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ABSTRACT 

The goal of general-purpose audio tagging is to create systems capable of recognizing a 

variety of sounds. Including musical instruments, vehicles, animals, sounds generated by some 

sort of human activity etc. The motivation for research in the field of artificial sound 

understanding can be found in potential applications such as security, healthcare (hearing 

impairment), improvement in smart devices and various music related tasks. The main 

contribution of this work entails conducting extensive studies and comparisons between audio 

tagging systems using a huge dataset made of 11 073 audio recordings. In this thesis, we have 

carried out two sets of experiments. First, we have examined Deep Convolutional neural 

networks (CNN) and 3 of its variants (Convolutional Recurrent Neural Network (CRNN), 

Gated Convolutional Recurrent Neural Network (GCRNN) and Gated Convolutional Neural 

Networks (GCNN)) using Log-Mel Spectrogram features. We have supported our analysis and 

discussion with numerous statistical tests to analyze and compare the effect of the above-

mentioned features and models on the tagging performance. Our experimental findings indicate 

that our systems capture diverse set of sound events, with various confidences. Moreover, 

Convolutional Recurrent Neural Network (CRNN) significantly outperforms the other models. 

Second, motivated by the fact that the individual models produce diverse predictions, we have 

investigated the effect of ensemble learning using a technique known as stacking. Our analysis 

shows that stacking provides a proper amalgamation of the individual learners, resulting in 

better handling the diverse nature of the events. 

Keywords: Audio Tagging, Deep Learning, Machine leaning, Ensemble Learning, 

Stacking, Feature Extraction, Statistical Tests. 

 

 

 

 

 

 

 

 

 

 



 

 

RESUME 

L’étiquetage audio est une technique qui permet de créer des systèmes capables 

d’identifier un ensemble de sons tel que : les sons des instruments musicaux, les sons générer 

par une activité humaine et le son des véhicules etc. Ce qui a motivé la présente recherche, c’est 

sa potentielle application dans divers domaines tel que la sécurité, la santé ainsi que 

l'amélioration des appareils intelligents. La principale contribution de ce travail consiste à 

mener une étude approfondie qui consiste à analyser et comparer les performances de plusieurs 

systèmes d’étiquetage audio en utilisant une base de données volumineuse constituée de 11 473 

enregistrements audio. Dans ce travail, nous avons effectué deux séries d'expériences: dans un 

premier temps, nous avons comparé les performances de nos systèmes selon les caractéristiques 

du log-mel spectrogramme en examinant le  réseau de neurones convolutifs (CNN) et trois de 

ses variants : le réseau de neurones convolutifs récurrents (CRNN),  le réseau de neurones 

convolutifs récurrents à portes (GCRNN) et le  réseau de neurones convolutifs  à portes 

(GCNN). Nous avons appuyé notre analyse dans ce document par des tests statistiques afin 

d’interpréter et de comparer les résultats obtenus. Cela nous a permis de démontrer que nos 

systèmes capturent plusieurs types d’évènements sonores. De plus, la performance du réseau 

de neurones convolutifs récurrents (CRNN) a surpassé les autres. Deuxièmement, motivé par 

le fait que les modèles individuels produisent des prédictions diverses. Nous avons étudié l'effet 

de l'apprentissage ensembliste en invoquant une technique connue sous le nom de «stacking». 

Notre analyse démontre que cette méthode a une capacité de généralisation considérablement 

meilleure que les classifieurs uniques. Plus important encore, cette dernière a fourni une fusion 

appropriée de leurs diverses prédictions, ce qui a permis de mieux gérer la diversité des 

évènements. 

Mot clés : Etiquetage Audio, Apprentissage Profond, Apprentissage automatique, 

Apprentissage Ensembliste, Extraction des Caractéristiques, Testes Statistique. 
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 ملخص 

تهدف أنظمة وضع العلامات الصوتية العامة إلى إنشاء أنظمة قادرة على التعرف على مجموعة متنوعة من الأصوات  

الموسيقية، المركبات، الحيوانات والأصوات الناتجة عن أنشطة بشرية مختلفة... إلخ. الدافع الأساسي للبحث بما فيها الآلات  

التطبيقات المحتملة مثل الأمن، الرعاية الصحية )ضعف السمع(، تحسين الأجهزة   في مجال فهم تحليل الصوت يكمن في 

لرئيسية لهذه الأطروحة هي إجراء دراسات ومقارنات مكثفة بين الذكية ومختلف المجالات المتعلقة بالموسيقى. المساهمة ا

في هذه   أنظمة وضع العلامات الصوتية باستخدام قاعدة بيانات تتضمن على تسجيلات صوتية من مجالات متعددة ومختلفة.

