REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE l'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ SAAD DAHLAB BLIDA

INSTTUT D'AERONAUTIQUE ET DES ETUDES SPACIALES

Mémoire de fin d'étude pour obtention du diplôme de

Master

Option : propulsion d'avions

Thème

Etude du comportement thermique sur des plaques métalliques en utilisant la méthode des volumes finis.

(avec la conception d'un code de calcul)

Réalisé par :

SAMAH Lounis

NAMANI Ahmed

Encadré par:

BENNIA Imene

Blida, Septembre 2018

Notre travail à pour objectif la recherche de la distribution de température sur une plaque métallique, ainsi la conception d'un code de calcul pour les problèmes de conduction thermique dans le cas bidimensionnel et tridimensionnel, et de connaître l'influence des paramètres thermo-physiques sur les résultats. Les programmes de notre code sont basés sur la méthode de discrétisation des volumes finis suivant les deux régimes transitoire et stationnaire. Ces programmes sont validés par le logiciel Ansys. Par la suit, une interface graphique à été faite pour faciliter l'utilisation du code de calcul. Différents exemples de simulations sont présentés. Les résultats confirment qu'en augmentant la température imposée, le flux de chaleur, ou la source de chaleur, la température sur la plaque augmente. Le raffinement du maillage nécessite le choix d'un petit epsilon pour assurer la convergence.

Mots clés : transfert thermique, volumes finis, simulation, conduction.

Our work aims to seartch the temperature distibution on a metal plate, also the design of a calculation code for the termal conduction problems in two-dimensional and threedimensional case, and to know the influence of the termo-physical parameters on the results. The programs of our code are based on the finite volumes discretization method for transitory and stationnary regimes. These programs have been validated by using 'Ansys' software in the following, graphic interface has been made to facilitate the use of the calculation code. Different exemples of simulation are presented. The results confirm that by increasing the imposed temperature, the heat flow, or the heat source, the temperature on the plate increases. The refinement of the mesh requires the choice of a small epsilon to ensure the convergence.

Key words : heat transfert, finit volumes, simulation, conduction.

يهدف عملنا إلى البحث عن توزيع الحرارة على لوحة معدنية، يهدف كذلك لتصميم برنامج حساب رقمي خاص بمسائل التوصيل الحراري في الحالات الثنائية الأبعاد و الثلاثية الأبعاد و معرفة تأثير الخصائص الفيزيائية الحرارية على النتائج المتحصل عليها. تعتمد خوارزميات البرنامج على طرق تقسيم المجال بطريقة الأحجام المنتهية تبعا للنظامين الانتقالي و المستقر. تم تصديق الخوارزميات بالاستعانة ببرنامج المحاكاة (Ansys) . بعد ذلك، قمنا بإنشاء واجهة المستخدم الرسمية لتسهيل استخدام برنامج الحساب الرقمي أمثلة مختلفة للمحاكاة موجودة في هذا العمل. النتائج تؤكد أنه كلما نزيد من قيمة درجة الحرارة المفروضة، تدفق الحرارة، قيمة الحرارة المصدرية، فإن درجة الحرارة على لوحة ترتفع. تهذيب الشبكة يحتاج لاختيار قيمة صغيرة جدا لـ'epsilon'، أو قيمة الخطأ النسبي للتقارب ، لضمان تقارب الحل نحو الح الرقمي للمسألة .

كلمات مفتاحيه: الانتقال الحراري، الأحجام المنتهية، المحاكاة، التوصيل الحراري.

Remerciements

En préambule à ce mémoire nous remerciant ALLAH qui nous a aidé et nous a donné la patience et le courage durant ces longues années d'étude.

On tient à remercier infiniment notre directrice de ce mémoire de fin d'étude **MADAME BENNIA Imene**, pour l'orientation, la confiance, la patience sans lequel ce travail n'aurait pas pu être mené au bon port. Qu'elle trouve dans ce travail un hommage vivant à sa haute personnalité.

Nous souhaitant adresser nos remerciements les plus sincères aux enseignants Monsieur AMRI Reda et Monsieur LAAZAB Sbaa qui nous ont apporté leur aide, leurs précieux conseils et orientations tout au long de notre projet.

Nous tenant à remercier sincèrement les personnes qui nous ont aidé et qui ont contribué à l'élaboration de ce mémoire ainsi qu'à la réussite de cette formidable année universitaire.

Nos sincères remercîment vont aussi à monsieur le président et messieurs les membres de jury pour avoir expertisé notre travail et nous avoir honorés par leurs présences.

Nous remercions également tous nos professeurs qui nous ont enseigné durant nos études.

On tient à remercier aussi le corps professoral et administratif de l'institut d'aéronautique et des études Spatiales, pour la richesse et la qualité de leur enseignement et qui déploient de grands efforts pour assurer à leurs étudiants une formation actualisée.

Nous tenons à saisir cette occasion et adresser nos profonds remerciements et nos profondes reconnaissances à nos familles pour leur amour et leur soutient. On leur dédie cette thèse.

Résumé	
Abstract	
منخص	
Remerciements	
Table des matières	
Liste des figures	
Introduction générale	1

Chapitre 1 : Notions fondamentales

1.1	Introduction	.3
1.2	Définitions	.3
1.2.1	Champ de température	.3
1.2.2	Gradient de température	.3
1.2.3	Flux de chaleur	.3
1.3	Bilan d'énergie	.4
1.4	Les modes de transfert de chaleur	.4
1.4.1	Convection	.4
1.4.2	Conduction	.5
1.4.3	Rayonnement	.6
1.5	Equations aux dérivées partielles	.6
1.5.1	Classification des équations différentielles aux dérivées partielles de deuxième ordre	.7
1.5.2	Equation de conductivité thermique	.7
1.5.2	.1 Equation de conductivité monodimensionnel	.7
1.5.2	.2 Equation de conductivité bidimensionnel	.8
1.5.2	.3 Equation de conductivité tridimensionnel	.8
1.6	Les Conditions aux limites	9

1.6.1	Condition de type Dirichlet
1.6.2	Condition de type Neumann10
1.6.3	Condition de type mixte11

Chapitre 2 : les méthodes de discrétisation

2.1	Introduction	12
2.1.1	L'expérience	.12
2.1.2	Le calcul théorique	12
2.1.3	Le calcul numérique (modélisation et simulation)	.13
2.1.4	L'expérience et la simulation	14
2.2	Les méthodes de discrétisation	14
2.2.1	Méthode des différences finies (MDF)	14
2.2.1.1	Principe	15
2.2.1.2	Avantages et inconvénients de la méthode	16
2.2.2	Méthode des éléments finis (MEF)	16
2.2.2.1	Principe mathématique	17
2.2.2.2	Etapes de la mise en œuvre	17
2.2.2.3	Avantages et inconvénients de la méthode	17
2.2.3	Méthodes spectrales	17
2.2.3.1	Avantages et inconvénients de la méthode	18
2.2.4	Méthodes des volumes finis	18
2.2.4.1	Les différentes étapes de la mise en œuvre	19
2.2.4.2	Les règles de base (règles de Patankar)	.19
2.2.4.3	Avantages et inconvénients de la méthode	20

Chapitre 3 : méthode des volumes finis appliquées aux problèmes de conduction thermique

3.1	Introduction2	1
3.2	Cas bidimensionnelle en régime stationnaire2	1
3.2.1	Le choix d'un profil de Température	2
3.2.2	Détermination de la conductivité thermique aux interfaces de volume de contrôle2	3
3.2.2.1	1 ^{ere} approche2	3
3.2.2.2	Considération physique 2 ^{ême} approche	4
3.2.3	Traitement de non-linéarités	6
3.2.4	Linéarisation du terme source	7
3.3	Bidimensionnelle en régime transitoire	7
3.3.1	Schéma explicite	9
3.3.2	Schéma de Crank-Nicolson	1
3.3.3	Schéma totalement implicite	2
3.4	Traitement des conditions aux limites	3
3.4.1	Condition de Type Dyrichlet	3
3.4.2	Condition de Type Newmann	3
3.5	Cas tridimensionnel en régime stationnaire	4
3.6	Cas tridimensionnel en régime transitoire	5
3.6.1	Schéma explicite	7
3.6.2	Schéma de Crank-Nicolson	8
3.6.3	Schéma totalement implicite	9

Chapitre 4 : Exemples et Méthodologie de Programmation

4.1	Quelques exemples traités	40
4.1.1	Exemples 2D	40
4.1.2	Exemple 3D	43
4.2	Méthodologie	43
4.2.1	Introduction	43

4.2.2 Exemples 2D	44
4.2.3 Méthodologie de l'exemple 3D	

Chapitre 5 : Conception de L'interface Graphique

5.1	Introduction	.88
5.2	Organigramme des programmes (Schéma totalement implicite)	.88
5.3	Cas 2D	90
5.3.1	Les étapes du choix des paramètres de simulation	90
5.3.1.1	Choix du régime	90
5.3.1.2	Choix du matériau	92
5.3.1.3	Choix des conditions aux limites et la condition initiale	.94
5.3.1.4	Choix de dimensions	97
5.3.2	Calcul et visualisation	.98
5.3.3	Messages d'avertissement	100
5.4	Cas tridimensionnel	103

Chapitre 6 : Résultats et commentaires

6.1	Introduction	105
6.2	Présentation des résultats 2D	105
6.2.1	Validation des résultats	105
6.2.2	Influence du maillage	108
6.2.3	Autres résultats	.114
6.2.3.1	Variation de la température imposée (Exemple 4 du chapitre 4)	.114
6.2.3.2	2 Variation du flux (exemple 5 du chapitre 4)	118
6.2.3.3	3 Variation de la source de chaleur (exemple 1 du chapitre 4)	.122

6.2.3.4	Variation du coefficient ρc_p (exemple 5 du chapitre 4)	125
6.2.3.5	Variation de la conductivité thermique K (exemple 2 du chapitre 4)	129
6.2.3.6	Changement de dimensions (exemple 6 du chapitre 4)	.132
6.2.3.7	Influence d'epsilon dans le cas d'un maillage raffiné	135
6.3	Présentation des résultats3D	.138
6.3.1	Exemple 3D du chapitre 4	138
6.3.2	Comparaison des 3 schémas	.139
Conc	lusion générale	142
Référ	ences	144

1.1	Schéma explicatif du bilan d'énergie	4
1.2	Schéma explicatif du transfert de chaleur par convection	5
1.3	Schéma du transfert de chaleur conductif	6
1.4	Température imposée aux frontières(conditions aux limites du premier type)	10
1.5	Densité du flux imposé aux frontières (conditions aux limites du deuxième type)	10
1.6	Conditions aux limites de type "convection" aux frontières	11
2.1	Le principe du calcul théorique	12
2.2	Le principe du calcul numérique	13
2.3	Maillage 1D	15
3.1	Volume de contrôle bidimensionnel	21
3.2	Choix de profil de température suivant x du volume de contrôle	22
3.3	Choix de profil de température suivant y du volume de contrôle	22
3.4	Détermination de la conductivité thermique	23
3.5	Conductivité thermique à l'interface	24
3.6	Discrétisation suivant x	25
3.7	Discrétisation suivant y	26
3.8	Schéma explicatif du traitement de non-linéarités des conditions	26
3.9	Volume de contrôle bidimensionnel	27
3.10	Demi-volume de contrôle sur la frontière "E"	33
3.11	Volume de contrôle tridimensionnel	34
4.1	Maillage 2D pour le domaine de calcul	44
4.2	Demi-volume de contrôle sur la frontière "W"	46
4.3	Demi-volume de contrôle sur la frontière "E"	48
4.4	Demi-volume de contrôle sur la frontière "N"	50
4.5	Quart du volume de contrôle (le coin "N-E")	51
4.6	Quart du volume de contrôle (le coin "N-W")	53
4.7	Maillage 2D pour le domaine de calcul	56
4.8	Demi-volume de contrôle sur la frontière "W"	58

4.9	Demi-volume de contrôle sur la frontière "S"	60
4.10	Quart de volume de contrôle (le coin W-S)	61
4.11	Demi-volume de contrôle sur la frontière "E"	62
4.12	Demi-volume de contrôle sur la frontière "N"	64
4.13	Quart du volume de contrôle (le coin "N-E")	66
4.14	Quart du volume de contrôle (le coin "N-W")	67
4.15	Quart du volume de contrôle (le coin "S-E")	69
4.16	Maillage 3D pour le domaine de calcul	72
4.17	Face avant	73
4.18	Face intérieur du cube	78
4.19	Face arrière	
5.1	L'interface graphique du code de calcul	
5.2	Choix du régime	91
5.3	Choix du régime stationnaire	91
5.4	Choix du régime transitoire	
5.5	Choix du matériau	
5.6	Choix automatique des paramètres du matériau	93
5.7	Choix manuel du matériau en régime stationnaire	93
5.8	Choix manuel du matériau en régime transitoire	94
5.9	Choix des conditions aux limites	94
5.10	Paramètres associés à chaque type de conditions aux limites	95
5.11	Confirmation des paramètres de condition aux limites	96
5.12	Choix de dimensions et maillage	97
5.13	Choix du terme source	98
5.14	Visualisation non confirmé	
5.15	Visualisation avec tecplot	99
5.16	Visualisation avec d'autres options que Tecplot	99
5.17	Influence du choix manuel du matériau sur le bouton 'calculer'	100
5.18	Message d'avertissement	101
5.19	Message de surchauffe 'Overheat'	

Liste des figures

5.20	Message paramètre manquant	102
5.21	L'interface graphique dans le cas tridimensionnel	
5.22	Les nouveaux paramètres dans le cas tridimensionnel	104
6.1	Visualisation avec Surfer (Exemple1)	105
6.2	Visualisation avec Ansys (Exemple1)	105
6.3	Visualisation avec Surfer (Exemple2)	106
6.4	Visualisation avec Ansys (Exemple2)	106
6.5	Visualisation avec Surfer (Exemple3)	106
6.6	Visualisation avec Ansys (Exemple3)	106
6.7	Visualisation avec Surfer (Exemple4)	
6.8	Visualisation avec Ansys (Exemple4)	
6.9	Visualisation avec Surfer (Exemple5)	107
6.10	Visualisation avec Ansys (Exemple5)	
6.11	Visualisation avec Surfer (Exemple6)	108
6.12	Visualisation avec Ansys (Exemple6)	
6.13	Ligne de température (Exemple1)	
.6.14	Graphe de la température en fonction de la position y. (Exemple1)	109
6.15	Ligne de température (Exemple2)	109
6.16	Graphe de la température en fonction de la position y (Exemple2)	110
6.17	Ligne de température (Exemple3)	110
6.18	Graphe de la température en fonction de la position x (Exemple3)	111
6.19	Ligne de température (Exemple4)	111
6.20	Graphe de la température en fonction de la position y (Exemple4)	112
6.21	Ligne de température (Exemple5)	112
6.22	Graphe de la température en fonction de la position y (Exemple5)	113
6.23	Ligne de température (Exemple6)	113
6.24	Graphe de la température en fonction de la position y (Exemple6)	114
6.25	Visualisation avec Tecplot (Température imposée égale à 200 °C)	
6.26	Visualisation avec Ansys (Température imposée égale à 200 °C)	115
6.27	Visualisation avec Tecplot (Température imposée égale à 300 °C)	116

6.28	Visualisation avec Ansys (Température imposée égale à 300 °C)116
6.29	Visualisation avec Tecplot (Température imposée égale à 400 °C)116
6.30	Visualisation avec Ansys (Température imposée égale à 400 °C)116
6.31	Ligne des températures (variation de la température imposée)116
6.32	Graphe de la température en fonction de la position y(variation de la températureimposée).117
6.33	Visualisation avec Tecplot (Pour un flux égale à 60000 W/m^2)119
6.34	Visualisation avec Ansys (Pour un flux égale à 60000 W/m^2)119
6.35	Visualisation avec Tecplot (Pour un flux égale à 80000 W/m^2)119
6.36	Visualisation avec Ansys (Pour un flux égale à 80000 W/m^2)119
6.37	Visualisation avec Tecplot (Pour un flux égale à 100000 W/m^2)120
6.38	Visualisation avec Ansys (Pour un flux égale à 100000 W/m^2)120
6.39	Ligne des températures (variation du flux)
6.40	Graphe de la température en fonction de la position y (variation de flux)121
6.41	Visualisation avec Tecplot (pour S = 90000 W/m ³)122
6.42	Visualisation avec Ansys (pour S = 90000 W/m ³)122
6.43	Visualisation avec Tecplot (pour S = 200000 W/m ³)123
6.44	Visualisation avec Ansys (pour S = 200000 W/m ³)123
6.45	Visualisation avec Tecplot (pour S = 400000 W/m^3)123
6.46	Visualisation avec Ansys (pour S = 400000 W/m ³)123
6.47	Ligne des températures (Variation de la source de chaleur)124
6.48	Graphe de la température en fonction de la position y (variation de la source du chaleur)124
6.49	Visualisation avec Tecplot (Pour $\rho c_p = 35000 \text{ J/m}^3 \text{ C}^\circ$)126
6.50	Visualisation avec Ansys (Pour $\rho c_p = 35000 \text{ J/m}^3 \text{ C}^\circ$)
6.51	Visualisation avec Tecplot (Pour $\rho c_p = 350000 \text{ J/m}^3 \text{C}^\circ$)126
6.52	Visualisation avec Ansys (Pour $\rho c_p = 350000 \text{ J/m}^3 \text{ C}^\circ$)
6.53	Visualisation avec Tecplot (Pour $\rho c_p = 3500000 \text{ J/m}^3 \text{ C}^\circ$)
6.53 6.54	Visualisation avec Tecplot (Pour $\rho c_p = 3500000 \text{ J/m}^3 \text{ C}^\circ$)

6.56	Graphe de la température en fonction de la position y (variation du coefficient ρc_p)128
6.57	Visualisation avec Tecplot (Pour k= 35 W/m.C°)129
6.58	Visualisation avec Ansys (Pour k=35 W/m.C°)129
6.59	Visualisation avec Tecplot (Pour k=350 W/m.C°)130
6.60	Visualisation avec Ansys (Pour k=350 W/m.C°)130
6.61	Visualisation avec Tecplot (Pour k=3500 W/m.C°)130
6.62	Visualisation avec Ansys (Pour k=3500 W/m.C°)130
6.63	Ligne des températures (Variation de la conductivité thermique K)131
6.64	Graphe de la température en fonction de la position y (variation du coefficient k)131
6.65	Visualisation avec Tecplot (pour Lx=0.4 m et Ly=0.5 m)133
6.66	Visualisation avec Ansys (pour Lx=0.4 m et Ly=0.5 m)133
6.67	Visualisation avec Tecplot (pour Lx=0.04 m et Ly=0.05 m)133
6.68	Visualisation avec Ansys (pour Lx=0.04 m et Ly=0.05 m)133
6.69	Visualisation avec Tecplot (pour Lx=0.004 m et Ly=0.005 m)134
6.70	Visualisation avec Ansys (pour Lx=0.004 m et Ly=0.005 m)134
6.71	Ligne des températures (changement des dimensions)
6.72	Graphe des températures en fonction de Noeuds.(changement des dimensions)134
6.73	Visualisation pour Lx=0.04m et Ly=0.05 m (pour eps=0.0001)136
6.74	Visualisation pour Lx=0.05m et Ly=0.04 m (pour eps=0.0001)136
6.75	Visualisation pour Lx=0.04m et Ly=0.05 m, 30 nœuds suivant l'axe X (pour eps=0.0001)136
6.76	Visualisation pour Lx=0.05m et Ly=0.04 m, 30 nœuds suivant l'axe Y(pour eps=0.0001)136
6.77	Visualisation pour Lx=0.04m et Ly=0.05 m pour (pour eps=10 ⁻¹¹)137
6.78	Visualisation pour Lx=0.05m et Ly=0.04 m pour (pour eps=10 ⁻¹¹)137
6.79	Visualisation pour Lx=0.04m et Ly=0.05 m, 30 nœuds suivant l'axe X (pour eps=10 ⁻¹¹)137
6.80	Visualisation pour Lx=0.05m et Ly=0.04 m, 30 nœuds suivant l'axe Y (pour eps=10 ⁻¹¹)137
6.81	Visualisation avec Tecplot (Exemple 3D)
6.82	Visualisation avec Ansys (Exemple 3D)
6.83	Ligne de température (Exemple 3D)
6.84	Graphe de la température en fonction de la position y (Exemple 3D)139

- **T** : Température (°K) ;
- q''' : Densité flux de Chaleur (W/m²) ;
- q'': Flux de chaleur (W) ;
- h: Coefficient de transfert de chaleur par convection (W.m⁻².k⁻¹);
- T_p : Température de surface de solide (°K) ;
- T_{∞} : Température de fluide loin de la surface solide (°K) ;
- *K*, λ : Coefficient de transfert de chaleur pat conduction (W.m⁻¹.k⁻¹);
- σ : Constant de stefan-Boltzmann (W.m⁻².k⁻⁴);
- ε : Facteur d'émission de la surface (sans dimension) ;
- (EDP) : Equations Aux Dérivées partielles ;
- $\boldsymbol{\rho}$: La masse volumique (Kg/m³);
- Cp: Chaleur spécifique (J.Kg⁻¹.K⁻¹);
- $\vec{\boldsymbol{v}}$: Vecteur vitesse (m/s) ;
- Γ_{Φ} : Coefficient de diffusion ;
- S: Terme source (W/m³);
- f_e : Facteur d'interpolation linéaire des schémas temporels.

Introduction générale

L'échange de chaleur se réalise partout au tour de nous. Les corps échangent de la chaleur avec leurs milieux tout le temps selon différents modes de transfert résumés en convection, rayonnement et conduction. Dans un milieu opaque on est confronté à un transfert par conduction et un échange avec le milieu extérieur selon les autres modes de transfert. La prédiction d'un tel phénomène (dans une plaque par exemple) se fait soit par expérience, soit par calcul théorique ou par calcul numérique à travers des logiciels commerciaux ou par un code conçu par nous mêmes. Pour ces avantages, le calcul numérique est devenu de plus en plus indispensable.

Dans ce travail, on s'intéresse à la recherche de la distribution de la température dans une plaque en affrontant des problèmes de conduction thermique associés à la nature d'échange de chaleur avec le milieu extérieur. Ce dernier est pris en charge par les différentes conditions aux limites.

D'autre part, la solution numérique nécessite, pour de tels problèmes, la présence des méthodes de discrétisation pour pouvoir exploiter les outils de résolution numérique. En général, en transfert thermique, on utilise la méthode des différences finis ou la méthode des volumes finis. Dans ce travail on a choisie la méthode des volumes finis pour sa préservation du caractère conservatif des équations différentielles, et elle est applicable pour des géométries complexes.

Alors, notre travail est une contribution à l'étude du comportement thermique sur une plaque métallique en plusieurs dimensions (bidimensionnelle et tridimensionnelle), et suivant les deux régimes, transitoire et stationnaire, et en prenant en compte l'échange de la chaleur avec le milieu extérieur selon quatre conditions aux limites (température imposée, flux imposé, cas d'isolation parfaite et la prise en charge du transfert par convection).

Pour faire cette étude, nous avons conçu un code qui calcul la température sur une plaque pour différentes conditions thermo-physiques pour les cas 2D et 3D. D'autre part, une interface de ce code à été réalisée pour simplifier son utilisation..

Pour cela, cette étude est présentée en six chapitres :

Dans un premier temps, les différents mécanismes de transfert thermique sont présentés brièvement dans le premier chapitre.

Dans le deuxième chapitre, nous avons présenté les principales méthodes de discrétisation, et on a fait une comparaison entre les avantages et les inconvénients de chaque méthode.

Dans le troisième chapitre, nous avons détaillé la méthode des volumes finis appliquée aux problèmes de conduction thermique, et nous avons présenté les différentes procédures pour rendre des équations différentielles sous forme algébriques pour le cas d'un régime stationnaire ou transitoire.

Le chapitre qui suit, est consacré à la présentation de la méthodologie d'utilisation de la méthode des volumes finis dans le cas bidimensionnelle et tridimensionnelle. Plusieurs exemples de simulation sont présentés dans ce chapitre pour les deux cas 2D et 3D. Les différentes conditions aux limites et d'autres détails sont définis dans chaque exemple de simulation.

Tandis que dans le cinquième chapitre, nous avons illustré la conception de l'interface graphique du code de calcul. Tout d'abord, nous avons commencé par un algorigramme de résolution qui explique les étapes à suivre. Ensuite, nous avons présenté chaque paramètre nécessaire (physique ou numérique) pour réaliser la simulation. Cette présentation est faite par des figures ou des commentaires explicatifs.

Le dernier chapitre est dédié à la discussion des différents résultats de plusieurs simulations choisis comme exemples et à l'étude des différentes caractéristiques physiques et numériques du problème. Les résultats numériques sont validés par les résultats obtenus par le logiciel Ansys. Nous concluons avec des commentaires et interprétations.

Enfin, le mémoire se termine par une conclusion générale qui fait objet de bilan et de perspectives proposées pour la continuité de cette étude.

Chapitre 1 : Notions fondamentales

1.1. Introduction :

La thermique présente la science qui étudie quantitativement (dans l'espace et dans le temps) l'évolution des grandeurs caractéristiques du système, en particulier la température, entre l'état d'équilibre initial et l'état d'équilibre final.

L'échange de chaleur se trouve dans la nature en trois modes, présentés comme suit :

- La convection.
- La conduction.
- Le rayonnement.

1.2. Définitions :

1.2.1. Champ de température :

Les transferts d'énergie sont déterminés à partir de l'évolution dans l'espace et dans le temps de la température : T = f(x,y,z,t). La valeur instantanée de la température en tout point de l'espace est un scalaire appelé champ de température.

1.2.2. Gradient de température :

Si l'on réunit tous les points de l'espace qui ont la même température, on obtient une surface dite surface isotherme. La variation de température par unité de longueur est maximale le long de la normale à la surface isotherme. Cette variation est caractérisée par le gradient de température.

$$\overrightarrow{grad}(T) = \overrightarrow{n}.\frac{\partial T}{\partial n}$$
(1.1)

Avec :

 \vec{n} : Vecteur unitaire de la normale perpendiculaire à la surface isotherme ;

 $\frac{\partial T}{\partial n}$: Dérivée de la température le long de la normale.

1.2.3. Flux de chaleur :

La chaleur s'écoule sous l'influence d'un gradient de température des hautes vers les basses températures. La quantité de chaleur transmise par unité de temps et par unité d'aire de la surface isotherme est appelée densité de flux de chaleur.

$$q^{\prime\prime\prime} = \frac{1}{A} \cdot \frac{dQ}{dt} \tag{1.2}$$

Le flux de chaleur est la quantité de chaleur transmise sur la surface A par unité de temps.

$$q^{\prime\prime} = \frac{dQ}{dt} \tag{1.3}$$

1.3. Bilan d'énergie :

Pour formuler un problème de transfert de chaleur, il faut tout d'abord définir un système (S) par ses limites dans l'espace et il faut ensuite identifier le bilan des différents flux de chaleur qui influent sur l'état du système et qui se divisent en quatre formes :

$$q_{x}^{*} + q_{g}^{*} = q_{x+dx}^{*} + q_{st}^{*}$$
(1.4)

 q_{x} : Flux de chaleur entrant ;

 q_{x+dx} : Flux de chaleur sortant ;

 q_{st} : Flux de chaleur stocké ;

 q_{a} : Flux de chaleur généré .

et qui se trouvent en appliquant le 1^{er} principe de la thermodynamique.

Fig1.1 Schéma explicatif du bilan d'énergie

1.4. Les modes de transfert de chaleur :

1.4.1. La convection :

C'est le transfert de chaleur entre un solide et un fluide, l'énergie étant transmise par déplacement du fluide. Ce mécanisme de transfert est régi par la loi de Newton, quantifié par la loi suivante :

$$q^{\nu} = h.A.(T_p - T_{\infty})$$
 (1.5)

Fig1.2 Schéma explicatif du transfert de chaleur par convection

Tel que :

 $q^{"}$: Flux de chaleur transmis par convection (W);

- h : Coefficient de transfert de chaleur par convection (W.m⁻².k⁻¹);
- A : La surface de contact solide/fluide (m^2) ;
- T_p : Température de surface du solide (k) ;
- T_{∞} : Température du fluide loin de la surface solide (k).

N.B : La valeur du coefficient de transfert de chaleur par convection h est fonction de la **nature du fluide**, de sa **température**, de sa **vitesse** et des **caractéristiques géométriques** de la surface de contact solide/fluide.

1.4.2. Conduction :

C'est le transfert de chaleur au sein d'un milieu opaque, sous l'influence d'une différence de température. La propagation de la chaleur par conduction s'effectue selon deux mécanismes distincts : une transmission par les vibrations des atomes ou molécules et une transmission par les électrons libres.

