas le temps de lavage suffisant d'où diminution de l'efficacité du dessalage et entrainement du brut, donc on doit maintenir un niveau constant pour avoir un bon dessalage qui est réalisé généralement par les LCV [12].
 - c) Taux d'eau de lavage :

L'eau de lavage sert à mouiller les sels et les dissoudre. Le taux d'injection variera avec la salinité du brut à l'entrée. L'injection est régie par la loi de la vitesse de coalescence, il se situe entre 3 et 10 (% volume) [12].

On est limité par un taux d'injection très élevé qui provoque [12] :

- Une augmentation du niveau d'eau dans le dessaleur d'où risque le déclenchement.
- Entraînement d'eau avec le brut dessalé.
 - d) Point d'injection de l'eau de lavage :

Il est recommandé de faire cette injection à l'aspiration des pompes de brut. On peut également injecter l'eau soit en amont soit en aval des échangeurs qui amènent le brut à la température de dessalage [12].

e) Perte de charge dans la vanne de mélange :

Ce phénomène contrôle le degré d'émulsion entre l'eau et le brut.

Le choix résulte d'un compromis : une force favorise la dispersion de l'eau dans le brut donc le dessalage, mais en contrepartie si l'émulsion et trop fine sa désémulsion risque d'être difficile [12]. En fait, les pertes de charges optimales sont déterminées expérimentalement et vont de 1,5 bar (en moyenne) pour les pétroles bruts légers et ne dépasse pas 0,5 bar pour les bruts lourds et visqueux [12].

f) Taux et les points d'injection de désémulsifiants :

Pour compléter l'opération de dessalage électrostatique, on a recours à l'emploi d'additifs désémulsifiants [12].

Les taux pratiqués vont de 3 à 10 ppm par rapport au brut. Pour ce qui concerne les points d'injection, ceux-ci sont situés soit dans le brut en amont de la pompe de charge, soit dans l'eau de lavage [12].

II.5.1.2. Fonctionnement d'un dessaleur électrostatique :

Le brut préchauffé contenant le produit chimique casseur d'émulsion est mélangé avec l'eau préchauffée.

L'eau est injectée dans le brut à environ 3 % à 10 % par volume de brut arrivant.

Le mélange de brut et l'eau passe par la vanne de mélange pour former une émulsion.

L'ouverture de la vanne de mélange est contrôlée par un régulateur de pression différentielle (ΔP) à travers la vanne de mélange.

L'émulsion entre alors dans le dessaleur par une admission permettant la dispersion.

Cette admission contient des aubes directrices qui permettent de créer un écoulement laminaire.

Ce flux laminaire de l'émulsion est envoyé dans un distributeur à l'intérieur du dessaleur [4].

Figure II.5 : Dessaleur électrostatique [4].

II.5.2. Ballons tampons :

Ces ballons sont encore des ballons de détente ; mais ils doivent éviter d'une manière absolue l'entrainement de liquide dans la vapeur, comme le cas se présente à l'aspiration des compresseurs volumétriques. A cet effet, on dispose sur la sortie du gaz un empilage de 10 à 15 cm de fins tamis métalliques où les gouttelettes liquides entrainées sont retenues par effet de choc (Figure II.6). Il y a lieu de surveiller la perte de charge du matelas métallique qui risque de s'obstruer partiellement, un manomètre différentiel assure cette fonction. Il n'existe pas de normalisation de ces tamis et on se contentera de faire confiance au constructeur [13].

Figure II.6 : Ballon tampon [13].

II.5.3. Les échangeurs tubulaires à faisceaux et calandres :

La plupart des échangeurs à faisceaux et calandres utilisées dans l'industrie du raffinage sont conçus dans le respect des normes standard de la TEMA (Tubular Exchanger Manufacturers Association). Ils sont désignés succinctement en précisant les dimensions principales et le type repéré par trois lettres caractéristiques des éléments constitutifs [14] :

Exemple : AES

Du point de vue de dimensionnement mécanique, les échangeurs sont des appareils chaudronnés et à ce titre soumis aux règles imposées par les codes, codes différents selon les pays, le constructeur, la société d'ingénierie et les clients concernés. Certains impératifs de construction diffèrent selon la place de l'appareil [14] :

- Classe R : pour les exigences sévères des applications pétrolières ;
- Classe B : pour les services chimiques ;
- Classe C : dans le cas d'exigences modérées.

La détermination de la classe prend en compte les conditions de service, en particulier l'importance des encrassements, l'intensité et la vitesse de corrosion [14].

Par ailleurs les clients ou les sociétés d'ingénierie qui les présentent peuvent avoir leurs propres règles qui se substituent aux précédentes ou les complètent [14].

II.5.3.1. La calandre :

Aucune normalisation n'intervient concernant le diamètre extérieur de la virole cylindrique constituant la calandre. Le diamètre intérieur doit être conforme aux normes dans l'hypothèse du respect des standards TEMA [14].

Dans la plupart des cas, la calandre est réalisée à partir d'une tôle rouée soudée avec une tolérance de +1/8 inch sur le diamètre intérieur, les deux diamètres sont contrôlés ainsi que la longueur développée. L'épaisseur est définie dans le respect des règles imposées par les codes et prend en compte la surépaisseur de corrosion, en aucun cas elle ne peut être inférieur aux valeurs normalisées [14].

Figure II.7 : calandre type E (une passe) [14].

II.5.3.2. Le faisceau de tubes :

Les tubes sont normalisés et classés dans des services correspondants à un même diamètre extérieur, dans chaque série les tubes se différencient par leur épaisseur repérée par le "Birmingham Wire Gage" (BWG). Les diamètres les plus courants sont ³/₄ inch et 1 inch. Les longueurs normalisées courantes sont : 8, 10, 12, 16 et 20ft [14].

La disposition peut-être à pas carré ou à pas triangulaire. La distance entre axes des tubes (le pas P) est au minimum égale à 1,25 fois le diamètre extérieur. A même encombrement, diamètre et pas, la disposition triangulaire permet d'installer une surface d'échanges supérieurs d'environ 15% [14].

S'il est imposé de pouvoir effectuer le nettoyage mécanique de la surface externe du faisceau, une largeur de passage entre tubes est prévue égale au minimum ¹/₄ inch. Cette nécessité exclue alors le pas triangulaire [14].

Figure II.8 : Le faisceau de tubes [14].

CHAPITRE III : PARTIE EXPERIMENTALE

CHAPITRE III : PARTIE EXPERIMENTALE

III.1 ETUDE DE L'EFFICACITE ET LES SOLUTIONS PROPOSES

La section de dessalage a été installée pour traiter une certaine quantité du brut venant des champs (environ 1060 m³/h), et envoyer le reste directement vers le stockage sans passer par cette section.

Dans ces dernières années, il a été observé que le brut expédié vers HEM ne satisfait pas les normes suite à l'augmentation de la salinité, pour cela service TRT (CINA) pense à traiter la totalité de la charge.

Pour pouvoir prendre la décision entre le rajout ou le remplacement des dessaleurs actuels, on se trouve dans l'obligation d'étudier l'efficacité de ces derniers.

III.1.1 Le suivi de la salinité et l'efficacité :

L'étude de l'efficacité des dessaleurs nécessite le suivi de la salinité du brut à l'entrée et à la sortie des dessaleurs, pour cela on a effectué un suivi pendant vingt et un jour au niveau de laboratoire CRD (CINA).

Les résultats des analyses sont mentionnés dans les tableaux (III.1.1) et (III.1.2).

Dessaleur FA2609A

Data	Salinité d'entrée	Salinité de sortie	Efficacité de dessaleur		
Date	mg/l	mg/l	$(S_e-S_s)/S_e \%$		
03/03/2018	1173	248	78,86		
04/03/2018	1269	275	78,33		
05/03/2018	1395	196	85,95		
06/03/2018	2363	140	94,08		
07/03/2018	1430	237	83,43		
08/03/2018	0986	123	87,53		
09/03/2018	0892	117	86,88		
10/03/2018	0924	094	89,83		
11/03/2018	1033	108	89,55		
12/03/2018	0951	190	80,02		
13/03/2018	0515	164	68,16		
14/03/2018	0468	079	83,12		
15/03/2018	1138	128	88,75		
16/03/2018	1182	114	90,36		
17/03/2018	0948	140	85,23		
18/03/2018	0904	225	75,11		
19/03/2018	1196	137	88,55		
20/03/2018	1685	225	86,65		
21/03/2018	1170	199	82,99		
22/03/2018	1930	211	89,07		
23/03/2018	1193	228	80,89		
Moyenne	1178	170	85,54		

Tableau III .1.1 : Analyse de la salinité du 1^{er} dessaleur FA 2609 A.

Figure III.1.1 : La salinité du dessaleur A en fonction du temps.

✤ Dessaleur FA2609 B

Data	Salinité d'entrée	Salinité de sortie	Efficacité de dessaleur
Date	mg/l	mg/l	$(S_e-S_s)/S_e \%$
03/03/2018	0576	275	52,26
04/03/2018	0869	116	86,65
05/03/2018	0869	116	86,65
06/03/2018	1252	195	84,42
07/03/2018	1103	149	86,49
08/03/2018	0916	129	85,92
09/03/2018	0494	190	61,54
10/03/2018	2229	129	94,21
11/03/2018	0573	143	75,04
12/03/2018	0433	117	72,98
13/03/2018	0550	073	86,73
14/03/2018	0222	064	71,17
15/03/2018	0725	149	79,45
16/03/2018	1170	175	85,04
17/03/2018	0585	098	83,25
18/03/2018	0646	096	85,14
19/03/2018	0728	129	82,28
20/03/2018	1170	111	90,51
21/03/2018	1275	143	88,78
22/03/2018	1474	143	90,30
23/03/2018	1310	131	90,00
Moyenne	912	136	85,02

Tableau III.1.2 : Analyse de la salinité du 2^{ème} dessaleur FA 2609 B.

Figure III.1.2 : La salinité du dessaleur B en fonction du temps.

III.1.2. Interprétation des graphes :

On observe d'après ces graphes, une variation remarquable de la salinité d'entrée des dessaleurs, par contre à la sortie, la variation est presque négligeable.

Ce qui montre que la salinité du brut n'est pas le paramètre qui perturbe le bon fonctionnement des dessaleurs, cette information est justifiée par le calcul de l'efficacité qui est situé entre 85 à 95%.

Donc la résolution de problème de satisfaction des normes, n'exige pas le changement des dessaleurs actuels, mais nécessite le rajout d'autres dessaleurs supplémentaires à la section.

III.1.3. Solutions proposés :

Implantation d'une capacité suffisante de dessalage, qui nous permet de traiter la totalité de la charge, par le rajout d'autres dessaleurs.

a. 1^{er} cas d'étude :

Le rajout se fait sans aucune modification de l'emplacement actuel des équipements (Figure III.1.3).

b. 2^{ème} cas d'étude :

L'augmentation de la salinité nous a conduits à proposer le déplacement de la section de dessalage en amont de l'unité pour préserver la majorité des équipements stratégiques contre la corrosion (Figure III.1.4).

La faisabilité de cette étude nécessite l'installation des équipements suivants :

- Des échangeurs de chaleurs pour assurer la température de dessalage.
- Des ballons séparateurs bi-phasiques (de même dimension que G4A/B).
- Des pompes de transfert de la totalité du brut vers la section de dessalage.

Figure III.1.4 : Schéma Proposé (Deuxième cas d'étude).

III.2 GENERALITES SUR LA PARTIE CALCUL

Nous présenterons les données empiriques de calcul, allant des paramètres de marche de l'installation jusqu'aux propriétés physico-chimiques des fluides utilisés, qui nous permettront de dimensionner les équipements essentiels.

III.2.1. Les dessaleurs :

Dans les deux schémas proposés, nous avons besoin de dimensionner deux dessaleurs de même capacité de traitement (FA 2610A/B).

Les paramètres de marche des dessaleurs actuels (FA 2609A/B), ainsi que les données de calcul des nouveaux dessaleurs (FA 2610A/B) dans les deux cas d'études sont représentés dans les tableaux ci-dessous :

Tableau	III.2.1	:	Paramètres	de	marche	des	dessaleurs	F/	<u>A</u> 2	609A	/ B	[15	<i>j</i>].
---------	----------------	---	------------	----	--------	-----	------------	----	------------	------	------------	-----	-------------

Grandeurs	Design	Actuel
Salinité du brut à dessaler (mg/l)	500	1045,5
Salinité du brut dessalé (mg/l)	35,5	153
Température de service (°C)	60-80	50
Pression de service (bars)	12,75	14,22-14,71
Taux d'injection d'eau de lavage (%)	4-6	2,2-3
Teneur en eau du brut à dessaler (%)	1	0,4
Teneur en sels de l'eau injectée (mg/l)	700	600-700
Teneur en eau du brut dessalé (%)	0,1	0,05
Débit de la charge (m ³ /h)	530	470
Viscosité de brut à dessaler à 50°C (m ² /s)	8,9.10-7	1,87.10-6
Densité du brut à 15°C (kg/m ³)	785	794,9
Densité de l'eau de lavage à 30°C (kg/m ³)	958	1050

Tableau	III.2.2 :	Données	de ca	alcul des	dessaleurs	FA	2610A/	B [15]	•
---------	-----------	---------	-------	-----------	------------	----	--------	--------	---

Paramètres	Valeurs
Débit de brut à dessalé Q_b (m ³ /h)	470
Teneur en eau du brut à dessalé X (%)	0,4
Densité du brut à 50°C (kg/m ³)	769,7
Densité de l'eau à 50°C (kg/m ³)	965
Diamètre de gouttelette d'eau $D_p(\mu m)$	150

Pour maintenir le pétrole brut à la température de dessalage désirée dans le deuxième cas d'étude, nous avons besoin de dimensionner; deux échangeurs en parallèle (EA 2609A/B) à la sortie de ballon tampon (G5 A/S), et deux autres (EA 2610A/B) à la sortie des ballons tampons (G5 B/C).