الناتجة عن استعما التجارب، حيث قمنا اولا بفحص أداء أنظمتنا  نموذج الشبكات   لالأطروحة، قمنا بتنفيذ مجموعتين من 

، (CRNN)التكرارية  عصبونية الالتفافية  نماذج  ممتددة منها ;  نموذج الشبكات ال  3  و   (CNN)  عميقةعصبونية الالتفافية   ال

ال الشبكات  الالتفافية  نموذج  )عصبونية  البوابية  ال  (CRNNGالتكرارية  الشبكات  الالتفافية  ونموذج  البوابية عصبونية 

(CNNG)  استعمال تقنية استخراج خصائص "  بالإضافة إلىMel Spectrogram-Log   من أجل تقييم أداء هذه الأنظمة ."

دعمنا تحليلاتنا بعدة اختبارات إحصائية. حيث تشير نتائجنا التجريبية أن أنظمتنا تلتقط أحداث صوتية متنوعة. علاوة على 

الأخرى.   عصبونيةفي الأداء مقارنة بالنماذج الشبكات ال  التكرارية عرضت دقة وفعاليةالالتفافية    عصبونيةذلك، الشبكات ال

في المجموعة الثانية من التجارب، وبناءا على أن النماذج الفردية حققت نتائج متنوعة. لقد تطرقنا لدراسة تأثير المصنفات 

" Stackingهذه الدراسة أن "كشفت نتائج     ".Stackingالمتعددة على أداء أنظمة وضع العلامات الصوتية باستخدام تقنية " 

 يوفر اندماج ملائم لنتائج النماذج الفردية مما أدى إلى التعامل بشكل أفضل مع الطبيعة المتنوعة للأحداث الصوتية. 

المفاتيح: تقنيات استخراج    كلمات  المتعددة،  المصنفات  التعلم الآلي،  العلامات الصوتية، تعلم عميق،  أنظمة وضع 

 ائية.خصائص، اختبارات إحص
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INTRODUCTION 

1. Context and problem statement 

Nowadays, machines are able to efficiently handle a wide variety of multimedia content 

including images, audios, videos etc. As the amount of data is constantly increasing, the analysis 

and the recognition of certain patterns out of it has become of paramount importance. Sound 

analysis [1] is a subfield concerned about execution of such tasks for audio signals such as 

speech, music, acoustic events etc.  

We can classify sound analysis tasks into 3 categories: Acoustic Scene Classification, 

Audio Tagging and Event Detection. In scene classification, the goal is to categorize an audio 

recording into one of a set of (predefined) categories; for instance: home, street, and office. 

Similarly, audio tagging assigns a given audio recording with one or several pre-defined tags. 

The motivation behind audio tagging systems is to foster research towards more general 

machine listening systems capable of recognizing and discerning a wide range of acoustic 

events and audio scenes. Furthermore, there is a large amount of user-generated audio content 

that is available on the web, which can be a resource of great potential for sound recognition 

related research. Audio tagging has many applications such as audio information retrieval [2], 

audio classification [3], acoustic scene recognition [4], industry sound [5] and music tagging 

[6]. Finally, event detection locates in time the occurrences of a specific type of sound or 

sounds, either by finding each instance when the sound(s) happen or by finding all the temporal 

positions when the sound(s) are active. Here, the term sound event refers to a specific sound 

produced by a distinct physical sound source, such as a car passing by, a bird signing, or a 

doorbell. By contrast, the term of sound scene refers to the entirety of sound that is formed 

when sounds from various sources, typically from real scenarios, combine to form a mixture. 

The process of Audio Tagging consists of two main stages (Figure 1): Feature 

Engineering and Machine Learning. First, the main role of sound pre-processing step is to 

enhance certain characteristics of the incoming audio file in order to optimize audio analysis 

performance in the later phases of the analysis system. Then, feature extraction is applied on 

the resulting preprocessed data; here, we divide the audio signal into equal frames in order to 

perform feature extraction and obtain a feature vector per frame. Each vector of data is 

associated to its corresponding event label. The most common types of features used in the 

literature include: Mel-frequency cepstral coefficients [7], Log Mel band Energy [8] and 
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spectral centroid. Next, the classification model takes the feature vector of each frame and 

outputs the event presence predictions for each sound event class. It worth underscoring a 

classifier or learner enables us to predict the events labels, known as class labels, present in a 

sound recording. Many classification algorithms have been introduced in the literature, such as 

Deep Neural Networks [9], Gaussian Mixture Models (GMMs) [10], and Support Vector 

Machine [11].  

