REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
 SCIENTIFIQUE

UNIVERSITE DE BLIDA
INSTITUT DE MECANIQUE

MEMOIRE DE MAGISTER

Présenté par : BACHENE Mourad

POUR L'OBTENTION DU DIPLOME DE MAGISTER EN GENIE MECANIQUE Option: CONSTRUCTION

Thème

ANALYSE MODALE DES PLAQUES COMPOSITES STRATIFIEES EPAISSES PAR LA METHODE DES ELEMENTS FINIS

Devant le jury :

Président	$:$	Dr. A. AIAD	Maître de conférences	U.S.T. Blida
Examinateurs :	Dr. M. OUALI	Maître de conférences	U.S.T. Blida	
	Dr. M. BOUHICHA	Maître de conférences	C.U. Laghouat	
	Dr. H. FERDJANI	Maître assistant	U.S.T. Blida	
Rapporteur	$:$	Dr. B. ATTAF	Maître de conférences	U.S.T. Blida

REMERCIEMENT

Je tiens à exprimer ma profonde gratitude à Mr B. Attaf Maître de Conférences à l'Université de Blida pour m'avoir guidé et orienté durant la réalisation de ce modeste travail.

J'exprime ma vive gratitude à Mr A. Aiad Maître de Conférences à I'Université de Blida, pour l'honneur quili me fait en acceptant de présider le jury.

Je remercie également Messieurs I'Université de Blida, M. Bouhicha Maître de Conférences au Centre Universitaire de Laghouat et H. Ferdjani Maître assistant à l'Université de Blida, pour l'honneur qu'ils me font en acceptant de juger ce travail.

Que tous mes amis, trouve ici, mon respect et mes remerciements pour leurs sincères qui m'ont été toujours d'un soutien moral certain.

RESUME

Une analyse par éléments finis basée sur la théorie de Yang, Norris et Stavsky est effectuée pour décrire le comportement vibratoire des plaques composites stratifiées à base de fibres unidirectionnelles. Cette théorie prend en compte l'effet des déformations en cisaillement transverse et l'effet de l'inertie de rotation. Un programme informatique a été développé dans le but de calculer les fréquences propres et les déformées modales des plaques composites stratifiées. Les effets de (i) la géométrie de la plaque, (ii) le degré de l'anisotropie de matériau, (iii) le nombre de couches, (iv) la séquence d'empilement et (v) l'orientation des fibres sur les fréquences propres de vibration ont fait l'objet d'une étude détaillée.

ABSTRACT

A finite element analysis based on the Yang, Norris and Stavsky theory is used to describe the vibrational behavior of unidirectional layered composite plates. The theory used take into account the transverse shear deformation and rotatory inertia effects. A computer program was developed in order to calculate the natural frequencies and mode shapes of laminated composite plates. The effects of (i) plate geometry, (ii) degree of material anisotropy, (iii) number of layers, (iv) stacking sequence and (v) fiber direction on the natural frequencies were fully investigated.

TABLE DES MATIERES

Notations principalesIII
Liste des figures V
Liste des tableaux IIV
Introduction générale
Chapitre 1 : Comportement mécanique des plaques stratifiées 5
1.1 Introduction 51.2 Champ des déplacements
1.3 Champ des déformations 5
1.4 Relation contraintes-déformations 7
1.4.1 Résultantes et moments 7
1.4.2 Equation constitutive 11 12
1.5 Equations fondamentales des plaques stratifiées
1.5 Equations fondamentales des plaques stratifiées 13
Chapitre 2: Analyse par éléments finis 17
2.1 Introduction
2.2 Discrétisation 17
2.2.1 Champ des déplacements élémentaires 18
2.2.2 Champ des déformations élémentaires 19
2.3 Equations du mouvement 20
2.3.1 Analyse élémentaire 23
2.3.2 Matrice de rigidité 24
2.3.3 Matrice de masse 26
2.4 Equations caractéristiques 27 28
Chapitre 3 : Présentation du programme informatique 29
3.1 Introduction 29
3.2 Introduction des données 31
3.2.1 Données mécaniques 31
3.2.2 Données géométriques
31
31
3.3 Construction de la matrice de rigidité
34
34
3.4 Construction de la matrice de masse
37
37
3.5 Résolution
3.5 Résolution
37
37
3.6 Impression des résultats 38
Chapitre 4 : Applications 44
4.1 Introduction 44
4.2 Validation des résultats
44
44
4.2.1 Cas d'un stratifié isotrope
45
45
4.2.2 Cas d'un stratifié orthotrope
47
47
4.2.3 Cas d'un stratifié croisé antisymétrique 48
4.3 Applications
50
50
4.3.1 Influence du rapport épaisseur sur longueur h / a 50
4.3.2 Influence de l'anisotropie du matériau E_{1} / E_{2} 54
4.3.3 Influence du nombre de couches 55
4.3.4 Influence des orientations des fibres
57
57
4.3.5 Influence des conditions aux limites
60
60
4.3.6 Influence de l'empilement des couches 63
Conclusion générale 66
Annexe 1: Conditions de compatibilité 68
Annexe 2 : Matrices de changement de base 70
Annexe 3 : Equations fondamentales des plaques stratifiées 74
Références bibliographiques 83

NOTATIONS PRINCIPALES

a	: Longueur de la plaque.
$\{a\}$: Vecteur des déplacements glob
$\{a ̈\}$: Vecteur des accélérations globales.
$A_{i j}$: Coefficients de rigidité en membrane
b	: Largeur de la plaque.
${ }^{\left[B_{i}\right]}$: Matrice d'interpolation des d
$B_{i j}$: Coefficients de rigidité en membrane - flexion
$\left\{d_{i}\right\}$: Vecteur des déplacements nodaux.
$D_{i j}$	Coefficients de rigidité en flexion.
E	: Energie cinétique totale de
E_{1}	: Module d'Young longitudinal.
E_{2}	: Module d'Young transversal.
$F_{i j}$: Coefficients de rigidité en cisaillem
G_{12}	: Module de cisaillement longi
G_{13}	: Module de cisaillement transversal.
G_{23}	: Module de cisaillement transversal.
h	: Epaisseur de la plaque.
[J]	: Matrice Jacobienne
[K]	: Matrice de rigidité globale.
[K_{e}]	: Matrice de rigidité élémentaire.
[\bar{m}]	: Matrice d'inertie.
[M]	: Matrice de masse globale.
[M_{e}]	: Matrice de masse élémentaire.
M_{x}, M_{y}	: Moment de flexion.
$M_{x y}$: Moment de torsion.
[N_{i}]	: Fonctions d'interpolation des dépla
N_{x}, N_{y},	: Résultantes en membrane.

Q_{x}, Q_{y}	: Résultantes en cisaillement.
[Q]	: Matrice de rigidité d'un pli exprimée dans le repère principal ($1,2,3$).
[\bar{Q}]	: Matrice de rigidité d'un pli exprimée dans le repère du stratifié (x, y, z).
[7]	: Matrice de changement de base des contraintes.
[${ }^{\prime}$]	: Matrice de changement de base des déformations.
u	: Déplacement suivant x.
v	: Déplacement suivant y.
w	Déplacement suivant z.
(x, y, z)	Axes liés au stratifié.
$(1,2,3)$: Axes principaux liés au pli.
$\alpha_{i, j}$	Facteurs de correction en cisaillement.
γ	: Déformations angulaires.
$\{\dot{\Delta}\}$: Vecteur vitesse.
ε	: Déformations linéaires.
(ξ, η)	: Système d'axes local.
θ	: L'angle que font le repère (1,2) et le repère (x, y).
θ_{x}	: La rotation de la normale à la surface moyenne autour de l'axe x.
θ_{y}	: La rotation de la normale à la surface moyenne autour de l'axe y.
κ	: Déformations en courbures.
v_{12}, v_{21}	: Coefficients de Poisson.
π	: Energie potentielle totale de la plaque.
ρ	: Masse volumique d'un pli.
σ	: Contraintes normales.
τ	: Contraintes tangentielles
ω	: Fréquence propre de vibration.
ω^{*}	: Fréquence propre addimensionnelle de vibration.

LISTE DES FIGURES

Figure 1.1 : Schéma d'une plaque stratifiée 6
Figure 1.2 : Directions principales dans un pli 8
Figure 1.3 : Changement du repère dans un pli 10
Figure 2.1 : Elément de référence 19
Figure 3.1 : Enchaînement des opérations de calcul des solutions propres 30
Figure 3.2 : Système de numérotation pour un même nombre d'éléments 32
Figure 3.3 : Exemple d'une plaque discrétisée en quatre éléments et encastrée sur ses deux côtés
33
Figure 3.4 : Répartition des degrés de liberté actifs dans la plaque 34
Figure 3.5 : Structure de la matrice de rigidité globale après élimination des degrés de liberté bloqués 36
Figure 4.1 : Influence du rapport h / a sur les quatre premières fréquences propres adimensionnelles ω^{*} d'une plaque carrée en appuis simples constituée d'un stratifié équilibré antisymétrique $\left[45^{\circ} /-45^{\circ}\right]_{S T}$ 51
Figure 4.2 : Influence du cisaillement transverse sur la première fréquence propre addimensionnelle ω^{*} 52
Figure 4.3 : Influence de la symétrie miroir sur la première fréquence propre addimensionnelle de vibration ω^{*} (a) : stratifié doté de la symétrie miroir (b) : stratifié n'est pas doté de la symétrie miroir 53
Figure 4.4 : Influence de l'anisotropie du matériau E_{1} / E_{2} sur les quatre premièresfréquences propres addimensionnelles ω^{*} d'une plaque rectangulaireconstituée d'un stratifié équilibré antisymétrique $\left[30^{\circ} /-30^{\circ}\right]_{4 \mathrm{~T}}$.55
Figure 4.5 : Influence du nombre de couches sur la première fréquence propre ω d'une plaque carrée simplement appuyée (a) : couches équilibrées antisymétriques $\left[45^{\circ} /-45^{\circ}\right]_{\mathrm{nT}}$ (b) : couches croisées antisymétriques $\left[0^{\circ} / 90^{\circ}\right]_{\mathrm{nT}}$ 56

Figure 4.7 : Influence du rapport a / b sur la première fréquence propre addimensionnelle ω^{*} pour trois types de stratifies. (a) : $\left[45 \% / 45^{\circ}\right]_{\mathrm{T}}$, (b) : $\left[30^{\circ} \%-30^{\circ}\right]_{\mathrm{T}}$, (c) : $\left[60^{\circ} \%-60^{\circ}\right]_{\mathrm{T}}$
Figure 4.8 : Influence de l'orientation des fibres θ sur la première fréquence propre addimensionnelle ω^{*} d'un stratifié équilibré antisymétrique $[\theta /-\theta]_{\text {ST }}$ avec $h / a=0.01$ 59
Figure 4.9 : Influence de l'orientation des fibres θ sur la première fréquence propre addimensionnelle ω^{*} d'un stratifié équilibré antisymétrique $[\theta /-\theta]_{\mathrm{ST}}$ avec $h / a=0.2$ 60
Figure A2.1 : Changement de base 70
Figure A3.1 : Domaine d'un milieu continu 74

LISTE DES TABLEAUX

Tableau 4.1 : Fréquences propres addimensionnelles $\omega_{m n}{ }^{*}$ d'une plaque carrée en appuis

$$
\text { simples constituée d'un matériau isotrope avec } v=0.3, h a=0.01 \ldots \ldots \ldots . .46
$$

Tableau 4.2 : Fréquences propres addimensionnelles $\omega_{m n}{ }^{*}$ d'une plaque carrée en appuis simples constituée d'un matériau isotrope avec $v=0.3$, $h a=0.1$

Tableau 4.4 : Fréquences propres addimensionnelles $\omega_{m n} *$ d'une plaque rectangulaire en appuis simples constituée d'un stratifie croisé de séquence d'empilement $\left[0^{\circ} / 90^{\circ}\right]_{\mathrm{T}}$ avec $h / a=0.01$

Tableau 4.5 : Fréquences propres ω et déformées modales d'une plaque rectangulaire
constituée d'un stratifié équilibré antisymétrique $\left[45^{\circ} /-45^{\circ}\right]_{6 \mathrm{~T}} \ldots \ldots \ldots \ldots62$
Tableau 4.6 : Fréquences propres ω et déformées modales d'une plaque carrée avec différentes séquences d'empilement

INTRODUCTION GENERALE

Les plaques composites à base de fibres unidirectionnelles sont intégrées dans plusieurs structures de différents secteurs industriels (constructions aérospatiales et aéronavales, transport et carrosseries, etc....) car elles permettent d'offrir aux structures concernées des avantages considérables, essentiellement en terme d'allégement, de rigidité spécifique et de résistance spécifique. Ces avantages sont généralement traduits par des bénéfices économiques (sur le plan des performances et/ou sur celui des économies de bilan d'exploitation). Ainsi, outre ces avantages, les plaques composites présentent d'autres avantages associés aux caractéristiques physiques, variant fortement suivant les fibres ou les résines utilisées (conductivité thermique ou électrique, anisotropies diverses, tenus aux chocs, état de surface, tenue à la fatigue et résistance à la corrosion).

Pendant leur fonctionnement, ces plaques peuvent être soumises à diverses forces d'excitation dont la source provient de différentes origines (moteur, rotor, vent, vagues, séisme, etc.). Ces forces excitatrices peuvent causer, sous le phénomène de résonance, des effets néfastes sur le comportement structural de la plaque. Afin de permettre à cette dernière de fonctionner, sans aucun effet néfaste, dans l'intervalle d'opération fréquentielle tout en supportant les conditions sévères aux quelles elle sera soumise pendant le service, il est nécessaire d'entreprendre une étude approfondie qui consiste à faire une analyse du comportement vibratoire de la plaque dans le but de dégager l'ordre des grandeurs des paramètres modaux nécessaires (fréquences propres et déformées modales) pour mettre en évidence d'éventuels problèmes de résonance.

L'analyse du comportement vibratoire d'une plaque composite revient avant tout, à faire la meilleure formulation possible de son modèle mathématique. La théorie de Kirchoff fait l'hypothèse que les déformations en cisaillement transverse sont négligeables, ce qui limite
son application au cas des plaques minces, car ces déformations ne peuvent plus être négligées dans la situation des plaques épaisses. La théorie de Mindlin tien compte, dans le cas des plaques épaisses, l'effet des déformations en cisaillement transverse qui ne sont pas négligeables et prennent une valeur constante à travers l'épaisseur de la plaque. Des facteurs de correction sont introduis aux modules de cisaillement ainsi que l'effet de l'inertie de rotation. On note que les déformations en cisaillement transverse réduisent les fréquences de vibration, ceci peut être expliqué par le fait que les fréquences propres obtenues par la théorie de Kirchoff sont plus élevées que celles obtenues par la théorie de Mindlin.

Ainsi , plusieurs théories, ayant pour but d'améliorer l'application de la théorie de Mindlin sur les plaques composites stratifiées ont été développées par plusieurs chercheurs, on cite notamment, la théorie de Stavsky [1] sur les plaques stratifiées isotropes, la théorie de Yang, Norris et Stavsky [2] sur les plaques stratifiées anisotropes, la théorie d'ordre élevée (Higher Order Theory) de Whitney et Sun [3] et la théorie d'élasticité tridimensionnelle de Sirinivas et ces collaborateurs [4] et Noor [5]. Il a été remarqué par ces chercheurs que la théorie de Yang, Norris et Stavsky permet, dans la plupart des cas traités, de prédire d'une façon adéquate le comportement de grosses structures pour les premiers modes flexionnels.

Par ailleurs, le problème de vibration de ces plaques a été initialement traité par Sirinivas [4], Jones [6] et Noor [5] où ils ont développé une solution exacte basée sur la théorie d'élasticité tridimensionnelle permettant de déterminer les fréquences fondamentales de vibration d'une plaque rectangulaire épaisse en appuis simples et constituée d'un stratifié croisé. L'effet du cisaillement transverse sur les fréquences propres de vibrations de ces plaques a été étudie par Bert et Chen [7]. Ces derniers ont présenté une solution approchée basée sur la théorie de Yang, Norris et Stavsky [2] en vu de déterminer les fréquences propres de vibration d'une plaque rectangulaire simplement appuyée constituée d'un stratifié équilibré antisymétrique. Les résultats obtenus ont montré que l'effet du cisaillement transverse ne doit pas être négligé dans le cas des plaques composites épaisses.

D'autre part, il est important de savoir que les méthodes analytiques ne permettent pas de décrire d'une façon adéquate le comportement vibratoire de ces plaques, car la solution exacte ne peut être obtenue qu'après plusieurs simplifications et pour des cas spéciaux. Le recours aux méthodes numériques devient donc indispensable du fait que ces dernières présentent de grands avantages dans la résolution des problèmes complexes. Parmi ces méthodes
numériques, on cite la méthode des éléments finis qui s'impose comme l'outil usuel de l'analyse des structures complexes grâce à la précision des résultats obtenus et la rapidité de son exécution. L'analyse par éléments finis apparaît aujourd'hui comme une étape intégrée dans des programmes de calcul informatiques partant de la définition de la structure (modélisation géométrique) pour aboutir à son prédimensionnement par la méthode des éléments finis.

L'analyse vibratoire des plaques stratifiées par la méthode des éléments finis consiste à développer les équations de mouvement à partir des formulations énergétiques et de déterminer par la suite les fréquences propres de vibrations, en arrive souvent à un problème aux valeurs propres qui peut être résolu par l'une des méthodes de résolution standards

La méthode des éléments finis a été utilisée par Kant et Mallikarjuna [8] pour analyser les vibrations des plaques stratifiées non-symétriques et les plaques sandwiches, ils ont développé un schéma de déplacements d'ordre élevé dans le but d'examiner l'effet des déformations en cisaillement transverse sur les fréquences de vibration les plus élevées, leur théorie a été utilisée sans l'introduction des facteurs de correction en cisaillement transverse. Jing et Liao [9] ont effectué leur étude sur un élément avec un champ de déformations hybride; les déformations en cisaillement transverse ont été traitées indépendamment des autres déformations, la discrétisation a été effectuée au niveau de chaque couche où ils ont utilisé un élément hexaèdre à 20 nœuds. Les recherches de Shiau et Chang [10] ont été effectuées sans l'introduction de l'effet de l'inertie de rotation, un nombre élevé d'éléments triangulaires à 36 degrés de liberté a été utilisé dans le but d'examiner l'effet des déformations en cisaillement transverse sur les fréquences propres de vibration.

Le présent travail rentre dans le cadre d'un projet de recherche sur les matériaux composites vu que l'utilisation de ces derniers ouvre de larges horizons dans les différents secteurs industriels. Le but a atteindre est de développer un programme de calcul informatique, permettant par la méthode des éléments finis, d'analyser le comportement vibratoire des plaques composites stratifiées à base de fibres unidirectionnelles de différentes orientations et diverses séquences d'empilements. A cet effet, le travail est divisé en deux grandes parties : (i) le développement analytique et (ii) la programmation informatique.
(i) La première partie a pour objet de développer les outils mathématiques nécessaires a l'analyse vibratoire des plaques stratifiées. Cette partie est divisée en deux chapitres, le chapitre 1 traite le comportement mécanique des plaques stratifiées. La théorie de Yang, Norris et Stavsky avec prise en compte de l'effet du cisaillement transverse est utilisée pour développer les équations fondamentales de ces plaques. Le chapitre 2 fait une analyse par éléments finis basée sur un élément quadrilatère isoparamétrique à 9 nœuds dans le but de rétablir les équations décrivant le mouvement des plaques stratifiées.
(ii) La deuxième partie est consacrée à l'élaboration d'un programme informatique permettant de calculer les fréquences propres et les déformées modales des plaques stratifiées. Le chapitre 3 évoque les étapes suivies et les techniques utilisées au cours de cette élaboration. L'analyse des vibrations des plaques stratifiées pour lesquelles les couplages membrane-flexion-torsion existent est abordée au chapitre 4.

En fin, le travail est achevé par une conclusion générale qui comporte quelques observations et des recommandations pour un travail futur.

CHAPITRE 1

COMPORTEMENT MECANIQUE DES PLAQUES STRATIFIEES

1.1 INTRODUCTION

L'objet de ce chapitre consiste à développer les équations fondamentales des plaques stratifiées, la théorie utilisée est celle de Yang, Norris et Stavsky [2]. La relation contraintesdéformations diffère de celle des plaques homogènes du fait de l'existence de couplage entre les déformations planes et en courbures. Par contre, les hypothèses rapportées aux plaques homogènes restent valables aux plaques stratifiées, et sont les suivantes :

1. Les contraintes normales à la surface moyenne sont négligeables par rapport aux autres composantes de contraintes. $\sigma_{z} \approx 0$
2. La normale à la surface moyenne avant déformation reste droite mais pas nécessairement normale à la surface moyenne après déformation. Ceci revient à la prise en compte de cisaillement transverse.
3. Les déplacements sont très petits par rapport à l'épaisseur de la plaque.
4. Les différentes couches composites restent parfaitement collées.