La théorie d'un tel mode est quantifiée par l'hypothèse de Fourier : la densité de flux dans chaque direction est proportionnelle au gradient de température, à la surface perpendiculaire à la direction du flux et au sens négatif de gradient, ce qui laisse écrire :

$$\overrightarrow{q''} = -k.A.\,\overrightarrow{grad}(T) \tag{1.6}$$

Et d'une forme algébrique :

$$q^{\prime\prime} = -k.A.\frac{\partial T}{\partial x}$$
(1.7)

Fig1.3 Schéma du transfert de chaleur conductif

Tel que :

- $q^{"}$: Flux de chaleur transmis par conduction (W) ;
- k : Coefficient de transfert de chaleur par conduction (W.m⁻¹.k⁻¹);
- A : La section de passage de flux de chaleur (m^2) ;
- x : La variable de l'espace dans la direction de flux (m).

1.4.3. Rayonnement :

Le troisième mode de transfert de chaleur est dû à la propagation des ondes électromagnétiques. Ce phénomène régi sous la relation suivante :

$$q^{\prime\prime} = \sigma. \varepsilon. A. \left(T_p^4 - T_{\infty}^4\right) \tag{1.8}$$

Avec :

 $q^{"}$: Flux de chaleur transmis par rayonnement (w) ;

- σ : Constante de Stefan-Boltzmann (5,67.10⁻⁸ W m⁻² K⁻⁴) ;
- ε : Facteur d'émission de la surface.(sans dimension) ;
- A :La surface d'échange (m^2) ;
- T_p : Température de la surface(K) ;
- T_{∞} : Température du milieu environnant la surface(K).

1.5. Equations aux dérivées partielles :

Par définition, une équation aux dérivées partielles (EDP) a pour inconnue une fonction de plusieurs variables (alors qu'une équation différentielle ordinaire a pour inconnue une fonction d'une seule variable). L'analyse mathématique et numérique des EDP est un domaine vaste.

Toutes les équations modèles sont induites par le principe de conservation , la quantité $\phi = \phi(x, y, z, t)$ est appelée la variable dépendante et (x, y, z, t) sont appelées variables indépendantes.

1.5.1. Classification des équations différentielles aux dérivées partielles de deuxième ordre :

Les équations aux dérivées partielles sont classifiées en trois catégories ,pour cela on considère l'équation la plus utilisée suivante :

$$A\frac{\partial^2 \Phi}{\partial x^2} + B\frac{\partial^2 \Phi}{\partial x \partial y} + C\frac{\partial^2 \Phi}{\partial y^2} + D\frac{\partial \Phi}{\partial x} + E\frac{\partial \Phi}{\partial y} + F\phi + G(x, y) = 0$$
(1.9)

On considère que cette équation est linéaire , la classification est faite sur la base des coefficients A,B et C en fonction de la valeur du déterminant :

$$-\begin{vmatrix} A & B \\ B & C \end{vmatrix}$$
(1.10)

L'équation différentielle est appelée :

Elliptique	si	$B^2 - 4AC < 0$	(1.11)

Parabolique si
$$B^2 - 4AC = 0$$
 (1.12)

 $Hyperbolique \quad si \qquad B^2 - 4AC > 0 \tag{1.13}$

1.5.2. Equation de conductivité thermique :

On peut obtenir l'équation de conductivité à partir du bilan d'énergie précédemment décrit tel que :

$$q_{x}^{*} + q_{g}^{*} = q_{x+dx}^{*} + q_{st}^{*}$$
(1.14)

1.5.3. Equation de conductivité monodimensionnel :

On pose **T** une fonction de température qui ne dépend que de la dimension spatiale x et du temps t, on a :

$$q_{x}^{*} = -\left(k.A.\frac{\partial T}{\partial x}\right)_{x}$$
(1.15)

$$q_{x+dx}^{*} = -\left(k.A.\frac{\partial T}{\partial x}\right)_{x+dx}$$
(1.16)

$$q_{g}^{*} = \dot{q}.A.dx \tag{1.17}$$

$$q_{st}^{*} = \rho. Cp. A. dx. \frac{\partial T}{\partial t}$$
(1.18)

On les remplace dans l'équation (1.14) et divisant sur dx, on a donc :

$$\frac{\left(k.A.\frac{\partial T}{\partial x}\right)_{x+dx} - \left(k.A.\frac{\partial T}{\partial x}\right)_{x}}{dx} + \dot{q}.A = \rho.Cp.A.\frac{\partial T}{\partial t}$$
(1.19)

$$\frac{\partial}{\partial x} \left(k.A. \frac{\partial T}{\partial x} \right) + \dot{q}.A = \rho.Cp.A. \frac{\partial T}{\partial t}$$
(1.20)

1.5.4. Equation de conductivité bidimensionnel :

Le raisonnement sera le même et on finira par trouver :

$$\frac{\left(k.A.\frac{\partial T}{\partial x}\right)_{x+dx} - \left(k.A.\frac{\partial T}{\partial x}\right)_{x}}{dx} + \frac{\left(k.A.\frac{\partial T}{\partial y}\right)_{y+dy} - \left(k.A.\frac{\partial T}{\partial y}\right)_{y}}{dy} + \dot{q}.A = \rho.Cp.A.\frac{\partial T}{\partial t}$$
(1.21)

Et donc :

$$\frac{\partial}{\partial x} \left(k_x \cdot A \cdot \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \cdot A \cdot \frac{\partial T}{\partial y} \right) + \dot{q} \cdot A = \rho \cdot Cp \cdot A \cdot \frac{\partial T}{\partial t}$$
(1.22)

1.5.5. Equation de conductivité tridimensionnel :

De même on a :

$$\frac{\left(k.A.\frac{\partial T}{\partial x}\right)_{x+dx} - \left(k.A.\frac{\partial T}{\partial x}\right)_{x}}{dx} + \frac{\left(k.A.\frac{\partial T}{\partial y}\right)_{y+dy} - \left(k.A.\frac{\partial T}{\partial y}\right)_{y}}{dy} + \frac{\left(k.A.\frac{\partial T}{\partial z}\right)_{z+dz} - \left(k.A.\frac{\partial T}{\partial z}\right)_{z}}{dz} + \dot{q}.A = \rho.Cp.A.\frac{\partial T}{\partial t} \quad (1.23)$$

Et nous obtenons l'équation de chaleur dans le cas le plus général :

$$\frac{\partial}{\partial x}\left(k_{x}.A.\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k_{y}.A.\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(k_{z}.A.\frac{\partial T}{\partial z}\right) + \dot{q}.A = \rho.Cp.A.\frac{\partial T}{\partial t}$$
(1.24)

Cette équation peut se simplifier dans un certain nombre de cas :

- a) Si le milieu est isotrope : $k_x = k_y = k_z = k$
- b) S'il n'y a pas de génération d'énergie à l'intérieur du système : $\dot{q} = 0$
- c) Si le milieu est homogène, k n'est fonction que de T.

ce qui permet d'écrire :

$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) = \rho. Cp. \frac{\partial T}{\partial t}$$
(1.25)

d) Si k est constant on obtient l'équation suivante :

$$\alpha.\,\nabla^2 T = \frac{\partial T}{\partial t} \tag{1.26}$$

Avec :

 $\alpha = \frac{k}{\rho.cp}$ est la diffusivité thermique qui caractérise la vitesse de propagation d'un flux de chaleur à travers un matériau.

Si le régime est stationnaire on trouve l'équation de la place :

$$\nabla^2 T = 0 \tag{1.27}$$

1.6. Les Conditions aux limites :

Pour résoudre une équation de transfert de chaleur il est nécessaire d'imposer les conditions initiales et les conditions aux limites. Les conditions initiales indiquent la distribution de la température à t=0 et les conditions aux limites indiquent les conditions thermiques aux frontières du domaine de calcul.

Il existe trois conditions aux limites :

1.6.1. Condition de type Dirichlet :

On peut considérer dans plusieurs applications que la température est connue sur les frontières du domaine de calcul par exemple, une frontière d'une surface en contact avec de la glace est maintenue à une température uniforme ou bien en fonction du temps.

Le schéma ci-dessous explique ce type de conditions :

Fig 1.4 Température imposée aux frontières(conditions aux limites du premier type)

1.6.2. Condition de type Neumann :

Dans certains cas, la densité du flux de chaleur est connue sur les frontières du domaine de calcul par exemple, une frontière est imposée à une source de chaleur .

Le schéma ci-dessous explique ce type de conditions :

Fig 1.5 Densité du flux imposé aux frontières (conditions aux limites du deuxième type).

On peut aussi exprimer q comme densité du flux de rayonnement par l'expression suivante :

$$q = \sigma \varepsilon (T^4 - T_{\infty}^4) \tag{1.28}$$

 T_{∞} : Température ambiante

1.6.3. Condition de type mixte :

Dans certains cas, les frontières présentent un lieu de transfert thermique par convection avec des fluides, ces fluides sont caractérisés par un coefficient de transfert de chaleur **h** et une température.

On peut exprimer ce type de transfert sur la frontière droit par la formule suivante :

$$h_{2}\left[T_{2} - T(x,t)\big|_{x=L}\right] = +\lambda \frac{\partial T(x,t)}{\partial x}\bigg|_{x=L}$$
(1.29)

Pour la frontière gauche :

$$h_1 \left[T_1 - T(x,t) \big|_{x=0} \right] = -\lambda \left. \frac{\partial T(x,t)}{\partial x} \right|_{x=0}$$
(1.30)

Fig 1.6 Conditions aux limites de type "convection" aux frontières

Chapitre 2 : Les Méthodes de discrétisation

2.1 Introduction :

La prédiction de transfert thermique peut être obtenue par trois méthodes : l'expérience, le calcul théorique et le calcul numérique.

2.1.1 L'expérience :

Son principe est de générer le même phénomène ,soit à l'échelle normale ou bien un modèle réduit.

L'expérience donne des résultats plus sures mais demande des moyens très couteux.

2.1.2 Le calcul théorique :

Le schéma ci-dessous illustre le principe de calcul théorique.

Fig2.1 Le principe du calcul théorique

• Avantages :

- Ne nécessite pas, en général, de gros moyens de calcul ;
- N'est pas coûteux ;
- Fournit des solutions exactes ;
- Fournit des résultats à très grande vitesse.

• Inconvénients :

- Le domaine d'application est extrêmement limité par rapport à la réalité physique ;
- Conditions idéalisées ;
- Géométries simples ;
- Phénomènes linéaires ou faiblement non linéaires ;
- Rarement, peut être appliqué pour les problèmes 3D.

2.1.3 Le calcul numérique (modélisation et simulation) :

Ce calcul consiste à transformer les équations (EDP) à l'aide d'une méthode de discrétisation dans un système d'équations algébriques.

Le schéma ci-dessous illustre le principe de calcul numérique :

Fig2.2 Le principe du calcul numérique

• Avantages :

- Permet le calcul d'une solution numérique pour presque tous les problèmes pratiques ayant un modèle mathématique ;
- A un coût très faible, ayant une tendance à la baisse ;

- Présente de la rapidité (permet de modifier la géométrie, les conditions aux limites, etc.);
- Présente une information complète sur tous les champs, tous les points et à tout instant ;
- A la possibilité de simuler des conditions réelles exceptionnelles ;
- A la possibilité de simuler des conditions idéales.

• Inconvénients :

- Difficulté pour sélectionner la *"bonne"* solution en cas de solutions multiples au problème mathématique ;
- Parfois, plus coûteux que l'expérience.

2.1.4 L'expérience et la simulation :

On peut dire que la simulation complète l'expérience ,car l'expérience est indispensable pour permettre de valider un code numérique.

Les expériences et les simulations sont complémentaires ,car la simulation permet de réduire le coût des projets.

Dans ce chapitre , on s'intéresse à la méthode numérique pour cela on va détailler les principales méthodes de discrétisation.

2.2 Les méthodes de discrétisation :

Il y a deux grandes familles de méthodes de discrétisation :

- Les méthodes **d'approximation des équations**. Au quelles on cherche une solution exacte à partir des équations approchées.

- Les méthodes **d'approximation des solutions**. Au quelles on cherche une solution approchée à partir des équations exactes.

2.2.1 Méthode des différences finies (MDF) :

Cette méthode est basée sur le développement en séries de Taylor pour obtenir un système d'équations algébriques pour les valeurs de l'inconnue dans chaque point du maillage. La variable inconnue Φ est décrite par plusieurs valeurs dans les points d'un maillage.

2.2.1.1 Principe :

Le domaine de calcul est discrétisé en un nombre fini de points sur lesquels on approche les opérateurs de dérivation des équations modèles par des développements en séries de Taylor tronquées à l'ordre de précision choisi.

Exemple :

Soit le maillage régulier 1D :

Fig. 2.3 Maillage 1D.

Où

$$\Delta x = x_i - x_{i-1} = x_{i+1} - x_i$$

Le développement en série de Taylor, autour du point *i* du maillage ,est donné par les relations suivantes :

$$\Phi_{i-1} = \Phi_i - \frac{1}{1!} \Delta x \left(\frac{d\Phi}{dx} \right)_i + \frac{1}{2!} (\Delta x)^2 \left(\frac{d^2 \Phi}{dx^2} \right)_i - \frac{1}{3!} (\Delta x)^3 \left(\frac{d^3 \Phi}{dx^3} \right)_i + 0 \left((\Delta x)^4 \right)$$
(2.1)

$$\Phi_{i+1} = \Phi_i + \frac{1}{1!} \Delta x \left(\frac{d\Phi}{dx}\right)_i + \frac{1}{2!} (\Delta x)^2 \left(\frac{d^2\Phi}{dx^2}\right)_i + \frac{1}{3!} (\Delta x)^3 \left(\frac{d^3\Phi}{dx^3}\right)_i + 0((\Delta x)^4)$$
(2.2)

En retenant les premiers deux termes du développement de la relation (2.1) et (2.2) respectivement on obtient :

$$\left(\frac{d\Phi}{dx}\right)_{i} = \frac{\Phi_{i} - \Phi_{i-1}}{\Delta x}$$
(2.3)

et

$$\left(\frac{d\Phi}{dx}\right)_{i} = \frac{\Phi_{i+1} - \Phi_{i}}{\Delta x}$$
(2.4)

ce qui signifie que la dérivée d'ordre 1, au point i, est approchée par différences finies progressives d'ordre 1.

En soustrayant la relation (2.1) de la relation (2.2) on obtient l'approximation par différences finies centrales d'ordre 2 :

$$\left(\frac{d\Phi}{dx}\right)_{i} = \frac{\Phi_{i+1} - \Phi_{i-1}}{2\Delta x}$$
(2.5)

En additionnant les relations (2.1) et (2.2) on obtient l'approximation de la dérivée de deuxième ordre par différences finies centrées d'ordre 2 :

$$\left(\frac{d^{2}\Phi}{dx^{2}}\right)_{i} = \frac{\Phi_{i-1} - 2\Phi_{i} + \Phi_{i+1}}{(\Delta x)^{2}}$$
(2.6)

2.2.1.2 Avantages et inconvénients de la méthode :

• Avantages :

- Simplicité de mise en œuvre ;
- Encombrement mémoire raisonnable (matrice de type bande) et temps de calcul raisonnable ;
- Rapidité et performance des algorithmes ;
- Grand nombre d'EDP approchables.

• Inconvénients :

- Le principe de conservation n'est pas assuré après la discrétisation ;
- L'apparition d'instabilités numériques ;
- Difficulté pour traiter les géométries plus complexes ;
- Peu de souplesse de maillage ;
- Conditions de type Neumann difficiles à gérer.

2.2. 2 Méthode des éléments finis (MEF) :

La méthode des éléments finis consiste à utiliser des fonctions linéaires ou quadratiques sur chaque élément du domaine de calcul, afin d'écrire la variation locale de Φ .

En remplaçant l'approximation de cette dernière dans ces équations pour leurs vérifications.

2.2.2.1 Principe mathématique :

Le principe mathématique est basé sur les méthodes suivantes :

- Méthodes variationnelles (minimisation d'une fonctionnelle).
- Méthodes des résidus pondérés.

2.2.2.2 Etapes de la mise en œuvre :

- Discrétisation du domaine en un nombre fini d'éléments.
- Choix d'un modèle d'interpolation (variation de la variable Φ sur l'élément).
- Écriture des équations modèles sous forme algébrique au niveau local (dans un élément):

détermination des vecteurs et matrices caractéristiques.

- Assemblage des vecteurs et matrices locaux en un vecteur global *B* et une matrice globale

Α.

- Résolution du système AX = B.

2.2.2.3 Avantages et inconvénients de la méthode :

• Avantages :

- Adapté aux géométries complexes ;
- Maillage robuste et souple.

• Inconvénients :

- Formalisme mathématique plus compliqué et plus difficile à mettre en œuvre ;
- Coûteux en stockage mémoire (matrices pleines) et en temps de calcul (inversion) ;
- Caractère conservatif des équations non forcément assuré.

2.2.3 Méthodes spectrales :

D'une manière simple, les méthodes spectrales sont telles que :

Dans des équations modèles (équation de chaleur, équation des ondes, équation de poisson), on remplace l'inconnue par des développements tronqués sur des bases de fonctions orthogonales (polynômes Chebychev, Legendre, Fourier) et en utilisant leur propriété d'orthogonalité ,on se ramène à des systèmes d'équations différentielles ordinaires plus simples à résoudre.
2.2.3.1 Avantages et inconvénients de la méthode :

• Avantages :

- Permet d'obtenir des solutions d'une très grande précision.

• Inconvénients :

- Formalisme mathématique plus complexe et mise en œuvre délicate ;
- Difficultés pour traiter les géométries complexes et des conditions aux limites non académiques.

2.2.4 Méthodes des volumes finis :

La méthode a été décrite pour la première fois en 1971 par Patankar et Spalding et publiée en 1980. La méthode des volumes finis est une technique de discrétisation qui convertit les équations de conservation aux dérivées partielles en équations algébriques qui peuvent être résolues numériquement. La technique des volumes de contrôle consiste dans l'intégration des équations aux dérivées partielles sur chaque volume de contrôle pour obtenir les équations discrétisées qui conservent toutes les grandeurs physiques sur un volume de contrôle (VC).

Le principe de discrétisation peut être illustré en considérant l'équation de transport pour une grandeur scalaire Φ , valable pour toutes les équations d'écoulement, en régime stationnaire :

$$\oint_{A} (\rho \Phi \vec{v}) d\vec{A} = \oint_{A} (\Gamma_{\Phi} grad \Phi) d\vec{A} + \int_{vc} S_{\Phi} dV$$
(2.7)

NB : L'équation est appliquée sur chaque volume de contrôle du domaine de calcul(domaine d'étude ou d'analyse)

Où :

- ρ : Est la densité de fluide ;
- \vec{v} : Le vecteur vitesse ;
- \vec{A} : Est le vecteur aire de surface ;
- Γ_{Φ} : Le coefficient de diffusion de la grandeur ;

S_{Φ} : Le terme source (la source de $\Phi\,$ par unité de volume) .

La discrétisation de l'équation donne :

$$\sum_{f}^{Nfaces} \rho_f v_f \Phi_f A_f = \sum_{f}^{Nfaces} \Gamma_f (\nabla \Phi)_n A_f + S_{\Phi} V$$
où :
(2.8)

N $_{faces}$: Est le nombre de faces (interfaces) du volume de contrôle ;

 Φ_f : La valeur de Φ transférée par convection à travers l'interface f;

- v_f : Le flux de masse à travers l'interface f;
- A_{f} : L'aire de l'interface f;

 $(\nabla \Phi)_n$: Est la valeur $\nabla \Phi$ normale (perpendiculaire) à l'interface f;

V : Le volume du volume de contrôle .

2.2.4.1 Les différentes étapes de la mise en œuvre:

- Le domaine de calcul est discrétisé en un nombre fini de points (les nœuds du maillage), autour desquels on définit des volumes élémentaires (appelés volumes de contrôle) contigus, non juxtaposés et sans discontinuités aux interfaces.
- Les équations modèles, sous forme conservatives, sont intégrées sur chaque volume de contrôle (VC).
- Les intégrales sur un volume de contrôle en un nœud donné sont évaluées en approchant la variation de Φ par des profils ou des lois d'interpolation entre les nœuds voisins du point considéré.
- Écriture des équations algébriques en fonction des valeurs de Φ aux nœuds du maillage.
- Résolution du système algébrique linéaire obtenu.

2.2.4.2 Les règles de base (règles de Patankar) [17] :

Règle No 1 : Consistance du flux aux interfaces des volumes de contrôle.

Si une interface est commune à deux volumes de contrôle, l'expression du flux à travers elle, dans les équations discrétisées, doit être la même pour les deux volumes de contrôle voisins considérés.

Règle No 2 : Tous les coefficients a_p et a_{vs} doivent avoir le même signe dans l'équation discrétisée.

Règle No 3 : Pente négative dans le terme source linéarisé lors de la linéarisation du terme source.

Règle No 4 : Les équations discrétisées doivent rester valables quand la valeur d'une variable dépendante augmente avec une valeur constante. Mathématiquement la règle peut être écrite ainsi :

$a_p = \sum a_{vs}$ Si S=0 (2)	2.9)
--------------------------------	------

 $a_p \ge \sum a_{vs}$ Si $S \ne 0$ (2.10)

2.2.4.3 Avantages et inconvénients de la méthode :

• Avantages :

- Préservation du caractère conservatif des équations sur chaque volume de contrôle (continuité des flux aux interfaces), valable pour n'importe quelle finesse du maillage ;
- Mise en œuvre relativement facile ;
- Applicable aux géométries complexes ;
- Temps de calcul et stockage mémoire raisonnable (matrice de type bande).

• Inconvénients :

- Moins précis que les méthodes spectrales ;

La méthode des volumes finis sera mieux détaillée dans les chapitres suivants.

Chapitre 3 : Méthodes des volumes finis appliquées aux problèmes de conduction thermique

3.1 Introduction :

Dans ce chapitre, on va expliquer comment passer de l'équation de conductivité thermique en équation discrétisée, pour pouvoir faire le processus numérique.

On va explorer le problème dans le cas bidimensionnel et tridimensionnel, en régime stationnaire et transitoire.

3.2 Cas bidimensionnel en régime stationnaire :

Fig. 3.1 Volume de contrôle bidimensionnel.

A partir de l'équation de transport, l'équation différentielle de la conductivité thermique en 2 D stationnaire s'écrit :

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + S = 0$$
(3.1)

L'intégration par rapport au volume de contrôle permet d'écrire :

$$\int_{v_c} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy + \int_{v_c} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy + \int_{v_c} S dV = 0$$
(3.2)

$$\left(\lambda_{e}\left(\frac{\partial T}{\partial x}\right)_{e} - \lambda_{w}\left(\frac{\partial T}{\partial x}\right)_{w}\right)\Delta y + \left(\lambda_{n}\left(\frac{\partial T}{\partial y}\right)_{n} - \lambda_{s}\left(\frac{\partial T}{\partial y}\right)_{s}\right)\Delta x + S.\Delta x.\Delta y = 0$$
(3.3)

3.2.1 Le choix d'un profil de Température [17]:

Le but de choisir un profil de température, c'est de réécrire les dérivées partielles des températures sous une autre forme, afin d'éliminer la présence des dérivées dans l'équation discrétisée, donc on doit choisir une formule d'interpolation entre les nœuds voisins de 'p'. Il y a deux types de profils qu'on peut envisager :

Un profil constant et un profil linéaire.

Fig. 3.2 Choix de profil de température suivant x du volume de contrôle.

- a) profil constant de Température.
- b) profil linéaire de Température.

Fig. 3.3 Choix de profil de température suivant y du volume de contrôle.

- a) profil constant de Température.
- b) profil linéaire de Température.

Dans le cas d'un profil constant de Températures sur le volume de contrôle, on a une discontinuité de Températures aux interfaces w, e, s et n. De plus, la dérivée n'est pas définie et le choix d'un tel profil ne convient pas.

Dans le cas d'un profil linéaire entre les nœuds de maillage, la discontinuité n'existe plus et les dérivées aux interfaces sont définies.

Le choix de profil de Température devient clair et s'écrit : (pour le point 'e' par exemple)

$$\left(\frac{dT}{dx}\right)_{e} = \frac{T_{E} - T_{P}}{x_{E} - x_{P}} = \frac{T_{E} - T_{P}}{\delta x_{e}}$$
(3.4)

Et c'est valable pour les autres interfaces.

3.2.2 Détermination de la conductivité thermique aux interfaces de volume de contrôle [17] :

La conductivité thermique peut être déterminée suivant deux approches :

3.2.2.1 1^{ere} approche :

En général, $\lambda_e \neq \lambda_w$ et, $\lambda_s \neq \lambda_n$ la conductivité thermique étant en fonction de la Température et même en fonction de la position pour les matériaux composites.

Par exemple pour l'interface 'e' la conductivité thermique peut être déterminée par une interpolation linéaire des points P et E :

$$\lambda_e = f_e \lambda_P + (1 - f_e) \lambda_E \tag{3.5}$$

Où f_e est un facteur d'interpolation linéaire.

Avec :

$$f_e = \frac{\delta x_e^+}{\delta x_e} \qquad \qquad 1 - f_e = \frac{\delta x_e^-}{\delta x_e}$$

Fig. 3.4 Détermination de la conductivité thermique

Si l'interface 'e' se trouve au milieu des nœuds P et E et la conductivité au niveau de cette interface :

$$\lambda_e = \frac{\lambda_P + \lambda_E}{2} \tag{3.6}$$

L'idée reste la même pour les autres interfaces w, n, s.

3.2.2.2 Considération physique 2^{ême} approche :

La conservation de flux aux interfaces :

Fig. 3.5 Conductivité thermique à l'interface

On considère un flux thermique à l'interface 'e' et on écrit :

$$q_e = -\lambda_e \left(\frac{dT}{dx}\right)_e = \frac{\lambda_e \left(T_E - T_P\right)}{\delta x_e} = \frac{\lambda_P \left(T_P - T_e\right)}{\delta x_e^-} = \frac{\lambda_E \left(T_e - T_E\right)}{\delta x_e^+}$$
(3.7)

Ce qui nous ramène à écrire :

$$q_e = \frac{\left(T_P - T_E\right)}{\frac{\delta x_e^-}{\lambda_P} + \frac{\delta x_e^+}{\lambda_E}} = \frac{\left(T_P - T_E\right)}{\frac{\delta x_e}{\lambda_e}}$$
(3.8)

Et ça nous laisse exprimer la conductivité thermique à l'interface 'e' telle que :

$$\lambda_e = \frac{\delta x_e}{\frac{\delta x_e}{\lambda_p} + \frac{\delta x_e^+}{\lambda_E}}$$
(3.9)

Elle s'exprime aussi par la position relative :

$$\lambda_e = \frac{1}{\frac{1 - f_e}{\lambda_P} + \frac{f_e}{\lambda_E}}$$
(3.10)

Dans le cas particulier où 'e' se trouve au milieu, donc $f_e=1/2$ la conductivité thermique revient à écrire :

$$\lambda_e = \frac{2.\lambda_P.\lambda_E}{\lambda_P + \lambda_E} \tag{3.11}$$

C'est la moyenne harmonique de la conductivité thermique aux interfaces des nœuds voisins.

Remarque :

La 2^{ême} approche est plus convenable car si $\lambda \to 0$ ce qui présente un cas d'isolation sur l'interface 'e' et ce qui implique un flux nul au niveau de cette dernière, ce qui n'est pas le cas de 1^{ere} approche, qui vaut une conductivité de nœud 'E' tel que :

$$\lambda_E \to f_e \lambda_P \neq 0$$

la densité du flux thermique à la limite :

$$q_e \to \frac{f_e \lambda_p \left(T_p - T_E\right)}{\delta x_e} \neq 0$$
(3.12)

Ce qui ne convient pas.

Si, dans la 2^{ème} approche $\lambda_E \rightarrow 0$, on obtient $q_e \rightarrow 0$ c'est qui convient.

A la fin, la discrétisation dans un volume de contrôle permet d'écrire l'équation sous la forme suivante :

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + b$$
(3.13)

Avec :

$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}}$$

$$a_{p} = a_{W} + a_{E} + a_{S} + a_{N} - S_{p}\Delta x\Delta y \quad \text{et} \qquad b = S_{c}\Delta x\Delta y \quad (3.14)$$

N.B :

En général $\delta x_w \neq \delta x_e$ et $\delta x_n \neq \delta x_s$, le maillage peut être non uniforme. Le raffinement se fait en général dans les zones de forts gradients, donc il faut tenir ça en compte.

Fig. 3.6 Discrétisation suivant x

Fig. 3.7 Discrétisation suivant y

3.2.3 Traitement de non-linéarités :

Si la conductivité et la source étaient en fonction de la température, on aura donc une équation

discrétisée avec :

$$b = b(T)$$
 $a_p = a_p(T)$ $a_{vs} = a_{vs}(T)$ (3.15)

La résolution du système algébrique dans ce cas se fait par une procédure itérative, se résume par les étapes suivantes :

Fig. 3.8 Schéma explicatif du traitement de non-linéarités des conditions

3.2.4 Linéarisation du terme source :

Le terme source est généralement en fonction de T et non linéairement dépendant, il faut donc le linéariser pour obtenir un système d'équations algébriques linéaires, ainsi :

$$\overline{S}(T) = S_c(T_p^*) + S_p(T_p^*)T_p$$
(3.16)

Où T_p^* est la température de l'itération précédente. En revanche, il faut respecter la règle de base N°3, c'est-à-dire $Sp(T_p^*) \leq 0$.