 

Figure 1: The mechanism of audio tagging system. 

2. Contributions 

With the increasing attention geared towards multimedia content, the research community 

has recently become more motivated to perform extensive studies and comparisons between 

sound analysis systems. The design and evaluation of such systems is actually a more 

complicated task, and should be conducted properly in order to ensure significance of results 

(i.e. avoid deriving conclusions affected by chance). To date, the problem of Audio Tagging 

has been addressed by the research community using various methodologies. Most of them have 

focused on extracting relevant features and finding suitable classifiers to improve the overall 

performance. Nevertheless, only a few attempts have reviewed and studied the proper manner 

required for the design and analysis of Audio Tagging systems [12] [13] [14]. Furthermore, 

several seminar papers have been published recently; most of them have invoked recent and 

hybrid deep learning architecture, for instance: Convolutional Recurrent Neural Network 

and Gated Convolutional Recurrent Neural Network [15]. Therefore, an adequate review of 

the newly proposed techniques has become necessary. Additionally, extensive comparisons 

among these methods should be conducted in order to acquire the best practices for addressing 

the Audio Tagging task. In what follows, we summarize our main contributions: 

1. We have carried out extensive experiments on the FSDKaggle2018 dataset [16]. This 

dataset presents several challenges. It contains user-generated audio clips retrieved from 

Freesound [17], which are very diverse in terms of acoustic content, recording 

techniques, clip duration, etc. Furthermore, these audio clips could feature incomplete 
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and inconsistent user-provided metadata. Some audio clips were manually labeled, 

while a smaller set of clips were automatically categorized on the basis of their user-

provided metadata. Therefore, the dataset is unbalanced and contains a large fraction of 

reliable annotations that can be trusted. It also contains an amount of non-verified 

annotations that could include a small amount of label noise.  

2. To cope with the above challenges, we have designed our Audio Tagging systems using 

well-known deep neural network architectures, which have been successfully used in 

audio-related tasks [15] [3]. Specifically, we have studied Convolutional Neural 

Networks (CNN), Convolutional Recurrent Neural Network (CRNN), Gated 

Convolutional Recurrent Neural Network (GCRNN) and Gated Convolutional Neural 

Networks (GCNN).  In addition, we have supported our analysis and discussion with 

numerous statistical tests.  

3. We have invoked Stacking ensemble learning technique by taking the noisy label into 

account. The aim of Stacking is to combine the prediction result from different models 

in order to improve the accuracy and robustness of the system. Furthermore, to address 

the effect of the non-verified examples on the performance of the system, we have used 

a combination re-weight strategy along with stacking to handle the potential noisy label 

of the non-verified annotations in the dataset. 

4. We have reviewed recent Audio Tagging schemes and discussed the major steps 

involved in the proper design and evaluation of such systems.  

3.  Thesis structure   

This thesis consists of two primary parts. The first part covers the state-of-the-art 

notions that are necessary for understanding the ideas developed in this thesis. Chapter 1 is 

also divided into two parts; the first one gives an overview of acoustic features used to represent 

audio signals. Specifically, we present the different feature extraction techniques that are 

frequently used in literature as for the second part of this chapter we review some relevant 

classification concepts, providing a brief description of the supervised classifiers, evaluation 

metrics and statistical tests invoked in this work. In Chapter 2, we describe the architecture of 

some basic and hybrid deep learners. The second half of this thesis describes the methodology 

that we have followed for comparing Audio Tagging systems. We provide in Chapter 3 

detailed description of the experimental setup, including preprocessing, feature extraction and 

parameters setting. In Chapter 4, we present the obtained results through performance tables 

and plots. Finally, we conclude by summarizing the contributions of this thesis, the lines of 

limitations and future work.
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PART I: FUNDAMENTALS OF AUDIO 

TAGGING 

In this part we explain the notions that are necessary for understanding the ideas 

developed in this thesis. It is composed of two chapters. Chapter 1 is divided into two main 

parts the first one gives an overview of acoustic features used to represent audio signals. 