1.2 CHAMP DES DEPLACEMENTS

Considérons une plaque stratifiée rectangulaire constituée de n couches de même matériau et d'orientations des fibres différentes. On définit un système de référence (x, y, z) situé sur la surface moyenne de la plaque dont l'axe z correspond à la direction suivant l'épaisseur. Les caractéristiques géométriques de la plaque sont indiquées sur la figure 1.1.

Figure 1.1 Schéma d'une plaque stratifiée

Le champ des déplacements d'un point quelconque $M(x, y, z)$ de la plaque en présence du cisaillement transverse est approché par un polynôme linéaire en z à coefficients en (x, y) de la forme [2]:

$$
\begin{align*}
& u(x, y, z, t)=u_{0}(x, y, t)+z \theta_{x}(x, y, t) \\
& v(x, y, z, t)=v_{0}(x, y, t)+z \theta_{y}(x, y, t) \tag{1.1}\\
& w(x, y, z, t)=w_{0}(x, y, t)
\end{align*}
$$

où :
$u, v, w \quad$ sont respectivement, les déplacements suivant les directions x, y, z.
u_{0}, v_{0}, w_{0} sont respectivement, les déplacements suivant les directions x, y, z. d'un point situé sur la surface moyenne de la plaque.
θ_{x}, θ_{y} sont respectivement, les rotations de la normale à la surface moyenne autour des axes x, y.

Cette forme répond aux conditions de compatibilité des déformations [voir Annexe 1] et permet de prendre en compte le couplage entre les déformations planes et de courbures.

1.3 CHAMP DES DEFORMATIONS

Le champ des déformations se déduit du champ des déplacements (1.1) et s'écrit :

$$
\begin{align*}
& \varepsilon_{x}=\frac{\partial u}{\partial x}=\varepsilon_{x 0}+z \kappa_{x} \\
& \varepsilon_{y}=\frac{\partial v}{\partial y}=\varepsilon_{y 0}+z \kappa_{y} \\
& \varepsilon_{z}=\frac{\partial w}{\partial z}=0 \\
& \gamma_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}=\gamma_{x y 0}+z \kappa_{x y} \tag{1.2}\\
& \gamma_{y z}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}=\theta_{y}+\frac{\partial w_{0}}{\partial y} \\
& \gamma_{x z}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=\theta_{x}+\frac{\partial w_{0}}{\partial x}
\end{align*}
$$

avec :

$$
\begin{array}{lll}
\varepsilon_{x 0}=\frac{\partial u_{0}}{\partial x}, & \varepsilon_{y 0}=\frac{\partial v_{0}}{\partial y}, & \gamma_{x y 0}=\frac{\partial u_{0}}{\partial y}+\frac{\partial v_{0}}{\partial x} \\
\kappa_{x}=\frac{\partial \theta_{x}}{\partial x}, & \kappa_{y}=\frac{\partial \theta_{y}}{\partial y}, & \kappa_{x y}=\frac{\partial \theta_{x}}{\partial y}+\frac{\partial \theta_{y}}{\partial x}
\end{array}
$$

1.4 RELATION CONTRAINTES-DEFORMATIONS

La loi de Hooke généralisée permet, pour une plaque composite stratifiée, d'écrire la relation entre les contraintes et les déformations. Il est nécessaire d'exprimer cette relation pour chaque pli k à cause de la discontinuité des contraintes interlaminaires. Par souci de simplification, on définit un système d'axes principal (local) $(1,2,3)$ dont l'axe (l) correspond à la direction longitudinale des fibres (Figure 1.2).

Figure 1.2 Directions principales dans un pli

La relation contraintes-déformations par rapport à ce système d'axe s'écrit [33] :

$$
\left\{\begin{array}{c}
\sigma_{1} \tag{1.3}\\
\sigma_{2} \\
\tau_{12} \\
\tau_{23} \\
\tau_{13}
\end{array}\right\}^{k}=\left[\begin{array}{ccccc}
Q_{11} & Q_{12} & 0 & 0 & 0 \\
& Q_{22} & 0 & 0 & 0 \\
& & Q_{33} & 0 & 0 \\
& s y m & & Q_{44} & 0 \\
& & & & Q_{55}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12} \\
\gamma_{23} \\
\gamma_{13}
\end{array}\right\}^{k}
$$

où :

$$
\begin{array}{lll}
Q_{11}=\frac{E_{1}}{1-v_{12} v_{21}}, & Q_{12}=\frac{v_{21} E_{1}}{1-v_{12} v_{21}}, & Q_{22}=\frac{E_{2}}{1-v_{12} v_{21}} \\
Q_{33}=G_{12}, & , Q_{44}=G_{23}, & Q_{55}=G_{13}
\end{array}
$$

avec :
E_{1} : Module d'Young longitudinal.
E_{2} : Module d'Young transversal.
G_{12} : Module de cisaillement longitudinal.
G_{13}, G_{23} : Modules de cisaillement transversal.
v_{12}, v_{21} : Coefficients de Poisson.

La relation (1.3) peut s'écrire sous la forme condensée suivante :

$$
\begin{equation*}
\{\sigma\}_{123}^{k}=[Q]\{\varepsilon\}_{123}^{k} \tag{1.4}
\end{equation*}
$$

Généralement, dans un stratifié, la direction des fibres est décalée d'un pli à un autre. Pour faire l'étude du comportement élastique de l'ensemble du stratifié, il est nécessaire d'exprimer la relation (1.3) par rapport au système d'axes global (x, y, z), cette opération est effectuée en faisant intervenir les matrices de changement de base des contraintes et des déformations [voir Annexe 2].

Soit donc pour le champ des contraintes :

$$
\begin{equation*}
\{\sigma\}_{x y z}^{k}=[T]^{-1}\{\sigma\}_{123}^{k} \tag{1.5}
\end{equation*}
$$

où $[T]$ est la matrice de changement de base des contraintes, elle est donnée par l'expression suivante :

$$
[T]=\left[\begin{array}{cccccc}
\cos ^{2} \theta & \sin ^{2} \theta & 0 & -\cos \theta \sin \theta & 0 & 0 \tag{1.6}\\
\sin ^{2} \theta & \cos ^{2} \theta & 0 & \cos \theta \sin \theta & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
2 \cos \theta \sin \theta & -2 \cos \theta \sin \theta & 0 & \cos ^{2} \theta-\sin ^{2} \theta & 0 & 0 \\
0 & 0 & 0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & 0 & 0 & -\sin \theta & \cos \theta
\end{array}\right]
$$

θ est l'angle que font le repère $(1,2)$ et le repère (x, y).

L'expression du champ des déformations par rapport au repère (x, y, z) s'écrit :

$$
\begin{equation*}
\{\varepsilon\}_{x y z}^{k}=\left[T^{\prime}\right]^{-1}\{\varepsilon\}_{123}^{k} \tag{1.7}
\end{equation*}
$$

où $\left[T^{\prime}\right]$ est la matrice de changement de base des déformations, elle est donnée par l'expression suivante :

$$
\left[T^{\prime}\right]=\left[\begin{array}{cccccc}
\cos ^{2} \theta & \sin ^{2} \theta & 0 & -2 \cos \theta \sin \theta & 0 & 0 \tag{1.8}\\
\sin ^{2} \theta & \cos ^{2} \theta & 0 & 2 \cos \theta \sin \theta & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\cos \theta \sin \theta & -\cos \theta \sin \theta & 0 & \cos ^{2} \theta-\sin ^{2} \theta & 0 & 0 \\
0 & 0 & 0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & 0 & 0 & -\sin \theta & \cos \theta
\end{array}\right]
$$

Il est a noté que le changement de base est effectué en faisant une rotation $-\theta$ autour de la direction 3 (Figure 1.3).

Figure 1.3 Changement du repère dans un pli

Par substitution de (1.5) et (1.7) dans (1.4), la relation contraintes-déformations devient :

$$
\begin{equation*}
\{\sigma\}_{x z}^{k}=[\bar{Q}]\{\varepsilon\}_{\infty z z}^{k} \tag{1.9}
\end{equation*}
$$

où $[\bar{Q}]$ est la matrice de rigidité du pli k exprimée dans le repère du stratifié (x, y, z) :

$$
\begin{equation*}
[\bar{Q}]=[T]^{-1}[Q]\left[T^{\prime}\right] \tag{1.10}
\end{equation*}
$$

La relation (1.9) s'écrit sous la forme développée suivante :

$$
\left\{\begin{array}{l}
\sigma_{x} \tag{1.11}\\
\sigma_{y} \\
\tau_{x y} \\
\tau_{y z} \\
\tau_{x x}
\end{array}\right\}=\left[\begin{array}{ccccc}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} & 0 & 0 \\
& \bar{Q}_{22} & \bar{Q}_{26} & 0 & 0 \\
& & \bar{Q}_{66} & 0 & 0 \\
& s y m & & \bar{Q}_{44} & 0 \\
& & & & \bar{Q}_{55}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y} \\
\gamma_{y z} \\
\gamma_{x z}
\end{array}\right\}
$$

Les éléments de la matrice de rigidité $[\bar{Q}]$ s'écrivent en fonction des coefficients de la matrice dans les axes principaux $[Q]$ et de l'angle θ :

$$
\begin{aligned}
& \bar{Q}_{11}=Q_{11} \cos ^{4} \theta+2\left(Q_{12}+2 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta+Q_{22} \sin ^{4} \theta \\
& \bar{Q}_{12}=Q_{12}\left(\cos ^{4} \theta+\sin ^{4} \theta\right)+\left(Q_{11}+Q_{22}-4 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta \\
& \bar{Q}_{16}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) \cos ^{3} \theta \sin \theta+\left(Q_{12}-Q_{22}+2 Q_{66}\right) \sin ^{3} \theta \cos \theta \\
& \bar{Q}_{22}=Q_{11} \sin ^{4} \theta+Q_{22} \cos ^{4} \theta+\left(2 Q_{11}+4 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta \\
& \bar{Q}_{26}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) \sin ^{3} \theta \cos \theta+\left(Q_{12}-Q_{22}+2 Q_{66}\right) \cos ^{3} \theta \sin \theta \\
& \bar{Q}_{66}=\left(Q_{11}-2 Q_{12}+Q_{22}-2 Q_{66}\right) \sin ^{2} \theta \cos ^{2} \theta+Q_{66}\left(\cos ^{4} \theta+\sin ^{4} \theta\right) \\
& \bar{Q}_{44}=Q_{44} \cos ^{2} \theta+Q_{55} \sin ^{2} \theta \\
& \bar{Q}_{45}=\left(Q_{55}-Q_{44}\right) \cos \theta \sin \theta \\
& \bar{Q}_{55}=Q_{44} \sin ^{2} \theta+Q_{55} \cos ^{2} \theta
\end{aligned}
$$

1.4.1 Résultantes et moments

La discontinuité des contraintes à travers l'épaisseur du stratifié conduit à exprimer la relation contrainte-déformation en termes des résultantes et moments :

Les résultantes en membrane sont définies par :

$$
N(x, y)=\left\{\begin{array}{l}
N_{x} \tag{1.13}\\
N_{y} \\
N_{x y}
\end{array}\right\}=\sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}}\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}_{k} d z
$$

de même, les résultantes en cisaillement sont définies par:

$$
Q(x, y)=\left\{\begin{array}{l}
Q_{x} \tag{1.14}\\
Q_{y}
\end{array}\right\}=\sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}}\left\{\begin{array}{l}
\tau_{x z} \\
\tau_{y z}
\end{array}\right\}_{k} d z
$$

Les moments de flexion et de torsion sont donnés par :

$$
M(x, y)=\left\{\begin{array}{l}
M_{x} \tag{1.15}\\
M_{y} \\
M_{x y}
\end{array}\right\}=\sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}} z\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}_{k} d z
$$

où n représente le nombre de couches constituant le stratifié.

Il faut bien noter que les relations (1.13), (1.14) et (1.15) sont définies par unité de longueur du stratifié.

1.4.2 Equation constitutive

La combinaison des relations (1.11) à (1.15) conduit à formuler l'équation constitutive du stratifié :

$$
\left\{\begin{array}{c}
N_{x} \tag{1.16}\\
N_{y} \\
N_{x y} \\
M_{x} \\
M_{y} \\
M_{x y} \\
Q_{y} \\
Q_{x}
\end{array}\right\}=\left[\begin{array}{cccccccc}
A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} & 0 & 0 \\
& A_{22} & A_{26} & B_{12} & B_{22} & B_{26} & 0 & 0 \\
& & A_{66} & B_{16} & B_{26} & B_{66} & 0 & 0 \\
& & & D_{11} & D_{12} & D_{16} & 0 & 0 \\
& & & & D_{22} & D_{26} & 0 & 0 \\
& & s y m & & & D_{66} & 0 & 0 \\
& & & & & & F_{44} & F_{45} \\
& & & & & & & F_{55}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x 0} \\
\varepsilon_{y 0} \\
\varepsilon_{x y} \\
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y} \\
\gamma_{y z} \\
\gamma_{x z}
\end{array}\right\}
$$

ou sous forme contractée :

$$
\left\{\begin{array}{l}
N \tag{1.17}\\
M \\
Q
\end{array}\right\}=[C]\left\{\begin{array}{l}
\varepsilon_{0} \\
\kappa \\
\gamma
\end{array}\right\}
$$

avec :

$$
[C]=\left[\begin{array}{ccc}
{[A]} & {[B]} & 0 \tag{1.18}\\
{[B]} & {[D]} & 0 \\
0 & 0 & {[F]}
\end{array}\right]
$$

Les coefficients de la matrice d'extension $[A]$, la matrice de couplage $[B]$ et la matrice de flexion $[D]$ sont définis comme suit :

$$
\begin{equation*}
\left(A_{i j}, B_{i j}, D_{i j}\right)=\sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}}\left(\bar{Q}_{i j}\right)_{k}\left(1, z, z^{2}\right) d z, \quad i, j=1,2,6 \tag{1.19}
\end{equation*}
$$

Par contre, les coefficients de la matrice de cisaillement transverse $[F]$ sont définis par :

$$
\begin{equation*}
\left.F_{i j}=\alpha_{i j} \sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}} \bar{Q}_{i j}\right)_{k} d z, \quad i, j=4,5 \tag{1.20}
\end{equation*}
$$

où $\alpha_{i j}$ sont les facteurs de correction en cisaillement, permettant d'améliorer la théorie des plaques stratifiées avec cisaillement transverse. La détermination de ces facteurs a fait l'objet de plusieurs recherches [18]. On note que Timoshenko, Reissner et Mindlin ont pris ces facteurs respectivement égaux à $2 / 3,5 / 6$ et $\pi^{2} / 12$. Il a été remarqué que les résultats obtenus avec des valeurs de $5 / 6$ sont les plus satisfaisants.

1.5 EQUATIONS FONDAMENTALES DES PLAQUES STRATIFIEES

Il est nécessaire, pour développer les équations fondamentales des plaques stratifiées, de passer par les relations d'équilibre dynamique. Ces relations peuvent être obtenues en écrivant les conditions d'équilibre dynamique d'un élément infinitésimal de la plaque [voir Annexe 3]

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+f_{x}=\rho a_{x} \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+f_{y}=\rho a_{y} \tag{1.21}\\
& \frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+f_{z}=\rho a_{z}
\end{align*}
$$

où :
f_{x}, f_{y}, f_{z} sont les composantes des forces volumiques exercées au point M du matériau. $\rho \quad$ est la masse volumique du point M.
a_{x}, a_{y}, a_{z} sont les composantes du vecteur accélération du point M.

L'intégration des équations (1.21) suivant l'épaisseur du stratifié, en négligeant les forces volumiques et les contraintes interlaminaires, conduit aux relations suivantes [voir
Annexe 3]. Annexe 3] :

$$
\begin{align*}
& \frac{\partial N_{x}}{\partial x}+\frac{\partial N_{x y}}{\partial y}=\rho_{s} \frac{\partial^{2} u_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \\
& \frac{\partial N_{y}}{\partial y}+\frac{\partial N_{x y}}{\partial x}=\rho_{s} \frac{\partial^{2} v_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{y}}{\partial t^{2}} \\
& \frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}=\rho_{s} \frac{\partial^{2} w_{0}}{\partial t^{2}} \tag{1.22}\\
& \frac{\partial M_{x}}{\partial x}+\frac{\partial M_{x y}}{\partial y}-Q_{x}=R \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \\
& \frac{\partial M_{y}}{\partial y}+\frac{\partial M_{x y}}{\partial x}-Q_{y}=R \frac{\partial^{2} v_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{y}}{\partial t^{2}}
\end{align*}
$$

où : $\left(\rho_{s}, R, I_{x y}\right)=\int_{-\frac{\hbar}{2}}^{\frac{h}{2}}\left(1, z, z^{2}\right) \rho d z$

La substitution de l'équation (1.16) dans les équations (1.22) conduit aux équations fondamentales des plaques stratifiées dont leurs expressions sont les suivantes :

$$
\begin{aligned}
& A_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}}+2 A_{16} \frac{\partial^{2} u_{0}}{\partial x \partial y}+A_{66} \frac{\partial^{2} u_{0}}{\partial y^{2}}+A_{16} \frac{\partial^{2} v_{0}}{\partial x^{2}}+\left(A_{12}+A_{66} \frac{\partial^{2} v_{0}}{\partial x \partial y}+A_{26} \frac{\partial^{2} v_{0}}{\partial y^{2}}+\right. \\
& B_{11} \frac{\partial^{2} \theta_{x}}{\partial x^{2}}+2 B_{16} \frac{\partial^{2} \theta_{x}}{\partial x \partial y}+B_{66} \frac{\partial^{2} \theta_{x}}{\partial y^{2}}+B_{16} \frac{\partial^{2} \theta_{y}}{\partial x^{2}}+\left(B_{11}+B_{66}\right) \frac{\partial^{2} \theta_{y}}{\partial x \partial y}+B_{26} \frac{\partial^{2} \theta_{y}}{\partial y^{2}}= \\
& \partial^{2} u_{0}
\end{aligned}
$$

$$
\rho_{s} \frac{\partial^{2} u_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{y}}{\partial t^{2}}
$$

$$
A_{16} \frac{\partial^{2} u_{0}}{\partial x^{2}}+\left(A_{12}+A_{66}\right) \frac{\partial^{2} u_{0}}{\partial x \partial y}+A_{26} \frac{\partial^{2} u_{0}}{\partial y^{2}}+A_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}+2 A_{26} \frac{\partial^{2} v_{0}}{\partial x \partial y}+A_{22} \frac{\partial^{2} v_{0}}{\partial y^{2}}+
$$

$$
\begin{equation*}
B_{16} \frac{\partial^{2} \theta_{x}}{\partial x^{2}}+\left(B_{12}+B_{66}\right) \frac{\partial^{2} \theta_{x}}{\partial x \partial y}+B_{26} \frac{\partial^{2} \theta_{x}}{\partial y^{2}}+B_{66} \frac{\partial^{2} \theta_{y}}{\partial x^{2}}+2 B_{26} \frac{\partial^{2} \theta_{y}}{\partial x \partial y}+B_{22} \frac{\partial^{2} \theta_{y}}{\partial y^{2}}= \tag{1.24}
\end{equation*}
$$

$$
\rho_{s} \frac{\partial^{2} v_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{y}}{\partial t^{2}}
$$

$$
\begin{align*}
& F_{55}\left(\frac{\partial \theta_{x}}{\partial x}+\frac{\partial^{2} w_{0}}{\partial x^{2}}\right)+F_{45}\left(\frac{\partial \theta_{x}}{\partial x}+\frac{\partial \theta_{y}}{\partial x}+2 \frac{\partial^{2} w_{0}}{\partial x \partial y}\right)+F_{44}\left(\frac{\partial \theta_{y}}{\partial y}+\frac{\partial^{2} w_{0}}{\partial y^{2}}\right)=\rho_{s} \frac{\partial^{2} w_{0}}{\partial t^{2}} \tag{1.25}\\
& B_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}}+2 B_{16} \frac{\partial^{2} u_{0}}{\partial x \partial y}+B_{66} \frac{\partial^{2} u_{0}}{\partial y^{2}}+B_{16} \frac{\partial^{2} v_{0}}{\partial x^{2}}+\left(B_{12}+B_{66}\right) \frac{\partial^{2} v_{0}}{\partial x \partial y}+B_{26} \frac{\partial^{2} v_{0}}{\partial y^{2}} \\
& +D_{11} \frac{\partial^{2} \theta_{x}}{\partial x^{2}}+2 D_{16} \frac{\partial^{2} \theta_{x}}{\partial x \partial y}+D_{66} \frac{\partial^{2} \theta_{x}}{\partial y^{2}}+D_{16} \frac{\partial^{2} \theta_{y}}{\partial x^{2}}+\left(D_{12}+D_{66}\right) \frac{\partial^{2} \theta_{y}}{\partial x \partial y}+ \tag{1.26}\\
& D_{26} \frac{\partial^{2} \theta_{y}}{\partial y^{2}}-F_{55}\left(\theta_{x}+\frac{\partial w_{0}}{\partial x}\right)-F_{45}\left(\theta_{y}+\frac{\partial w_{0}}{\partial y}\right)=R \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \\
& \left.B_{16} \frac{\partial^{2} u_{0}}{\partial x^{2}}+\left(B_{16}+B_{66}\right) \frac{\partial^{2} u_{0}}{\partial x \partial y}+B_{26} \frac{\partial^{2} u_{0}}{\partial y^{2}}+B_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}+2 B_{26}\right) \frac{\partial^{2} v_{0}}{\partial x \partial y}+B_{22} \frac{\partial^{2} v_{0}}{\partial y^{2}}+ \\
& D_{16} \frac{\partial^{2} \theta_{x}}{\partial x^{2}}+\left(D_{12}+D_{66}\right) \frac{\partial^{2} \theta_{x}}{\partial x \partial y}+D_{26} \frac{\partial^{2} \theta_{x}}{\partial y^{2}}+D_{66} \frac{\partial^{2} \theta_{y}}{\partial x^{2}}+2 D_{26} \frac{\partial^{2} \theta_{y}}{\partial x \partial y}+D_{22} \frac{\partial^{2} \theta_{y}}{\partial y^{2}}- \tag{1.27}
\end{align*}
$$

Les équations (1.23 à 1.27) permettent, en principe, de déterminer les cinq fonctions solutions $u_{0}(x, y, t), v_{0}(x, y, t), w_{0}(x, y, t), \theta_{x}(x, y, t)$ et $\theta_{y}(x, y, t)$.