Les paramètres de marche et les caractéristiques du pétrole nécessaires au calcul des échangeurs (EA 2609A/B) et (EA 2610A/B) sont mentionnés dans les tableaux suivants :

Paramètres	Faisceau	Calandre
Débit volumique (m ³ /h)	312,50	402,50
Débit massique (kg/h)	245031,25	295247,53
Densité du brut à 15°C (kg/m ³)	794,9	800
Densité du brut à $T_{moy}(kg/m^3)$	776,9	738,8
Chaleur spécifique (J/kg °C)	2039,84	2257,20
Température d'entrée (°C)	30	110
Température de sortie (°C)	50	95
Température moyenne (°C)	40	102,50
Viscosité cinématique à 50°C (m ² /s)	01,87.10 ⁻⁶	01,90.10 ⁻⁶
Viscosité cinématique à $T_{moy}(m^2/s)$	02.10-6	01,20.10 ⁻⁶
Viscosité dynamique à T _{moy} (Pa.s)	01,55.10-3	0,88.10-3

Tableau III.2.3 : Données de calcul des échangeurs EA 2609A/B [15].

Tableau III.2.4 : Données de calcul des échangeurs EA 2610A/B [15].

Paramètres	Faisceau	Calandre
Débit volumique (m ³ /h)	625	600
Débit massique (kg/h)	980125	859758,77
Densité du brut à 15°C (kg/m3)	794,9	796,1
Densité du brut à T _{moy} (kg/m3)	776,9	723,3
Chaleur spécifique (J/kg °C)	2090	2508
Température d'entrée (°C)	30	127
Température de sortie (°C)	50	108
Température moyenne (°C)	40	117,5
Viscosité cinématique à $50^{\circ}C \text{ (m}^{2/s)}$	1,87.10 ⁻⁶	1,88.10-6
Viscosité cinématique à $T_{moy}(m^2/s)$	2.10-6	1,1.10-6
Viscosité dynamique à T_{moy} (Pa.s)	1,55.10-3	0,79.10-3

Note :

Les densités des fluides données aux différentes températures sont calculées à partir de la formule suivante :

$$d^{t} = d_{4}^{15} \pm k (t-15)$$
(III.a)

Avec

 $d^t en (g/cm^3);$

k tiré du tableau (Al annexe);

d¹⁵₄ La densité de brut à 15°C par rapport à la densité de l'eau à 4°C qui est égale à 1.

La formule suivante a été utilisée pour calculer les chaleurs spécifiques aux différentes températures [16] :

$$C_{\rm p} = \frac{0.415}{\sqrt{d_4^{15}}} + 0.0009(t - 15)$$
(III.b)

Avec

 $C_p en (J/kg^{\circ}C);$

Les viscosités aux différentes températures mentionnées ci-dessus sont obtenues à partir de l'abaque (A2 annexe).

Une fois que nous avons présenté les données de calcul, nous attaquerons donc le dimensionnement des dessaleurs et les échangeurs de chaleur suivant les deux cas d'études.

III.3. PREMIER CAS D'ETUDE

III.3.1. Dimensionnement du dessaleur :

Figure III.3.1 : Schéma simplifiée d'un dessaleur [18].

III.3.1.1. Bilan de matière :

On a:
$$Q_w + Q_b = Q_d + Q_{w'}$$
 (III. 1)

- Q_b: Débit de brut à dessaler ;
- Q_w : Débit d'eau de lavage ;
- Q_d: Débit de brut dessalé ;
- Q_{w'}: Débit d'eau de purge.

Avec : $Q_b = 470 \text{ m}^3/\text{h}$.

a. Détermination de débit d'eau de lavage minimale :

La formule suivante relie les teneurs en sels dans le brut et la quantité d'eau à injecter [1] :

$$Y = \frac{X(S_e - S_s)}{S_s}$$
(III.2)

 S_e : salinité du brut à l'entrée de dessaleur ;

 S_s : salinité du brut à la sortie de dessaleur ;

X : Teneur en eau dans le brut.

D'après les analyses faites au laboratoire la quantité d'eau contenue dans le brut représente 0,4% [15].

$$Y = 0,4(1045,5 - 50)/50$$

La quantité d'eau de lavage à injecter par rapport au brut à dessaler est de 7,964%.

Donc

$$Q_w = Y. Q_b = 0,07964 \times 470$$
 (III. 3)
 $Q_w = 37,43 \text{ m}^3/\text{h}$

b. Détermination de débit de brut dessalé :

 $Q_d = Q_b - Q_{wb}$

Qwb: quantité d'eau contenue dans le brut.

$$D'o\dot{u}: Q_{wb} = X. Q_b$$
(III. 4)

$$Q_{wb} = 0,004 \times 470 = 1,88 \, \text{m}^3/\text{h}$$

 $Q_d = 470 - 1,88$

$$Q_d = 468, 12 \text{ m}^3/\text{h}$$

c. Calcul de débit d'eau de purge :

Le débit d'eau de purge est calculé à partir de l'équation (III.1) :

 $Q_{w'} = (37,43 + 470) - 468,12$

$$Q_{w'} = 39,31m^3/h$$

III.3.1.2. Calcul de la vitesse de décantation :

La vitesse de décantation est calculée à la température de dessalage d'après la formule de Stokes [12] :

$$V_{d} = \sqrt{\frac{4 \cdot (\rho_{1} - \rho_{2}) \cdot D_{p} \cdot g}{3 \cdot \rho_{2} \cdot \hat{\emptyset}}}$$
(III. 5)

- ρ_1 : Densité de l'eau ;
- ρ_2 : Densité du brut ;
- g : Accélération de la pesanteur (m/s^2) ;
- D_p : Diamètre de la particule d'eau (m) ;
- Ó : Coefficient de résistance.

Tableau III.3.1 : diamètre de particule d'eau en fonction de la teneur en eau [17].

Teneur en eau Y %	1	5	10	15	20
Diamètre de la gouttelette d'eau (10 ⁻⁵ m)	5	10	22	27	35

Le taux d'injection d'eau de lavage est de 7.964%, ce qui donne le diamètre de la gouttelette d'eau : $D_p = 15 \ 10^{-5} \text{ m}.$

a. Calcul du coefficient de résistance (\acute{Q}) :

Le coefficient de résistance est donné en fonction du nombre de Reynolds (Re) (Tableau III.3.2) qui est lui-même donné en fonction de la vitesse de décantation. Donc pour sortir de ce cercle on calcul la vitesse tout en fixant le régime, puis on vérifie notre supposition.

Le tableau suivant donne le coefficient \acute{Q} en fonction du régime d'écoulement :

 Tableau III.3.2 : Le coefficient de résistance en fonction du régime [18].

Régime d'écoulement	Re	Ó
Laminaire	$\text{Re} \leq 0,2$	24/Re
Transitoire	$0,2 \le \text{Re} \le 500$	18,5/Re ^{0,6}
Turbulent	Re > 500	44

On suppose que le régime est laminaire :

$$\text{Re} \le 0.2 \text{ et } \acute{Q} = 24/\text{Re}$$

On a :

$$Re = \frac{V_d D_p}{v_b}$$
(III.6)

 v_b : Viscosité cinématique du brut (m²/s) ; V_d : Vitesse de décantation (m /s) ;

D_p : Diamètre de la particule d'eau (m).

D'après les valeurs de Re et de (\acute{O}) l'équation de STOKES devient :

$$V_{d} = \frac{g \cdot D_{p}^{2} (\rho_{1} - \rho_{2})}{18v_{b} \cdot \rho_{2}}$$
(III.7)

La densité de l'eau à 50°C est 965 kg/m³

La densité du brut à 50°C est 769,7 kg/m³

$$v_{\rm b} = 1,87.10^{-6} {\rm m}^2/{\rm s}$$

Donc la vitesse de décantation :

$$V_{d} = \frac{9,81 \times (1,5.10^{-4})^{2} \times (965 - 769,7)}{18 \times 1,87.10^{-6} \times 769,7}$$

$$V_{d} = 1,663.10^{-3} \text{ m/s}$$

b. Vérification du régime :

$$Re = \frac{V_d D_p}{v_b}$$
(III. 8)
$$Re = \frac{(1,663.10^{-3} \times 1,5.10^{-4})}{1,87.10^{-6}}$$

 $Re \le 0,2$ donc le régime est la minaire et la supposition est vérifiée.

Re=0,133

III.3.1.3. Dimension du dessaleur :

a. Calcul du diamètre du dessaleur [19] :

Pour calculer le diamètre il faut d'abord calculer le facteur Ab.

A_b : facteur relatif à la phase légère (pétrole), donné par la formule :

$$A_{\rm b} = \frac{Q_{\rm d}}{0.8 \,\pi \,.\, r \,.\, V_{\rm d}} \tag{III.9}$$

 Q_d : Débit de brut dessalé (m³/s) ;

r : rapport de longueur sur le diamètre du dessaleur.

Le rapport L/D est en fonction de la pression de service.

On adapte généralement les valeurs suivantes :

 $2 < L/D \le 3$ pour p < 6.87 bars

 $3 \le L/D < 5$ pour p > 6.87 bars

Dans notre cas la pression de service du dessaleur est de 14,22 bars

Donc on prend r = 3

$$Q_d = 468,12 \text{ m}^3/\text{h} = 0,13 \text{ m}^3/\text{s}$$

 $A_{\rm b} = \frac{0.13}{0.8\,\pi.3.1.663.10^{-3}}$

Le diamètre de dessaleur est donné par l'expression :

$$D = y_1 \cdot \sqrt{2.\pi.A_b}$$
(III.10)

On détermine y₁ d'après la formule :

$$y_1 = \sin(\alpha/2)/\sqrt{2\alpha - \sin(2\alpha)}$$
(III. 11)

Pour trouver α , on calcul la constante K :

$$K = \frac{0.7}{\sqrt{(2.\pi.A_b)}}$$
(III. 12)

$$K = 0.7/\sqrt{(2.\pi.\,10.367)}$$

À partir de l'abaque (A3 annexe) on trouve : $\alpha = 114,19^{\circ} = 1,99$ rads

Donc :

 $\sin(\alpha/2) = 0,838$

 $\sin(2\alpha) = -0,743$

 $y_1 = Sin (\alpha/2) / \sqrt{2\alpha - Sin(2\alpha)}$

 $y_1 = 0.838 / \sqrt{2(1.99) + 0.743}$

 $y_1 = 0,385$

A partir de l'équation (III.10) le diamètre sera donc :

$$D = 0,385\sqrt{2.\pi.10,367}$$

b. Calcul de la longueur du dessaleur :

On a L/D = 3

Donc L = $3D = 3 \times 3,1$

c. Calcul du volume du dessaleur :

$$V_{\rm T} = V_1 + V_2$$
 (III. 13)

 V_1 : volume de la partie cylindrique de dessaleur ;

 V_2 : volume des deux extrémités supposées qu'ils forment une sphère de diamètre D.

$$V_{\rm T} = \frac{\pi . D^2 . L}{4} + \left(\frac{4}{3}\pi\right) . \left(\frac{D^3}{8}\right)$$
(III. 14)
$$V_{\rm T} = \frac{\pi \times 3.1^2 \times 9.3}{4} + \left(\frac{4}{3}\pi\right) \times \left(\frac{3.1^3}{8}\right)$$
$$V_{\rm T} = 85.8 \, {\rm m}^3$$

III.3.1.4. Hauteur minimal de l'interface eau-brut :

L'alimentation est introduite par une ligne qui débauche à environ mi-hauteur du ballon, au-dessus de l'interface eau-brut [14].

$$h_i = 0.5. D - h_e$$
 (III. 15)

 h_i : Niveau d'interface eau-brut ;

h_e : Niveau d'émulsion.

Figure III.3.2 : Représentation des différents niveaux à l'intérieur du dessaleur.

Pour déterminer le niveau d'interface eau-brut nous devons prendre en considération que le temps de décantation soit inférieur au temps de séjour.

a. Calcul du temps de séjour:

$$\tau = V_L / Q_T \tag{III.16}$$

 V_L : Volume du liquide (m³);

 Q_T : Débit volumique total (m³/h).

$$\tau = \frac{(85,8 \times 0,8 \times 60)}{507,43}$$

τ	=	8,1	1	min		
•		•,•	•			

b. Calcul du temps de décantation [18] :

On a :

$$h_i = 0, 5. D - h_e$$

$$t_d = \frac{h_e}{V_d}$$
(III.17)

 h_i : niveau d'interface eau-brut ;

he : niveau d'émulsion ;

V_d : vitesse de décantation.