Specifically, we describe data required for the development of Audio Tagging systems and 

highlight the importance of feature engineering to transform the signal into a suitable 

representation. Furthermore, we present the different feature extraction techniques that are 

frequently used in literature as for the second part of this chapter we review some relevant 

concepts of classification providing a brief description of the fundamentals of classification, 

feature selection techniques, evaluation metrics and statistical tests invoked in this work. In 

Chapter 2, we present the main deep neural network used in our work. In addition, we provide 

a brief description of a data augmentation technique and ensemble method. Moreover, we 

discuss some empirical and theoretical findings on the differences of the architectures presented 

in this chapter. Finally, we have discussed the challenges related to Audio Tagging research.
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 GENERALITIES ON AUDIO 

TAGGING 

1.1 Introduction 

Audio Tagging is about predicting the types of sound events occurring in audio clips. It 

is comprised of two main stages: (1) Feature Engineering, (2) Machine Learning. Feature 

engineering consists of transforming the signal into a representation which maximizes the sound 

recognition performance of the analysis system. The acoustic features provide a numerical 

representation of the signal content relevant for machine learning, characterizing the signal with 

values which have connection to its physical properties, for example, signal energy, its 

distribution in frequency, and change over time. On the other hand, machine learning is an 

application of artificial intelligence that provides systems the ability to automatically learn and 

improve from data. The result of the learning process is known as machine learning model. This 

latter takes as an input a set of features extracted from a sound event and assigns a label to it. 

This chapter is divided into two primary parts:  In the first part, we begin by introducing 

the process of sound acquisition in Section 1.2. Then, in Section 1.3, we highlight the 

importance of feature engineering, we briefly discuss time and frequency representations and 

explain the different feature extraction techniques widely employed in the literature and some 

preprocessing techniques. Finally, in Section 1.4 we shortly describe some existing datasets for 

sound analysis. In the second half of this chapter, we first provide a short introduction to the 

relevant concepts of classification in Section 1.5. Then, in Section 1.6 we present model 

evaluation techniques. In Sections 1.7 and 1.8 we explain feature selection and statistical tests. 

Finally, in Sections 1.9 and 1.10, we conclude this chapter by reviewing related work on Audio 

Tagging research and summarizing the main concepts that we have learned. 

PART I: FEATURE ENGINEERING 

1.2 Sound Acquisition  

Data acquisition is an important stage of developing an Audio Tagging system, as its 

performance highly depends on the data in the process [1]. Essentially, the aim is to collect as 

realistic as possible acoustic signals in conditions which are as close as possible to the intended 

target application. The metadata should include a ground truth information which is often 
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manually annotated during the data collection; metadata can be defined as “data about data”. In 

the case of audio, it usually refers to textual information that is used to describe and to index an 

audio file or a segment.  

Collected data should also have sufficient number of representative examples of all sound 

classes for increasing the generalization ability of the acoustic models. The audio must 

represent the modeled phenomena such that the models learned from it will represent the 

variability in the acoustic properties expected in the application. The presence of all categories 

relevant to the Audio Tagging task (Figure1.1) will provide the required coverage, making a 

dataset suitable for the given task. These are the main properties that a well-built dataset should 

have: 

• Coverage: The dataset should contain as many different categories as are relevant to 

the task. 

• Variability: For each category, there should be examples with variable conditions of 

generation, recording, etc. 

• Size: For each category, there should be sufficiently many examples. Otherwise, the 

training of a system results in a weak model. 

 

Figure 1.1: System input and output characteristics for Audio Tagging [1]. 

1.3 Time and frequency representation 

 Frequency 

Frequency is the measurement of the number of times that a repeated event occurs per 

unit of time. The frequency of wave-like patterns including sound expresses the number of 

cycles of the repetitive waveform per second. For humans, hearing is limited to frequencies 

between about 20 Hz and 20 000 Hz [18]. 

 Fourier transform  

Signal is defined as any physical quantity that varies with time. It conveys information in 

its patterns of variation. The manipulation of this information involves the acquisition, storage, 
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transmission, and transformation. In order to find the different frequencies  that are present in 

a signal we apply the Fourier transform [19]. 

The Fourier analysis is the main mathematical tool which allows the passage from the 

temporal representation that shows the way the overall sound amplitude changes over time 

to the frequency representation that shows how much of the signal lies within each given 

frequency band over a range of frequencies. It is used to decompose a signal into sinusoidal 

elements. Each sinusoid represents a frequency, which makes it possible to obtain information 

on the frequency distribution rather than a temporal distribution. The resulting sinusoids of 

Fourier Transform on a signal represented as a function of time is a complex value, whose 

imaginary part represents the phase off-set of the pure sinusoid and its absolute value represents 

value of the corresponding frequency component. 

The exact form of the Fourier transform used to determine the spectrum from the discrete 

time signals is known as the Discrete Fourier Transform (DFT). 