Dans le cas de l'analyse du comportement vibratoire, où le problème consiste à rechercher les fréquences propres de vibration, et pour un mouvement harmonique, il suffit d'exprimer le champ des déplacements sous la forme

$$
\begin{align*}
& u_{0}(x, y, t)=u_{0}(x, y) e^{i o t} \\
& v_{0}(x, y, t)=v_{0}(x, y) e^{i_{0} t} \\
& w_{0}(x, y, t)=w_{0}(x, y) e^{i_{0} t} \tag{1.28}\\
& \theta_{x}(x, y, t)=\theta_{x}(x, y) e^{i o t} \\
& \theta_{y}(x, y, t)=\theta_{y}(x, y) e^{i o t}
\end{align*}
$$

où ω est la fréquence de vibration de la plaque. La détermination des fréquences propres est obtenue en reportant ces expressions dans les équations fondamentales (1.23 à 1.27).

La résolution de ces équations est toutes fois complexe, et ne peut être menée de manière analytique que dans quelques cas particuliers, citons à titre d'exemple le cas des stratifiés orthotropes et les stratifiés symétriques.

Pour bien définir le comportement mécanique des plaques stratifiées et en particulier le comportement vibratoire, dont fait objet de cette étude, il faut avoir recours aux méthodes numériques vu leurs possibilités de résoudre les problèmes complexes. Parmi ces méthodes, la méthode des éléments finis s'impose comme l'outil usuel de l'analyse des structures complexes.

CHAPITRE 2

ANALYSE PAR
 ELEMENTS FINIS

2.1 INTRODUCTION

La méthode des éléments finis (M.E.F.) est couramment utilisée et est appliquée dans divers domaines scientifiques : en analyse des structures, en constructions aéronautiques et navales, en génie mécanique, en génie civil, etc.. Elle permet de ramener les problèmes des milieux continus à des problèmes discrets à un nombre fini de paramètres inconnus (forces, déplacements) qui sont déterminés par application de critères énergétiques.

Le principe consiste à discrétiser une structure en un nombre fini d'éléments interconnectés entre eux par des nœuds, chaque nœud est repéré par ces coordonnées par rapport à un système d'axe.

L'analyse modale des plaques stratifiées par la M.E.F. consiste à développer les équations du mouvement à partir des formulations énergétiques et de déterminer par la suite les fréquences propres de vibration, cette analyse nécessite l'utilisation des éléments bidimensionnels pour la discritésation. Avant d'entreprendre, il est intéressant d'effectuer une comparaison entre ces éléments afin de faire un choix meilleur. Plusieurs tests ont été effectués sur des éléments types concernant la convergence des solutions, les remarques suivantes ont été tirées [32] :

- Les éléments quadrilatères donnent de meilleurs résultats que les éléments triangulaires. précision meilleure que les éléments à champ linéaire.
- Les éléments basés sur la théorie de MINDLIN avec prise en compte du cisaillement transverse sont les mieux adaptés dans le cas des plaques épaisses, ainsi, la condition de compatibilité inter-éléments ne nécessite qu'une continuité $\mathrm{C}(0)$.
- Les éléments quadratiques de la famille de SERENDIP présentent un comportement de verrouillage quelque soit l'ordre d'intégration utilisé ; un comportement sans verrouillage permet d'utiliser l'élément à la fois pour les plaques épaisses et pour les plaques minces.
- Les éléments avec intégration réduite de la famille de LAGRANGE comportent convenablement dans les situations des plaques minces.

D'après ce qui vient d'être dit précédemment, un élément de la famille de LAGRANGE à champ quadratique peut répondre aux exigences imposées par le présent travail.

2.2 DISCRETISATION

Considérons la plaque de la figure 1.1 (paragraphe 1.2), la surface moyenne de cette plaque est discrétisée en un nombre fini d'éléments quadrilatères isoparamétriques à 9 nœuds, chaque nœud possède 5 degrés de liberté indépendants (trois déplacements et deux rotations).

Dans la M.E.F. il est intéressant d'utiliser à la place du système de coordonnées physiques un système de coordonnées naturelles ou intrinsèques. Ceci permet de définir une transformation du domaine physique de l'élément en un domaine géométrique simple sans dimension. Ce système est défini par des axes parallèles aux côtés de l'élément, les coordonnées des nœuds de sommets prennent des valeurs unitaires ($+1 \mathrm{ou}-1$), les nœuds d'interfaces prennent les valeurs 0 et 1 ou-1 (Figure 2.1).

Figure 2.1 Elément de référence

2.2.1 Champ des déplacements élémentaires

Les déplacements élémentaires peuvent être définis par les approximations suivantes :

$$
\begin{array}{lll}
u_{0}=\sum_{i=1}^{N N} N_{i} u_{0 i} & v_{0}=\sum_{i=1}^{N N} N_{i} v_{0 i} & w_{0}=\sum_{i=1}^{N N} N_{i} w_{0 t} \\
\theta_{x}=\sum_{i=1}^{N N} N_{i} \theta_{x i} & \theta_{y}=\sum_{i=1}^{N N} N_{i} \theta_{y t} & \tag{2.1}
\end{array}
$$

où N_{i} sont les fonctions d'interpolations des déplacements, elles doivent être choisies de manière qu'elles vérifient la complétude et la continuité interélément. Pour un élément à 9 nœuds, ces fonctions sont définies comme suit [28] :

Pour les nœuds de sommets :

$$
\xi_{i}= \pm 1 \quad ; \quad \eta_{i}= \pm 1
$$

$$
N_{i}=\frac{1}{4}\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right) \xi \eta
$$

Pour les nœuds d'interfaces :

$$
\begin{array}{llll}
N_{i}=\frac{1}{2}\left(1-\xi^{2}\right)\left(1+\eta \eta_{i}\right) \eta \eta_{i} & \text { à } & \xi_{i}=0 ; & \eta_{i}= \pm 1 \\
N_{i}=\frac{1}{2}\left(1-\eta^{2}\right)\left(1+\xi \xi_{i}\right) \xi \xi_{i} & \text { à } & \xi_{i}= \pm 1 ; & \eta_{i}=0
\end{array}
$$

Pour le nœud du centre :

$$
N_{i}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)
$$

Les expressions (2.1) peuvent être réarrangées sous la forme matricielle :

$$
\left\{\begin{array}{l}
u_{0} \tag{2.2}\\
v_{0} \\
w_{0} \\
\theta_{x} \\
\theta_{y}
\end{array}\right\}=\sum_{i=1}^{N N}\left[\begin{array}{ccccc}
N_{i} & 0 & 0 & 0 & 0 \\
0 & N_{i} & 0 & 0 & 0 \\
0 & 0 & N_{i} & 0 & 0 \\
0 & 0 & 0 & N_{i} & 0 \\
0 & 0 & 0 & 0 & N_{i}
\end{array}\right]\left\{\begin{array}{l}
u_{0 i} \\
v_{0 i} \\
w_{0 i} \\
\theta_{x i} \\
\theta_{y i}
\end{array}\right\}
$$

ou sous forme contractée :

$$
\begin{equation*}
\{a\}=\sum_{i=1}^{N N}\left[N_{i}(\xi, \eta)\right]\left\{d_{i}\right\} \tag{2.3}
\end{equation*}
$$

avec :

- $\{a\}$: le vecteur des déplacements élémentaires
- $\left\{d_{i}\right\}:$ le vecteur des déplacements nodaux.
- $N N$: le nombre de nœuds par élément.
- $\left[N_{i}\right]$: la matrice d'interpolation des déplacements exprimée en terme de coordonnées naturelles.

2.2.2 Champ des déformations élémentaires

Tenant compte le champ des déformations (1.2) (chapitre 1) et le champ des déplacements élémentaires (2.1), la relation déformations-déplacements élémentaires s'écrit :

$$
\begin{array}{ll}
\varepsilon_{x 0}=\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial x} u_{0 i} \quad \varepsilon_{y 0}=\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial y} v_{0 i} & \gamma_{x y 0}=\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial y} u_{0 i}+\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial x} v_{0 i} \\
\kappa_{x}=\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial x} \theta_{x i} \quad \kappa_{y}=\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial y} \theta_{y i} & \kappa_{x y}=\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial y} \theta_{x i}+\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial x} \theta_{y i} \tag{2.4}\\
\gamma_{x z}=\sum_{i=1}^{N N} N_{i} \theta_{x i}+\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial x} w_{0 i} & \gamma_{y z}=\sum_{i=1}^{N N} N_{i} \theta_{y i}+\sum_{i=1}^{N N} \frac{\partial N_{i}}{\partial y} w_{0 i}
\end{array}
$$

Les expressions (2.4) peuvent aussi être écrites sous les formes matricielles :

$$
\begin{align*}
& \left\{\begin{array}{l}
\varepsilon_{x 0} \\
\varepsilon_{y 0} \\
\gamma_{x y 0}
\end{array}\right\}=\sum_{i=1}^{N N}\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial x} & 0 \\
0 & \frac{\partial N_{i}}{\partial y} \\
\frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
u_{0 i} \\
v_{0 i}
\end{array}\right\} \\
& \left\{\begin{array}{l}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right\}=\sum_{i=1}^{N N}\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial x} & 0 \\
0 & \frac{\partial N_{i}}{\partial y} \\
\frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
\theta_{x i} \\
\theta_{y i}
\end{array}\right\} \tag{2.5}\\
& \left\{\begin{array}{l}
\gamma_{x z} \\
\gamma_{y z}
\end{array}\right\}=\sum_{i=1}^{N N}\left[\begin{array}{lll}
\frac{\partial N_{i}}{\partial x} & N_{i} & 0 \\
\frac{\partial N_{i}}{\partial y} & 0 & N_{i}
\end{array}\right]\left\{\begin{array}{l}
w_{0 i} \\
\theta_{x i} \\
\theta_{y i}
\end{array}\right\}
\end{align*}
$$

ou sous forme plus générale :

$$
\left\{\begin{array}{l}
\varepsilon_{0} \tag{2.6}\\
\kappa \\
\gamma
\end{array}\right\}=\sum_{i=1}^{N N}\left[B_{i}\right] \cdot\left\{\begin{array}{l}
u_{0 i} \\
v_{0 i} \\
w_{0 i} \\
\theta_{x} \\
\theta_{y}
\end{array}\right\}
$$

où :
ε_{0} sont les déformations en membrane
κ sont les déformations en courbure
γ sont les déformations en cisaillement transverse
et $\left[B_{i}\right]$ représente la matrice d'interpolation des déformations, elle est donnée par l'expression suivante :

$$
\left[B_{i}\right]=\left[\begin{array}{ccccc}
\partial N_{i} / \partial x & 0 & 0 & 0 & 0 \tag{2.7}\\
0 & \partial N_{i} / \partial y & 0 & 0 & 0 \\
\partial N_{i} / \partial y & \partial N_{i} / \partial x & 0 & 0 & 0 \\
0 & 0 & 0 & \partial N_{i} / \partial x & 0 \\
0 & 0 & 0 & 0 & \partial N_{i} / \partial y \\
0 & 0 & 0 & \partial N_{i} / \partial y & \partial N_{i} / \partial x \\
0 & 0 & \partial N_{i} / \partial x & N_{i} & 0 \\
0 & 0 & \partial N_{i} / \partial y & 0 & N_{i}
\end{array}\right]
$$

Les éléments de la matrice $\left[B_{i}\right]$ sont définis sous la forme matricielle suivante :

$$
\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \tag{2.8}\\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}
$$

[.] est la matrice Jacobienne, elle permet le passage du système de coordonnées cartésiennes au système de coordonnées naturelles.

La matrice Jacobienne est définie comme suit :

$$
[J]=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \tag{2.9}\\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

dans laquelle :

$$
\begin{align*}
& \frac{\partial x}{\partial \xi}=\sum_{i=1}^{N N} \frac{\partial N_{i}(\xi, \eta)}{\partial \xi} x_{i} \\
& \frac{\partial y}{\partial \xi}=\sum_{i=1}^{N N} \frac{\partial N_{i}(\xi, \eta)}{\partial \xi} y_{i} \\
& \frac{\partial x}{\partial \eta}=\sum_{i=1}^{N N} \frac{\partial N_{i}(\xi, \eta)}{\partial \eta} x_{i} \tag{2.10}\\
& \frac{\partial y}{\partial \eta}=\sum_{i=1}^{N N} \frac{\partial N_{i}(\xi, \eta)}{\partial \eta} y_{i}
\end{align*}
$$

dans ce qui suit on considère les notations suivantes:

$$
\begin{align*}
& \{a\}=[N]\left\{a_{e}\right\} \tag{2.11}\\
& \{\varepsilon\}=[B]\left\{a_{e}\right\} \tag{2.12}
\end{align*}
$$

les écritures (2.11) et (2.12) sont similaires à celles du champ des déplacements (2.3) et celui des déformations (2.6) où :

$$
\begin{aligned}
& {[N]=\left[\begin{array}{llll}
N_{1} & N_{2} & \ldots . & N_{N N}
\end{array}\right]} \\
& {[B]=\left[\begin{array}{llll}
B_{1} & B_{2} & \ldots & B_{N N}
\end{array}\right]} \\
& \left\{a_{e}\right\}=\left\{\begin{array}{llll}
\left\{d_{1}\right\} & \left\{d_{2}\right\} & \ldots . & \left\{d_{N N}\right\}
\end{array}\right\}
\end{aligned}
$$

2.3 EQUATIONS DU MOUVEMENT

Dans l'analyse dynamique des structures, le principe de Hamilton constitue le fondement, il stipule que le mouvement d'un système élastique conservatif entre deux instants t_{1} et t_{2} s'effectue de telle sorte que la fonctionnelle $\int_{n 1}^{t_{2}}(E-\pi) d t$ soit stationnaire : où E est l'énergie cinétique totale de la plaque et π l'énergie potentielle totale de la plaque

Les conditions d'extremum de cette fonctionnelle sont les équations d'Euler-Lagrange [32] :

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial E}{\partial \dot{a}_{r}}\right)-\frac{\partial E}{\partial a_{r}}+\frac{\partial \pi}{\partial a_{r}}=0 \quad r=1,2, \ldots, R \tag{2.13}
\end{equation*}
$$

où R est le nombre de degrés de liberté total de la structure

Dans le cas de l'analyse modale des plaques stratifiées (analyse sans prise en compte de l'effet des forces extérieures), l'énergie potentielle totale π de la plaque s'écrit :

$$
\begin{equation*}
\pi=\frac{1}{2} \int_{\Omega}\{\varepsilon\}^{T}\{\sigma\} d \Omega=\frac{1}{2} \int_{\Omega}\{\varepsilon\}^{T}[C]\{\varepsilon\} d \Omega \tag{2.14}
\end{equation*}
$$

où Ω représente la surface de la plaque.
$\{\varepsilon\}=\left\{\begin{array}{lll}\varepsilon_{0} & \kappa & \gamma\end{array}\right\}^{T}$

Par contre, l'énergie cinétique E est donnée par l'expression suivante :

$$
\begin{equation*}
E=\frac{1}{2} \int_{V}\{\dot{\Delta}\}^{T} \rho\{\dot{\Delta}\} d V \tag{2.15}
\end{equation*}
$$

avec :
$\{\dot{\Delta}\}$ le vecteur vitesse d'un point $M(x, y, z)$ du stratifie, $\{\dot{\Delta}\}^{T}=\left\{\begin{array}{lll}\dot{u} & \dot{v} & \dot{w}\end{array}\right\}$ V le volume de la plaque

L'intégration de (2.15) suivant l'épaisseur de la plaque conduit à écrire :

$$
\begin{equation*}
E=\frac{1}{2} \int_{\Omega}\{\dot{a}\}^{T}[\bar{m}]\{\dot{a}\} d \Omega \tag{2.16}
\end{equation*}
$$

où $[\bar{m}]$ est la matrice d'inertie.

$$
[\bar{m}]=\left[\begin{array}{ccccc}
I_{0} & 0 & 0 & I_{1} & 0 \tag{2.17}\\
0 & I_{0} & 0 & 0 & I_{1} \\
0 & 0 & I_{0} & 0 & 0 \\
I_{1} & 0 & 0 & I_{2} & 0 \\
0 & I_{1} & 0 & 0 & I_{2}
\end{array}\right]
$$

avec :

$$
\begin{equation*}
I_{i}=\sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}} z^{i} \rho^{k} d z \quad i=0,1,2 \tag{2.18}
\end{equation*}
$$

n représente le nombre de plis constituant le stratifié.

2.3.1 Analyse élémentaire

Dans le cas d'une plaque discrète, l'énergie potentielle totale est la somme de toutes les énergies potentielles élémentaires :

$$
\begin{equation*}
\pi=\sum_{e=1}^{N E} \pi_{e} \tag{2.19}
\end{equation*}
$$

$N E$ est le nombre des éléments.

L'énergie potentielle élémentaire peut être obtenue en utilisant la relation (2.14) :

$$
\begin{equation*}
\pi_{e}=\frac{1}{2}\left\{a_{e}\right\}^{T}\left[K_{e}\right]\left\{a_{e}\right\} \tag{2.20}
\end{equation*}
$$

où $\left[K_{e}\right]$ est la matrice de rigidité élémentaire, elle est donnée par la relation suivante :

$$
\begin{equation*}
\left[K_{e}\right]=\int_{\Omega_{e}}[B]^{T}[C][B] d \Omega_{e} \tag{2.21}
\end{equation*}
$$

où Ω_{e} est la surface d'un élément.

De même, l'énergie cinétique de la plaque est la somme de toutes les énergies cinétiques élémentaires :

$$
\begin{equation*}
E=\sum_{e=1}^{N E} E_{e} \tag{2.22}
\end{equation*}
$$

L'énergie cinétique pour un élément, en utilisant la relation (2.16), s'écrit :

$$
\begin{equation*}
E_{e}=\frac{1}{2}\left\{\dot{a}_{e}\right\}^{T}\left[M_{e}\right]\left\{\dot{a}_{e}\right\} \tag{2.23}
\end{equation*}
$$

où $\left[M_{e}\right]$ est la matrice de masse élémentaire, son expression est donnée comme suit :

$$
\begin{equation*}
\left[M_{e}\right]=\int_{\Omega_{e}}[N]^{T}[\bar{m}][N] d \Omega_{e} \tag{2.24}
\end{equation*}
$$

Par substitution de (2.20) et (2.23) dans (2.13), l'équation d'Euler-Lagrange, pour un élément, s'écrit :

$$
\begin{equation*}
\left[M_{e}\right]\left\{\ddot{a}_{e}\right\}+\left[K_{e}\right]\left\{a_{e}\right\}=0 \tag{2.25}
\end{equation*}
$$

où $\left\{\ddot{a}_{e}\right\}$ est le vecteur des accélérations élémentaires.

La relation (2.25) représente les équations du mouvement pour un seul élément de la plaque, les équations du mouvement globales sont obtenues en utilisant les relations (2.19) et (2.22) : avec :

$$
\begin{equation*}
[M]\{\ddot{a}\}+[K]\{a\}=0 \tag{2.26}
\end{equation*}
$$

$\{a ̈\} \quad$: vecteur des accélérations globales.
$\{a\} \quad$: vecteur des déplacements globaux.
[M] : matrice de masse globale.
$[K]$: matrice de rigidité globale.