On fait varier le niveau d'interface et on calcul la hauteur d'émulsion et le temps de décantation, les résultats sont montrés dans le tableau suivant :

Tableau III.3.3 : Résultats de la variation du niveau d'interface eau-brut.

Variables	Résultats								
% de Diamétre	00,000	00,060	00,120	00,180	00,240	00,300	00,360	00,420	00,480
h _i	00,000	00,186	00,372	00,558	00,744	00,930	01,116	01,302	01,488
h _e	01,550	01,364	01,178	00,992	00,806	00,620	00,434	00,248	00,062
t _d (min)	15,534	13,670	11,805	09,941	08,077	06,213	04,349	02,485	00,621

Le temps de décantation doit être inférieur ou égal au temps de séjour avec $\tau = 8,11 \text{ min donc}:$

t_d = 8,077 min

 $h_e = 0,806 m$

$$h_i = 0,744 m$$

III.3.1.5 Calcul de la rampe de distribution :

Sur la rampe de distribution on a deux rangées de trous. Le calcul de distribution a pour but d'assurer une vitesse admissible du brut à travers les trous, l'augmentation de la vitesse améliore le degré de distribution du pétrole sur toute la longueur du dessaleur, mais les grandes vitesses donnent lieu à une haute turbulence à l'émulsion.

Figure III.3.3 : Une division de la rampe [18].

a. La longueur de la rampe [18] :

 ℓ : Longueur de la rampe de distribution (L -2m)

 $\ell = (9, 3 - 2) = 7, 3 \text{ m}$

b. Le nombre de trous [18] :

Le nombre de trous par rangée (n) est donné par la formule suivante :

$$\mathbf{n} = (\ell/\mathbf{i}) + 1 \tag{III.18}$$

i : Distance entre les centres de deux trous (60 mm cas Hassi messaoud et Hassi R'mel)[18].

```
n = (\ell/i) + 1
n = (7,3/0,06) + 1
```

n=123	-	
-------	---	--

Pour les deux rangées le nombre total est égal à 246 trous.

Figure III.3.4 : Représentation des électrodes à l'intérieur du dessaleur.

• Distance entre l'électrode supérieure et le point A [18] :

$$D_1 = \frac{3}{7}D$$
 (III. 19)
 $D_1 = 1.33 \text{ m}$

• Distance entre l'électrode inferieure et le niveau d'eau [18] :

$$D_2 = \frac{2}{9}D$$
 (III. 20)

$$D_2 = 0,688 \text{ m}$$

• Distance entre les deux électrodes :

La hauteur d'interface : $h_i = 0,744 \text{ m}$

$$D_e = D - (D_1 + D_2 + h_i)$$
 (III.21)

 $D_e = 0,338 \text{ m}$

Ces distances correspondent à la gamme des normes internationale (AFNOR).

a. Calcul du champ électrique entre les deux électrodes [18] :

$$E_1 = \frac{U}{D_e}$$
(III. 22)

U=15000 volts

$$E_1 = \frac{15000}{33,8}$$

b. Calcul du champ électrique entre le niveau d'eau et l'électrode inférieure :

$$E_2 = \frac{U}{D_2}$$
(III. 23)
15000

 $E_2 = \frac{10000}{68,8}$

$$E_2 = 218 \text{ V/cm}$$

 $E_1 < 1000 \text{ V/cm}$

De point de vue électrique notre dessaleur peut fonctionner normalement.

III.3.2. Efficacité du dessaleur et de dessalage :

L'efficacité du dessaleur et celle de dessalage sont les paramètres qui conditionnent le rendement optimal du dessaleur.

L'efficacité de dessaleur est calculée par rapport à la salinité d'entrée mais réellement on ne peut pas éliminer toute trace de salinité à l'intérieur de dessaleur et pour cela on va calculer l'efficacité de dessalage, tout en prenant en considération la teneur en sel théorique optimale.

III.3.2.1.Calcul de la teneur en sel théorique :

La teneur en sel est donnée par la relation suivante :

$$S_{th} = \frac{Z \left[S_e + \frac{Y \cdot S_w}{100} \right]}{X + Y}$$
(III. 24)

$$S_e = 1045,5 \text{ g/m}^3$$

$$Y = 7,964\%$$

$$S_w = 703 \text{ g/m}^3$$

$$X = 0,4\%$$

$$Z = 0,05\%$$

$$S_{th} = \frac{0,05 \left[1045,5 + \frac{7,964 \times 703}{100} \right]}{0,4 + 7,964}$$

$S_{th} = 6,58 \text{ mg/l}$

III.3.2.2. Calcul de l'efficacité du dessaleur :

$$E = \frac{S_e - S_s}{S_e}$$
(III. 25)
$$E = \frac{1045,5 - 50}{1045,5}$$

III.3.2.3. Calcul de l'efficacité de dessalage :

L'efficacité de dessalage est donnée par la relation suivante :

$$E = \frac{S_e - S_s}{S_e - S_{th}}$$
(III. 26)

$$E = \frac{1045,5 - 50}{1045,5 - 6,58}$$

$$E = 95,8\%$$

III.3.3. Résumé des résultats :

Les résultats de calcul obtenus sont portés dans le tableau ci-dessous :

Tableau III.3.4 :	Résultats de	e calcul du	dessaleur.
-------------------	--------------	-------------	------------

Grandeurs	Dessaleur calculé	Dessaleur existant
Diamètre intérieur (m)	03,100	03,03
Longueur (m)	09,300	09,09
Volume (m ³)	85,800	80,00
Vitesse de décantation (m/s)	01,663.10 ⁻³	-
Temps de séjour (min)	08,110	08,17

III.3.4. Interprétation des résultats :

En se basant sur les résultats de notre dimensionnement et en comparant avec les dimensions des dessaleurs existants nous constatons qu'ils sont assez proches, donc on affirme que ces résultats sont acceptables.

Cette étude va permettre de résoudre le problème de l'augmentation de la salinité, et pour la compléter d'autres équipements sont à prévoir.

L'alimentation en brut de tous les dessaleurs (existants et proposés) nécessite l'augmentation de la capacité de pompage de l'installation existante par le rajout de deux pompes identiques à celles existantes.

III.3.5. Comparaison des résultats :

En fin, on va faire une petite comparaison entre les résultats trouvés et les résultats des dessaleurs obtenus au niveau des unités de dessalage à l'échelle internationale.

Pour savoir à quel point notre dessaleur fonctionne bien, on va faire un petit tableau qui résume la comparaison des résultats d'étude du notre dessaleur et le dessaleur iranien [22] :

Grandeurs	Dessaleur CINA	Dessaleur Iranien	
Débit d'alimentation (m ³ /h)	470	410	
Taux d'injection de produit	10	80	
chimique (ppm)			
Taux d'eau de lavage (%	7,964	5	
vol)			
Température de service (°C)	50	117	
Efficacité de dessaleur (%)	95,2	98,8	

Tableau III.3.5 : Comparaison entre un dessaleur Algérien et Iranien [22].

III.3.6. Interprétation des résultats de la comparaison :

A partir des résultats obtenus, nous concluons que la salinité de brut dessalé diminue avec l'augmentation des paramètres clés qui sont : la température de service, le taux de lavage et le taux de désémulsifiant.

L'augmentation de ces paramètres clés conduit à une augmentation de l'efficacité de dessalage. Les valeurs maximales de ces paramètres sont limitées par des conditions sécuritaires et/ou économiques tel que le niveau de l'eau dans le dessaleur qui présente un danger vis-à-vis du transformateur d'une part et influe sur la quantité de brut dessalé de l'autre part.

En fin il faut prendre en considération que la variation de la température est limitée aussi par le design de dessaleur et aussi par la qualité de brut traité.

III.4. DEUXIEME CAS D'ETUDE

III.4.1. Les dessaleurs :

Dans ce deuxième cas d'étude, puisque on va déplacer la section de dessalage et on va ajouter d'autres équipements en gardant les mêmes paramètres de marche, donc on va utiliser les dessaleurs déjà dimensionnés.

III.4.2. Dimensionnement des échangeurs EA 2609A/B :

Figure III.4 : Schéma simplifiée d'un échangeur tubulaires à tète flottante [20].

III.4.2.1. Bilan thermique :

La quantité de chaleur cédée par le fluide chaud est récupérée par le fluide froid.

$$\begin{split} Q_{c\acute{e}d\acute{e}} &= Q_{r\acute{e}cup\acute{e}r\acute{e}} \end{split} \tag{III. 27} \\ \dot{m}C_{pf}\Delta t &= \dot{M}C_{pc}\Delta T \\ \dot{m}C_{pf}(t_2 - t_1) &= \dot{M}C_{pc}(T_1 - T_2) \\ & \dot{m}: D\acute{e}bit \text{ massique du fluide côté faisceau (kg/h) ;} \\ & \dot{M}: D\acute{e}bit \text{ massique du fluide côté calandre (kg/h) ;} \end{split}$$

C_{pc} : chaleur spécifique côté calandre (J/kg °C) ;

C_{pf} : chaleur spécifique côté faisceau (J/kg °C).

III.4.2.2. Surface d'échange :

$$A = \frac{Q}{U_{ass} \Delta TLM. F_{t}}$$
(III. 28)

Q : La chaleur transférée par unité de temps (W) ;

 U_{ass} : Le coefficient global du transfert thermique assimilé (W/m²°C) Tableau (A4 annexe);

 ΔTLM : La moyenne logarithmique des différences de température ;

Ft : Facteur correctif de température.

Pour pouvoir utiliser cette équation, une évaluation de la moyenne logarithmique des différences de températures et le facteur correctif de température doit être faite.

a. Calcul de la moyenne logarithmique des différences de températures :

$$\Delta TLM = \frac{(T1 - t2) - (T2 - t1)}{\ln\left(\frac{T1 - t2}{T2 - t1}\right)}$$
(III.29)
$$\Delta TLM = \frac{(110 - 50) - (95 - 30)}{\ln\left(\frac{110 - 50}{95 - 30}\right)}$$
$$\Delta TLM = 62,46^{\circ}C$$

b. Facteur correctif de température :

$$R = \frac{T_1 - T_2}{t_2 - t_1}$$
(III. 30)

$$R = \frac{110 - 95}{50 - 30}$$

$$R = 0.75$$

$$S = \frac{t_2 - t_1}{T_2 - t_1} = \frac{50 - 30}{95 - 30}$$
(III. 31)

$$S = 0.31$$

Le type de l'échangeur choisi est de deux passes côté tube et une passe côté calandre, donc F_t est déterminé par l'abaque (A5 annexe).

$F_t = 0,987$	

c. Calcul de la quantité de chaleur :

La quantité de chaleur cédée par le fluide côté faisceau est égale à la quantité de chaleur récupérée par le fluide côté calandre d'où la relation suivante :

$$Q = \dot{m}C_{pf}\Delta t = \dot{M}C_{pc}\Delta T$$
(III. 32)

$$Q = 245031,25 \times \frac{2039,84}{3600} (50 - 30)$$

Donc la surface d'échange :

$$A = \frac{Q}{U_{ass} \Delta TLM. F_t}$$
(III. 33)
2776803,028

 $A = \frac{217700000,020}{350 \times 62,46 \times 0,987}$

$$A = 128.7 \text{ m}^2$$

III.4.2.3. Géométrie de l'échangeur :

a. Les tubes :

Les caractéristiques des tubes d'échangeurs se font selon des règles imposées par des codes.

Selon la norme standard TEMA, les dimensions des tubes sont mentionnées sur le tableau (A6 annexe).

Notre choix a été fait, selon les données expérimentales :

Dimension	Valeurs	Valeurs (SI)
Diamètre extérieur	3/4 inch	19,05.10 ⁻³ m
Longueur	12 ft	3,657 m
Diamètre intérieur	0,62 inch	15,748.10 ⁻³ m

Tableau III.4.1 : Dimensions des tubes.

• La longueur d'échange

$$L_e = 3,657 - 0,05$$

 $L_e = 3,608 \text{ m}$

Note : On prend cette longueur pour le dimensionnement de l'échangeur.

• Calcul du nombre de tubes

Nombre de tubes =
$$\frac{\text{surface d'échange}}{\text{surface d'un tube}}$$
 (III. 34)

Surface d'un tube :

 $s = \pi d_0 L_e \tag{III.35}$

 d_0 : Diamètre extérieur des tubes (m) ;

 L_e : Longueur d'un tube (m).

$$s = \pi \times 19,05.10^{-3} \times 3,6076$$

$$s = 2,159.10^{-1} m^2$$

Donc le nombre total des tubes :

$$N_{t} = \frac{128,68}{0,2159}$$

 $N_t = 598 \text{ tubes}$

• Diamètre du faisceau

$$D_{b} = d_{0} \left(\frac{N_{t}}{K_{1}}\right)^{1/n_{1}}$$
(III.36)

D_b : Diamètre du faisceau (mm) ;

- d₀ : Diamètre extérieur des tubes (mm) ;
- N_t : Nombre de tubes total ;

 K_1 et n_1 : Constantes.
La disposition des tubes est à pas carré donc :

 $K_1 = 0,156$ et $n_1 = 2,291$ D'après le tableau (A7 annexe).