The mathematical equation of the DFT is:  

where  𝐾 is a set of possible frequencies and 𝑁 the total number of samples in a given sound 

signal, furthermore, 𝐾𝑖 ∈  𝐾 denotes the 𝑖𝑡ℎ frequency and 𝑛𝑖 ∈  𝑁 represents the 𝑖𝑡ℎ sample 

of the signal. We define 𝑥(𝑘𝑖) as the amount of the 𝑖𝑡ℎ frequency in the signal and 𝑥(𝑛𝑖) as the 

amplitude of the signal at the 𝑖𝑡ℎ sample. 

Here are two plots that show the effect of the FFT function applied to a simple raw audio 

waveform, it shows the frequency domain representation of a time domain signal (Figure 1.2). 
  

Figure 1.2: Frequency representation of a raw audio waveform. 

X(k𝑖) = ∑ 𝑥(𝑛𝑖)𝑒−2𝑗𝜋𝑖 
𝑘𝑛𝑖

𝑁

𝑁−1

𝑛=0

 , (1.1) 

  

(a) Raw audio waveform (b) Frequency domain representation 
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It is worth mentioning that the DFT algorithm has a complexity of 𝑂(𝑁2), whereas, the 

Fast Fourier Transform (FFT) implementation has a quasi-logarithmic complexity 

𝑂(𝑁 𝑙𝑜𝑔2 𝑁)  [19]. The savings in terms of computation are enormous, it is for this reason that 

FFT is commonly used in practice. 

 Audio Processing 

In order to develop a robust and appropriate signal representation, audio is prepared and 

processed for machine learning algorithms in the audio processing phase of the overall system 

design. This phase consists of two main stages preprocessing, and acoustic feature 

extraction. 

A Preprocessing 

Pre-processing is applied to the audio signal before acoustic feature extraction if needed. 

The main role of this stage is to enhance certain characteristics of the incoming signal in order 

to optimize audio analysis performance in the later phases of the analysis system. This is 

achieved by diminishing the effects of noise [20], emphasizing the target sounds in the signal 

[1] or segmenting the original audio signal into audio and silent events to be used in feature 

extraction [20]. 

Silence removal 

Silence removal is used to eliminate the silent portion of the audio signal x. The process 

of Silence removal consists of dividing an input signal into small segments (frames) and 

thresholding the root mean square (RMS) energy of those frames. The total length of each 

individual segment is equal to product of time duration and sampling frequency of segment 

(Fs). 

Segmentlength =  Segmentduration ∗ Fs (1.2) 

The RMS value of each segment is calculated and compared with threshold value 𝑅𝑡ℎ. 

RMS value of each individual segment can be calculated from equation (1.3) 

RMSsegment =  √𝑚𝑒𝑎𝑛(𝑠𝑒𝑔𝑚𝑒𝑛𝑡2) (1.3) 

If RMSsegment of individual segment is less than 𝑅𝑡ℎ then the segment is removed. The 

function of silence removal block is given in equation (1.4). 

𝑓(𝑥 ) = {
  RMSsegment ≤ 𝑅𝑡ℎ  , 𝑠𝑖𝑙𝑒𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

  RMSsegment > 𝑅𝑡ℎ  , 𝑛𝑜𝑛 𝑠𝑖𝑙𝑒𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
} 

(1.4) 
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Figure 1.3 shows the silence removal process on an audio file, which is 13s in length. The 

non-silent sections that are extracted encased in a black rectangle. 

 

Figure 1.3: Silence removal process. 

B Feature extraction 

Feature extraction is an important signal processing task. It refers to the process of 

computing a numerical representation of the acoustical signal. The representation can be used 

to characterize the audio segment with values which have connection to its physical properties; 

for example, signal energy, its distribution in frequency, and change over time t. The role 

of feature extraction is to transform the signal into a representation which maximizes the sound 

recognition performance of the analysis system. It also requires less amount of memory and 

computational power than direct use of audio signal in the analysis [1]. 

The process of feature extraction is similar for many types of acoustic features used in 

analysis. It consists of frame blocking, windowing, spectrum calculation, and other computation 

depending on which type of feature extraction is being used. Figure 1.4 depicts the processing 

pipeline for feature extraction. 

Traditional methods for spectral evaluation are reliable in the case of a stationary signal 

(i.e. a signal whose statistical characteristics are invariant with respect to time). However, 

audio signals are most of the time non-stationary throughout the whole audio recording, but 

stationary within short time frames [1]. For this reason, we use frame blocking and windowing 

to be able to use the audio signal and interpret its characteristics in a proper manner. 
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Figure 1.4: The processing pipeline of feature extraction [1]. 