2.3.2 Matrice de rigidité

Les matrices de rigidité élémentaires sont définies par la relation (2.21). Elles sont symétriques d'ordre 45×45, leur forme est donnée comme suit :

$$
\left[K_{e}\right]=\left[\begin{array}{ccccc}
{\left[K^{11}\right]} & {\left[K^{12}\right]} & {\left[K^{13}\right]} & 0 & {\left[K^{15}\right]} \tag{2.27}\\
& {\left[K^{22}\right]} & {\left[K^{23}\right]} & 0 & {\left[K^{25}\right]} \\
& & {\left[K^{33}\right]} & {\left[K^{34}\right]} & {\left[K^{35}\right]} \\
& \text { Sym } & & {\left[K^{44}\right]} & {\left[K^{45}\right]} \\
& & & & {\left[K^{55}\right]}
\end{array}\right]
$$

Les éléments des matrices $\left[K^{\alpha \beta}\right](\alpha, \beta=1,2, \ldots 5)$ sont donnés par les expressions suivantes:
$K_{i j}^{11}=A_{11} S_{i j}^{\xi}+A_{16}\left(S_{i j}^{\xi \eta}+S_{j i}^{\xi_{n}}\right)+A_{66} S_{i j}^{\eta}$
$K_{i j}^{12}=A_{12} S_{i j}^{\xi \eta}+A_{16} S_{i j}^{\xi}+A_{26} S_{i j}^{\eta}+A_{66} S_{j i}^{\xi \eta}$

$$
\begin{aligned}
& K_{i j}^{33}=F_{44} S_{i j}^{\xi}+F_{45}\left(S_{i j}^{\xi n}+S_{j i}^{\xi \eta}\right)+F_{55} S_{i j}^{\eta} \\
& K_{i j}^{34}=F_{44} S_{S j}^{\xi 0}+F_{45} S_{i j}^{n 0} \\
& K_{i j}^{35}=F_{45} S_{i j}^{\xi 0}+F_{55} S_{i j}^{n 0} \\
& K_{i j}^{44}=D_{11} S_{i j}^{\xi}+D_{16}\left(S_{i j}^{\xi \eta}+S_{j i}^{\xi n}\right)+D_{66} S_{i j}^{\eta}+F_{44} S_{i j}^{0} \\
& K_{i j}^{45}=D_{12} S_{i j}^{\xi \eta}+D_{16} S_{i j}^{\xi}+D_{26} S_{j i}^{\eta}+D_{66} S_{i j}^{\xi \eta}+F_{45} S_{i j}^{0} \\
& K_{i j}^{55}=D_{66} S_{i j}^{\xi}+D_{26}\left(S_{i j}^{\xi \eta}+S_{j i}^{\xi \eta}\right)+D_{22} S_{i j}^{\eta}+F_{55} S_{i j}^{0}
\end{aligned}
$$

où :

$$
\begin{equation*}
S_{i j}^{\xi \eta}=\int_{-1}^{+1+1} \int_{-1} \frac{\partial N_{i}}{\partial \xi} \frac{\partial N_{j}}{\partial \eta}|J| d \xi d \eta \quad S_{i j}^{00}=S_{i j} \quad S_{i j}^{\xi \xi}=S_{i j}^{\xi} \tag{i,j=1,9}
\end{equation*}
$$

$|J|$ est le déterminant de la matrice Jacobienne.

Les quantités $S_{i j}$ peuvent être évaluées en utilisant l'intégration numérique dans le domaine (ξ, η). Généralement, pour les éléments de la famille de Lagrange basés sur la théorie de Mindlin, la technique de l'intégration réduite ou la technique de l'intégration sélective sont recommandées, ceci permet d'éviter la dégradation de la précision provoquée par les problèmes numériques dans l'analyse des plaques minces [32], (ces deux techniques sont basées sur les points d'intégration de Gauss).

La matrice de rigidité globale $[K]$ est obtenue par assemblage des matrices de rigidité élémentaires, l'assemblage s'effectue en additionnant terme à terme les éléments des matrices élémentaires communs en nœud et en degré de liberté.

2.3.3 Matrice de masse

Deux classes principales peuvent être envisagées pour la représentation des masses: les masses cohérentes et les masses concentrées.

1. La représentation cohérente des masses consiste à calculer les matrices de masse élémentaires en choisissant pour la discrétisation spatiale de l'énergie cinétique les mêmes fonctions d'interpolation que pour l'énergie de déformation. Cette méthode conduit généralement à des matrices masse symétriques mais non diagonales. Les matrices de masses élémentaires sont calculées d'après l'expression (2.24) par intégration numérique, dans ce cas, on peut utiliser la même méthode d'intégration que pour les matrices de rigidité élémentaires.
2. La technique des masses concentrées consiste à discrétiser les masses soit au niveau élémentaire, soit au niveau de la structure complète de manière à obtenir une matrice de masse diagonale. En effet, on peut obtenir des matrices de masse diagonale par déférentes façons :

- Soit en affectant aux différents nœuds de chaque élément des masses (inerties) concentrées égales de manière à respecter la masse totale de l'élément.
- Soit en diagonalisant par diverses méthodes des matrices de masses cohérentes. En effet, il existe des méthodes d'intégration numériques qui permettent d'obtenir des matrices de masses cohérentes diagonales, une technique qui sera exploitée dans cette étude.

La construction de la matrice de masse globale est tout à fait identique à celle de la matrice de rigidité globale.

2.4 EQUATIONS CARACTERISTIQUES

Pour un mouvement harmonique, le champ des déplacements $\{a\}$ peut s'écrire sous la forme :

$$
\begin{equation*}
\{a\}=\left\{a_{0}\right\} e^{i w t} \tag{2.28}
\end{equation*}
$$

par substitution de (2.28) dans (2.26), l'équation du mouvement devient :

$$
\begin{equation*}
\left([K]-\omega^{2}[M]\right)\left\{a_{0}\right\}=\{0\} \tag{2.29}
\end{equation*}
$$

si on pose $\lambda=\omega^{2}$, la relation (2.29) s'écrit :

$$
\begin{equation*}
([K]-\lambda[M])\left\{a_{0}\right\}=\{0\} \tag{2.30}
\end{equation*}
$$

L'équation (2.30) représente la forme générale d'un problème aux valeurs propres qui peut être résolu par plusieurs méthodes, (méthode de Householder, méthode de $\mathrm{Q}-\mathrm{R}$, méthode d'itération sur sous espace, etc.).

En effet, le choix d'une méthode de résolution dépend des caractéristiques des matrices $[K]$ et $[M]$, de leurs tailles, de la largeur de bande et de nombre de solutions requis.

La méthode d'itération sur sous-espace est la plus utilisée dans les programmes de calcul des structures. Elle permet de calculer les plus petites valeurs propres des matrices de grande taille.

La méthode est basée sur des itérations inverses effectuées en parallèle sur un groupe de vecteurs de départs, les matrices $[K]$ et $[M]$ tendent vers la forme diagonale au fur et à mesure que le nombre d'itération augmente, ce qui rend très attrayante la méthode de Jacobi généralisée pour la résolution du problème aux valeurs propres réduit.

CHAPITRE 3

PRESENTATION DU PROGRAMME INFORMATIQUE

3.1 INTRODUCTION

L'analyse des structures par éléments finis nécessite l'exécution de plusieurs opérations de calcul avant d'arriver aux résultats requis. Pour un problème de grande taille, le temps de calcul nécessaire pour effectuer ces opérations devient très important, il est donc indispensable de développer un programme au moyen d'un ordinateur qui permet de faciliter la tâche.

Un programme d'éléments finis est constitué généralement de quatre blocs principaux :

1. Introduction des données.
2. Construction des matrices de rigidité et de masse globales ainsi que le vecteur global des sollicitations.
3. Résolution du système d'équations après prise en compte des conditions aux limites.
4. Impression des résultats.

Le présent chapitre à pour but de présenter les différentes démarches suivies au cours de l'élaboration d'un programme de calcul des solutions propres (fréquences propres et déformées modales) des plaques stratifiées. Il est écrit en langage Fortran sous forme modulaire. Les relations programmées ont été développées aux chapitres 1 et 2 , l'obtention des solutions propres est réalisée par le sous programme SUBSPACE développé par K.-J. Bathe [34]. L'enchaînement des opérations de calcul est illustré sur la figure 3.1, chaque étape sera décrite en détaille avec des exemples d'illustration.

Figure 3.1 Enchainement des opérations de calcul des solutions propres

3.2 INTRODUCTION DES DONNEES

Les données peuvent être classées en deux catégories principales : (i) les données nécessaires pour le calcul de la matrice de rigidité réduite du stratifié et (ii) les données décrivant la géométrie de la plaque et la façon dont elle est fixée dans l'espace.

3.2.1 Données mécaniques:

Le calcul de la matrice de rigidité du stratifié réduite nécessite l'introduction des données suivantes :

- Module d'élasticité (Young) longitudinal E_{J}.
- Module d'élasticité (Young) transversal E_{2}.
- Module de cisaillement longitudinal G_{12}.
- Coefficient de Poisson v_{12}
- Masse volumique du pli.
- Epaisseur du pli.
- Nombre de plis.
- Direction de chaque pli.

La détermination des coefficients de cette matrice s'effectue en trois étapes:

1. Calcul des coefficients de rigidité d'un pli dans ses axes propres 1,2 .
2. Calcul des coefficients de rigidité d'un pli dans les axes du stratifie x, y.
3. Calcul des coefficients de rigidité de l'ensemble du stratifié.

3.2.2 Données géométriques :

La géométrie de la plaque peut être complètement définie en précisant les données suivantes :

- Nombre d'éléments et de næuds ainsi que le nombre de degrés de liberté bloqués
- Connections des naxuds : La géométrie de chaque élément doit être spécifiée en donnant une liste systématique des points nodaux qui le définissent. L'ordre de numérotation des nœuds influe directement sur la structure de la matrice de rigidité globale et par conséquent sur le temps du calcul requis pour la résolution.

3.2 INTRODUCTION DES DONNEES

Les données peuvent être classées en deux catégories principales: (i) les données nécessaires pour le calcul de la matrice de rigidité réduite du stratifié et (ii) les données décrivant la géométrie de la plaque et la façon dont elle est fixée dans l'espace.

3.2.1 Données mécaniques :

Le calcul de la matrice de rigidité du stratifié réduite nécessite l'introduction des données suivantes:

- Module d'élasticité (Young) longitudinal E_{1}.
- Module d'élasticité (Young) transversal E_{2}.
- Module de cisaillement longitudinal G_{12}.
- Coefficient de Poisson v_{12}
- Masse volumique du pli.
- Epaisseur du pli.
- Nombre de plis.
- Direction de chaque pli.

La détermination des coefficients de cette matrice s'effectue en trois étapes :

1. Calcul des coefficients de rigidité d'un pli dans ses axes propres 1,2 .
2. Calcul des coefficients de rigidité d'un pli dans les axes du stratifie x, y.
3. Calcul des coefficients de rigidité de l'ensemble du stratifié.

3.2.2 Données géométriques :

La géométrie de la plaque peut être complètement définie en précisant les données suivantes :

- Nombre d'éléments et de næuds ainsi que le nombre de degrés de liberté bloqués
- Connections des nceuds: La géométrie de chaque élément doit être spécifiée en donnant une liste systématique des points nodaux qui le définissent. L'ordre de numérotation des nœuds influe directement sur la structure de la matrice de rigidité globale et par conséquent sur le temps du calcul requis pour la résolution.

Généralement, la matrice de rigidité est une matrice symétrique bandée, la largeur de cette bande L est donnée par la relation suivante [28]:
où :

$$
L=2[m n+(n-1)]+1
$$

n est le nombre de degrés de liberté par nœud. m est la différence maximale entre les numéros de deux nœuds adjacents.

Donc, pour une matrice de rigidité peu dispersée, il est nécessaire de minimiser la largeur de la bande au maximum possible tout en jouant sur l'ordre de numérotation. La figure 3.2 montre, pour un même nombre d'élément, deux types de numérotation :

$$
\begin{gathered}
\frac{\operatorname{Cas}(a)}{m=7, n=5} \\
L=79
\end{gathered}
$$

$\frac{\operatorname{Cas}(b)}{m, n=5}$
$L=39$

Figure 3.2 Système de numérotation pour un même nombre d'éléments.

Il est claire que la matrice de rigidité dans le cas (a) est plus dispersée que le cas (b) est utilisera donc plus de places dans la mémoire et aussi davantage de calcul. De ce fait, on remarque la grande importance de la numérotation des nœuds composant la structure, pour assurer une bonne gestion de la mémoire et de coût de calculs.

- Coordonnées des nœuds : Chaque nœud est défini par ses coordonnées par rapport au système d'axes (x, y). Ces coordonnées sont stockées dans une matrice d'une taille de $N P^{\prime}(O I N \times 2$ où $N P(O I N$ représente le nombre total de nœuds constituant la plaque.
- Conditions aux limites: Chaque nœud possède 5 degrés de liberté; trois déplacements et deux rotations. Un degré de liberté est identifié par une valeur égale à zéro (0) lorsqu'il est actif (libre), et d'une valeur égale à un (1) lorsqu'il est non actif (bloqué), ces valeurs sont stockées dans une matrice d'identification $I D$ de dimension NDLL x NPOIN où NDDL représente le nombre de degrés de liberté par nœud. Cette matrice sera modifiée par la suite afin de déduire le nombre total des équations à résoudre.

Pour illustrer la procédure d'introduction des conditions aux limites, on considère un exemple d'une plaque encastrée sur ses deux côtés. Pour facilité la compréhension, la plaque est discrétisée en six éléments, chaque élément possède 4 nœuds dont le nombre de degrés de liberté par nœud est égal à trois; un déplacement w et deux rotations θ_{x} et θ_{y}, (les déplacements u et v sont considérés nuls) (Figure 3.3).

Figure 3.3 Exemple d'une plaque discrétisée en quatre éléments et encastrée sur ses deux côtés

Les nœuds $1,2,3,13,10,11$ et 12 sont bloqués dans toutes les directions, tandis que le reste des nœuds est libre. La matrice d'identification s'écrit dans ce cas :

$$
I D=\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \tag{3.1}\\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Le nombre total des zéros dans $I D$ représente le nombre total des équations à résoudre. La matrice d'identification modifiée s'obtient en remplaçant chaque zéro dans (3.1) par le numéro de l'équation qui lui correspond, les valeurs (1) prennent la valeur (0), cette opération est effectuée colonne par colonne. La matrice d'identification modifiée s'écrit donc :

$$
I D=\left[\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{3.2}\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 4 & 7 & 10 & 13 & 16 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 5 & 8 & 11 & 14 & 17 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 0 & 0 & 0
\end{array}\right]
$$

d'où on tire le nombre total des équations qui est égal à 18 .

Figure 3.4 répartition des degrés de liberté actifs
dans la plaque

3.3 CONSTRUCTION DE LA MATRICE DE RIGIDITE

Les matrices de rigidité élémentaires $\left[K_{\mathrm{e}}\right]$ peuvent être calculées à partir de la relation (2.21) développée dans le Chapitre 2. Pour chaque élément nous avons besoin a effectuer les opérations suivantes :

1. Initialiser $\left[K_{\mathrm{e}}\right]$ à zéro.
2. Pour chaque point d'intégration $\left(\xi_{i}, \eta_{i}\right)$

- Calculer les fonctions d'interpolations ainsi que leurs dérivées.
- Calculer la matrice Jacobienne, son inverse et son déterminant.
- Calculer les éléments $k_{i j}$ de la matrice de rigidité élémentaire.

La technique de l'intégration sélective est utilisée pour évaluer les éléments $k_{i j}$, le choix de cette technique a été justifie au chapitre $2,3 \times 3$ points de Gauss sont utilisés pour le calcul des termes en membrane et en flexion, et 2×2 points de Gauss pour le calcul des termes en cisaillement transverse.

A cause de la symétrie des matrices de rigidité élémentaires, on ne mémorise que les éléments de la triangulaire supérieure, ces éléments sont stockés dans un vecteur de dimension $N E V A B \times N E V A B / 2$ où $N E V A B$ représente le nombre de variables par élément.

D'autre part, on définit un vecteur de connectivité des éléments $L M$ qui permet de mémoriser les degrés de liberté élémentaires.

Pour l'exemple illustré sur la figure 3.3, le vecteur $L M$ de chaque élément est définit comme
suit :

$$
\begin{aligned}
& L M_{1}=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 4 & 5 & 6 & 1 & 2 & 3 & 0 & 0 & 0
\end{array}\right]^{T} \\
& L M_{2}=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 7 & 8 & 9 & 4 & 5 & 6 & 0 & 0 & 0
\end{array}\right]^{Y} \\
& L M_{3}=\left[\begin{array}{llllllllllll}
4 & 5 & 6 & 13 & 14 & 15 & 10 & 11 & 12 & 1 & 2 & 3
\end{array}\right]^{Y} \\
& L M_{4}=\left[\begin{array}{llllllllllll}
7 & 8 & 9 & 16 & 17 & 18 & 13 & 14 & 15 & 4 & 5 & 6
\end{array}\right]^{T} \\
& L M_{5}=\left[\begin{array}{llllllllllll}
13 & 14 & 15 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 11 & 12
\end{array}\right]^{Y} \\
& L M_{6}=\left[\begin{array}{llllllllllll}
16 & 17 & 18 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 14 & 15
\end{array}\right]^{T}
\end{aligned}
$$

La matrice de rigidité globale $[K]$ s'obtient par assemblage des matrices de rigidité élémentaires, elle est symétrique et bandée, la méthode de stockage la plus efficace pour $[K]$ est celle de la ligne de ciel (sky line), elle consiste à mémoriser les termes de la matrice par des colonnes à hauteurs variables, ces hauteurs sont déterminées à partir des vecteurs de connectivité des éléments $L M$, elles sont données par la formule suivante :

$$
H_{i}=i-L_{i}
$$

où L_{i} représente le premier élément non nul de la colonne i et H_{i} représente la hauteur de la même colonne.

Les adresses des termes situés sur la diagonal de $[K]$ doivent être aussi mémorisées dans un vecteur afin de déterminer le début des colonnes.

Considérons le cas de la plaque en figure 3.3, on veut déterminer la hauteur de la colonne 12 , ce numéro représente aussi le numéro de degré de liberté actif dans [K], il est commun entre les éléments 3 et 5 . Ainsi, la plus petite valeur dans les vecteurs $L M$ de ces éléments est égale à 1 , cette valeur correspond à la ligne de premier élément non nul dans la colonne 12 , c'est à dire $L_{12}=1$, d'où, on tire la hauteur de cette colonne qui est égale à 11 .

La figure 3.5 montre la structure de la matrice de rigidité globale de la plaque, l'assemblage est limité aux degrés de liberté actifs.

Figure 3.5 Structure de la matrice de rigidité globale après élimination des degrés de liberté bloqués

Finalement, il ne reste que le stockage des éléments de la matrice de rigidité dans une matrice unicolonne (vecteur). On rappelle que le stockage ne contient que les termes au-dessous de la ligne de ciel.

3.4 CONSTRUCTION DE LA MATRICE DE MASSE

Les matrices de masse élémentaires peuvent être calculées à partir des relations (2.24) développées dans le Chapitre 2, la méthode de Lobatto est utilisée pour intégrer les termes de ces matrices. Fried et Malkus [14] ont montré que dans le cas d'un élément à 9 nœuds, l'utilisation de 3×3 points de Lobatto permet d'obtenir des matrices de masse consistantes diagonales qui induisent un taux de convergence équivalent à celui obtenu avec celui des matrices de masse consistantes pleines.

Les positions de ces points sont les suivantes [29] :

$$
P(1)=0 \quad P(2)=1 \quad P(3)=-1
$$

Par contre, les coefficients de pondération correspondants sont :

$$
W(1)=1.33333333333 \quad W(2)=0.33333333333 \quad W(3)=0.33333333333
$$

L'assemblage de la matrice de masse et sa mise en mémoire sont les mêmes que pour la matrice de rigidité.

3.5 RESOLUTION

La recherche des solutions propres constitue la phase de calcul la plus difficile et nécessite plus de temps de calcul. Dans la pratique, il existe plusieurs méthodes conçues pour la résolution de ce genre de problème. La méthode d'itération sur sous-espace est largement utilisée pour calculer les plus petites solutions propres d'un système de grande dimension, elle consiste à appliquer plusieurs fois la méthode de Ritz en améliorant les vecteurs de Ritz par itération inverse. Cette méthode est basée sur les principes suivants [34] :

1. générer m vecteurs de départ en nombre supérieur à celui des modes cherchés p.
2. améliorer ces vecteurs de départ par itération inverse simultanée pour générer le sous - espace des p premiers modes propres.
3. extraire les p premières valeurs propres et modes propres associés par méthode de Ritz.
4. vérifier que les solutions propres obtenues correspondent en nombre à celle cherchées dans la bande de fréquences spécifiée en utilisant le test des suites de Sturm.

3.6 IMPRESSION DES RESULTATS

L'exécution du programme permet d'obtenir les solutions propres de vibration d'une plaque stratifiée. Ces résultats doivent être organisés de manière que le lecteur puisse les interpréter. Pour cette raison un sous programme supplémentaire est développé pour effectuer cette tâche. Les résultats ainsi que les données du problème sont groupés dans un seul fichier.

Ci-dessous on trouve la forme d'un fichier type dont lequel on a étudier le cas d'une plaque carrée simplement appuyée. Cette plaque a été discrétisée en 9 éléments. Toutes les données du problème ainsi que les résultats peuvent être lus à partir de ce fichier.

