

Université de BLIDA 1

Faculté des Sciences

 Département d’Informatique

MASTER THESIS

Option: Ingénierie des Logiciels

EXPERIMENTAL DESIGN AND ANALYSIS OF AUDIO

TAGGING SYSTEMS: CASE STUDIES

By

Bouchra AMIROUCHE

Ilhem MOUSSA

In front of a jury composed of:

Ms. Siham BACHA President

Ms. Dalila GUESSOUM Examiner

Ms. Hadjer YKHLEF Supervisor

Mr. Farid YKHLEF Supervisor

2019/2020

ABSTRACT

The goal of general-purpose audio tagging is to create systems capable of recognizing a

variety of sounds. Including musical instruments, vehicles, animals, sounds generated by some

sort of human activity etc. The motivation for research in the field of artificial sound

understanding can be found in potential applications such as security, healthcare (hearing

impairment), improvement in smart devices and various music related tasks. The main

contribution of this work entails conducting extensive studies and comparisons between audio

tagging systems using a huge dataset made of 11 073 audio recordings. In this thesis, we have

carried out two sets of experiments. First, we have examined Deep Convolutional neural

networks (CNN) and 3 of its variants (Convolutional Recurrent Neural Network (CRNN),

Gated Convolutional Recurrent Neural Network (GCRNN) and Gated Convolutional Neural

Networks (GCNN)) using Log-Mel Spectrogram features. We have supported our analysis and

discussion with numerous statistical tests to analyze and compare the effect of the above-

mentioned features and models on the tagging performance. Our experimental findings indicate

that our systems capture diverse set of sound events, with various confidences. Moreover,

Convolutional Recurrent Neural Network (CRNN) significantly outperforms the other models.

Second, motivated by the fact that the individual models produce diverse predictions, we have

investigated the effect of ensemble learning using a technique known as stacking. Our analysis

shows that stacking provides a proper amalgamation of the individual learners, resulting in

better handling the diverse nature of the events.

Keywords: Audio Tagging, Deep Learning, Machine leaning, Ensemble Learning,

Stacking, Feature Extraction, Statistical Tests.

RESUME

L’étiquetage audio est une technique qui permet de créer des systèmes capables

d’identifier un ensemble de sons tel que : les sons des instruments musicaux, les sons générer

par une activité humaine et le son des véhicules etc. Ce qui a motivé la présente recherche, c’est

sa potentielle application dans divers domaines tel que la sécurité, la santé ainsi que

l'amélioration des appareils intelligents. La principale contribution de ce travail consiste à

mener une étude approfondie qui consiste à analyser et comparer les performances de plusieurs

systèmes d’étiquetage audio en utilisant une base de données volumineuse constituée de 11 473

enregistrements audio. Dans ce travail, nous avons effectué deux séries d'expériences: dans un

premier temps, nous avons comparé les performances de nos systèmes selon les caractéristiques

du log-mel spectrogramme en examinant le réseau de neurones convolutifs (CNN) et trois de

ses variants : le réseau de neurones convolutifs récurrents (CRNN), le réseau de neurones

convolutifs récurrents à portes (GCRNN) et le réseau de neurones convolutifs à portes

(GCNN). Nous avons appuyé notre analyse dans ce document par des tests statistiques afin

d’interpréter et de comparer les résultats obtenus. Cela nous a permis de démontrer que nos

systèmes capturent plusieurs types d’évènements sonores. De plus, la performance du réseau

de neurones convolutifs récurrents (CRNN) a surpassé les autres. Deuxièmement, motivé par

le fait que les modèles individuels produisent des prédictions diverses. Nous avons étudié l'effet

de l'apprentissage ensembliste en invoquant une technique connue sous le nom de «stacking».

Notre analyse démontre que cette méthode a une capacité de généralisation considérablement

meilleure que les classifieurs uniques. Plus important encore, cette dernière a fourni une fusion

appropriée de leurs diverses prédictions, ce qui a permis de mieux gérer la diversité des

évènements.

Mot clés : Etiquetage Audio, Apprentissage Profond, Apprentissage automatique,

Apprentissage Ensembliste, Extraction des Caractéristiques, Testes Statistique.

https://fr.wikipedia.org/wiki/R%C3%A9seau_neuronal_convolutif
https://fr.wikipedia.org/wiki/R%C3%A9seau_neuronal_convolutif

 ملخص

تهدف أنظمة وضع العلامات الصوتية العامة إلى إنشاء أنظمة قادرة على التعرف على مجموعة متنوعة من الأصوات

الموسيقية، المركبات، الحيوانات والأصوات الناتجة عن أنشطة بشرية مختلفة... إلخ. الدافع الأساسي للبحث بما فيها الآلات

التطبيقات المحتملة مثل الأمن، الرعاية الصحية)ضعف السمع(، تحسين الأجهزة في مجال فهم تحليل الصوت يكمن في

لرئيسية لهذه الأطروحة هي إجراء دراسات ومقارنات مكثفة بين الذكية ومختلف المجالات المتعلقة بالموسيقى. المساهمة ا

في هذه أنظمة وضع العلامات الصوتية باستخدام قاعدة بيانات تتضمن على تسجيلات صوتية من مجالات متعددة ومختلفة.

الناتجة عن استعما التجارب، حيث قمنا اولا بفحص أداء أنظمتنا نموذج الشبكات لالأطروحة، قمنا بتنفيذ مجموعتين من

، (CRNN)التكرارية عصبونية الالتفافية نماذج ممتددة منها ; نموذج الشبكات ال 3 و (CNN) عميقةعصبونية الالتفافية ال

ال الشبكات الالتفافية نموذج)عصبونية البوابية ال (CRNNGالتكرارية الشبكات الالتفافية ونموذج البوابية عصبونية

(CNNG) استعمال تقنية استخراج خصائص " بالإضافة إلىMel Spectrogram-Log من أجل تقييم أداء هذه الأنظمة ."

دعمنا تحليلاتنا بعدة اختبارات إحصائية. حيث تشير نتائجنا التجريبية أن أنظمتنا تلتقط أحداث صوتية متنوعة. علاوة على

الأخرى. عصبونيةفي الأداء مقارنة بالنماذج الشبكات ال التكرارية عرضت دقة وفعاليةالالتفافية عصبونيةذلك، الشبكات ال

في المجموعة الثانية من التجارب، وبناءا على أن النماذج الفردية حققت نتائج متنوعة. لقد تطرقنا لدراسة تأثير المصنفات

" Stackingهذه الدراسة أن "كشفت نتائج ".Stackingالمتعددة على أداء أنظمة وضع العلامات الصوتية باستخدام تقنية "

 يوفر اندماج ملائم لنتائج النماذج الفردية مما أدى إلى التعامل بشكل أفضل مع الطبيعة المتنوعة للأحداث الصوتية.

المفاتيح: تقنيات استخراج كلمات المتعددة، المصنفات التعلم الآلي، العلامات الصوتية، تعلم عميق، أنظمة وضع

 ائية.خصائص، اختبارات إحص

ACKNOWLEDGMENTS

First and foremost, we would like to take this opportunity to extend our thanks to our

supervisors Hadjer YKHLEF and Farid YKHLEF for creating a stimulating and positive

working environment even in this difficult and challenging times, without their help,

encouragement, support and guidance it would be impossible for us to complete this thesis. A

special thanks also goes to the examiners for the time they spent on carefully reading this thesis

and for their constructive comments.

Moreover, this work could not be completed without the effort and cooperation of our

group. Last but not least we would like to thank our family and friends for their constant source

of support.

Finally, we would like to thank Google for making the GPU computing accessible to

masses for free with Colaboratory.

CONTENTS

PART I: FUNDAMENTALS OF AUDIO TAGGING ... 4

1.1 Introduction ... 5

1.2 Sound Acquisition ... 5

1.3 Time and frequency representation ... 6

1.4 Datasets ... 14

1.5 Fundamentals of classification .. 14

1.6 Evaluation and comparison ... 17

1.7 Feature Selection ... 20

1.8 Statistical Tests ... 20

1.9 Related work ... 23

1.10 Conclusion .. 24

2.1 Introduction ... 25

2.2 Artificial Neural Networks ... 25

2.3 Training Algorithms .. 27

2.4 Network regularization ... 28

2.5 Hyper-parameters of the Network... 29

2.6 Convolutional neural network ... 30

2.7 Recurrent Neural Networks .. 32

2.8 Convolutional Recurrent neural network .. 35

2.9 Gated convolutional neural network and Gated convolutional recurrent

neural network ... 36

2.10 Mixup .. 37

2.11 Ensemble Methods .. 38

2.12 Summary of empirical and theoretical findings on CNN, CRNN, GCNN,

GCRNN ... 38

2.13 Challenges ... 39

2.14 Conclusion .. 40

PART II: EXPERIMENTS ... 41

3.1 Introduction ... 42

3.2 Dataset ... 42

3.3 Tools ... 44

3.4 Design and analysis of Audio Tagging systems ... 45

3.5 Conclusion .. 53

4.1 Introduction ... 54

4.2 First Set of Experiment: The individual models ... 54

4.3 Second Set of Experiment: Ensemble of models .. 66

4.4 Conclusion and summary of experimental findings 73

A.1 Introduction .. 76

A.2 Development tools .. 76

A.3 Developed system ... 77

LIST OF FIGURES

Figure 1.1: System input and output characteristics for Audio Tagging [1]. 6

Figure 1.2: Frequency representation of a raw audio waveform. ... 7

Figure 1.3: Silence removal process. ... 9

Figure 1.4: The processing pipeline of feature extraction [1]. ... 10

Figure 1.5: Hamming window [19]. ... 11

Figure 1.6: Flow of Log-Mel Spectrogram extraction. .. 12

Figure 1.7: Kilo Hertz vs Mel-scale [19]. .. 12

Figure 1.8: System input and output characteristics for single-label and multi-label Audio

Tagging systems. .. 15

Figure 1.9: 4-fold cross validation [34]. ... 17

Figure 1.10: Confusion matrix [49]. .. 18

Figure 2.1: A simple model of a neuron [68]. .. 26

Figure 2.2: A simple architecture of CNN [75]. .. 30

Figure 2.3: Convolution in CNN [76]. ... 31

Figure 2.4: Max Pooling [20]. .. 32

Figure 2.5: Left: Visual illustration of the RNN recurrence relation, Right: The RNN states are

recurrently unfolded over the sequence t-1, t, t+1 [83]. ... 33

Figure 2.6: Number of parameters vs F1-score for CNN, RNN and CRNN [66]. 36

Figure 2.7: GRU structure [12]. ... 37

Figure 2.8: The stacking mechanism. ... 38

Figure 3.1: Distribution of manually-verified and non-verified annotations per category in the

train set. .. 44

Figure 3.2: Screenshot of Colab notebook. .. 44

Figure 3.3: General schemas that highlight the primary steps for conducting the first case study.

 .. 45

Figure 3.4: The silence removal process applied on the file “071e836c.wav”. 46

Figure 3.5: The process of feature extraction. .. 47

Figure 3.6: The Log-Mel Spectrogram (Configuration A) of “fff81f55_0.wav”. 47

Figure 3.7: The Log-Mel Spectrogram (Configuration B) of “fff81f55_0.wav”. 48

Figure 3.8: The training and testing phase of an Audio Tagging system. 49

Figure 3.9: Exhibits a general schema that highlight the primary steps for conducting the second

case study. .. 52

Figure 4.1: Two representations of a “Computer Keyboard” sound file. 58

Figure 4.2: CRNNA confusion matrix. .. 59

Figure 4.3: CRNNB confusion matrix. .. 60

Figure 4.4: Training and validation loss during the learning process of GCNNA. 62

Figure 4.5: Training and validation loss during the learning process of GCNNA. 62

Figure 4.6: GCRNNA confusion matrix. ... 64

Figure 4.8: Comparison of the Stacked8 model with the other stacked models with the

Bonferroni Dunn test. ... 68

Figure 4.1: STACKED8 confusion matrix. .. 69

Figure A.1: The home page. ... 78

Figure A.2: The system page before any prediction process. .. 79

Figure A.3: The upload process. .. 80

Figure A.4: The results page. ... 81

Figure A.5: The about page. ... 83

Figure A.6: The use case page. .. 84

Figure A.7 : The blogs page. .. 85

LIST OF TABLES

Table 1.1: Various audio analysis datasets. ... 14

Table 1.2: Various audio analysis classification approaches. .. 24

Table 3.1: Log-Mel Spectrogram setup. ... 47

Table 3.2: Description of the neural network architectures. .. 51

Table 4.1: Summary of the first set of experiment models. ... 54

Table 4.2: F1-score (%) results of the eight individual models. .. 55

Table 4.3: Overall MAP@3 results (%) of the eight individual models. 56

Table 4.4: Summary of the tests statistics. ... 56

Table 4.5: Summary of the Wilcoxon signed-ranks statistics. ... 57

Table 4.6: Summary of Wilcoxon. ... 61

Table 4.7: Number of trainable parameters and training time for each system. 63

Table 4.8: F1-score (%) results of the eight individual models vs STACKED8 model. 67

Table 4.9: The base learners of the 4 stacked models. ... 70

Table 4.10: F1-score (%) results of all the stacked models.. 71

Table 4.11: Pairwise comparisons of F1-score results based on Wilcoxon signed-ranks test. 72

Table A.1: Development tools.. 76

NOTATION AND ACRONYMS

BPPTT : Backpropagation Through Time

BN : Batch Normalization

CNN : Convolutional Neural Network

CRNN : Convolutional Recurrent Neural Network

DCT : Discrete Cosine Transform

DFT : Discrete Fourier Transform

FFT : Fast Fourier Transform

FN : False Negative

FP : False Positive

GAP : Global Average Pooling

GCNN : Gated Convolutional Neural Network

GCRNN : Gated Convolutional Recurrent Neural Network

GLU : Gated Linear Units

GRU : Gated Recurrent Units

LSTM : Long Short Term Memory Network

MAP : Mean Average Precision

MFCC : Mel Frequency Cepstral Coefficients

RNN : Recurrent Neural Network

TP : True Positive

TN : True Negative

VGG : Visual Geometry Group

INTRODUCTION

1

INTRODUCTION

1. Context and problem statement

Nowadays, machines are able to efficiently handle a wide variety of multimedia content

including images, audios, videos etc. As the amount of data is constantly increasing, the analysis

and the recognition of certain patterns out of it has become of paramount importance. Sound

analysis [1] is a subfield concerned about execution of such tasks for audio signals such as

speech, music, acoustic events etc.

We can classify sound analysis tasks into 3 categories: Acoustic Scene Classification,

Audio Tagging and Event Detection. In scene classification, the goal is to categorize an audio

recording into one of a set of (predefined) categories; for instance: home, street, and office.

Similarly, audio tagging assigns a given audio recording with one or several pre-defined tags.

The motivation behind audio tagging systems is to foster research towards more general

machine listening systems capable of recognizing and discerning a wide range of acoustic

events and audio scenes. Furthermore, there is a large amount of user-generated audio content

that is available on the web, which can be a resource of great potential for sound recognition

related research. Audio tagging has many applications such as audio information retrieval [2],

audio classification [3], acoustic scene recognition [4], industry sound [5] and music tagging

[6]. Finally, event detection locates in time the occurrences of a specific type of sound or

sounds, either by finding each instance when the sound(s) happen or by finding all the temporal

positions when the sound(s) are active. Here, the term sound event refers to a specific sound

produced by a distinct physical sound source, such as a car passing by, a bird signing, or a

doorbell. By contrast, the term of sound scene refers to the entirety of sound that is formed

when sounds from various sources, typically from real scenarios, combine to form a mixture.

The process of Audio Tagging consists of two main stages (Figure 1): Feature

Engineering and Machine Learning. First, the main role of sound pre-processing step is to

enhance certain characteristics of the incoming audio file in order to optimize audio analysis

performance in the later phases of the analysis system. Then, feature extraction is applied on

the resulting preprocessed data; here, we divide the audio signal into equal frames in order to

perform feature extraction and obtain a feature vector per frame. Each vector of data is

associated to its corresponding event label. The most common types of features used in the

literature include: Mel-frequency cepstral coefficients [7], Log Mel band Energy [8] and

INTRODUCTION

2

spectral centroid. Next, the classification model takes the feature vector of each frame and

outputs the event presence predictions for each sound event class. It worth underscoring a

classifier or learner enables us to predict the events labels, known as class labels, present in a

sound recording. Many classification algorithms have been introduced in the literature, such as

Deep Neural Networks [9], Gaussian Mixture Models (GMMs) [10], and Support Vector

Machine [11].

Figure 1: The mechanism of audio tagging system.

2. Contributions

With the increasing attention geared towards multimedia content, the research community

has recently become more motivated to perform extensive studies and comparisons between

sound analysis systems. The design and evaluation of such systems is actually a more

complicated task, and should be conducted properly in order to ensure significance of results

(i.e. avoid deriving conclusions affected by chance). To date, the problem of Audio Tagging

has been addressed by the research community using various methodologies. Most of them have

focused on extracting relevant features and finding suitable classifiers to improve the overall

performance. Nevertheless, only a few attempts have reviewed and studied the proper manner

required for the design and analysis of Audio Tagging systems [12] [13] [14]. Furthermore,

several seminar papers have been published recently; most of them have invoked recent and

hybrid deep learning architecture, for instance: Convolutional Recurrent Neural Network

and Gated Convolutional Recurrent Neural Network [15]. Therefore, an adequate review of

the newly proposed techniques has become necessary. Additionally, extensive comparisons

among these methods should be conducted in order to acquire the best practices for addressing

the Audio Tagging task. In what follows, we summarize our main contributions:

1. We have carried out extensive experiments on the FSDKaggle2018 dataset [16]. This

dataset presents several challenges. It contains user-generated audio clips retrieved from

Freesound [17], which are very diverse in terms of acoustic content, recording

techniques, clip duration, etc. Furthermore, these audio clips could feature incomplete

INTRODUCTION

3

and inconsistent user-provided metadata. Some audio clips were manually labeled,

while a smaller set of clips were automatically categorized on the basis of their user-

provided metadata. Therefore, the dataset is unbalanced and contains a large fraction of

reliable annotations that can be trusted. It also contains an amount of non-verified

annotations that could include a small amount of label noise.

2. To cope with the above challenges, we have designed our Audio Tagging systems using

well-known deep neural network architectures, which have been successfully used in

audio-related tasks [15] [3]. Specifically, we have studied Convolutional Neural

Networks (CNN), Convolutional Recurrent Neural Network (CRNN), Gated

Convolutional Recurrent Neural Network (GCRNN) and Gated Convolutional Neural

Networks (GCNN). In addition, we have supported our analysis and discussion with

numerous statistical tests.

3. We have invoked Stacking ensemble learning technique by taking the noisy label into

account. The aim of Stacking is to combine the prediction result from different models

in order to improve the accuracy and robustness of the system. Furthermore, to address

the effect of the non-verified examples on the performance of the system, we have used

a combination re-weight strategy along with stacking to handle the potential noisy label

of the non-verified annotations in the dataset.

4. We have reviewed recent Audio Tagging schemes and discussed the major steps

involved in the proper design and evaluation of such systems.

3. Thesis structure

This thesis consists of two primary parts. The first part covers the state-of-the-art

notions that are necessary for understanding the ideas developed in this thesis. Chapter 1 is

also divided into two parts; the first one gives an overview of acoustic features used to represent

audio signals. Specifically, we present the different feature extraction techniques that are

frequently used in literature as for the second part of this chapter we review some relevant

classification concepts, providing a brief description of the supervised classifiers, evaluation

metrics and statistical tests invoked in this work. In Chapter 2, we describe the architecture of

some basic and hybrid deep learners. The second half of this thesis describes the methodology

that we have followed for comparing Audio Tagging systems. We provide in Chapter 3

detailed description of the experimental setup, including preprocessing, feature extraction and

parameters setting. In Chapter 4, we present the obtained results through performance tables

and plots. Finally, we conclude by summarizing the contributions of this thesis, the lines of

limitations and future work.