Lors de la linéarisation du terme source, on peut avoir :

- $S_{p \text{ optimum}}$ donné par la pente de la courbe S = f(T) en T_p^* (si cette pente est négative);
- Sp>0 on a la divergence du processus itératif (régle N°3 n'est pas vérifiée) ;
- $0 > Sp > S_{p \text{ optimum}}$ on a un risque de divergence ;
- $S_{p \text{ optimum}} \leq S_p \leq 0$, convergence plus lente mais assurée.

3.3 Bidimensionnelle en régime transitoire:

L'équation généralisée bidimensionnelle dans la phase transitoire s'exprime par la formule suivante :

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + S$$
(3.17)

Fig. 3.9 Volume de contrôle bidimensionnel

On considère le volume de contrôle présenté si dessus, l'intégration de l'équation sur le volume de contrôle et sur un intervalle de temps de t au $t + \Delta t$ donne :

$$\int_{t}^{t+\Delta t} \int_{v_{c}} \rho c_{p} \frac{\partial T}{\partial t} dV dt = \int_{t}^{t+\Delta t} \int_{v_{c}} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dV dt + \int_{t}^{t+\Delta t} \int_{v_{c}} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dV dt + \int_{t}^{t+\Delta t} \int_{v_{c}} S.dV dt$$
(3.18)

La formule peut être écrite sous la forme suivante :

$$\int_{vc} \left(\int_{t}^{t+\Delta t} \rho c_{p} \frac{\partial T}{\partial t} dt \right) dV = \int_{t}^{t+\Delta t} \left(\lambda_{e} \Delta y \left(\frac{\partial T}{\partial x} \right)_{e} - \lambda_{w} \Delta y \left(\frac{\partial T}{\partial x} \right)_{w} \right) dt + \int_{t}^{t+\Delta t} \left(\lambda_{n} \Delta x \left(\frac{\partial T}{\partial y} \right)_{n} - \lambda_{s} \Delta x \left(\frac{\partial T}{\partial y} \right)_{s} \right) dt + \int_{t}^{t+\Delta t} \overline{S} \Delta x \Delta y dt$$
(3.19)

On intègre la partie gauche par rapport au temps et on peut la réécrire ainsi :

$$\int_{VC} \left(\int_{t}^{t+\Delta t} \rho c_p \frac{\partial T}{\partial t} dt \right) dV = \rho c_p \left(T_p - T_p^0 \right) \Delta V$$
(3.20)

Où T_P^0 est la température à l'instant t et T_p est la température à l'instant t+ dt Remplaçant le gradient de température par le schéma centré :

$$\rho c_{p} (T_{p} - T_{p}^{0}) \Delta x \Delta y = \int_{t}^{t+\Delta t} \left(\lambda_{e} \Delta y \left(\frac{T_{E} - T_{p}}{\delta x} \right) + \lambda_{w} \Delta y \left(\frac{T_{p} - T_{W}}{\delta x} \right) \right) dt + \int_{t}^{t+\Delta t} \left(\lambda_{n} \Delta x \left(\frac{T_{N} - T_{p}}{\delta y} \right) - \lambda_{s} \Delta y \left(\frac{T_{p} - T_{s}}{\delta y} \right) \right) dt + \int_{t}^{t+\Delta t} \overline{S} \Delta V dt$$
(3.21)

Maintenant, pour calculer la partie droite de l'équation il faut connaître la variation des températures de point P et des points voisins S, N, W, E. Pour cela de nombreuses solutions s'apparaître, on peut prendre la Température à l'instant t, à l'instant t+dt, ou une combinaison des deux solutions précédentes. La forme générale de l'intégration temporelle s'écrit :

$$\int_{t}^{t+\Delta t} T_{p} dt = \begin{pmatrix} T_{p}^{0} \Delta t \\ T_{p} \Delta t \\ (fT_{p} + (1-f)T_{p}^{0}) \Delta t \end{cases}$$
(3.22)

Où f est un facteur de pondération compris entre $0 \le f \le 1$

En appliquant la forme générale de l'intégration temporelle aux points $T_{P,} T_{E,} T_{W}$, T_{S} , T_{N} on obtient :

$$\rho c_{p} (T_{p} - T_{p}^{0}) \frac{\Delta x \Delta y}{\Delta t} = f \left[\left(\lambda_{e} \Delta y \left(\frac{T_{E} - T_{p}}{\delta x_{e}} \right) - \lambda_{w} \Delta y \left(\frac{T_{p} - T_{w}}{\delta x_{w}} \right) \right) + \left(\lambda_{n} \Delta x \left(\frac{T_{N} - T_{p}}{\delta y_{n}} \right) - \lambda_{s} \Delta x \left(\frac{T_{p} - T_{s}}{\delta y_{s}} \right) \right) \right] + \left(1 - f \right) \left[\left(\lambda_{e} \Delta y \left(\frac{T_{E}^{0} - T_{p}^{0}}{\delta x_{e}} \right) - \lambda_{w} \Delta y \left(\frac{T_{p}^{0} - T_{w}^{0}}{\delta x_{w}} \right) \right) + \left(\lambda_{n} \Delta x \left(\frac{T_{N}^{0} - T_{p}^{0}}{\delta y_{n}} \right) - \lambda_{s} \Delta x \left(\frac{T_{p}^{0} - T_{s}^{0}}{\delta y_{s}} \right) \right) \right] + \overline{S} \Delta x \Delta y \left(\frac{T_{p}^{0} - T_{w}^{0}}{\delta x_{w}} \right) \right) + \left(\lambda_{n} \Delta x \left(\frac{T_{N}^{0} - T_{p}^{0}}{\delta y_{n}} \right) - \lambda_{s} \Delta x \left(\frac{T_{p}^{0} - T_{s}^{0}}{\delta y_{s}} \right) \right) \right] + \overline{S} \Delta x \Delta y \left(\frac{T_{p}^{0} - T_{w}^{0}}{\delta x_{w}} \right) \right) + \left(\lambda_{n} \Delta x \left(\frac{T_{p}^{0} - T_{p}^{0}}{\delta y_{n}} \right) - \lambda_{s} \Delta x \left(\frac{T_{p}^{0} - T_{s}^{0}}{\delta y_{s}} \right) \right) \right] + \overline{S} \Delta x \Delta y \left(\frac{T_{p}^{0} - T_{w}^{0}}{\delta x_{w}} \right) \right) + \left(\lambda_{n} \Delta x \left(\frac{T_{p}^{0} - T_{p}^{0}}{\delta y_{n}} \right) - \lambda_{s} \Delta x \left(\frac{T_{p}^{0} - T_{s}^{0}}{\delta y_{s}} \right) \right) \right] + \overline{S} \Delta x \Delta y \left(\frac{T_{p}^{0} - T_{p}^{0}}{\delta x_{w}} \right) \right) + \left(\lambda_{p} \Delta x \left(\frac{T_{p}^{0} - T_{p}^{0}}{\delta y_{n}} \right) - \lambda_{p} \Delta x \left(\frac{T_{p}^{0} - T_{p}^{0}}{\delta y_{s}} \right) \right) \right] + \overline{S} \Delta x \Delta y$$

En regroupant les termes pour chaque point, on peut se permettre d'écrire donc :

$$a_{P}T_{P} = a_{W} \left[fT_{W} + (1-f)T_{W}^{0} \right] + a_{E} \left[fT_{E} + (1-f)T_{E}^{0} \right] + a_{S} \left[fT_{S} + (1-f)T_{S}^{0} \right] + a_{N} \left[fT_{N} + (1-f)T_{N}^{0} \right] + \left[a_{P}^{0} - (1-f)a_{W} - (1-f)a_{E} - (1-f)a_{N} - (1-f)a_{S} \right] T_{P}^{0} + b$$
(3.24)

Avec :

$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \quad a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \quad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \quad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \quad A_{w} = A_{e} = \Delta y \quad A_{s} = A_{n} = \Delta x$$

$$a_{p} = f(a_{W} + a_{E} + a_{S} + a_{N}) + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{\Delta t} \qquad b = \overline{S}\Delta x \Delta y$$

$$(3.25)$$

La forme exacte de l'équation discrétisée dépend de la valeur de f et on distingue 3 cas :

- Lorsque f=0 on parlera donc du schéma explicite, dans ce dernier on utilise les températures à l'instant t ;
- Lorsque f=1 on est donc dans le schéma totalement implicite, dans ce cas on utilise les températures à l'instant t+dt ;
- Lorsque 0<f<1 on utilise les températures aux deux instants t et t+dt, et si f=1/2 on fait donc appel au schéma de Cranck Nicelson ou bien semi-implicite.

N.B : Le coefficient de linéarisation de terme source n'est pas pris en considération pour la simplification d'analyse des critères de convergence des schémas.

3.3.1 Schéma explicite :

Considérant le cas d'un schéma explicite, le terme source est linéarisé par l'expression $b=S_c+S_pT_p^{0}$. En remplaçant f par sa valeur dans ce cas de schéma, on trouve :

$$a_{p}T_{p} = a_{w}T_{w}^{0} + a_{E}T_{E}^{0} + a_{S}T_{S}^{0} + a_{N}T_{N}^{0} + \left[a_{P}^{0} - a_{W} - a_{E} - a_{N} - a_{S} + S_{p}\Delta V\right]T_{P}^{0} + S_{c}\Delta V$$
(3.26)

Avec :

$$a_{w} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}}$$

$$a_{p} = a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{\Delta t} \qquad A_{w} = A_{e} = \Delta y \ A_{s} = A_{n} = \Delta x$$

$$(3.27)$$

La règle N°2 (voir chapitre 2 :règle de base ou règle de Patankar) n'est pas toujours satisfaite. Le coefficient de T_p^{0} peut être vu comme le coefficient du voisin T_p dans l'axe de temps qui fait la liaison des valeurs de la température de celles à l'instant t et les valeurs à l'instant t+dt , pour que ce coefficient soit toujours positif il faut que :

$$a_P^0 - a_W - a_E - a_N - a_S \ge 0 \tag{3.28}$$

Exprimant l'équation (3.28) par les valeurs des coefficients :

$$\rho c_{p} \frac{\Delta x \Delta y}{\Delta t} - \frac{\lambda_{w} \Delta y}{\delta x_{w}} - \frac{\lambda_{e} \Delta y}{\delta x_{e}} - \frac{\lambda_{s} \Delta x}{\delta y_{s}} - \frac{\lambda_{n} \Delta x}{\delta y_{n}} \ge 0$$
(3.29)

Dans le cas où $\lambda_w = \lambda_e = \lambda_s = \lambda_n$ et que et $\delta x_e = \delta x_w = \Delta x$ et $\delta y_n = \delta y_s = \Delta y$ donc :

$$\rho c_{p} \frac{\Delta x \Delta y}{\Delta t} - \frac{\lambda \Delta y}{\Delta x} - \frac{\lambda \Delta y}{\Delta x} - \frac{\lambda \Delta x}{\Delta y} - \frac{\lambda_{n} \Delta x}{\Delta y} \ge 0$$
(3.30)

$$\rho c_{p} \frac{\Delta x \Delta y}{\Delta t} \ge \frac{2\lambda \Delta y}{\Delta x} + \frac{2\lambda \Delta x}{\Delta y}$$
(3.31)

$$\frac{\rho c_p}{\Delta t} \ge \frac{2\lambda}{\left(\Delta x\right)^2} + \frac{2\lambda}{\left(\Delta y\right)^2}$$
(3.32)

$$\frac{\rho c_p}{\Delta t} \ge 2\lambda \left(\frac{1}{\left(\Delta x\right)^2} + \frac{1}{\left(\Delta y\right)^2} \right)$$
(3.33)

$$\frac{2\lambda\Delta t}{\rho c_p} \le \frac{1}{\left(\frac{1}{\left(\Delta x\right)^2} + \frac{1}{\left(\Delta y\right)^2}\right)}$$
(3.34)

$$\left(\frac{1}{\left(\Delta x\right)^{2}} + \frac{1}{\left(\Delta y\right)^{2}}\right) \alpha \Delta t \le \frac{1}{2}$$
(3.35)

Où α c'est le nombre de Fourier.

Dans le cas où $\Delta x = \Delta y$ la relation revient à satisfaire la condition :

$$\frac{\alpha \Delta t}{\left(\Delta x\right)^2} \le \frac{1}{4} \tag{3.36}$$

N.B : Le critère de convergence du schéma explicite vient d'une considération physique (la règle de base N°2).

3.3.2 Schéma de Crank-Nicolson :

En remplaçant f '1/2' on obtient la discrétisation de l'équation de conductivité thermique bidimensionnelle instationnaire :

$$a_{p}T_{p} = \frac{a_{W}}{2} \left(T_{W} + T_{W}^{0} \right) + \frac{a_{E}}{2} \left(T_{E} + T_{E}^{0} \right) + \frac{a_{S}}{2} \left(T_{S} + T_{S}^{0} \right) + \frac{a_{N}}{2} \left(T_{N} + T_{N}^{0} \right) + \left(a_{P}^{0} - \frac{1}{2} \left(a_{W} + a_{E} + a_{N} + a_{S} \right) \right) T_{P}^{0} + b$$
(3.37)

Où :

$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad A_{w} = A_{e} = \Delta y A_{s} = A_{n} = \Delta x$$

$$a_{p} = \frac{1}{2}(a_{W} + a_{E} + a_{S} + a_{N}) + a_{p}^{0} - \frac{1}{2}S_{p}\Delta x\Delta y \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x\Delta y}{\Delta t} \qquad b = S_{c}\Delta x\Delta y$$
(3.38)

Mathématiquement le schéma présent est inconditionnellement stable, mais la convergence vers une solution physiquement acceptable n'est pas toujours assurée. Donc, dans l'intérêt que la deuxième règle de base soit toujours satisfaite, il faut que :

$$a_{P}^{0} - \frac{1}{2} \left(a_{W} + a_{E} + a_{N} + a_{S} \right) \ge 0$$
(3.39)

Donc :

$$\rho c_{p} \frac{\Delta x \Delta y}{\Delta t} - \frac{1}{2} \left(\frac{\lambda_{w} \Delta y}{\delta x_{w}} + \frac{\lambda_{e} \Delta y}{\delta x_{e}} + \frac{\lambda_{n} \Delta x}{\delta y_{n}} + \frac{\lambda_{s} \Delta x}{\delta y_{s}} \right) \ge 0$$
(3.40)

On fait les mêmes simplifications de celles supposées dans le cas précédent où $\lambda_w = \lambda_e = \lambda_s = \lambda_n$ et que et $\delta x_e = \delta x_w = \Delta x$ et $\delta y_n = \delta y_s = \Delta y$ on obtient :

$$\rho c_{p} \frac{\Delta x \Delta y}{\Delta t} - \frac{1}{2} \left(2 \frac{\lambda \Delta y}{\Delta x} + 2 \frac{\lambda \Delta x}{\Delta y} \right) \ge 0$$
(3.41)

Donc :

$$\rho c_{p} \frac{\Delta x \Delta y}{\Delta t} \geq \frac{\lambda \Delta y}{\Delta x} + \frac{\lambda \Delta x}{\Delta y}$$

$$\frac{\rho c_{p}}{\Delta t} \geq \lambda \left(\frac{1}{(\Delta x)^{2}} + \frac{1}{(\Delta y)^{2}} \right)$$

$$\frac{\lambda \Delta t}{\rho c_{p}} \leq \frac{1}{\left(\frac{1}{(\Delta x)^{2}} + \frac{1}{(\Delta y)^{2}} \right)}$$

$$(3.43)$$

$$\left(\left(\Delta x\right)^{2} \left(\Delta y\right)^{2}\right) \tag{3.44}$$

$$\left(\frac{1}{\left(\Delta x\right)^{2}} + \frac{1}{\left(\Delta y\right)^{2}}\right) \alpha \Delta t \le 1$$
(3.45)

Dans le cas d'un maillage uniforme $\Delta x = \Delta y$:

On aura donc une relation à satisfaire s'écrit :

$$\frac{\alpha \Delta t}{\left(\Delta x\right)^2} \le \frac{1}{2} \tag{3.46}$$

N.B : la précision du schéma Crank-Nicolson est du second ordre sans le temps , la précision des résultats de ce schéma est plus grande en les comparant avec celles obtenues avec le schéma explicite utilisant le même pas de temps.

3.3.3 Schéma totalement implicite :

Remplaçant f par sa valeur dans ce cas (f=1), l'équation de discrétisation est la suivante :

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{P}^{0}T_{P}^{0} + S_{c}\Delta x\Delta y$$
(3.47)

Où:
$$a_p = a_W + a_E + a_S + a_N + a_p^0 - S_p \Delta x \Delta y$$
 $a_p^0 = \rho c_p \frac{\Delta x \Delta y}{\Delta t}$
 $a_W = \frac{\lambda_w A_w}{\delta x_w} a_E = \frac{\lambda_e A_e}{\delta x_e} a_S = \frac{\lambda_s A_s}{\delta y_s} a_N = \frac{\lambda_n A_n}{\delta y_n}$

$$(3.48)$$

N.B: la règle N°2 est toujours vérifiée, le schéma totalement implicite est inconditionnellement stable. La précision de ce schéma est du 1^{er} ordre dans le temps, donc si on veut une augmentation de précision, il faut diminuer le pas de temps.

3.4 Traitement des conditions aux limites :

Les trois cas des conditions aux limites rencontrés pour les problèmes de conduction thermique sont :

- Température imposée à la frontière (Type Dirichlet) ;
- Densité de flux thermique imposée, ou bien la dérivée est connue (Type Neumann) ;
- Coefficient du flux thermique spécifié par un coefficient d'échange (h) et une température du fluide environnant (T_f) ou par un flux radiatif (Type Fourier).

$$q_{p} = \left(-\lambda \frac{\partial T}{\partial x}\right)_{p} = \begin{cases} h(T_{f} - T_{p})\\ \varepsilon \sigma(T_{f}^{4} - T_{p}^{4}) \end{cases}$$
(3.49)

Avec : ε est le coefficient d'émission et σ est la constante de Stefan-Boltzmann.

3.4.1 Condition de Type Dyrichlet :

Dans ce cas, la température à la frontière est connue et on a pas besoin d'avoir une équation discrétisée pour un nœud correspondant, le nombre d'équations à résoudre se diminue.

3.4.2 Condition de Type Newmann :

On considère qu'un flux imposé se présente sur la face 'est' d'un volume de contrôle, on prend l'équation (3.3) et la différence c'est que le point 'est' devient le point P est qu'on parle

Fig. 3.10 Demi-volume de contrôle sur la frontière "E".

L'intégration par rapport au demi-volume de contrôle donne :

$$\left(\lambda_{p}\left(\frac{\partial T}{\partial x}\right)_{p}-\lambda_{w}\left(\frac{\partial T}{\partial x}\right)_{w}\right)\Delta y+\left(\lambda_{n}\left(\frac{\partial T}{\partial y}\right)_{n}-\lambda_{s}\left(\frac{\partial T}{\partial y}\right)_{s}\right)\frac{\Delta x}{2}+S.\frac{\Delta x\Delta y}{2}=0$$
(3.50)

La condition Newmann s'écrit pour un point 'P' :

$$\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q_p \tag{3.51}$$

On a donc à mettre (3.51) dans (3.50) et on obtient :

$$\left(q_{p} - \lambda_{w} \left(\frac{\partial T}{\partial x}\right)_{w}\right) \Delta y + \left(\lambda_{n} \left(\frac{\partial T}{\partial y}\right)_{n} - \lambda_{s} \left(\frac{\partial T}{\partial y}\right)_{s}\right) \frac{\Delta x}{2} + S \cdot \frac{\Delta x \Delta y}{2} = 0$$
(3.52)

L'équation (3.52) est une équation qui prend en charge la condition de type Neumann dans un nœud de frontière.

3.5 Cas tridimensionnel en régime stationnaire :

Discutant maintenant le cas de conduction thermique tridimensionnel en régime stationnaire, l'équation peut être exprimée ainsi:

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + S = 0$$
(3.53)

On fait appel à la méthode des volumes finis, comme le cas bidimensionnel, on considère un volume de contrôle mais cette fois un peu différent de cas précédent (2D) avec la présence de nouveaux nœuds voisins comme le schéma si dessous l'illustre :

Fig. 3.11 Volume de contrôle tridimensionnel.

On note e, w, s, n, b, t références à « est », « west », « south », « north », « bottom » et « top » respectivement.

Si on intègre l'équation sur le volume de contrôle :

$$\int_{v_{c}} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dz + \int_{v_{c}} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dz + \int_{v_{c}} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) dx dy dz + \int_{v_{c}} S dx dy dz = 0$$
(3.54)

On trouve :

$$\left(\lambda_{e}\left(\frac{\partial T}{\partial x}\right)_{e} - \lambda_{w}\left(\frac{\partial T}{\partial x}\right)_{w}\right) \Delta y \Delta z + \left(\lambda_{n}\left(\frac{\partial T}{\partial y}\right)_{n} - \lambda_{s}\left(\frac{\partial T}{\partial y}\right)_{s}\right) \Delta x \Delta z + \left(\lambda_{t}\left(\frac{\partial T}{\partial y}\right)_{t} - \lambda_{b}\left(\frac{\partial T}{\partial y}\right)_{b}\right) \Delta x \Delta y + \overline{S} \cdot \Delta x \cdot \Delta y \cdot \Delta z = 0$$

$$(3.55)$$

Remarque :

Le choix du profil de température et la détermination de la conductivité thermique se fait de la même façon que dans le cas bidimensionnel.

On pourra écrire donc l'équation sous sa forme discrétisée :

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{B}T_{B} + a_{T}T_{T} + b$$
(3.56)

$$\begin{array}{ll}
\text{Où}: & a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} a_{T} = \frac{\lambda_{t}A_{t}}{\delta z_{t}} a_{B} = \frac{\lambda_{b}A_{b}}{\delta z_{b}} \\
a_{p} = a_{W} + a_{E} + a_{S} + a_{N} + a_{T} + a_{p}^{0} - S_{p} \cdot \Delta x \Delta y \Delta z & b = S_{c} \Delta x \Delta y \Delta z \\
a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{\Delta t} & A_{w} = A_{e} = \Delta y \Delta z & A_{s} = A_{n} = \Delta x \Delta z & A_{t} = \Delta x \Delta y
\end{array}$$

$$(3.57)$$

3.6 Cas tridimensionnel en régime transitoire:

L'équation qui dirige le phénomène de conduction thermique 3 D dans son régime transitoire s'écrit :

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + S$$
(3.58)

Les étapes, afin d'avoir une équation algébrique qui peut être résolue par les méthodes numériques sont les mêmes « déjà-vus ».

On considère un volume de contrôle 3D et on intègre par rapport au volume de contrôle et par rapport au temps entre un instant t et un instant t+dt :

$$\int_{t}^{t+\Delta t} \int_{vc} \rho c_{p} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{vc} S \cdot dx dy dz dt$$
(3.59)

On suit les mêmes procédures :

$$\int_{vc} \left(\int_{t}^{t+\Delta t} \rho c_{p} \frac{\partial T}{\partial t} dt \right) dV = \int_{t}^{t+\Delta t} \left(\lambda_{e} \Delta y \Delta z \left(\frac{\partial T}{\partial x} \right)_{e} - \lambda_{w} \Delta y \Delta z \left(\frac{\partial T}{\partial x} \right)_{w} \right) dt + \int_{t}^{t+\Delta t} \left(\lambda_{n} \Delta x \Delta z \left(\frac{\partial T}{\partial y} \right)_{n} - \lambda_{s} \Delta x \Delta z \left(\frac{\partial T}{\partial y} \right)_{s} \right) dt + \int_{t}^{t+\Delta t} \left(\lambda_{t} \Delta x \Delta y \left(\frac{\partial T}{\partial z} \right)_{t} - \lambda_{b} \Delta x \Delta y \left(\frac{\partial T}{\partial z} \right)_{b} \right) dt + \int_{t}^{t+\Delta t} \overline{S} \Delta x \Delta y dt$$
(3.60)

On intègre la partie gauche par rapport au temps et ça va être exactement comme le cas bidimensionnel :

$$\int_{vc} \left(\int_{t}^{t+\Delta t} \rho c_p \frac{\partial T}{\partial t} dt \right) dV = \rho c_p \left(T_p - T_p^0 \right) \Delta V$$
(3.61)

Où T_P^0 est la température à l'instant t, et T_p est la température à l'instant t+ dt.

Remplaçant le gradient de température par le schéma centré :

$$\rho c_{p} (T_{p} - T_{p}^{0}) \Delta x \Delta y \Delta z = \int_{t}^{t+\Delta t} \left(\lambda_{e} \Delta y \Delta z \left(\frac{T_{E} - T_{P}}{\delta x} \right) + \lambda_{w} \Delta y \Delta z \left(\frac{T_{p} - T_{W}}{\delta x} \right) \right) dt$$

$$+ \int_{t}^{t+\Delta t} \left(\lambda_{n} \Delta x \Delta z \left(\frac{T_{N} - T_{P}}{\delta y} \right) - \lambda_{s} \Delta x \Delta z \left(\frac{T_{P} - T_{S}}{\delta y} \right) \right) dt$$

$$+ \int_{t}^{t+\Delta t} \left(\lambda_{t} \Delta x \Delta y \left(\frac{T_{T} - T_{P}}{\delta z} \right) - \lambda_{b} \Delta x \Delta y \left(\frac{T_{P} - T_{B}}{\delta z} \right) \right) dt + \int_{t}^{t+\Delta t} \overline{S} \Delta V dt$$
(3.62)

Et pour calculer la partie droite de l'équation il faut savoir la variation des températures de point P et des points voisins S, N, W, E, T, B et là qu'on va encore parler des 3 schémas principaux, soulignant que le concept est le même, mais la formule de critère de convergence ne restera plus la même, vu l'apparition du 3^{ême} dimension.

3.6.1 Schéma explicite :

L'équation revient à écrire :

$$a_{p}T_{p} = a_{w}T_{w}^{0} + a_{E}T_{E}^{0} + a_{S}T_{S}^{0} + a_{N}T_{N}^{0} + a_{T}T_{T}^{0} + a_{B}T_{B}^{0} + \left[a_{P}^{0} - a_{W} - a_{E} - a_{N} - a_{S} - a_{T} - a_{B} + S_{p}\Delta x\Delta y\Delta z\right]T_{P}^{0} + S_{c}\Delta x\Delta y\Delta z$$
(3.63)

La stabilité de ce schéma est liée par la satisfaction de la 2^{ême} règle de Patankar, et la condition qu'elle doit être satisfaite est :

$$a_P^0 - a_W - a_E - a_N - a_S - a_T - a_B \ge 0 \tag{3.64}$$

Remplaçant les coefficients par leurs valeurs :

$$\rho c_{p} \frac{\Delta x \Delta y \Delta z}{\Delta t} - \frac{\lambda_{w} \Delta y \Delta z}{\delta x_{w}} - \frac{\lambda_{e} \Delta y \Delta z}{\delta x_{e}} - \frac{\lambda_{s} \Delta x \Delta z}{\delta y_{s}} - \frac{\lambda_{n} \Delta x \Delta z}{\delta y_{n}} - \frac{\lambda_{b} \Delta x \Delta y}{\delta z_{b}} - \frac{\lambda_{t} \Delta x \Delta y}{\delta z_{t}} \ge 0$$
(3.65)

Afin de simplifier l'étude, on met $\lambda_w = \lambda_e = \lambda_s = \lambda_n = \lambda_t = \lambda_b$ et $\delta x_e = \delta x_w = \Delta x$, $\delta y_n = \delta y_s = \Delta y$, $\delta z_t = \delta z_b = \Delta z$, on aura donc :

$$\rho c_{p} \frac{\Delta x \Delta y \Delta z}{\Delta t} - \frac{\lambda \Delta y \Delta z}{\Delta x} - \frac{\lambda \Delta y \Delta z}{\Delta x} - \frac{\lambda \Delta x \Delta z}{\Delta y} - \frac{\lambda \Delta x \Delta z}{\Delta y} - \frac{\lambda \Delta x \Delta y}{\Delta z} - \frac{\lambda \Delta x \Delta y}{\Delta z} \ge 0$$
(3.66)

$$\rho c_{p} \frac{\Delta x \Delta y \Delta z}{\Delta t} \ge \frac{2\lambda \Delta y \Delta x}{\Delta x} + \frac{2\lambda \Delta x \Delta z}{\Delta y} + \frac{2\lambda \Delta x \Delta y}{\Delta z}$$
(3.67)

$$\frac{\rho c_p}{\Delta t} \ge \frac{2\lambda}{\left(\Delta x\right)^2} + \frac{2\lambda}{\left(\Delta y\right)^2} + \frac{2\lambda}{\left(\Delta z\right)^2}$$
(3.68)

$$\frac{\rho c_p}{\Delta t} \ge 2\lambda \left(\frac{1}{\left(\Delta x\right)^2} + \frac{1}{\left(\Delta y\right)^2} + \frac{1}{\left(\Delta z\right)^2} \right)$$
(3.69)

$$\frac{2\lambda\Delta t}{\rho c_p} \le \frac{1}{\left(\frac{1}{\left(\Delta x\right)^2} + \frac{1}{\left(\Delta y\right)^2} + \frac{1}{\left(\Delta z\right)^2}\right)}$$
(3.70)

$$\left(\frac{1}{\left(\Delta x\right)^{2}} + \frac{1}{\left(\Delta y\right)^{2}} + \frac{1}{\left(\Delta z\right)^{2}}\right) \alpha \Delta t \le \frac{1}{2}$$
(3.71)

La dernière simplification sert à supposer le cas où $\Delta x = \Delta y = \Delta z$.