ANALYSE MODALE D'UNE PLAQUE STATIFIEE

DONNEES MECANIQUES DE LA PLAQUE :

MATRICE DE RIGIDITE EN MEMBRANE A (Pa.m):

$.3133 \mathrm{E}+10$	$.7271 \mathrm{E}+09$	$.5918 \mathrm{E}+09$
$.7271 \mathrm{E}+09$	$.1766 \mathrm{E}+10$	$.5146 \mathrm{E}+09$
$.5918 \mathrm{E}+09$	$.5146 \mathrm{E}+09$	$.8705 \mathrm{E}+09$

MATRICE DE COUPLAGE B (Pa.m2):

$$
\begin{array}{rrr}
.6235 \mathrm{E}+06 & .6292 \mathrm{E}+05 & .2704 \mathrm{E}+06 \\
.6292 \mathrm{E}+05 & -.7494 \mathrm{E}+06 & -.2926 \mathrm{E}+06 \\
.2704 \mathrm{E}+06 & -.2926 \mathrm{E}+06 & .6292 \mathrm{E}+05
\end{array}
$$

MATRICE DE RIGIDITE EN FLEXION D (Pa.m3):,

$.1819 \mathrm{E}+07$	$.7334 \mathrm{E}+06$	$.5547 \mathrm{E}+06$
$.7334 \mathrm{E}+06$	$.2008 \mathrm{E}+07$	$.6979 \mathrm{E}+06$
$.5547 \mathrm{E}+06$	$.6979 \mathrm{E}+06$	$.8529 \mathrm{E}+06$

MATRICE DE RIGIDITE EN CISAILLEMENT TRANSVERSE F (Pa.m):

$$
\begin{array}{rr}
.3882 \mathrm{E}+09 & -.2114 \mathrm{E}+07 \\
-.2114 \mathrm{E}+07 & .3855 \mathrm{E}+09
\end{array}
$$

DONNEES GEOMETRIQUE DE LA PLAQUE :

```
NOMBRE DES ELEMENTS . ........................... = = 9
NOMBRE DE NOEUDS . . . . . . . . . . . . . . . . . . . . . . . . . = = 49
NOMBRE DE NOEUDS BLOQUES . . . . . . . . . . . . . . . . . . = 24
NOMBRE DE SOLUTIONS REQUIS ...................... = = 3
```

CONNECTIVITE DES NOEUDS :
ELEM. NUMEROS DES NOEUDS

1	1	2	3	10	17	16	15	8	9
2	3	4	5	12	19	18	17	10	11
3	5	6	7	14	21	20	19	12	13
4	15	16	17	24	31	30	29	22	23
5	17	18	19	26	33	32	31	24	25
6	19	20	21	28	35	34	33	26	27
7	29	30	31	38	45	44	43	36	37
8	31	32	33	40	47	46	45	38	39
9	33	34	35	42	49	48	47	40	41

COORDONNEES DES NOEUDS :

NOEUD	X	Y
1	.0000	.0000
2	.1667	.0000
3	.3333	.0000
4	.5000	.0000
5	.6667	.0000
6	.8333	.0000
7	1.0000	.0000
8	.0000	.1667
9	.1667	.1667
10	.3333	.1667
11	.5000	.1667
12	.6667	.1667
13	.8333	.1667
14	1.0000	.1667
15	.0000	.3333
16	.1667	.3333
17	.3333	.3333
18	.5000	.3333
19	.6667	.3333

20	.8333	.3333
21	1.0000	.3333
22	.0000	.5000
23	.1667	.5000
24	.3333	.5000
25	.5000	.5000
26	.6667	.5000
27	.8333	.5000
28	1.0000	.5000
29	.0000	.6667
30	.1667	.6667
31	.3333	.6667
32	.5000	.6667
33	.6667	.6667
34	.8333	.6667
35	1.0000	.6667
36	.0000	.8333
37	.1667	.8333
38	.3333	.8333
39	.5000	.8333
40	.6667	.8333
41	.8333	.8333
42	1.0000	.8333
43	.0000	1.0000
44	.1667	1.0000
45	.3333	1.0000
46	.5000	1.0000
47	.6667	1.0000
48	.8333	1.0000
49	1.0000	1.0000

NOEUDS	BLOQUES
NOEUD	CODE
1	11111
2	01110
3	01110
4	01110
5	01110
6	01110
7	11111
8	10101
14	10101
15	10101
21	10101
22	10101
28	10101
29	10101
35	10101
36	10101
42	10101
43	11111
44	01110
45	01110
46	01110
47	01110
48	01110
49	11111

VALEURS PROPRES :

MODE VALEUR PROPRE
(RAD/SEC) **2
$\begin{array}{ll}1 & .3254719 \mathrm{E}+07 \\ 2 & .1484164 \mathrm{E}+08 \\ 3 & .2041673 \mathrm{E}+08\end{array}$

FREQUENCE CIRCULAIRE
(RAD/SEC)
$.1804084 \mathrm{E}+04$
$.3852485 \mathrm{E}+04$
$.4518488 \mathrm{E}+04$

FREQUENCE

(CYCLES/SEC)

$.2871289 \mathrm{E}+03$
$.6131420 \mathrm{E}+03$
$.7191397 E+03$

PERIODE
(SEC)
. $3482756 \mathrm{E}-02$
. $1630944 \mathrm{E}-02$
. $1390550 \mathrm{E}-02$

VECTEURS PROPRES :
MODE $=1$
FREQUENCE $=.1804084 \mathrm{E}+04 \mathrm{RAD} / \mathrm{SEC}$

	V	W	TETAX	TETAY
. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$	0000E		
. $2326 \mathrm{E}-04$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$
. $4770 \mathrm{E}-04$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$	$-.2982 \mathrm{E}+00$
. 6362E-04	. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$	$.0000 \mathrm{E}+00$	-. 3960E+00
. $5897 \mathrm{E}-04$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$	-. $3707 \mathrm{E}+00$
. $3239 \mathrm{E}-04$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$	$-.2559 \mathrm{E}+00$
. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$	-. $9923 \mathrm{E}-01$
. $0000 \mathrm{E}+00$	-. 8321 E	0000E+00	$.0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$
. $4289 \mathrm{E}-04$	-. $6308 \mathrm{E}-04$,	0	. $0000 \mathrm{E}+00$
. $5917 \mathrm{E}-04$. $3823 \mathrm{E}-04$	4367E-01	. $1744 \mathrm{E}+00$	-. $1699 \mathrm{E}+00$
. $5198 \mathrm{E}-04$	-. $1583 \mathrm{E}-04$	6820	-01	-. $3222 \mathrm{E}+00$
. $3285 \mathrm{E}-04$. $8282 \mathrm{E}-05$. $5171 \mathrm{E}-01$. $5610 \mathrm{E}-01$	-. $3518 \mathrm{E}+00$
. $1183 \mathrm{E}-04$. $1752 \mathrm{E}-04$. $2485 \mathrm{E}-01$. $1386 \mathrm{E}+00$	-. $2942 \mathrm{E}+00$
. $0000 \mathrm{E}+00$. $1446 \mathrm{E}-04$	2485E-01	-1608E+00	-. $1585 \mathrm{E}+00$
. $0000 \mathrm{E}+00$	-. $1062 \mathrm{E}-03$	E	+00	. $0000 \mathrm{E}+00$
. $3038 \mathrm{E}-04$	-. $1037 \mathrm{E}-03$	$6622 \mathrm{E}-01$	-. $3936 \mathrm{E}+00$. $0000 \mathrm{E}+00$
. $4480 \mathrm{E}-04$	-. 5913E-04	. $110922 \mathrm{E}+01$	$3203 \mathrm{E}+00$	-. 5431E-01
. $3541 \mathrm{E}-04$	-. $1099 \mathrm{E}-04$. $1212 \mathrm{E}+00$	75E-01	-. $1481 \mathrm{E}+00$
. $1468 \mathrm{E}-04$. $3309 \mathrm{E}-04$. $9851 \mathrm{E}-01$. $4275 \mathrm{E}-01$	-. $2100 \mathrm{E}+00$
-. $6809 \mathrm{E}-06$. $5792 \mathrm{E}-04$		$1 \mathrm{E}+00$	$-.2102 \mathrm{E}+00$
$.0000 \mathrm{E}+00$. $5031 \mathrm{E}-04$	0000E+00	. $2923 \mathrm{E}+00$	$-.1376 \mathrm{E}+00$
. $0000 \mathrm{E}+00$	-. $8964 \mathrm{E}-04$. $2623 \mathrm{E}+00$. $0000 \mathrm{E}+00$
. $1683 \mathrm{E}-04$	-. $9453 \mathrm{E}-04$	6809E-01	$35 \mathrm{E}+00$. $0000 \mathrm{E}+00$
. $1376 \mathrm{E}-04$	-. $5819 \mathrm{E}-04$. $681210 \mathrm{E}+00$	-. $3516 \mathrm{E}+00$. $5683 \mathrm{E}-01$
-. $2562 \mathrm{E}-12$. $1242 \mathrm{E}-11$		$11 \mathrm{E}+00$. $4368 \mathrm{E}-01$
-. $1376 \mathrm{E}-04$. $5819 \mathrm{E}-04$	$1210 \mathrm{E}+0$. $2000 \mathrm{E}-12$	-. $2335 \mathrm{E}-12$
-. $1683 \mathrm{E}-04$. $9453 \mathrm{E}-04$. $2111 \mathrm{E}+00$	-. $4368 \mathrm{E}-01$
. $0000 \mathrm{E}+00$. $8964 \mathrm{E}-04$	0000E+0	. $3516 \mathrm{E}+00$	-. $5683 \mathrm{E}-01$
. $0000 \mathrm{E}+00$	-. $5031 \mathrm{E}-04$	0000E+00	. $3735 \mathrm{E}+$. $0000 \mathrm{E}+00$
. 6809E-06	-. $5792 \mathrm{E}-04$	$5188 \mathrm{E}-0$	-. $2623 \mathrm{E}+00$. $0000 \mathrm{E}+00$
-. $1468 \mathrm{E}-04$	-. $3309 \mathrm{E}-04$	5188 E	-. $2923 \mathrm{E}+00$	$.1376 E+00$
-. $3541 \mathrm{E}-04$. $1099 \mathrm{E}-04$	1212	$2101 \mathrm{E}+00$. $2102 \mathrm{E}+00$
-. $4480 \mathrm{E}-04$. $5913 \mathrm{E}-04$. $1112 \mathrm{E}+00$	-. $4275 \mathrm{E}-01$. $2100 \mathrm{E}+00$
-. $3038 \mathrm{E}-04$. $1037 \mathrm{E}-03$. $6622 \mathrm{E}-01$.1504E	. $1481 \mathrm{E}+00$
. $0000 \mathrm{E}+00$. $1062 \mathrm{E}-03$. $.0000 \mathrm{E}+0$. $3203 \mathrm{E}+00$. $5431 \mathrm{E}-01$
. $0000 \mathrm{E}+00$	-. $1446 \mathrm{E}-04$		- 3	. $0000 \mathrm{E}+00$
-. $1183 \mathrm{E}-04$	-. $1752 \mathrm{E}-04$. $2485 \mathrm{E}-0$	-. $1106 \mathrm{E}+00$. $0000 \mathrm{E}+00$
-. $3285 \mathrm{E}-04$	-. $8282 \mathrm{E}-05$. $5171 \mathrm{E}-01$	-. $1608 \mathrm{E}+00$. $1585 \mathrm{E}+00$
-. 5198E-04	. $1583 \mathrm{E}-04$. 6820E-01	-. $1386 \mathrm{E}+00$. $2942 \mathrm{E}+00$
-. 5917E-04	. $3823 \mathrm{E}-04$		-. $5610 \mathrm{E}-01$. $3518 \mathrm{E}+00$
-. $4289 \mathrm{E}-04$. $6308 \mathrm{E}-04$. $4367 \mathrm{E}-01$. $5793 \mathrm{E}-01$. $3222 \mathrm{E}+00$
. $0000 \mathrm{E}+00$. $8321 \mathrm{E}-04$	- 4367 E	-1744E+00	. $1699 \mathrm{E}+00$
. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$		2871E+00	. $0000 \mathrm{E}+00$
			. $0000 \mathrm{E}+00$. $0000 \mathrm{E}+00$

44	$-.3239 E-04$	$.0000 \mathrm{E}+00$
45	$-.5897 \mathrm{E}-04$	$.0000 \mathrm{E}+00$
46	$-.6362 \mathrm{E}-04$	$.0000 \mathrm{E}+00$
47	$-.4770 \mathrm{E}-04$	$.0000 \mathrm{E}+00$
48	$-.2326 \mathrm{E}-04$	$.0000 \mathrm{E}+00$
49	$.0000 \mathrm{E}+00$	$.0000 \mathrm{E}+00$
MODE $=2$		
FREQUENCE $=.3852485 \mathrm{E}+04$	RAD/SEC	

MODE $=3$
FREQUENCE $=.4518488 \mathrm{E}+04 \mathrm{RAD} / \mathrm{SEC}$

CHAPITRE 4

APPLICATIONS

4.1 INTRODUCTION

Dans le cas de l'étude de comportement vibratoire des plaques stratifiées, l'analyse la plus complexe est celle des stratifiés constitués d'un empilement quelconque présentant des couplages membrane-flexion, membrane-torsion et flexion-torsion. Dans le but d'effectuer une étude qui tiens en compte les différentes configurations de couplages, nous avons établi un programme informatique permettant, par la méthode des éléments finis, de calculer les solutions propres (fréquences fondamentales et déformées modales) de vibration de ces plaques. Le programme développé peut être utilisé pour l'analyse des plaques minces ou épaisses constituées d'un matériau isotrope ou composite anisotrope (à base de fibres unidirectionnelles de différentes orientations et diverses séquences d'empilement). Avant d'utiliser ce programme, il est nécessaire d'effectuer une étude comparative afin de vérifier le degré d'exactitude des résultats obtenus. Cette étude peut être établie en comparant les résultats du programme a ceux disponibles dans les littératures.

4.2 VALIDATION DES RESULTATS

Suivant les résultats disponibles dans les littératures, trois types de stratifiés peuvent être examinés :

- Stratifié isotrope.
- Stratifié orthotrope.
- Stratifié croisé antisymétrique.

La solution exacte pour ces types de stratifiés peut être facilement tirée du système des équations fondamentales des plaques stratifiées développé au chapitre 1. La solution numérique est établie en discrétisant la plaque en un nombre fini d'éléments quadrilatères à 9 nœuds (16 éléments dans le cas des plaques carrées et 18 éléments dans le cas des plaques rectangulaires). Les résultats sont présentés en termes addimensionnels dans le but de faciliter l'étude comparative.

4.2.1 Cas d'un stratifié isotrope

Dans cette section, deux types de plaques sont examinés :

- Plaque carrée mince d'un rapport épaisseur sur longueur $h / a=0.01$.
- Plaque carrée épaisse d'un rapport épaisseur sur longueur $h / a=0.1$.

Nous étudions le cas où les deux plaques sont en appuis simples. Les conditions aux limites s'écrivent :

$$
\begin{array}{ll}
v_{0}=w_{0}=\theta_{y}=0 & \text { à } \quad x=0, a . \\
u_{0}=w_{0}=\theta_{x}=0 & \text { à } y=0, a .
\end{array}
$$

Le comportement élastique d'un stratifié isotrope est décrit par le module d'Young E et le coefficient de Poisson v, il en résulte que les termes de couplage membrane-flexion/torsion sont nuls.

Les caractéristiques mécaniques du matériau sont données, pour les deux types de plaques, comme suit :

- Module d'Young : $E=10920 \mathrm{~N} / \mathrm{m}^{2}$
- Module du cisaillement : $G=4200 \mathrm{~N} / \mathrm{m}^{2}$
- Coefficient de Poisson : $v=0.3$
- Masse volumique : $\rho=0.1 \mathrm{Kg} / \mathrm{m}^{3}$

(a) Plaque mince :

Dans le cas d'une plaque mince, les valeurs exactes des fréquences propres de vibration peuvent facilement être obtenues à partir de l'expression mathématique suivante [33] :

$$
\begin{equation*}
\omega_{m n}=\frac{\pi^{2}}{a^{2}}\left(m^{2}+n^{2}\right) \sqrt{\frac{D}{\rho_{s}}} \tag{4.1}
\end{equation*}
$$

où :
m et n sont respectivement les numéros de demi-onde suivant les directions x et y.
D est la rigidité flexionnelle de la plaque, $D=\frac{E h^{3}}{12\left(1-v^{2}\right)}$.
ρ_{s} est la densité par unité de surface.

Les valeurs des fréquences propres addimensionnelles $\omega_{m n}{ }^{*}=\omega_{n m}(\rho / G h)^{1 / 2}$ obtenues par le programme développé et ceux calculées par la relation mathématique (4.1) sont reportées dans le tableau 4.1. On remarque que les résultats du programme sont très satisfaisants en les comparant aux résultats exacts. On note que l'erreur est estimée par rapport aux valeurs exactes par l'expression suivante :

$$
\text { Erreur }=\frac{\text { valeur numérique }- \text { valeur exacte }}{\text { valeur exacte }} .100
$$

Tableau 4.1 Fréquences propres addimensionnelles $\omega_{m n}{ }^{*}$ d'une plaque carrée en appuis simples constituée d'un matériau isotrope avec $v=0.3, h / a=0.01$

m	n	$\omega_{m_{n}}{ }^{*}$		Erreur $(\%)$
		Solution exacte $[33]$	(\%)	
1	1	0.9627	0.9632	-0.05
2	1	2.4129	2.4080	0.20
2	2	3.8441	3.8529	-0.23
3	1	4.9049	4.8161	1.84
3	2	6.2765	6.2604	0.26

(b) Plaque épaisse :

Dans le cas d'une plaque épaisse, il n'est pas possible de résoudre directement les équations fondamentales des plaques stratifiées (Chapitre 1). La recherche des fréquences propres nécessite d'utiliser des théories autres que celle de Yang, Norris, et Stavsky. Sirinivas et ses collaborateurs [4] ont trouvé une solution exacte basée sur la théorie d'élasticité tridimensionnelle permettant de calculer les fréquences propres de vibration d'une plaque carrée épaisse en appuis simples.

La comparaison entre les fréquences addimensionnelles $\omega_{m n}{ }^{*}=\omega_{m n}\left(\rho h^{2} / G\right)^{1 / 2}$ obtenues par le programme développé et ceux de référence [4] est présentée sur le tableau 4.2. On constate que l'erreur maximale est à peut prés de l'ordre 1%.

Tableau 4.2 Fréquences propres addimensionnelles $\omega_{m n}$ * d'une plaque carrée en appuis simples constituée d'un matériau isotrope avec $v=0.3, h a=0.1$

m	n	$\omega_{m{ }^{*}}$		
		Présente étude	Solution exacte Erreur $(\%)$	
1	1	0.09302	0.09315	-0.14
2	1	0.22238	0.22260	-0.10
2	2	0.33946	0.34207	-0.76
3	1	0.41976	0.41714	-0.63
3	2	0.51754	0.52391	-1.22

4.2.2 Cas d'un stratifie orthotrope

Un stratifié orthotrope est obtenu, soit à partir d'une seule couche de matériau orthotrope, soit à partir d'un stratifie symétrique constitué de couches orthotropes dont les axes principaux coïncident avec les axes de référence du stratifié.

Nous considérons une plaque carrée de côté a, constituée d'un stratifié orthotrope $\left[0^{\circ} / 90^{\circ}\right]_{\text {s }}$ dont les caractéristiques mécaniques sont données comme suit :

$$
E_{1} / E_{2}=40 . \quad G_{12} / E_{2}=G_{13} / E_{2}=0.6 \quad G_{23} / E_{2}=0.5 \quad v_{12}=0.25
$$

Ces caractéristiques sont typiques à celles du composite Graphite/Epoxyde. Le choix de E_{2} et ρ est arbitraire à cause de l'addimensionnalité des résultats.
l'expression des fréquences propres, pour une plaque orthotrope simplement appuyée, s'écrit [33] :

$$
\begin{equation*}
\omega_{n n}=\frac{\pi^{2}}{a^{2}} \sqrt{\frac{1}{\rho_{s}}\left[D_{11} m^{4}+2\left(D_{12}+2 D_{66}\right) m^{2} n^{2}+D_{22} n^{4}\right]} \tag{4.2}
\end{equation*}
$$

Les six premières valeurs $\omega_{m n}{ }^{*}=\omega_{m n}\left(a^{2} / h\right) \sqrt{\rho / E_{2}}$ obtenues par la relation (4.2) ainsi que les résultats du programme sont reportés dans le tableau 4.3.