Frame blocking consists of decomposing the audio signal into a series of overlapping 

frames. These frames have to be short enough so that it can reasonably be assumed to be 

stationary [1]. The selection of frame length is dependent on the machine hearing task at hand 

it usually varies between 20 and 60 ms [1]. 

Windowing is often applied after framing [1] in order to avoid the discontinuities at the 

borders of the frame which would cause distortions in the spectrum (corrupt the frequency 

spectrum estimation). The windowing process consists of multiplying each frame with a 

window function; hence, attenuating the signal near the edges and emphasizing the central 

portion. Hamming, Hann and Blackman functions are often used for windowing [21]. 

Hamming window (raised cosine window): the role of the hamming window is to 

minimize the spectral distortion by using the window to taper the signal to zero at the beginning 

and end of each frame, it is defined as:  

𝑤(𝑚𝑖) =  {
0.54 − 0.46 cos (

2𝜋𝑚𝑖

𝑀
) , 0 ≤ 𝑚𝑖 ≤ 𝑀

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
 , 

(1.4) 
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where 𝑀 is the total number of samples in each frame and 𝑚𝑖 the 𝑖𝑡ℎ sample of the frame. The 

resulting value 𝑤(𝑚𝑖) represents the windowed value. 

The Figure below shows the shape of this function: 

 

Figure 1.5: Hamming window [22].                      

Acoustic features can be divided into 3 main categories: temporal features, spectral 

features and perceptual features (prosodic features). In what follows, we describe some well-

known features from each category. 

SPECTRAL FEATURES 

LOG-MEL SPECTROGRAM represents an acoustic time-frequency representation of a sound. In 

the calculation of Log-Mel Spectrogram, firstly Fast Fourier Transform is calculated over pre-

processed audio signal. 

The filter bank is used to map its spectral amplitude to the Mel-scale of the perceptual 

excitation, and the mel filter bank converts the spectrum to the mel spectrum. Mel-scale is based 

on the perception of human hearing frequencies [23]. Thus, the Mel-scale is used to measure 

the tone of a subjective frequency or pitch.              

The filter bank energy is obtained after mel filtering. Finally, the logarithmic conversion 

of the mel energy is calculated and then the Log Mel Spectrum is generated from the filter bank. 

The flow of Log-Mel spectrogram extraction is shown in Figure 1.6. 
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Figure 1.6: Flow of Log-Mel Spectrogram extraction. 

MEL-SCALE as shown in Figure 1.7 is the psycho acoustic representation of frequency in linear 

scale processing. Stevens, Volkmann, and Newman in 1937 proposed a unit of pitch called 

’Mel’ [24] [25]. ’Mel’ is defined as the perceptual scale of pitches judged by listeners to be 

equal distance from each other. During the series of experiments, it was observed that when the 

frequency of the signal is less than 1000Hz, human auditory system perceives signals on a linear 

scale and for the frequency, over 1000Hz it was recognized on a logarithmic scale. The essence 

of Mel-scale is to bring this feature into perspective. 

Converting frequency domain to mels domain is done using formula: 

𝑚𝑒𝑙 = 2595 log (1 +
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

700
) 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 700(10𝑚𝑒𝑙/2595 − 1) 

 

(1.5) 

                     

 

Figure 1.7: Kilo Hertz vs Mel-scale [22]. 
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MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC) is a type of cepstral representation 

of audio signals [26]. The steps involved for their extraction are similar to the Log-Mel 

Spectrograms steps but with an additional step that consists of computing the Discrete Cosine 

Transform (DCT). 

DCT is a mathematical technique applied to the Log-Mel Spectrogram resulting in Mel 

Frequency Cepstral Coefficients. The operation of DCT is similar to DFT, and the critical 

difference is unlike DFT, DCT consists of only cosine terms which are real. 

PERCEPTUAL FEATURES   

Prosodic features, or perceptual frequency features, indicate information with semantic 

meaning in the context of human listeners. Therefore, they are organized according to 

semantically meaningful aspects of sounds including pitch, fundamental frequency, loudness, 

intensity and sharpness. 

• Loudness is a psychoacoustic property of the sound. It represents our human perception 

of how loud or soft sounds of various intensities are. The loudness of a sound is 

subjective, it varies from person to person and is measured by sone and phon units [27]. 