On aura donc :

$$\frac{\alpha \Delta t}{\left(\Delta x\right)^2} \le \frac{1}{6} \tag{3.72}$$

C'est la condition qui doit être satisfaite.

Renonçant encore que si on veut réduire le volume de contrôle, il faut diminuer beaucoup le pas de temps.

3.6.2 Schéma de Crank-Nicolson :

Comme dans le cas de 2D pour ce schéma, le facteur de pondération est égal à 1/2

Remplaçant cette valeur dans l'équation et on aura l'équation discrétisée :

$$a_{p}T_{p} = \frac{a_{w}}{2} \left(T_{w} + T_{w}^{0}\right) + \frac{a_{E}}{2} \left(T_{E} + T_{E}^{0}\right) + \frac{a_{S}}{2} \left(T_{S} + T_{S}^{0}\right) + \frac{a_{N}}{2} \left(T_{N} + T_{N}^{0}\right) + \frac{a_{E}}{2} \left(T_{F} + T_{T}^{0}\right) + \frac{a_{B}}{2} \left(T_{B} + T_{B}^{0}\right) + \left(a_{P}^{0} - \frac{1}{2} \left(a_{W} + a_{E} + a_{N} + a_{S} + a_{T} + a_{B}\right)\right) T_{P}^{0} + b$$

$$(3.73)$$

Où :

$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta z_{t}} a_{B} = \frac{\lambda_{b}A_{b}}{\delta z_{b}}$$

$$A_{w} = A_{e} = \Delta y\Delta z \qquad A_{s} = A_{n} = \Delta x\Delta z \qquad A_{t} = A_{b} = \Delta x\Delta y$$

$$a_{p} = \frac{1}{2}(a_{W} + a_{E} + a_{S} + a_{N} + a_{B} + a_{T}) + a_{p}^{0} - \frac{1}{2}S_{p}V_{c} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x\Delta y\Delta z}{\Delta t} \qquad b = S_{c}V_{c}$$

$$(3.74)$$

On savait de la remarque concernant la stabilité de ce schéma dans le cas 2D, que même si ce schéma est mathématiquement stable, la $2^{\text{ême}}$ règle de base doit être toujours satisfaite et à partir de cette condition, on doit s'assurer que :

$$a_{P}^{0} - \frac{1}{2} \left(a_{W} + a_{E} + a_{N} + a_{S} + a_{T} + a_{B} \right) \ge 0$$
(3.75)

Remplaçant chaque coefficient par sa valeur on obtient :

$$\rho c_{p} \frac{\Delta x \Delta y \Delta z}{\Delta t} - \frac{1}{2} \left(\frac{\lambda_{w} \Delta y \Delta z}{\delta x_{w}} + \frac{\lambda_{e} \Delta y \Delta z}{\delta x_{e}} + \frac{\lambda_{s} \Delta x \Delta z}{\delta y_{s}} + \frac{\lambda_{n} \Delta x \Delta z}{\delta y_{n}} + \frac{\lambda_{b} \Delta x \Delta y}{\delta z_{b}} + \frac{\lambda_{t} \Delta x \Delta y}{\delta z_{t}} \right) \ge 0$$
(3.76)

On pose les simplifications :

$$\lambda_w = \lambda_e = \lambda_s = \lambda_n = \lambda_t = \lambda_b$$
 et $\delta x_e = \delta x_w = \Delta x$, $\delta y_n = \delta y_s = \Delta y$, $\delta z_t = \delta z_b = \Delta z$, on trouve :

$$\rho c_{p} \frac{\Delta x \Delta y \Delta z}{\Delta t} - \frac{1}{2} \left(2 \frac{\lambda \Delta y \Delta z}{\Delta x} + 2 \frac{\lambda \Delta x \Delta z}{\Delta y} + 2 \frac{\lambda \Delta x \Delta y}{\Delta z} \right) \ge 0$$
(3.77)

$\Delta x \Delta y \Delta z = \lambda \Delta y \Delta z = \lambda \Delta x \Delta z = \lambda \Delta x \Delta y$	
$pc_p - \Delta t \ge \Delta x + \Delta y + \Delta z$	(3.78)
$\frac{\rho c_p}{2} \ge \lambda \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$	

$$\Delta t = \lambda \left((\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 \right)$$

$$\lambda \Delta t = 1$$
(3.79)

$$\frac{\partial \Delta x}{\rho c_p} \leq \frac{1}{\left(\frac{1}{\left(\Delta x\right)^2} + \frac{1}{\left(\Delta y\right)^2} + \frac{1}{\left(\Delta z\right)^2}\right)}$$
(3.80)

$$\left(\frac{1}{\left(\Delta x\right)^{2}} + \frac{1}{\left(\Delta y\right)^{2}} + \frac{1}{\left(\Delta z\right)^{2}}\right) \alpha \Delta t \le 1$$
(3.81)

Dans le cas où $\Delta x = \Delta y = \Delta z$

On aura donc une relation à satisfaire s'écrit :

$$\frac{\alpha \Delta t}{\left(\Delta x\right)^2} \le \frac{1}{3} \tag{3.82}$$

3.6.3 Schéma totalement implicite :

Le facteur de pondération va être égal dans ce cas à 1 (f=1), une telle considération va nous permettre d'écrire une équation discrétisée de conduction thermique en 3D et en régime transitoire comme suit :

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{T}T_{T} + a_{B}T_{B} + a_{0}T_{P}^{0} + S_{c}V_{c}$$
(3.83)

Où
$$a_p = a_W + a_E + a_S + a_N + a_T + a_B + a_p^0 - S_p V_c$$

 $a_p^0 = \rho c_p \frac{\Delta x \Delta y \Delta z}{\Delta t}$
 $a_w = \frac{\lambda_w A_w}{\delta x_w} a_E = \frac{\lambda_e A_e}{\delta x_e} a_S = \frac{\lambda_s A_s}{\delta y_s} a_N = \frac{\lambda_n A_n}{\delta y_n} a_T = \frac{\lambda_t A_t}{\delta z_t} a_B = \frac{\lambda_b A_b}{\delta z_b}$
 $A_w = A_e = \Delta y \Delta z$ $A_s = A_n = \Delta x \Delta z$ $A_t = A_b = \Delta x \Delta y$

$$(3.84)$$

La 2ême règle de base reste vérifiée, et le schéma reste inconditionnellement stable, sauf que le choix d'un pas de temps petit assure des résultats plus précis.

Chapitre 4 : Exemples et Méthodologie de programmation

4.1. Quelques exemples traités :

4.1.1. Exemples 2D :

• Exemple 1 :

On considère une plaque métallique rectangulaire de langueur de 0,4 m et largeur de 0,5 m .A l'instant t = 0 la section transversale de la plaque, a une distribution uniforme de la température, $T0=200 \ C^{\circ}$. La plaque est mise en contact avec un fluide ayant la température uniforme $T0=10 \ C^{\circ}$ sur les faces droite et gauche . Le coefficient de transfert thermique par convection, sur la surface de séparation entre la plaque et le fluide, est $h = 100 \ W/m \ K^{\circ}$.La frontière nord est isolée et la frontière sud est mise en contact avec une paroi maintenue à la température constante de $T_p = 400^{\circ}C$.

Le terme source est constant et distribué de façon uniforme. S=400 KW/m³

Déterminer l'évolution, dans le temps, de la distribution de la température sur la section

transversale de la barre, en utilisant un pas de temps $\Delta t = 0.1$ s.

On connaît les suivantes propriétés du matériau de la barre :

- la conductivité thermique, $\lambda = 10 \text{ W/m K}$;

- la densité de masse, $\rho = 1000 \text{ kg/m}^3$;
- la chaleur spécifique, c p = 3500 J/ kg K.

• Exemple 2 :

On considère une barre ayant une section transversale rectangulaire . A l'instant t = 0 la section inferieure de la barre a une distribution uniforme de flux, $q_0 = 50000$ W . La barre est mise en contact avec un fluide ayant la température uniforme $T_0 = 25$ C° sur les trois faces restantes . Le coefficient de transfert thermique par convection, sur les surfaces de séparation entre la barre et le fluide, est h=100 W/m K° .Le terme source est nul.

Les dimensions de la barre sont : Lx=0.4 m ; Ly=0.5 m

Déterminer l'évolution, dans le temps, de la distribution de la température sur la section

transversale de la barre, en utilisant un pas de temps $\Delta t = 0.1s$.

On connaît les suivantes propriétés du matériau de la barre :

- la conductivité thermique, $\lambda = 350 \text{ W/m K}$;
- la densité de masse, $\rho = 1000 \text{ kg/m}^3$;
- la chaleur spécifique, c p = 3500 J/kg K.

• Exemple 3

On considère une barre ayant une section transversale rectangulaire . A l'instant t = 0 la section transversale, de la barre, a une distribution uniforme de la température, $T_0 = 200 \ C^\circ$. La barre est mise en contact avec un fluide ayant la température uniforme $T_0=25 \ C^\circ$ sur les faces supérieure et inférieure . Le coefficient de transfert thermique par convection, sur les surfaces de séparation entre la barre et le fluide, est $h = 100 \ \text{W/m} \ \text{K}^\circ$.les frontières droite et gauche reçoivent un flux de chaleur ayant une intensité de q=50 KW/m².

Les dimensions de la barre sont : Lx=0.4 m ; Ly=0.5 m

Déterminer l'évolution, dans le temps, de la distribution de la température sur la section transversale de la barre, en utilisant un pas de temps $\Delta t = 0.1$ s.

On connaît les suivantes propriétés du matériau de la barre :

- la conductivité thermique, $\lambda = 350 \text{ W/m K}$;
- la densité de masse, $\rho = 1000 \text{ kg/m}^3$;
- la chaleur spécifique, c p = 3500 J/ kg K.

• Exemple 4

On considère une barre ayant une section transversale rectangulaire . A l'instant t = 0 la section transversale, de la barre, a une distribution uniforme de la température, $T_0 = 200$ C° . La barre est mise sur les frontières droite, gauche et nord ont un flux de chaleur ayant une intensité de q=50 KW/m².

Sur la frontière Sud, la barre est mise à une température imposée telle que T= 300° C. Déterminer l'évolution, dans le temps, de la distribution de la température sur la section transversale de la barre, en utilisant un pas de temps $\Delta t = 0.1$ s.

Les dimensions de la barre sont : Lx=0.4 m ; Ly=0.5 m

On connaît les suivantes propriétés du matériau de la barre :

- la conductivité thermique, $\lambda = 350$ W/m K ;
- la densité de masse, $\rho = 1000 \text{ kg/m}^3$;
- la chaleur spécifique, c p = 3500 J/ kg K.

• Exemple 5

On considère une plaque métallique rectangulaire. A l'instant t = 0 la section transversale de la plaque, a une distribution uniforme de la température, $T0 = 200 C^{\circ}$. La plaque est mise en contact avec un fluide ayant la température uniforme $T0=50 C^{\circ}$ sur les faces droit et gauche. Le coefficient de transfert thermique par convection, sur les surfaces de séparation entre la plaque et le fluide, est $h = 100 \text{ W/m K}^{\circ}$. La frontière nord est isolée et la frontière sud reçoit un flux constant q=80000 kW/m². Le terme source est considéré nul.

Déterminer l'évolution, dans le temps, de la distribution de la température sur la section transversale de la barre, en utilisant un pas de temps $\Delta t = 0.1$ s.

 $(\Delta x = \Delta y = 0.1 \text{m}).$

la longueur et la largeur de la plaque sont respectivement : Lx=0.4 m , Ly=0.5m

On connaît les suivantes propriétés du matériau de la barre :

- la conductivité thermique, $\lambda = 350$ W/m K ;

- la densité de masse, $\rho = 1000 \text{ kg/m}^3$;

- la chaleur spécifique, c p = 3500 J/ kg K.

• Exemple 6

On considère une barre ayant une section transversale rectangulaire de langueur de 0,04 m et largeur de 0,05 m. À l'instant t = 0 la section transversale, de la barre, a une distribution uniforme de la température, $T0 = 425C^{\circ}$. La barre est soumise à une température imposée à sa face inferieure T_b=300 C° , et mise en contact avec un fluide ayant la température uniforme $T0=25 C^{\circ}$ sur les 3 faces restantes. Le coefficient de transfert thermique par convection, sur la surface de séparation entre la barre et le fluide, est h = 100 W/m K°.

Déterminer l'évolution, dans le temps, de la distribution de la température sur la section

transversale de la barre, en utilisant un pas de temps $\Delta t = 0.1$ s.

On connaît les suivantes propriétés du matériau de la barre :

- la conductivité thermique, $\lambda = 350$ W/m. K ;
- la densité de masse, $\rho = 1000 \text{ kg/m}^3$;
- la chaleur spécifique, c p = 3500 J/kg. K.

4.1.2. Exemple 3D :

On considère une plaque métallique rectangulaire . À l'instant t = 0 la plaque, a une distribution uniforme de la température, $T0 = 200 C^{\circ}$. les frontières gauche, droit et celle de dessus reçoivent un flux de chaleur ayant une intensité de q=500 KW/m², La plaque est mise en contact avec un fluide ayant la température uniforme $T_{\infty} = 25 C^{\circ}$ sur les frontières avant et arrière . Le coefficient de transfert thermique par convection, sur les surfaces de séparation entre la plaque et le fluide, est $h = 1000 \text{ W/m K}^{\circ}$, la frontière de dessous a une distribution de température uniforme telle que T=300°C.

Déterminer l'évolution, dans le temps, de la distribution de la température sur la plaque, en utilisant un pas de temps $\Delta t = 0.1$ s.

Les dimensions de la plaque sont : Lx=0.4 m , Ly=0.5m , Lz=0.4 m

On connaît les suivantes propriétés du matériau de la barre :

- la conductivité thermique, $\lambda = 3500 \text{ W/m K}$;

- la densité de masse, $\rho = 1000 \text{ kg/m}^3$;

- la chaleur spécifique, $c \ p$ =3500 J/ kg K .

4.2. Méthodologie :

4.2.1. Introduction :

Dans cette partie du chapitre, l'objectif est de présenter le passage des équations différentielles en équations discrétisées en utilisant la méthode des volumes finis. La méthodologie de plusieurs exemples sera présenté. Cette étape est cruciale pour pouvoir développer les programmes désirés.

4.2.2. Exemples 2D :

Méthodologie de l'exemple 1 :

Fig.4.1 Maillage 2D pour le domaine de calcul.

On considère un maillage à 30 nœuds avec ($\Delta x = \Delta y = 0.1 \text{ m}$).

L'équation différentielle qui gouverne le régime transitoire de la barre est la suivante :

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + S$$
(4.1)

Pour obtenir l'équation discrétisée pour un nœud intérieur du domaine de calcul (le nœud 16 par exemple) on intègre l'équation (4.1) sur le volume de contrôle hachuré autour du nœud 16 Figure (4.1) . En utilisant le schéma totalement implicite on obtient (voir l'obtention de l'équation (3.47)) :

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + b$$
(4.2)

Ou
$$a_W = \frac{\lambda_w A_w}{\delta x_w}$$
 $a_E = \frac{\lambda_e A_e}{\delta x_e}$ $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_N = \frac{\lambda_n A_n}{\delta y_n}$
 $a_p = a_W + a_E + a_S + a_N + a_p^0$ $a_p^0 = \rho c_p \frac{\Delta x \Delta y}{\Delta t}$ $b = a_p^0 T_p^0 + S \Delta x \Delta y$
 $A_w = A_e = \Delta y$ $A_s = A_n = \Delta x$

Les valeurs numériques des coefficients de l'équation (4.2), dans les conditions d'un maillage uniforme, sont :

$$a_{s} = a_{N} = a_{W} = a_{E} = \frac{10 \times 0.1}{0.1} = 10$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{\Delta t} = 1000 \cdot 3500 \cdot \frac{0.1 \times 0.1}{0.1} = 350000$$
$$a_{p} = 10 + 10 + 10 + 10 + 350000 = 350040$$
$$b = 350000 \cdot T_{p}^{0} + 4000$$

L'équation (4.2) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, et 23) et on obtient les équations suivantes :

$$350040T_{8} = 10T_{2} + 10T_{14} + 10T_{7} + 10T_{9} + 350000 \cdot T_{8}^{0} + 4000$$

$$350040T_{9} = 10T_{3} + 10T_{15} + 10T_{8} + 10T_{10} + 350000 \cdot T_{9}^{0} + 4000$$

$$350040T_{10} = 10T_{4} + 10T_{16} + 10T_{10} + 10T_{11} + 350000 \cdot T_{10}^{0} + 4000$$

$$350040T_{11} = 10T_{5} + 10T_{17} + 10T_{11} + 10T_{12} + 350000 \cdot T_{11}^{0} + 4000$$

$$350040T_{14} = 10T_{8} + 10T_{20} + 10T_{13} + 10T_{15} + 350000 \cdot T_{14}^{0} + 4000$$

$$350040T_{15} = 10T_{9} + 10T_{21} + 10T_{14} + 10T_{16} + 350000 \cdot T_{16}^{0} + 4000$$

$$4.3)$$

$$350040T_{16} = 10T_{10} + 10T_{22} + 10T_{15} + 10T_{17} + 350000 \cdot T_{16}^{0} + 4000$$

$$350040T_{17} = 10T_{11} + 10T_{23} + 10T_{16} + 10T_{18} + 350000 \cdot T_{17}^{0} + 4000$$

$$350040T_{20} = 10T_{14} + 10T_{26} + 10T_{19} + 10T_{21} + 350000 \cdot T_{20}^{0} + 4000$$

$$350040T_{21} = 10T_{15} + 10T_{27} + 10T_{20} + 10T_{22} + 350000 \cdot T_{21}^{0} + 4000$$

$$350040T_{22} = 10T_{16} + 10T_{28} + 10T_{21} + 10T_{23} + 350000 \cdot T_{22}^{0} + 4000$$

$$350040T_{23} = 10T_{17} + 10T_{29} + 10T_{22} + 10T_{24} + 350000 \cdot T_{23}^{0} + 4000$$

Pour un nœud intérieur sur la frontière "West", le nœud 4 par exemple, on intègre l'équation (4.1) sur le demi-volume de contrôle hachuré et présenté à la fig. 4.2.

Fig.4.2 Demi-volume de contrôle sur la frontière "W".

L'intégration de l'équation (4.1) donne :

$$\rho c_p \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial T}{\partial t} dx dy dt = \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dt + \int_{t}^{t+\Delta t} \int_{1/2vc} S \cdot dx dy dt \quad (4.4)$$

L'intégration de l'équation (4.4) donne :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \Delta y = \int_t^{t+\Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_p \left(\frac{\partial T}{\partial x} \right)_p \right) \Delta y dt + \int_t^{t+\Delta t} \left(\lambda_n \left(\frac{\partial T}{\partial y} \right)_n - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \frac{\Delta x}{2} dt + \int_t^{t+\Delta t} S \cdot \frac{\Delta x}{2} \Delta y dt \quad (4.5)$$

En tenant compte que $-\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = h(T_{\infty} - T_p)$ (condition à la limite sur la frontière West), en

supposant une variation linéaire du gradient de température et en utilisant le schéma totalement implicite pour l'intégration dans le temps, on obtient :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x \Delta y}{2\Delta t} = \left(\lambda_e A_e \left(\frac{T_E - T_p}{\delta x}\right) + A_p h(T_\infty - T_p)\right) + \left(\lambda_n A_n \left(\frac{T_N - T_p}{\delta y}\right) - \lambda_s A_s \left(\frac{T_p - T_s}{\delta y}\right)\right) + S \cdot A_e \cdot A_s \tag{4.6}$$

Où $A_e = A_p = \Delta y$ et $A_s = A_n = \frac{\Delta x}{2}$

En regroupant les termes, dans l'équation (4.6), on obtient la forme générale de l'équation discrétisée :

$$a_p T_p = a_E T_E + a_S T_S + a_N T_N + b \tag{4.7}$$

Où
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_N = \frac{\lambda_n A_n}{\delta y_n}$

$$a_p = a_E + a_S + a_N + hA_p + a_p^0 \qquad a_p^0 = \rho c_p \frac{\Delta x \Delta y}{2\Delta t} \qquad b = A_p hT_{\infty} + S \frac{\Delta x}{2} \Delta y + a_p^0 T_p^0$$

$$A_p = A_e = \Delta y$$
 $A_n = A_s = \frac{\Delta x}{2}$

Les valeurs numériques des coefficients pour l'équation (4.7) sont les suivantes :

$$a_{E} = \frac{10 \times 0,1}{0,1} = 10 \qquad a_{S} = a_{N} = \frac{10 \times \frac{0,1}{2}}{0,1} = 5$$

$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} = 1000 \times 3500 \times \frac{0,1 \times 0,1}{2 \times 0,1} = 175000$$

$$a_{p} = 10 + 5 + 5 + 0,1 \times 100 + 175000 = 175030 \qquad b = 2100 + 175000 \cdot T_{p}^{0}$$

Les équations discrétisées pour les nœuds intérieurs sur la frontière "West" (les nœuds 2, 3, 4 et 5) sont :

$$175030T_{2} = 10T_{8} + 5T_{1} + 5T_{3} + 175000 \cdot T_{2}^{0} + 2100$$

$$175030T_{3} = 10T_{9} + 5T_{2} + 5T_{4} + 175000 \cdot T_{3}^{0} + 2100$$

$$175030T_{4} = 10T_{10} + 5T_{3} + 5T_{5} + 175000 \cdot T_{4}^{0} + 2100$$

$$175030T_{5} = 10T_{11} + 5T_{4} + 5T_{6} + 175000 \cdot T_{5}^{0} + 2100$$
(4.8)

Pour un nœud intérieur sur la frontière "East", le nœud 28 par exemple, on intègre l'équation (4.1) sur le demi-volume de contrôle hachuré et présenté à la fig. 4.3.

Fig.4.3 Demi-volume de contrôle sur la frontière "E".

Après l'intégration dans l'espace et dans le temps pour la partie gauche de l'équation et dans l'espace pour la partie droite, on obtient :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \Delta y = \int_t^{t+\Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial x} \right)_p - \lambda_w \left(\frac{\partial T}{\partial x} \right)_w \right) \Delta y dt + \int_t^{t+\Delta t} \left(\lambda_n \left(\frac{\partial T}{\partial y} \right)_n - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \frac{\Delta x}{2} dt + \int_t^{t+\Delta t} S \frac{\Delta x}{2} \Delta y dt \quad (4.9)$$

En intégrant avec le schéma totalement implicite, on obtient, en remplaçant les gradients de température, l'équation suivante :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x \Delta y}{2\Delta t} = \left(A_p h (T_{\infty} - T_p) - \lambda_w A_w \left(\frac{T_p - T_w}{\delta x} \right) \right) + \left(\lambda_n A_n \left(\frac{T_N - T_p}{\delta y} \right) - \lambda_s A_s \left(\frac{T_p - T_s}{\delta y} \right) \right) + S \frac{\Delta x}{2} \Delta y \quad (4.10)$$

En regroupant les termes dans l'équation (4.10) on obtient la forme générale de l'équation discrétisée :

$$a_{p}T_{p} = a_{W}T_{W} + a_{S}T_{S} + a_{N}T_{N} + b$$
(4.11)
Où
$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}}$$

$$a_{p} = a_{W} + a_{S} + a_{N} + A_{p} \cdot h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} \qquad b = A_{p} \cdot h \cdot T_{\infty} + S \frac{\Delta x}{2} \Delta y + a_{p}^{0}T_{p}^{0}$$

$$A_s = A_n = \frac{\Delta x}{2}$$
 et $A_p = A_w = \Delta y$

Les valeurs des coefficients de l'équation (4.11) sont :

$$a_{W} = \frac{10 \times 0,1}{0,1} = 10 \qquad a_{N} = \frac{10 \times \frac{0,1}{2}}{0,1} = 5 \qquad a_{S} = \frac{10 \times \frac{0,1}{2}}{0,1} = 5$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} = 1000 \times 3500 \times \frac{0,1 \times 0,1}{2 \times 0,1} = 175000$$
$$a_{p} = 10 + 5 + 5 + 0,1 \times 100 + 175000 = 175030$$
$$b = 0,1 \times 100 \times 10 + 400000 \times \frac{0.1 \times 0.1}{2} + 175000T_{p}^{0} = 2100 + 175000T_{p}^{0}$$

Les équations à résoudre pour les nœuds intérieurs de la frontière "East" (les nœuds 26, 27, 28 et 29) sont les suivantes :

$$175030T_{26} = 10T_{20} + 5T_{25} + 5T_{27} + 175000 \cdot T_{26}^{0} + 2100$$

$$175030T_{27} = 10T_{21} + 5T_{26} + 5T_{28} + 175000 \cdot T_{27}^{0} + 2100$$

$$175030T_{28} = 10T_{22} + 5T_{27} + 5T_{29} + 175000 \cdot T_{28}^{0} + 2100$$

$$175030T_{29} = 10T_{23} + 5T_{28} + 5T_{30} + 175000 \cdot T_{29}^{0} + 2100$$

$$175030T_{29} = 10T_{23} + 5T_{28} + 5T_{30} + 175000 \cdot T_{29}^{0} + 2100$$

Pour un nœud situé sur la frontière "North", le nœud 18 par exemple, on intègre l'équation (4.1) sur le demi-volume de contrôle hachuré et présenté à la Fig. 4.4 :

Fig.4.4 Demi-volume de contrôle sur la frontière "N"

$$\rho c_p (T_p - T_p^0) \Delta x \frac{\Delta y}{2} = \int_t^{t + \Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_w \left(\frac{\partial T}{\partial x} \right)_w \right) \frac{\Delta y}{2} dt + \int_t^{t + \Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial y} \right)_p - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \Delta x dt \qquad (4.13)$$

En tenant compte que sur cette frontière la condition à la limite est :

$$\left. \lambda \frac{\partial T}{\partial y} \right|_p = 0 \tag{4.14}$$

Après l'intégration temporelle en regroupant les termes de l'équation (4.13), on obtient la forme générale de l'équation discrétisée :

$$a_{p}T_{p} = a_{E}T_{E} + a_{W}T_{W} + a_{S}T_{S} + b$$
(4.15)

Ou

$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_W = \frac{\lambda_w A_w}{\delta x_w}$ $a_S = \frac{\lambda_s A_s}{\delta y_s}$

$$a_p = a_E + a_W + a_S + a_p^0$$
 $a_p^0 = \rho c_p \frac{\Delta x \Delta y}{2\Delta t}$ $b = S \frac{\Delta y}{2} \Delta x + a_p^0 T_p^0$

$$A_e = A_w = \frac{\Delta y}{2}$$
 et $A_p = A_s = \Delta x$

Les valeurs des coefficients de l'équation (4.15) sont :

$$a_W = a_E = \frac{10 \times \frac{0.1}{2}}{0.1} = 5$$
 $a_S = \frac{10 \times 0.1}{0.1} = 10$

$$a_p^0 = \rho c_p \frac{\Delta x \Delta y}{2\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{2 \times 0.1} = 175000$$

$$a_p = 10 + 5 + 5 + 175000 = 175020$$

$$b = 400000 \times \frac{0.1 \times 0.1}{2} + 175000T_p^0 = 2000 + 175000T_p^0$$

Les équations à résoudre, pour les nœuds intérieurs, sur la frontière "North" (les nœuds 12, 18 et 24) sont :

$$175020T_{12} = 5T_6 + 5T_{18} + 10T_{11} + 175000 \cdot T_{12}^0 + 2000$$

$$175020T_{18} = 5T_{12} + 5T_{24} + 10T_{17} + 175000 \cdot T_{18}^0 + 2000$$

$$175020T_{24} = 5T_{18} + 5T_{30} + 10T_{23} + 175000 \cdot T_{24}^0 + 2000$$
(4.16)

Pour obtenir l'équation discrétisée pour le nœud 30 on intègre l'équation (4.1) sur le quart du volume de contrôle hachuré et présenté à la fig. 4.5, c'est-à-dire :

$$\rho c_p \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S dx dy dt \quad (4.17)$$

L'intégration de l'équation (4.17) donne :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \frac{\Delta y}{2} = \int_{t}^{t+\Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial x} \right)_p - \lambda_w \left(\frac{\partial T}{\partial x} \right)_w \right) \frac{\Delta y}{2} dt + \int_{t}^{t+\Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial y} \right)_p - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \frac{\Delta x}{2} dt + \int_{t}^{t+\Delta t} S \frac{\Delta x \Delta y}{4} dt \quad (4.18)$$