Tableau 4.3 Fréquences propres addimensionnelles $\omega_{m n}{ }^{*}$ d'une plaque carrée en appuis simples constituée d'un stratifié orthotrope de séquence d'empilement $\left[0^{\circ} \% 0^{\circ}\right]_{s}$ avec $h / a=0.01$

m n $\omega_{m n}{ }^{*}$ Erreur. $(\%)$ Présente étude Solution exacte $[33]$ 1 1 18.836 -0.29 1 2 33.808 33.823 -0.05 1 3 67.160 66.079 1.64 2 1 68.129 68.637 -0.74 2 2 74.699 75.565 -1.15 2 3 95.217 96.363 -1.19

4.2.3 Cas d'un stratifié croisé antisymétrique

Un stratifié antisymétrique est constitué de couches en nombre pair, dont la répartition des épaisseurs est symétrique, et celle des orientations des fibres est antisymétrique par rapport au plan moyen du stratifié. L'alternance $\left[0^{\circ} / 90^{\circ}\right]$ est souvent désignée par stratifié croisé.

Nous considérons une plaque rectangulaire de dimension $a=1 \mathrm{~m}$ et $b=0.5 \mathrm{~m}$, constituée d'un stratifié croisé antisymétrique $\left[0^{\circ} / 90^{\circ}\right]_{\mathrm{T}}$. Pour ce type de stratifié nous avons :

$$
\begin{array}{lll}
A_{16}=A_{26}=0 & B_{12}=B_{16}=B_{26}=B_{66}=0 & D_{16}=D_{26}=0 \\
A_{22}=A_{11} & B_{22}=-B_{11} & D_{22}=D_{11}
\end{array}
$$

La plaque est constituée d'un matériau de caractéristiques mécaniques identiques à celles du matériau présenté dans la section 4.2.2

Dans le cas où la plaque est en appuis simples, les conditions aux limites s'écrivent :

$$
\begin{array}{ll}
v_{0}=w_{0}=\theta_{y}=0 & \text { à } \quad x=0, a . \\
u_{0}=w_{0}=\theta_{x}=0 & \text { à } \quad y=0, b .
\end{array}
$$

Dans ce cas, les fréquences propres de vibration peuvent être obtenues à partir de la relation mathématique suivante [33] :

$$
\begin{equation*}
\omega_{m n}^{2}=\frac{\pi^{4}}{\rho_{s} a^{4}}\left\{\left[D_{11}\left(m^{4}+R^{4} n^{4}\right)+2\left(D_{12}+2 D_{66}\right) R^{2} m^{2} n^{2}\right]-\frac{B_{11}^{2}}{\Delta_{1}}\left(\Delta_{3} m^{4}+\Delta_{2} R^{4} n^{4}\right)\right\} \tag{4.3}
\end{equation*}
$$

avec :

$$
\begin{aligned}
& \Delta_{1}=\left(A_{11} m^{2}+A_{66} R^{2} n^{2}\right)\left(A_{66} m^{2}+A_{11} R^{2} n^{2}\right)-\left(A_{12}+A_{66}\right)^{2} R^{2} m^{2} n^{2} \\
& \Delta_{2}=\left(A_{12}+A_{66}\right)^{2} m^{4}+A_{11} R^{2} m^{2} n^{2}+A_{66} R^{4} n^{4} \\
& \Delta_{3}=A_{66} m^{4}+A_{11} R^{2} m^{2} n^{2}+\left(A_{12}+A_{66}\right) R^{4} n^{4}
\end{aligned}
$$

où R est le rapport longueur sur largeur de la plaque, $R=a / b$.

Les valeurs des fréquences propres addimensionnelles $\omega_{m n}{ }^{*}=\omega_{m n}\left(a^{2} / h\right) \sqrt{\rho / E_{2}}$, pour un rapport épaisseur sur longueur égal à 0.01 , sont reportées dans le tableau 4.4. Un écart de 2% au maximum peut être remarqué en comparant les six premières valeurs du programme aux ceux obtenues par la relation 4.3.

Tableau 4.4 Fréquences propres addimensionnelles $\omega_{m n} *$ d'une plaque rectangulaire en avec $h / a=0.01$

m n $\omega_{m n}{ }^{*}$ Erreur. $(\%)$ Solution exacte $[33]$ 1 49.177 49.479 -0.61 2 1 68.748 69.366 -0.89 3 1 118.093 119.521 -1.19 1 2 187.878 189.590 -0.90 2 2 195.454 197.916 -1.24 3 2 219.200 223.796 -2.05

D'après les résultats présentés sur les tableaux 4.1 à 4.4 , il est certain que les résultats obtenus par le programme développé sont acceptables. Ce qui permet d'utiliser ce programme pour l'analyse vibratoire de toutes plaques composites à base de fibres unidirectionnelles.

4.3 APPLICATIONS

Dans cette section, l'ensemble des types de stratifiés étudiés constitue une bonne référence des stratifiés usuels. Assez souvent la réalisation des stratifiés est faite à partir des couches qui ont les mêmes caractéristiques (mêmes constituants, mêmes configurations géométriques, mêmes épaisseurs, etc.), mais ont des orientations différentes de leurs axes principaux par rapport aux axes des références du stratifié.

4.3.1 Influence du rapport épaisseur sur longueur h / a

Nous considérons une plaque carrée de côté a, constituée d'un stratifié équilibré antisymétrique $\left[45^{\circ} \%-45^{\circ}\right]_{\text {ST }}$.de caractéristiques mécaniques identiques à celles présentées dans la section 4.2.2. Nous étudions le cas où la plaque est en appuis simples, les conditions aux limites s'écrivent :

$$
\begin{array}{ll}
u_{0}=w_{0}=\theta_{y}=0 & \text { à } \quad x=0, a . \\
v_{0}=w_{0}=\theta_{x}=0 & \text { à } \quad y=0, a .
\end{array}
$$

La figure 4.1 illustre la variation des quatre premières fréquences propres addimensionnelles $\omega^{*}=\omega \sqrt{\rho h^{2} / E_{2}} .100$ en fonction du rapport h / a (h / a varie de 0.01 à 0.2). On remarque que la fréquence propre augmente avec l'augmentation du rapport h / a. cette augmentation passe par deux zones différentes :

Zone 1: caractérisée par une variation parabolique des fréquences addimensionnelles pour des valeurs de h / a appartenant à $\left[\begin{array}{ll}0.01 & 0.1\end{array}\right]$ (cas des plaques minces).

Zone 2: caractérisée par une variation de ω^{*} presque linéaire pour des valeurs de h / a appartenant à $\left[\begin{array}{ll}0.1 & 0.2\end{array}\right]$ (cas des plaques épaisses).

Figure 4.1 Influence du rapport h/a sur les quatre premières fréquences propres adimensionnelles ω^{*} d'une plaque carrée en appuis simples constituée d'un stratifié équilibré antisymétrique $\left[45 \%-45^{\circ}\right]_{5 T}$

En outre, la variation de ω^{*} est plus lente dans la zone 2 que la zone 1 , ceci peut être expliqué par la présence des déformations en cisaillement transverse et leur degré d'influence sur les fréquences fondamentales. En effet, la négligence de ces déformations modifiée largement l'allure de la fréquence dans la zone 2. La figure 4.2 illustre la variation de la première fréquence addimensionnelle ω^{*} pour deux configurations : avec et sans prise en compte des déformations en cisaillement transverse.

En examinant la zone 2, les fréquences obtenues par la théorie des plaques laminées (théorie basée sur les hypothèses de Kirchoff) sont supérieures à celles obtenues par la présente étude (étude basée sur les hypothèses de Mindlin), le décalage augmente avec l'augmentation du rapport h / a. Par contre, les courbes tracées dans la zone 1 , pour les deux configurations, sont presque confondues. A cet effet, il est certain que les déformations en cisaillement transverse réduisent la valeur de la fréquence propre pour des rapports h / a supérieures à 0.1 , cet effet devient négligeable lorsque le rapport h / a est inférieur à 0.1 .

Figure 4.2 Influence du cisaillement transverse sur la première fréquence propre addimensionnelle ω^{*}

Cette analyse nous permet d'affirmer que la théorie classique des plaques laminées devient mal adaptée à la description du comportement vibratoire des plaques composites pour des rapports h / a supérieur à 0.1 , et au-delà de cette valeur, il n'est plus question de négliger les déformations en cisaillement transverse.

Nous examinons maintenant l'influence de la symétrie miroir sur les fréquences propres de vibration. Un stratifié est doté de la symétrie miroir lorsque ces plis de part et d'autre du plan moyen ont :

- Les mêmes orientations.
- Les mêmes épaisseurs.
- Des cotes opposées z_{k} et $-z_{k}$.

Il en résulte que les coefficients $B_{i j}$ de la matrice de rigidité du stratifié sont nuls.

En outre, les stratifiés dotés de la symétrie miroir sont largement utilisés car ils ne présentent pas une tendance au gauchissement lors des déformations induites lors de refroidissement consécutif au processus de mise en ouvre des matériaux

Nous considérons le cas de deux types de stratifiés :

- Stratifié doté de la symétrie miroir $\left[0^{\circ} / 30^{\circ} /-30^{\circ} / 45^{\circ} /-45^{\circ} / 60^{\circ} /-60^{\circ} / 90^{\circ}\right]_{\mathrm{s}}$.
- Stratifié n'est pas doté de la symétrie miroir $\left[0^{\circ}{ }_{2} / 30^{\circ}{ }_{2},\left[45^{\circ} /-45^{\circ} / 0^{\circ} / 90^{\circ}\right]_{\mathrm{T}}, 30^{\circ}{ }_{2}\right]$.

Figure 4.3 Influence de la symétrie miroir sur la première fréquence propre addimensionnelle de vibration ω^{*} (a) : stratifié doté de la symétrie miroir (b) : stratifié n 'est pas doté de la symétrie miroir.

La variation de la première fréquence propre addimensionnelle en fonction du rapport h / a est illustrée, pour les deux types de stratifiés, sur la figure 4.3. On constate que la présence de la symétrie miroir influe d'une manière positive sur la rigidité de la plaque pour des rapports $\mathrm{h} a$ élevés. La figure montre également que, pour des rapports h / a relativement faibles, l'effet de la symétrie miroir est nul

4.3.2 Influence de l'anisotropie du matériau E_{1} / E_{2}

Dans le but d'examiner l'influence de l'anisotropie du matériau E_{1} / E_{2}. Nous considérons une plaque rectangulaire de dimension $a=2 \mathrm{~m}, b=1 \mathrm{~m}$ et $h=0.4$, constituée d'un stratifié équilibré antisymétrique $\left[30 \%-30^{\circ}\right]_{4 \mathrm{~T}}$ de caractéristiques mécaniques.

$$
G_{12} / E_{2}=G_{13} / E_{2}=0.6 \quad G_{23} / E_{2}=0.5 \quad v_{12}=0.25
$$

L'effet de l'anisotropie du matériau sera examiné pour un rapport E_{1} / E_{2} varie de 3 à 40 . Ainsi, les conditions aux limites utilisées sont les conditions d'appuis simples, elles sont données comme suit :

$$
\begin{array}{ll}
u_{0}=w_{0}=\theta_{y}=0 & \text { à } x=0, a . \\
v_{0}=w_{0}=\theta_{x}=0 & \text { à } \quad y=0, b .
\end{array}
$$

La variation des quatre premières fréquences propres addimensionnelles $\omega^{*}=\omega \sqrt{\rho h^{2} / E_{2}}$ en fonction du rapport E_{l} / E_{2}, est reportée sur la figure 4.4. Nous observons une croissance très rapide de ω^{*} pour des valeurs de E_{l} / E_{2} appartenant à l'intervalle [3 10] (de l'ordre de 50%), cette croissance devient par la suite lente et tende vers une valeur négligeable pour des rapports E_{l} / E_{2} supérieurs à 40 .

Cependant, la rigidité de la plaque est proportionnelle au degré de l'anisotropie du matériau qui la constitue. On constate d'après la figure 4.4 que les plaques hautement anisotropes sont structurellement plus rigides que les plaques faiblement anisotropes.

Figure 4.4 Influence de l'anisotropie du matériau E_{l} / E_{2} sur les quatre premières fréquences propres addimensionnelles ω^{*} d'une plaque rectangulaire constituée d'un stratifié équilibré antisymétrique $\left[30^{\circ} \%-30^{\circ}\right]_{4 T}$

4.3.3 Influence du nombre de couches

Pour cette application, nous considérons le cas d'une plaque carré d'un rapport $h / a=0.2$ et constituée d'un stratifié antisymétrique. Nous examinons deux types de séquences d'empilement différentes :

- couches équilibrées $\left[45^{\circ} /-45^{\circ}\right]_{n T}$
- couches croisées $\left[0^{\circ} / 90^{\circ}\right]_{n T}$ où n représente le nombre de pairs de couches constituant le stratifié.

Pour chaque couche, les caractéristiques suivantes du composite verre-epoxyde sont utilisées:

$$
E_{l}=46 \mathrm{GPa} \quad E_{2}=10 \mathrm{GPa} \quad G_{12}=4.6 \mathrm{GPa} \quad v_{12}=0.31 \quad \rho=2040 \mathrm{~kg} / \mathrm{m}^{3}
$$

La plaque est supposée en appuis simples, les conditions aux limites sont les mêmes que celles utilisées dans la section 4.2.1.

En faisant varie le nombre de couches de 2 à 12 sans avoir changer l'épaisseur totale de la plaque (en change seulement l'épaisseur des couches), la courbe de la première fréquence propre ω qui en résulte est reportée sur la figure 4.5 . On constate que l'augmentation du nombre de couches, sauf pour le cas de passage de deux couches à quatre, ne crée pas un grand changement sur la valeur de ω (de l'ordre de 3%). La figure 4.4 indique également que les stratifiés équilibrés sont plus rigides que les stratifiés croisés. Ainsi, la rigidité obtenue par un stratifié équilibré constitué de quatre couches est supérieure à celle obtenue par un stratifié croisé d'un nombre de couches élevé.

Figure 4.5 Influence du nombre de couches sur la première fréquence propre ω d'une plaque carrée simplement appuyée (a) : couches équilibrées antisymétriques $\left[45^{\circ}-45^{\circ}\right]_{n T}$ (b) : couches croisées antisymétriques $\left[0^{\circ} / 90^{\circ}\right]_{n T}$

Cependant, il est important de noter que les coefficients de rigidité en membrane $A_{i j}$ ainsi que les coefficients de rigidité en flexion et en torsion $D_{i j}$ sont indépendants du nombre de
couches et du type de stratifié. Par contre, le couplage membrane-flexion/torsion qui provient des termes $B_{i j}$ décroît lorsque le nombre de couches augmente.

4.3.4 Influence des orientations des fibres

Nous considérons une plaque rectangulaire d'une longueur a et d'une largeur b, constituée d'un stratifié antisymétrique de séquence d'empilement $[\theta /-\theta / \theta /-\theta]$, où θ est l'angle entre la direction des fibres est la direction du stratifié x, varié de 0° à 90°. Pour ce type de stratifié nous avons:

$$
\begin{array}{ll}
A_{16}=A_{26}=0 & B_{1 I}=B_{12}=B_{22}=B_{66}=0 \\
D_{16}=D_{26}=0 & F_{45}=0
\end{array}
$$

Les caractéristiques mécaniques, ainsi que les conditions aux limites sont les mêmes que celles utilisées dans la section 4.2.3. Par contre, le rapport h / a est pris égal à 0.05 .

L'influence de l'angle θ sur les fréquences propres de vibration sera examinée pour des rapports $a b$ égaux à $0.5,1$ et 2 .

La variation de la première fréquence propre addimensionnelle $\omega^{*}=\omega \sqrt{\rho h^{2} / E_{2}} \cdot 10$ en fonction des orientations des fibres, pour les différents rapports a / b, est illustrée sur la figure 4.6. On remarque que la fréquence ω^{*} passe par un maximum pour $\theta=45^{\circ}$ dans le cas de $a / b=1$ et par $\theta=90^{\circ}$ dans le cas de $a / b=2$, et sa variation est symétrique de part et d'autre de ces valeurs. Par contre, dans le cas de $a / b=0.5$, l'allure de ω^{*} passe par un maximum pour $\theta=0^{\circ}$ et prend une forme symétrique de part et d'autre de cette valeur. La figure montre également que les valeurs extrémales de ω^{*} sont atteintes pour des orientations confondues avec les directions principales (0° et 90).

En outre, la figure 4.6 indique que les fréquences les plus élevées sont obtenues pour un rapport $a b=2$, les fréquences les plus basses sont obtenues pour un rapport $a b=0.5$. En effet, la fréquence propre augmente avec l'augmentation du rapport a / b, ceci peut être illustré sur la figure 4.7. On remarque d'après cette figure que la fréquence propre croît paraboliquement pour un rapport $a b$ varie de 0.5 à 4 .

Figure 4.6 Influence de l'orientation des fibres θ sur la première fréquence propre addimensionnelle ω^{*} d'un stratifié équilibré $[\theta /-\theta / \theta /-\theta]$.

D'après ce qui vient d'être dit précédemment, on peut faire les conclusions suivantes :

- Pour un comportement plus rigide, on opte pour des plaques rectangulaires d'un rapport $a / b>1$ et $\theta=90^{\circ}$.
- Pour un comportement plus flexible, on opte pour des plaques rectangulaires d'un rapport $a / b<1$ et $\theta=90^{\circ}$.

Figure 4.7 Influence du rapport a b sur la première fréquence propre addimensionnelle ω^{*} pour trois types de stratifies. (a) : $\left[45^{\circ}-45^{\circ}\right]_{T}$, (b) $\left.: 130^{\circ}-30^{\circ}\right]_{T}$, (c) $:\left[60^{\circ}-60^{\circ}\right]_{T}$.

Nous examinons maintenant l'influence des orientations des fibres sur la première fréquence propre addimensionnelle ω^{*} dans le cas des deux configurations suivantes :

- La plaque à un rapport $h / a=0.01$.
- La plaque à un rapport $h / a=0.2$.

Figure 4.8 Influence de l'orientation des fibres θ sur la première fréquence propre addimensionnelle ω^{*} d'un stratifié équilibré antisymétrique $[\theta /-\theta]_{\mathrm{ST}}$ avec h/a=0.01

Figure 4.9 Influence de l'orientation des fibres θ sur la première fréquence propre addimensionnelle ω^{*} d'un stratifié équilibré antisymétrique $[\theta /-\theta]_{\text {ST }}$ avec $h / a=0.2$

D'après Les figures 4.8 et 4.9 , on remarque que l'influence de l'angle θ sur la fréquence fondamentale dans le cas de $h / a=0.01$ est plus grande que dans le cas de $h / a=0.2$. Ceci peut être expliqué par la densité des couches dans l'épaisseur du stratifié.

Enfin, on peut dire que le contrôle de la géométrie des plaques stratifiées et l'orientation des fibres permet d'augmenter la rigidité de ces plaques et par conséquent leur durée du fonctionnement.

4.3.5 Influence des conditions aux limites

Nous considérons une plaque rectangulaire de dimension : $a=1 \mathrm{~m}, b=0.5 \mathrm{~m}$ et $h=0.3 \mathrm{~m}$ constituée d'un stratifié équilibré antisymétrique $\left[45^{\circ} /-45^{\circ}\right]_{6 T}$. Les caractéristiques mécaniques de ce stratifié sont typiques à celles du composite carbone-epoxyde :

$$
E_{1}=230 \mathrm{GPa} \quad E_{2}=14.4 \mathrm{GPa} \quad G_{12}=4.9 \mathrm{GPa} \quad v_{12}=0.32 \quad \rho=1650 \mathrm{~kg} / \mathrm{m}^{3}
$$

L'étude de l'influence des conditions aux limites sur les fréquences propres de vibration peut être établie en combinant les conditions aux limites suivantes :
extrémités simplement appuyées:

$$
\begin{array}{ll}
v_{0}=w_{0}=\theta_{x}=0 & \text { à } y=0 . \\
v_{0}=w_{0}=\theta_{x}=0 & \text { à } y=b . \\
u_{0}=w_{0}=\theta_{y}=0 & \text { à } x=0 . \\
u_{0}=w_{0}=\theta_{y}=0 & \text { à } x=a .
\end{array}
$$

extrémités encastrées :

$$
u_{0}=v_{0}=w_{0}=\theta_{x}=\theta_{y}=0 .
$$

sur les quatre côtés

Les quatre premières fréquences propres ω obtenues pour les différents types des conditions aux limites ainsi que les déformées modales correspondantes, sont reportées dans le tableau 4.5. On remarque que le comportement le plus rigide est atteint lorsque la plaque est encastrée sur ses quatre extrémités. Par contre, la plaque devient plus flexible dans le cas des extrémités simplement appuyées. Cependant, le type des conditions aux limites n'a pas un grand effet sur la forme de la déformation de la plaque, presque la même déformée est obtenue dans les cas considérés dans cette étude. D'autre part, les résultats obtenus indiquent clairement que les fréquences propres sont proportionnelles au nombre de degrés de fixation représentant les conditions aux limites. Si le choix des conditions aux limites n'influe pas sur l'idée originale de conception, il est alors conseillé d'opter pour des extrémités encastrées au lieu des extrémités simplement appuyées.