La distance minimale entre les tubes $p_t = 1,25d_0$ donc

$$p_t = 23,812 \text{ mm}$$

 $D_b = 19,05. \left(\frac{598}{0,156}\right)^{1/2,291}$
 $D_b = 698,381 \text{ mm}$

- b. La calandre :
- Calcul du diamètre de la calandre

 $D_s = D_b + espacement$

 D_s : Diamètre de la calandre (mm);

D_b : Diamètre du faisceau (mm).

Pour pouvoir calculer l'espacement entre le faisceau et la calandre nous devons choisir le type de la boite de distribution, dans notre cas on a choisi la boite de tête flottante à passage directe.

Espacement=92 mm d'après l'abaque (A8 annexe)

 $D_{\rm s} = D_{\rm b} + 92$

 $D_s = 698,381 + 92$

 $D_s = 790,381 \text{ mm}$

III.4.2.4. Différents coefficients de transfert thermique :

a. Coefficient de transfert thermique interne :

• Le régime d'écoulement

Le régime d'écoulement dépend des caractéristiques de l'écoulement et des propriétés du fluide. Il peut être caractérisé par le calcul d'un nombre sans dimension appelé nombre de Reynolds [21].

(III.37)

$$Re = \frac{U_{f} d_i}{v_f}$$
(III.c)

 U_f : vitesse linéaire côté faisceau (m/s) ;

 d_i : Diamètre intérieur (m) ;

 ν_f : Viscosité cinématique du brut côté faisceau (m²/s).

i. Section droite d'un tube

$$A_{t} = \pi . \frac{d_{i}^{2}}{4}$$
(III. 38)
$$A_{t} = \pi . \frac{(15,748)^{2}}{4}$$
$$A_{t} = 194,778 \text{ mm}^{2}$$

ii. Aire de l'écoulement

aire =
$$A_t \times \frac{N_t}{2}$$
 (III.39)
aire = 194,778 × $\frac{598}{2}$
iii. Le flux massique

$$\phi = \frac{\dot{m}}{\text{aire}}$$
(III. 40)
$$\phi = \frac{245031,25}{3600 \times 58238,728.10^{-6}}$$

$$\phi = 1168,71 \text{ kg/m}^2 \text{ s}$$

iv. La vitesse linéaire

$$U_{f} = \frac{\Phi}{\rho}$$
(III. 41)

$$U_{\rm f} = \frac{1168,71}{776,9}$$

$$U_{\rm f} = 1,504 \text{ m/s}$$

D'après l'équation (III.c) on détermine la valeur de Reynolds

$$\operatorname{Re} = \frac{1,504 \times 15,748.10^{-3}}{2.10^{-6}}$$

$$Re = 11845,06$$

• Le coefficient de transfert thermique

L'utilisation de l'abaque (A9 annexe) nécessite le calcul du rapport Le/di

$$\frac{L_{e}}{d_{i}} = \frac{3,607}{15,748.10^{-3}} = 229,08$$

Donc le facteur de transfert thermique $j_h = 0,004$

Calcul Prandtl

$$\Pr = \frac{C_{pf}\mu_f}{k_f}$$
(III. 42)

 C_{pf} : Chaleur spécifique côté faisceau (J/kg °C) ;

 μ_f : Viscosité dynamique du brut côté faisceau (Pa.s) ;

 k_f : Conductivité thermique du brut (W/m°C).

$$\Pr = \frac{2039,84 \times 0,0015538}{0,13}$$

$$Pr = 24,38$$

Calcul Nusselt

Nu = j_h. Re. Pr^{0,33}
$$\left(\frac{\mu_f}{\mu_{fw}}\right)^{0.14} = \frac{h_i d_i}{k_f}$$
 (III. 43)

j_h: Facteur de transfert thermique ;

 μ_f : Viscosité dynamique du brut à sa température (Pa.s);

 μ_{fw} : Viscosité dynamique du brut à la température de la paroi (Pa.s).

 $Nu = 0,004 \times 11845,06 \times 24,38^{0,33}$

D'après la formule (III.43) on détermine le coefficient de transfert thermique interne

$$h_{i} = k_{f} \frac{Nu}{d_{i}}$$
(III. 44)
$$h_{i} = \frac{0.13 \times 135.93}{15.748.10^{-3}}$$
$$h_{i} = 1122.124 \text{ W/m}^{2} \circ \text{C}$$

b. Coefficient de transfert thermique externe :

Les espacements entre chicanes utilisés varient entre 0,2 jusqu'à 1 du diamètre de la calandre. Un espacement étroit entre chicanes donne des coefficients plus élevés de transfert thermique, mais aux dépends d'une chute de pression plus élevée [18].

En se basant sur cette information, on prend 0,7 du diamètre :

$$L_{\rm b} = 0.7 \, \mathrm{D_s} \tag{III.45}$$

L_b: Espacement entre les chicanes ;

D_s : Diamètre de la calandre.

 $L_{\rm b} = 0.7 \times 790.381$

$$L_b = 553,26 \text{ mm}$$

- Le régime d'écoulement
- i. La section droite de la calandre :

$$A_{s} = \frac{(p_{t} - d_{0}).D_{s}.L_{b}}{p_{t}}$$
(III.46)

$$A_{\rm s} = \frac{(23,812 - 19,05) \times 790,381 \times 553,26}{23,812}$$

 $A_s = 87458,338 \text{ mm}^2$

ii. Le flux massique :

$$\Phi = \frac{\dot{M}}{A_s} \tag{III.40}$$

$$\phi = 937,74 \text{ kg/m}^2 \text{ s}$$

iii. La vitesse linéaire :

$$U_{c} = \frac{\Phi}{\rho}$$
(III. 41)

$$U_{c} = \frac{937,74}{738,8}$$

$$U_{c} = 1,269 \text{ m/s}$$

iv. Diamètre équivalent :

$$d_{e} = \frac{4\left(p_{t}^{2} - \frac{\pi d_{0}^{2}}{4}\right)}{\pi d_{0}} = \frac{1,27}{d_{0}}\left(p_{t}^{2} - 0,785d_{0}^{2}\right)$$
(III. 47)
$$d_{e} = \frac{1,27}{19,05}\left(23,812^{2} - 0,785 \times 19,05^{2}\right)$$
$$d_{e} = 18,81 \text{ mm}$$

• Calcul de Reynolds

$$Re = \frac{U_c. d_e}{v_c}$$
(III. c)

Uc : Vitesse linéaire côté calandre (m/s) ;

de : Diamètre équivalent (m) ;

 v_c : Viscosité cinématique du brut côté calandre (m²/s).

$$\operatorname{Re} = \frac{1,269 \times 18,81.10^{-3}}{1,2.10^{-6}}$$

• Coefficient de transfert

La coupe de chicane est la taille du segment enlevé pour former la chicane, des coupes de 15 à 45% du diamètre sont utilisées.

Pour 45% et à partir de l'abaque (A10 annexe), on trouve $j_h = 0,0032$

• Calcul Prandtl

$$Pr = \frac{C_{pc} \mu_c}{k_f}$$
(III. 42)
$$Pr = \frac{2257,2 \times 88,656.10^{-5}}{0,13}$$
$$Pr = 15,393$$

Nu = j_h. Re. Pr^{0,33}
$$\left(\frac{\mu_c}{\mu_{cw}}\right)^{0.14}$$
 (III. 48)

 $Nu = 0,0032 \times 19896,35 \times 15,393^{0,33}$

Nu = 156,943

D'après la formule de (III.43) on détermine le coefficient de transfert thermique externe

$$h_{s} = k_{f} \frac{Nu}{d_{e}}$$
(III. 49)
0,13 × 156,943

$$h_{\rm s} = \frac{0.10 \times 1000000}{18,81.10^{-3}}$$

 $h_s = 1084,646 \text{ W/m}^{2\circ}\text{C}$

c. Coefficient de transfert thermique global :

Le coefficient global est l'inverse de la résistance globale au transfert thermique, qui est la somme de plusieurs différentes résistances.

Pour l'échange thermique à travers un échangeur de chaleur tubulaire le coefficient global est donné par :

$$\frac{1}{U_{cal}} = \frac{1}{h_s} + \frac{1}{h_{ed}} + \frac{d_0 \ln\left(\frac{d_e}{d_i}\right)}{2\lambda} + \left(\frac{d_0}{d_i}\right) \cdot \frac{1}{h_{id}} + \left(\frac{d_0}{d_i}\right) \cdot \frac{1}{h_i}$$
(III. 50)

Avec :

- : le coefficient global de transfert thermique $(W/m^{2\circ}C)$; Ucal
- : coefficient de transfert thermique du film externe (W/m²°C) ; hs
- : coefficient de transfert thermique du film interne $(W/m^{2\circ}C)$; hi
- : le coefficient d'encrassement du film externe (W/m^{2°}C) ; hed
- : le coefficient d'encrassement du film interne $(W/m^{2\circ}C)$; h_{id}
- : la conductivité thermique (W/m°C) ; λ
- d_0 : diamètre externe des tubes (m) ;
- : diamètre interne des tubes (m). di

$$\frac{1}{U_{cal}} = \frac{1}{1084,646} + \frac{1}{5000} + \frac{19,05.10^{-3} \ln\left(\frac{19,05}{15,748}\right)}{2 \times 50} + \left(\frac{19,05}{15,748}\right) \cdot \frac{1}{5000} + \left(\frac{19,05}{15,748}\right) \cdot \frac{1}{1122,124}$$

Avec het hid sont obtenus à partir du tableau (A13 annexe)

Ρ

$$U_{cal} = 403,521 \text{ W/m}^2 \circ \text{C}$$

Comparaison entre le coefficient global calculé et la valeur d'essai :

L'intervalle d'erreur admissible
$$0 < \frac{(U_{cal} - U_{ass})}{U_{ass}} < 30\%$$
 (III. 51)

$$\frac{403,521 - 350}{350} = 0,152$$

Donc l'erreur est de 15,2 %, et cette valeur nous permettra de mener à bien notre calcul.

III.4.2.5. Pertes de charge :

a. Côté tube :

Le coefficient de friction jf est déterminé par la nature du régime d'écoulement (Re) et le rapport L_e/d_i , à partir de l'abaque (A11 annexe) on trouve $j_f = 0,0047$

$$\Delta P_{\rm f} = N_{\rm p} \left[8j_{\rm f} \left(\frac{L_{\rm e}}{d_{\rm i}} \right) + 2,5 \right] \frac{\rho U_{\rm f}^2}{2} \tag{III.52}$$

Np : Nombre de passe côté tube ;

 U_{f} : Vitesse linéaire côté faisceau (m/s) ;

- L_e : Longueur d'un tube (m) ;
- d_i : Diamètre intérieur des tubes (m) ;
- ρ : La densité du brut côté faisceau (kg/m³).

$$\Delta P_{f} = 2 \left[8 \times 0,0047 \times \left(\frac{3,6076}{15,748.10^{-3}} \right) + 2,5 \right] \frac{(776,9 \times 1,504^{2})}{2}$$
$$\Delta P_{f} = 19538,932 \text{ N/m}^{2}$$

b. Côté calandre :

Le coefficient de friction j_f est déterminé par la nature du régime d'écoulement Reynolds et la coupe de chicane, à partir de l'abaque (A12 annexe) on trouve $j_f = 0,03$

$$\Delta P_{\rm c} = 8j_{\rm f} \left(\frac{D_{\rm c}}{d_{\rm e}}\right) \left(\frac{L_{\rm e}}{L_{\rm b}}\right) \frac{\rho U_{\rm c}^2}{2} \tag{III.53}$$

- $U_c \qquad : Vitesse \ linéaire \ côté \ calandre \ (m/s) \ ;$
- L_e : Longueur d'un tube (m) ;
- L_b : Distance entre chicanes (m);
- D_c : Diamètre de la calandre (m) ;
- de : Diamètre équivalent (m) ;

$$\rho$$
 : La densité du brut côté calandre (kg/m³).

$$\Delta P_{\rm c} = 8 \times 0.03 \left(\frac{790.381}{18.81}\right) \left(\frac{3.6076}{553.266.10^{-3}}\right) \frac{(738.8 \times 1.269^2)}{2}$$
$$\Delta P_{\rm c} = 39132.78 \text{ N/m}^2$$

c. Perte de charge totale :

$$\Delta P_{t} = \Delta P_{f} + \Delta P_{c} = 58671,71 \text{ N/m}^{2}$$
(III. 54)

On peut conclure que la perte de charge obtenue est dans les normes [20].