↓ isolé

Fig. 4.5 Quart du volume de contrôle (le coin "N-E").
En tenant compte des conditions aux limites sur les frontières "North" et "East" après l'intégration temporelle, on obtient :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x \Delta y}{4\Delta t} = \left(\frac{\Delta y}{2} h(T_\infty - T_p) - \lambda_w A_w \left(\frac{T_p - T_w}{\delta x_w}\right)\right) + \left(-\lambda_s A_s \left(\frac{T_p - T_s}{\delta y_s}\right)\right) + S \frac{\Delta x \Delta y}{4}$$
(4.19)

En regroupant les termes, dans l'équation (4.19), on obtient la forme générale de l'équation discrétisée pour le nœud 30 :

$$a_p T_p = a_W T_W + a_S T_S + b \tag{4.20}$$

Où
$$a_W = \frac{\lambda_w A_w}{\delta x_w}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$

$$a_{p} = a_{W} + a_{s} + \frac{\Delta y}{2}h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} \qquad b = \frac{\Delta y \Delta x}{4} \cdot S + \frac{\Delta y}{2} \cdot h \cdot T_{\infty} + a_{p}^{0} T_{p}^{0}$$
$$A_{w} = \frac{\Delta y}{2} \qquad \text{et} \qquad A_{s} = \frac{\Delta x}{2}$$

Les valeurs des coefficients de l'équation (4.20) sont :

$$a_{W} = \frac{10 \times \frac{0.1}{2}}{0.1} = 5 \qquad a_{S} = \frac{10 \times \frac{0.1}{2}}{0.1} = 5$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{4 \times 0.1} = 87500$$
$$a_{p} = 5 + 5 + \frac{0.1}{2} \times 100 + 87500 = 87515$$
$$b = \frac{0.1 \times 0.1}{4} \times 400000 + \frac{0.1}{2} \times 100 \times 10 + 87500T_{p}^{0} = 1050 + 87500T_{p}^{0}$$

L'équation à résoudre pour le nœud 30 est la suivante :

$$87515T_{30} = 5T_{24} + 5T_{29} + 87500 \cdot T_{30}^0 + 1050 \tag{4.21}$$

Pour obtenir l'équation discrétisée pour le nœud 6 on intègre l'équation (4.1) sur le quart du volume de contrôle hachuré et présenté à la fig. 4.6 :

↓ isolé

Fig. 4.6 Quart du volume de contrôle (le coin "N-W").

$$\rho c_p \int_{t-1/4vc}^{t+\Delta t} \int_{0} \frac{\partial T}{\partial t} dx dy dt = \int_{t-1/4vc}^{t+\Delta t} \int_{0} \frac{\partial C}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dt + \int_{t-1/4vc}^{t+\Delta t} \int_{0} \frac{\partial C}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dt + \int_{t-1/4vc}^{t+\Delta t} \int_{0} \frac{\partial C}{\partial x} dx dy dt$$
(4.22)

L'intégration de l'équation (4.22) donne :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \frac{\Delta y}{2} = \int_t^{t+\Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_p \left(\frac{\partial T}{\partial x} \right)_p \right) \frac{\Delta y}{2} dt + \int_t^{t+\Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial y} \right)_p - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \frac{\Delta x}{2} dt + \int_t^{t+\Delta t} S \frac{\Delta x \Delta y}{4} dt \quad (4.23)$$

En tenant compte des conditions aux limites sur les frontières "North" et "West" après l'intégration temporelle on obtient :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x \Delta y}{4\Delta t} = \left(\lambda_e A_e \left(\frac{T_E - T_p}{\delta x_e}\right) + \frac{\Delta y}{2} h(T_\infty - T_p)\right) + \left(-\lambda_s A_s \left(\frac{T_p - T_s}{\delta y_s}\right)\right) + S \frac{\Delta x \Delta y}{4}$$
(4.24)

En regroupant les termes dans l'équation (4.24), on obtient la forme générale de l'équation discrétisée pour le nœud 6 :

$$a_p T_p = a_E T_E + a_S T_S + b \tag{4.25}$$

Où

$$a_E = \frac{\lambda_e A_e}{\delta x_e} \qquad \qquad a_S = \frac{\lambda_s A_s}{\delta y_s}$$

$$a_{p} = a_{E} + a_{S} + \frac{\Delta y}{2}h + a_{p}^{0} \qquad \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} \qquad \qquad b = S \frac{\Delta x \Delta y}{4} + \frac{\Delta y}{2} \cdot h \cdot T_{\infty} + a_{p}^{0} T_{p}^{0}$$

$$A_e = \frac{\Delta y}{2}$$
 et $A_s = \frac{\Delta x}{2}$

Les valeurs des coefficients de l'équation (4.25) sont :

$$a_{E} = \frac{10 \times \frac{0.1}{2}}{0.1} = 5 \qquad a_{S} = \frac{10 \times \frac{0.1}{2}}{0.1} = 5$$

$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{4 \times 0.1} = 87500$$

$$a_{p} = 5 + 5 + \frac{0.1}{2} \times 100 + 87500 = 87515$$

$$b = \frac{0.1 \times 0.1}{4} \times 400000 + \frac{0.1}{2} \times 100 \times 10 + 87500T_{p}^{0} = 1050 + 87500T_{p}^{0}$$
L'équation à résoudre pour le nœud 6 est la suivante :

$$87515T_6 = 5T_{12} + 5T_5 + 87500 \cdot T_6^0 + 1050 \tag{4.26}$$

Finalement, le système d'équations à résoudre est le suivant :

$$\begin{aligned} &175030T_2 = 10T_8 + 5T_1 + 5T_3 + 175000 \cdot T_2^0 + 2100 \\ &175030T_3 = 10T_9 + 5T_2 + 5T_4 + 175000 \cdot T_3^0 + 2100 \\ &175030T_4 = 10T_{10} + 5T_3 + 5T_5 + 175000 \cdot T_4^0 + 2100 \\ &175030T_5 = 10T_{11} + 5T_4 + 5T_6 + 175000 \cdot T_5^0 + 2100 \\ &87515T_6 = 5T_{12} + 5T_5 + 87500 \cdot T_6^0 + 1050 \\ &350040T_8 = 10T_2 + 10T_{14} + 10T_7 + 10T_9 + 350000 \cdot T_8^0 + 4000 \\ &350040T_9 = 10T_3 + 10T_{15} + 10T_8 + 10T_{10} + 350000 \cdot T_{9}^0 + 4000 \\ &350040T_{10} = 10T_4 + 10T_{16} + 10T_{10} + 10T_{11} + 350000 \cdot T_{10}^0 + 4000 \\ &350040T_{11} = 10T_5 + 10T_{17} + 10T_{11} + 10T_{12} + 350000 \cdot T_{11}^0 + 4000 \\ &175020T_{12} = 5T_6 + 5T_{18} + 10T_{11} + 175000 \cdot T_{12}^0 + 2000 \\ &350040T_{14} = 10T_8 + 10T_{20} + 10T_{13} + 10T_{15} + 350000 \cdot T_{14}^0 + 4000 \end{aligned}$$

$350040T_{15} = 10T_9 + 10T_{21} + 10T_{14} + 10T_{16} + 350000 \cdot T_{15}^0 + 4000$	
$350040T_{16} = 10T_{10} + 10T_{22} + 10T_{15} + 10T_{17} + 350000 \cdot T_{16}^0 + 4000$	(4.27)
$350040T_{17} = 10T_{11} + 10T_{23} + 10T_{16} + 10T_{18} + 350000 \cdot T_{17}^{0} + 4000$	
$175020T_{18} = 5T_{12} + 5T_{24} + 10T_{17} + 175000 \cdot T_{18}^0 + 2000$	
$350040T_{20} = 10T_{14} + 10T_{26} + 10T_{19} + 10T_{21} + 350000 \cdot T_{20}^{0} + 4000$	
$350040T_{21} = 10T_{15} + 10T_{27} + 10T_{20} + 10T_{22} + 350000 \cdot T_{21}^{0} + 4000$	
$350040T_{22} = 10T_{16} + 10T_{28} + 10T_{21} + 10T_{23} + 350000 \cdot T_{22}^{0} + 4000$	
$350040T_{23} = 10T_{17} + 10T_{29} + 10T_{22} + 10T_{24} + 350000 \cdot T_{23}^0 + 4000$	
$175020T_{24} = 5T_{18} + 5T_{30} + 10T_{23} + 175000 \cdot T_{24}^0 + 2000$	
$175030T_{26} = 10T_{20} + 5T_{25} + 5T_{27} + 175000 \cdot T_{26}^0 + 2100$	
$175030T_{27} = 10T_{21} + 5T_{26} + 5T_{28} + 175000 \cdot T_{27}^0 + 2100$	
$175030T_{28} = 10T_{22} + 5T_{27} + 5T_{29} + 175000 \cdot T_{28}^0 + 2100$	
$175030T_{29} = 10T_{23} + 5T_{28} + 5T_{30} + 175000 \cdot T_{29}^{0} + 2100$	
$87515T_{30} = 5T_{24} + 5T_{29} + 87500 \cdot T_{30}^0 + 1050$	

• Méthodologie de l'exemple 2 :

Fig 4.7 Maillage 2D pour le domaine de calcul.

On considère un maillage à 30 nœuds avec ($\Delta x = \Delta y = 0.1 \text{ m}$).

L'équation différentielle qui gouverne le régime transitoire de la barre est la suivante :

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right)$$
(4.28)

Pour obtenir l'équation discrétisée pour un nœud intérieur du domaine de calcul (le nœud 16 par exemple) on intègre l'équation (4.28) sur le volume de contrôle hachuré autour du nœud 16 (Fig. 4.7). En utilisant le schéma totalement implicite on obtient (voir l'obtention de l'équation (3.47)) :

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + b$$

$$Ou \quad a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}}$$

$$a_{p} = a_{W} + a_{E} + a_{S} + a_{N} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{\Delta t} \qquad b = a_{p}^{0}T_{p}^{0}$$

$$(4.29)$$

$$A_w = A_e = \Delta y \qquad \qquad A_s = A_n = \Delta x$$

le terme source S étant nul dans notre exemple.

Les valeurs numériques des coefficients de l'équation (4.29), dans les conditions d'un maillage uniforme, sont :

$$a_{s} = a_{N} = a_{W} = a_{E} = \frac{350 \times 0.1}{0.1} = 350$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{\Delta t} = 1000 \cdot 3500 \cdot \frac{0.1 \times 0.1}{0.1} = 350000$$
$$a_{p} = 350 + 350 + 350 + 350 + 350000 = 351400$$
$$b = 350000 \cdot T_{p}^{0}$$

L'équation (4.29) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, et 23) et on obtient les équations suivantes :

$$351400T_{8} = 350T_{2} + 350T_{14} + 350T_{7} + 350T_{9} + 350000 \cdot T_{8}^{0}$$

$$351400T_{9} = 350T_{3} + 350T_{15} + 350T_{8} + 350T_{10} + 350000 \cdot T_{9}^{0}$$

$$351400T_{10} = 350T_{4} + 350T_{16} + 350T_{10} + 350T_{11} + 350000 \cdot T_{10}^{0}$$

$$351400T_{11} = 350T_{5} + 350T_{17} + 350T_{11} + 350T_{12} + 350000 \cdot T_{11}^{0}$$

$$351400T_{14} = 350T_{8} + 350T_{20} + 350T_{13} + 350T_{15} + 350000 \cdot T_{14}^{0}$$

$$351400T_{15} = 350T_{9} + 350T_{21} + 350T_{14} + 350T_{16} + 350000 \cdot T_{16}^{0}$$

$$351400T_{16} = 350T_{10} + 350T_{22} + 350T_{15} + 350T_{17} + 350000 \cdot T_{16}^{0}$$

$$351400T_{16} = 350T_{11} + 350T_{23} + 350T_{16} + 350T_{18} + 350000 \cdot T_{16}^{0}$$

$$351400T_{12} = 350T_{14} + 350T_{26} + 350T_{19} + 350T_{21} + 350000 \cdot T_{20}^{0}$$

$$351400T_{21} = 350T_{15} + 350T_{27} + 350T_{20} + 350T_{22} + 350000 \cdot T_{21}^{0}$$

$$351400T_{21} = 350T_{15} + 350T_{27} + 350T_{20} + 350T_{22} + 350000 \cdot T_{21}^{0}$$

$$351400T_{21} = 350T_{16} + 350T_{27} + 350T_{20} + 350T_{22} + 350000 \cdot T_{21}^{0}$$

 $351400T_{23} = 350T_{17} + 350T_{29} + 350T_{22} + 350T_{24} + 350000 \cdot T_{23}^{0}$

Pour un nœud intérieur sur la frontière "West", le nœud 4 par exemple, on intègre l'équation (4.28) sur le demi-volume de contrôle hachuré et présenté à la Fig. 4.8 :

Fig. 4.8 Demi-volume de contrôle sur la frontière "W".

L'intégration de l'équation (4.28) donne :

$$\rho c_p \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial T}{\partial t} dx dy dt = \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dt$$
(4.31)

L'intégration de l'équation (4.31) donne :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \Delta y = \int_t^{t+\Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_p \left(\frac{\partial T}{\partial x} \right)_p \right) \Delta y dt + \int_t^{t+\Delta t} \left(\lambda_n \left(\frac{\partial T}{\partial y} \right)_n - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \frac{\Delta x}{2} dt$$
(4.32)

En tenant compte que $-\lambda \frac{\partial T}{\partial x}\Big|_p = h(T_{\infty} - T_p)$ (condition à la limite sur la frontière West), en

supposant une variation linéaire du gradient de température et en utilisant le schéma totalement implicite pour l'intégration dans le temps, on obtient :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x \Delta y}{2\Delta t} = \left(\lambda_e A_e \left(\frac{T_E - T_p}{\delta x}\right) + A_p h(T_\infty - T_p)\right) + \left(\lambda_n A_n \left(\frac{T_N - T_p}{\delta y}\right) - \lambda_s A_s \left(\frac{T_p - T_s}{\delta y}\right)\right)$$
(4.33)

Ou
$$A_e = A_p = \Delta y$$
 et $A_s = A_n = \frac{\Delta x}{2}$

En regroupant les termes, dans l'équation (4.33), on obtient la forme générale de l'équation discrétisée :

$$a_{p}T_{p} = a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + b$$

$$(4.34)$$

$$Ou \qquad a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}}$$

Où

$$a_p = a_E + a_S + a_N + a_p^0 + A_p h$$
 $a_p^0 = \rho c_p \frac{\Delta x \Delta y}{2\Delta t}$ $b = A_p h T_{\infty} + a_p^0 T_p^0$

Les valeurs numériques des coefficients pour l'équation (4.34) sont les suivantes :

$$a_{E} = \frac{350 \times 0.1}{0.1} = 350 \qquad a_{S} = a_{N} = \frac{350 \times \frac{0.1}{2}}{0.1} = 175$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{2 \times 0.1} = 175000$$
$$a_{p} = 350 + 175 + 175 + 175000 + 0.1.100 = 175710$$
$$b = 0.1.100.25 + 175000 \cdot T_{p}^{0} = 250 + 175000 \cdot T_{p}^{0}$$

Les équations discrétisées pour les nœuds intérieurs sur la frontière "West" (les nœuds 2, 3, 4 et 5) sont :

$$175710T_{2} = 350T_{8} + 175T_{1} + 175T_{3} + 175000 \cdot T_{2}^{0} + 250$$

$$175710T_{3} = 350T_{9} + 175T_{2} + 175T_{4} + 175000 \cdot T_{3}^{0} + 250$$

$$175710T_{4} = 350T_{10} + 175T_{3} + 175T_{5} + 175000 \cdot T_{4}^{0} + 250$$

$$175710T_{5} = 350T_{11} + 175T_{4} + 175T_{6} + 175000 \cdot T_{5}^{0} + 250$$

$$(4.35)$$

Pour un nœud intérieur sur la frontière "South", le nœud 13 par exemple, on intègre l'équation (4.28) sur le demi-volume de contrôle hachuré et présenté à la Fig. 4.9 et on obtient :

Fig. 4.9 Demi-volume de contrôle sur la frontière "S"

$$\rho c_p (T_p - T_p^0) \Delta x \frac{\Delta y}{2} = \int_t^{t + \Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_w \left(\frac{\partial T}{\partial x} \right)_w \right) \frac{\Delta y}{2} dt + \int_t^{t + \Delta t} \left(\lambda_n \left(\frac{\partial T}{\partial y} \right)_n - \lambda_p \left(\frac{\partial T}{\partial y} \right)_p \right) \Delta x dt \qquad (4.36)$$

En tenant compte que $-\lambda \frac{\partial T}{\partial y}\Big|_{p} = q$ (condition à la limite sur la frontière "South"), en remplaçant les gradients de température aux points e, w, et n et en utilisant le schéma totalement

implicite pour l'intégration dans le temps, on obtient l'équation discrétisée sous la forme générale :

$$a_{p}T_{p} = a_{E}T_{E} + a_{W}T_{W} + a_{N}T_{N} + b$$
(4.37)

0

Du
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_W = \frac{\lambda_w A_w}{\delta x_w}$ $a_N = \frac{\lambda_n A_n}{\delta y_n}$

$$a_p = a_E + a_W + a_N + a_p^0$$
 $a_p^0 = \rho c_p \frac{\Delta x \Delta y}{2\Delta t}$ $b = A_p \cdot q + a_p^0 T_p^0$

$$A_e = A_w = \frac{\Delta y}{2}$$
 et $A_p = A_n = \Delta x$

2×0,1

Les valeurs numériques des coefficients pour l'équation (4.37) sont les suivantes :

$$a_{W} = a_{E} = \frac{350 \times \frac{0,1}{2}}{0,1} = 175 \qquad a_{N} = \frac{350 \times 0,1}{0,1} = 350$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} = 1000 \times 3500 \times \frac{0,1 \times 0,1}{2 \times 0,1} = 175000$$

$$a_p = 350 + 175 + 175 + 175000 = 175700$$

$$b = 0, 1.50000 + 175000T_p^0 = 5000 + 175000T_p^0$$

Les équations discrétisées pour les nœuds 7, 13 et 19 sont les suivantes :

$$175700T_{7} = 175T_{1} + 175T_{13} + 350T_{8} + 175000 \cdot T_{7}^{0} + 5000$$

$$175700T_{13} = 175T_{7} + 175T_{19} + 350T_{14} + 175000 \cdot T_{13}^{0} + 5000$$

$$(4.38)$$

$$175700T_{19} = 175T_{13} + 175T_{25} + 350T_{14} + 175000 \cdot T_{19}^{0} + 5000$$

L'équation discrétisée pour le nœud 1 est obtenue en intégrant l'équation (4.28) sur le quart du volume de contrôle hachuré et présenté à (la Fig 4.10) on obtient :

Fig. 4.10 Quart de volume de contrôle (le coin W-S).

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \frac{\Delta y}{2} = \int_t^{t+\Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_p \left(\frac{\partial T}{\partial x} \right)_p \right) \frac{\Delta y}{2} dt + \int_t^{t+\Delta t} \left(\lambda_n \left(\frac{\partial T}{\partial y} \right)_n - \lambda_p \left(\frac{\partial T}{\partial y} \right)_p \right) \frac{\Delta x}{2} dt$$
(4.39)

De la même façon, on obtient l'équation discrétisée pour le nœud 1 sous la forme générale suivante :

$$a_p T_p = a_E T_E + a_N T_N + b \tag{4.40}$$

Où

$$a_p = a_E + a_N + \frac{\Delta y}{2}h + a_p^0 \qquad a_p^0 = \rho c_p \frac{\Delta x \Delta y}{4\Delta t} \qquad b = \frac{\Delta x}{2} \cdot q + \frac{\Delta y}{2} \cdot h \cdot T_{\infty} + a_p^0 T_p^0$$

 $a_E = \frac{\lambda_e A_e}{\delta x_e} \qquad a_N = \frac{\lambda_n A_n}{\delta y_n}$

$$A_e = \frac{\Delta y}{2}$$
 et $A_n = \frac{\Delta x}{2}$

Les valeurs numériques des coefficients pour l'équation (4.40) sont les suivantes :

$$a_{E} = \frac{350 \times \frac{0.1}{2}}{0.1} = 175 \qquad a_{N} = \frac{350 \times \frac{0.1}{2}}{0.1} = 175$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{4 \times 0.1} = 87500 \qquad a_{p} = 175 + 175 + 87500 + \frac{0.1}{2} \times 100 = 87855$$
$$b = \frac{0.1}{2} \times 50000 + \frac{0.1}{2} \times 100 \times 25 + 87500T_{p}^{0} = 2625 + 87500T_{p}^{0}$$

On obtient ainsi l'équation discrétisée pour le nœud 1 :

$$87855T_1 = 175T_7 + 175T_2 + 87500 \cdot T_1^0 + 2625 \tag{4.41}$$

Pour un nœud intérieur sur la frontière "East", le nœud 28 par exemple, on intègre l'équation (4.28) sur le demi-volume de contrôle hachuré et présenté à la fig. 4.11.

Fig. 4.11 Demi-volume de contrôle sur la frontière "E".

Après l'intégration dans l'espace et dans le temps pour la partie gauche de l'équation et dans l'espace pour la partie droite, on obtient :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \Delta y = \int_t^{t+\Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial x} \right)_p - \lambda_w \left(\frac{\partial T}{\partial x} \right)_w \right) \Delta y dt + \int_t^{t+\Delta t} \left(\lambda_n \left(\frac{\partial T}{\partial y} \right)_n - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \frac{\Delta x}{2} dt \qquad (4.42)$$

En intégrant avec le schéma totalement implicite, on obtient, en remplaçant les gradients de température, l'équation suivante :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x \Delta y}{2\Delta t} = \left(A_p h(T_\infty - T_p) - \lambda_w A_w \left(\frac{T_p - T_w}{\delta x} \right) \right) + \left(\lambda_n A_n \left(\frac{T_N - T_p}{\delta y} \right) - \lambda_s A_s \left(\frac{T_p - T_s}{\delta y} \right) \right)$$
(4.43)

En regroupant les termes dans l'équation (4.43) on obtient la forme générale de l'équation discrétisée :

$$a_{p}T_{p} = a_{W}T_{W} + a_{S}T_{S} + a_{N}T_{N} + b$$

$$(4.44)$$

$$Ou \qquad a_{W} = \frac{\lambda_{w}A_{w}}{\delta x} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y}$$

$$a_{p} = a_{W} + a_{S} + a_{N} + a_{p}^{0} + A_{p} \cdot h$$

$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} \quad b = A_{p} \cdot h \cdot T_{\infty} + a_{p}^{0} T_{p}^{0}$$

$$A_{s} = A_{n} = \frac{\Delta x}{2} \quad \text{et} \quad A_{p} = A_{w} = \Delta y$$

Les valeurs des coefficients de l'équation (4.44) sont :

$$a_{w} = \frac{350 \times 0.1}{0.1} = 350 \ a_{v} = \frac{350 \times \frac{0.1}{2}}{0.1} = 175 \ a_{s} = \frac{350 \times \frac{0.1}{2}}{0.1} = 175$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{2 \times 0.1} = 175000$$
$$a_{p} = 350 + 175 + 175 + 0.1.100.25 + 175000 = 175950$$

$$b = 0, 1.100.25 + 175000T_p^0 = 250 + 175000T_p^0$$

Les équations à résoudre pour les nœuds intérieurs de la frontière "East" (les nœuds 26, 27, 28 et 29) sont les suivantes :

$$175950T_{26} = 350T_{20} + 175T_{25} + 175T_{27} + 175000 \cdot T_{26}^{0} + 250$$

$$175950T_{27} = 350T_{21} + 175T_{26} + 175T_{28} + 175000 \cdot T_{27}^{0} + 250$$

$$175950T_{28} = 350T_{22} + 175T_{27} + 175T_{29} + 175000 \cdot T_{28}^{0} + 250$$

$$175950T_{29} = 350T_{23} + 175T_{28} + 175T_{30} + 175000 \cdot T_{29}^{0} + 250$$

Pour un nœud situé sur la frontière "North", le nœud 18 par exemple, on intègre l'équation (4.28) sur le demi-volume de contrôle hachuré et présenté à la fig. 4.12 :

Fig. 4.12 Demi-volume de contrôle sur la frontière "N"

$$\rho c_p (T_p - T_p^0) \Delta x \frac{\Delta y}{2} = \int_t^{t+\Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_w \left(\frac{\partial T}{\partial x} \right)_w \right) \frac{\Delta y}{2} dt + \int_t^{t+\Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial y} \right)_p - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \Delta x dt$$
(4.46)

En tenant compte que sur cette frontière la condition à la limite est :

$$\left. \lambda \frac{\partial T}{\partial y} \right|_p = h(T_{\infty} - T_p) \tag{4.47}$$

Après l'intégration de l'équation (4.46), on obtient la forme générale de l'équation discrétisée :

$$a_p T_p = a_E T_E + a_W T_W + a_S T_S + b \tag{4.48}$$

Où
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_W = \frac{\lambda_w A_w}{\delta x_w}$ $a_S = \frac{\lambda_s A_s}{\delta y_s}$

$$a_p = a_E + a_W + a_S + A_p h + a_p^0 \qquad a_p^0 = \rho c_p \frac{\Delta x \Delta y}{2\Delta t} \qquad b = A_p \cdot h \cdot T_{\infty} + a_p^0 T_p^0$$

$$A_e = A_w = \frac{\Delta y}{2}$$
 et $A_p = A_s = \Delta x$

Les valeurs des coefficients de l'équation (4.48) sont :

$$a_{W} = a_{E} = \frac{350 \times \frac{0,1}{2}}{0,1} = 175 \qquad a_{S} = \frac{350 \times 0,1}{0,1} = 350$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{2\Delta t} = 1000 \times 3500 \times \frac{0,1 \times 0,1}{2 \times 0,1} = 175000$$
$$a_{p} = 350 + 175 + 175 + 100 \times 0,1 + 175000 = 175710$$
$$b = 0,1 \times 100 \times 25 + 175000T_{p}^{0} = 250 + 175000T_{p}^{0}$$

Les équations à résoudre, pour les nœuds intérieurs, sur la frontière "North" (les nœuds 12, 18 et 24) sont :

$$175710T_{12} = 175T_6 + 175T_{18} + 350T_{11} + 175000 \cdot T_{12}^0 + 250$$

$$175710T_{18} = 175T_{12} + 175T_{24} + 350T_{17} + 175000 \cdot T_{18}^0 + 250$$

$$175710T_{24} = 175T_{18} + 175T_{30} + 350T_{23} + 175000 \cdot T_{24}^0 + 250$$

$$(4.49)$$

Pour obtenir l'équation discrétisée pour le nœud 30 on intègre l'équation (4.28) sur le quart du volume de contrôle hachuré et présenté à la Fig. 4.13, c'est-à-dire :

$$\rho c_p \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dt$$
(4.50)

L'intégration de l'équation (4.50) donne :

$$\rho c_{p} (T_{p} - T_{p}^{0}) \frac{\Delta x}{2} \frac{\Delta y}{2} = \int_{t}^{t+\Delta t} \left(\lambda_{p} \left(\frac{\partial T}{\partial x} \right)_{p} - \lambda_{w} \left(\frac{\partial T}{\partial x} \right)_{w} \right) \frac{\Delta y}{2} dt + \int_{t}^{t+\Delta t} \left(\lambda_{p} \left(\frac{\partial T}{\partial y} \right)_{p} - \lambda_{s} \left(\frac{\partial T}{\partial y} \right)_{s} \right) \frac{\Delta x}{2} dt$$

$$(4.51)$$

Fig. 4.13 Quart du volume de contrôle (le coin "N-E").