Tableau 4.5 Fréquences propres ω et déformées modales d'une plaque rectangulaire constituée d'un stratifié équilibré antisymétrique $\left[45 \%-45^{\circ}\right]_{6 T}$

Type de conditions aux limites	Mode 1	Mode 2	Mode 3	Mode 4
SSSS				
ESES	$\omega=11273 \mathrm{rd} / \mathrm{s}$	$\omega=14880 \mathrm{rd} / \mathrm{s}$		$\omega=21640 \mathrm{rd} / \mathrm{s}$
SSSE		$\omega=14882 \mathrm{rd} / \mathrm{s}$	$\omega=18971 \mathrm{rd} / \mathrm{s}$	$\omega=21670 \mathrm{rd} / \mathrm{s}$
SSEE		$\omega=14916 \mathrm{rd} / \mathrm{s}$	$\omega=19025 \mathrm{rd} / \mathrm{s}$	$\omega=21675 \mathrm{rd} / \mathrm{s}$
SEEE		$\omega=14954 \mathrm{rd} / \mathrm{s}$		$\omega=21694 \mathrm{rd} / \mathrm{s}$
EEEE		$\omega=15014 \mathrm{rd} / \mathrm{s}$	$\omega=19095 \mathrm{rd} / \mathrm{s}$	$\omega=21696 \mathrm{rd} / \mathrm{s}$

E : Extrémité encastrée. S : Extrémité simplement appuyée.
ESES: Plaque (i): encastrée suivant $x=0$, (ii): simplement appuyée suivant $y=0$,
(iii) : encastrée suivant $x=a$, (iv) : simplement appuyée suivant $y=b$.

4.3.6 Influence de l'empilement des couches

L'étude de l'influence de l'empilement des couches permet d'appréhender les phénomènes de couplages entre membrane, flexion, cisaillement et torsion. Divers couplages peuvent être observés et mis en évidence. Le couplage traction - cisaillement provient des termes A_{16} et A_{26}. Le couplage membrane - flexion résulte des termes B_{11}, B_{12} et B_{22}, alors que le couplage membrane - torsion résulte des coefficients B_{16} et B_{26}. Enfin, le couplage flexion - torsion résulte des termes D_{16} et D_{26}.

Pour cette application, nous considérons une plaque carrée de mêmes caractéristiques géométriques que celles présentées dans la section 4.3.2. Nous étudions les séquences d'empilement suivantes :

- Stratifié croisé symétrique (SCS) $\left[0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ} / 0^{\circ}\right]$ pour lequel il n'existe aucun type de couplage ($A_{16}=A_{26}=0, B_{i \mathrm{ij}}=0, D_{16}=D_{26}=0$).
- Stratifié croisé antisymétrique (SCAS) $\left[0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ}\right]$ qui est caractérisé par la présence de couplage membrane-flexion ($A_{16}=A_{26}=0$, $B_{12}=B_{16}=B_{26}=B_{66}=0, D_{16}=D_{26}=0$).
- Stratifié équilibré symétrique (SES) [$\left.45 \%-45 \% / 45 \%-45 \%-45 \% / 45 \%-45^{\circ} \% 45^{\circ}\right]$ qui présente un couplage flexion-torsion ($A_{16}=A_{26}=0, B_{\mathrm{ij}}=0$).
- Stratifié équilibré antisymétrique (SEAS) [$\left.45 \%-45 \% / 45 \%-45 \% / 45 \%-45 \% / 45 \%-45^{\circ}\right]$ qui présente un couplage membrane-torsion ($A_{16}=A_{26}=0, B_{11}=B_{22}=B_{12}=B_{66}=0, D_{16}=D_{26}=0$)
- Stratifié équilibré quelconque (SEQ) $\left[0^{\circ} / 30^{\circ} / 45^{\circ} / 60^{\circ} / 0^{\circ} \%-30^{\circ} \%-45^{\circ} \%-60^{\circ}\right]$ qui est caractérisé par un couplage membrane-flexion/torsion $\left(A_{16}=A_{26}=0\right)$.
- Stratifié quelconque $(\mathrm{SQ})\left[0^{\circ} / 15^{\circ} / 30^{\circ} / 45^{\circ} / 60^{\circ} / 70^{\circ} / 80^{\circ} / 90^{\circ}\right]$ où nous avons la présence simultanée de tous les types de couplages.

Les couches des stratifiés étudiés ont les mêmes caractéristiques mécaniques, ces caractéristiques sont typiques à celles du composite Kevlar-epoxyde :

$$
E_{1}=84 \mathrm{GPa} \quad E_{2}=5.6 \mathrm{GPa} \quad G_{12}=2.1 \mathrm{GPa} \quad v_{12}=0.34 \quad \rho=1370 \mathrm{~kg} / \mathrm{m}^{3}
$$

D'après les résultats présentés dans le tableau 4.6, on constate que la présence simultanée des couplages entre membrane, cisaillement, flexion et torsion réduit la fréquence propre de vibration. Par contre, l'absence des couplages membrane-flexion, flexion-torsion et tractioncisaillement (cas d'un stratifié équilibré antisymétrique), permet d'avoir un comportement plus rigide de la structure. Les résultats montrent également que les stratifiés symétriques sont plus flexibles que les stratifiés antisymétriques. Cependant, il est intéressant de noter qu'une stratification symétrique garantira une bonne planéité du stratifié après démoulage.

Tableau 4.6 Fréquences propres ω et déformées modales d'une plaque carrée en appuis simples avec différentes séquences d'empilement

CONCLUSION GENERALE

L'étude et l'analyse du comportement mécanique des plaques composites aboutissent à des résultats qui permettent de donner des informations très importantes vis-à-vis à la compréhension de certains phénomènes ; parmi eux on cite le phénomène des vibrations qui sont considérées comme l'une des sources de dégradation des structures composites (fissuration des matrices et/ou rupture des fibres par fatigue).

Le but essentiel de ce travail est de traiter le problème des vibrations libres non-amorties des plaques composites stratifiées à base de fibres unidirectionnelles. Un schéma de déplacement de premier degré basé sur la théorie de Yang, Norris et Stavsky a été utilisé dans le but de développer les équations du mouvement. L'inexistence de la solution analytique de ces équations nous a amené à rétablir les équations du mouvement au moyen de la méthode des éléments finis vu que cette dernière a la possibilité de résoudre les problèmes complexes de l'analyse des structures. Cette analyse nous a conduit à obtenir un système d'équations sous forme d'un problème aux valeurs propres dont sa résolution a été établit par la méthode des itérations sur sous espace. Un programme informatique a été développé dans le but de déterminer les solutions propres de vibration (fréquences propres et déformées modales) des plaques composites stratifiées. Ce programme peut traiter d'une manière analogue les plaques isotropes.

Dans chaque analyse par éléments finis, l'élément de référence, le nombre des éléments utilisés, le type de l'intégration numérique sont des paramètres très importants et doivent être soigneusement choisies car ils influent d'une manière directe sur la convergence des solutions et par conséquent sur la précision des résultats. A cet effet, la technique de l'intégration sélective a été utilisée pour intégrer les termes de la matrice de rigidité. Les termes de la
matrice de masse ont été intégrés par la méthode de Lobatto dans le but d'obtenir une matrice consistante diagonale.

Une étude sur l'influence du rapport épaisseur/longueur de la plaque sur les fréquences propres de vibration a été effectuée. Cette étude nous a montré l'importance des déformations en cisaillement transverse dans le cas des plaques épaisses. L'effet du nombre de couches sur les fréquences propres a été également examiné, il a été constaté que la rigidité de la plaque est légèrement affectée par la variation de ce nombre. L'influence de (i) l'anisotropie du matériau (ii) l'orientation des fibres, (iii) l'empilement des couches et (iv) les conditions aux limites, sur les fréquences propres de vibration ont été complètement examinées.

D'après les résultats obtenus, on peut dire que l'emploi de programme développé constitue une approche appropriée pour la recherche des solutions propres de vibration libre non amortie des plaques composites stratifiées à base de fibre unidirectionnelles.

L'influence des vibrations libres non-amorties en tenant compte de l'effet de la variation de la température et de l'humidité à travers l'épaisseur de la plaque font l'objet d'une étude future.

Au-delà des résultats numériques, il est certain que le comportement vibratoire des plaques stratifiées ne doit pas dépendre uniquement d'une seule analyse. Il est alors conseillé, pour un travail futur, de mener plusieurs tests d'expérimentations, puis effectuer une corrélation calculs-essais afin de valider le modèle numérique.

ANNEXE 1

CONDITIONS DE COMPATIBILITE

Etant donné le tenseur des déformations suivant :

$$
[\varepsilon]=\left[\begin{array}{lll}
\varepsilon_{x} & \varepsilon_{x y} & \varepsilon_{x} \tag{A1.1}\\
\varepsilon_{x y} & \varepsilon_{y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z}
\end{array}\right]
$$

Les éléments de la matrice $[\varepsilon]$ sont donnés comme suit :

$$
\begin{align*}
& \varepsilon_{x}=\frac{\partial u}{\partial x} \\
& \varepsilon_{y}=\frac{\partial v}{\partial y} \\
& \varepsilon_{z}=\frac{\partial w}{\partial z} \\
& \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \tag{Al.2}\\
& \varepsilon_{y z}=\frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right) \\
& \varepsilon_{x z}=\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)
\end{align*}
$$

où u, v, w sont respectivement les composantes des déplacements suivant x, y, z.

Le champ des déplacements est obtenu par intégration des équations (A1.2). Soit au total six équations pour déterminer les trois composantes (u, v, w) du déplacement.

Pour que la solution soit unique, les composantes du tenseur des déformations doivent vérifier les six relations suivantes:

$$
\begin{align*}
& \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}}=2 \frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y} \\
& \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}}+\frac{\partial^{2} \varepsilon_{z}}{\partial y^{2}}=2 \frac{\partial^{2} \varepsilon_{y z}}{\partial y \partial z} \\
& \frac{\partial^{2} \varepsilon_{z}}{\partial x^{2}}+\frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}}=2 \frac{\partial^{2} \varepsilon_{x z}}{\partial x \partial z} \\
& \frac{\partial^{2} \varepsilon_{x}}{\partial y \partial z}=\frac{\partial}{\partial x}\left(-\frac{\partial \varepsilon_{y z}}{\partial x}+\frac{\partial \varepsilon_{x z}}{\partial y}+\frac{\partial \varepsilon_{x y}}{\partial z}\right) \tag{A1.3}\\
& \frac{\partial^{2} \varepsilon_{y}}{\partial x \partial z}=\frac{\partial}{\partial y}\left(-\frac{\partial \varepsilon_{x z}}{\partial y}+\frac{\partial \varepsilon_{x y}}{\partial z}+\frac{\partial \varepsilon_{y z}}{\partial x}\right) \\
& \frac{\partial^{2} \varepsilon_{z}}{\partial x \partial y}=\frac{\partial}{\partial z}\left(-\frac{\partial \varepsilon_{x z}}{\partial z}+\frac{\partial \varepsilon_{x y}}{\partial x}+\frac{\partial \varepsilon_{y z}}{\partial y}\right)
\end{align*}
$$

Ces expressions constituent les six relations de compatibilité.

ANNEXE 2

MATRICES DE CHANGEMENT DE BASE

A2.1 CHANGEMENT DE BASE

Considérons deux systèmes de références orthonormés (x, y, z) et $(1,2,3)$ dont leurs bases sont respectivement $\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right),\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ (Figure A2.I).

Figure A2.1 Changement de base

Dans le cas d'une rotation θ autour de la direction \vec{e}_{z}, la relation entre les bases ($\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$) et ($\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}$) s'écrit :

$$
\begin{align*}
& \vec{e}_{1}=\vec{e}_{x} \cos \theta+\vec{e}_{y} \sin \theta \\
& \vec{e}_{2}=-\vec{e}_{x} \sin \theta+\vec{e}_{y} \cos \theta \tag{A2.1}\\
& \vec{e}_{3}=\vec{e}_{z}
\end{align*}
$$

ou sous la forme matricielle suivante :

$$
\left\{\begin{array}{l}
\vec{e}_{1} \tag{A2.2}\\
\vec{e}_{2} \\
\vec{e}_{3}
\end{array}\right\}=[A\}\left\{\begin{array}{l}
\vec{e}_{x} \\
\vec{e}_{y} \\
\vec{e}_{z}
\end{array}\right\}
$$

avec :

$$
[A]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \tag{A2.3}\\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

La matrice $[A]$ s'appelle la matrice de changement de base.

Le passage de la base $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ vers la base ($\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}$) s'effectue par la relation suivante :

$$
\begin{align*}
& \vec{e}_{x}=\vec{e}_{1} \cos \theta-\vec{e}_{2} \sin \theta \\
& \vec{e}_{y}=\vec{e}_{1} \sin \theta+\vec{e}_{2} \cos \theta \tag{A2.4}\\
& \vec{e}_{z}=\vec{e}_{3}
\end{align*}
$$

ou sous forme matricielle :

$$
\left\{\begin{array}{l}
\vec{e}_{x} \tag{A2.5}\\
\vec{e}_{y} \\
\vec{e}_{z}
\end{array}\right\}=\left[A^{T}\right\}\left\{\begin{array}{l}
\vec{e}_{1} \\
\vec{e}_{2} \\
\vec{e}_{3}
\end{array}\right\}
$$

avec :

$$
\left[A^{T}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \tag{A2.6}\\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

La matrice $\left[A^{T}\right]$ est la matrice transposée de la matrice $[A]$, elle est égale a son inverse.

A2.2 MATRICE DE CHANGEMENT DE BASE DES CONTRAINTES

En tout point M d'un milieu continu, l'état des contraintes est entièrement déterminé par la connaissance du tenseur des contrantes, noté $[\sigma(M)]_{x y z}$. Ce tenseur est de range deux, symétrique, représenté par la matrice :

$$
[\sigma(M)]_{x y z}=\left[\begin{array}{lll}
\sigma_{x} & \tau_{x y} & \tau_{x z} \tag{A2.7}\\
\tau_{x y} & \sigma_{y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \sigma_{z}
\end{array}\right]
$$

Le tenseur $[\sigma(M)]_{x y z}$ défini dans la base $\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right)$ peut être défini dans la base $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ par la relation matricielle suivante [33] :

$$
\begin{equation*}
[\sigma]_{123}=[A][\sigma]_{x y}\left[A^{T}\right] \tag{A2.8}
\end{equation*}
$$

La relation inverse s'écrit :

$$
\begin{equation*}
[\sigma]_{x y z}=\left[A^{T}\right][\sigma]_{123}[A] \tag{A2.9}
\end{equation*}
$$

où :

$$
[\sigma]_{123}=\left[\begin{array}{ccc}
\sigma_{1} & \tau_{12} & \tau_{13} \tag{A2.10}\\
\tau_{12} & \sigma_{2} & \tau_{23} \\
\tau_{13} & \tau_{23} & \sigma_{3}
\end{array}\right]
$$

La relation (A2.8) conduit à écrire :

$$
\begin{align*}
& \sigma_{1}=\sigma_{x} \cos ^{2} \theta+2 \tau_{x y} \cos \theta \sin \theta+\sigma_{y} \sin ^{2} \theta \\
& \sigma_{2}=\sigma_{x} \sin ^{2} \theta-2 \tau_{x y} \cos \theta \sin \theta+\sigma_{y} \cos ^{2} \theta \\
& \sigma_{3}=\sigma_{z} \\
& \tau_{12}=-\sigma_{x} \cos \theta \sin \theta+\tau_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+\sigma_{y} \cos \theta \sin \theta \tag{A2.11}\\
& \tau_{23}=-\tau_{x z} \sin \theta+\tau_{y z} \cos \theta \\
& \tau_{13}=\tau_{x y} \cos \theta+\tau_{y z} \sin \theta
\end{align*}
$$

La relation (A2.11) peut être écrite sous la forme matricielle suivante :

$$
\left\{\begin{array}{c}
\sigma_{1} \tag{A2.12}\\
\sigma_{2} \\
\sigma_{3} \\
\tau_{12} \\
\tau_{23} \\
\tau_{13}
\end{array}\right\}=\left[\begin{array}{cccccc}
\cos ^{2} \theta & \sin ^{2} \theta & 0 & 2 \cos \theta \sin \theta & 0 & 0 \\
\sin ^{2} \theta & \cos ^{2} \theta & 0 & -2 \cos \theta \sin \theta & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-\cos \theta \sin \theta & \cos \theta \sin \theta & 0 & \cos ^{2} \theta-\sin ^{2} \theta & 0 & 0 \\
0 & 0 & 0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & 0 & 0 & \sin \theta & \cos \theta
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\tau_{x y} \\
\tau_{y z} \\
\tau_{x z}
\end{array}\right\}
$$

ou sous forme contractée :

$$
\begin{equation*}
\{\sigma\}_{123}=[T]\{\sigma\}_{x y z} \tag{A2.13}
\end{equation*}
$$

[7] : est la matrice de changement de base des contraintes :

A2.3 MATRICE DE CHANGEMENT DE BASE DES DEFORMATIONS

Le tenseur des déformations ayant un tableau des composantes semblable à celui des contraintes :

$$
[\varepsilon]_{x y z}=\left[\begin{array}{lll}
\varepsilon_{x} & \varepsilon_{x y} & \varepsilon_{x z} \tag{A2.14}\\
\varepsilon_{x y} & \varepsilon_{y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z}
\end{array}\right]
$$

les relations de changement de base s'expriment sous la même forme que celles du tenseur des contraintes.

Tenons compte de la relation :

$$
\begin{equation*}
\varepsilon_{i j}=2 \gamma_{i j} \quad i, j=x, y, z \quad \text { et } \quad i \neq j \tag{A2.15}
\end{equation*}
$$

I'expression (A2.8) rapportée au champ des déformations conduit à écrire :

$$
\left\{\begin{array}{l}
\varepsilon_{1} \tag{A2.16}\\
\varepsilon_{2} \\
\varepsilon_{3} \\
\gamma_{12} \\
\gamma_{23} \\
\gamma_{13}
\end{array}\right\}=\left[\begin{array}{cccccc}
\cos ^{2} \theta & \sin ^{2} \theta & 0 & \cos \theta \sin \theta & 0 & 0 \\
\sin ^{2} \theta & \cos ^{2} \theta & 0 & -\cos \theta \sin \theta & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-2 \cos \theta \sin \theta & 2 \cos \theta \sin \theta & 0 & \cos ^{2} \theta-\sin ^{2} \theta & 0 & 0 \\
0 & 0 & 0 & 0 & \cos \theta & -\sin \theta \\
0 & 0 & 0 & 0 & \sin \theta & \cos \theta
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{x y} \\
\gamma_{y z} \\
\gamma_{x z}
\end{array}\right\}
$$

ou sous forme contractée :

$$
\begin{equation*}
\{\varepsilon\}_{123}=\left[T^{\prime}\right]\{\varepsilon\}_{x z z} \tag{A2.17}
\end{equation*}
$$

[T^{\prime} '] : est la matrice de changement de base des déformations.

RELATIONS FONDAMENTALES DES PLAQUES STRATIFIEES

A3.1 RELATIONS D'EQUILIBRE DYNAMIQUE

Soit (D) un domaine d'un milieu continu, de frontière (S) (Figure A3.1). Les forces exercées sur le domaine (D) sont de deux sortes :

1. les forces volumiques (forces de pesanteur, d'inertie, etc.), qui s'exercent dans tout le volume, caractérisées par la densité de force $\vec{f}(M, t)$ par unité de volume. La force qui s'exerce sur l'élément de volume $d V$ entourant le point M est :

$$
\begin{equation*}
d \vec{f}(M, t)=\vec{f}(M, t) d V \tag{A3.1}
\end{equation*}
$$

2. les forces surfaciques qui ne s'exercent que sur la frontière (S) du domaine (D). Elles sont caractérisées par la densité de force (vecteur contrainte) $\vec{t}(M, t)$ par unité de surface. La force qui s'exerce sur l'élément de surface $d S$ entourant le point M s'écrit :

$$
\begin{equation*}
d \vec{t}(M, t)=\vec{t}(M, t) d V \tag{A3.2}
\end{equation*}
$$

Figure A3.I Domaine d'un milieu continu

L'orientation du vecteur contrainte est prise positive de l'intérieur vers l'extérieur de l'élément et correspond dans ce cas à une tension ou traction au point M. Dans le cas contraire, s'exerce en M une compression.