4

PART I: FUNDAMENTALS OF AUDIO

TAGGING

In this part we explain the notions that are necessary for understanding the ideas

developed in this thesis. It is composed of two chapters. Chapter 1 is divided into two main

parts the first one gives an overview of acoustic features used to represent audio signals.

Specifically, we describe data required for the development of Audio Tagging systems and

highlight the importance of feature engineering to transform the signal into a suitable

representation. Furthermore, we present the different feature extraction techniques that are

frequently used in literature as for the second part of this chapter we review some relevant

concepts of classification providing a brief description of the fundamentals of classification,

feature selection techniques, evaluation metrics and statistical tests invoked in this work. In

Chapter 2, we present the main deep neural network used in our work. In addition, we provide

a brief description of a data augmentation technique and ensemble method. Moreover, we

discuss some empirical and theoretical findings on the differences of the architectures presented

in this chapter. Finally, we have discussed the challenges related to Audio Tagging research.

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

5

 GENERALITIES ON AUDIO

TAGGING

1.1 Introduction

Audio Tagging is about predicting the types of sound events occurring in audio clips. It

is comprised of two main stages: (1) Feature Engineering, (2) Machine Learning. Feature

engineering consists of transforming the signal into a representation which maximizes the sound

recognition performance of the analysis system. The acoustic features provide a numerical

representation of the signal content relevant for machine learning, characterizing the signal with

values which have connection to its physical properties, for example, signal energy, its

distribution in frequency, and change over time. On the other hand, machine learning is an

application of artificial intelligence that provides systems the ability to automatically learn and

improve from data. The result of the learning process is known as machine learning model. This

latter takes as an input a set of features extracted from a sound event and assigns a label to it.

This chapter is divided into two primary parts: In the first part, we begin by introducing

the process of sound acquisition in Section 1.2. Then, in Section 1.3, we highlight the

importance of feature engineering, we briefly discuss time and frequency representations and

explain the different feature extraction techniques widely employed in the literature and some

preprocessing techniques. Finally, in Section 1.4 we shortly describe some existing datasets for

sound analysis. In the second half of this chapter, we first provide a short introduction to the

relevant concepts of classification in Section 1.5. Then, in Section 1.6 we present model

evaluation techniques. In Sections 1.7 and 1.8 we explain feature selection and statistical tests.

Finally, in Sections 1.9 and 1.10, we conclude this chapter by reviewing related work on Audio

Tagging research and summarizing the main concepts that we have learned.

PART I: FEATURE ENGINEERING

1.2 Sound Acquisition

Data acquisition is an important stage of developing an Audio Tagging system, as its

performance highly depends on the data in the process [1]. Essentially, the aim is to collect as

realistic as possible acoustic signals in conditions which are as close as possible to the intended

target application. The metadata should include a ground truth information which is often

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

6

manually annotated during the data collection; metadata can be defined as “data about data”. In

the case of audio, it usually refers to textual information that is used to describe and to index an

audio file or a segment.

Collected data should also have sufficient number of representative examples of all sound

classes for increasing the generalization ability of the acoustic models. The audio must

represent the modeled phenomena such that the models learned from it will represent the

variability in the acoustic properties expected in the application. The presence of all categories

relevant to the Audio Tagging task (Figure1.1) will provide the required coverage, making a

dataset suitable for the given task. These are the main properties that a well-built dataset should

have:

• Coverage: The dataset should contain as many different categories as are relevant to

the task.

• Variability: For each category, there should be examples with variable conditions of

generation, recording, etc.

• Size: For each category, there should be sufficiently many examples. Otherwise, the

training of a system results in a weak model.

Figure 1.1: System input and output characteristics for Audio Tagging [1].

1.3 Time and frequency representation

 Frequency

Frequency is the measurement of the number of times that a repeated event occurs per

unit of time. The frequency of wave-like patterns including sound expresses the number of

cycles of the repetitive waveform per second. For humans, hearing is limited to frequencies

between about 20 Hz and 20 000 Hz [18].

 Fourier transform

Signal is defined as any physical quantity that varies with time. It conveys information in

its patterns of variation. The manipulation of this information involves the acquisition, storage,

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

7

transmission, and transformation. In order to find the different frequencies that are present in

a signal we apply the Fourier transform [19].

The Fourier analysis is the main mathematical tool which allows the passage from the

temporal representation that shows the way the overall sound amplitude changes over time

to the frequency representation that shows how much of the signal lies within each given

frequency band over a range of frequencies. It is used to decompose a signal into sinusoidal

elements. Each sinusoid represents a frequency, which makes it possible to obtain information

on the frequency distribution rather than a temporal distribution. The resulting sinusoids of

Fourier Transform on a signal represented as a function of time is a complex value, whose

imaginary part represents the phase off-set of the pure sinusoid and its absolute value represents

value of the corresponding frequency component.

The exact form of the Fourier transform used to determine the spectrum from the discrete

time signals is known as the Discrete Fourier Transform (DFT).

The mathematical equation of the DFT is:

where 𝐾 is a set of possible frequencies and 𝑁 the total number of samples in a given sound

signal, furthermore, 𝐾𝑖 ∈ 𝐾 denotes the 𝑖𝑡ℎ frequency and 𝑛𝑖 ∈ 𝑁 represents the 𝑖𝑡ℎ sample

of the signal. We define 𝑥(𝑘𝑖) as the amount of the 𝑖𝑡ℎ frequency in the signal and 𝑥(𝑛𝑖) as the

amplitude of the signal at the 𝑖𝑡ℎ sample.

Here are two plots that show the effect of the FFT function applied to a simple raw audio

waveform, it shows the frequency domain representation of a time domain signal (Figure 1.2).

Figure 1.2: Frequency representation of a raw audio waveform.

X(k𝑖) = ∑ 𝑥(𝑛𝑖)𝑒−2𝑗𝜋𝑖
𝑘𝑛𝑖

𝑁

𝑁−1

𝑛=0

 , (1.1)

(a) Raw audio waveform (b) Frequency domain representation

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

8

It is worth mentioning that the DFT algorithm has a complexity of 𝑂(𝑁2), whereas, the

Fast Fourier Transform (FFT) implementation has a quasi-logarithmic complexity

𝑂(𝑁 𝑙𝑜𝑔2 𝑁) [19]. The savings in terms of computation are enormous, it is for this reason that

FFT is commonly used in practice.

 Audio Processing

In order to develop a robust and appropriate signal representation, audio is prepared and

processed for machine learning algorithms in the audio processing phase of the overall system

design. This phase consists of two main stages preprocessing, and acoustic feature

extraction.

A Preprocessing

Pre-processing is applied to the audio signal before acoustic feature extraction if needed.

The main role of this stage is to enhance certain characteristics of the incoming signal in order

to optimize audio analysis performance in the later phases of the analysis system. This is

achieved by diminishing the effects of noise [20], emphasizing the target sounds in the signal

[1] or segmenting the original audio signal into audio and silent events to be used in feature

extraction [20].

Silence removal

Silence removal is used to eliminate the silent portion of the audio signal x. The process

of Silence removal consists of dividing an input signal into small segments (frames) and

thresholding the root mean square (RMS) energy of those frames. The total length of each

individual segment is equal to product of time duration and sampling frequency of segment

(Fs).

Segmentlength = Segmentduration ∗ Fs (1.2)

The RMS value of each segment is calculated and compared with threshold value 𝑅𝑡ℎ.

RMS value of each individual segment can be calculated from equation (1.3)

RMSsegment = √𝑚𝑒𝑎𝑛(𝑠𝑒𝑔𝑚𝑒𝑛𝑡2) (1.3)

If RMSsegment of individual segment is less than 𝑅𝑡ℎ then the segment is removed. The

function of silence removal block is given in equation (1.4).

𝑓(𝑥) = {
 RMSsegment ≤ 𝑅𝑡ℎ , 𝑠𝑖𝑙𝑒𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

 RMSsegment > 𝑅𝑡ℎ , 𝑛𝑜𝑛 𝑠𝑖𝑙𝑒𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
}

(1.4)

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

9

Figure 1.3 shows the silence removal process on an audio file, which is 13s in length. The

non-silent sections that are extracted encased in a black rectangle.

Figure 1.3: Silence removal process.

B Feature extraction

Feature extraction is an important signal processing task. It refers to the process of

computing a numerical representation of the acoustical signal. The representation can be used

to characterize the audio segment with values which have connection to its physical properties;

for example, signal energy, its distribution in frequency, and change over time t. The role

of feature extraction is to transform the signal into a representation which maximizes the sound

recognition performance of the analysis system. It also requires less amount of memory and

computational power than direct use of audio signal in the analysis [1].

The process of feature extraction is similar for many types of acoustic features used in

analysis. It consists of frame blocking, windowing, spectrum calculation, and other computation

depending on which type of feature extraction is being used. Figure 1.4 depicts the processing

pipeline for feature extraction.

Traditional methods for spectral evaluation are reliable in the case of a stationary signal

(i.e. a signal whose statistical characteristics are invariant with respect to time). However,

audio signals are most of the time non-stationary throughout the whole audio recording, but

stationary within short time frames [1]. For this reason, we use frame blocking and windowing

to be able to use the audio signal and interpret its characteristics in a proper manner.

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

10

Figure 1.4: The processing pipeline of feature extraction [1].

Frame blocking consists of decomposing the audio signal into a series of overlapping

frames. These frames have to be short enough so that it can reasonably be assumed to be

stationary [1]. The selection of frame length is dependent on the machine hearing task at hand

it usually varies between 20 and 60 ms [1].

Windowing is often applied after framing [1] in order to avoid the discontinuities at the

borders of the frame which would cause distortions in the spectrum (corrupt the frequency

spectrum estimation). The windowing process consists of multiplying each frame with a

window function; hence, attenuating the signal near the edges and emphasizing the central

portion. Hamming, Hann and Blackman functions are often used for windowing [21].

Hamming window (raised cosine window): the role of the hamming window is to

minimize the spectral distortion by using the window to taper the signal to zero at the beginning

and end of each frame, it is defined as:

𝑤(𝑚𝑖) = {
0.54 − 0.46 cos (

2𝜋𝑚𝑖

𝑀
) , 0 ≤ 𝑚𝑖 ≤ 𝑀

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
 ,

(1.4)

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

11

where 𝑀 is the total number of samples in each frame and 𝑚𝑖 the 𝑖𝑡ℎ sample of the frame. The

resulting value 𝑤(𝑚𝑖) represents the windowed value.

The Figure below shows the shape of this function:

Figure 1.5: Hamming window [22].

Acoustic features can be divided into 3 main categories: temporal features, spectral

features and perceptual features (prosodic features). In what follows, we describe some well-

known features from each category.

SPECTRAL FEATURES

LOG-MEL SPECTROGRAM represents an acoustic time-frequency representation of a sound. In

the calculation of Log-Mel Spectrogram, firstly Fast Fourier Transform is calculated over pre-

processed audio signal.

The filter bank is used to map its spectral amplitude to the Mel-scale of the perceptual

excitation, and the mel filter bank converts the spectrum to the mel spectrum. Mel-scale is based

on the perception of human hearing frequencies [23]. Thus, the Mel-scale is used to measure

the tone of a subjective frequency or pitch.

The filter bank energy is obtained after mel filtering. Finally, the logarithmic conversion

of the mel energy is calculated and then the Log Mel Spectrum is generated from the filter bank.

The flow of Log-Mel spectrogram extraction is shown in Figure 1.6.

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

12

Figure 1.6: Flow of Log-Mel Spectrogram extraction.

MEL-SCALE as shown in Figure 1.7 is the psycho acoustic representation of frequency in linear

scale processing. Stevens, Volkmann, and Newman in 1937 proposed a unit of pitch called

’Mel’ [24] [25]. ’Mel’ is defined as the perceptual scale of pitches judged by listeners to be

equal distance from each other. During the series of experiments, it was observed that when the

frequency of the signal is less than 1000Hz, human auditory system perceives signals on a linear

scale and for the frequency, over 1000Hz it was recognized on a logarithmic scale. The essence

of Mel-scale is to bring this feature into perspective.

Converting frequency domain to mels domain is done using formula:

𝑚𝑒𝑙 = 2595 log (1 +
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

700
)

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 700(10𝑚𝑒𝑙/2595 − 1)

(1.5)

Figure 1.7: Kilo Hertz vs Mel-scale [22].

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

13

MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC) is a type of cepstral representation

of audio signals [26]. The steps involved for their extraction are similar to the Log-Mel

Spectrograms steps but with an additional step that consists of computing the Discrete Cosine

Transform (DCT).

DCT is a mathematical technique applied to the Log-Mel Spectrogram resulting in Mel

Frequency Cepstral Coefficients. The operation of DCT is similar to DFT, and the critical

difference is unlike DFT, DCT consists of only cosine terms which are real.

PERCEPTUAL FEATURES

Prosodic features, or perceptual frequency features, indicate information with semantic

meaning in the context of human listeners. Therefore, they are organized according to

semantically meaningful aspects of sounds including pitch, fundamental frequency, loudness,

intensity and sharpness.

• Loudness is a psychoacoustic property of the sound. It represents our human perception

of how loud or soft sounds of various intensities are. The loudness of a sound is

subjective, it varies from person to person and is measured by sone and phon units [27].

• Pitch is a perceptual property of sounds that allows their ordering on a frequency-related

scale. More commonly, pitch is the quality that makes it possible to judge sounds as

«higher» and «lower» in the sense associated with sound recording.

• Sharpness can be interpreted as a spectral centroid based on psychoacoustic principle.

It is commonly estimated as a weighted centroid of specific loudness [28].

TEMPORAL FEATURES

Temporal features are directly extracted from the audio raw data without any

transformation. Such features normally suggest a simple tactic to investigate audio signals.

Although, it is generally necessary to combine them with spectral features. Representative

instances of temporal features are: zero-crossing rate, amplitude-based features, and power-

based features [27].

OTHER APPROACHES

Alternative cepstral decompositions can be obtained similarly to MFCC from other

frequency-domain representations. This had led to the introduction of features such as the

Linear Prediction Cepstral Coefficients (LPCC) based on LPC coefficients [29], the

Gammatone Feature Cepstral Coefficients (GFCC) [30] or Constant-Q Cepstral Coefficients

(CQCC) [31]. None of these features are as popular as the MFCC but GFCC. For example, have

been applied to sound scene analysis [32].

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

14

1.4 Datasets

Recently, general-purpose sound event recognizers have gained attention [33]. In this

case, a wide range of sound events are considered, not tied to a specific domain. However,

the majority of available datasets are domain specific and are usually small in size [33]. In

addition, the existing general-purpose datasets often contain many unlabeled data sounds,

which can make the learning process a challenging task.

Various data resources have been gathered for the sound analysis task; some of these

are provided in Table 1.1.

Table 1.1: Various audio analysis datasets.

Dataset name Classes Examples

Clip

length

Dataset

duration
Ref

D
o
m

a
in

 s
p

ec
if

ic

CHIME-HOME 7 (balanced) 6137 4s ≈6.82h [34]

GTZAN (2002) 10 (balanced) 1000 30s 8.33h [35]

ESC-50 50 (balanced) 2 000 5s 2.78h [36]

TUT ACOUSTIC

SCENES 2016
15 (balanced) 1560 30s 13h [37]

URBANSOUND8K 10 (balanced) 8732 ≤4s 8.75h [38]

G
en

er
a
l

p
u

rp
o
se

FSDKAGGLE2018
41

(unbalanced)
11073 ≤ 30s 18h [16]

AUDIO SET 2017
525

(unbalanced)
 ≈2.1M 10s ≈5833h [33]

FSDKAGGLE2019
80

(unbalanced)
29266 ≤ 30s ≈103.4h [39]

PART II: MACHINE LEARNING FOR AUDIO TAGGING

1.5 Fundamentals of classification

Classification belongs to the category of Supervised Learning, where the input data is

labeled. It is the process of predicting the class labels of a given data point (also called sample

or instance), the data point is characterized by a feature vector 𝑥𝜖𝑋 and by its class label 𝑦𝜖𝑌

[40].The classification algorithms take in a set of 𝑚 data samples of input-output association

Γ{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … … , (𝑥𝑚, 𝑦𝑚)}, where 𝑥𝑖 𝜖𝑋 and 𝑦𝑖𝜖𝑌, and learns a mapping function f

from a feature vector 𝑥𝜖𝑋 ,some parameters 𝜏 and produces an output �̂�.

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

15

Furthermore, in Supervised Learning we can distinguish single-label classification and

multi-label classification.

• Single-label classification when the classifier learns from a set of samples that are

associated with a single label. It can be further divided into two categories based on the

number of classes in a set of labels: binary and multi-class classification.

• Multi-label classification is different from the traditional single label classification. It

refers to a task of associating each learning example with multiple labels the output is

a vector of N labels. The multi label classifier associates an instance with one of

2𝑁 possible output vectors. A common approach to multi label classification is to

preform problem transformation, whereby a multi label problem is transformed into

one or more single label (i.e. binary or multi-class) problems and the single label

predictions of the single-label classifiers are transformed into multi label predictions.

Although this method is easy to implement, it can be computationally inefficient when

the number of classes is large [41]. Instead of this approach several studies [21], [42]

has explored deep learning method (more details can be found in Chapter 2) to address

the multi -label classification problem. Both methods are illustrated in Figure 1.8.

Figure 1.8: System input and output characteristics for single-label and multi-label Audio Tagging systems [28].

Usually a classifier is seen as a two-step algorithm: training stage and testing stage. The

first stage whereby the model learns a hypothesis from the training data. Learning is the process

of optimizing the loss function that calculates the difference between the actual and the

�̂� = 𝑓(𝑥, 𝜏) (1.6)

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

16

predicted outputs. The model is updated according to a learning algorithm so that the loss value

is minimized and to increase the generalization ability of the model (i.e. the ability to act

properly on unseen samples). The widely used optimization approach for supervised learning,

namely gradient descent (more detail in Section 2.3.2). In the second stage, the resulting model

is used to predict the class label of unseen examples drawn from the testing set. Numerous

learning models have been introduced by the machine learning community, such as Neural

Networks [21], Adaboost [43] and Support Vector Machine [9].

Audio tagging aims to assign one or a set of tags to a clip. In machine learning

terminology tagging would be equivalent to multi-label classification [29]. However, in the

scope of this thesis we will focus on building a single-tag Audio Tagging system, and hence it

is considered to be multi-class classification problem. We will focus on neural networks with

deep architecture due to their effectiveness when dealing with the Audio Tagging problem.

Chapter 2 provides an extended treatment on some widely used deep neural networks

architectures.

It is widely acknowledged when a model fits the training data perfectly, it usually leads

to poor generalization ability [44]. This problem is known as overfitting. To cope with this

shortcoming, data augmentation is applied with deep neural network architectures [28]. Mix-

up technique has been extensively invoked for building sound analysis systems, particularly

Audio Tagging [45], [46], [47]. More details can be found in Section 2.10.

We measure the quality of the predictions in multiple ways with the most common

being the error rate (i.e. the ratio between the number of misclassified samples to the total

number of samples). Model evaluation provides metrics for measuring the performance of

learners. In addition, several authors have introduced statistical tests for performance

comparison such as “Friedman Test”, “Nemenyi Test” and “Wilcoxon signed Rank Test” [48].

 When applying a learning algorithm there is no assurance that the chosen parameters τ

yields the best performance [44]. In addition, there is no learning algorithm that produces

the most accurate classifier on a given problem [44]. The rational approach is to try many

learners and select the one with the best performance on a different sample set.

Ensemble learning adopts an alternative strategy to address Model Selection by

amalgamating multiple learners [49]. The combination can also reduce overfitting, while

providing sufficient expressive power to learn complex hypothesis [49]. We use in our

experiments a popular technique called stacking (more details are given in Section 2.11).

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

17

1.6 Evaluation and comparison

 Cross Validation

Cross validation is a resampling technique used to estimate the test error of models with

limited data points [44]. It is commonly used in machine learning to compare and select a model

based on the model evaluation scores. Several resampling techniques have been used such as

k-fold cross validation and leave one out [50].

k-fold cross validation refers to the task of taking the available data and partitioning it

randomly into k subsets or folds, of approximately equal size. Then, the k-1 of the folds are

used to train a set of models that are then evaluated on the remaining fold. This Procedure is

repeated for all the K times. Figure 1.9 illustrates a 4-cross validation technique.