III.4.3. Résultats de calcul des premiers échangeurs :

	Dimension	Valeurs
	Diamètre extérieur (m)	19,050 10 ⁻³
Tube	Diamètre intérieur (m)	15,748 10 ⁻³
	Longueur (m)	3,6576
	Nombres de tubes	598,00
	Nombres de passes	2
Calandra	Diamètre (m)	79,04 10 ⁻²
Calandre	Nombres de chicane	7

Tableau III.4.2 : I	Dimensions des	s échangeurs l	EA 2609A/B.
---------------------	----------------	----------------	-------------

III.4.4. Dimensionnement des échangeurs EA 2610A/B :

Par la même méthode on calcule les seconds échangeurs, les résultats obtenus sont mentionnés dans le tableau ci-dessous :

Caractéristiques	Valeurs
Quantité de chaleur transférée (W)	5553606,056
Différence moyenne de température (°C)	77,498
Coefficient global estimé (W/m ² °C)	350
Surface d'échange (m ²)	207,021
FAISCEAU	•
Diamètre extérieur (m)	19,050.10-3
Diamètre intérieur (m)	15,748.10-3
Longueur des tubes (m)	3,6576
Surface d'un tube (m ²)	216.10-3
Nombre de tubes	960
Distance minimale entre les tubes (mm)	23,812
Diamètre du faisceau (mm)	858,661
Section droite d'un tube (mm ²)	194,778
Aire d'écoulement (mm ²)	93493,610
Flux massique (kg/m ² s)	1456,019
Vitesse linéaire côté tube (m/s)	1,874
Reynolds côté tube	14756,975
J _h côté tube	4.10 ⁻³
Prandtl	24,381
Nusselt	169,349
Coefficient de transfert thermique intérieur (W/m ² °C)	1397,980
CALANDRE	
Espacement entre chicanes (mm)	666,163
Nombre de chicanes	6
Diamètre de la calandre (mm)	951,661
Section droite de la calandre (m ²)	127.10-3
Flux massique (kg/m ² s)	990,141
Vitesse linéaire côté calandre (m/s)	1,369
Diamètre équivalent (mm)	18,810
Reynolds côté calandre	23408,307
J _h côté calandre	3.10-3
Prandtl	14,250
Nusselt	168,752
Coefficient de transfert thermique extérieur (W/m ² °C)	1166,257
VERIFICATION	
Coefficient global de transfert thermique (W/m ² °C)	454,350
Erreur (%)	29,8
Perte de charge totale (kN/m ²)	68,930

Tableau III.4.3 : Dimensions des échangeurs EA 2610A/B.

III.4.5. Interprétation des résultats :

En ce qui concerne les résultats de calcul des échangeurs de chaleur, nous avons optimisé nos calculs de tel façon à trouver des résultats utiles qui obéissent à la restriction imposée par les constructeurs ; (perte de charge comprise entre 50 et 70 kN/m² et coefficient de transfert globale inférieur à 30%).

Dans ce cas d'étude on a essayé de produire une huile qui satisfera aux normes de salinité, par le rajout des deux dessaleurs calculés et de protéger les équipements essentiels de notre installation contre la corrosion, par le déplacement de la section de dessalage en amont de l'unité de traitement qui impose l'implantation de :

- Quatre ballons séparateurs bi-phasiques (de même dimension que G4A/B).
- Quatre pompes de transfert de la totalité du brut vers la section de dessalage identiques à celles existantes GA2602.
- Quatre échangeurs de chaleur, deux échangeurs placés parallèlement avec une capacité de 625m³/h, et les deux autres placés aussi parallèlement avec la même capacité.

Pour des raisons de colmatage engendrant le bouchage des tubes des échangeurs qui par conséquent vont nécessiter des opérations de nettoyage, on se trouve dans l'obligation de faire arrêter la production pendant ces opérations de nettoyage, et pour éviter ces arrêts nous devons implanter un échangeur secours pour chaque échangeur de chaleur.

III.4.6. Comparaison entre les deux solutions proposées :

Les deux schémas proposés sont destinés à résoudre le problème actuel au niveau de l'unité et de traiter la totalité de la charge de brut, donc de point de vue capacité de traitement ils sont identiques de même que côté efficacité étant donné que les calculs ont été basés sur les valeurs désirées de salinité. Afin de pouvoir conclure sur le choix de l'un des deux schémas proposés, une étude technico-économique s'avère nécessaire.

CHAPITRE IV : ETUDE TECHNICO-ECONOMIQUE

CHAPITRE IV : ETUDE TECHNICO-ECONOMIQUE

L'élaboration de n'importe quel projet exige la réunion d'un certain nombre de critères qui peuvent être résumés comme suit :

- Fiabilité
- Sécurité
- Durée de vie
- Dépense minimale

Donc le projeteur, lors de son étude, doit s'appuyer beaucoup plus sur les indicateurs lui permettant de s'orienter et le guider dans sa tâche. Parmi les indicateurs indispensables, nous citons l'indice techno-économique du projet amenant le projeteur à présenter plusieurs variantes optimales qui sera retenu pour la concrétisation du projet.

Dans le cadre de notre projet la comparaison technico-économique doit, nous permettre à aboutir à une solution de moindre coût, et dans des meilleurs délais.

IV.1. HYPOTHESES DE CALCUL

Pour l'estimation des coûts nous devons [18] :

- Faire la liste de tout le matériel requis pour les travaux.
- Estimer la main-d'œuvre et les délais pour la réalisation.

IV.2. COUTS D'INVESTISSEMEN DES DEUX VARIANTES

C'est la somme des dépenses (cash-flow) envisagées pour la réalisation de l'installation.

IV.2.1. Décomposition des prix des biens et services de la variante N°1 :

Cette variante consiste à l'installation des deux dessaleurs plus deux pompes par rapport à l'ancienne installation.

Les prix des services pour la réalisation du 1^{èr} cas d'étude sont représentés dans le tableau ci-dessous :

Services	Prix en \$
2 dessaleurs	1 000 000,00
2 électropompes à barrel	0 120 000,00
Electricité (coffrets, câbles, et éclairage)	0 006 000,00
Robinetterie, tuyauterie, raccord et montage des équipements	0 020 000,00
Matériel de sécurité	0 050 000,00
Pièces de rechanges	0 025 000,00
Génie civil	0 003 000,00
Prestation (supervision, essais, transport et assurances)	0 001 500,00
Total	1 225 500,00

Tableau IV.1 : Prix des équipements et des services pour le 1^{er} cas d'étude [18].

IV.2.2. Décomposition des prix des biens et services de la variante N°2 :

Cette variante consiste à l'installation de quatre ballons séparateurs bi-phasiques et huit échangeurs de préchauffe.

Les prix des services pour la réalisation du 2^{ème} cas d'étude sont représentés dans le tableau ci-dessous :

Tableau IV.2 : Pr	ix des équipements	et des services pour	le 2 ^{ème}	cas d'étude	[18].
-------------------	--------------------	----------------------	---------------------	-------------	-------

Services	Prix en \$
2 dessaleurs	1 000 000,00
4 électropompes à barrel	0 240 000,00
4 ballons séparateurs	1 200 000,00
8 échangeurs	2 080 000,00
Electricité (coffrets, câbles, et éclairage)	0 008 000,00
Robinetterie, tuyauterie, raccord et montage des équipements	0 070 000,00
Matériel de sécurité	0 100 000,00
Pièces de rechanges	0 045 000,00
Prestation (supervision, essais, transport et assurances)	0 005 000,00
Total	4 748 000,00

IV.3. DELAI D'AMORTISSEMENT DES DEUX VARIANTES (Pay-out)

C'est le temps nécessaire pour récupérer les dépenses effectuées. Il dépend du gain de production et du coût total d'investissement.

Donc le délai d'amortissement T_{am} est le rapport, cout total d'investissement sur le revenu journalier total [18].

 $T_{amortissement} = \frac{\text{cout total du projet}}{\text{revenue total par unité de temps}}$

IV.3.1. Variante N°1 :

La production d'un brut non conforme aux normes commerciales provoque une chute de prix de 2 \$/bbl.

La production pour cette variante est estimée à 1875 m³/h soit 281250 bbl/j, pour 2 dollars de gain par baril, le revenu total est de 562 500,00 \$/j.

Soit un délai d'amortissement : 1 225 500,00/562 500,00 = 2 jours.

IV.3.2. Variante N°2 :

On calcule le délai d'amortissement avec le même revenu de la première variante, soit un délai d'amortissement : $4748\ 000,00/562\ 500,00 = 8$ jours.

IV.4. RESULTATS ET DISCUSSION DE L'ETUDE TECHNICO-ECONOMIQUE

Les résultats de cette étude sont représentés dans le tableau suivant :

Tableau IV.3 : Résultats de l'étude technico-économique.

Résultats de l'étude technico-économique						
Les variantes	Cout d'investissement [\$]	Profit génères [\$/j]	Temps d'amortissement [jours]			
Variante 1	1 225 500,00	562 500,00	2			
Variante 2	4 748 000,00	562 500,00	8			

Figure IV.1 : Résultats de l'étude technico-économique.

Le résultat de l'étude technico-économique montre que les deux cas d'étude génèrent un profit de 562 500,00 \$/j, qui permet de rembourser les coûts d'investissements dans 2 jours pour la 1^{ère} installation étudié et dans 8 jours pour la 2^{ème} installation étudié.

IV.5. ANALYSES DES RISQUES D'INVESTISSEMENTS

IV.5.1. Description :

Une étude prévisionnelle va prendre en considération les trois cas possibles suivants :

- 1. Le prix imposé est doublé, mais la production reste constante.
- 2. La chute de la production jusqu'à la moitié et le coût d'investissement inchangeable.
- Le doublement des prix est accompagné par une chute de production jusqu'à la moitié.

IV.5.2. Résultats :

Les résultats de l'analyse des risques d'investissements sont représentés dans le tableau suivant :

Résultats de l'analyse des risques d'investissements							
CAS	Variantes	Cout d'investissement [\$]	Profit génères [\$ /j]	Temps d'amortissement [jours]			
1 ^{èr} cas : doublement	Variante 1	2 451 000,00	562 500,00	04			
d'investissement	Variante 2	9 496 000,00	562 500,00	17			
2 ^{ème} cas : la moitié de	Variante 1	1 225 500,00	281 250,00	04			
la production	Variante 2	4 748 000,00	281 250,00	17			
3 ^{ème} cas : double des	Variante 1	2 451 000,00	281 250,00	09			
couts et moitie de la production	Variante 2	9 496 000,00	281 250,00	34			

Tableau IV.4 : Résultats de l'analyse des risques d'investissements.

Figure IV.2 : Risque d'investissement.

IV.5.3. Discussion des résultats :

D'après les résultats obtenus notre projet sera amorti dans un délai bien optimisé, ne dépassant pas cinq semaines, malgré les imprévus tels que la chute de production et le doublement des prix d'investissement.

CONCLUSION

CONCLUSION

Au cours de notre stage de fin d'étude nous avons mis le point sur plusieurs problèmes techniques, parmi lesquels la salinité et la corrosion. Dans notre étude nous avons essayé de trouver une solution de ces problèmes et, à cet effet, on a proposé deux solutions :

Premièrement le rajout d'une capacité de dessalage sans aucune modification de l'emplacement actuel des équipements qui nous permettra de traiter la totalité de la charge et par conséquent résoudre le problème de satisfaction des normes.

Deuxièmement l'augmentation de taux de corrosion surtout sur la colonne de stripping à cause de l'élévation de la salinité, nous a conduits à proposer le rajout d'une capacité de dessalage tout en déplaçant la section de dessalage en amont de l'unité pour préserver la majorité des équipements stratégiques contre la corrosion.

Les deux schémas proposés sont destinés à résoudre le problème actuel au niveau de l'unité et de traiter la totalité de la charge de brut, donc de point de vue capacité de traitement ils sont identiques, de même que côté efficacité, étant donné que les calculs ont été basés sur les mêmes valeurs désirées de salinité.

L'étude technico-économique montre que notre projet sera amorti dans un délai bien optimisé, ne dépasse pas 9 jours pour le premier cas d'étude et 34 jours pour le deuxième cas d'étude.

Notre choix entre les deux cas étudiés se fait tout en prenant en considération la durée de vie de l'installation, donc on va choisir le deuxième cas d'étude qui permettra :

De traiter la totalité de la charge.

De protéger les équipements stratégiques tel que la colonne de stripping, les aérosréfrigérants, et par conséquent une plus grande durée de vie de ses équipements.

D'avoir une meilleure qualité de notre produit expédié et une large flexibilité d'exploitation.

On recommande de prendre en considération la complexité et l'encombrement de l'unité USS1 que va engendrer l'installation des nouveaux équipements, pour mieux exploiter dans les cas de révision ou intervention.

REFFERENCES BIBLIOGRAPHIQUES

REFFERENCES BIBLIOGRAPHIQUES

- [1]: CHADLI, S. Guide pratique de laboratoire CINA, 1^{ère} édition, Alger: Sonatrach, 2001. 110p.
- [2]: Wiley Critical Content Petroleum technology. 2ème edition. John Wiley & Sons, 2007. 1141p. ISBN 978-0-470-13402-3.
- [3]: KHODJA Mouhamed. Les fluides de forage : Etude des performances et considérations environnementales. Thèse de Doctorat. Génie des Procédés et de l'Environnement. Toulouse, 2008, 195p.
- [4]: Livre TOTALE équipement dessaleur MANUEL DE FORMATION COURS EXP-PR-EQ090 Révision 0.1.
- [5] : DE BAUW, R. Nouvelles technologies pour l'exploration et l'exploitation des ressources de pétrole et de gaz. Comptes rendus du deuxième symposium européen.
 Paris : Edition TECHNIP, 1984. 1391p. ISBN 2-7108-0506-5.
- [6] : Didier DALMAZZONE, C & al. « Étude de la cinétique de formation de divers hydrates dans les émulsions eau dans huile », D.Clausse, D. Dalmazzone, B. Fouconnier, M. Kharrat, Congrès Mondial des Emulsions. Lyon, France, 24-27 septembre 2002.
- [7]: Jeffreys G. V., Davies G. A. Coalescence of liquid droplets and liquid dispersions. Recent Advances in Liquid-Liquid Extraction, C. Hanson Ed., Pergamon Presss Chap. 14, 1971, pp 495-584.
- [8]: RONDON Miguel. Influence de la formulation physico-chimique et des propriétés interfaciales sur la stabilité des émulsions asphaltènes-eau-huile. Doctorat. Mention Energétique, Transferts et Systèmes Dispersés. Bordeaux, 2006, 119p.
- [9] : NORMAND, Xavier. L'industrie de raffinage du pétrole. 5ème édition. Paris : Edition TECHNIP, 1978. 363p. ISBN 2-7108-03153-4.
- [10]: R.DAVID; Handbook of chemistry and physics; CRD, edition 89eme; 2008; pp 9-50. (ISBN 142006 ET 978-140066791).