Dans le cas où le repère de référence (x, y, z) est un repère galiléen, la relation fondamentale de la dynamique appliquée à l'élément entourant un point M s'écrit :

$$
\begin{equation*}
\rho(M, t) \vec{a}^{(T)}(M, t) d V=\vec{f}(M, t) d V+\vec{t}(M, t) d S \tag{A3.3}
\end{equation*}
$$

où :
$\rho(M, t) \quad$ est la masse volumique en M à l'instant t.
$\vec{a}^{(T)}(M, t)$ est le vecteur accélération du point M, par rapport au repère (x, y, z) à l'instant t.
Etendue à l'ensemble du domaine (D), la relation fondamentale conduit à une équation de
résultante :

$$
\begin{equation*}
\int_{V}(\rho \vec{a}-\vec{f}) d V-\int_{S} \vec{t} d S=\overrightarrow{0} \tag{A3.4}
\end{equation*}
$$

et une équation de moment en un point de référence, par exemple le point O :

$$
\begin{equation*}
\int_{V} \overrightarrow{O M} \wedge(\rho \vec{a}-\vec{f}) d V-\int_{S} \overrightarrow{O M} \wedge \vec{t} d S=\overrightarrow{0} \tag{A3.5}
\end{equation*}
$$

où les intégrales sont étendues au volume V du domaine et à la surface S de la frontière. Chaque équation conduit dans une base donnée à trois équations scalaires. Par exemple, en introduisant les composantes des différents vecteurs, l'équation de la résultante s'écrit pour la direction i :

$$
\begin{equation*}
\int_{V}\left(f_{i}-\rho a_{i}\right) d V+\int_{S} t_{i} d S=0 \tag{A3.6}
\end{equation*}
$$

ou bien :

$$
\begin{equation*}
\int_{V}\left(f_{i}-\rho a_{i}\right) d V+\int_{S} \sigma_{i j} n_{i} d S=0 \tag{A3.7}
\end{equation*}
$$

L'intégral de surface peut être transformée en une intégrale de volume en utilisant la formule générale de Gauss qui permet de transformer une intégrale de surface en intégrale de volume et conduit ici à :

$$
\begin{equation*}
\int_{S} \sigma_{i j} n_{i} d S=\int_{V} \frac{\partial}{\partial x_{j}} \sigma_{i j} d V \tag{A3.8}
\end{equation*}
$$

La relation (A3.7) s'écrit donc :

$$
\begin{equation*}
\int_{V}\left(f_{i}-\rho a_{i}+\frac{\partial}{\partial x_{j}} \sigma_{i j}\right) d V=0 \tag{A3.9}
\end{equation*}
$$

Cette relation devant être vérifiée pour toute partie du domaine (D) se réduit à :

$$
\begin{equation*}
f_{i}-\rho a_{i}+\frac{\partial}{\partial x_{j}} \sigma_{i j}=0 \tag{A3.10}
\end{equation*}
$$

L'exploitation de l'équation du moment conduit à la même relation, appelée relation fondamentale. Cette relation sous la forme (A3.10) est applicable aux cas de petites déformations. La composante a_{i} du vecteur accélération s'exprime en fonction de la composante u_{i} du vecteur déplacement suivant :

$$
\begin{equation*}
a_{i}=\frac{\partial u_{i}}{\partial t^{2}} \tag{A3.11}
\end{equation*}
$$

et la relation fondamentale conduit aux trois équations :

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+f_{x}=\rho a_{x} \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+f_{y}=\rho a_{y} \tag{A3.12}\\
& \frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+f_{z}=\rho a_{z}
\end{align*}
$$

A3.2 RELATIONS FONDAMENTALES RELATIVES AUX RESULTANTES DE MEMBRANE

L'intégration des deux premières relations (A3.12) suivant l'épaisseur du stratifié conduit aux relations relatives aux résultantes de membrane :

$$
\begin{align*}
& \int_{-h / 2}^{h / 2} \frac{\partial \sigma_{x}}{\partial x} d z+\int_{-h / 2}^{h / 2} \frac{\partial \tau_{x z}}{\partial z} d z+\int_{-h / 2}^{h / 2} \frac{\partial \tau_{x y}}{\partial y} d z+\int_{-h / 2}^{h / 2} f_{x} d z=\int_{-h / 2}^{h / 2} \rho a_{x} d z \tag{A3.13}\\
& \int_{-h / 2}^{h / 2} \frac{\partial \sigma_{x}}{\partial x} d z=\frac{\partial}{\partial x} \int_{-h / 2}^{h / 2} \sigma_{x} d z=\frac{\partial N_{x}}{\partial x} \tag{A3.14}
\end{align*}
$$

De même :

$$
\begin{align*}
& \int_{-h / 2}^{h / 2} \frac{\partial \tau_{x y}}{\partial y} d z=\frac{\partial N_{x y}}{\partial y} \tag{A3.15}\\
& \int_{-h / 2}^{h / 2} \frac{\partial \tau_{x z}}{\partial z} d z=\tau_{x z}\left(\frac{h}{2}\right)-\tau_{x z}\left(-\frac{h}{2}\right) \tag{A3.16}
\end{align*}
$$

où $\tau_{x z}\left(\frac{h}{2}\right)$ et $\tau_{x z}\left(-\frac{h}{2}\right)$ sont les contraintes éventuelles de cisaillement exercées sur les faces supérieure et inférieure du stratifié. Ces contraintes sont généralement nulles. Dans le cas où il sera nécessaire d'en tenir compte, nous les noterons :

$$
\begin{equation*}
\tau_{x z}\left(\frac{h}{2}\right)=\tau_{1 x} \quad \text { et } \quad \tau_{x z}\left(-\frac{h}{2}\right)=\tau_{2 x} \tag{A3.17}
\end{equation*}
$$

D'où

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \frac{\partial \tau_{x z}}{\partial z} d z=\tau_{1 x}-\tau_{2 x} \tag{A3.18}
\end{equation*}
$$

En fin, nous posons :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} f_{x} d z=F_{x} \tag{A3.19}
\end{equation*}
$$

L'intégration du second membre s'effectue on introduisons le champ des déplacements utilisé au Chapitre 1 (relation 1.1), d'où :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \rho a_{x} d z=\int_{-h / 2}^{h / 2} \rho(x, y, z)\left(\frac{\partial^{2} u_{0}}{\partial t^{2}}+z \frac{\partial^{2} \theta_{x}}{\partial t^{2}}\right) d z=\frac{\partial^{2} u_{0}}{\partial t^{2}} \int_{-h / 2}^{h / 2} \rho d z+\frac{\partial^{2} \theta_{x}}{\partial t^{2}} \int_{-h / 2}^{h / 2} \rho z d z \tag{A3.20}
\end{equation*}
$$

Soit :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \rho a_{x} d z=\rho_{s} \frac{\partial^{2} u_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \tag{A3.21}
\end{equation*}
$$

en posant :

$$
\begin{equation*}
\rho_{s}=\int_{-h / 2}^{h / 2} \rho d z \tag{A3.22}
\end{equation*}
$$

la masse surfacique du stratifié au point (x, y) :
et

$$
\begin{equation*}
R=\int_{-h / 2}^{h / 2} \rho z d z \tag{A3.23}
\end{equation*}
$$

L'intégration de la première équation (A3.12) conduit donc finalement à :

$$
\begin{equation*}
\frac{\partial N_{x}}{\partial x}+\frac{\partial N_{x y}}{\partial y}+F_{x}+\tau_{1 x}-\tau_{2 x}=\rho_{s} \frac{\partial^{2} u_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \tag{A3.24}
\end{equation*}
$$

De même, l'intégration de la deuxième équation (A3.12) conduit à :

$$
\begin{equation*}
\frac{\partial N_{y}}{\partial y}+\frac{\partial N_{x y}}{\partial x}+F_{y}+\tau_{1 y}-\tau_{2 y}=\rho_{s} \frac{\partial^{2} v_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{y}}{\partial t^{2}} \tag{A3.25}
\end{equation*}
$$

où $\tau_{1 x}$ et $\tau_{2 x}$ tiennent compte des contraintes éventuelles de cisaillement exercées sur les faces :
et

$$
\begin{equation*}
\tau_{y z}\left(\frac{h}{2}\right)=\tau_{1 y} \quad \tau_{y z}\left(-\frac{h}{2}\right)=\tau_{2 y} \tag{A3.26}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} f_{y} d z=F_{y} \tag{A3.27}
\end{equation*}
$$

A3.3 RELATION FONDAMENTALE RELATIVE AUX RESULTANTES DE CISAILLEMENT

L'intégration suivant l'épaisseur de la troisième équation (A3.12) s'écrit :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \frac{\partial \sigma_{z}}{\partial z} d z+\int_{-h / 2}^{h / 2} \frac{\partial \tau_{y z}}{\partial y} d z+\int_{-h / 2}^{h / 2} \frac{\partial \tau_{x z}}{\partial x} d z+\int_{-h / 2}^{h / 2} f_{z} d z=\int_{-h / 2}^{h / 2} \rho a_{z} d z \tag{A3.28}
\end{equation*}
$$

nous avons :

$$
\begin{align*}
& \int_{-h / 2}^{h / 2} \frac{\partial \tau_{y z}}{\partial y} d z=\frac{\partial}{\partial y} \int_{-h / 2}^{h / 2} \tau_{y z} d z=\frac{\partial Q_{y}}{\partial y} \tag{A3.29}\\
& \int_{-h / 2}^{h / 2} \frac{\partial \tau_{x z}}{\partial y} d z=\frac{\partial Q_{x}}{\partial x} \tag{A3.30}\\
& \int_{-h / 2}^{h / 2} \frac{\partial \sigma_{z}}{\partial z} d z=\sigma_{z}\left(\frac{h}{2}\right)-\sigma_{z}\left(-\frac{h}{2}\right) \tag{A3.31}
\end{align*}
$$

Les contraintes $\sigma_{z}\left(\frac{h}{2}\right)$ et $\sigma_{z}\left(-\frac{h}{2}\right)$ apparaissent comme des forces de pression exercées sur chaque face de la plaque. Nous notons leur différence :

$$
\begin{equation*}
q(x, y)=q=\sigma_{z}\left(\frac{h}{2}\right)-\sigma_{z}\left(-\frac{h}{2}\right) \tag{A3.32}
\end{equation*}
$$

D'où

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \frac{\partial \sigma_{z}}{\partial z} d z=q \tag{A3.33}
\end{equation*}
$$

Enfin

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \rho a_{z} d z=\rho_{s} \frac{\partial^{2} w_{0}}{\partial t^{2}} \tag{A3.34}
\end{equation*}
$$

La combinaison des équations (A3.28) à (A3.34) conduit finalement à :

$$
\begin{equation*}
\frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+q+F_{z}=\rho_{s} \frac{\partial^{2} w_{0}}{\partial t^{2}} \tag{A3.35}
\end{equation*}
$$

en posant :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} f_{z} d z=F_{z} \tag{A3.36}
\end{equation*}
$$

A3.4 RELATIONS FONDAMENTALES RELATIVES AUX MOMENTS

Les relations fondamentales relatives aux moments sont obtenues en multipliant par z les deux premières équations (A3.12), puis en intégrant suivant l'épaisseur. Soit pour la première équation:

$$
\begin{equation*}
\frac{\partial M_{x}}{\partial x}+\frac{\partial M_{x y}}{\partial y}+\int_{-h / 2}^{h / 2} z \frac{\partial \tau_{x z}}{\partial z} d z+\int_{-h / 2}^{h / 2} z f_{x} d z=\int_{-h / 2}^{h / 2} \rho z a_{x} d z \tag{A3.37}
\end{equation*}
$$

En intégrant par parties, nous avons :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} z \frac{\partial \tau_{x z}}{\partial z} d z=\left[z \tau_{x z}\right]_{-h / 2}^{h / 2}-\int_{-h / 2}^{h / 2} \tau_{x z} d z=\frac{h}{2} \tau_{x x}\left(\frac{h}{2}\right)+\frac{h}{2} \tau_{x z}\left(-\frac{h}{2}\right)-Q_{x} \tag{A3.38}
\end{equation*}
$$

soit :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} z \frac{\partial \tau_{x z}}{\partial z} d z=\frac{h}{2}\left(\tau_{1 x}+\tau_{2 x}\right)-Q_{x} \tag{A3.39}
\end{equation*}
$$

Le second membre s'écrit :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \rho z a_{x} d z=\int_{-h / 2}^{h / 2} \rho z\left(\frac{\partial^{2} u_{0}}{\partial t^{2}}+z \frac{\partial^{2} \theta_{x}}{\partial t^{2}}\right) d z=\frac{\partial^{2} u_{0}}{\partial t^{2}} \int_{-h / 2}^{h / 2} \rho z d z+\frac{\partial^{2} \theta_{x}}{\partial t^{2}} \int_{-h / 2}^{h / 2} \rho z^{2} d z \tag{A3.40}
\end{equation*}
$$

soit :

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} \rho z a_{x} d z=R \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \tag{A3.41}
\end{equation*}
$$

en posant :

$$
\begin{equation*}
I_{x y}=\int_{-h / 2}^{h / 2} \rho z^{2} d z \tag{A3.42}
\end{equation*}
$$

$I_{x y}$ est le moment d'inertie par rapport au plan moyen (Oxy) de l'élément de plaque localisé au point (x, y) et ayant des côtés unité :

La première relation des moments s'écrit donc :

$$
\begin{equation*}
\frac{\partial M_{x}}{\partial x}+\frac{\partial M_{x y}}{\partial y}+\frac{h}{2}\left(\tau_{1 x}+\tau_{2 x}\right)+P_{x}-Q_{x}=R \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \tag{A3.43}
\end{equation*}
$$

en posant :

$$
\begin{equation*}
P_{x}=\int_{-h / 2}^{h / 2} z f_{x} d z \tag{A3.44}
\end{equation*}
$$

De même, la deuxième équation (A3.12) conduit à :

$$
\begin{equation*}
\frac{\partial M_{y}}{\partial y}+\frac{\partial M_{x y}}{\partial x}+\frac{h}{2}\left(\tau_{1 y}+\tau_{2 y}\right)+P_{y}-Q_{y}=R \frac{\partial^{2} v_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{y}}{\partial t^{2}} \tag{A3.45}
\end{equation*}
$$

avec :

$$
\begin{equation*}
P_{y}=\int_{-h / 2}^{h / 2} z f_{y} d z \tag{A3.46}
\end{equation*}
$$

A3.5 RESUME DES RELATIONS FONDAMENTALES

Les relations fondamentales des plaques sont donc constituées des expressions (A3.24), (A3.25), (A3.35), (A3.43) et (A3.45). Soit en les regroupant :

$$
\begin{align*}
& \frac{\partial N_{x}}{\partial x}+\frac{\partial N_{x y}}{\partial y}+F_{x}+\tau_{1 x}-\tau_{2 x}=\rho_{s} \frac{\partial^{2} u_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \\
& \frac{\partial N_{y}}{\partial y}+\frac{\partial N_{x y}}{\partial x}+F_{y}+\tau_{1 y}-\tau_{2 y}=\rho_{s} \frac{\partial^{2} v_{0}}{\partial t^{2}}+R \frac{\partial^{2} \theta_{y}}{\partial t^{2}} \\
& \frac{\partial Q_{x}}{\partial x}+\frac{\partial Q_{y}}{\partial y}+q+F_{z}=\rho_{s} \frac{\partial^{2} w_{0}}{\partial t^{2}} \tag{A3.47}\\
& \frac{\partial M_{x}}{\partial x}+\frac{\partial M_{x y}}{\partial y}+\frac{h}{2}\left(\tau_{1 x}+\tau_{2 x}\right)+P_{x}-Q_{x}=R \frac{\partial^{2} u_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{x}}{\partial t^{2}} \\
& \frac{\partial M_{y}}{\partial y}+\frac{\partial M_{x y}}{\partial x}+\frac{h}{2}\left(\tau_{1 y}+\tau_{2 y}\right)+P_{y}-Q_{y}=R \frac{\partial^{2} v_{0}}{\partial t^{2}}+I_{x y} \frac{\partial^{2} \theta_{y}}{\partial t^{2}}
\end{align*}
$$

avec :

$$
\begin{equation*}
\left(\rho_{s}, R, I_{x y}\right)=\int_{-\frac{4}{2}}^{\frac{h}{2}}\left(1, z, z^{2}\right) \rho d z \tag{A3.48}
\end{equation*}
$$

REFERENCES BIBLIOGRAPHIQUES

[1]. Y. Stavsky, On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli, in D. Abir et al. (eds), Topics in Applied Mechanics, American Elsevier, New York, p. 105 (1965).
[2].P. C. Yang, C. H. Norris and Y. Stavsky, Elastic wave propagation in heterogeneous plates. Int. J. Solids Struct., 2, 665-684 (1966).
[3].J. M. Whitney and C. T. Sun, A higher-order for extensional motion of laminated composites, J. Sound Vib., 30, 55-97 (1973).
[4]. S. Srinivas, C. V. Joga Rao and A. K. Rao, An exact analysis for vibration of simplysupported homogeneous and laminated thick rectangular plates, J. Sound Vib. 12, 187199 (1970).
[5]. A. K. Noor, Free vibrations of multilayered composite plates, AIAA. J. 11, 1938-1939 (1973).
[6].A. T. Jones, Exact natural frequencies for cross-ply laminates, J. Comp. Mat., 4, 476491 (1970).
[7].C. W. Bert and T. L. C. Chen, Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates, Int. J. Solids Struct., 14, 465473 (1978).
[8].T. Kant and Mallikarjuna, A higher-order theory for free vibration of unsymmetrically laminated composite and sandwich plates - finite element evaluations, Comput. Struct. 32(5), 1125-1132 (1989).
[9].H. -S. Jing and M. -L. Liao, Partial hybrid stress element for vibrations of thick laminated composite plates, Comput. Struct. 36(1), 57-64 (1990).
[10]. Le-Chung Shiau and Jing-Tang Chang, Transverse shear effect on vibration of laminated plate using higher-order plate element, Comput. Struct. 25(2), 735-740 (1991).
[11]. A. Tesslar, E. Saether and T. Tsui, Vibration of thick laminated composite plates, J. Sound Vibr. 179(3), 475-498 (1995).
[12]. Mallikarjuna and T. Kant, Free vibration of symmetrically laminated plates using a higher-order theory with finite element technique, Int. J. Numer. Methods eng., 28, 1875-1889 (1989).
[13]. C. W. Bert, J. N. Reddy, W. C. Chao and V. S. Reddy, Vibration of thick rectangular plates of bimodulus composite material, J. Appl. Mech., 48, 371-376 (1981).
[14]. T. Fried and D. S. Malkus, Finite element mass matrix lumping by numerical integration without convergence rate loss, Int. J. Solids Struct., 11, 461-466 (1976).
[15]. B. Attaf, Effects of laminate staking sequence on the free vibration of carbon/epoxy composite plates subjected to in-plane loads, La recherche Aérospatiale, 2, 149-153 (1995).
[16]. B. Attaf and L. Hollaway, Vibrational analyses of stiffened and unstiffened composite plates subjected to in-plane loads, Composites 21, $\mathrm{N}^{\circ} 2,117-126$ (1990).
[17]. E. Hinton and N. Bicanic, A comparison of lagrangian and serendipity mindlin plate elements for free vibration analysis, Comput. Struct. 10, 483-493 (1979).
[18]. J. M. Whitney, Shear correction factors for orthotropic laminates under static loads. J. Appl. Mech. 15, 63-69 (1984)
[19]. J. N. Reddy and T. Kuppusamy, Natural vibrations of laminated anisotropic plates, J. Appl. Mech. 18, 63-69 (1984).
[20]. L. W. Chen and J. Y. Yang, Dynamic stability of laminated composite plates by the finite element method, Comput. Struct. 36(5), 845-851 (1990).
[21]. N. S. Putcha and J. N. Reddy, On dynamics of laminated plates using a refined mixed plate element, ASME Winter Annual Meeting, New Orleans, Louisiana, 161-169 (1984).
[22]. O. Saarela, Computer programs for mechanical analysis and design of polymer matrix composites. Prog. Polym. Sci. 19, 171-201 (1994).
[23]. R. D. Mindlin, Influence of rotatory inertia and shear on flexural motion of isotropic, elastic plates. J. Appl. Mech. 18, 31-38 (1951).
[24]. T. Kant, J. H. Varaiya and C. P. Arora, Finite element transient analysis of composite and sandwich plates based on refined theory and implicit time integration shemes. Comp. Struct. 36, N ${ }^{\circ}$, 401-420 (1990).
[25]. T. Rock and E. Hinton, Free vibration and transient response of thick and thin plates using the finite element method, Earthquake Eng. Struct. Dyn. , 3, 51-63 (1974).
[26]. O. C. Zienkiewicz, The finite element method in engineering science, Mac GrawHill, New York (1977).
[27]. R. H. Gallagher, Introduction aux éléments finis. Editions Pluralis (1976).
[28]. T. Y. Yang, Finite element structural analysis, Prentice Hall (1986).
[29]. E. Hinton, Numerical methods and software for dynamic analysis of plates and shells, Pineridge Press, Swansea, U.K. (1988).
[30]. G. Dhatt et G. Touzot, Une présentation de la méthode des éléments finis, Maloine S.A. Editeur (1984).
[31]. H. Babaamer, Fortran 77 cours et exercices, Berti Editions (1989).
[32]. J. -F. Imbert, Analyse des structures par éléments finis. Cepadués - Editions (1991).
[33]. J.-M. Berthelot, Matériaux composites, comportement mécanique et analyse des structures, Masson (1992)
[34]. K. -J. Bathe and E. L. Wilson, Numerical methods in finite element analysis. Prentice Hall (1976).
[35]. W. H. Press, B. P. Flannery, S. A. Teukolsky and W.T.Vetterling, Numerical recipes the art of scientific computing, Cambridge University Press (1986).