Figure 1.9: 4-fold cross validation [37].

The performance scores from the K-fold cross validation are then averaged. The choice

of k is generally preferred to be 5 or 10, but there is no formal rule and it could take any value.

The satisfaction of the data is recommended; this means that each fold has to have a good

representation of the entire dataset. Thus, ensuring that the data partitioning is balanced, with

all the classes present in all the folds, with approximately the same amount of data for each

class [28].

 Evaluation Metrics

There exists numerous perfomance metrics in the machine learning literature [51]. The

choice of the right metrics in one of the curcial steps in defining the solution to the problem.

Furthermore, when dealing with a single-tag Audio Tagging task which is considered to be a

multi-class classification problem. The evaluation involves measuring the performance of the

proposed methods based on the accumulated values of the intermediate statistics, denoted by

TP, TN, FP, and FN the sums of the true positives, true negatives, false positives, and false

negatives accumulated throughout the test data, resulting in overall metrics calculated

accordingly as instance-based or class-based. In instance based (i.e. micro-averaging),

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

18

intermediate statistics are accumulated over the entire data. Overall performance is calculated

based on these, resulting in metrics with values that are most strongly affected by the

performance on the most common classes in the considered problem. Whereas, in class-based

(i.e. macro-averaging), intermediate statistics are accumulated separately for each category

(scene or event class). Overall performance is then calculated as the average of class-wise

performance, resulting in values that emphasize the system behavior on the smaller classes in

the considered problem [28].

A Confusion matrix

Confusion matrix (Figure 1.10) is a performance measurement for machine learning

classification. It is a matrix of 𝑛 × 𝑛 where 𝑛 represents the number of classes. The row

dimension contains the actual values, whereas, the column dimension consists of the predicted

label. This Figure provides a representation of the confusion matrix with 𝑛 = 2.

• True Positives (TP) are the cases where the actual class of the data point is 1 and the

predicted also 1 (Positive).

• True Negatives (TN) are the cases where the actual class of the data point is 0, while

the predicted is 0 (Negative).

• False Positive (FP) are the cases where the actual class of the data point is 0, while the

predicted is 1 (Positive).

• False Negative (FN) are the cases where the actual class of the data point is 1, while

the predicted is 0 (Negative).

The metrics that can be computed from the Confusion matrix includes precision, recall, F1-

score, the mean average precision and the classification accuracy.

Figure 1.10: Confusion matrix [52].

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

19

B Accuracy

Accuracy is the ratio between the number of correct predictions made by the model and

the total number of examples. Accuracy can be computed using the previous metrics (TP, TN,

FP, FN) as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(1.7)

C Precision and Recall

Precision is the Fraction of predicted positives which are actually positive. Recall is the

fraction of actual positives which are correctly predicted:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(1.8)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(1.9)

D F1-score

F1-score is the average between precision and recall. It measures how many examples the

model classifies correctly. The greater the F1-score is, the better the performance of the model.

It is given by the equation below.

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(1.10)

E The mean average precision (MAP)

Map is based on larger set of measurements. It is typically more stable (less noisy) than

point measures such as F1-score. MAP is the mean of all the average precision across all the

class labels.

𝑀𝐴𝑃@𝑥 =
1

𝑁
∑ ∑ 𝑃(𝑖)min {𝐾,𝑥}

𝑖=1
𝑁
𝑛=1 ,

(1.11)

where 𝑁 is the number of data samples, 𝐾 is the number of classes, whereas we are calculating

the mean average precision at the top 𝑥 of labels. 𝑃(𝑖) is the precision at a cutoff 𝑖.

F Averaging single-label scores

When multiple class labels are to be retrieved, averaging the evaluation measures can

give a view on the general results. It can be obtained through two averaging operations depicted

in the equations below.

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

20

Let 𝑘 be the number of possible class labels and 𝐵(𝑡𝑝, tn, fp, fn) represent some specific

binary evaluation measure 𝐵 ∈ {𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, F1 − score} that is

calculated based on the number of the true positives (𝑡𝑝𝑖), true negatives (𝑡𝑛𝑖), false positives

(𝑓𝑝𝑖), and false negatives (𝑓𝑛𝑖) after a binary evaluation for a label 𝑖.

Macro-averaging measure

𝐵𝑚𝑎𝑐𝑟𝑜 =
1

𝑘
∑ 𝐵(𝑡𝑝𝑖, 𝑓𝑝𝑖 , 𝑡𝑛𝑖 , 𝑓𝑛𝑖)

𝑘

𝑖=1

 (1.12)

Micro-averaging measure

𝐵𝑚𝑖𝑐𝑟𝑜 = 𝐵(∑ 𝑡𝑝𝑖

𝑘

𝑖=1

, ∑ 𝑓𝑝𝑖

𝑘

𝑖=1

, ∑ 𝑡𝑛𝑖

𝑘

𝑖=1

, ∑ 𝑓𝑛𝑖

𝑘

𝑖=1

) (1.13)

1.7 Feature Selection

Feature Selection is the process of determining what inputs should be presented to a

classification algorithm. It aims to reduce the number of features by eliminating the redundant

and irrelevant features from the feature set [53]. In addition, shrinking the feature set improves

the generalization ability of the system and reduces the potential presence of overfitting [54].

There exist three main feature selection paradigms: filters, which select features based upon a

statistical measure of correlation; wrappers, which select features based upon the performance

of classification algorithms; and embedded methods, a wide group of algorithms which select

features as part of the classification process [53]. In the scope of this thesis, we have focused

on the embedded methods, we selected Neural Network models that contain built-in feature

selection. Meaning that the model will only include features that help maximize the

generalization ability of the system. In these cases, the model can pick and choose which

representation of the data is best by integrating feature selection in network engineering. In

Convolutional Neural Networks, features are dynamically selected by tuning the weights

associated with the kernels (filters) [55]. In the Gated Convolutional Neural Network, the

gating mechanism allows the model to select which features are relevant for predicting the

class label [56].

1.8 Statistical Tests

Recently, the machine learning community has become increasingly aware of the need

for statistical validation of the published results [57]. Various researchers adopt different

statistical and common-sense techniques to decide whether the differences between the

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

21

algorithms are real or random. In this section we shall examine several statistical tests used in

our thesis.

 Friedman Test

The Friedman test is a non-parametric statistical test used to test for differences between

several algorithms over the class labels (i.e. Sound events or tag). It first ranks the techniques

for each class label separately according to the chosen evaluation metric (i.e. accuracy, F1-

score). The best performing technique gets the rank 1, the second best gets rank 2, etc. In case

of ties, average ranks are assigned. Let 𝑟𝑖
𝑗
 be the rank attributed the 𝑗𝑡ℎ system on the 𝑖𝑡ℎ class

label; and let 𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗𝑁
𝑖=1 denote the average rank of system 𝑗𝜖{1, … , 𝑡} over 𝑁 class labels.

Under the null hypothesis, it is assumed that all algorithms are equivalent and so their ranks

their average rank should be equal. The Friedman statistic is distributed according 𝑋𝐹
2 with 𝑡 −

1 degree of freedom for sufficiently large 𝑁 and 𝑡 (usually 𝑁 > 10 𝑎𝑛𝑑 𝑡 > 5). It is given by:

𝑋𝐹
2 =

12𝑁

𝑡(𝑡 + 1)
 [∑ 𝑅𝑗

2 −
𝑡(𝑡 + 1)2

4
𝑗

]

(1.14)

 In their study Iman and Davenport reported that 𝑋𝐹
2 is conservative and derived a new

statistic 𝐹𝐹 which is distributed to the F-distribution with (𝑡 − 1) and (𝑡 − 1)(𝑁 − 1) degrees

of freedom.

𝐹𝐹 =
(𝑁 − 1)𝑋𝐹

2

𝑁(𝑡 − 1) − 𝑋𝐹
2 .

(1.15)

If the null-hypothesis is rejected, we can proceed with a post-hoc test such as the Nemenyi

test or the Bonferroni-Dunn test in order to precisely identify the differences between the

algorithms.

 Friedman Aligned test

The Friedman Aligned Test is a modified version of the Friedman test [57]. The Friedman

test offers intra-set comparability only, however, in some cases comparability among class

labels is required. The Friedman Aligned test employs the method of aligned ranks, where a

value of location is computed as the average performance achieved by all algorithms in each

class label. Then, it calculates the performance obtained by an algorithm and the value of

location. This step is repeated for algorithms and class labels. The resulting differences are

called aligned observations, which are then ranked from 1 to 𝑘𝑛 relative to each other. The

ranks assigned to the aligned observations are called aligned ranks. The Friedman Aligned

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

22

Ranks test statistic 𝑇 is compared for significance with a chi-square distribution for 𝑡 − 1

degrees of freedom.

𝑇 =
(𝑡 − 1)[∑ 𝑅𝑗

2̂𝑡
𝑗=1 − (𝑡𝑛2 4⁄)(𝑡𝑛 + 1)2]

{[𝑡𝑛(𝑡𝑛 + 1)(2𝑡𝑛 + 1)] 6⁄ } − (1
𝑡⁄) ∑ 𝑅𝑖

2̂𝑛
𝑖=0

 , (1.16)

where 𝑅�̂� is equal to the rank total of the 𝑖𝑡ℎ class label and 𝑅�̂� is the rank total of the

𝑗𝑡ℎalgorithm. If the null-hypothesis is rejected, we can proceed with a post-hoc test such as the

Nemenyi test or the Bonferroni-Dunn test.

 Quade test

The Quade test offers an improvement for some specific cases where the data samples are

more difficult or the differences registered between various algorithms over the data samples is

larger [57]. The Quade test conducts a weighted ranking analysis over the class labels. The

procedures start by finding the ranks 𝑟𝑖
𝑗
 in the same way as the Friedman test does. The next

step requires the original values of performance of the classifiers 𝑥𝑖𝑗. Ranks are assigned to the

class labels according to the size of the sample range in each class label. The Quade statistic is

then calculated, which is distributed according to the F-distribution with 𝑡 − 1 and (𝑡 − 1)(𝑛 −

1) degrees of freedom. If the null-hypothesis is rejected, we can proceed with a post-hoc test.

A detailed description of the mathematical process of the Quade test can be found in [57].

 Nemenyi test

Nemenyi test is a post-hoc test invoked when the Friedman test rejects its null hypothesis

and it is used when all methods are compared to each other. The performance of two classifiers

is significantly different if the corresponding average ranks differ by at least the critical

difference (CD).

𝐶𝐷 = 𝑞𝛼 √
𝑡(𝑡 + 1)

6𝑁
, (1.17)

where critical values 𝑞𝛼 are based on the Studentized range statistic divided by √2.

 The Bonferroni-Dunn test

The Bonferroni-Dunn test is a post-hoc test, invoked after the Friedman test. It is used

when we are interested in comparing one technique against the other alternatives. It adjusts the

significance level ∝ in a single step by dividing the value of ∝ by the number of comparisons

performed 𝑡 − 1. The alternative way to compute the same test is to compute the 𝐶𝐷 (i.e.

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

23

Critical Differences) using the same equation as for the Nemenyi test, however using the critical

values for ∝ (𝑡 − 1)⁄ .

 Wilcoxon signed-ranks test

Wilcoxon signed-ranks test is a non-parametric test and is considered the best strategy to

compare two algorithms over multiple domains [57]. The formulation of this test is the

following. We designate by 𝑑𝑖 the difference between the performance scores of two techniques

on 𝑁 datasets. 𝑖 ∈ {1, …, 𝑁}. We first rank these differences according to their absolute values;

in case of ties average ranks are attributed. Then, we compute the sum of ranks for the positive

and the negative differences, which are denoted as 𝑅+ and 𝑅−, respectively. Their formal

definitions are given by:

𝑅+ = ∑ rank(𝑑𝑖)

𝑑𝑖<0

+
1

2
 ∑ rank(𝑑𝑖)

𝑑𝑖=0

𝑅− = ∑ rank (𝑑𝑖)

𝑑𝑖<0

+
1

2
 ∑ rank (𝑑𝑖)

𝑑𝑖=0

.

(1.18)

Notice that the ranks of 𝑑𝑖=0 are split evenly between 𝑅+ and 𝑅−. Finally, the statistics

𝑇𝑤 is computed as 𝑇𝑤 = min(𝑅+, 𝑅−). For small 𝑁, the critical value for 𝑇𝑤 can be found in

any textbook on general statistics [48], whereas for larger 𝑁, the statistics:

𝑧 =
𝑇𝑤 −

1
4 𝑁(𝑁 + 1)

√ 1
24 𝑁(𝑁 + 1)(2𝑁 + 1)

(1.19)

1.9 Related work

Table 1.2 presents some literature works related to approaches that employ machine

learning and deep learning methods along with various input representations for Audio

Tagging. The list expedites a general overview of the different classifiers and features

pertaining to their characteristics. It also consists of the latest matters surrounding the

development of Audio Tagging systems. These studies analyze the behavior of different

learning methods to extract high-level representations of input features. For instance, In [58],

the audio clip is treated as an image. Unlike the object in the image, in audio clips from real

life, some events, such as “Bark” may last a few minutes, while other events, such as “gunshot,”

may only last for hundreds of milliseconds. This characteristic of sound events increases the

difficulty of Audio Tagging based on CNN. To better use CNN to extract high-level

CHAPTER 1: GENERALITIES ON AUDIO TAGGING

24

representations, Convolutional Recurrent Neural networks have been suggested to amalgamate

convolutional and recurrent layers such as LSTMs [59] and GRUs [60] in a single deep learning

architecture in order to emphasize the benefits of both. In addition, attention mechanisms [56]

[61] [62] has been proposed in CNN such as the GLU. The benefits of such mechanisms have

been shown across a range of tasks, from Audio Tagging [63], to language modeling [56], which

shows that the attention method can alleviate the overfitting problem.

Furthermore, Ensemble learning which consists of building a classification model by

integrating multiple classifiers. The combination of different models can improve the accuracy

and robustness for the classification [49] using the complementary prediction result from

different models. However, the ensemble learning such as Stacking [64] has been under-

explored for Audio Tagging. Most of the previous methods simply compute the average of the

predictions [65].

Table 1.2: Various audio analysis classification approaches.

1.10 Conclusion

In this Chapter, we have provided an outline of the basic concepts of sound representation

that are essential to understand the ideas treated in this work. We have reviewed some important

concepts of classification in general. Many classification paradigms have been applied for

developing audio tagging systems. Most importantly, deep learning-based systems have

attracted a wide spread attention from the research community due to their effectiveness.

Therefore, in the next chapter, we will give an overview of some deep learning notions,

including several well-known deep architectures.

EER 1: Event Error Rate.

Reference Type of classifier Feature representation Performance

[66]
Hidden Markov Models

(HMM)
MFCC Accuracy=30.1%

[67]
Gaussian Mixture Models

(GMM)
MFCC F-score=13.08%

[68] Deep Neural Networks (DNN)

Short time Fourier

transform, Log-Mel energy,

MFCC

EER1=0.1785%

[69]
Convolutional Recurrent Neural

Network (CRNN)
Log-Mel Spectrogram F-score=69.1%

[63]
Convolutional Gated Recurrent

Neural Network (CGRNN)
Mel-Filter Banks (MFB) EER1=0.11%

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

25

 DEEP LEARNING FOR AUDIO

TAGGING

2.1 Introduction

In the previous chapter we have discussed the notions of sound acquisition and

representation required to prepare the audio signals for machine learning and deep learning

approaches. In addition to some concepts of machine learning. Deep learning is a modern

machine learning method, known for its ability to express highly non-linear relationships

between the input and the output [70]. Deep learning techniques are now the state of the art in

many audio applications [21] due to their capacity to learn the mapping between the target

labels and a lower level representation such as the magnitude spectrogram or even the raw audio

signals. Moreover, Deep Neural Network is among the recently proposed deep learning

techniques in context of sound analysis. These models require their own kind of engineering

effort in order to find the appropriate architecture for the target task; for instance, tuning the

hyper-parameters, choosing the right training algorithm and regularization techniques. Deep

learning models benefits from larger datasets, in order to expose the models to a larger and

varied training samples. Data augmentation includes a set of techniques that enhance the size

and quality of the dataset such as mixup.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs), also known simply as neural networks (NNs), are

considered to be a machine learning method that is based on the inner workings of the human

brain [21]. The objective of NNs is no different from other models, (i.e. to approximate a

function). NNs are composed of stacks of inter-connected artificial neuron blocks (also called

layers) that aim to find a mapping between the input and the target output. Each network has a

set of hyper-parameters that determine the network architecture (number of neurons in each

layer, number of layers etc.) and a network training procedure (optimization method

parameters, regularization parameters etc.). The most common components of NNs are

presented in the following subsections.

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

26

 Neuron

A neuron is the basic unit of a NN. Each neuron receives inputs through its incoming

weighted connections from other neurons and possibly itself. For each connection the input is

received as the transmitted signal multiplied by the connection weight w. The sum of the

weighted received signals and a bias term b is computed, then passed through an activation

function 𝐹 and finally output through an outgoing weighted connection (Figure 2.1).

Figure 2.1: A simple model of a neuron [71].

 Layer

Neurons in the network are grouped into layers. There is one input layer, a variable

number of hidden layers, and one output layer. NNs that include more than one hidden layer

are often grouped under the name deep learning. Each layer receives inputs from the proceeding

layer (possibly itself) and delivers outputs to the following. The input layer is composed of D

nodes, where D is the dimensionality of the input data. Each node reads one of the components

of an input vector 𝑥𝑖 ∈ 𝑋 and outputs it to the following layers neurons. Hidden layers are

between the input and output layer that perform intermediate computations of the network. The

output layer in classification tasks typically consists of a neuron for each class. For a given

output neuron k, its computed value is usually interpreted after normalization in the range [0,

1]. The incoming connections for the neurons in one layer form a matrix W. Together with a

bias vectors b, the weight matrices for all layers W represent the parameters 𝜃 of the model

(Figure 2.1).

 Activation function

The activation function scales the activation of a neuron into an output signal. The most

commonly used in NNs are:

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

27

• Sigmoid function scales the input value between 0 and 1, as we know that probability

lies between 0 and 1. This is why it is used for predicting the probability of the output.

It can be defined as follows.

• Rectified linear unit (ReLu) is a thresholding function that returns the same input x

as long as it is greater than zero otherwise it returns zero.

𝑅𝑒𝐿𝑈 = max (0, 𝑥) (2.3)

• SoftMax makes it possible for the network to output among all the possible classes, the

class with the highest probability. It is also used to normalize the outputs of multiclass

classification tasks.

 Given a vector 𝑋 of inputs to the output layer where 𝑗 indexes the output units

𝑗 = 1,2,3, … , 𝑚, it is defined for each of its components 𝑥𝑗 as:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑗) =
𝑒

𝑥𝑗

∑ 𝑒𝑥𝑚𝑚
 ,

(2.4)

 where 𝑥 is a vector of inputs to the output layer, 𝑗 indexes the output units.

• Tanh function (tanh) is a hyperbolic tangent function outputs the value in the range

[−1,1]. This function shows derivatives that can reach higher values than the sigmoid

derivatives and is expressed as follows.

𝑓(𝑥) =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥

(2.5)

2.3 Training Algorithms

 Back propagation algorithm

 The main idea behind Back propagation (BP) is to adjust the networks weights so that

the output values for the training data are as close as possible to the desired target output. BP is

a method used to compute the gradients that will be used for the update of each neuron’s

weights. Furthermore, BP can be split into two fundamental steps.

𝜎(𝑥) =
1

1 + 𝑒𝑥
 (2.2)

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

28

• Forward pass: an input is applied to the first layer and propagated through the network

so that all the weights are computed.

• Backward pass: based on the desired target output, derivative of the cost function is

back-propagated from the last layer to the first.

The mathematical description of the backpropagation algorithm can be found in [72].