- [11] : Mahdi K., Gheshlaghi R., Zahedi G., Lohi A. Characterization and Modeling of a Crude Oil Desalting Plant by a Statistically Designed Approach, Journal of Petroleum Science and Engineering, 2008, Vol 61, pp. 116-123.
- [12] : WAUQUIER, Jean-Pierre. Le raffinage du pétrole Tomme II Procédés de séparation.Paris: Edition TECHNIP, 1998. 655p. ISBN 2-7108-0729-7.
- [13] : WUITHIER, Pierre. Le pétrole Raffinage et génie chimique Tome II. Paris: Edition TECHNIP, 1972. 1710p. ISBN 2-7108-0211-2.
- [14] : TRAMBOUZE, Pierre. Le raffinage du pétrole Tome IV matériels et équipements.Paris : Edition TECHNIP, 1972. 785p. ISBN 2-7108-0685-1.
- [15] : Documentation et données au laboratoire CINA.
- [16]: GREEN, Don W. & Robert H Perry; chemical engineers' handbook section 2. 7ème edition. USA: McGraw-Hill, 1997. 374p. ISBN 0-07-049841-5.
- [17] : BELKHIR Nabil et TORCHE Mohammed ; Vérification du calcul d'une unité de dessalage du pétrole brut ; mémoire d'ingénieur ; Université de Boumerdès ; 2007 ; 93 p.
- [18] : Ali DAHMANI et Abdelmadjid GHACHI ; Etude de la section de dessalage du pétrole brut ; Mémoire Master 2 ; Université Houari Boumediene Alger ; 2011.
- [19]: H. Laiche, S.El Hachemi ; conception d'une unité de dessalage électrique à l'unité de Guellala ; Mémoire d'ingénieur ; Université de Kasdi Merbah Ouargla ; 2005 ; 102 p.
- [20]: TOWLER, Gavin and SINNOTT, Ray. Chemical engineering design principals, practice and economies of plant and process design. USA: Elsevier Inc., 2008. 1245p. ISBN 13: 978-0-7506-8423-1.
- [21]: LYONS, William. Standard handbook of petroleum and natural gas engineering. Texas: Gulf Publishing Company. 1996. 1436p. ISBN 0-88415-642-7.
- [22]: Leila VAFAJOO, Kamran GANJIAN, Moslem FATTAHI. Influence of key parameters on crude oil desalting: Journal of Petroleum Science and Engineering 2012, Vol 90–91, 107–111.

ANNEXES

LISTE DES ANNEXES

A1

Dongitá magurá d ^t	Facteur de	Dongitá magurá d ^t	Facteur de
Densite mesure d 4	correction (K)	Densite mesure d 4	correction (K)
0,620-0,625	0,00097	0,775-0,780	0,00073
0,625-0,630	0,00096	0,780-0,785	0,00073
0,630-0,635	0,00095	0,785-0,790	0,00072
0,635-0,640	0,00094	0,790-0,795	0,00072
0,640-0,645	0,00093	0,795-0,800	0,00071
0,645-0,650	0,00092	0,800-0,805	0,00070
0,650-0,655	0,00092	0,805-0,810	0,00069
0,655-0,660	0,00091	0,810-0,815	0,00069
0,660-0,665	0,00090	0,815-0,820	0,00069
0,665-0,670	0,00089	0,820-0,825	0,00068
0,670-0,675	0,00089	0,825-0,830	0,00067
0,675-0,680	0,00088	0,830-0,835	0,00067
0,680-0,685	0,00087	0,835-0,840	0,00067
0,685-0,690	0,00087	0,840-0,845	0,00066
0,690-0,695	0,00086	0,845-0,850	0,00066
0,695-0,700	0,00086	0,850-0,855	0,00066
0,700-0,705	0,00085	0,855-0,860	0,00066
0,705-0,710	0,00084	0,860-0,870	0,00065
0,710-0,715	0,00083	0,870-0,880	0,00064
0,715-0,720	0,00083	0,880-0,890	0,00064
0,720-0,725	0,00082	0,890-0,900	0,00064
0,725-0,730	0,00082	0,900-0,910	0,00064
0,730-0,735	0,00081	0,910-0,920	0,00064
0,735-0,740	0,00080	0,920-0,930	0,00064
0,740-0,745	0,00079	0,930-0,940	0,00063
0,745-0,750	0,00079	0,940-0,950	0,00063
0,750-0,755	0,00078	0,950-0,960	0,00063
0,755-0,760	0,00077	0,960-0,970	0,00063
0,760-0,765	0,00076	0,970-0,980	0,00063
0,765-0,770	0,00075	0,980-0,990	0,00063
0,770-0,775	0,00074	0,990-0,100	0,00063

Tableau représentant le facteur de correction des densités [18].

© 2006 ENSPM Formation Industrie - IFP Training

Abaque représentant la variation de viscosité en fonction de la température [18].

Abaque représentant le coefficient K en fonction de α [19].