• Pitch is a perceptual property of sounds that allows their ordering on a frequency-related 

scale. More commonly, pitch is the quality that makes it possible to judge sounds as 

«higher» and «lower» in the sense associated with sound recording. 

• Sharpness can be interpreted as a spectral centroid based on psychoacoustic principle. 

It is commonly estimated as a weighted centroid of specific loudness [28]. 

TEMPORAL FEATURES 

Temporal features are directly extracted from the audio raw data without any 

transformation. Such features normally suggest a simple tactic to investigate audio signals. 

Although, it is generally necessary to combine them with spectral features.  Representative 

instances of temporal features are: zero-crossing rate, amplitude-based features, and power-

based features [27]. 

OTHER APPROACHES 

Alternative cepstral decompositions can be obtained similarly to MFCC from other 

frequency-domain representations. This had led to the introduction of features such as the 

Linear Prediction Cepstral Coefficients (LPCC) based on LPC coefficients [29], the 

Gammatone Feature Cepstral Coefficients (GFCC) [30] or Constant-Q Cepstral Coefficients 

(CQCC) [31]. None of these features are as popular as the MFCC but GFCC. For example, have 

been applied to sound scene analysis [32]. 
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1.4 Datasets 

Recently, general-purpose sound event recognizers have gained attention [33].   In this 

case, a wide range of sound events are considered, not tied to a specific domain. However, 

the majority of available datasets are domain specific and are usually small in size [33]. In 

addition, the existing general-purpose datasets often contain many unlabeled data sounds, 

which can make the learning process a challenging task.  

Various data resources have been gathered for the sound analysis task; some of these 

are provided in Table 1.1. 

Table 1.1: Various audio analysis datasets. 

 
Dataset name Classes Examples 

Clip 

length 

Dataset 

duration 
Ref 

D
o
m

a
in

 s
p

ec
if

ic
 

CHIME-HOME 7 (balanced) 6137 4s ≈6.82h [34] 

GTZAN (2002) 10 (balanced) 1000 30s 8.33h [35] 

ESC-50 50 (balanced) 2 000 5s 2.78h [36] 

TUT ACOUSTIC 

SCENES 2016 
15 (balanced) 1560 30s 13h [37] 

URBANSOUND8K 10 (balanced) 8732 ≤4s 8.75h [38] 

G
en

er
a
l 

p
u

rp
o
se

 

FSDKAGGLE2018 
41 

(unbalanced) 
11073 ≤ 30s 18h [16] 

AUDIO SET 2017 
525 

(unbalanced) 
    ≈2.1M 10s ≈5833h [33] 

FSDKAGGLE2019 
80 

(unbalanced) 
29266 ≤ 30s ≈103.4h [39] 

PART II: MACHINE LEARNING FOR AUDIO TAGGING 

1.5 Fundamentals of classification  

Classification belongs to the category of Supervised Learning, where the input data is 

labeled. It is the process of predicting the class labels of  a given data point (also called sample 

or instance ), the data point is characterized by a feature vector 𝑥𝜖𝑋  and by its class label 𝑦𝜖𝑌 

[40].The classification algorithms take in a set of 𝑚 data samples of input-output association 

Γ{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … … , (𝑥𝑚, 𝑦𝑚)}, where 𝑥𝑖  𝜖𝑋 and 𝑦𝑖𝜖𝑌, and learns a mapping function f 

from a feature vector 𝑥𝜖𝑋 ,some parameters 𝜏 and produces an output �̂�. 
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Furthermore, in Supervised Learning we can distinguish single-label classification and 

multi-label classification. 

• Single-label classification when the classifier learns from a set of samples that are 

associated with a single label. It can be further divided into two categories based on the 

number of classes in a set of labels: binary and multi-class classification. 

• Multi-label classification is different from the traditional single label classification. It 

refers to a task of associating each learning example with multiple labels the output is 

a vector of N labels. The multi label classifier associates an instance with one of 

2𝑁 possible output vectors. A common approach to multi label classification is to 

preform problem transformation, whereby a multi label problem is transformed into 

one or more single label (i.e. binary or multi-class) problems and the single label 

predictions of the single-label classifiers are transformed into multi label predictions. 

Although this method is easy to implement, it can be computationally inefficient when 

the number of classes is large [41]. Instead of this approach several studies [21], [42] 

has explored deep learning method (more details can be found in Chapter 2) to address 

the multi -label classification problem. Both methods are illustrated in Figure 1.8. 

 

Figure 1.8: System input and output characteristics for single-label and multi-label Audio Tagging systems [28]. 