 Gradient Descent (GD)

GD is the most common optimization algorithm in machine learning and deep learning

[73]. It is used to update the parameters of a function such that it minimizes the difference

between the function output and the desired output. It is achieved by updating the parameters

in the opposite direction of the gradient of the hypothesis function 𝐽(𝜃). The size of the step it

takes for each iteration to reach the local minimum is determined by the learning rate 𝛼, and

𝑂𝜃𝐽(𝜃) as the gradient of the hypothesis function. GD has three variants that differ based on

the amount of data utilized to compute the gradient of the hypothesis function.

Stochastic Gradient Descent (SGD) uses a single training dataset at a time (one row

after another) and then iteration adjustment of weights for each row.

Batch Gradient Descent (BGD) uses the entire dataset rows for training at the same time

and then makes adjustments to the weights.

Mini-Batch Gradient Descent is a hybrid of BGD and SGD, uses more than one training

example at a time.

2.4 Network regularization

There are several techniques proposed to address issues typically encountered in Machine

Learning such as overfitting [44] and vanishing (or exploding) gradients [74]. These techniques

are grouped under regularization techniques. Below we explained two of the techniques

specifically designed for Neural Networks.

 Dropout

The term “dropout” refers to dropping units (hidden and visible) in a neural network.

Dropping a unit out means temporarily removing it from the network, along with all its

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

29

incoming and outgoing connections. The Dropout algorithm temporarily removes randomly

selected neurons by setting the selected neuron weight to zero with a certain probability.

Therefore, these neurons do not have any effect on the output of the network. Dropout has been

shown to address two problems, it prevents overfitting and provides a way of efficiently

approximately combining exponentially many different Neural Network architecture [21].

 Batch Normalization (BN)

Due to the vanishing (or exploding) gradients problem (Explained in section 2.7), the

distribution of the activations for each layer becomes very diverse for deeper Neural Networks,

which slows down the learning as each layer is updated with the same learning rate. Batch

normalization is used as an intermediate layer that will take care of the normalization of the

hidden units activations at each layer to zero mean and unit standard deviation [75]. It has been

introduced to reduce the co-variance shift in the network, and to accelerate the training of neural

networks rather than to properly regularize the model by counteracting overfitting. However,

in [76] the authors argue that BN provides similar regularization benefits as dropout.

2.5 Hyper-parameters of the Network

The neural network training is dependent on numerous hyper-parameters which are

capable of determining the capacity and the complexity of the model. The hyper-parameters

employed in the scope of this study are as follows:

Learning rate (α) is the scalar that determines the amount of change in the gradient

towards the proper direction. Higher values of α leads to overshooting the optimal

solution in the hypothesis function, while lower values of α leads to too many iterations

to towards the best value. There is no consensus on the ideal value of the learning rate

[21]. Thus, it should be selected by examining the performance of the model by varying

it.

Number of hidden layers determines the depth of the network. The higher the value is,

the deeper the network.

Number of units in each layer can be different for each layer. These values determine

the number of weights in total.

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

30

Batch size is the number of samples processed before the weights of the model are

updated.

Number of epochs is a hyper-parameter that defines the number of times that the dataset

is passed forward and backward through the neural network. The BP algorithm decreases

the training error with the increasing number of epochs.

2.6 Convolutional Neural Network

CNNs are hierarchical NNs that have been designed initially for image classification. A

typical CNN is characterized by the repetition of convolution layers, an activation function,

followed by the pooling layers which are partially connected. Due to these layers CNN can

achieve a complete overview of the input with a good invariance to patterns shifts. The network

usually ends with a fully connected layer with a SoftMax output. However, several studies [77]

have proposed an alternative to the fully connected layer since the latter is prone to overfitting,

namely The Global Average Pooling. The actual difference, when compared to other types of

neural networks, lies in the introduction of a combination of convolution and pooling

operations. Moreover, CNNs use a modified version of the back-propagation algorithm to

ensure the shared weight constraint. The sample architecture of the convolutional neural

networks is shown in the figure below.

Figure 2.2: A simple architecture of CNN [78].

 The convolution layer

The convolution layer introduces a special way of receiving the input. Instead of being

connected to all the inputs coming from the previous layer, it takes a small portion of the input

space (i.e. The receptive field), the weights of this portion create a convolutional kernel (filter).

It consists of sliding the filter over the input space by a certain stride value and apply the dot

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

31

product between the filter and a portion of the input matrix, resulting in a convolved feature

matrix or the feature map. This mathematical operation is called convolution, which will

vastly reduce the number of the parameter and helps the model learn the relevant features only.

The operation is shown in Figure 2.3.

Figure 2.3: Convolution in CNN [79].

 The Activation layer

The activation layer applies an activation function over each feature map returned from

the convolution layer, to create a nonlinear relationship between the inputs and the outputs. The

most commonly used one is the Rectified Linear Units activation function (ReLu) [80]

(Section 2.2.3).

 The Pooling layer

The main idea behind the pooling layer is down-sampling in order to reduce the

computational load by progressively reducing the spatial size of the representation. Max-

pooling is one of the most common types of pooling. It takes small rectangular blocks from the

feature map and subsamples it to produce a single maximum output from the block then slides

to the next block with a specific stride value. The most commonly used size of max pooling is

2x2 [81]. An illustration of this operation is depicted in Figure 2.4.

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

32

Figure 2.4: Max Pooling [20].

 Fully Connected layer

The neurons in a fully connected layer are arranged in a way that each node is directly

connected to every node in both the previous and in the next layer as shown in Figure 2.2 The

hidden layers of the network which is composed of a stacked layer of convolution and pooling

output the feature maps, which are fed to the Dense layers. The Fully connected dense layers

flattens the feature matrix into a one-dimensional vector, the vector is then fed to the final dense

layer with SoftMax activation function (Section 2.2.3) to output a vector of probabilities ∈ [0,1].

 The Global Average Pooling layer (GAP)

The idea is to generate one feature map for each corresponding category of the

classification task. GAP has no parameter to optimize thus the overfitting problem is avoided.

The global average pooling mechanism computes the mean value for each feature map and

supplies it to the final dense layer with a SoftMax activation function. The SoftMax function

takes each value and converts it to a probability (with the probability of all values summing to

1.0). However, in [82] the authors have used a fully connected layer along with the GAP layer.

The GAP computes the mean value for each feature map and supplies the result to the input of

each unit in a single fully connected layer.

2.7 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural networks that are beneficial to

use with sequential data [83]. The structure of RNN is similar to that of the standard neural

network, with a distinction that RNNs allow their neurons to share their outputs with pervious

layer neurons, creating a feedback cycle. This indicates that an RNN may sustain the temporal

activations even in the absence of input [84]. Therefore, RNNs are dynamical systems with a

dynamical memory over time that can compute sequences of different lengths. However, the

complexity of RNN structure makes it hard to train properly due to the vanishing gradient and

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

33

exploding gradient problems. RNNs uses a straightforward extension of the backpropagation

algorithm, denoted Back Propagation Through Time (BPPTT) [85]. There are various

variations of RNNs, we note among them Long Short-Term Memories (LSTMs) and Gated

Recurrent Units (GRUs). An example of the RNN architecture is illustrated in Figure 2.5.

Figure 2.5: Left: Visual illustration of the RNN recurrence relation, Right: The RNN states are recurrently unfolded

over the sequence t-1, t, t+1 [86].

 Recurrent layer

The recurrence relationship defines how the state evolves step by step over the sequence

via a feedback loop over previous states. The recurrent layer applies the same function 𝑓 over

a sequence recurrently. The recurrence relation given by:

𝑆𝑡 = 𝑓(𝑆𝑡−1, 𝑋𝑡), (2.6)

where 𝑓 is a differentiable function, 𝑆𝑡 is a vector of values called the internal network state at

a step t of both the current input as well as the previous state, 𝑋𝑡 input at step t, and 𝑆𝑡−1 is the

network's summary of all of the previous inputs.

The recurrent layer through the backpropagation algorithm updates a set of three

parameters (weights), namely U, W and V. The vector U transforms the input 𝑋𝑡 into the

state 𝑆𝑡, W transforms the previous state 𝑆𝑡−1 into the current state 𝑆𝑡 and V maps the newly

computed internal state 𝑆𝑡−1 to the output 𝑌𝑡. They apply a linear transformation over their

respective input. The internal state and the output of the network can be defined as follows:

𝑆𝑡 = 𝑓(𝑊𝑆𝑡−1, 𝑈𝑋𝑡), (2.7)

𝑌𝑡 = 𝑉𝑆𝑡,
(2.8)

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

34

where f is the non-linear activation function such as tanh, sigmoid, or ReLU and 𝑋𝑡 denotes

the input vectors (𝑥1,…, 𝑥𝑡). The state 𝑆𝑡 represents a sequence of state vectors (𝑠1, ...,𝑠𝑡).

Finally, the output 𝑌𝑡 is a sequence of probability vectors (𝑦1,..,. 𝑦𝑡) of the next input in the

sequence. Through this recurrence relation, each state is dependent on all of the previous

computations, which allows RNN to have memory over time and to compute sequences of

different lengths.

 The exploding and vanishing problem

In theory, RNNs can remember information for arbitrarily a long period of time.

However, in practice, they are limited to looking back only a few steps [86]. This issue is known

as vanishing and exploding gradients problem. These problems arise during the training of a

deep network when the gradients are being propagated back in time all the way to the initial

layer. The gradients coming from the deeper layers have to go through continuous matrix

multiplications because of the chain rule, and as they approach the earlier layers, if they have

small values (less than 1), they shrink exponentially until they vanish and make it impossible

for the model to learn , this refers to the vanishing gradient problem. On the other hand, if they

have large values (more than 1) they get larger and eventually blow up and crash the model,

this refers to the exploding gradient problem. To cope with these shortcomings, Gated

Recurrent Layer Methods such as Gated Recurrent Units (GRU) and Long-Short Term Memory

Networks (LSTM) [59], have been introduced.

 Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber have studied the problems of vanishing and exploding

gradients extensively and have proposed a solution called Long Short-Term Memory network

[59]. LSTMs can handle long-term dependencies due to a specially crafted memory. It contains

special units called memory blocks in the recurrent hidden layer. The memory blocks contain

memory cells with self-connection which stores the temporal state of the network; in addition

to a special multiplicative unit called Gates to control the flow of information. Each memory

block contains an input gate, output gate and a forget gate. The input gate controls the flow of

input activations into the memory cell. The output gate controls the output flow of cell

activations into the rest of the network. Finally, the forget gate scales the internal state of the

cell before adding it as input to the cell through the self-recurrent connection of the cell;

Therefore, adaptively forgetting or resetting the cell memory. The forget gate addresses a

weakness of LSTM models preventing them from processing continuous input streams that are

not segmented into subsequences [87].

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

35

 Gated Recurrent Unit (GRU)

GRU is a type of recurrent method that was introduced as an improvement over LSTM

[60]. The idea behind GRU and LSTM is very similar, which is to allow the relevant

information from the previous timesteps to be stored in the cell state, and to control the cell

state through the gates that learns which information is relevant for the given task. The main

difference is that GRUs combine the forget and the external input gates of LSTM in a single

gate called the update gate; hence, has less parameters compared to LSTM. In addition to the

update gate, GRU has an additional cell called the reset gate. Both gates are composed of

weights and an activation function. Each cell includes a cell state, which consists of the

accumulated information from the previous timesteps. During training, the gate weights learnt

by which proportions to combine the cell state and the input for the current timestep to produce

the gated unit output for the current timestep. The reset gate adjusts the incorporation of new

input with the previous memory and the update gate controls how much to preserve of the

previous memory. Furthermore, an enhanced version has been introduced, namely bi-

directional GRU [88] allows to process the sequence input in two directions including forward

and backward ways, which can increase the model capacity and flexibility [60].

2.8 Convolutional Recurrent Neural Network

Another increasingly common hybrid architecture is to follow one or more convolutional

layers by recurrent layers. This approach is alternately known as Convolutional Recurrent

Neural Networks (CRNN). Combining convolutional and recurrent layers in a single deep

learning architecture integrates the strength of both CNNs and RNNs, which has shown

excellent performance in sound analysis applications [69] [17], while overcoming their

individual weaknesses.

Convolutional neural networks are able to extract higher level features that are invariant

to local spectral and temporal shifts. Furthermore, convolutional layers can be used to learn

filters (i.e. weight kernels) that are shared among the input and shifted in both time and

frequency. However, the temporal context that can be modeled using convolutional layers is

limited [1]. Recurrent layers, with a gated structure such as GRUs and LSTMs can be used to

extract long term temporal information among the consecutive time frames by utilizing

information from the earlier time frames as a feedback for the calculation of the higher-level

representation for the current frame.

In order to find the optimal hyper-parameters for the deep neural networks, a grid search

is performed including the combinations of some of the hyper-parameters such as the number

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

36

of layers, number of units in each layer etc. Figure 2.6 depicts the effect of the number of

network parameters on the performance of RNN, CNN and CRNN when tested on TUT-SED

synthetic 2016 dataset [69]. For the same number of parameters, CRNN shows a better

performance than CNN and RNN methods in most cases. This observation confirms that

combining the CNNs and RNNs into CRNN classifier is a more efficient and powerful way of

utilizing the network parameters compared to CNN and RNN. The effect of sequence length,

(i.e. the number of frames per input example) has been investigated by Cakır et al. [69]. Their

results indicate that CRNNs can model the whole event in a single sequence, which results in

improving the performance. In addition, the longest temporal context that RNN can model is

not sufficient to model the events as a whole in a single sequence. This can be explained with

the role of the convolutional layer in CRNN architecture. Convolutional layers learn filters that

are invariant to short term temporal variations and they effectively pre-process the features to

be used in longer temporal context in the following recurrent layers.

Figure 2.6: Number of parameters vs F1-score for CNN, RNN and CRNN [69].

2.9 Gated Convolutional Neural Network and Gated Convolutional Recurrent Neural

Network

Gated Convolutional Neural Network (GCNN) and Gated Convolutional Recurrent

Neural Network (GCRNN) are variants of CNN and CRNN, respectively. The difference is that

each convolutional layer is replaced with a Gated Convolutional layer. Gating mechanism has

been shown to be essential for Recurrent Neural Networks to reach state-of-the-art performance

[21]. This mechanism has shown to produce better results for several task such as audio

classification [89], language modeling [56].

 Gated Linear Units

The Gated Linear Unit (GLU) [22] is used as an activation function to replace the

Rectified linear activation function (ReLu) in CRNN and CNN. The structure of GLU is shown

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

37

in Figure 2.7 GLU can reduce the gradient vanishing problem for deep networks [22] by

providing a linear path for the gradients propagation while keeping nonlinear capacities through

the sigmoid operation. Similar to the gating mechanisms in Long-Short Memories (LSTM) or

Gated Recurrent Units, GLU can control the amount of information of a time-frequency

representation unit flow to the next layer. GLU are defined as:

 𝑌 = (𝑊 ∗ 𝑋 + 𝑏) ⊙ 𝛿(𝑉 ∗ 𝑋 + 𝑐), (2.9)

where 𝛿 denotes the sigmoid function, the symbol ⊙ is the element-wise product and ∗ is the

convolution operator. 𝑊 and 𝑉 are convolutional filters, 𝑏 and 𝑐 are biases. 𝑋 denotes the input

tensor in the first layer or the feature maps in the interval layers in the model. The value of

sigmoid function ranges from 0 or 1, so if a GLU gate value is close to 1, then the time-

frequency unit is attended. Whereas, if a GLU gate value is near 0, then the corresponding time-

frequency unit is ignored. Thus, the network learns sound events and ignore the unrelated

sounds.

Figure 2.7: GRU structure [15].

2.10 Mixup

Data Augmentation encompasses a suite of techniques that enhance the size and quality

of the training datasets [32]. It is widely used along with Deep Learning models in order to

address the overfitting problem [30]. Numerous data augmentation techniques have been

introduced in the literature such as: Mixup, Time Stretching, and Pitch Shifting [90]. In our

study, we have chosen Mixup approach due to its simplicity and its significant improvements

of audio classification systems [33].

Mixup is a method that randomly mixes a pair of inputs and their associated target values

[91]. Consider a pair of inputs, 𝑥1and 𝑥2, and its corresponding binary label, 𝑦1 and 𝑦2. To mix

these, a parameter, α ∈ [0, 1] is used as a mix ratio.

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

38

𝑥 = α𝑥1 + (1 − α)𝑥2 (2.10)

𝑦 = α𝑦1 + (1 − α)𝑦2 (2.11)

The outputs x, y are then used as the training examples.

2.11 Ensemble Methods

 Stacked generalization

Stacked generalization (stacking) is a general method which uses a high-level model to

combine lower-level models to achieve greater predictive accuracy [92] (see Figure 2.8),it first

creates T level-1 classifiers, 𝐶1 , … . , 𝐶𝑇 , based on a cross-validation partition of the training

data. To do so, the entire training dataset is divided into B blocks, and each model-1 classifier

is first trained on a different set of B-1 blocks of the training data. Each classifier is then

evaluated on the 𝐵𝑡ℎ block (i.e. not seen during training). The outputs of these classifiers on

their pseudo-training blocks constitute the training features for the level-2 (meta) classifier,

which effectively serves as the combination rule for the level-1 classifiers. Note that the meta-

classifier is not trained on the original feature space, but rather on the predictions of level-1

classifiers.

Figure 2.8: The stacking mechanism.

2.12 Summary of empirical and theoretical findings on CNN, CRNN, GCNN and

GCRNN

Empirical studies have shown that different deep architectural designs such as CNN,

CRNN, GCNN and GCRNN often have an advantage over shallow architectures when dealing

with complex learning problems [1] [55] [21].

In recent studies, the focus of research shifted from parameter optimization and

connections readjustment towards the improvement of the architectural design of the deep CNN

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

39

networks [55]. This shift resulted in many new architectural designs such as CRNN. Cakir et

al. have evaluated CRNN on three datasets of real-life sound recordings (i.e. TUT Sound Events

Synthetic 2016, TUT-SED 2009 and TUT-SED 2016) and compared its performance to CNN

and RNN. Their results show an improvement in performance of CRNN method over CNN and

RNN [8]. The performance of CRNN indicates an architectural advantage compared to the rest.

It gathers the capabilities of both CNN and RNN in one classifier. However, their proposed

CRNN strongly depends on the amount of available annotated data. Specifically, when the

performance of CRNN for TUT-SED 2016 (78 minutes) is compared to the performance on

TUT-SED 2009 (1133 minutes) and TUT-SED Synthetic 2016 (566 minutes), there is a clear

performance drop both in the absolute performance and in the relative improvement with

respect to other methods. Dependency on large amounts of data is a common limitation of

current deep learning methods. Similar findings have been reported in [93].

Recently, attention-based neural networks have been applied to a wide variety of tasks,

such as speech recognition [94] [95], visual object classification [96]. The term attention means

to focus on specific parts of the input. Xu et al. have proposed an attention based neural network

for audio tagging that can automatically select the important frames for the targets, while

ignoring the unrelated parts (e.g. the background noise segments) [63]. They have compared

the proposed method with two state-of-the-art systems that used CNN as a classifier, Lidy-CNN

[97] and Cakir-CNN [14]. The results indicate that the attention-based method reduces the

Event Error Rate from 0.13 to 0.11 on average. In addition, the gated network performs better

in detecting the long-term patterns of the “child speech” which occur frequently in the whole

dataset. Similar results have been reported by Xu et al. [3]. In their study, they have applied the

learnable Gated Linear Unit (GLU) to replace the ReLU activation after each layer of the

Convolutional Recurrent Neural Network for audio tagging and weakly supervised sound event

detection. The audio tagging results show that the gated CRNN gains effective improvement

with a F1-score of 54.2 compared the DCASE2017 baseline [98] with F1-score of 18.2.

2.13 Challenges

 Intra-class variability

Sound event classes for Sound analysis tasks are often defined broadly such as phone

ringing, doorbell etc. This presents a challenge for sound analysis methods in the form of intra-

class variability. For instance, doorbell class can be used to represent all types of doorbells,

whose acoustic characteristics can vary significantly among the examples of this class.

Therefore, in order to claim that a sound analysis system can robustly detect doorbells, it should

CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING

40

be able to do so on a wide variety of doorbells. This requires the sound analysis method to be

able to detect or extract the acoustic features that are found in common among different

examples of the same class [22].