En tenant compte des conditions aux limites sur les frontières "North" et "East" après l'intégration, on obtient :

$$\rho c_{p} (T_{p} - T_{p}^{0}) \frac{\Delta x \Delta y}{4\Delta t} = \left(\frac{\Delta y}{2} h \left(T_{\infty} - T_{p} \right) - \lambda_{w} A_{w} \left(\frac{T_{p} - T_{w}}{\delta x_{w}} \right) \right) + \left(\frac{\Delta x}{2} h \left(T_{\infty} - T_{p} \right) - \lambda_{s} A_{s} \left(\frac{T_{p} - T_{s}}{\delta y_{s}} \right) \right)$$

$$(4.52)$$

En regroupant les termes, dans l'équation (4.52), on obtient la forme générale de l'équation discrétisée pour le nœud 30 :

$$a_p T_p = a_W T_W + a_S T_S + b \tag{4.53}$$

Où

$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \quad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}}$$

$$a_{p} = a_{W} + a_{s} + \frac{\Delta x}{2}h + \frac{\Delta y}{2}h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} \qquad b = \frac{\Delta y}{2} \cdot h \cdot T_{\infty} + \frac{\Delta x}{2} \cdot h \cdot T_{\infty} + a_{p}^{0} T_{p}^{0}$$
$$A_{w} = \frac{\Delta y}{2} \qquad \text{et} \qquad A_{s} = \frac{\Delta x}{2}$$

Les valeurs des coefficients de l'équation (4.53) sont :

$$a_W = \frac{350 \times \frac{0,1}{2}}{0,1} = 175$$
 $a_S = \frac{350 \times \frac{0,1}{2}}{0,1} = 175$

$$a_p^0 = \rho c_p \frac{\Delta x \Delta y}{4\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{4 \times 0.1} = 87500$$
$$a_p = 175 + 175 + \frac{0.1}{2} \cdot 100 + \frac{0.1}{2} \cdot 100 + 87500 = 87950$$

$$b = \frac{0,1}{2} \times 100 \times 25 + \frac{0,1}{2} \times 100 \times 25 + 87500T_p^0 = 250 + 87500T_p^0$$

L'équation à résoudre pour le nœud 30 est la suivante :

$$87950T_{30} = 175T_{24} + 175T_{29} + 87500 \cdot T_{30}^0 + 250 \tag{4.54}$$

Pour obtenir l'équation discrétisée pour le nœud 6 on intègre l'équation (4.28) sur le quart du volume de contrôle hachuré et présenté à la fig. 4.14

Fig. 4.14 Quart du volume de contrôle (le coin "N-W").

$$\rho c_p \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dt$$
(4.55)

L'intégration de l'équation (4.55) donne :

$$\rho c_p (T_p - T_p^0) \frac{\Delta x}{2} \frac{\Delta y}{2} = \int_{t}^{t+\Delta t} \left(\lambda_e \left(\frac{\partial T}{\partial x} \right)_e - \lambda_p \left(\frac{\partial T}{\partial x} \right)_p \right) \frac{\Delta y}{2} dt + \int_{t}^{t+\Delta t} \left(\lambda_p \left(\frac{\partial T}{\partial y} \right)_p - \lambda_s \left(\frac{\partial T}{\partial y} \right)_s \right) \frac{\Delta x}{2} dt$$
(4.56)

En tenant compte des conditions aux limites sur les frontières "North" et "West" après l'intégration on obtient :

$$\rho c_{p} (T_{p} - T_{p}^{0}) \frac{\Delta x \Delta y}{4\Delta t} = \left(\lambda_{e} A_{e} \left(\frac{T_{E} - T_{p}}{\delta x_{e}} \right) + \frac{\Delta y}{2} h \left(T_{\infty} - T_{p} \right) \right) + \left(\frac{\Delta x}{2} h \left(T_{\infty} - T_{p} \right) - \lambda_{s} A_{s} \left(\frac{T_{p} - T_{s}}{\delta y_{s}} \right) \right)$$
(4.57)

En regroupant les termes dans l'équation (4.57), on obtient la forme générale de l'équation discrétisée pour le nœud 6 :

$$a_P T_P = a_E T_E + a_S T_S + b \tag{4.58}$$

Où

$$a_{p} = a_{E} + a_{S} + \frac{\Delta x}{2}h + \frac{\Delta y}{2}h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} \qquad b = \frac{\Delta y}{2} \cdot h \cdot T_{\infty} + \frac{\Delta x}{2} \cdot h \cdot T_{\infty} + a_{p}^{0} T_{p}^{0}$$
$$A_{e} = \frac{\Delta y}{2} \qquad \text{et} \qquad A_{s} = \frac{\Delta x}{2}$$

Les valeurs des coefficients de l'équation (4.58) sont :

 $a_E = \frac{\lambda_e A_e}{\delta x_e}$ $a_S = \frac{\lambda_s A_s}{\delta y_s}$

$$a_{E} = \frac{350 \times \frac{0,1}{2}}{0,1} = 175 \qquad a_{S} = \frac{350 \times \frac{0,1}{2}}{0,1} = 175$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} = 1000 \times 3500 \times \frac{0,1 \times 0,1}{4 \times 0,1} = 87500$$
$$a_{p} = 175 + 175 + \frac{0,1}{2}100 + \frac{0,1}{2}100 + 87500 = 87950$$
$$b = \frac{0,1}{2} \times 100 \times 25 + \frac{0,1}{2} \times 100 \times 25 + 87500T_{p}^{0} = 250 + 87500T_{p}^{0}$$

L'équation à résoudre pour le nœud 6 est la suivante :

$$87950T_6 = 175T_{12} + 175T_5 + 87500 \cdot T_6^0 + 250 \tag{4.59}$$

Pour obtenir l'équation discrétisée pour le nœud 25 on intègre l'équation (4.28) sur le quart du volume de contrôle hachuré et présenté à la Fig. 4.15 :

Fig. 4.15 Quart du volume de contrôle (le coin "S-E").

En intégrant de la même façon pour le nœud 25 ,on obtient la forme générale de l'équation discrétisée :

$$a_p T_p = a_W T_W + a_N T_N + b \tag{4.60}$$

Où
$$a_W = \frac{\lambda_w A_w}{\delta x_w} \quad a_N = \frac{\lambda_n A_n}{\delta y_n}$$

$$a_{p} = a_{W} + a_{N} + \frac{\Delta y}{2}h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} \qquad b = \frac{\Delta x}{2} \cdot q + \frac{\Delta y}{2} \cdot h \cdot T_{\infty} + a_{p}^{0} T_{p}^{0}$$
$$A_{w} = \frac{\Delta y}{2} \qquad \text{et} \qquad A_{n} = \frac{\Delta x}{2}$$

Les valeurs numériques des coefficients pour l'équation (4.60) sont les suivantes :

$$a_{W} = \frac{350 \times \frac{0.1}{2}}{0.1} = 175 \qquad a_{N} = \frac{350 \times \frac{0.1}{2}}{0.1} = 175$$
$$a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y}{4\Delta t} = 1000 \times 3500 \times \frac{0.1 \times 0.1}{4 \times 0.1} = 87500$$
$$a_{p} = 175 + 175 + 87500 + \frac{0.1}{2} \times 100 = 87855$$

$$b = \frac{0,1}{2} \times 50000 + \frac{0,1}{2} \times 100 \times 25 + 87500T_p^0 = 2625 + 87500T_p^0$$

On obtient ainsi l'équation discrétisée pour le nœud 25 :

$$87855T_{25} = 175T_{19} + 175T_{26} + 87500 \cdot T_{25}^0 + 2625 \tag{4.61}$$

Finalement, le système d'équations à résoudre est le suivant :

$$87855T_{1} = 175T_{7} + 175T_{2} + 87500 \cdot T_{1}^{0} + 2625$$

$$175710T_{2} = 350T_{8} + 175T_{1} + 175T_{3} + 175000 \cdot T_{2}^{0} + 250$$

$$175710T_{3} = 350T_{9} + 175T_{2} + 175T_{4} + 175000 \cdot T_{3}^{0} + 250$$

$$175710T_{4} = 350T_{10} + 175T_{3} + 175T_{5} + 175000 \cdot T_{6}^{0} + 250$$

$$175710T_{5} = 350T_{11} + 175T_{4} + 175T_{6} + 175000 \cdot T_{5}^{0} + 250$$

$$87950T_{6} = 175T_{12} + 175T_{5} + 87500 \cdot T_{6}^{0} + 250$$

$$175700T_{7} = 175T_{1} + 175T_{13} + 350T_{8} + 175000 \cdot T_{7}^{0} + 5000$$

$$351400T_{8} = 350T_{2} + 350T_{14} + 350T_{7} + 350T_{9} + 350000 \cdot T_{8}^{0}$$

$$351400T_{10} = 350T_{4} + 350T_{16} + 350T_{10} + 350T_{11} + 350000 \cdot T_{9}^{0}$$

$$351400T_{11} = 350T_{5} + 350T_{17} + 350T_{11} + 350T_{12} + 350000 \cdot T_{10}^{0}$$

$$(4.62)$$

$$351400T_{11} = 350T_{5} + 350T_{17} + 350T_{11} + 175000 \cdot T_{12}^{0} + 250$$

$$175700T_{13} = 175T_{7} + 175T_{18} + 350T_{11} + 175000 \cdot T_{12}^{0} + 250$$

$$175700T_{13} = 175T_{7} + 175T_{19} + 350T_{14} + 175000 \cdot T_{13}^{0} + 5000$$

$$351400T_{14} = 350T_{8} + 350T_{20} + 350T_{13} + 3500T_{12} + 350000 \cdot T_{14}^{0}$$

$$351400T_{14} = 350T_{8} + 350T_{20} + 350T_{13} + 3500T_{12} + 350000 \cdot T_{10}^{0}$$

$$351400T_{13} = 175T_{7} + 175T_{19} + 350T_{14} + 175000 \cdot T_{13}^{0} + 5000$$

$$351400T_{14} = 350T_{8} + 350T_{20} + 350T_{13} + 3500T_{15} + 350000 \cdot T_{14}^{0}$$

$$351400T_{16} = 350T_{10} + 350T_{22} + 350T_{15} + 350T_{17} + 350000 \cdot T_{16}^{0}$$

$$351400T_{17} = 350T_{11} + 350T_{23} + 350T_{16} + 350T_{18} + 350000 \cdot T_{17}^{0}$$

$$175710T_{18} = 175T_{12} + 175T_{24} + 350T_{17} + 175000 \cdot T_{18}^{0} + 250$$

$$175700T_{19} = 175T_{13} + 175T_{25} + 350T_{14} + 175000 \cdot T_{19}^{0} + 5000$$

$$351400T_{20} = 350T_{14} + 350T_{26} + 350T_{19} + 350T_{21} + 350000 \cdot T_{20}^{0}$$

$$351400T_{21} = 350T_{15} + 350T_{27} + 350T_{20} + 350T_{22} + 350000 \cdot T_{21}^{0}$$

$$351400T_{22} = 350T_{16} + 350T_{28} + 350T_{21} + 350T_{23} + 350000 \cdot T_{22}^{0}$$

$$351400T_{23} = 350T_{17} + 350T_{29} + 350T_{22} + 350T_{24} + 350000 \cdot T_{23}^{0}$$

$$175710T_{24} = 175T_{18} + 175T_{30} + 350T_{23} + 175000 \cdot T_{24}^{0} + 250$$

$$175950T_{26} = 350T_{20} + 175T_{25} + 175T_{27} + 175000 \cdot T_{26}^{0} + 250$$

$$175950T_{28} = 350T_{22} + 175T_{27} + 175T_{29} + 175000 \cdot T_{29}^{0} + 250$$

$$175950T_{28} = 350T_{22} + 175T_{27} + 175T_{29} + 175000 \cdot T_{29}^{0} + 250$$

$$175950T_{29} = 350T_{23} + 175T_{28} + 175T_{30} + 175000 \cdot T_{29}^{0} + 250$$

$$175950T_{29} = 350T_{23} + 175T_{28} + 175T_{30} + 175000 \cdot T_{29}^{0} + 250$$

$$175950T_{29} = 350T_{22} + 175T_{28} + 175T_{30} + 175000 \cdot T_{29}^{0} + 250$$

$$175950T_{29} = 350T_{23} + 175T_{28} + 175T_{30} + 175000 \cdot T_{29}^{0} + 250$$

4.2.3. Exemple 3D :

• Méthodologie de l'Exemple 3D :

 $\downarrow q$

Fig 4.16 Maillage 3D pour le domaine de calcul.

On considère un maillage à 150 nœuds avec ($\Delta x = \Delta y = \Delta z = 0.1 \text{ m}$).

L'équation différentielle qui gouverne le régime transitoire de la plaque est la suivante :

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + S$$
(4.63)

On obtient les équations discrétisées pour la face avant tel que :

Fig.4.17 Face avant

Pour obtenir l'équation discrétisée pour un nœud intérieur du domaine de calcul (le nœud 16 par exemple) on intègre l'équation (4.63) sur le demi-volume de contrôle hachuré autour du nœud 16 Figure 4.17. En utilisant le schéma totalement implicite on obtient (voir l'obtention de l'équation (3.83)) :

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{T}T_{T} + b$$

$$(4.64)$$

$$Ou \quad a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta z_{t}}$$

$$a_{p} = a_{W} + a_{E} + a_{S} + a_{N} + a_{T} + \Delta x \Delta y \cdot h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{2\Delta t}$$

$$b = \Delta x \Delta y \cdot h \cdot T_{\infty} + \frac{S \cdot \Delta x \Delta y \Delta z}{2} + a_{p}^{0}T_{p}^{0}$$

$$A_{w} = A_{e} = \frac{\Delta y \Delta z}{2} \qquad A_{s} = A_{n} = \frac{\Delta x \Delta z}{2} \qquad A_{t} = \Delta x \Delta y$$

L'équation (4.64) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, et 23)

Pour un nœud intérieur sur la frontière "West", le nœud 4 par exemple, on intègre l'équation (4.63) sur le quart-volume de contrôle hachuré et présenté à la fig. 4.17

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S \cdot dx dy dz dt$$

$$(4.65)$$

L'intégration de l'équation (4.65) et en tenant compte que $-\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$ et $-\lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$

(conditions aux limites sur les frontières West et Avant respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{T}T_{T} + b$$
(4.66)

Où
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_N = \frac{\lambda_n A_n}{\delta y_n}$ $a_T = \frac{\lambda_t A_t}{\delta z_t}$

$$a_{p} = a_{E} + a_{S} + a_{N} + a_{T} + h \cdot \frac{\Delta y \Delta x}{2} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{4\Delta t}$$

$$b = \frac{\Delta y \Delta z}{2} q + \frac{\Delta y \Delta x}{2} hT_{\infty} + S \frac{\Delta x \Delta y \Delta z}{4} + a_{p}^{0} T_{p}^{0}$$

$$A_{e} = \frac{\Delta y \Delta z}{2} \qquad A_{n} = A_{s} = \frac{\Delta x \Delta z}{4} \qquad A_{t} = \frac{\Delta x \Delta y}{2}$$

L'équation (4.66) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 2, 3, 4 et 5)

2

Pour un nœud intérieur sur la frontière "Est", le nœud 28 par exemple, on intègre l'équation (4.63) sur le quart-volume de contrôle hachuré et présenté à la fig. 4.17

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S \cdot dx dy dz dt$$

$$(4.67)$$

L'intégration de l'équation (4.67) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q \text{ et}_{-\lambda_p} \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$

(conditions aux limites sur les frontière Est et Avant respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{W}T_{W} + a_{S}T_{S} + a_{N}T_{N} + a_{T}T_{T} + b$$

$$(4.68)$$
Où
$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta y_{t}}$$

$$a_{p} = a_{W} + a_{S} + a_{N} + a_{T} + \frac{\Delta y\Delta y}{2} \cdot h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x\Delta y\Delta z}{4\Delta t}$$

$$b = \frac{\Delta y\Delta z}{2} q + \frac{\Delta y\Delta x}{2} hT_{\infty} + S \frac{\Delta x\Delta y\Delta z}{4} + a_{p}^{0}T_{p}^{0}$$

$$A_{w} = \frac{\Delta y\Delta z}{2} \qquad A_{n} = A_{s} = \frac{\Delta x\Delta z}{4} \qquad A_{t} = \frac{\Delta x\Delta y}{2}$$

L'équation (4.68) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 26, 27, 28 et 29).

Pour un nœud situé sur la frontière "North", le nœud 18 par exemple, on intègre l'équation (4.63) sur le quart-volume de contrôle hachuré et présenté à la Fig. 4.17 :

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dz dt + \left(4.69 \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S \cdot dx dy dz dt$$

L'intégration de l'équation (4.69) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q$ et $-\lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$

(conditions aux limites sur les frontière Nord et Avant respectivement), on obtient la forme générale de l'équation discrétisée:

 $a_pT_p = a_ET_E + a_WT_W + a_ST_S + a_TT_T + b$ (4.70)

0

Où
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_W = \frac{\lambda_w A_w}{\delta x_w}$ $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_T = \frac{\lambda_t}{\delta x_e}$
 $a_p = a_E + a_W + a_S + a_T + \frac{\Delta x \Delta y}{2} h + a_p^0$ $a_p^0 = \rho c_p \frac{\Delta x \Delta y \Delta z}{4\Delta t}$
 $b = \frac{\Delta x \Delta y}{2} h T_\infty + \frac{\Delta x \Delta z}{2} q + S \frac{\Delta x \Delta y \Delta z}{4} + a_p^0 T_p^0$
 $A_e = A_w = \frac{\Delta y \Delta z}{4}$ $A_s = \frac{\Delta x \Delta z}{2}$ $A_t = \frac{\Delta x \Delta y}{2}$

L'équation (4.70) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 12, 18 et 24).

Pour obtenir l'équation discrétisée pour le nœud 6 on intègre l'équation (4.63) sur le un-huitième du volume de contrôle hachuré et présenté à la Fig. 4.17, c'est-à-dire :

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} S \cdot dx dy dz dt$$

$$(4.71)$$

L'intégration de l'équation (4.71) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_n = q$ et $-\lambda_p \left(\frac{\partial T}{\partial x}\right)_n = q$,

 $-\lambda_p \left(\frac{\partial T}{\partial z}\right) = h(T_{\infty} - T_p)$ (conditions aux limites sur les frontière Nord et West, Avant respectivement), on obtient la forme générale de l'équation discrétisée :

$$a_P T_P = a_E T_E + a_S T_S + a_T T_T + b \tag{4.72}$$

Où

$$a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta z_{t}}$$

$$a_{p} = a_{E} + a_{S} + a_{T} + \frac{\Delta x \Delta y}{4} h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{8\Delta t}$$
$$b = \frac{\Delta x \Delta y}{4} h \cdot T_{\infty} + \frac{\Delta y \Delta z + \Delta x \Delta z}{4} q + \frac{\Delta x \Delta y \Delta z}{8} S + a_{p}^{0} T_{p}^{0}$$

$$A_e = \frac{\Delta y \Delta z}{4}$$
 $A_s = \frac{\Delta x \Delta z}{4}$ $A_t = \frac{\Delta x \Delta y}{4}$

Pour obtenir l'équation discrétisée pour le nœud 30 on intègre l'équation (4.63) sur le un-huitième du volume de contrôle hachuré et présenté à la fig. 4.17, c'est-à-dire :

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} S \cdot dx dy dz dt$$

$$(4.73)$$

L'intégration de l'équation (4.73) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q$ et $\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$,

 $-\lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$ (conditions aux les limites sur la frontière Nord et Est, Avant respectivement), on obtient la forme générale de l'équation discrétisée :

$$a_{P}T_{P} = a_{W}T_{W} + a_{S}T_{S} + a_{T}T_{T} + b$$
(4.74)

Où

$$a_{W} = \frac{\lambda_{W}A_{W}}{\delta x_{W}} \qquad \qquad a_{S} = \frac{\lambda_{S}A_{S}}{\delta y_{S}} \qquad \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta z_{t}}$$

$$a_{p} = a_{W} + a_{S} + a_{T} + \frac{\Delta x \Delta y}{4} h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{8\Delta t}$$

$$b = \frac{\Delta x \Delta y}{4} h \cdot T_{\infty} + \frac{\Delta y \Delta z + \Delta x \Delta z}{4} q + \frac{\Delta x \Delta y \Delta z}{8} S + a_{p}^{0} T_{p}^{0}$$

$$A_{w} = \frac{\Delta y \Delta z}{4} \qquad A_{s} = \frac{\Delta x \Delta z}{4} \qquad A_{t} = \frac{\Delta x \Delta y}{4}$$

Maintenant on cherche la forme générale des équations discrétisé à l'intérieur du cube telle que la figure 4.18 ci-dessous l'illustrée :

Fig.4.18 Face intérieur du cube

Pour obtenir l'équation discrétisée pour un nœud intérieur du domaine de calcul (le nœud 16 par exemple) on intègre l'équation (4.63) sur le volume de contrôle hachuré autour du nœud 16 Figure 4.18. En utilisant le schéma totalement implicite on obtient:

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{T}T_{T} + a_{A}T_{A} + b$$
(4.75)

Où
$$a_W = \frac{\lambda_w A_w}{\delta x_w}$$
 $a_E = \frac{\lambda_e A_e}{\delta x_e}$ $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_N = \frac{\lambda_n A_n}{\delta y_n}$ $a_T = \frac{\lambda_t A_t}{\delta z_t}$ $a_A = \frac{\lambda_a A_a}{\delta z_a}$

$$a_{p} = a_{W} + a_{E} + a_{S} + a_{N} + a_{T} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{\Delta t} \qquad b = \Delta x \Delta y \Delta z \cdot S + a_{p}^{0} T_{p}^{0}$$
$$A_{w} = A_{e} = \Delta y \Delta z \qquad A_{s} = A_{n} = \Delta x \Delta z \qquad A_{t} = A_{a} = \Delta x \Delta y$$

L'équation (4.75) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, et 23).

Pour un nœud intérieur sur la frontière "West", le nœud 4 par exemple, on intègre l'équation (4.63) sur le demi-volume de contrôle hachuré et présenté à la fig. 4.18

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} S \cdot dx dy dz dt$$

$$(4.76)$$

L'intégration de l'équation (4.76) et en tenant compte que $-\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$ (condition à la limite

sur la frontière West), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{T}T_{T} + a_{A}T_{A} + b$$
(4.77)

Où

$$a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta y_{t}} \qquad a_{A} = \frac{\lambda_{a}A_{a}}{\delta y_{a}}$$

$$a_{p} = a_{E} + a_{S} + a_{N} + a_{T} + a_{A} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{2\Delta t}$$
$$b = \Delta y \Delta z \cdot q + S \frac{\Delta x \Delta y \Delta z}{2} + a_{p}^{0} T_{p}^{0}$$

$$A_e = \Delta y \Delta z$$
 $A_n = A_s = \frac{\Delta x \Delta z}{2}$ $A_t = A_a \frac{\Delta x \Delta y}{2}$

L'équation (4.77) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 2, 3, 4 et 5).

Pour un nœud intérieur sur la frontière "Est", le nœud 28 par exemple, on intègre l'équation (4.63) sur le demi-volume de contrôle hachuré et présenté à la fig. 4.18

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} S \cdot dx dy dz dt$$

$$(4.78)$$

L'intégration de l'équation (4.78) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$ (condition à la limite sur la frontière Est), on obtient la forme générale de l'équation discrétisée :

$$a_{p}T_{p} = a_{W}T_{W} + a_{S}T_{S} + a_{N}T_{N} + a_{T}T_{T} + a_{A}T_{A} + b$$
(4.79)

Où
$$a_W = \frac{\lambda_w A_w}{\delta x_w}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_N = \frac{\lambda_n A_n}{\delta y_n}$ $a_T = \frac{\lambda_t A_t}{\delta z_t}$ $a_A = \frac{\lambda_a A_a}{\delta z_a}$

$$a_{p} = a_{W} + a_{S} + a_{N} + a_{T} + a_{A} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{2\Delta t}$$
$$b = \Delta y \Delta z \cdot q + S \frac{\Delta x \Delta y \Delta z}{2} + a_{p}^{0} T_{p}^{0}$$

$$A_w = \Delta y \Delta z$$
 $A_n = A_s = \frac{\Delta x \Delta z}{2}$ $A_t = A_a = \frac{\Delta x \Delta y}{2}$

L'équation (4.79) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 26, 27, 28 et 29).

Pour un nœud situé sur la frontière "North", le nœud 18 par exemple, on intègre l'équation (4.63) sur le demi-volume de contrôle hachuré et présenté à la fig. 4.18.

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/2vc} S \cdot dx dy dz dt$$

$$(4.80)$$

L'intégration de l'équation (4.80) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q$ (condition à la limite

sur la frontière Nord), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{E}T_{E} + a_{W}T_{W} + a_{S}T_{S} + a_{T}T_{T} + a_{A}T_{A} + b$$
(4.81)

Où

$$a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta z_{t}} \quad a_{A} = \frac{\lambda_{a}A_{a}}{\delta z_{a}}$$

$$a_{p} = a_{E} + a_{W} + a_{S} + a_{T} + a_{A} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{2\Delta t}$$
$$b = \Delta x \Delta z \cdot q + S \frac{\Delta x \Delta y \Delta z}{2} + a_{p}^{0} T_{p}^{0}$$

$$A_e = A_w = \frac{\Delta y \Delta z}{2}$$
 $A_s = \Delta x \Delta z$ $A_t = A_a = \frac{\Delta x \Delta y}{2}$

L'équation (4.81) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 12, 18 et 24).

Pour obtenir l'équation discrétisée pour le nœud 6 on intègre l'équation (4.63) sur le quart du volume de contrôle hachuré et présenté à la fig. 4.18, c'est-à-dire :

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4_{vc}} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4_{vc}} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4_{vc}} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4_{vc}} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4_{vc}} S \cdot dx dy dz dt$$

$$(4.82)$$

L'intégration de l'équation (4.82) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q$ et $-\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$ (conditions aux limites sur les frontières Nord et West respectivement) on obtient la forme

(conditions aux limites sur les frontières Nord et West respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_{P}T_{P} = a_{E}T_{E} + a_{S}T_{S} + a_{T}T_{T} + a_{A}T_{A} + b$$
(4.83)

Où
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_T = \frac{\lambda_t A_t}{\delta y_t}$ $a_A = \frac{\lambda_a A_a}{\delta y_a}$

$$a_{p} = a_{E} + a_{S} + a_{T} + a_{A} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{4\Delta t}$$

$$b = \frac{\Delta y \Delta z + \Delta x \Delta z}{2} q + \frac{\Delta x \Delta y \Delta z}{4} S + a_{p}^{0} T_{p}^{0}$$

$$A_{e} = \frac{\Delta y \Delta z}{2} \qquad A_{s} = \frac{\Delta x \Delta z}{2} \qquad A_{t} = A_{a} = \frac{\Delta x \Delta y}{4}$$

Pour obtenir l'équation discrétisée pour le nœud 30 on intègre l'équation (4.63) sur le quart du volume de contrôle hachuré et présenté à la fig. 4.18, c'est-à-dire :

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \left(4.84\right) + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S \cdot dx dy dz dt$$

L'intégration de l'équation (4.84) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q$ et $\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$

(conditions aux limites sur les frontières Nord et Est respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{w}T_{w} + a_{s}T_{s} + a_{T}T_{T} + a_{A}T_{A} + b$$

$$(4.85)$$
Où
$$a_{w} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{s} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{T} = \frac{\lambda_{t}A_{t}}{\delta z_{t}} \qquad a_{A} = \frac{\lambda_{a}A_{a}}{\delta z_{a}}$$

$$a_{p} = a_{w} + a_{s} + a_{T} + a_{A} + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{4\Delta t}$$

$$b = \frac{\Delta y \Delta z + \Delta x \Delta z}{2} q + \frac{\Delta x \Delta y \Delta z}{4} S + a_{p}^{0}T_{p}^{0}$$

$$A_{w} = \frac{\Delta y \Delta z}{2} \qquad A_{s} = \frac{\Delta x \Delta z}{2} \qquad A_{t} = A_{a} = \frac{\Delta x \Delta y}{4}$$

On cherche la forme générale des équations discrétisées de la face arrière du cube telle que la Figure 4.19 ci-dessous :

Fig. 4.19 Face arrière.

Pour obtenir l'équation discrétisée pour un nœud intérieur du domaine de calcul (le nœud 16 par exemple) on intègre l'équation (4.63) sur le demi-volume de contrôle hachuré autour du nœud 16 Figure 4.19. En utilisant le schéma totalement implicite on obtient:

$$a_{p}T_{p} = a_{W}T_{W} + a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{A}T_{A} + b$$

$$(4.86)$$

$$Ou \quad a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{E} = \frac{\lambda_{e}A_{e}}{\delta x_{e}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad a_{A} = \frac{\lambda_{a}A_{a}}{\delta z_{a}}$$

$$a_{p} = a_{W} + a_{E} + a_{S} + a_{N} + a_{a} + \Delta x \Delta y \cdot h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{2\Delta t}$$

$$b = \Delta x \Delta y \cdot h T_{\infty} + \frac{S \cdot \Delta x \Delta y \Delta z}{2} + a_{p}^{0} T_{p}^{0}$$

$$A_{w} = A_{e} = \frac{\Delta y \Delta z}{2} \qquad A_{s} = A_{n} = \frac{\Delta x \Delta z}{2} \qquad A_{a} = \Delta x \Delta y$$

L'équation (4.86) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, et 23).