Hot Huid Cold Fluid U (W/m ² ·C) Heat exchangers Water Water 800–1500 Organic solvents Organic solvents 100–300 Light oils Light oils 100–400 Heavy oils Gazes 50–300 Gazes Gazes 10–50 Organic solvents Water 250–750 Light oils Water 260–300 Gazes Water 260–300 Gazes Water 20–300 Organic solvents Water 20–300 Gazes Brine 150–500 Heavy oils Brine 150–500 Gazes Brine 150–500 Heaters Steam Organic solvents 500–100 Steam Cogazes 30–300 Dowtherm Gazes 30–300 Dowtherm Gazes 30–300 Dowtherm Gazes 20–200 Steam Gazes 30–100 Condensiers Mater 200–500 Vaporizers Mater <th>Shell ar</th> <th>nd Tube Exchangers</th> <th></th>	Shell ar	nd Tube Exchangers	
Heat exchangers Water Water 800–1500 Organic solvents 100–300 100–400 Heavy oils Light oils 100–400 Heavy oils Gazes 10–500 Gazes Gazes 10–500 Coolers Organic solvents Water 250–750 Light oils Water 350–900 Heavy oils Water 60–300 Organic solvents Water 60–300 Organic solvents Brine 150–500 Water Brine 150–400 Steam Organic solvents 500–100 Steam Organic solvents 300–900 Steam Light oils 300–900 Steam Gazes 20–200 Flue Heavy oils 50–300 Dowtherm Heavy oils 50–300 Gazes Steam 30–100 Flue Heavy oi	Hot Fluid	Cold Fluid	<i>U</i> (W/m ^{2₀} C)
Water Water 800–1500 Organic solvents Organic solvents 100–300 Light oils Light oils 100–400 Heavy oils Gases 50–300 Gases Gases 10–50 Coolers Organic solvents Water 250–750 Light oils Water 250–750 Light oils Water 250–750 Light oils Water 260–300 Gases Water 60–300 Organic solvents Brine 150–500 Water Brine 150–500 Water Brine 150–500 Water Brine 150–500 Water Brine 150–400 Gases Brine 150–400 Steam Organic solvents 500–1000 Steam Organic solvents 500–100 Steam Gases 30–300 Dowtherm Heavy oils 50–300 Power Hydrocarbon vapors 30–100 Organic v	Heat exchangers		
Organic solvents 100–300 Light toils 100–400 Heavy oils 50–300 Gases Gases 10–50 Coclers	Water	Water	800-1500
Light oils Light oils 100–400 Heavy oils 50–300 Gases Gases 10–50 Coolers Organic solvents Water 250–750 Light oils Water 350–900 Heavy oils Water 350–900 Heavy oils Water 60–300 Gases Water 20–300 Organic solvents Brine 150–500 Water Brine 600–1200 Gases Brine 15–250 Heaters Steam Water 1500–400 Steam Light oils 300–900 Steam Heavy oils 60–450 Steam Gases 20–200 Flue Gases Steam 30–100 Condensers Water 1000–1500 Organic (some noncondensables) Water 200–300 Vacuum condensers Water 200–500 Vacuum condensers Water 300–1500 Steam Aqueous solutions 1000–1500 Organic (some noncondensables) Water 300–700 Vacuum condensers Water 200–500 Vacuum condensers Water 300–700 Heavy organics 900–120 Steam Aqueous solutions 1000–1500 Organics (some noncondensables) Water 300–700 Vacuum condensers Water 300–700 Vacuum condensers Water 300–700 Vacuum condensers Water 300–1500 Steam Aqueous solutions 1000–1500 Vacuum condensers SUB	Organic solvents	Organic solvents	100-300
Heavy oils Heavy oils 50–300 Gases Gases 10–50 Coolers Organic solvents Water 250–750 Light oils Water 350–900 Heavy oils Water 60–300 Gases Water 20–300 Organic solvents Brine 150–500 Water Brine 60–120 Gases Brine 150–500 Water Brine 60–120 Gases Brine 152–50 Heaters Steam Organic solvents 500–1000 Steam Organic solvents 500–1000 Steam 60–450 Steam Organic solvents 500–1000 Steam 60–450 Steam Gases 30–300 Dowtherm Heavy oils 60–450 Steam Gases Steam 30–100 Flue Steam 30–100 Powers Steam Steam 30–100 Flue Steam 30–100 Condensers	Light oils	Light oils	100-400
Gases Gases 10–50 Coolers Organic solvents Water 250–750 Light oils Water 350–900 Heavy oils Water 20–300 Organic solvents Brine 150–500 Water 20–300 Organic solvents Brine 150–500 Gases Water Doganic solvents Brine 150–500 Mater 20–300 Organic solvents 500–100 Gases Brine 150–400 Gases Brine 150–400 Steam 150–400 Steam Steam Organic solvents 500–1000 Steam Steam Organic solvents 500–1000 Steam Gases 20–200 Steam Gases 20–200 Flue gases Steam 30–100 Organic vapors 30–100 Steam 30–100 Organic vapors 30–100 Organic vapors 30–100 Steam 30–100 Organic vapors Water 1000–1500 Vgare Steam 30–100 Organic vapors Water 200–500 Vgorizers Steam 1000–1500	Heavy oils	Heavy oils	50-300
Coolers Qrganic solvents Water 250–750 Light tolk Water 350–900 Heavy oils Water 20–300 Gases Water 20–300 Organic solvents Brine 150–500 Water Brine 600–120 Gases Brine 15–250 Heaters Steam Water 1500–400 Steam Water 1500–400 Steam Steam Water 1500–400 Steam Steam Steam 500–1000 Steam Water 1500–400 Steam 300–900 Steam Gases 30–300 Dowtherm Heavy oils 60–450 Steam S0–300 Dowtherm Gases 20–200 Flue gases Steam 30–100 Con densers Aqueous vapors Water 1000–1500 Qrganic vapors Water 200-200 Vacum condensers Water 200–200 Vacum condensers Water 200–200 Vacum condensers Water 200–200 Vacu	Gases	Gases	10-50
Organic solvents Water 250–750 Light oils Water 350–900 Gases Water 60–300 Gases Water 20–300 Organic solvents Brine 150–500 Water Brine 60–1200 Gases Brine 150–500 Water Brine 600–1200 Gases Brine 150–500 Water Stopotents 500–1000 Steam Organic solvents 500–1000 Steam Organic solvents 500–1000 Steam Light oils 300–900 Steam Heavy oils 60–450 Steam Gases 30–300 Dowtherm Heavy oils 50–300 Dowtherm Gases 20–200 Flue Hydrocarbon vapors 30–100 Flue Hydrocarbon vapors 30–100 Organic vapors Water 700–1000 Organic some noncondensables) Water 200–500 Vaco	Coolers		
Light oik Water 350-900 Heavy oils Water 60-300 Gases Water 20-300 Organic solvents Brine 150-500 Water Brine 150-500 Gases Brine 150-500 Water Brine 150-500 Gases Brine 150-500 Heaters Steam 600-1200 Steam Water 1500-4000 Steam Organic solvents 500-1000 Steam Organic solvents 500-1000 Steam Light oils 300-900 Steam Gases 300-900 Steam Gases 30-300 Dowtherm Heavy oils 50-300 Dowtherm Gases 20-200 Flue Hydrocarbon vapors 30-100 Condensers Aqueous vapors Water 1000-1500 Organic some noncondensables) Water 200-500 Vaporizers Steam Aqueous solutions 100	Organic solvents	Water	250-750
Heavy oils Water 60–300 Gases Water 20–300 Organic solvents Brine 150–500 Water Brine 600–120 Gases Brine 600–120 Gases Brine 15–250 Heaters Steam Organic solvents 600–100 Steam Organic solvents 300–100 Steam Organic solvents 500–100 Steam Organic solvents 300–100 Steam Gases 30–300 Dowtherm Gases 20–200 Flue Heavy oils 50–300 Dowtherm Gases 20–200 Flue Hydrocarbon vapors 30–100 Condensers Aqueous vapors Water 1000–1500 Organic vapors Water 200–500 Vacum condensers Water 200–500 Vaporizers Steam Aqueous solutions 1000–1500 900–1200 Steam Light organics 900–1200 900–1200 <td< td=""><td>Light oils</td><td>Water</td><td>350-900</td></td<>	Light oils	Water	350-900
Gases Water 20-300 Organic solvents Brine 150-500 Water Brine 600-1200 Gases Brine 15-250 Heaters Steam Organic solvents 500-1000 Steam Organic solvents 500-1000 Steam Uight oils 300-900 Steam Light oils 300-900 Steam Gases 30-300 Dowtherm Heavy oils 60-450 Steam Gases 30-300 Dowtherm Heavy oils 50-300 Dowtherm Gases 20-200 Flue gases Steam 30-100 Flue Hydrocarbon vapors 30-100 Condensers Queous vapors Water 1000-1500 Aqueous vapors Water 200-500 Vaporizers Water 200-500 Vaporizers Steam 1000-1500 Steam Light organics 900-1200 Steam Light organics 900-1200 Steam Aqueous solutions 1000-1500 Vaporizers Water 200-500 Vaporizers Steam 1000-1500 Steam Light organics 900-1200 <td>Heavy oils</td> <td>Water</td> <td>60-300</td>	Heavy oils	Water	60-300
Organic solvents Brine 150-500 Water Brine 600-1200 Gases Brine 15-250 Heaters Steam Vater 1500-4000 Steam Organic solvents 500-1000 Steam Gases 30-300 Dowtherm Heavy oils 50-300 Dowtherm Heavy oils \$0-300 Dowtherm Gases 20-200 Flue gases Steam 30-100 Flue Hydrocarbon vapors 30-100 Organic vapors Water 1000-1500 Organics (some noncondensables) Water 200-500 Vaporizers Vacum condensers Water 200-500 Vaporizers Vam 400-1500 600-900	Gases	Water	20-300
Water Brine 600-1200 Gases Brine 15-250 Heaters Steam Water 1500-4000 Steam Organic solvents 500-1000 Steam Gases 30-300 Dowtherm Heavy oils 60-450 Steam Gases 20-200 Dowtherm Gases 20-200 Flue gases Steam 30-100 Flue Hydrocarbon vapors 30-100 Condensers Aqueous vapors Water 1000-1500 Aqueous vapors Water 200-500 Vacuum condensers Water 200-500 Vaporizers Steam Aqueous solutions 1000-1500 Steam Aqueous solutions 1000-1500 Steam 1000-1500 Steam Aqueous solutions <td< td=""><td>Organic solvents</td><td>Brine</td><td>150-500</td></td<>	Organic solvents	Brine	150-500
Gases Brine 15–250 Heaters Steam Water 1500–4000 Steam Organic solvents 500–1000 Steam Light oils 300–900 Steam Light oils 300–900 Steam Light oils 300–900 Steam Gases 30–300 Dowtherm Heavy oils 50–300 Dowtherm Gases 20–200 Flue gases Steam 30–100 Flue Hydrocarbon vapors 30–100 Condensers Aqueous vapors Water 1000–1500 Organics vapors Water 700–1000 Organics (some noncondensables) Water 200–500 Vacuum condensers Water 200–500 Steam 1000–1500 Steam Aqueous solutions 1000–1500 Steam 600–900 Vaporizers Steam Light organics 900–1200 Steam Light organics 300–400 Steam 600–900 Varer 300–400 Ste	Water	Brine	600-1200
Heaters Steam Water 1500-4000 Steam Organic solvents 500-1000 Steam Light oils 300-900 Steam Heavy oils 60-450 Steam Gazes 30-300 Dowtherm Heavy oils 50-300 Dowtherm Heavy oils 50-300 Dowtherm Gazes 20-200 Flue gases Steam 30-100 Flue Hydrocarbon vapors 30-100 Condensers Water 1000-1500 Aqueous vapors Water 700-1000 Organic vapors Water 200-500 Vacuum condensers Water 200-500 Vaporizers Steam Light organics 900-1200 Steam Aqueous solutions 1000-1500 Vaporizers Steam Gazes 900-1200 Steam Light organics 900-1200 Steam Light organics 900-1200 Steam Aqueous solutions 1000-1500 Vater 300-450 300-450 Steam Light organics 300-450 Light organics 50-150 50-150 Gazes, 5-10 bar 50-150 50-150 Gaze	Gases	Brine	15-250
SteamWater1500-4000SteamOrganic solvents\$00-1000SteamLight oils\$00-900SteamHeavy oils\$60-450SteamGases\$0-300DowthermHeavy oils\$0-300DowthermHeavy oils\$0-300DowthermGases\$20-200Flue gasesSteam\$30-100FlueHydrocarbon vapors\$30-100CondensersAqueous vaporsWater\$1000-1500Organic (some noncondensables)Water\$200-500Vacuum condensersWater\$200-500Vacuum condensersWater\$200-500Vacuum condensersWater\$200-500Vacuum condensersWater\$200-500Vacuum condensers\$300-1200SteamAqueous solutions\$1000-1500Vacuum condensers\$300-900Vater\$300-900KeamLight organics\$900-1200Steam\$300-400Air-cooled Exchangers\$300-400Heavy organics\$300-700Heavy organics\$300-700Heavy organics\$300-700Heavy organics\$50-100Ight organics\$50-10010-30 bar\$50-10010-30 bar\$300-600	Heaters		
Steam Organic solvents 500-1000 Steam Light oils 300-900 Steam Heavy oils 60-450 Dowtherm Gases 30-300 Dowtherm Gases 30-300 Dowtherm Gases 20-200 Flue gases Steam 30-100 Flue Hydrocarbon vapors 30-100 Condensers Aqueous vapors Water 1000-1500 Organic vapors Water 700-1000 Organics (some noncondensables) Water 500-700 Vacuum condensers Water 200-500 Vaporizers Steam 1000-1500 Steam Aqueous solutions 1000-1500 Vaporizers Steam 1000-1500 Steam Aqueous solutions 1000-1500 Vaporizers U(W/m ² 0 Steam Aqueous solutions 1000-1500 Vaporizers 900-1200 100-900 Vater 300-400 300-700 Keam U(W/m ² 0 300-700 Vater 300-700 300-700 Light organics 300-700 300-700 Heavy organics 50-100 300-700 Ioganics 50-100 50-100	Steam	Water	1500-4000
Steam Light oils 300-900 Steam Heavy oils 60-450 Steam Gaxes 30-300 Dowtherm Heavy oils 50-300 Dowtherm Gaxes 20-200 Flue gases Steam 30-100 Flue Hydrocarbon vapors 30-100 Condensers Aqueous vapors Water 1000-1500 Organic vapors Water 700-1000 Organics (some noncondensables) Water 200-500 Vaporizers Water 200-500 Steam Aqueous solutions 1000-1500 Steam Aqueous solutions 1000-1500 Vaporizers Steam 4queous solutions 1000-1500 Steam Aqueous solutions 1000-1500 Steam Heavy organics 900-1200 Steam Light organics 900-1200 Steam Heavy organics 600-900 Vater 300-450 300-700 Heavy organics 50-150 50-150 Gases, 5-10 bar 50-150 50-150 Gases, 5-10 bar 50-150 50-160 10-30 bar 00-300 300-600	Steam	Organic solvents	500-1000
Steam Heavy oils 60–450 Steam Gases 30–300 Dowtherm Heavy oils 50–300 Dowtherm Gases 20–200 Flue gases Steam 30–100 Flue Hydrocarbon vapors 30–100 Condensers	Steam	Light oils	300-900
Steam Gases 30–300 Dowtherm Heavy oils 50–300 Dowtherm Gases 20–200 Flue gases Steam 30–100 Flue Hydrocarbon vapors 30–100 Condensers 4 Aqueous vapors Water 1000–1500 Organic vapors Water 700–1000 Organic vapors Water 500–700 Vacuum condensers Water 200–500 Vaporizers Steam 1000–1500 Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Vaporizers Steam 1000–1500 Steam Aqueous solutions 1000–1500 Steam Light organics 900–1200 Steam Light organics 900–1200 Steam Light organics 900–1200 Steam Light organics 600–900 Marcooled Exchangers 900–1200 Vater 300–450 300–700 <td>Steam</td> <td>Heavy oils</td> <td>60-450</td>	Steam	Heavy oils	60-450
DowthermHeavy oils\$0-300DowthermGases20-200Flue gasesSteam30-100FlueHydrocarbon vapors30-100CondensersHydrocarbon vapors30-100Aqueous vaporsWater1000-1500Organic vaporsWater700-1000Organics (some noncondensables)Water\$00-700Vacuum condensersWater200-500VaporizersSteam1000-1500SteamAqueous solutions1000-1500SteamLight organics900-1200SteamHeavy organics600-900Air-cooled ExchangersProcess FluidU (W/m ²)CWater300-450Light organics300-700Heavy organics50-150Gases, 5-10 bar50-150Condensing hydrocarbons300-600	Steam	Gases	30-300
DowthermGases20-200Flue gasesSteam30-100FlueHydrocarbon vapors30-100CondensersAqueous vaporsWater1000-1500Organic vaporsWater700-1000Organics (some noncondensables)Water500-700Vacuum condensersWater200-500VaporizersSteam1000-1500SteamAqueous solutions1000-1500SteamLight organics900-1200SteamHeavy organics600-900Air-cooled ExchangersProcess FluidU (W/m ² s)Water300-450Light organics300-450Light organics50-150Gases, 5-10 bar50-150Condensing hydrocarbons300-600	Dowtherm	Heavy oils	50-300
Flue gases Steam 30–100 Flue Hydrocarbon vapors 30–100 Condensers Aqueous vapors Water 1000–1500 Organic vapors Water 700–1000 Organics (some noncondensables) Water 500–700 Vacuum condensers Water 200–500 Vaporizers Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Steam Light organics 900–1200 Steam Light organics 900–1200 Steam Heavy organics 600–900 Air-cooled Exchangers V (W/m ²ⁿ C Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–150 10–30 bar 100–300 Condensing hydrocarbons 300–600	Dowtherm	Gases	20-200
Flue Hydrocarbon vapors 30–100 Condensers Aqueous vapors Water 1000–1500 Organic vapors Water 700–1000 Organics (some noncondensables) Water 500–700 Vacuum condensers Water 200–500 Vaporizers Steam Aqueous solutions 1000–1500 Steam Heavy organics 900–1200 Steam Light organics 900–1200 Steam Heavy organics 600–900 Vercess Fluid U (W/m ²ⁿ C Water 300–450 Light organics 300–700 Heavy organics 300–700 Heavy organics 50–100 10–30 bar 50–100 10–30 bar 300–600	Flue gases	Steam	30-100
Condensers Aqueous vapors Water 1000–1500 Organic vapors Water 700–1000 Organics (some noncondensables) Water 500–700 Vacuum condensers Water 200–500 Vaporizers Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Steam Light organics 900–1200 Steam Heavy organics 600–900 Air-cooled Exchangers Process Fluid U (W/m ²) Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–150 10–30 bar 100–300 Condensing hydrocarbons 300–600	Flue	Hydrocarbon vapors	30-100
Aqueous vapors Water 1000–1500 Organic vapors Water 700–1000 Organics (some noncondensables) Water 500–700 Vacuum condensers Water 200–500 Vaporizers Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Steam Aqueous solutions 1000–1500 Steam Light organics 900–1200 Steam Heavy organics 600–900 Air-cooled Exchangers V (W/m ² o Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Con densers		
Organic vapors Water 700-1000 Organics (some noncondensables) Water 500-700 Vacuum condensers Water 200-500 Vaporizers Steam Aqueous solutions 1000-1500 Steam Light organics 900-1200 Steam Light organics 900-1200 Steam Heavy organics 600-900 Air-cooled Exchangers U (W/m ² o Water 300-450 Light organics 300-700 Heavy organics 50-150 Gases, 5-10 bar 50-100 10-30 bar 100-300 Condensing hydrocarbons 300-600	Aqueous vapors	Water	1000-1500
Organics (some noncondensables) Water 500-700 Vacuum condensers Water 200-500 Vaporizers Steam Aqueous solutions 1000-1500 Steam Aqueous solutions 900-1200 Steam Light organics 900-1200 Steam Heavy organics 600-900 Air-cooled Exchangers V (W/m ² o Water 300-450 Light organics 300-700 Light organics 50-150 Gases, 5-10 bar 50-100 10-30 bar 100-300 Condensing hydrocarbons 300-600	Organic vapors	Water	700-1000
Vacuum condensers Water 200–500 Vaporizers Steam Aqueous solutions 1000–1500 Steam Light organics 900–1200 Steam Heavy organics 600–900 Air-cooled Exchangers Process Fluid U(W/m ² *C Water 300–450 Light organics 300–450 Light organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Organics (some noncondensables)	Water	500-700
Vaporizers Steam Aqueous solutions 1000–1500 Steam Light organics 900–1200 Steam Heavy organics 600–900 Air-cooled Exchangers Process Fluid U (W/m ²⁺ C Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Vacuum condensers	Water	200-500
Steam Aqueous solutions 1000–1500 Steam Light organics 900–1200 Steam Heavy organics 600–900 Air-cooled Exchangers Process Fluid U (W/m ²)C Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Vaporizers		
Steam Light organics 900–1200 Steam Heavy organics 600–900 Air-cooled Exchangers Process Fluid U (W/m ²)C Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Steam	Aqueous solutions	1000-1500
Steam Heavy organics 600–900 Air-cooled Exchangers U (W/m ²) Process Fluid U (W/m ²) Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Steam	Light organics	900-1200
Air-cooled Exchangers Process Fluid U (W/m ²) Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Steam	Heavy organics	600-900
Process Fluid U (W/m ²) Water 300–450 Light organics 300–700 Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Air-o	ooled Exchangers	
Water 300-450 Light organics 300-700 Heavy organics 50-150 Gases, 5-10 bar 50-100 10-30 bar 100-300 Condensing hydrocarbons 300-600	Process Fluid		<i>U</i> (W/m ^{2₀} C)
Light organics 300-700 Heavy organics 50-150 Gases, 5-10 bar 50-100 10-30 bar 100-300 Condensing hydrocarbons 300-600	Water		300-450
Heavy organics 50–150 Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Light organics		300-700
Gases, 5–10 bar 50–100 10–30 bar 100–300 Condensing hydrocarbons 300–600	Heavy organics		50-150
10-30 bar 100-300 Condensing hydrocarbons 300-600	Gases, 5-10 bar		50-100
Condensing hydrocarbons 300-600	10-30 bar		100-300
A STATE STATE AND A STATE AND	Condensing hydrocarbons		300-600