 Noisy labels

Although the dataset is labeled only a portion of it is verified and the rest is not guaranteed

to have the true labels. This problem can be formulated as a form of label noise. These

mislabeled instances are considered to be outliers which are generally the result of four potential

sources. Firstly, the information which is provided to the expert may be insufficient to perform

reliable labelling. Secondly, since collecting reliable labels is time consuming and costly task,

there is increasing interest in using less reliable labels provided by non-expert such as using

automated classification methods. Thirdly, when the labeling task is subjective, the problem of

inter-expert variability might occur. Inter-expert variability is defined broadly as the presence

of important variability in the labeling by several experts. Eventually, label noise can also

simply come from data encoding or communication. Furthermore, these noisy labels may lead

to lower classification problem and slower optimization, thus they should be taken into account

in learning problems [99] [66].

2.14 Conclusion

Throughout this chapter, we have reviewed some important concepts of deep learning

methods. First, we have presented the deep neural networks architectures used in our work. We

have also presented Mixup, a data augmentation technique and Stacking ensemble learning

approach, highlighting the importance of these techniques in order to obtain a reliable robust

Audio Tagging system. Furthermore, we have summarized some empirical and theoretical

findings on the differences of the architectures presented in this chapter. Finally, we have

discussed the challenges related to Audio Tagging research.

41

PART II: EXPERIMENTS

In this part we describe the methodology that we have followed for evaluating and

comparing different deep learning approaches. It is composed of two chapters. In the first

chapter we present the experimental setup defined to evaluate the performance of our Audio

Tagging system, whereas in the second chapter, we discuss the results of our experiments.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

42

 DESIGN AND ANALYSIS OF

AUDIO TAGGING: EXPERIMENTAL SETUP

3.1 Introduction

This chapter presents the experimental setup used to conduct our experiments. First, in

Section 3.2 we present our dataset. Next, in Section 3.3, we present the tools that we have used

to conduct our experiments. Then, in Section 3.4 we present the setup for the proper steps for

design of experiments in context of sound analysis.

3.2 Dataset

We have conducted series of experiments on Freesound Dataset Kaggle 2018

(FSDKaggle2018). consisting of audio samples from Freesound annotated using a vocabulary

of 41 labels from Google’s AudioSet Ontology [33]:

• Tearing

• Bus

• Shatter

• Gunshot, gunfire

• Fireworks

• Writing

• Computer keyboard

• Scissors

• Microwave oven

• Keys jangling

• Drawer open or close

• Squeak

• Knock

• Telephone

• Saxophone

• Oboe

• Flute

• Clarinet

• Acoustic guitar

• Tambourine

• Glockenspiel

• Gong

• Snare drum

• Bass drum

• Hi-hat

• Electric piano

• Harmonica

• Trumpet

• Violin, fiddle

• Double bass

• Cello

• Chime

• Cough

• Laughter

• Applause

• Finger snapping

• Fart

• Burping, eructation

• Cowbell

• Bark

• Meow

FSDKaggle2018 is a reduced subset of FSD [17], which is a large-scale, general-purpose

open audio dataset that is currently under development. It is composed of audio content

collected from Freesound [100] (i.e. Freesound is a sound sharing site developed and

https://freesound.org/
https://research.google.com/audioset/

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

43

maintained by the Music Technology Group in Barcelona). It contains a total of 11 073 files

provided as uncompressed waveforms with 16-bit bit depth and 44.1 kHz sample rate.

The ground truth data provided in this dataset has been obtained after a data labeling

process which resulted into two types of annotations:

Manually-verified annotations represent the part of the dataset that was manually

verified by human annotators that manually assessed the presence/absence of an automatically

assigned sound category. In most cases, there is no additional acoustic material other than the

labeled category. In few cases, there may be some additional sound events, but these additional

events will be out-of-domain (i.e. they do not belong to any of the 41 AudioSet categories of

FSDKaggle2018).

Non-manually verified annotations are mainly composed of un-rated candidate

annotations, and complemented with a small amount of rated annotations. These annotations

are most probably not accurate. Some of the audio clips annotated as non-verified could present

several sound sources (even though only one label is provided as ground truth). These additional

sources are typically out-of-domain, but in few cases, they could be within the domain. Figure

3.1 shows the distribution of manually-verified and non-verified annotations per category in the

training set.

FSDKaggle2018 dataset was split into two sets a train set and a test set: The train set is

meant to be for system development and includes 9473 audio clips unequally distributed among

41 categories. The minimum number of audio clips per category in the train set is 94, and the

maximum is 300. The total duration of the train set is almost 18h. Out of the 9473 clips from

the train set, 3710 have manually-verified annotations and 5763 have non-verified annotations.

Figure 3.1 shows the distribution of manually-verified and non-verified annotations per

category in the train set. The test set is composed of 1600 clips with manually-verified

annotations and with a similar category distribution to that of the manually-verified portion of

the train set. The minimum number of manually-verified audio clips per category in the test set

is 25, and the maximum is 110. These annotations are complemented with 7800 non annotated

clips which are also included in the test set but that will not be used for evaluating our systems.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

44

Figure 3.1: Distribution of manually-verified and non-verified annotations per category in the train set.

3.3 Tools

We have carried our experiments using Python which is an object-oriented open source

programming language [101]. First, we have performed feature engineering using Spyder which

is a scientific environment based on Python [102]. We have displayed our features using

Librosa 0.7.2 which is a Python package for signal processing [103]. Moreover, the deep

learning process was performed using a set of Python packages such as Tensorflow and Keras

which are high-level APIs for building and training deep learning models. Other libraries that

were invoked include Numpy, Seaborn and Pandas, etc [78] [79].

We have trained our models using Google Colaboratory which is a free Cloud service.

it consists of executable Python notebooks stored within Google Drive and connected to a Cloud

based runtime to perform the execution of the Python code on Nvidia Tesla K80 GPU. Figure

3.2 shows a screenshot of Colab notebook.

Figure 3.2: Screenshot of Colab notebook.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

45

3.4 Design and analysis of Audio Tagging systems

We aim at building different Single-tag Audio Tagging systems that are able to

recognize an increased number of sound events of very diverse nature (including musical

instruments, human sounds, domestic sounds, animals, etc.). Furthermore, we use data with

annotations of varying reliability (i.e. Manually-verified annotations and Non-manually

verified annotations). Specifically, we illustrate the principles of designing machine learning

experiments for building Audio Tagging systems. To this end, we have carried out two sets of

experiments.

First, we have examined Log-Mel Spectrogram feature extraction technique using two

different sets of parameters along with four deep learning architectures (VGG13, GCNN,

CRNN and GCRNN), while varying their parameters. Giving eight models in total, these

models involve the use of preprocessing techniques and data augmentation in order to improve

their performance and reduce overfitting. We have utilized the F1-score along with Accuracy

and MAP@3 metrics to perform the evaluation of our systems.

Second, we have investigated the effect of combining, the predictions of the previously

trained models. In order to consolidate their strengths, to achieve this, we used a popular

technique called stacking. Figure 3.3 and Figure 3.9 shows the General schema for the first and

second case study respectively.

Figure 3.3: General schemas that highlight the primary steps for conducting the first case study.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

46

 Cross validation

We have performed a stratified 5-cross validation to split the training set into non-

overlapping training and validation sets. We have used the training set for learning the models,

whereas the validation set was employed for model selection. We have shuffled our data to

generate different combinations in order to ensure that across each fold, there was a similar

number of manually verified examples and the events are approximately equally represented.

Cross validation leads to a considerable computation time increment, but it is a very common

procedure used during model selection stage. We test the best model, (i.e. the result of model

selection), on the provided test set. We have performed 5-fold cross validation using Scikit-

learn library.

 Feature Engineering

A Preprocessing

After visualizing our raw data (waveform) we have noticed that some of them contained

long sequences of silence. In order to remove them, we have started by segmenting our input

audio files into small frames and by calculating their Root Mean Square (RMS) energy. The

segments that were lower than the fixed threshold was judged to be unimportant and, hence,

removed. However, the rest of the segments were kept to be used as inputs to our neural

networks. Figure 3.4 depicts silence removal for one sound taken from our dataset. The

extracted non-silent sections are encased in a black rectangle.

Figure 3.4: The silence removal process applied on the file “071e836c.wav”.

B Feature extraction

We have implemented two configurations for the frequency domain features Log-Mel

Spectrograms. Figure 3.5 presents the feature extraction process that we have followed in our

work.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

47

Figure 3.5: The process of feature extraction.

Table 3.1 summarizes the parameters used for extracting the Log-Mel Spectrogram features.

Table 3.1: Log-Mel Spectrogram setup.

 Parameters Configuration A Configuration B

 Sample rate 32 000 Hz 32 000 Hz

 Window size 1024 512

 Hop size 512 256

 Mel bands 64 64

 Window function Hamming Hamming

Figures 3.6 and 3.7 depict the Log Mel-Spectrogram features for configuration A and B

respectively of one preprocessed sound taken from our dataset.

Figure 3.6: The Log-Mel Spectrogram (Configuration A) of “fff81f55_0.wav”.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

48

Figure 3.7: The Log-Mel Spectrogram (Configuration B) of “fff81f55_0.wav”.

To address the problem of variable length sequence (or variable length inputs), which

requires for our data to be transformed such that each sequence has the same length. We have

decided to split each feature vector into chunks of a fixed size (128 × 64 where the first axis is

the temporal dimension). This corresponds to 2 seconds chunks and 1 second chunks for

configurations A and B, respectively. When the length of the feature vector was greater than

the chunk size, an additional chunk was added to include the remainder of the audio file;

whereas, when it was lower, the feature vector was padded.

 Data Augmentation

Due to the limited size of our dataset and to improve the classification accuracy further,

we explore the use of mixup data augmentation method with an alpha value set to 1.0.

 Classification approaches

A two-stage classification method which consists of a training and a testing stage for

Audio Tagging is illustrated in Figure 3.8. It is performed based on audio segments with a single

class annotated throughout. The 41 annotations are encoded into target outputs which are used

in the training stage with audio signals. In this case the classes are mutually exclusive, this

condition is included into the neural network architecture by using an output layer with softmax

activation function, which normalizes the output frame-level class probabilities to sum up to

one. These probabilities are used to get the overall classification output by summing up class-

wise, the frame-level class presence probabilities. Finally, the label with the highest combined

probability is assigned. In our case, the predictions for chunks from the original audio files were

merged using geometric mean to produce clip level predictions. This process was repeated for

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

49

the best four epochs selected according to (Map@3) metric resulting into four prediction

probabilities for each audio clip. Then, these probabilities were merged using arithmetic

mean to produce the final prediction for each audio clip.

Arithmetic and Geometric mean

Calculating the average of a variable or a list of numbers is a common operation in

machine learning. The average (mean) is a single number that represents the most common

value for a list of numbers. More technically, it is the value that has the highest probability from

the probability distribution that describes all possible values that a variable may have.

Arithmetic mean

The arithmetic mean (�̅�) is calculated as the sum of the data values divided by the total

number of values, referred to as N.

�̅� =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 . (3.1)

The arithmetic mean can be calculated using the mean NumPy function.

Geometric mean

The geometric mean of a series of positive numbers 𝑥1, 𝑥2 … , … , … , 𝑥𝑛 is defined as

the 𝑛𝑡ℎ root of its product:

(∏ 𝒙𝒊

𝒏

𝒊=𝟏

)

𝟏
𝒏

= √𝒙𝟏𝒙𝟐 ⋯ 𝒙𝒏
𝒏 .

(3.2)

The geometric mean can be calculated using the gmean SciPy function.

Figure 3.8: The training and testing phase of an Audio Tagging system.

https://machinelearningmastery.com/continuous-probability-distributions-for-machine-learning/
https://en.wikipedia.org/wiki/Arithmetic_mean
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
http://scipy.github.io/devdocs/generated/scipy.stats.gmean.html

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

50

A. Neural network architectures

We have built four neural network architectures VGG13, CRNN, GCNN and GCRNN.

The first one is a standard CNN that was inspired by the VGG13 network proposed in [106].

Each convolutional block consists of two convolutional layers followed by a max pooling layer

that halves each spatial dimension. After each convolution, which uses the rectifier (ReLU)

activation function, batch normalization is applied as a form of regularization. After the

convolutional blocks, each feature map is averaged to a scalar value. Finally, a softmax layer is

used to generate the predictions.

The CRNN architecture is an extension of VGG13. Instead of averaging across both

spatial dimensions after the convolutions, only the frequency dimension is averaged initially.

A bidirectional recurrent layer is then applied to output a feature vector for each time step.

Finally, these feature vectors are averaged. By using a recurrent layer, the temporal dynamics

of the input can be learned.

The two remaining architectures are GCNN and GCRNN. GCNN is a variant of VGG13;

whereas, GCRNN is a variant of CRNN. The difference is that each convolutional layer is

replaced with a gated convolutional layer. Note that these architectures were inspired from

papers [79, 80, 81].

 Table 3.2 describes the neural network architectures used in the first case study;

convolutional blocks parameters are encapsulated by square brackets. The first two parameters

in each line are the kernel size and the number of filters. ‘BN’ refers to batch normalization.

‘GLU’ and ‘Bi-GRU’ refer to Gated Linear Units and Bidirectional Gated Recurrent Units,

respectively.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

51

Table 3.2: Description of the neural network architectures.

Feature size VGG13 CRNN GCNN GCRNN

128 × 64 Log-Mel Spectrogram

64 × 32 [
3 × 3, 64, BN, ReLU
3 × 3, 64, BN, ReLU

] [
3 × 3, 64, BN, ReLU
3 × 3, 64, BN, ReLU

] [
3 × 3, 64, BN, GLU
3 × 3, 64, BN, GLU

] [
3 × 3, 64, BN, GLU
3 × 3, 64, BN, GLU

]

2x2 Max Pooling

32 × 16 [
3 × 3, 128, BN, ReLU
3 × 3, 128, BN, ReLU

] [
3 × 3, 128, BN, ReLU
3 × 3, 128, BN, ReLU

] [
3 × 3, 128, BN, GLU
3 × 3, 128, BN, GLU

] [
3 × 3, 128, BN, GLU
3 × 3, 128, BN, GLU

]

2x2 Max Pooling

16 × 8 [
3 × 3, 256, BN, ReLU
3 × 3, 256, BN, ReLU

] [
3 × 3, 256, BN, ReLU
3 × 3, 256, BN, ReLU

] [
3 × 3, 256, BN, GLU
3 × 3, 256, BN, GLU

] [
3 × 3, 256, BN, GLU
3 × 3, 256, BN, GLU

]

2x2 Max Pooling

8 × 4 [
3 × 3, 512, BN, ReLU
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, ReLU
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, GLU
3 × 3, 512, BN, GLU

] [
3 × 3, 512, BN, GLU
3 × 3, 512, BN, GLU

]

2x2 Max Pooling

4 × 2 [
3 × 3, 512, BN, ReLU
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, ReLU
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, GLU
3 × 3, 512, BN, GLU

] [
3 × 3, 512, BN, GLU
3 × 3, 512, BN, GLU

]

 Bi-GRU, 512, ReLU Bi-GRU, 512, ReLU

Global Average Pooling

Softmax (41 Classes)

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

52

B. Ensemble learning

In order to build an ensemble model, we have followed Stacking paradigm. Recall that

the Stacking model is composed of two levels. Level 1 consists of deep learning models

trained using two Log-Mel Spectrogram features. Level 2 is a shallow-architecture classifier

using the meta-features obtained from level 1. These meta-features are obtained by running the

previous classifiers (Section A) for each out-of-fold training data to predict the probabilities

for each sample in the validating set by using the whole training dataset. For each classifier, the

probabilities for 41 classes are be used as the meta-features, which are concatenated to generate

the new training dataset, and used as the input for level 2.

For the ensemble learning in level 2, we employ the linear regression algorithm. Inspired

by [107], we weigh each training sample. The sample weight of a manually verified sample

is set to 1.0, while the weight of a non-manually verified sample is set as a constant value

0.65. In this way, manually verified samples are preferred. Figure 3.9 shows the conceptual

architecture of the stacking ensemble used for the second case study.

Figure 3.9: Exhibits a general schema that highlight the primary steps for conducting the second case study.

CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP

53

 Evaluation Procedures

The main goal of our work is to compare the performances of several Audio Tagging

systems, while varying the learning paradigms and their parameters. We have tested the

performance of each system using the following evaluation procedure. After generating the out

of fold predictions for both the training and testing set using 5-fold cross validation. Only

predictions that correspond to manually verified samples from each fold were used to perform

class-wise evaluation using the mean average precision (MAP@3), F1-score and averaging the

former evaluation metrics using macro\micro averaging. We also used accuracy to evaluate

the overall performance of the two main case studies. Most importantly, we have based our

discussions and conclusions on strong statistical tests.

3.5 Conclusion

In this chapter, we have described the setup used to conduct our experimental enquiries,

starting from cross validation to classification step. We have presented two general schemes

(i.e. 4 individual learners and an ensemble learning approach “Stacking”) that highlight the key

steps for carrying out our first and second set of experiments. In the following chapter, we will

present the results of these experiments and analyze them in order to derive guidelines for

building audio tagging systems based on numerous statistical comparisons.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

54

 DESIGN AND ANALYSIS OF

AUDIO TAGGING: RESULTS AND DISCUSSION

4.1 Introduction

This chapter discusses the experimental results that we have obtained during our

experiments. In Sections 4.2 and 4.3 we analyze and discuss the results of the first and second

set of our experiments. In Section 4.2.3 we talk about the training time of our experimental

studies.

4.2 First Set of Experiment: The individual models

We have conducted extensive experimental comparison among Audio Tagging methods

using various deep learning architectures based on data with annotations of varying reliability.

Specifically, we have thoroughly examined Log-Mel Spectrogram features using two different

configurations. Most importantly, we have investigated four deep learning architectures

VGG13, GCNN, CRNN and GCRNN giving eight Audio Tagging systems in total. Table 4.1

describes these models. For additional information on these architectures and their parameters,

please refer to Sections 3.4.4. For evaluation, we have used the F1-score along with MAP@3

metrics. Furthermore, we have based our discussions and conclusions on various statistical

tests.

Table 4.1: Summary of the first set of experiment models.

Table 4.2 gives the F1-score of the eight individual models. The first column represents

the tag, whereas, the rest of the columns designate the systems that are tested in our experiment.

The last two rows specify the macro and micro average of each system over all classes,

respectively. Table 4.3 shows the average MAP@3 over all events.

Abbreviation Classification Model Feature Set

VGG13A
Convolutional Neural Network

Log-Mel Spectrogram of Configuration A

VGG13B Log-Mel Spectrogram of Configuration B

CRNNA
Convolutional Recurrent Neural Network

Log-Mel Spectrogram of Configuration A

CRNNB Log-Mel Spectrogram of Configuration B

GCNNA
Gated Convolutional Neural Network

Log-Mel Spectrogram of Configuration A

GCNNB Log-Mel Spectrogram of Configuration B

GCRNNA
Gated Convolutional Recurrent Neural Network

Log-Mel Spectrogram of Configuration A

GCRNNB Log-Mel Spectrogram of Configuration B

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

55

Table 4.2: F1-score (%) results of the eight individual models.