Pour un nœud intérieur sur la frontière "West", le nœud 4 par exemple, on intègre l'équation (4.63) sur le quart-volume de contrôle hachuré et présenté à la Fig. 4.19

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S \cdot dx dy dz dt$$

$$(4.87)$$

L'intégration de l'équation (4.87) et en tenant compte que $-\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$ et $\lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$

(condition à la limite sur la frontière West et arrière), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{E}T_{E} + a_{S}T_{S} + a_{N}T_{N} + a_{A}T_{A} + b$$
(4.88)

Où
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_N = \frac{\lambda_n A_n}{\delta y_n}$ $a_A = \frac{\lambda_a A_a}{\delta y_a}$

$$a_{p} = a_{E} + a_{S} + a_{N} + a_{a} + \frac{\Delta x \Delta y}{2} \cdot h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{4\Delta t}$$

$$b = \frac{\Delta x \Delta y}{2} h T_{\infty} + \frac{\Delta y \Delta z}{2} q + S \frac{\Delta x \Delta y \Delta z}{4} + a_{p}^{0} T_{p}^{0}$$

$$A_{e} = \frac{\Delta y \Delta z}{2} \qquad A_{n} = A_{s} = \frac{\Delta x \Delta z}{4} \qquad A_{a} = \frac{\Delta x \Delta y}{2}$$

L'équation (4.88) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 2, 3, 4 et 5)

Pour un nœud intérieur sur la frontière "Est", le nœud 4 par exemple, on intègre l'équation (4.63) sur le quart-volume de contrôle hachuré et présenté à la fig. 4.19

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S \cdot dx dy dz dt$$

$$(4.89)$$

L'intégration de l'équation (4.89) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$ et $\lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$

(conditions aux limites sur les frontières Est et arrière respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{W}T_{W} + a_{S}T_{S} + a_{N}T_{N} + a_{A}T_{A} + b$$

$$(4.90)$$
Où
$$a_{W} = \frac{\lambda_{w}A_{w}}{\delta x_{w}} \qquad a_{S} = \frac{\lambda_{s}A_{s}}{\delta y_{s}} \qquad a_{N} = \frac{\lambda_{n}A_{n}}{\delta y_{n}} \qquad a_{A} = \frac{\lambda_{a}A_{a}}{\delta y_{a}}$$

Où

$$a_{p} = a_{W} + a_{S} + a_{N} + a_{A} + \frac{\Delta x \Delta y}{2} \cdot h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{4\Delta t}$$

$$b = \frac{\Delta x \Delta y}{2} h T_{\infty} + \frac{\Delta y \Delta z}{2} q + S \frac{\Delta x \Delta y \Delta z}{4} + a_{p}^{0} T_{p}^{0}$$

$$A_{w} = \frac{\Delta y \Delta z}{2} \qquad A_{n} = A_{s} = \frac{\Delta x \Delta z}{4} \qquad A_{a} = \frac{\Delta x \Delta y}{2}$$

L'équation (4.90) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 26, 27, 28 et 29)

Pour un nœud situé sur la frontière "North", le nœud 18 par exemple, on intègre l'équation (4.63) sur le quart-volume de contrôle hachuré et présenté à la fig. 4.19

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) dx dy dz dt + \left(4.91 \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/4vc} S \cdot dx dy dz dt$$

L'intégration de l'équation (4.91) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q \text{ et } \lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$

(condition aux limites sur les frontières Nord et arrière respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_{p}T_{p} = a_{E}T_{E} + a_{W}T_{W} + a_{S}T_{S} + a_{A}T_{A} + b$$
(4.92)

Où $a_E = \frac{\lambda_e A_e}{\delta x_e}$ $a_W = \frac{\lambda_w A_w}{\delta x_w}$ $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_A = \frac{\lambda_a A_a}{\delta y_a}$

$$\begin{aligned} a_p &= a_E + a_W + a_S + a_A + \frac{\Delta x \Delta y}{2} h + a_p^0 & a_p^0 = \rho c_p \frac{\Delta x \Delta y \Delta z}{4\Delta t} \\ b &= \frac{\Delta x \Delta y}{2} h T_{\infty} + \frac{\Delta x \Delta z}{2} q + S \frac{\Delta x \Delta y \Delta z}{4} + a_p^0 T_p^0 \\ A_e &= A_w = \frac{\Delta y \Delta z}{4} & A_s = \frac{\Delta x \Delta z}{2} & A_a = \frac{\Delta x \Delta y}{2} \end{aligned}$$

L'équation (4.92) s'applique successivement pour les nœuds intérieurs du domaine de calcul (les nœuds 12, 18 et 24)

Pour obtenir l'équation discrétisée pour le nœud 6 on intègre l'équation (4.63) sur le un-huitième du volume de contrôle hachuré et présenté à la fig. 4.19, c'est-à-dire

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \left(4.93\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} S \cdot dx dy dz dt$$

L'intégration de l'équation (4.93) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q$ et $-\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$,

 $\lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$ (condition aux limite sur les frontières Nord et West, Arrière respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_P T_P = a_E T_E + a_S T_S + a_A T_A + b \tag{4.94}$$

Où
$$a_E = \frac{\lambda_e A_e}{\delta x_e}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_A = \frac{\lambda_a A_a}{\delta z_a}$

$$a_{p} = a_{E} + a_{S} + a_{A} + \frac{\Delta x \Delta y}{4} h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{8\Delta t}$$
$$b = \frac{\Delta x \Delta z + \Delta x \Delta y}{4} q + \frac{\Delta x \Delta y}{4} h \cdot T_{\infty} + \frac{\Delta x \Delta y \Delta z}{8} S + a_{p}^{0} T_{p}^{0}$$

$$A_e = \frac{\Delta y \Delta z}{4}$$
 $A_s = \frac{\Delta x \Delta z}{4}$ $A_a = \frac{\Delta x \Delta y}{4}$

Pour obtenir l'équation discrétisée pour le nœud 30 on intègre l'équation (4.63) sur le un-huitième du volume de contrôle hachuré et présenté à la Fig. 4.19, c'est-à-dire :

$$\rho c_{p} \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial T}{\partial t} dx dy dz dt = \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z}\right) dx dy dz dt + \int_{t}^{t+\Delta t} \int_{1/8vc} S \cdot dx dy dz dt$$

$$(4.95)$$

L'intégration de l'équation (4.95) et en tenant compte que $\lambda_p \left(\frac{\partial T}{\partial y}\right)_p = q$ et $\lambda_p \left(\frac{\partial T}{\partial x}\right)_p = q$,

 $\lambda_p \left(\frac{\partial T}{\partial z}\right)_p = h(T_{\infty} - T_p)$ (conditions aux limite sur les frontières Nord et Est, Arrière respectivement), on obtient la forme générale de l'équation discrétisée:

$$a_p T_p = a_W T_W + a_S T_S + a_A T_A + b \tag{4.96}$$

Où
$$a_W = \frac{\lambda_w A_w}{\delta x_w}$$
 $a_S = \frac{\lambda_s A_s}{\delta y_s}$ $a_A = \frac{\lambda_a A_a}{\delta z_a}$

$$a_{p} = a_{W} + a_{S} + a_{A} + \frac{\Delta x \Delta y}{4} h + a_{p}^{0} \qquad a_{p}^{0} = \rho c_{p} \frac{\Delta x \Delta y \Delta z}{8\Delta t}$$

$$b = \frac{\Delta x \Delta z + \Delta y \Delta z}{4} q + \frac{\Delta y \Delta x}{4} h \cdot T_{\infty} + \frac{\Delta x \Delta y \Delta z}{8} S + a_{p}^{0} T_{p}^{0}$$

$$A_{w} = \frac{\Delta y \Delta z}{4} \qquad A_{s} = \frac{\Delta x \Delta z}{4} \qquad A_{a} = \frac{\Delta x \Delta y}{4}$$
Chapitre 5 : Conception de l'interface graphique

5.1 Introduction :

On va s'intéresser dans ce chapitre à la présentation de l'interface de notre code de calcul, la présentation de sa conception, la nécessité et l'utilité de l'interface.

L'interface a été réalisée par le logiciel Visual Basic (Visual Studio Express, version 2012). On a utilisé au début le langage Fortran, mais dans le but d'exploiter ce Logiciel d'une façon optimale, on a utilisé le langage BASIC. Ce dernier présente des avantages tels que la facilité d'utilisation (langage simple), fournir des messages d'erreur clairs, fournir des suggestions de corrections et un meilleur suivi de déroulement de programmation.

L'interface permet la gestion des paramètres de calculs (gérer les données d'entrées et de sorties) afin de simplifier la simulation.

5.2 Organigramme des programmes (schéma totalement implicite) :

Le programme en général prend en charge les deux régimes, stationnaire et transitoire. Le régime transitoire est présenté avec les 3 schémas dans ce programme, mais en raison de garantir la stabilité de la simulation, le choix de schéma totalement implicite devient clair.

Nous allons donc présenter l'algorigramme avec le schéma totalement implicite.

5.3 Cas 2D :

5.3.1 Les étapes du choix des paramètres de simulation :

On va exploiter dans cette partie les différentes étapes du choix des paramètres pour réaliser une simulation :

8	Appli	ication 2D – 🗖	×
File 3D	Material Material	Modules Regime Materials Limit condition Geometry and Mesh Source Internal heat source Visualization Teoplot Other	

Fig. 5.1 L'interface graphique du code de calcul.

5.3.1.1 Choix du régime :

Selon la simulation qu'on veut réaliser, on commence par le choix du régime de notre simulation, on clique sur régime et c'est vérifié. On arrive à voir de nouvelles options (figure 5.2) :

Fig. 5.2 Choix du régime.

On est dans la position de choisir deux régimes : stationnaire ou transitoire.

Si on choisit le régime stationnaire, le choix du régime devient vert, ce qui signifie que le choix de ce paramètre est fait (figure 5.3).

Fig. 5.3 Choix du régime stationnaire.

En cas de choix d'un régime transitoire le choix du régime devient vert comme précédent et d'autres paramètres d'entrées liées à ce régime apparaissent (figure 5.4) :

Modules		Time Option			
Regime	O Stationary	Time step	1	S	
O Materials	transitory	Iteration	1		
O Limit condition					
Geometry O and Mesh					

Fig. 5.4 Choix du régime transitoire.

On a donc intérêt à faire entrer ses paramètres qui sont le pas de temps et le nombre d'itérations.

N.B:

- il faut assurer le changement des paramètres de temps selon le besoin de la simulation, sinon la simulation sera réalisé par les valeurs initiales (pas de temps=1s et le nombre d'itération=1).
- Afin de choisir inconditionnellement la valeur du paramètre « pas de temps », on a opté pour le schéma totalement implicite.

5.3.1.3 Choix du matériau :

Le choix du matériau sert à identifier ses propriétés physiques nécessaires dans la simulation. En choisissant le matériau, d'autres options se présentent (figure 5.5) :

Fig. 5.5 Choix du matériau.

Deux options se présentent : Auto et Manuel.

La commande 'Auto' nous permet l'accès (à une base de données) aux propriétés de plusieurs matériaux (figure 5.6) :

Modules	
	Option Materials
◯ Regime	 Auto Acier 1008
 Materials 	 Manual
C Limit condition	ρ
Geometry	Ср
 and Mesh 	k
Source	

Fig. 5.6 Choix automatique des paramètres du matériau.

Une fois la sélection du matériau est faite, le mot 'materials' devient vert pour dire que cette phase est validé.

Dans le cas d'un choix manuel, deux situations se manifestent :

Si on a choisi le régime stationnaire, les paramètres du matériau nécessaires se limitent à la conductivité thermique (figure 5.7):

Fig. 5.7 Choix manuel du matériau en régime stationnaire

Mais en cas d'un régime transitoire, d'autres coefficients physiques apparaissent dans la simulation (la capacité à pression constante et la masse volumique) comme le montre la figure (5.8) :

Modules			
	 Option Mate 	erials	
○ Regime	Auto		
 Materials 	 Manual 		
C Limit condition	ρ	1	Kg/m³
Geometry	Ср	1	J/kg.C°
and Mesh	k	1	W/m·C°
Source			

Fig. 5.8 Choix manuel du matériau en régime transitoire.

Il faut s'assurer de bien faire entrer les données, si non la simulation sera faite par les valeurs initiales.

5.3.1.3 Choix des conditions aux limites et la condition initiale :

Une fois avoir fait le choix du régime et du matériau, on passe aux choix des conditions aux limites (figure 5.9).

Une liste de choix des conditions devient accessible sur chaque face, chaque condition a besoin de certains paramètres, (la figure 5.10).

Fig. 5.10 Paramètres associés à chaque type de conditions aux limites.

- Température imposée : la seule donnée d'entrée est la température sur la face choisi, cliquant sur 'temperature' parmi la liste des choix nous donnera accès pour donner la valeur de la température sur cette face.
- Flux de chaleur : le choix de cette condition donne accès à un espace de saisi de valeur de flux imposé sur la face correspondante.
- La convection : pour cette condition, deux paramètres sont nécessaires : le coefficient de convection de fluide et sa température. Comme illustré dans la figure (Fig. 5.10) deux espaces permettent l'ajout des valeurs de ces deux paramètres.

- Cas d'isolation parfaite : aucun paramètre n'est requis, une fois sélectionné en cliquant sur ce choix, la condition est prise en charge.
- Condition initiale : c'est la température de début de calcul, l'espace de saisi de la valeur de la température se trouve au milieu du rectangle de présentation où s'écrit 'material' et au-dessus 'initial temperature '.

On remarque de la figure (Fig. 5.10) que le mot 'limit condition' reste en rouge c'est parce que les paramètres sont pas encore mis. Il faut s'assurer que tous les paramètres sont bien identifiés et passer à l'étape suivante.

Fig. 5.11 Confirmation des paramètres de condition aux limites.

5.3.1.4 Choix de dimensions :

Fig. 5.12 Choix de dimensions et maillage.

Dans cette partie, on se trouve avec de nouveaux paramètres, cette fois c'est les paramètres de géométrie et les paramètres de maillage présentés comme suit :

• géométries :

On a deux paramètres d'entrés, la longueur et la largeur. Chaque paramètre a un espace de saisi comme la figure (5.12) nous montre.

• Maillage :

Le code utilise un maillage uniforme, les paramètres donc se limitent aux nombres de nœuds suivant la direction x et la direction y.

L'option de saisi dans ce cas se fait en deux manières :

Donner la valeur directement dans l'espace de saisi, ou cliquer sur les boutons gauches et droits. Le nombre de nœud diminue ou augmente respectivement. Il faut assurer la bonne saisie des paramètres suivant chaque direction, autrement le calcul se lance avec les valeurs initiales des paramètres en question.

5.3.2 Calcul et visualisation :

Le choix du paramètre de source est optionnel, le calcul peut se faire sans terme source mais reste au besoin de la simulation de l'ajouter ou non. Vérifier le choix et un espace de saisi apparait et permet d'ajouter la valeur de la source.

Fig. 5.13 Choix du terme source.

La visualisation : on peut lancer directement la simulation et recevoir les résultats sous forme de température dans chaque nœud, le nœud est identifié par sa position dans le domaine géométrique choisissant l'option « Autre ». On peut aussi choisir la visualisation avec Tecplot, on voit vite l'apparition du bouton 'visualization' à la place du bouton 'calculate' en cas de la sélection d'une des deux options.

Fig. 5.14 Visualisation non confirmé.

Fig. 5.15 Visualisation avec tecplot.

Fig. 5.16 Visualisation avec d'autres options que Tecplot.

Le clique sur le bouton 'calculate' ou 'visualization' lance la simulation avec les valeurs des paramètres précédemment introduits, le programme s'exécute et les résultats de la simulation deviennent désormais disponibles selon le réglage de paramètres de visualisation.

N.B:

Dans le cas du choix 'manual' des paramètres physiques dans les deux régimes (stationnaire ou transitoire) l'option de visualisation se confirme automatiquement et la confirmation de visualisation tecplot devient inaccessible.

8	Application 2D	- - ×
File 3D	Material Material Material Modules Regime Regime Materials Limit condition Geometry and Mesh Source Internal heat source Visualization Tecplot Other	S tion Materials Auto Manual

Fig. 5.17 Influence du choix manuel du matériau sur le bouton 'calculate'.

5.3.2 Messages d'avertissement :

L'interface assure que l'utilisateur a introduit tous les paramètres nécessaires de la simulation, confirmer les paramètres de chaque module le rend en vert pour dire que les paramètres de ce module sont bien introduits.

Dans le même concept, en cas d'un module en rouge, le code affiche un message d'avertissement, informe l'utilisateur que un ou plusieurs modules ne sont pas validé (Figure 5.18).

Fig. 5.18 Message d'avertissement .

L'avertissement ne prend pas en charge la source interne et la visualisation en raison de leurs importances vis-à-vis la simulation, ces paramètres sont optionnels.

• Avertissement dans le cas de surchauffe :

Le choix 'auto' du matériau sert d'avantage à la crédibilité des résultats de simulation. Un tel choix permet d'afficher un message d'avertissement de surchauffe dans le cas où la température maximale de simulation dépasse la température de fusion du matériau choisi (figure 5.19).

6		Application 2D -	
File	3D		
	1	1aterial	
		Convection ∨ T∞ = 25 °C	
		h = 100 W/m².ºC	
	× .	eier 1009	
	A	O Regime	
		O Materials	
		Warning Geometry and Mesh	
	Convection V	Geometry	
	T∞ = 25 °C	the melting temperature of the metal is : 1450 °C Longth 0.4 m	
	h= 100 W/m².°C	Width 0.5 m	
		OK Mesh	
		number of nodes along the X-axi	s
		visualization « 5 »	
		Femperature V T = 2000 °C Tecplot number of nodes along the Y-ax	s
		Other 6 >>	
	Calculate	Win Overheat	

Fig. 5.19 Message de surchauffe 'Overheat'

• Message d'un paramètre manquant :

En cas d'oubli d'un paramètre, un message d'avertissement apparait pour déclarer que le code ne trouve pas ce paramètre et qu'il faut l'identifier.

٠.			Appli	cation 2D			- 🗆 🗡
File	3D						
	Ľ,	Convection	rial ✓ T∞ = 25 h = 100 V	°C //m².°C	Modules • Regime • Materials		
				Error		Geometry and Mesh	
	Convection ✓ T∞ = 25 °C h= 100 W/m².°C		Ambient temperat	ure on the East	t face is not defined !!! OK	Length 0.4 Width 0.5 Mesh	m
		Temperature	✓ T = 2000	°C	visualization Tecplot Other	number of nodes alon	g the X-axis g the Y-axis »
	Calculate						

Fig. 5.20 Message paramètre manquant.

5.4 Cas tridimensionnel :

Dans le cas tridimensionnel, nous aurons six faces au lieu de quatre . Donc deux conditions aux limites de plus.

Cependant, on doit rajouter d'autres paramètres qui sont l'épaisseur et le nombre de nœuds suivant cette direction (Figures 5.21 et 5.22).

Les autres paramètres ne changent pas.

Fig. 5.21 L'interface graphique dans le cas tridimensionnel

Fig. 5.22 Les nouveaux paramètres dans le cas tridimensionnel.

Chapitre 6 : Résultats et Commentaires

6.1 Introduction :

Après avoir présenté l'interface du code de calcul dans le chapitre précédent nous allons utiliser ce code pour étudier la distribution de la température sur un matériau au choix, on précisant les paramètres thermo-physiques telles que les dimensions, les conditions aux limites, les différents coefficients du matériau Etc. Les résultats des différentes simulations sont présentés et commentés dans ce chapitre. D'autre part, une comparaison entre les résultats numériques et les résultats obtenus par le logiciel Ansys a été faite.

6.2 Présentation des résultats 2D :

6.2.1 Validation des résultats :

Dans cette partie, on va visualiser les résultats des exemples de cas bidimensionnel présentés dans le chapitre quatre et les comparer avec Ansys.

• Exemple 1 du chapitre 4 (régime stationnaire):

Fig. 6.2 Visualisation avec Ansys.

• Exemple 2 du chapitre 4 (régime stationnaire):

Fig. 6.4 Visualisation avec Ansys.

• Exemple 3 du chapitre 4 (à t=80 s) :

• Exemple 4 du chapitre 4 (régime stationnaire):

Fig. 6.8 Visualisation avec Ansys.

• Exemple 5 du chapitre 4 (régime Stationnaire) :

Fig. 6.10 Visualisation avec Ansys.

• Exemple 6 du chapitre 4 (régime stationnaire) :

A partir des figures obtenus pour les exemples 1-2-3-4-5-6 du chapitre 4, on remarque que nos résultats visualisés par le logiciel Surfer concordent avec ceux du logiciel Asys.

6.2.2 Influence du maillage :

Dans cette partie, on s'intéresse à la distribution de la température en augmentant le nombre de nœuds de calcul.

• Exemple 1 du chapitre 4 :

Fig. 6.13 Ligne de température.

Fig. 6.14 Graphe de la température en fonction de la position y.

2 2 1 0.000 0.200 0.400 (m) 0.100 0.300

• Exemple 2 du chapitre 4:

Fig. 6.15 Ligne de température.

Fig. 6.16 Graphe de la température en fonction de la position y.

chapitre 4:

• Exemple 3 du chapitre 4:

Fig. 6.17 Ligne de température.

Fig. 6.18 Graphe de la température en fonction de la position x.

Fig. 6.19 Ligne de température.

Fig. 6.20 Graphe de la température en fonction de la position y.

• Exemple 5 du chapitre 4 :

Fig. 6.21 Ligne de température.

Fig. 6.22 Graphe de la température en fonction de la position y.

• Exemple 6 du chapitre 4 :

Fig. 6.23 Ligne de température.

Fig. 6.24 Graphe de la température en fonction de la position y.

A partir des figures 6.18.6.20.6.22.624, on remarque que l'augmentation du nombre de nœuds (raffinement) n'influe pas sur les résultats numériques.

En revanche, dans la figure 6.14, on remarque qu'on a une petit différence entre un nombre de nœuds faible et un nombre plus élevé, ce qui due au fait que les exemples traités ne sont pas de fort gradient.

6.2.3 Autres résultats :

Maintenant, on va s'intéresser à étudier la variation des différents paramètres qui influent sur le transfert de chaleur.

6.2.3.1 Variation de la température imposée (Exemple 4 du chapitre 4) :

Pour cette étude, on prend l'exemple 4 et on fait varier la température imposée de la face 'sud' pour voir l'influence de cette dernière sur la distribution de la température.

On choisit un maillage uniforme de 37 nœuds suivant l'axe x et 49 nœuds suivant l'axe y.

Fig. 6.25 Visualisation avec Tecplot.

Fig. 6.26 Visualisation avec Ansys.

Fig. 6.27 Visualisation avec Tecplot.

On remarque à partir des figures 6.25-6.27-6.29 une augmentation de la température maximale en a une augmentant la valeur de la température imposée, les figures 6.26-6.28-6.30 obtenus par Ansys confirment ce résultat.

• Ligne des températures :

Fig. 6.31 Ligne des températures.

Fig. 6.32 Graphe des températures en fonction des positions y.

On prend les températures des nœuds de la ligne illustrée dans la figure 6.31, on les compare à chaque fois avec les valeurs obtenues avec Ansys. La figure 6.32 et le tableau 6.1, montrent que les résultats de notre code sont très proches des résultats d'Ansys, et on a une augmentation uniforme de chaque point de la ligne en augmentant la température imposée dans la face sud.

 Tableau 6.1 Erreur relative entre les résultats du code de calcul et les résultats d'Ansys pour différentes valeurs de températures imposées.

		T=200 °C			T=300 °C			T=400°C	
y (m)	ansys	programme	erreur(%)	ansys	programme	erreur(%)	ansys	programme	erreur(%)
0	200	200	0	300	300	0	400	400	0
0.010417	204.55	204.55058	0.0002835	304.55	304.55059	0.0001928	404.55	404.5505739	0.0001418
0.020833	209.09	209.09483	0.0023107	309.09	309.09484	0.0015654	409.09	409.0948253	0.0011795
0.03125	213.63	213.6265	0.0016385	313.63	313.62651	0.0011139	413.63	413.6264933	0.0008478
0.041667	218.14	218.1395	0.0002289	318.14	318.13951	0.0001548	418.14	418.1394941	0.000121
0.052083	222.63	222.62799	0.000904	322.63	322.62799	0.0006218	422.63	422.6279807	0.0004778
0.0625	227.09	227.08641	0.0015809	327.09	327.08642	0.0010957	427.09	427.086403	0.0008422
0.291667	310.75	310.74214	0.0025308	410.75	410.74214	0.0019141	510.75	510.7421257	0.0015417
0.302083	313.74	313.73259	0.002362	413.74	413.73259	0.0017906	513.74	513.7325793	0.0014444
0.3125	316.65	316.64689	0.0009818	416.65	416.64689	0.0007457	516.65	516.646881	0.0006037
0.322917	319.49	319.48484	0.0016151	419.49	419.48484	0.0012297	519.49	519.4848295	0.0009953
0.333333	322.25	322.24626	0.0011594	422.25	422.24627	0.0008844	522.25	522.2462536	0.0007174
0.479166	352.83	352.81866	0.0032139	452.83	452.81866	0.0025041	552.83	552.818649	0.0020532
0.489583	354.43	354.42283	0.0020237	454.43	454.42283	0.0015783	554.43	554.422816	0.0012957
0.5	355.96	355.94961	0.0029178	455.96	455.94961	0.0022778	555.96	555.949603	0.0018702

A partir du tableau si dessus, on peut remarquer que les erreurs relatives entre les deux résultats numériques sont très faible, telles que l'erreur maximale ne dépasse pas 0.005%.

6.2.3.2 Variation du flux (exemple 5 du chapitre 4) :

Prenant l'exemple 5 pour étudier l'effet de la variation du flux de chaleur dans la face inférieure sur la distribution de la température.

On choisit un maillage uniforme de 37 nœuds suivant l'axe x et 49 nœuds suivant l'axe y.

Fig. 6.33 Visualisation avec Tecplot.

Fig. 6.34 Visualisation avec Ansys.

Fig. 6.36 Visualisation avec Ansys.

• Pour q=80000 W/m²:

A partir des figures 6.33-6.35-6.37, on peut voir que la température maximale augmente avec l'augmentation du flux de chaleur mais le sens de transfert ne change pas. On peut confirmer ces résultats dans les figures 6.34-6.36-6.38 obtenus par le logiciel Ansys.

• Ligne des températures :

Fig. 6.39 Ligne des températures.

Fig. 6.40 Graphe des températures en fonction de la position y.

On prend les températures des nœuds de la ligne illustrée dans la figure 6.39, on les compare à chaque fois avec les valeurs obtenues par Ansys. La figure 6.40 montre qu'on a une augmentation quasi-linéaire de la température pour chaque augmentation du flux de chaleur.

 Tableau 6.2 Erreur relative entre les résultats du code de calcul et les résultats d'Ansys

 pour différentes valeurs de flux de chaleur imposés

		q=60KW/m ²			q=80KW/m ²]		q=100KW/m ²	
y (m)	Ansys	programme	erreur(%)	ansys	programme	erreur(%)	ansys	programme	erreur(%)
0	324.95	324.943481	0.0020061	416.6	416.5913004	0.0020882	508.24	508.2391117	0.000175
0.0104	323.18	323.177531	0.0007639	414.24	414.2367004	0.0007965	505.3	505.2958619	0.000819
0.0208	321.45	321.451102	0.0003427	411.94	411.9347943	0.0012637	502.42	502.4184794	0.000303
0.0313	319.77	319.764168	0.0018237	409.69	409.6855498	0.0010862	499.61	499.6069239	0.000616
0.0417	318.12	318.116691	0.0010402	407.49	407.4889134	0.0002667	496.87	496.8611285	0.001785
0.0521	316.51	316.508615	0.0004377	405.35	405.3448116	0.00128	494.19	494.1810014	0.001821
0.1979	298.08	298.076123	0.0013006	380.77	380.7681574	0.0004839	463.47	463.4601844	0.002118
0.2083	297.05	297.045893	0.0013827	379.4	379.3945167	0.0014452	461.75	461.7431336	0.001487
0.2188	296.06	296.053117	0.0023249	378.07	378.0708157	0.0002158	460.09	460.0885073	0.000324
0.2292	295.1	295.097663	0.000792	376.8	376.7968771	0.0008288	458.5	458.4960841	0.000854
0.2396	294.18	294.179401	0.0002037	375.58	375.5725278	0.0019895	456.97	456.9656475	0.000952
0.25	293.3	293.298204	0.0006123	374.4	374.3975993	0.0006412	455.5	455.4969868	0.000662
0.2604	292.46	292.453951	0.0020685	373.28	373.2719277	0.0021625	454.1	454.0898974	0.002225
0.2708	291.65	291.646521	0.001193	372.2	372.1953548	0.0012481	452.75	452.7441812	0.001285
0.4792	283.09	283.089185	0.0002877	360.79	360.7855755	0.0012263	438.49	438.4819569	0.001834
0.4896	283.04	283.036022	0.0014054	360.72	360.714691	0.0014718	438.4	438.3933512	0.001517
0.5	283.02	283.018302	0.0006	360.7	360.691064	0.0024774	438.37	438.3638175	0.00141
Le tableau si dessus montre que les erreurs relatives sont très faibles et ne dépasse pas 0.003 %, donc nos résultats sont très proches des résultats obtenus par Ansys.

6.2.3.3 Variation de la source de chaleur (exemple 1 du chapitre 4) :

Pour cette étude, on prend l'exemple 1 du chapitre 4 et on fait varier la source de chaleur pour voir l'influence de cette dernière sur la distribution de la température.

On choisit un maillage uniforme de 37 nœuds suivant l'axe x et 49 nœuds suivant l'axe y.

• pour S=90000 W/m³:

Fig. 6.41 Visualisation avec Tecplot.

Fig. 6.42 Visualisation avec Ansys.

pour S=200000 W/m³:

Fig. 6.43 Visualisation avec Tecplot.