Tableau représente l'estimation du coefficient global de transfert thermique dans les échangeurs [20].

Facteur de correction une passe côté calandre et deux passe côté tube

Abaque de facteur correctif de température [20].

Tube O.D. Inches	B.W.G. Gage	Thickness Inches	İnternal Area Sq. Inch	Sq. Ft. External Surface Per Foot Length	Sq. Ft. Internal Surface Per Foot Length	Weight Per Ft. Length Steel Lbs.*	Tube LD. Inches	Moment of Inertia Inches ⁴	Section Modulus Inches ³	Radius of Gyration Inches	Constant C**	<u>0</u> .0 1.0.	Transver Metal An Sq. Inch
1/4	22 24 26 27	0.028 0.022 0.018 0.016	0.0298 0.0333 0.0360 0.0373	0.0654 0.0654 0.0654	0.0508 0.0539 0.0560 0.0571	0.066 0.054 0.045 0.040	0.194 0.206 0.214 0.218	0.00012 0.00010 0.00009 0.00009	0.00098 0.00083 0.00071 0.00065	0.0791 0.0810 0.0823 0.0829	48 52 56 58	1.289 1.214 1.168 1.147	0.0195 0.0158 0.0131 0.0118
38	18 20 22 24	0.049 0.035 0.028 0.022	0.0903 0.0731 0.0799 0.0960	0.0982 0.0982 0.0982 0.0982	0.0725 0.0798 0.0835 0.0867	0.171 0.127 0.104 0.063	0.277 0.305 0.319 0.331	0.00068 0.00055 0.00046 0.00038	0.0036 0.0029 0.0025 0.0020	0,1166 0,1208 0,1231 0,1250	94 114 125 134	1.354 1.230 1.176 1.133	0.0502 0.0374 0.0305 0.0244
1/2	16 18 20 22	0.065 0.049 0.035 0.025	0.1075 0.1269 0.1452 0.1548	0.1309 0.1309 0.1309 0.1309	0.0969 0.1052 0.1126 0.1162	0.302 0.236 0.174 0.141	0.370 0.402 0.430 0.444	0.0021 0.0018 0.0014 0.0012	0.0086 0.0071 0.0056 0.0046	0.1555 0.1604 0.1649 0.1672	168 198 227 241	1.361 1.244 1.163 1.126	0.0668 0.0694 0.0511 0.0415
5/8	12 13 14 15 16 17 18 19 20	0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.049 0.042 0.035	0.1301 0.1486 0.1655 0.1817 0.1924 0.2035 0.2181 0.2299 0.2419	0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636	0.1066 0.1139 0.1202 0.1259 0.1259 0.1259 0.1259 0.1330 0.1380 0.1380 0.1416 0.1453	0.601 0.538 0.481 0.389 0.352 0.302 0.302 0.262 0.221	0.407 0.435 0.459 0.481 0.495 0.509 0.527 0.541 0.555	0.0061 0.0057 0.0053 0.0049 0.0045 0.0042 0.0037 0.0033 0.0028	0.0197 0.0180 0.0170 0.0158 0.0145 0.0134 0.0134 0.0119 0.0105 0.0091	0.1865 0.1904 0.1939 0.1972 0.1993 0.2015 0.2044 0.2067 0.2090	203 258 268 300 317 340 369 377	1.636 1.437 1.362 1.299 1.213 1.228 1.186 1.155 1.126	0.177 0.158 0.141 0.125 0.114 0.103 0.019 0.077 0.065
34	10 11 12 13 14 15 16 17 18 20	0.134 0.120 0.095 0.083 0.072 0.065 0.058 0.058 0.058	0.1825 0.2043 0.2223 0.2483 0.2679 0.2884 0.3019 0.3019 0.3157 0.3339 0.3632	0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963 0.1963	0.1262 0.1335 0.1393 0.1468 0.1529 0.1587 0.1623 0.1623 0.1660 0.1707 0.1780	0.833 0.805 0.747 0.665 0.592 0.476 0.429 0.367 0.268	0.482 0.510 0.532 0.560 0.584 0.606 0.620 0.634 0.652 0.680	0.0129 0.0122 0.0116 0.0107 0.0098 0.0089 0.0089 0.0083 0.0076 0.0067 0.0067	0.0344 0.0326 0.0309 0.0285 0.0285 0.0285 0.0221 0.0223 0.0223 0.0223 0.0178 0.0134	0.2229 0.2267 0.2299 0.2340 0.2376 0.2411 0.2433 0.2455 0.2484 0.2531	285 319 347 384 418 450 471 452 521 567	1,556 1,471 1,410 1,339 1,254 1,238 1,210 1,183 1,150 1,103	0.259 0.238 0.219 0.195 0.174 0.155 0.140 0.126 0.108 0.108
7/8	10 11 13 14 15 16 17 18 20	0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.058 0.058	0.2894 0.3167 0.3090 0.3685 0.3948 0.4197 0.4359 0.4359 0.4525 0.4742 0.5090	0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291 0.2291	0.1589 0.1662 0.1720 0.1793 0.1856 0.1914 0.1950 0.1987 0.2034 0.2107	1.062 0.969 0.993 0.792 0.703 0.618 0.563 0.563 0.563 0.563 0.433 0.314	0.807 0.635 0.657 0.685 0.709 0.731 0.745 0.759 0.759 0.777 0.805	0.0221 0.0206 0.0196 0.0160 0.0164 0.0148 0.0137 0.0125 0.0109 0.0062	0.0505 0.0475 0.0449 0.0411 0.0374 0.0377 0.0312 0.0249 0.0249 0.0187	0.2962 0.2703 0.2736 0.2778 0.2815 0.2850 0.2873 0.2896 0.2895 0.2992 0.2992	451 494 529 575 616 655 680 706 740 794	1.442 1.378 1.332 1.277 1.234 1.197 1.197 1.174 1.150 1.126 1.087	0.312 0.285 0.262 0.233 0.207 0.162 0.165 0.149 0.127 0.092
1	8 10 11 12 13 14 15 16 18 20	0.165 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.049 0.005	0.3526 0.4208 0.4536 0.4603 0.5153 0.5463 0.5758 0.5945 0.6390 0.6793	0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618 0.2618	0.1754 0.1916 0.1990 0.2047 0.2121 0.2183 0.2241 0.2278 0.2261 0.2361	1.473 1.241 1.129 1.038 0.919 0.814 0.650 0.498 0.361	0.670 0.732 0.760 0.762 0.810 0.834 0.856 0.870 0.902 0.900	0.0392 0.0350 0.0327 0.0260 0.0253 0.0227 0.0210 0.0210 0.0166 0.0124	0.0784 0.0700 0.0654 0.0559 0.0559 0.0419 0.0332 0.0247	0.3009 0.3068 0.3140 0.3174 0.3217 0.3255 0.3291 0.3014 0.3014 0.3367 0.3414	550 656 708 749 804 852 898 927 997 1060	1.493 1.306 1.316 1.279 1.235 1.199 1.168 1.168 1.149 1.109 1.075	0.433 0.365 0.305 0.270 0.219 0.210 0.191 0.146 0.106
1-146	7 8 10 11 12 13 14 16 18 20	0.180 0.165 0.134 0.120 0.109 0.095 0.080 0.085 0.049 0.035	0.6221 0.6648 0.7574 0.8012 0.8365 0.6825 0.9852 1.0423 1.0423	0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272 0.3272	0.2300 0.2409 0.2571 0.2644 0.2702 0.2775 0.2838 0.2932 0.3016 0.3089	2.059 1.914 1.500 1.450 1.300 1.173 1.006 0.824 0.829 0.455	0.890 0.920 0.912 1.010 1.052 1.060 1.064 1.120 1.152 1.180	0.0690 0.0647 0.0742 0.0688 0.0642 0.0579 0.0521 0.0426 0.0304 0.0304	0.1425 0.1355 0.1187 0.1100 0.1027 0.0926 0.0633 0.0682 0.0534 0.0534	0.3636 0.3690 0.3974 0.4018 0.4052 0.4097 0.4136 0.4136 0.4250 0.4250 0.4257	970 1037 1182 1250 1305 1377 1440 1537 1626 1706	1.404 1.359 1.273 1.238 1.211 1.179 1.153 1.116 1.086 1.059	0.805 0.562 0.470 0.426 0.391 0.345 0.304 0.242 0.185 0.134
1-1/2	10 12 14 16	0.134 0.109 0.083 0.065	1.1921 1.2908 1.3977 1.4741	0.3927 0.3927 0.3927 0.3927	0.3225 0.3056 0.3492 0.3587	1.957 1.621 1.257 0.997	1.232 1.282 1.334 1.370	0.1354 0.1159 0.0931 0.0756	0.1806 0.1545 0.1241 0.1008	0.4853 0.4933 0.5018 0.5079	1860 2014 2180 2300	1.218 1.170 1.124 1.095	0.575 0.478 0.369 0.293
2	11 12 13 14	0.120 0.109 0.095 0.083	2.4328 2.4941 2.5730 2.6417	0.5298 0.5298 0.5298 0.5298	0.4608 0.4655 0.4739 0.4801	2.412 2.204 1.935 1.701	1.760 1.782 1.810 1.834	0.3144 0.2904 0.2586 0.2300	0.3144 0.2904 0.2586 0.2300	0.6660 0.6697 0.6744 0.6784	3795 3891 4014 4121	1.136 1.122 1.105 1.091	0.709 0.648 0.569 0.500

Tableau donnant les déférentes dimensions des tubes selon la norme TEMA [20].

Triangular Pitch, p _t = 1.25	do				
No. passes	1	2	4	6	8
K ₁ >n ₁	0.319 2.142	0.249 2.207	$0.175 \\ 2.285$	0.0743 2.499	0.0365 2.675
Square Pitch, $p_t = 1.25 d_o$					
No. passes	1	2	4	6	8
K ₁ n ₁	0.215 2.207	0.156 2.291	0.158 2.263	0.0402 2.617	0.0331 2.643

Tableau donnant les constantes K1 et n1 pour le calcul de diamètre de faisceau [20].

Abaque donnant l'espacement entre le diamètre de faisceau et de calandre [20].

Abaque donnant le facteur de transfert jh côté tube [20].

Abaque donnant le facteur de transfert jh côté calandre [20].

Abaque donnant le facteur de friction jf côté tube [20].

Abaque donnant le facteur de friction jf côté calandre [20].

Fluide	Coefficients h _{ed} , h _{id} (W/m ² °C)	Fluide	Coefficients h _{ed} , h _{id} (W/m ² °C)
Eau de rivière	3000-12000	Air, gaz industriels	5000-10000
Eau de mer	1000-3000	Fumées	2000-5000
Eau de refroidissement (tour)	3000-6000	Vapeurs organiques	5000
Eau de ville (faible dureté)	3000-5000	Liquides organiques	5000
Eau de ville (dureté élevée)	1000-2000	HC légère	5000
Condensats de vapeur d'eau	1500-5000	HC lourde	5000
Vapeur d'eau (sans traces)	4000-10000	Liq.Org. bouillant	2500
Vapeur d'eau (traces d'huiles)	2000-5000	Liq. chauffage	5000
Saumure	3000-5000	Solutions salines	3000-5000

Tableau donnant les différents facteurs d'encrassement [20].