Tag CRNNA CRNNB VGG13A VGG13B GCRNNA GCRNNB GCNNA GCNN𝑩

Acoustic guitar 85.13 85.06 85.23 85.59 85.74 84.29 86.83 85.32

Applause 96.69 95.82 95.56 97.28 95.27 96.69 96.99 96.72

Bark 93.83 93.21 93.25 85.43 93.36 90.35 94.77 88.53

Bass drum 96.56 96.93 96.20 94.17 96.57 94.90 96.60 95.60

Burping 98.14 98.16 96.36 99.06 97.24 97.52 96.93 99.08

Bus 86.05 78.55 84.26 77.78 84.85 74.32 84.69 81.28

Cello 92.57 91.09 92.60 90.72 90.55 91.86 92.21 89.53

Chime 80.36 71.42 79.71 71.86 81.77 74.08 79.64 71.39

Clarinet 93.35 93.97 95.42 93.11 91.14 92.12 92.89 94.46

keyboard 82.85 87.20 85.86 89.79 83.09 86.78 88.54 89.58

Cough 88.75 93.27 89.63 90.88 90.20 92.49 89.52 92.15

Cowbell 92.04 93.44 92.90 91.64 94.44 92.09 92.68 92.66

Double bass 93.34 92.23 92.45 92.15 92.56 93.63 92.92 92.08

Drawer 80.01 80.38 82.19 79.26 85.27 82.04 83.93 77.78

Electric piano 92.66 93.64 93.07 92.60 96.27 93.22 94.05 93.94

Fart 86.39 85.15 86.09 85.73 86.75 86.58 86.83 87.77

Finger snapping 95.77 91.49 94.06 92.72 95.54 90.79 93.22 94.33

Fireworks 68.33 61.07 66.22 63.44 69.21 61.69 65.46 65.69

Flute 96.56 96.08 95.85 96.52 94.98 96.59 94.59 98.00

Glockenspiel 81.75 69.87 82.94 70.12 83.45 68.20 79.13 67.13

Gong 85.46 87.04 85.25 88.11 86.29 87.68 87.67 89.06

Gunshot 85.60 81.94 84.70 81.73 82.99 84.11 84.05 82.89

Harmonica 90.20 91.96 91.41 91.68 88.41 89.71 88.67 89.75

Hi-hat 89.92 91.32 88.94 89.72 89.40 91.55 87.85 91.78

Keys jangling 85.55 79.00 79.50 76.26 82.00 80.63 77.54 77.25

Knock
87.99 88.41 85.63 90.37 86.43 89.52 87.44 87.10

Laughter 88.39 91.71 87.84 88.36 87.89 91.17 87.99 89.77

Meow 93.41 91.99 91.38 89.62 92.75 91.66 90.91 88.98

Microwave 88.17 87.82 85.22 86.07 84.32 84.70 84.07 85.71

Oboe 97.89 96.23 98.11 96.04 97.38 96.68 96.28 97.19

Saxophone 95.43 96.06 96.18 96.14 94.81 95.59 94.97 96.33

Scissors 67.62 65.01 67.59 69.06 65.94 66.07 63.00 69.08

Shatter 89.67 87.89 87.34 80.60 91.85 83.10 85.42 81.53

Snare drum 92.50 90.86 89.84 88.85 90.67 92.31 91.45 88.53

Squeak 40.10 41.44 45.30 38.39 46.60 42.07 44.19 40.00

Tambourine 91.28 89.96 90.23 90.96 90.21 90.12 90.65 89.19

Tearing 70.75 67.73 70.09 70.44 70.40 66.85 69.98 69.84

Telephone 76.42 79.94 79.20 78.90 78.25 80.65 79.38 81.70

Trumpet 92.34 92.21 92.90 91.88 91.68 93.79 91.75 91.23

Violin 95.90 95.74 96.15 95.71 94.99 95.98 96.27 94.89

Writing 82.19 85.00 81.78 83.22 82.59 85.34 78.93 85.58

Macro Average 87.02 86.03 86.69 85.41 86.93 85.84 86.36 85.86

Micro Average 88.53 87.89 88.45 87.40 88.30 87.82 88.13 87.78

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

56

Table 4.3: Overall MAP@3 results (%) of the eight individual models.

 CRNNA CRNNB VGG13A VGG13B GCRNNA GCRNNB GCNNA GCNN𝑩

Macro Average 90.73 90.51 90.40 89.75 90.64 90.27 90.38 90.22

Micro Average 92.83 91.66 91.67 91.01 91.64 91.50 91.55 91.44

The previous results indicate that CRNNA achieves the best scores, whereas, VGG13B

produces the lowest ones. Most importantly, incorporating the recurrent layer (i.e. GRU), has

demonstrated a positive impact for assigning sound tags. This improvement is due to combining

the strengths of both CNN and RNN, which is well-known for better modeling long temporal

sequences [21]. However, our initial analysis does not reveal considerable differences. In

addition, according to numerous papers on Statistical Machine Learning, when the results on

different categories of data are not comparable, their averages are meaningless [108]. To cope

with this shortcoming, appropriate statistical tests should be conducted thoroughly [57]. To this

end, we have statistically compared the performances of these techniques using 3 tests:

Friedman test, Friedman Aligned test and Quade test. Under the null hypothesis, we have

assumed that all systems are equivalents and the observed differences are merely due to chance.

Table 4.4 summarizes the obtained statistics.

Table 4.4: Summary of the test statistics.

Audio Tagging System Friedman Ranking Friedman Aligned Ranking Quade Ranking

CRNNA 3.70 134.16 3.56

CRNNB 4.58 169.24 4.58

VGG13A 4.41 149.95 4.38

VGG13B 5.15 199.61 5.41

GCRNNA 4.41 155.34 3.81

GCRNNB 4.52 173.77 4.73

GCNNA 4.56 160.90 4.68

GCNNB 4.66 173.02 4.84

Test Statistic 7.63 37.50 3.45

Degrees of Freedom 7 7 7 and 280

p-value 0.36 3.8×𝟏𝟎−𝟔 1.5×𝟏𝟎−𝟑

The results shown in the above table indicate that Friedman Aligned and Quade tests

reject the null hypothesis with a very high level of significance (p-value
FA

= 3.8×10
-6

and p-

valueQ=1.5×10
-3

), which confirms the existence of at least one pair of systems with

significantly different performances. However, the Friedman test fails to reject this hypothesis.

This behavior is expected since this latter test considers that all tags are equal in terms of

importance, while the Friedman Aligned and Quade tests take into account the fact that some

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

57

events are more difficult than others, and compute the ranks of each technique across all class

labels [57].

The above results also indicate that Configuration A of the feature extraction technique

shows slightly better performance than Configuration B. Furthermore, the MAP@3 scores

given in table 4.3 confirms this claim. In order to further investigate this observation, we have

followed up these tests with multiple Wilcoxon signed-ranks tests, provided in the following

subsection.

 Case Study A: impact of feature extraction

This section is devoted to investigating the influence of the parameters used for extracting

Log-Mel features on the performance of the deep learning models. To this end, we have carried

out pairwise comparisons between CRNNA and CRNNB, VGG13A and VGG13B, GCRNNA and

GCRNNB, GCNNA and GCNNB. Due to its robustness, we have considered using the Wilcoxon

signed-ranks test. A summary of this test statistics is shown in Table 4.5. We report in each

entry of this table the number of Win/Tie/Loss, on which there is a statistically significant

win/loss of the systems trained using Configuration A over Configuration B features. An entry

is bold if the number of wins/losses is significant using the Wilcoxon signed-ranks test.

Table 4.5: Summary of the Wilcoxon signed-ranks statistics.

Deep neural networks architectures

VGG13 CRNN GCNN GCRNN

W/T/L 25/0/16 24/0/17 23/0/18 19/0/22

p-value 0.05 0.18 0.63 0.46

Decision VGG13A wins

over VGG13B

Could not reject the

null hypothesis

Could not reject the

null hypothesis

Could not reject the

null hypothesis

We observe in Table 4.5 that, overall, Configuration A wins in most cases. Most

importantly, the results indicate that VGG13A is significantly better than VGG13Bwith p-value

≤ 0.05. However, data are not sufficient to reach the same conclusion regarding CRNN, GCRNN,

and GCNN as depicted in Table 4.5.

Figures 4.2 and 4.3 show the confusion matrices of CRNNA and CRNNB, respectively,

computed on the test set. The matrices indicate appreciable diagonals, meaning that many

classes are correctly classified. However, we observe that some classes are easier to classify

while the others are not; for instance, in case of Squeak, Scissors and Fireworks, all Audio

Tagging systems exhibit low generalization ability (Table 4.2). We believe this behavior occurs

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

58

due to two main reasons: (1) Some of the mostly misclassified classes are difficult to distinguish

even for human beings; for example, Fireworks are sometimes predicted as Gunshots or Tearing

sounds (line 18 of CRNNA confusion matrix). (2) Some of these events are rare and were mostly

not manually verified; for instance, Scissors and Telephone events are rare; 78.90% of Squeak

sound data are not manually verified. In addition, we observe that for some events such as

“Computer Keyboard” and “Knock”, systems that were trained using Configuration B features

outperform those trained using Configuration A features, as indicated in Table 4.2. Figure 4.1

shows two representations of a sound file of the event “Computer Keyboard”.

Time domain representation.

Spectrogram representation.

Figure 4.1: Two representations of a “Computer Keyboard” sound file.

The event “Computer Keyboard” belongs to the category of impulsive signals. It is worth

underscoring that systems built using smaller windows work significantly better on impulsive

signals [109]. Recall that Configuration B uses a smaller window for extracting features,

whereas, Configuration A uses a larger one, please refer to Section 3.4.2. This fact justifies

previous observation concerning the outperformance of Configuration B over Configuration A

-based systems in case of impulsive events.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

59

Figure 4.2: CRNNA confusion matrix.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

60

Figure 4.3: CRNNB confusion matrix.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

61

 Case Study B: Impact of the gating mechanism

We aim at studying the impact of the gating mechanism on the performance of our Audio

Tagging systems. To this end, we have carried out pairwise comparisons between GCNNA and

VGG13A, GCNNB and VGG13B, GCRNNA and CRNNA, GCRNNB and CRNNB. Similarly, to the

previous experiment, we have considered using the Wilcoxon signed-ranks test. A summary of

this test statistics is shown in Table 4.6. Similarly, we report in each entry of this table the

number of win/Tie/loss of the models which use the gating mechanism over the non-gating-

based systems. An entry is bold if the number of wins/losses is significant using the Wilcoxon

test.

Table 4.6: Summary of Wilcoxon.

GCNNA against

VGG13A

GCNNBagainst

VGG13B

GCRNNA against

CRNNA

GCRNNB against

CRNNB

W/T/L 18/0/23 24/0/17 16/0/25 22/0/19

p-value 0.29 0.06 0.29 0.84

Decision Could not reject the

null hypothesis

GCNNB wins over

VGG13B

Could not reject the

null hypothesis

Could not reject the

null hypothesis

The results shown in Table 4.6 indicate that GCNNB exhibits significantly better

performance compared to VGG13Bwith p-value ≤ 0.06. However, introducing the gating

mechanism does not demonstrate any improvement on the remaining models. More

specifically, the gating-based systems lose in most cases, which is not expected since these

approaches are complex but generally very effective and accurate [3] [15]. Many reasons may

cause this behavior. It can be related to the hyperparameters used for training such as the batch

size, the learning rate, the number of epochs, etc. In addition, the introduction of the mixup step

can make the learning more challenging, as reported by many studies [110] [111]. To further

investigate this issue, we have trained GCNNA for another extra 20 epochs, without varying the

other hyperparameters. We report in Figure 4.4 both the training and validation losses during

the learning process, and in Figure 4.5 the changes in the average accuracy.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

62

Figure 4.4: Training and validation loss during the learning process of GCNNA.

Figure 4.5: Training and validation loss during the learning process of GCNNA.

The analysis of the results illustrated in Figures 4.4 and 4.5 is summarized as follows:

Figure 4.4 indicates that the training loss is higher than the validation loss, contrary to intuition.

The main reason for this behavior is that the loss function for validation does not use either

regularization nor augmentation, whereas the training process uses more data, resulting in

higher average loss values. Similar results have been reported in [112].

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

63

As depicted in the zoom of the accuracy plot (Figure 4.5), the performance exhibits an

improvement as the number of epochs increases. We observe a rise of 2% between epoch 20

and epoch 40. This latter finding coincides with our initial intuition regarding the parameters

setting for the gating models. We can conclude that gating-based systems need to be trained for

longer runs.

CONFUSION MATRIX

Figures 4.6 and 4.7 show the confusion matrices of GCRNNA and GCRNNB, respectively,

computed on the test set. The obtained results (Table 4.2 and Figures 4.6, 4.7) reveal that, for

some of the audio classes such as “Applause” “Bass drum” and “Burping”, the gating-based

and non-gating-based systems perform similarly. Interestingly, for some rare events such as

“Fireworks”, “Scissors” and “Telephone”, the generalization ability of the gating-based

systems is higher. Therefore, introducing the gating mechanism can improve the overall

performance in case of rare or non-manually verified events. Similar results have been reported

in [3] [21].

 Systems complexity

Table 4.7 gives the trainable parameters and training time of the 4 neural network

architectures.

Table 4.7: Number of trainable parameters and training time for each system.

VGG13 models yield the lowest training time since they have the least number of

parameters. The second-best result is attributed to CRNN systems, whereas, the gating-based

systems achieve the worst results in terms of the training time and the architecture complexity.

Although CRNN does not provide the best training time, it succeeds at capturing most events

present in our dataset, requiring bearable training time. It is worth underscoring that these

results represent the time required for building our models, while the prediction time is

instantaneous for all systems.

VGG13 GCNN CRNN GCRNN

Trainable parameters 9 430 761 18 834 601 12 600 553 22 004 393

Training time 20h38 33h 25h 37h50

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

64

Figure 4.6: GCRNNA confusion matrix.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

65

Figure 4.1: GCRNNB confusion matrix.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

66

 Summary of the first of experiment

From the above results we can derive several lessons:

• Some audio events are easier to classify while others are not.

• The introduction of the gating mechanism can improve the overall performance in

case of rare or non-manually verified events. In addition, such mechanism works

better when the model is trained for longer runs, i.e. higher number of epochs.

• The systems that were trained using a smaller window for extracting features can

detect better impulsive events.

However, it is hard to make a firm generalization on the acoustic characteristics of these

events that can explain the above observations. In addition, some systems capture sound events

that are impulsive, rare, or even non-manually verified, with various confidences. Specifically,

the individual models provide sufficiently diverse predictions of the events present in the

dataset. Therefore, a proper combination of these models would improve substantially the

generalization ability. Ensemble learning combines the strengths of each model by merging

their predictions [49]. Numerous studies have demonstrated that amalgamating several learners

could improve the generalization ability [45] [113]. An ensemble made of our eight systems

would learn: (1) impulsive events; (2) events that are rare or non-manually verified. In the next

set of experiments, we further investigate the use of a well-known ensemble learning technique

“Stacking”.

4.3 Second Set of Experiment: Ensemble of models

In this section, we have investigated the effect of combining the predictions of the

previously trained models. In order to achieve this, we have employed a popular technique

called stacking. The resulting system is made of our eight models. Table 4.8 summarizes the

obtained performance results. The last row specifies the averaged rank obtained by the

Friedman test of each method. Note that we also include the performance of each individual

model in order to highlight the improvement provided by Stacking these learners.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

67

Table 4.8: F1-score (%) results of the eight individual models vs STACKED8 model.

Tag CRNNA CRNNB VGG13A VGG13B GCRNNA GCRNNB GCNNA GCNN𝑩 STAKED8

Acoustic guitar 85.13 85.06 85.23 85.59 85.74 84.29 86.83 85.32 87 .50

Applause 96.69 95.82 95.56 97.28 95.27 96.69 96.99 96.72 98 .46

Bark 93.83 93.21 93.25 85.43 93.36 90.35 94.77 88.53 98 .18

Bass drum 96.56 96.93 96.20 94.17 96.57 94.90 96.60 95.60 98 .25

Burping 98.14 98.16 96.36 99.06 97.24 97.52 96.93 99.08 100 .0

Bus 86.05 78.55 84.26 77.78 84.85 74.32 84.69 81.28 89 .36

Cello 92.57 91.09 92.60 90.72 90.55 91.86 92.21 89.53 96 .15

Chime 80.36 71.42 79.71 71.86 81.77 74.08 79.64 71.39 76 .06

Clarinet 93.35 93.97 95.42 93.11 91.14 92.12 92.89 94.46 100 .0

keyboard 82.85 87.20 85.86 89.79 83.09 86.78 88.54 89.58 88 .46

Cough 88.75 93.27 89.63 90.88 90.20 92.49 89.52 92.15 91 .80

Cowbell 92.04 93.44 92.90 91.64 94.44 92.09 92.68 92.66 93 .98

Double bass 93.34 92.23 92.45 92.15 92.56 93.63 92.92 92.08 96 .39

Drawer 80.01 80.38 82.19 79.26 85.27 82.04 83.93 77.78 82 .76

Electric piano 92.66 93.64 93.07 92.60 96.27 93.22 94.05 93.94 93 .75

Fart 86.39 85.15 86.09 85.73 86.75 86.58 86.83 87.77 93 .33

Finger snapping 95.77 91.49 94.06 92.72 95.54 90.79 93.22 94.33 96 .97

Fireworks 68.33 61.07 66.22 63.44 69.21 61.69 65.46 65.69 66 .67

Flute 96.56 96.08 95.85 96.52 94.98 96.59 94.59 98.00 98 .15

Glockenspiel 81.75 69.87 82.94 70.12 83.45 68.20 79.13 67.13 72 .34

Gong 85.46 87.04 85.25 88.11 86.29 87.68 87.67 89.06 90 .91

Gunshot 85.60 81.94 84.70 81.73 82.99 84.11 84.05 82.89 88 .06

Harmonica 90.20 91.96 91.41 91.68 88.41 89.71 88.67 89.75 93 .75

Hi-hat 89.92 91.32 88.94 89.72 89.40 91.55 87.85 91.78 93 .51

Keys jangling 85.55 79.00 79.50 76.26 82.00 80.63 77.54 77.25 80 .00

Knock 87.99 88.41 85.63 90.37 86.43 89.52 87.44 87.10 87 .67

Laughter 88.39 91.71 87.84 88.36 87.89 91.17 87.99 89.77 89 .47

Meow 93.41 91.99 91.38 89.62 92.75 91.66 90.91 88.98 91 .53

Microwave 88.17 87.82 85.22 86.07 84.32 84.70 84.07 85.71 87 .10

Oboe 97.89 96.23 98.11 96.04 97.38 96.68 96.28 97.19 97 .56

Saxophone 95.43 96.06 96.18 96.14 94.81 95.59 94.97 96.33 99 .10

Scissors 67.62 65.01 67.59 69.06 65.94 66.07 63.00 69.08 77 .55

Shatter 89.67 87.89 87.34 80.60 91.85 83.10 85.42 81.53 90 .91

Snare drum 92.50 90.86 89.84 88.85 90.67 92.31 91.45 88.53 97 .14

Squeak 40.10 41.44 45.30 38.39 46.60 42.07 44.19 40.00 50 .00

Tambourine 91.28 89.96 90.23 90.96 90.21 90.12 90.65 89.19 93 .83

Tearing 70.75 67.73 70.09 70.44 70.40 66.85 69.98 69.84 72 .73

Telephone 76.42 79.94 79.20 78.90 78.25 80.65 79.38 81.70 82 .98

Trumpet 92.34 92.21 92.90 91.88 91.68 93.79 91.75 91.23 94 .74

Violin 95.90 95.74 96.15 95.71 94.99 95.98 96.27 94.89 97 .30

Writing 82.19 85.00 81.78 83.22 82.59 85.34 78.93 85.58 84 .75

Macro Average 87.02 86.03 86.69 85.41 86.93 85.84 86.36 85.86 89 .25

Micro Average 88.53 87.89 88.45 87.40 88.30 87.82 88.13 87.78 90 .88

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

68

The results given in Table 4.8 indicate that STACKED8 outperforms the other methods in

most cases. In order to confirm the significance of the observed differences, we have compared

the performances of these techniques using the average ranks over the 41 events. Following

Demasar’s recommendations [48], we have first conducted a Friedman test to statistically

compare the performance of these systems, assuming that all systems perform similarly. this

test rejects this hypothesis with 𝑋𝐹
2 = 58.92 > 𝑋2(8) = 47.97 for 𝛼 = 1.0 1.0 × 10−7 (𝑋𝐹

2

is distributed according to the 𝑋2distribution with 9 − 1 = 8 degrees of freedom), and therefore

confirms the existence of at least one pair of techniques with significantly different

performances.

Second, because we are only interested in comparing STACKED8with the other alternatives,

we proceeded with a Bonferroni Dunn test while considering STACKED8 as the control system.