On remarque à partir des figures 6.41-6.43-6.45 l'augmentation de la température maximale due à l'augmentation de la valeur du terme source. D'autre part, on remarque pour l'exemple choisi un changement du sens de transfert thermique à partir d'une certaine valeur.

Fig. 6.47 Ligne des températures.

Fig. 6.48 Graphe des températures en fonction de la position y.

On prend les températures des nœuds de la ligne illustrée dans la figure 6.47, on les compare à chaque fois avec les valeurs obtenues par le logiciel Ansys pour différentes valeurs du terme source (figure 6.48). Dans cette figure, on peut voir un changement du gradient de température due à l'augmentation du terme source.

		s=90KW/m³			s=200KW/m ³			s=400KW/m ³	
y (m)	ansys	Programme	Erreur(%)	ansys	programme	Erreur(%)	ansys	programme	Erreur(%)
0	400	400	0	400	400	0	400	400	0
0.0104	404.09	404.08214	0.0019451	427.09	427.0769798	0.0030486	468.9	468.8857673	0.003035
0.0208	407.3	407.286543	0.0033041	452.15	452.127735	0.0049242	533.68	533.6571645	0.004279
0.0313	409.73	409.710471	0.0047662	475.32	475.2944227	0.0053811	594.58	594.5379597	0.007071
0.0417	411.47	411.448076	0.0053283	496.75	496.7157138	0.0069021	651.8	651.7477726	0.008013
0.0521	412.62	412.589086	0.0074921	516.57	516.525309	0.0086515	705.56	705.5002497	0.008469
0.0625	413.25	413.217733	0.0078082	534.9	534.8506924	0.0092181	756.07	756.0015189	0.009058
0.2083	399.82	399.809758	0.0025615	688.75	688.7196813	0.004402	1214.1	1214.010446	0.007376
0.2188	398.56	398.553508	0.0016288	695.01	694.9787315	0.004499	1234	1233.933679	0.005375
0.2292	397.34	397.33695	0.0007677	700.86	700.8305742	0.0041985	1252.7	1252.637161	0.005016
0.2396	396.17	396.164585	0.0013668	706.33	706.3011348	0.0040867	1270.3	1270.185767	0.008993
0.25	395.04	395.039708	7.392E-05	711.44	711.4139284	0.0036646	1286.7	1286.63978	0.00468
0.2604	393.96	393.964621	0.0011729	716.21	716.1903193	0.0027479	1302.1	1302.055223	0.003439
0.2708	392.94	392.940821	0.0002089	720.67	720.6497474	0.0028103	1316.6	1316.484157	0.008799
0.2813	391.97	391.969158	0.0002147	724.83	724.8099261	0.0027695	1330	1329.974956	0.001883
0.4687	382.8	382.806842	0.0017875	761.65	761.6380178	0.0015732	1450.5	1450.421972	0.005379
0.4792	382.7	382.708852	0.002313	762.03	762.0157166	0.0018744	1451.7	1451.664561	0.002441
0.4896	382.64	382.650158	0.0026546	762.26	762.2418406	0.0023823	1452.5	1452.408536	0.006297
0.5	382.62	382.63061	0.0027729	762.33	762.3171329	0.0016879	1452.7	1452.656266	0.003011

 Tableau 6.3 Erreur relative entre les résultats du code de calcul et les résultats d'Ansys pour différentes valeurs de source de chaleur.

Le tableau si dessus présente les erreurs relatives entre les résultats obtenus par notre code de calcul et les résultats numériques obtenus par le logiciel Ansys. Ces erreurs relatives sont très faibles et ne dépasse pas 10^{-2} %.

On peut retirer à partir de cette partie que le terme source augmente la chaleur du matériau, et s'il dépasse une certaine valeur il peut même changer le comportement du transfert thermique dans certains cas.

6.2.3.4 Variation du coefficient ρc_p (exemple 5 du chapitre 4) :

Pour cette étude on s'intéresse à l'influence des propriétés physiques. On prend l'exemple 5 du chapitre 4 et on fait varier le coefficient ρc_p Pour voir l'influence de ce dernier sur la distribution de la température.

On choisit un maillage uniforme de 37 nœuds suivant l'axe x et 49 nœuds suivant l'axe y.

On fixe un temps de 40 secondes.

• Pour $\rho c_p = 35000 \text{ J/m}^3 \text{ C}^\circ$:

Fig. 6.50 Visualisation avec Ansys.

Fig. 6.51 Visualisation avec Tecplot.

Fig. 6.52 Visualisation avec Ansys.

Fig. 6.54 Visualisation avec Ansys.

A partir des figures 6.49-6.51-6.53, on remarque que le transfert de chaleur n'est pas le même dans chaque variation du terme ρc_p au même instant $\mathbf{t} = 40$ secondes. Donc la distribution de la température diffère selon la nature du matériau.

• Ligne des températures :

Fig. 6.55 Ligne des températures.

Fig. 6.56 Graphe de la température en fonction de la position y.

On peut voir à partir de la figure 6.56 que pour la valeur inferieur de ρc_p le gradient de température est plus élevé. A une certaine augmentation de ρc_p le gradient de température devient plus faible et la température minimale converge vers la température initial.

Sachant que, la diffusivité thermique $\alpha = \frac{k}{\rho C_p}$ (le facteur qui caractérise la vitesse de propagation de température), le terme ρC_p indique l'emmagasinage d'énergie du processus de transfert, donc plus ρC_p est élevé plus le matériau emmagasine l'énergie et diminue la vitesse de propagation de chaleur sur le domaine géométrique, donc plus la diffusivité est plus élevée la vitesse de propagation augmente ainsi que la convergence vers la solution stationnaire devient plus rapide. (NB : la valeur de k n'a pas changé dans les 3 exemples donc les résultats trouvés restent correctes pour des valeurs de α équivalentes)

Tableau 6.4 Erreur relative entre les résultats du code de calcul et les résultats d'Ansys pour différentes valeurs de ρc_p .

		PCp=35000			PCp=350000			PCp=3500000	
y (m)	ansys	programme	Erreur(%)	ansys	programme	Erreur(%)	ansys	programme	Erreur(%)
0	315.09	315.085945	0.001287	244.1	244.094247	0.0023568	216.24	216.2100484	0.013851
0.0104	312.73	312.731345	0.00043	241.76	241.7491974	0.0044683	213.97	213.9400153	0.014014
0.0208	310.43	310.429439	0.0001808	239.48	239.4759013	0.0017115	211.92	211.8903165	0.014007
0.1563	285.26	285.260409	0.0001435	216.25	216.2470259	0.0013753	200.6	200.6003288	0.000164
0.1667	283.69	283.685181	0.0016988	214.92	214.9185754	0.0006629	200.43	200.4314086	0.000703
0.1771	282.16	282.160628	0.0002224	213.65	213.6501712	8.011E-05	200.3	200.3012728	0.000635
0.1875	280.69	280.686563	0.0012243	212.44	212.4405151	0.0002424	200.2	200.2021613	0.00108

0.1979	279.27	279.262803	0.0025772	211.29	211.2882761	0.0008159	200.13	200.1275427	0.001228
0.2083	277.89	277.889162	0.0003015	210.2	210.1920967	0.0037599	200.07	200.072009	0.001004
0.3125	266.87	266.871726	0.0006467	202.01	202.0075612	0.0012073	199.93	199.9344709	0.002236
0.3229	266.04	266.038472	0.0005743	201.44	201.4366485	0.0016638	199.93	199.9334644	0.001733
0.4583	259.57	259.563815	0.0023827	197.26	197.2602659	0.0001348	199.93	199.9316915	0.000846
0.4687	259.4	259.398376	0.0006259	197.16	197.159878	6.187E-05	199.93	199.9316883	0.000844
0.4792	259.28	259.280224	8.625E-05	197.09	197.0883842	0.0008198	199.93	199.9316859	0.000843
0.4896	259.21	259.209339	0.000255	197.04	197.0455726	0.0028281	199.93	199.9316851	0.000843
0.5	259.19	259.185712	0.0016545	197.03	197.0313158	0.0006678	199.93	199.9316868	0.000844

Le tableau 6.4 valide nos résultats avec Ansys. Cette partie montre qu'on a un transfert de chaleur rapide sur un matériau de ρC_p inférieur et converge plus rapidement vers le régime stationnaire qu'un matériau de ρC_p supérieur.

6.2.3.5 Variation de la conductivité thermique K (exemple 2 du chapitre 4) :

On prend l'exemple 2 du chapitre 4 et on fait varier la conductivité thermique pour voir l'influence de cette dernière sur la distribution de la température.

On choisit un maillage uniforme de 37 nœuds suivant l'axe x et 49 nœuds suivant l'axe y.

• Pour k=35 W/m.C° :

Fig. 6.57 Visualisation avec Tecplot.

Fig. 6.58 Visualisation avec Ansys.

• Ligne des températures :

Fig. 6.63 Ligne des températures.

Fig. 6.64 Graphe des températures en fonction de la position y.

 Tableau 6.5 Erreur relative entre les résultats du code de calcul et les résultats d'Ansys
 pour différentes valeurs de conductivités thermiques.

		k=35W/m.C°			k=350W/m.C°			k=3500W/m.C°	
y (m)	ansys	programme	erreur(%)	ansys	programme	erreur(%)	ansys	programme	erreur(%)
0	466.06	466.019438	0.0087033	202.74	202.7402376	0.0001172	171.43	171.4329329	0.001711
0.0104	451.39	451.345122	0.0099422	201.27	201.2647052	0.0026307	171.29	171.2852464	0.002775
0.0208	437.13	437.083535	0.0106296	199.82	199.8142908	0.0028572	171.14	171.1398059	0.000113
0.0313	423.28	423.233053	0.0110914	198.39	198.3889726	0.0005179	171	170.9966111	0.001982
0.0417	409.83	409.791004	0.0095152	196.99	196.988714	0.0006528	170.86	170.8556617	0.002539
0.1875	261.15	261.126346	0.0090576	179.97	179.9694005	0.0003331	169.12	169.117642	0.001394
0.1979	253.03	253.009876	0.007953	178.93	178.9337156	0.0020765	169.01	169.0102545	0.000151
0.2083	245.2	245.179899	0.008198	177.92	177.9213252	0.0007448	168.9	168.9050939	0.003016
0.2188	237.65	237.627639	0.0094091	176.93	176.9320932	0.001183	168.8	168.8021586	0.001279
0.3125	180.8	180.794143	0.0032396	169.05	169.0493389	0.0003911	167.98	167.975651	0.002589
0.3229	175.59	175.576784	0.0075264	168.29	168.2845381	0.0032456	167.89	167.8948932	0.002915
0.4687	120.29	120.294257	0.0035389	159.82	159.8177189	0.0014273	167	166.9959017	0.002454
0.4792	117.41	117.412919	0.0024863	159.37	159.3693355	0.000417	166.95	166.9481928	0.001082
0.4896	114.65	114.651164	0.001015	158.94	158.941388	0.0008733	166.9	166.9026799	0.001606
0.5	112	112.005421	0.0048403	158.53	158.5338114	0.0024042	166.86	166.8593625	0.000382

La conductivité thermique est une quantité proportionnelle directement à la variation de la densité du milieu étudié. Une conductivité faible ne favorise pas la propagation de la chaleur alors qu'une conductivité élevée permet une meilleure propagation de la chaleur ce qui est montré dans les figures 6.57-6.59-6.61.Tel que, la figure 6.57 montre que pour une conductivité thermique K=3500 W/m.C° la température maximale est égale 171.43 °C, en revanche pour k= 350W/m.C° la température augmente est devient 202.74 °C. Quand on augmente encore cette conductivité (k=35W/m.C°) la température atteint 466.02°C.

Le tableau 6.5 montre que pour un y=0.2 et K= 35W/m.C° la différence entre nos résultats et les résultats obtenus par Ansys est de 0.0081 % et pour y=0.5 cette différence est 0.0048 %. Aussi pour d'autres valeur de la conductivité thermique l'erreur maximale ne dépasse pas 0.003 %. Donc ce tableau d'erreur et les figures 6.58-6.60-6.62 montrent qu'on a une très bonne concordance entre les deux résultats numériques.

6.2.3.6 Changement des dimensions (exemple 6 du chapitre 4) :

On prend l'exemple 6 et on fait varier les dimensions de la plaque métallique pour voir l'influence de cette dernière sur la distribution de la température.

On choisit un maillage uniformede 37 nœuds suivant l'axe x et 49 nœuds suivant l'axe y.

Fig. 6.65 Visualisation avec Tecplot.

Fig. 6.66 Visualisation avec Ansys.

• pour Lx=0.04 m et Ly=0.05 m :

Les figures 6.65-6.67-6.69 nous laisse dire que le comportement de transfert ne change pas, mais le gradient de température diminue avec la diminution de dimensions.

• Ligne des températures :

Fig. 6.71 Ligne des températures.

Fig. 6.72 Graphe des températures en fonction de Nœuds.

De la figure 6.72 on peut voir la différence du gradient de température de chaque variation. On peut confirmer que pour des dimensions très petites le gradient de température est très faible alors que pour des dimensions relativement plus grandes le gradient devient plus important. Donc le transfert thermique dépend de la géométrie du matériau et dépend aussi de ses dimensions (figure 6.72).

Tableau 6.6 Erreur relative entre les résultats du code de calcul et les résultats d'Ansys pour différentes valeurs de conductivités thermiques.

	Lx=0.4 r	n <i>,</i> Ly=0.5 m		Lx=0.04 m , Ly=0.05m			Lx=0.004 m, Ly=0.005 m		
Noeud	ansys	programme	Erreur(%)	ansys	programme	Erreur(%)	ansys	programme	Erreur(%)
1	300	300	0	300	300	0	300	300	0
2	298.01	298.011932	0.0006484	299.76	299.7561361	0.001289	299.98	299.9750428	0.001653
8	286.25	286.253115	0.0010881	298.31	298.3116103	0.0005398	299.83	299.8271611	0.000947
9	284.35	284.347303	0.0009484	298.08	298.0768325	0.0010626	299.8	299.803119	0.00104
10	282.46	282.463208	0.0011357	297.84	297.8444708	0.0015011	299.78	299.7793215	0.000226
11	280.6	280.602724	0.0009708	297.61	297.6147432	0.0015937	299.76	299.7557908	0.001404
12	278.77	278.767538	0.0008833	297.39	297.3878463	0.0007242	299.73	299.7325469	0.00085
30	251.04	251.042438	0.0009711	293.91	293.9143051	0.0014648	299.38	299.3762187	0.001263
32	248.62	248.627865	0.0031636	293.61	293.6073041	0.0009182	299.34	299.3446777	0.001563
33	247.47	247.47087	0.0003515	293.46	293.4599532	1.595E-05	299.33	299.3295364	0.000155
34	246.34	246.347273	0.0029523	293.32	293.31671	0.0011216	299.31	299.3148157	0.001609
35	245.25	245.256969	0.0028414	293.18	293.1775792	0.0008257	299.3	299.3005162	0.000172
36	244.2	244.199847	6.249E-05	293.04	293.0425643	0.0008751	299.29	299.2866384	0.001123
47	234.73	234.728567	0.0006107	291.83	291.8294707	0.0001814	299.16	299.1619123	0.000639
48	234.06	234.0607	0.0002991	291.74	291.7439273	0.0013462	299.15	299.1531169	0.001042
49	233.42	233.424569	0.0019574	291.66	291.6625039	0.0008585	299.14	299.1447458	0.001586

Le tableau si dessus confirme les résultats obtenus par notre code, les erreurs relatives sont très faibles.

6.2.3.7 Influence d'epsilon dans le cas d'un maillage raffiné:

On va étudier l'influence du choix de la valeur d'epsilon sur la convergence des résultats dans le cas d'un maillage raffiné suivant la direction x ou y comme montre les figures suivantes (on a pris l'exemple 6 du chapitre 4 pour cette étude) :

• Pour Epsilon égale à 0.0001 :

Fig. 6.76 Visualisation pour Lx=0.05m et Ly=0.04 m, 30 nœuds suivant l'axe Y.

• Pour Epsilon égale à 10⁻¹¹ :

Fig. 6.80 Visualisation pour Lx=0.05m et Ly=0.04 m, 30 nœuds suivant l'axe Y.

On peut voir à partir des figures 6.74 et 6.76 que le raffinement suivant la direction y ne fait pas changer le gradient de température malgré un epsilon relativement élevé, en revanche, pour le raffinement suivant la direction x le gradient de température dépend d'epsilon et la convergence vers la solution numérique n'est pas assurée (figures 6.73 et 6.75). En diminuant la valeur d'epsilon on assure la convergence (figures 6.77-6.78-6.79-6.80).

Donc dans le cas d'un maillage raffiné suivant la direction x il est nécessaire de prendre un epsilon très petit pour assurer la convergence.

6.3 Présentation des résultats3D :

6.3.1 Exemple 3D du chapitre 4 :

On va valider l'exemple tridimensionnel du chapitre 4.

On choisit un maillage uniforme de 41 nœuds suivant l'axe x et z, 49 nœuds suivant l'axe y.

Fig. 6.81 Visualisation avec Tecplot.

Fig. 6.82 Visualisation avec Ansys.

• Ligne de température :

Fig. 6.83 Ligne de température.

Fig. 6.84 Graphe des températures en fonction de la position y.

6.3.2 Comparaison des 3 schémas :

On veut voir la différence entre les résultats obtenus à partir des 3 schémas (explicite, totalement implicite et CranckNicolson).

Pour cela, on calcule la température de la plaque pour différents pas de temps pour un temps de 40 secondes :

Remarque : la face calculée est celle de (z=0.2m)

		pas de temps	1s		pas de temps	0,1 s		pas de temps	0,01s	
		Itérations	40		itérations	400		itérations	4000	
x	у	explicite	implicite	CrankNicolson	explicite	implicite	CrankNicolson	explicite	implicite	CrankNicolson
0	0	288,9967971	288,8296	288,91403	289,2624372	289,245324	289,253865	289,3161008	289,31438	289,315234
0	0,2	289,7735008	289,604971	289,69014	290,0397533	290,022501	290,031122	290,0935623	290,091829	290,092684
0	0,4	289,5367908	289,368922	289,45372	289,8029304	289,785741	289,794333	289,8566933	289,854957	289,855818
0	0,5	288,9967971	288,8296	288,91403	289,2624372	289,245324	289,253865	289,3161008	289,31438	289,315234
0,1	0	278,9172196	278,752093	278,83514	279,1834864	279,166565	279,175024	279,2370788	279,235367	279,236216
0,1	0,2	279,6811911	279,514743	279,59852	279,9480925	279,930995	279,939518	280,0017904	280,0001	280,000931
0,1	0,4	279,4467579	279,280965	279,36436	279,7135515	279,696516	279,705093	279,7672009	279,765455	279,766337
0,1	0,5	278,9172196	278,752093	278,83514	279,1834864	279,166565	279,175024	279,2370788	279,235367	279,236216
0,2	0	275,7632742	275,600208	275,68187	276,030162	276,013448	276,021801	276,0837558	276,082058	276,082897
0,2	0,2	276,5210838	276,356699	276,43908	276,7885594	276,771711	276,780141	276,8422827	276,840601	276,841439
0,2	0,4	276,288002	276,12427	276,2063	276,5553859	276,538604	276,547044	276,6090728	276,607328	276,608198
0,2	0,5	275,7632742	275,600208	275,68187	276,030162	276,013448	276,021801	276,0837558	276,082058	276,082897
0,4	0	288,9967971	288,829604	288,91404	289,2624372	289,245339	289,253888	289,3161008	289,31438	289,315234
0,4	0,2	289,7735008	289,604975	289,69014	290,0397533	290,022512	290,03114	290,0935623	290,091829	290,092684
0,4	0,4	289,5367908	289,368926	289,45372	289,8029304	289,785758	289,794353	289,8566933	289,854957	289,855818
0,4	0,5	288,9967971	288,829604	288,91404	289,2624372	289,245339	289,253888	289,3161008	289,31438	289,315234

Tableau 6.7 : comparaison les résultats des trois schémas pour k= 3500W/m.K

Si on diminue la valeur de la conductivité thermique (k=350W/m.K au lieu de 3500W/m.K) et pour les mêmes conditions on trouve :

Tableau 6.8 : comparaison les résultats des trois schémas pour k= 350W/m.K

		pas de temps	5s		pas de temps	0,1 s		pas de temps	0,01s	
		Itérations	8		Itérations	400		itérations	4000	
x	Y	Explicite	implicite	CrankNicolson	explicite	implicite	CrankNicolson	explicite	implicite	CrankNicolson
0	0	284,6066393	282,528448	283,54755	283,9815275	283,939866	283,96069	284,00716	284,003	284,005081
0	0,2	288,1217181	285,926281	287,00131	287,4426062	287,39863	287,420573	287,4678886	287,46348	287,46573
0	0,4	287,6451125	285,427676	286,51362	286,9532802	286,908851	286,931057	286,9782651	286,973828	286,976043
0	0,5	284,6066393	282,528448	283,54755	283,9815275	283,939866	283,96069	284,00716	284,003	284,005081
0,1	0	215,5911701	218,488495	217,08596	217,5345792	217,5921	217,563362	217,6007952	217,606559	217,603669
0,1	0,2	218,5932579	221,405547	220,04481	220,5000235	220,555874	220,527825	220,5661192	220,57175	220,569004
0,1	0,4	218,1621882	220,955633	219,60442	220,0581056	220,113571	220,085871	220,1239993	220,129575	220,126742
0,1	0,5	215,5911701	218,488495	217,08596	217,5345792	217,5921	217,563362	217,6007952	217,606559	217,603669
0,2	0	204,9159402	208,210546	206,63297	207,0617777	207,127192	207,094519	207,1305506	207,137118	207,13384
0,2	0,2	207,8147109	211,011816	209,48148	209,9164334	209,979952	209,948145	209,9850063	209,991453	209,988276
0.2	0.4	207.3931164	210,576398	209.05342	209.4869564	209,550116	209,518609	209.5553134	209,561721	209,558461
0.2	0.5	204,9159402	208,210546	206.63297	207.0617777	207.127192	207.094519	207.1305506	207.137118	207.13384
0,4	0	284,6066393	282,528448	283,54755	283,9815275	283,939866	283,96069	284,00716	284,003	284,005081

1							1			
0,4	0,2	288,1217181	285,926281	287,00131	287,4426062	287,39863	287,420573	287,4678886	287,46348	287,46573
0,4	0,4	287,6451125	285,427676	286,51362	286,9532802	286,908851	286,931057	286,9782651	286,973828	286,976043
0,4	0,5	284,6066393	282,528448	283,54755	283,9815275	283,939866	283,96069	284,00716	284,003	284,005081

A partir de la théorie on dit que le schéma (Cranck-Nicolson) est le plus précis, on peut voir que même avec des pas de temps relativement grands le schéma s'approche mieux de la solution numérique. Reste à dire que le schéma (totalement implicite) est moins précis mais offre un choix inconditionnel de paramètre de pas de temps. Pour un pas de temps faible il est préférable d'utilisé le schéma explicite (résolution directe) calcul plus rapide.

Conclusion générale

Notre travail est consacré à l'étude de la distribution de température sur une plaque en régime transitoire et stationnaire, dans les deux cas bidimensionnel et tridimensionnel. Ensuite, de connaître l'influence des paramètres thermo-physiques sur les résultats, ainsi que la conception d'un code de calcul présenté par une interface graphique.

En outre, cette étude nous a permis de :

- métriser la méthode des volumes finis utilisée pour la discrétisation des équations différentielles, ainsi que la TDMA pour résoudre des systèmes algébriques.
- d'expérimenter l'aspect numérique de la résolution des équations.
- Faire plusieurs exemples de simulation dans le cas 2D et 3D pour le régime transitoire ou permanant.
- Construire un code de calcul. Il a fallu réunir 256 possibilités de conditions aux limites dans le même programme pour le cas 2D, et 1296 possibilités de conditions aux limites dans le même programme pour le cas 3D.
- Construire l'interface du code de calcul avec le Visuel basic. Il a fallu apprendre un autre langage machine.

Un maillage structuré a été choisi pour faire la discrétisation des équations différentielles. Les figures ont été faite par le logiciel surfer 13 ou par le logiciel Tecplot. La validation des résultats numériques ont été faite par le logiciel Ansys.

Cette étude révèle et met en évidence beaucoup de points très importants pour l'étude ou la simulation, ces dernier peuvent être résumé comme suit :

- la température maximale augmente avec l'augmentation du flux de chaleur mais le sens de transfert ne change pas.
- L'augmentation de la source de chaleur augmente la température du matériau, et si elle dépasse une certaine valeur elle peut même changer le comportement du transfert thermique.
- Le transfert de chaleur est rapide sur un matériau de valeur plus petite de ρC_p et converge plus rapidement vers le régime stationnaire qu'un matériau de ρC_p supérieur.
- Une conductivité faible ne favorise pas la propagation de la chaleur alors qu'une conductivité élevée permet sa meilleure propagation.

- le gradient de température est très faible pour des petites dimensions, en revanche, il devient plus important pour des dimensions relativement plus grandes. Donc le transfert thermique dépend de la géométrie du matériau et aussi de ses dimensions.
- En diminuant la valeur d'epsilon on assure la convergence dans le cas du raffinement du maillage.
- Le schéma totalement implicite peut être moins précis que le schéma explicite et le schéma de Cranck-Nicolson mais il est inconditionnellement stable.

Perspectives

En vue d'améliorer notre travail, nous proposons comme perspective :

- ✓ Utiliser d'autres formes de plaques, par exemple de forme cylindrique.
- ✓ Rajouter cette partie dans le code de calcul.
- Passer du domaine de transfert thermique au domaine de mécanique des fluides.

[1] A. Aziz and M.N. Bouaziz, 2011, A least squares method for a longitudinal fin with temperature dependent, Internal heat generation and thermal conductivity, international journal of Energy Conversion and Management 52, P 2876-2882.

[2] Chia-Lung Chang ,2006, Non-iteration estimation of thermal conductivity using finite volume method , International Communications in Heat and Mass Transfer 33, P 1013.

[3] C. Harley and R.J.Moitsheki, 2012, Numerical investigation of the temperature profile in a rectangular longitudinal fin, journal of Nonlinear Analysis: Real World Applications 13, p 234

[4] Ciarlet, P.G. and Lions, J.L., 1990. Handbook of numerical analysis 1, Elsevier, New York.

[5] Douglas, Jr., J. ,1955, On the numerical integration of $u_{xx+} u_{yy} =$ by implicit methods, Journal de la Société de l'Industrie et de Mathématiques Appliquées 3, pp 42-65.

[6] D. W. Peaceman, and H. H. Rachford 1955, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math. vol. 3 pp. 28-41.

[7] Francesco Balena,2004.Programming microsoft visual basic .NET, PUBLISHED BY Microsoft Press, Washington

[8] Gerardine G. Botte, James A. Ritter and Ralph E. White 2000, Comparison of finite difference and control volume methods for solving differential equations.

[9] Harper R.R, Brown W.B, 1923. Mathematical equation for heat conduction in the fins of air-cooled engines, NACA Technical Report 158.USA.

[10] Hankerspace, Apprenez à programmer en VB.NET, offert par CAPGEMINI.

[11] Hiroshi Niki, Toshiyuki Kohno, 2008. The preconditioned Gauss Seidel method faster than the SOR method, journal of computational and applied mathematics 219,p 59-71

[12] J. Douglas and T. M. Gallie ,1955, Variable time steps in the solution of the heat flow equation by a difference equation, Proc. Amer. Math. Soc. vol. 6 pp. 787-793.

[13] J. Douglas, and D. W. Peaceman, 1955, Numerical solution of two-dimensional heat now problems. A.I.Ch.E. Journal vol. 1 pp. 505-512.

[14] Leonard, B.P., 1994. Comparison of truncation error of finite difference and finite volume formulations of convection terms. Applied

[15] Newman, J. S. (1967). Numerical solution of coupled ordinary differential equations. University of California, Berkeley, UCRL-177369.

[16] Newman, J.S., 1968. Numerical solution of coupled ordinary differential equations. Industrial Engineering and Chemical Fundamentals 7, p. 514. Full Text via CrossRef |View Record in Scopus | Cited By in Scopus (32).

[17] Patankar, S., 1980. Numerical heat transfer and fluid flow, Hemisphere Publishing, New York.

[18] T.M.Ng and B.Farhang-Boroujeny, 2003. An accelerated Gauss-Seidel method for inverse modeling, Signal processing journal 83.p.517.

[19] Varga, R.S., 1965. Matrix iterative analysis, Prentice-Hall, New Jersey.

Mathematical Modelling 18, p. 46.

[20] W. E. Milne, Numerical solution of differential equations, New York, 1953.

[21] W. K. Yeung and T. T. Lam, 1996. Second-order finite difference approximation for inverse determination of thermal conductivity, International Journal of Heat and Mass Transfer 39, p3685.

[22] W.Q. Tao, 2001, Numerical Heat Transfer, Xi'an Jiaotong University Press, Xi'an , pp.16