Figure 4.8 shows the results of the Bonferroni-Dunn test at a 0.1% significance level with the

critical value 𝑞0.001 = 3.83 and the critical difference CD = 2.32. On the horizontal axis, we

represent the average ranks of each method (given in Table 4.8), and we mark using a thick line

the interval of one CD to the left and to the right of the average rank of STACKED8Any system

with a rank outside this area is significantly different from the control system.

The analysis of Bonferroni-Dunn test results illustrated by Figure 4.8 indicates that

STACKED8 has the lowest rank and all the other techniques fall outside the marked interval.

Therefore, we can conclude that STACKED8 significantly outperforms the individual models,

which is consistent with our initial observations.

Figure 4.8: Comparison of the Stacked8 model with the other stacked models with the Bonferroni Dunn test.

 Case Study A: STACKED8 system

In order to get a better insight on the effect of Stacking on each kind of the sound events,

we depict in Figure 4.9 the confusion matrix of STACKED8 estimated on the test set.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

69

Figure 4.1: STACKED8 confusion matrix.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

70

Based on our comparative analysis of the confusion matrices of STACKED8(Figure 4.8),

along with CRNNA (Figure 4.2), CRNNB (Figure 4.3), we can derive the following findings:

1. In case of many rare events such as “Scissors” and “Bus”, the stacking considerably

improves the performance of the individual learners. For instance, the F1-score of

scissors has increased by at least 8.5% (please refer to Table 4.8).

2. In the case of the non-manually verified data such as “Snare drum” (80% of the samples

are non-manually verified), the stacking model boosts the score of the best model by

5%. Moreover, the number of false negatives has decreased drastically. For instance,

we observed in Figure 4.2 and Figure 4.9. “Snare_drum” has been misclassified with

“Violin”,” Hi_hat”, “Gong” and “Cowbell. Stacking has shown remarkable decrease in

the number of false negatives.

3. The stacked ensemble provides better tagging scores of the impulsive events than

CRNNA and CRNNB. Specifically, the classification rates of some impulsive sounds like

“Gunshots”, “Computer Keyboard” and “Finger snapping” have known a remarkable

rise, please refer to Figures 4.3, 4.4 and Table 4.8.

Based on these insights, we conclude that stacking provides an appropriate combination

of systems: (1) trained on Configuration A and B features; (2) built using numerous deep neural

network architectures; which elevates the generalization ability of the individual models.

 Case Study B: Impact of the size of the stacked model

This section is devoted to investigating how the size of the stacked ensemble influences

the performance. We have carried out the following experiment. We have trained 4 stacked

models; each model is composed of 4 base learners. A summary of these stacked models is

given in Table 4.9. We have measured the F1-score of these systems on the test set. The results

are provided in Table 4.10. We also report the F1-score of the STACKED8 model as the control

system.

Table 4.9: The base learners of the 4 stacked models.

 Base models

Config
A

 VGG13A, CRNNA, GCNNA, GCRNNA

Config
B

 VGG13𝐵, CRNN𝐵, GCNN𝐵, GCRNN𝐵

Mixab VGG13A, CRNNA, VGG13B, CRNNB

MixG GCNNA, GCRNNA, GCNNB, GCRNNB

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

71

Table 4.10: F1-score (%) results of all the stacked models.

Class Config
A

 Config
𝑩

 Mix𝒂𝒃 Mix𝑮 STACKED8

Acoustic guitar 86.42 86.75 87.50 88.89 87 .50

Applause 96.97 98.46 96.97 96.97 98 .46

Bark 96.43 98.18 98.18 96.43 98 .18

Bass drum 96.55 98.25 94.92 98.25 98 .25

Burping 98.46 98.41 100.00 98.46 100 .00

Bus 89.36 82.61 89.36 89.36 89 .36

Cello 93.20 92.31 95.24 95.15 96 .15

Chime 81.82 69.57 78.26 76.06 76 .06

Clarinet 99.12 97.39 98.25 99.12 100 .00

keyboard 88.00 92.31 92.31 90.20 88 .46

Cough 90.32 94.92 91.80 91.80 91 .80

Cowbell 96.30 93.98 95.12 96.30 93 .98

Double bass 93.98 93.83 95.12 95.24 96 .39

Drawer 89.66 76.36 82.76 89.29 82 .76

Electric_piano 95.38 95.38 95.38 93.75 93 .75

Fart 88.14 91.80 93.10 93.33 93 .33

Finger_snapping 96.97 96.97 96.97 96.97 96 .97

Fireworks 71.43 60.38 67.86 65.45 66 .67

Flute 98.18 98.18 98.15 97.25 98 .15

Glockenspiel 84.62 65.31 75.00 75.00 72 .34

Gong 88.31 90.91 90.91 90.91 90 .91

Gunshot 84.38 87.02 88.37 87.02 88 .06

Harmonica 93.75 93.94 93.75 92.31 93 .75

Hi-hat 93.67 92.11 93.51 93.67 93 .51

Keys_jangling 81.48 77.78 81.48 80.77 80 .00

Knock 88.00 87.67 90.41 88.00 87 .67

Laughter 89.47 92.31 92.31 88.00 89 .47

Meow 91.53 89.66 93.10 91.53 91 .53

Microwave 91.53 87.10 88.52 90.00 87 .10

Oboe 97.56 97.62 97.56 97.56 97 .56

Saxophone 97.74 97.72 97.74 98.64 99 .10

Scissors 75.00 74.51 77.55 74.51 77 .55

Shatter 92.86 89.29 92.86 92.86 90 .91

Snare_drum 95.77 94.12 97.14 97.14 97 .14

Squeak 50.00 44.07 52.63 51.72 50 .00

Tambourine 92.50 93.83 93.83 92.50 93 .83

Tearing 69.70 73.24 76.47 71.64 72 .73

Telephone 81.72 82.22 83.87 84.44 82 .98

Trumpet 94.74 96.00 94.74 94.74 94 .74

Violin 97.30 96.83 97.74 97.30 97 .30

Writing 81.97 88.14 86.67 83.33 84 .75

Macro Average 89.27 87.99 89.84 89.31 89 .25

Micro Average 90.63 89.69 91.25 90.81 90 .88

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

72

In order to study these results and reveal significant differences, we have carried out

statistical tests. We have first conducted the Friedman test, while assuming that the observed

differences are due to random behavior. This test rejects our hypothesis with α = 0.02, which

indicates an existence of at least one pairwise significant difference. For further analysis of

these results, we have compared these scores in a pairwise manner based on the Wilcoxon test

in Table 4.11. The first row of each entry specifies the number of Win/Tie/Loss of the technique

in the column over the technique in the row; whereas, the second row shows the p-values for

the Wilcoxon test. If the entry is bold, this means that the number of wins/losses over 41 is

statistically significant using the Wilcoxon test.

Table 4.11: Pairwise comparisons of F1-score results based on Wilcoxon signed-ranks test.

We can sum-up the analysis of the previous results as follows:

(1) Overall, Mixab yields a remarkable performance. Most importantly, it significantly

outperforms the STACKED8 model by a p-value= 0.08. A possible explanation of this

behavior might be related to the correlation among the individual members of the

STACKED8 model. It is widely acknowledged that an ensemble made of correlated, or

non-diverse, members leads to lower generalization power [114]. We believe that the

STACKED8 ensemble is composed of highly correlated members, which justifies the

obtained results. A further investigation and experimentation is required to solidify

our conclusion. These results suggest an appealing future work direction.

(2) Config
B

exhibits very poor performance, which is expected since, according to our

previous findings (case study A from the first set of experiments), Configuration B-

based systems have delivered better results on impulsive events, but have exhibited

an overall weaker performance than the other counterparts. Note that our dataset is

Config

A
 Config

𝑩
 MixG Mixab

STACKED8
W/T/L 14/0/27 15/0/26 15/1/25 21/1/19

p-value 0.24 0.02 0.65 0.08

Config
A

W/T/L

17/3/21 15/15/11 21/10/10

p-value

0.41 0.32 0.05

Config
𝑩

W/T/L

23/5/13 26/7/8

p-value

0.03 0.0006

MixG

W/T/L

20/10/11

p-value

0.04

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

73

not domain specific. It is composed of events that some of them are impulsive,

whereas, some are not. Therefore, configuration B may not generalize well which

justifies the reported weak performance. This fact justifies the reported low

performance, which is consistent with our previous findings.

(3) The Gating-based systems are significantly worse than the non-gating-based systems,

which is consistent with our previous findings. As highlighted in case study B (first

set of experiments), we have trained the gating-based models for 20 epochs only.

Our experimental investigation Case study B (first set of experiments) has shown

that such systems should been trained for longer runs.

Based on these observations, we can conclude that the size of the ensemble can

significantly influence the power of Stacking. Specifically, our analysis indicates that a smaller

ensemble can yield better results. Note that several experimental and theoretical studies have

shown that large ensembles do not always guarantee better predictive performance [115] [116]

[117] This fact coincides with our previous conclusions. Furthermore, stacking the gating-based

systems causes a drop in the predictive scores, which is expected since our individual models

have not been well trained, please refer to Case study A (first set of experiments) for additional

justification.

4.4 Conclusion and summary of experimental findings

From these experiments, we can derive 4 lessons:

1. Integrating gated recurrent units within CNN can induce better systems for Audio

Tagging.

2. Introducing (i) the gating mechanism and (ii) the feature extraction configurations yield

models which produce diverse and complementary predictions.

3. Stacking demonstrates a remarkable improvement of the individual learners'

performances. Most importantly, it provides a proper fusion of their predictions, which

leads to better handling of events, including rare and impulsive cases.

4. Combining a larger number of models can entail a deterioration in the overall

performance. An ensemble made of VGG13A, CRNNA, VGG13Band CRNNByields

significantly better scores than STACKED8.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

74

CONCLUSION

The primary goal of this thesis was to conduct an empirical analysis and comparisons

among Single-tag Audio Tagging systems that are able to recognize an increased number

of sound events of very diverse nature. To this end, we have carried out two sets of

experiments on FSDKaggle2018 dataset. Our main contribution is three folds: (1) We

describe the major steps involved in the design and analysis of several Audio Tagging

systems. (2) We present extensive experimental comparisons founded on strong statistical

tests. (3) We test the impact of stacking 8 deep learning models on the overall performance.

A detailed description of our work is provided below. First, we have investigated four deep

learning architectures (VGG13, GCNN, CRNN and GCRNN). In addition, we have trained these

models on Log-Mel Spectrogram features using two different configurations for extraction.

From this experimental study, we can derive the following conclusions:

1. The integration of gated recurrent units within CNN (i.e. CRNN) can induce better

systems for Audio Tagging.

2. The gating mechanism works better when the model is trained for longer runs, i.e.

higher number of epochs.

3. The mechanism for extracting the feature sets plays an important role for designing

Audio Tagging systems. Models trained on features extracted using a smaller window

are better at capturing impulsive events, but show an overall weak performance. In

addition, the confusion matrices indicate that the mechanism for extracting features

induce models which produce diverse yet complementary predictions.

Second, motivated by the fact that the individual models produce diverse predictions,

we have considered ensembling the predictions of all the trained models through stacking.

Based on our analysis, we can conclude that:

1. Stacking demonstrates a remarkable improvement of the individual learners'

performances. Most importantly, it provides a proper fusion of their diverse predictions,

which better captures events, including rare and impulsive cases.

2. Combining a larger number of models can entail a deterioration in the overall

performance. An ensemble made of VGG13A, CRNNA, VGG13B and CRNNB yields

significantly better scores than STACKED8.

CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION

75

Limits and Future work

In the previous section, we have summarized our main contributions. However, it is of

paramount importance to specify the limitations of our work and highlight potential future

work directions. The success of the ensembling method relies mainly on the fusion of the

individual learners predictions. However, in our experiments we have only considered the

stacking mechanism. An appealing work direction would be to thoroughly investigate other

fusion methods such as Grading [118], Adaptive fusion and co-operative training [119],

Mathematical programming [49], and even ensemble pruning techniques [120]. Similarly, the

hyperparameters used for training the deep learning models considerably affect the

generalization ability. For instance, in the first set of experiments, we have found that

training the gating-based models for longer runs improves the performance. Due to the lack

of a dedicated computational platform, we have trained our models for 20 epochs only. A

natural extension of this work would be to investigate tuning several hyperparameters like:

the number of epochs, the batch size, the learning rate, and exploring other data augmentation

techniques. The majority of the available sound datasets are made of a large amount of

labeled and unlabeled data. To cope with this matter, it would be interesting to investigate

semi-supervised approaches such as pseudo-labeling [121], which offers an elegant

mathematical model that serves this purpose very well.

During this project, we have encountered many struggles. The training of the learning

models took a very long time due to the lack of dedicated computational platforms. In addition,

when performing model selection, storing the trained classifiers caused a considerable increase

in the usage of memory space.

This field of research is interesting as it contributes directly to the development of smart

cities. We have acquired knowledge and many skills throughout the past 8 months, such as:

fundamentals of Machine Learning and key steps for conducting proper Machine Learning

experiments. We have also learned the analysis of the experimental findings based on statistical

tests. Moreover, we have mastered Python and have discovered “Google Collaboratory”

platform that we will continue using for future machine learning projects.

APPENDIX

76

APPENDIX A: DEMONSTRATION
A.1 Introduction

In this section, we present the web application we developed for our Audio tagging

systems. First, in Section A.1 we present the tools that we have used for development. Next, in

Section A.2 we describe all the possible interaction with the application.

A.2 Development tools

Hardware device/ Environmental setup

In order to create this website, we have used the following resources:

The application was developed on a desktop running on Windows 10 operating system, with

Intel Core i4 and 4 Gb RAM.

Table A.1: Development tools.

Tools Description /functionality

FLASK Flask is a micro-framework designed to create a web application in a

short time. We have used flask for the backend development of this

application. It only implements the core functionality giving developers

the flexibility to add the feature as required during the implementation.

HTML Hypertext Markup Language is the standard markup language for

documents designed to be displayed in a web browser.

CSS

Cascading Style Sheet is a style language that separates the style of a

web document from its content. It is used to customize the layout and

control the appearance of web pages written by markup languages.

BOOTSTRAP Bootstrap is a popular front-end development framework that includes

HTML, CSS and JS components. We have used bootstrap to facilitate

the design of our webpages.

PYTHON Python is an object-oriented open source programming language. We

used python as the main programming language for this project.

JQUERY Jquery is a lightweight JavaScript library used for enabling the

interactivity of the web pages.

TENSORFLOW TensorFlow is an open-source software library for high performance

numerical computation. It is a Machine Learning tool mainly designed

to process neural network models.

KERAS Keras is a high-level neural network API, Keras is written in pure Python

and based on Tensorflow.

APPENDIX

77

A.3 Developed system

In the pipeline of designing Audio Tagging systems, creating the model is the hardest,

but it is not the end. In order to benefit from the created models, we deployed the pretrained

models online to be accessed by internet users using Flask micro web framework, Python,

HTML (HyperText Markup Language), CSS (Cascading Style Sheet), and JavaScript. Simple

web pages are built where the user can access the application and upload an audio clip to the

server. Based on the deployed models, the audio clip is classified and its class label is returned

back to the user with additional information on the process. The following sections demonstrate

several parts of the application:

Home

The home page (Figure A.1) is the main page where the user can navigate to different

parts of the application. it consists of three main parts:

• Header which is on the top of the page. It consists of five tabs (About, Technology, Use

Cases, Blogs and Contact page) and a logo. When the user clicks on one of these tabs

the corresponding page is displayed.

• The work area which is located below the navigation bar is where the primary

interaction with the app occurs. It includes a list of our systems (VGG13A, VGG13B,

CRNNA, CRNNB, GCNNA, GCNNB, GCRNNA, GCRNNB and the five stacked models). In

order to access the aforementioned systems hover and click on their corresponding card.

• Footer located below the work area. Here, we can find “Contact” links in the bottom

center of the footer (email, phone etc.) as well as our social media accounts.

The rest of the web pages follow the same template as the home page depicted in the Figure

below.

APPENDIX

78

Figure A.1: The home page.

APPENDIX

79

The System web Page

When the user chooses an audio tagging system, the page shown in Figure A.2 pops up

on the screen. The Audio tagging module consists of an audio player which contains the general

information of the audio file (current time/end time, name of the audio file and the pause /play

button) that helps users control the audio player. Note that we have dedicated a separate web

page for each individual model (VGG13A, VGG13B, CRNNA, CRNNB, GCNNA, GCNNB, GCRNNA,

GCRNNB). Note that the Stacked models (STACKED8, Config
A

, Config
B

, MixG and Mixab) are

given in a separate page (Figure A.2) in order to observe the differences in between the stacked

models and their base learner. The process of prediction is as follows:

1. First, the user chooses the audio file to upload from the internal storage (computer) to

the web server by clicking on the upload button. Note that our web application only

deals with (.wav) audio files and any other extension is not supported. Figure A.3

depicts the upload process.

Figure A.2: The system page before any prediction process.

APPENDIX

80

Figure A.3: The upload process.

2. Second, once the audio file is selected, the user can click on the predict button (below

the audio player). This process goes through the following steps: first the Feature

Engineering process (pre-processing, acoustic feature extraction), followed by the

classification process. When the prediction process is done the results are shown at the

bottom of the web page.

3. Third, the result section for the individual models contains a list of the 3 best predictions

tags ordered from the most probable to the least. Note that true tags are displayed in

green. Additional information are provided when the user chooses the” More details”

options. This latter includes details on the feature engineering step. Moreover, the

user can play the audio file and its preprocessed version, view time representation of

the audio files and the Spectrogram resulted from the feature extraction step. As for

the stacked models page, the result section contains an additional table displaying the

predictions for the four 4 stacked models and their base models as shown in Figure A.5.

APPENDIX

81

Figure A.4: The results page.

APPENDIX

82

Additional web pages

The about page (Figure A.5) contains the general description of audio tagging, an overview of

the applications characteristics and advantages.

Use cases page (Figure A.6) shows a brief description of a wide range of applications related

to Audio Tagging.

Blogs (Figure A.7) includes some interesting blogs and articles related to audio tagging and

many other sound analysis tasks.

Technology (Figure A.8) provides a brief description on the main concepts used to build a

system capable of recognizing wide variety real-world sounds.

APPENDIX

83

Figure A.5: The about page.

APPENDIX

84

Figure A.6: The use case page.

APPENDIX

85

Figure A.1 : The blogs page.

REFERENCES

86

REFERENCES

[1] T. Virtanen, M. D. Plumbley, and D. Ellis, “Computational analysis of sound scenes and events,” in

Computational Analysis of Sound Scenes and Events, 2017, pp. 16–41.

[2] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic annotation and retrieval of music and

sound effects,” IEEE Trans. Audio, Speech Lang. Process., 2008, doi: 10.1109/TASL.2007.913750.

[3] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “Large-Scale Weakly Supervised Audio Classification

Using Gated Convolutional Neural Network,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. -

Proc., vol. 2018-April, pp. 121–125, 2018, doi: 10.1109/ICASSP.2018.8461975.

[4] I.-Y. Jeong and H. Lim, “Audio tagging system using densely connected convolutional networks,” in

Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop

(DCASE2018), 2018.

[5] S. Dimitrov, J. Britz, B. Brandherm, and J. Frey, “Analyzing sounds of home environment for device

recognition,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), 2014, doi: 10.1007/978-3-319-14112-1_1.

[6] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “A survey of audio-based music classification and annotation,”

IEEE Trans. Multimed., 2011, doi: 10.1109/TMM.2010.2098858.

[7] S. Chu, S. Narayanan, C. C. Jay Kuo, and M. J. Matarić, “Where am I? Scene recognition for mobile robots

using audio features,” 2006 IEEE Int. Conf. Multimed. Expo, ICME 2006 - Proc., vol. 2006, pp. 885–888,

2006, doi: 10.1109/ICME.2006.262661.

[8] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen, “Convolutional Recurrent Neural

Networks for Polyphonic Sound Event Detection,” IEEE/ACM Trans. Audio Speech Lang. Process., 2017,

doi: 10.1109/TASLP.2017.2690575.

[9] V. Morfi and Dan Stowell, “Deep learning for audio event detection and tagging on low-resource datasets,”

Appl. Sci., 2018, doi: 10.3390/app8081397.

[10] S. Sigtia, A. M. Stark, S. Krstulović, and M. D. Plumbley, “Automatic Environmental Sound Recognition:

Performance Versus Computational Cost,” IEEE/ACM Trans. Audio Speech Lang. Process., 2016, doi:

10.1109/TASLP.2016.2592698.

[11] B. Uzkent, B. D. Barkana, and H. Cevikalp, “Non-speech environmental sound classification using SVMs

with a new set of features,” Int. J. Innov. Comput. Inf. Control, 2012.

[12] J. Pons, O. Nieto, M. Prockup, E. Schmidt, A. Ehmann, and X. Serra, “End-to-end learning for music

audio tagging at scale,” Proc. 19th Int. Soc. Music Inf. Retr. Conf. ISMIR 2018, no. Nips, pp. 637–644,

2018.

[13] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “A joint detection-classification model for audio tagging

of weakly labelled data,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal

Processing - Proceedings, 2017, doi: 10.1109/ICASSP.2017.7952234.

[14] E. Cakır and T. H. and T. Virtanen, “DOMESTIC AUDIO TAGGING WITH CONVOLUTIONAL

NEURAL NETWORKS,” 2016 Int. Work. Detect. Classif. Acoust. Scenes Events, 2016, doi:

10.1109/IWAENC.2016.7602891.

[15] W. Li, S. Li, X. Shao, and Z. Li, Proceedings of the 6th Conference on Sound and Music Technology.

2019.

[16] E. Fonseca et al., “General-purpose Tagging of Freesound Audio with AudioSet Labels: Task Description,

Dataset, and Baseline,” no. 688382, 2018.

[17] E. Fonseca et al., “Freesound datasets: A platform for the creation of open audio datasets,” Proc. 18th Int.

Soc. Music Inf. Retr. Conf. ISMIR 2017, pp. 486–493, 2017.

[18] A. Vaiserman and O. Lushchak, Geroscience. 2019.

[19] V. K. I. DIMITRIS G. MANOLAKIS, Applied digital signal processing:theory and practice. Cambridge

REFERENCES

87

University Press, 2011.

[20] E. Babaee, N. B. Anuar, A. W. Abdul Wahab, S. Shamshirband, and A. T. Chronopoulos, “An Overview

of Audio Event Detection Methods from Feature Extraction to Classification,” Appl. Artif. Intell., vol. 31,

no. 9–10, pp. 661–714, 2017, doi: 10.1080/08839514.2018.1430469.

[21] E. Cakir, Deep Neural Networks for Sound Event Detection, vol. 12. 2019.

[22] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic sound event detection using multi label

deep neural networks,” Proc. Int. Jt. Conf. Neural Networks, vol. 2015-Septe, no. July, 2015, doi:

10.1109/IJCNN.2015.7280624.

[23] R. Lee, Ed., Software Engineering Research, Management and Applications, vol. 578. Cham: Springer

International Publishing, 2015.

[24] S. S. Stevens, J. Volkmann, and E. B. Newman, “A Scale for the Measurement of the Psychological

Magnitude Pitch,” J. Acoust. Soc. Am., 1937, doi: 10.1121/1.1915893.

[25] S. S. Stevens and J. Volkmann, “The Relation of Pitch to Frequency: A Revised Scale,” Am. J. Psychol.,

1940, doi: 10.2307/1417526.

[26] S. B. Davis and P. Mermelstein, “Comparison of Parametric Representations for Monosyllabic Word

Recognition in Continuously Spoken Sentences,” IEEE Transactions on Acoustics, Speech, and Signal

Processing. 1980, doi: 10.1109/TASSP.1980.1163420.

[27] R. Serizel et al., “Acoustic Features for Environmental Sound Analysis To cite this version : HAL Id : hal-

01575619 Chapter 4 : Acoustic Features for Environmental Sound Analysis .,” 2017.

[28] T. Virtanen, M. D. Plumbley, and D. Ellis, Computational Analysis of Sound Scenes and Events. .

[29] K. S. Rao and S. G. Koolagudi, Linear Prediction Analysis of Speech. 2013.

[30] B. Ayoub, K. Jamal, and Z. Arsalane, “Gammatone frequency cepstral coefficients for speaker

identification over VoIP networks,” 2016 Int. Conf. Inf. Technol. Organ. Dev. IT4OD 2016, 2016, doi:

10.1109/IT4OD.2016.7479293.

[31] M. Todisco, H. Delgado, and N. Evans, “A new feature for automatic speaker verification anti-spoofing:

Constant Q cepstral coefficients,” Odyssey 2016 Speak. Lang. Recognit. Work., pp. 283–290, 2016, doi:

10.21437/Odyssey.2016-41.

[32] H. Phan, L. Hertel, M. Maass, P. Koch, and A. Mertins, “CaR-FOREST: Joint Classification-Regression

Decision Forests for Overlapping Audio Event Detection,” no. 1, pp. 1–5, 2016.

[33] J. F. Gemmeke et al., “AUDIO SET : AN ONTOLOGY AND HUMAN-LABELED DATASET FOR

AUDIO EVENTS,” 2016.

[34] P. Foster, S. Sigtia, S. Krstulovic, J. Barker, and M. D. Plumbley, “CHIME-HOME : A DATASET FOR

SOUND SOURCE RECOGNITION IN A DOMESTIC ENVIRONMENT School of Electronic

Engineering and Computer Science , Queen Mary University of London , UK Audio Analytic , Cambridge

, UK Department of Computer Science , University of Sheff,” pp. 4–8, 2015.

[35] B. L. Sturm, “An analysis of the GTZAN music genre dataset,” in MIRUM 2012 - Proceedings of the 2nd

International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal

Strategies, Co-located with ACM Multimedia 2012, 2012, doi: 10.1145/2390848.2390851.

[36] K. J. Piczak, “ESC: Dataset for environmental sound classification,” in MM 2015 - Proceedings of the

2015 ACM Multimedia Conference, 2015, doi: 10.1145/2733373.2806390.

[37] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic scene classification and sound event

detection,” in European Signal Processing Conference, 2016, doi: 10.1109/EUSIPCO.2016.7760424.

[38] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound research,” in MM 2014

- Proceedings of the 2014 ACM Conference on Multimedia, 2014, doi: 10.1145/2647868.2655045.

[39] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, and X. Serra, “Audio Tagging with Noisy Labels and

Minimal Supervision,” 2019, doi: 10.33682/w13e-5v06.

[40] L. Barker, “Pattern Classification,” Technometrics, 2002, doi: 10.1198/tech.2002.s659.

[41] M. Zhang, Z. Zhou, and S. Member, “Multilabel Neural Networks with Applications to Functional

Genomics and Text Categorization,” vol. 18, no. 10, pp. 1338–1351, 2006.

REFERENCES

88

[42] S. T. Examiner, T. Virtanen, H. H. Examiner, and E. Engineering, “Emre Cakir Multilabel Sound Event

Classification with Neural Networks,” no. September, 2014.

[43] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an

Application to Boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997, doi:

10.1006/jcss.1997.1504.

[44] M. Kuhn and K. Johnson, Applied predictive modeling. 2013.

[45] A. Scenes, “ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR GENERAL PURPOSE

School of Electrical Engineering Signals and Systems Department Belgrade , Serbia,” 2018.

[46] I.-Y. Jeong, H. Lim, and C. Ai, “AUDIO TAGGING SYSTEM FOR DCASE 2018: FOCUSING ON

LABEL NOISE, DATA AUGMENTATION AND ITS EFFICIENT LEARNING Technical Report,” pp.

1–4, 2018.

[47] M. Dorfer and G. Widmer, “Training General-Purpose Audio Tagging Networks With Noisy Labels and

Iterative Self-Verification,” Dcase, no. November, 2018.

[48] J. Demˇ, “Statistical Comparisons of Classifiers over Multiple Data Sets,” vol. 7, pp. 1–30, 2006.

[49] L. Rokach, “Taxonomy for characterizing ensemble methods in classification tasks : A review and

annotated bibliography,” Comput. Stat. Data Anal., vol. 53, no. 12, pp. 4046–4072, 2009, doi:

10.1016/j.csda.2009.07.017.

[50] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Stat. Surv., vol. 4,

pp. 40–79, 2010, doi: 10.1214/09-SS054.

[51] S. Edition, An Introduction to Machine Learning | SpringerLink. .

[52] M. Peitler, “Acoustic Event Detection of General Sounds,” 2016.

[53] P. Sciences and A. C. Pocock, “FEATURE SELECTION JOINT LIKELIHOOD,” 2012.

[54] Q. Chen, M. Zhang, and B. Xue, “Feature selection to improve generalization of genetic programming for

high-dimensional symbolic regression,” IEEE Trans. Evol. Comput., vol. 21, no. 5, pp. 792–806, 2017,

doi: 10.1109/TEVC.2017.2683489.

[55] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of deep

convolutional neural networks,” Artif. Intell. Rev., pp. 1–68, 2020, doi: 10.1007/s10462-020-09825-6.

[56] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language Modeling with Gated Convolutional

Networks,” 2017.

[57] S. García, A. Fernández, J. Luengo, and F. Herrera, “Advanced nonparametric tests for multiple

comparisons in the design of experiments in computational intelligence and data mining: Experimental

analysis of power,” Inf. Sci. (Ny)., vol. 180, no. 10, pp. 2044–2064, 2010, doi: 10.1016/j.ins.2009.12.010.

[58] K. Choi and M. Sandler, “Automatic tagging using deep convolutional neural networks.”

[59] A. Senior, “Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic

Modeling Has.”

[60] J. Wang, R. Zhao, D. Wang, R. Yan, K. Mao, and F. Shen, “Machine health monitoring using local feature-

based gated recurrent unit networks,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1539–1548, 2017,

doi: 10.1109/TIE.2017.2733438.

[61] J. Hu, “Squeeze-and-Excitation Networks,” pp. 7132–7141.

[62] C. Koch and E. Niebur, “A Model of Saliency-based Visual Attention for Rapid Scene Analysis,” no.

January 2013, 1998, doi: 10.1109/34.730558.

[63] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. D. Plumbley, “Attention and Localization based on a Deep

Convolutional Recurrent Model for Weakly Supervised Audio Tagging.”

[64] “SCALABLE STACKING AND LEARNING FOR BUILDING DEEP ARCHITECTURES,” pp. 2133–

2136, 2012.

[65] S. Adavanne, P. Pertila, and T. Virtanen, “Sound event detection using spatial features and convolutional

recurrent neural network,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., no. March,

pp. 771–775, 2017, doi: 10.1109/ICASSP.2017.7952260.

REFERENCES

89

[66] T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event detection in real-life recordings,” no. July, 2014.

[67] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley, “Detection and Classification

of Acoustic Scenes and Events,” IEEE Trans. Multimed., vol. 17, no. 10, pp. 1733–1746, 2015, doi:

10.1109/TMM.2015.2428998.

[68] Y. Xu, Q. Huang, W. Wang, P. J. B. Jackson, and M. D. Plumbley, “Fully DNN-based Multi-label

regression for audio tagging,” no. September, 2016.

[69] K. Li, J. Daniels, C. Liu, P. Herrero, and P. Georgiou, “Convolutional Recurrent Neural Networks for

Glucose Prediction,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 2, pp. 603–613, 2020, doi:

10.1109/JBHI.2019.2908488.

[70] M. Monteleone, “NooJ local grammars and formal semantics: Past participles vs. adjectives in Italian,”

Commun. Comput. Inf. Sci., vol. 607, no. 8, pp. 83–95, 2016, doi: 10.1007/978-3-319-42471-2_8.

[71] G. Parascandolo, “RECURRENT NEURAL NETWORKS,” no. August, 2015.

[72] F. Ortega-Zamorano, J. M. Jerez, D. U. Munoz, R. M. Luque-Baena, and L. Franco, “Efficient

Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers,” IEEE Trans. Neural

Networks Learn. Syst., 2016, doi: 10.1109/TNNLS.2015.2460991.

[73] “Deep Learning.” .

[74] R. Pascanu, D. Tour, T. Mikolov, and D. Tour, “On the difficulty of training recurrent neural networks,”

no. 2.

[75] E. T. Virtanen and A. Diment, “Convolutional Neural Networks for Acoustic,” no. May, 2016.

[76] S. Ioffe and C. Szegedy, “Batch Normalization : Accelerating Deep Network Training by Reducing

Internal Covariate Shift.”

[77] M. Lin, Q. Chen, and S. Yan, “Network In Network,” pp. 1–10.

[78] A. Sehgal and N. Kehtarnavaz, “A Convolutional Neural Network Smartphone App for Real-Time Voice

Activity Detection,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2800728.

[79] H. C. Vemula, “Multiple Drone Detection and Acoustic Scene Classification with Deep Learning,” 2018.

[80] J. Feng and S. Lu, “Performance Analysis of Various Activation Functions in Artificial Neural Networks,”

J. Phys. Conf. Ser., vol. 1237, no. 2, 2019, doi: 10.1088/1742-6596/1237/2/022030.

[81] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and

application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629, 2018, doi: 10.1007/s13244-018-

0639-9.

[82] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput.

Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi:

10.1109/CVPR.2016.90.

[83] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long Short Term Memory Recurrent Neural Network Classifier

for Intrusion Detection,” 2016 Int. Conf. Platf. Technol. Serv. PlatCon 2016 - Proc., 2016, doi:

10.1109/PlatCon.2016.7456805.

[84] T. Zia, A. Abbas, U. Habib, and M. S. Khan, “Learning deep hierarchical and temporal recurrent neural

networks with residual learning,” Int. J. Mach. Learn. Cybern., vol. 11, no. 4, pp. 873–882, 2020, doi:

10.1007/s13042-020-01063-0.

[85] P. J. Werbos, “Backpropagation Through Time: What It Does and How to Do It,” Proc. IEEE, vol. 78, no.

10, pp. 1550–1560, 1990, doi: 10.1109/5.58337.

[86] I. Vasilev, D. Slater, G. Spacagna, P. Roelants, and V. Zocca, Python Deep Learning: Exploring Deep

Learning Techniques and Neural Network Architectures with PyTorch, Keras and TensorFlow. 2018.

[87] F. A. Gers, J. Schmidhuber, F. Cummins, F. A. Gers, and F. Cummins, “(Edinburgh , Scotland), 1

Introduction 2 Standard LSTM The basic unit in the hidden layer of an,” vol. 2, pp. 850–855, 1999.

[88] M. Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural Networks,” vol. 45, no. 11, pp. 2673–

2681, 1997.

[89] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “No Title,” pp. 2–6.

REFERENCES

90

[90] J. Salamon and J. P. Bello, “Deep Convolutional Neural Networks and Data Augmentation for

Environmental Sound Classification,” IEEE Signal Process. Lett., vol. 24, no. 3, pp. 279–283, 2017, doi:

10.1109/LSP.2017.2657381.

[91] A. Scenes, “MULTI-LABEL AUDIO TAGGING SYSTEM FOR FREESOUND 2019 : FOCUSING ON

NETWORK ARCHITECTURES , LABEL NOISY AND LOSS FUNCTIONS Technical Report

Xiaofeng Hong , Gang Liu Beijing University of Posts and Telecommunications,” 2019.

[92] N. Zealand, “Stacked Generalization : when does it work ? Stacked Generalization : w h e n does it w o r

k ?,” no. December, 2014.

[93] T. V. EmreÇakır, Sharath Adavanne, Giambattista Parascandolo, Konstantinos Drossos, “Convolutional

Recurrent Neural Networks for Bird Audio Detection,” p. 5, doi: 10.23919/EUSIPCO.2017.8081508.

[94] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end attention-based large

vocabulary speech recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and

Signal Processing - Proceedings, 2016, doi: 10.1109/ICASSP.2016.7472618.

[95] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech

recognition,” in Advances in Neural Information Processing Systems, 2015.

[96] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual attention,” in Advances

in Neural Information Processing Systems, 2014.

[97] T. Lidy and A. Schindler, “CQT-based Convolutional Neural Networks for Audio Scene Classification,”

in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop

(DCASE2016), 2016.

[98] A. Mesaros et al., “Detection and Classification of Acoustic Scenes and Events 2017,” Dcase 2017, no.

November, 2017.

[99] M. Verleysen, “Classification in the Presence of Label Noise : a Survey,” no. May, 2014, doi:

10.1109/TNNLS.2013.2292894.

[100] F. Font, G. Roma, and X. Serra, “Freesound Technical Demo,” pp. 411–412.

[101] M. Lutz, Learning Python: Powerful Object-Oriented Programming. 2009.

[102] H. P. Langtangen et al., A Primer on Scientific Programming with Python Fifth Edition. 2016.

[103] B. McFee et al., “librosa: Audio and Music Signal Analysis in Python,” Proc. 14th Python Sci. Conf., no.

Scipy, pp. 18–24, 2015, doi: 10.25080/majora-7b98e3ed-003.

[104] S. Van der Walt and M. Aivazis, “The NumPy Array: A Structure for Efficient Numerical Computation,

Computing in Science & Engineering,” Comput. Sci. Eng., 2011.

[105] W. McKinney, “pandas: a Foundational Python Library for Data Analysis and Statistics,” Python High

Perform. Sci. Comput., 2011.

[106] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”

3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.

[107] K. Xu et al., “General audio tagging with ensembling convolutional neural networks and statistical

features,” J. Acoust. Soc. Am., vol. 145, no. 6, pp. EL521–EL527, 2019, doi: 10.1121/1.5111059.

[108] M. Sugiyama, Introduction to Statistical Machine Learning. 2015.

[109] F. Ykhlef, S. A. Hamada, F. Ykhlef, A. Derbal, and D. Bouchaffra, “Real-time detection of impulsive

sounds for audio surveillance systems,” CEUR Workshop Proc., vol. 2351, pp. 1–10, 2019.

[110] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “MixUp: Beyond empirical risk minimization,” in

6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,

2018.

[111] D. Liang, F. Yang, T. Zhang, and P. Yang, “Understanding mixup training methods,” IEEE Access, 2018,

doi: 10.1109/ACCESS.2018.2872698.

[112] C. G. Cordero, S. Hauke, M. Muhlhauser, and M. Fischer, “Analyzing flow-based anomaly intrusion

detection using Replicator Neural Networks,” 2016 14th Annu. Conf. Privacy, Secur. Trust. PST 2016, pp.

317–324, 2016, doi: 10.1109/PST.2016.7906980.

REFERENCES

91

[113] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification using ensembles of pruned sets,” Proc.

- IEEE Int. Conf. Data Mining, ICDM, pp. 995–1000, 2008, doi: 10.1109/ICDM.2008.74.

[114] Y. Bian and H. Chen, “When does Diversity Help Generalization in Classification Ensembles?,” pp. 1–

12, 2019.

[115] J. Zhou, H. Peng, and C. Y. Suen, “Data-driven decomposition for multi-class classification,” vol. 41, pp.

67–76, 2008, doi: 10.1016/j.patcog.2007.05.020.

[116] J. Zhou and C. Y. Suen, “Unconstrained Numeral Pair Recognition Using Enhanced Error Correcting

Output Coding : A Holistic Approach,” 2005.

[117] C. Qian, Y. Yu, and Z. Zhou, “Pareto Ensemble Pruning ∗,” pp. 2935–2941, 2012.

[118] A. K. Seewald and J. Fürnkranz, “An evaluation of grading classifiers,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2001, doi: 10.1007/3-540-44816-0_12.

[119] N. M. Wanas, R. A. Dara, and M. S. Kamel, “Adaptive fusion and co-operative training for classifier

ensembles,” Pattern Recognit., 2006, doi: 10.1016/j.patcog.2006.02.003.

[120] G. Tsoumakas, I. Partalas, and I. Vlahavas, “An ensemble pruning primer,” in Studies in Computational

Intelligence, 2009, doi: 10.1007/978-3-642-03999-7_1.

[121] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness, “Pseudo-Labeling and Confirmation

Bias in Deep Semi-Supervised Learning,” 2019.