Usually a classifier is seen as a two-step algorithm: training stage and testing stage. The 

first stage whereby the model learns a hypothesis from the training data. Learning is the process 

of optimizing the loss function that calculates the difference between the actual and the 

�̂� = 𝑓(𝑥, 𝜏) (1.6) 
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predicted outputs. The model is updated according to a learning algorithm so that the loss value 

is minimized and to increase the generalization ability of the model (i.e. the ability to act 

properly on unseen samples). The widely used optimization approach for supervised learning, 

namely gradient descent (more detail in Section 2.3.2). In the second stage, the resulting model 

is used to predict the class label of unseen examples drawn from the testing set. Numerous 

learning models have been introduced by the machine learning community, such as Neural 

Networks [21], Adaboost [43] and  Support Vector Machine [9]. 

Audio tagging aims to assign one or a set of tags to a clip. In machine learning 

terminology tagging would be equivalent to multi-label classification [29]. However, in the 

scope of this thesis we will focus on building a single-tag Audio Tagging system, and hence it 

is considered to be multi-class classification problem. We will focus on neural networks with 

deep architecture due to their effectiveness when dealing with the Audio Tagging problem. 

Chapter 2 provides an extended treatment on some widely used deep neural networks 

architectures. 

It is widely acknowledged when a model fits the training data perfectly, it usually leads 

to poor generalization ability [44]. This problem is known as overfitting. To cope with this 

shortcoming, data augmentation is applied with deep neural network architectures [28]. Mix-

up technique has been extensively invoked for building sound analysis systems, particularly 

Audio Tagging [45], [46], [47]. More details can be found in Section 2.10.  

We measure the quality of the predictions in multiple ways with the most common 

being the error rate (i.e. the ratio between the number of misclassified samples to the total 

number of samples). Model evaluation provides metrics for measuring the performance of 

learners. In addition, several authors have introduced statistical tests for performance 

comparison such as “Friedman Test”, “Nemenyi Test” and “Wilcoxon signed Rank Test” [48].         

        When applying a learning algorithm there is no assurance that the chosen parameters τ 

yields the best performance [44]. In addition, there is no learning algorithm that produces 

the most accurate classifier on a given problem [44]. The rational approach is to try many 

learners and select the one with the best performance on a different sample set.  

Ensemble learning adopts an alternative strategy to address Model Selection by 

amalgamating multiple learners [49]. The combination can also reduce overfitting, while 

providing sufficient expressive power to learn complex hypothesis [49]. We use in our 

experiments a popular technique called stacking (more details are given in Section 2.11). 
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1.6 Evaluation and comparison 

 Cross Validation 

Cross validation is a resampling technique used to estimate the test error of models with 

limited data points [44]. It is commonly used in machine learning to compare and select a model 

based on the model evaluation scores. Several resampling techniques have been used such as 

k-fold cross validation and leave one out [50]. 

k-fold cross validation refers to the task of taking the available data and partitioning it 

randomly into k subsets or folds, of approximately equal size. Then, the k-1 of the folds are 

used to train a set of models that are then evaluated on the remaining fold. This Procedure is 

repeated for all the K times. Figure 1.9 illustrates a 4-cross validation technique. 

 

Figure 1.9: 4-fold cross validation [37]. 

The performance scores from the K-fold cross validation are then averaged. The choice 

of k is generally preferred to be 5 or 10, but there is no formal rule and it could take any value. 

The satisfaction of the data is recommended; this means that each fold has to have a good 

representation of the entire dataset. Thus, ensuring that the data partitioning is balanced, with 

all the classes present in all the folds, with approximately the same amount of data for each 

class [28]. 

 Evaluation Metrics 

There exists numerous perfomance metrics in the machine learning literature [51]. The 

choice of the right metrics in one of the curcial steps in defining the solution to the problem. 

Furthermore, when dealing with a single-tag Audio Tagging task which is considered to be a 

multi-class classification problem. The evaluation involves measuring the performance of the 

proposed methods based on the accumulated values of the intermediate statistics, denoted by 

TP, TN, FP, and FN the sums of the true positives, true negatives, false positives, and false 

negatives accumulated throughout the test data, resulting in overall metrics calculated 

accordingly as instance-based or class-based. In instance based (i.e. micro-averaging), 
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intermediate statistics are accumulated over the entire data. Overall performance is calculated 

based on these, resulting in metrics with values that are most strongly affected by the 

performance on the most common classes in the considered problem. Whereas, in class-based 

(i.e. macro-averaging), intermediate statistics are accumulated separately for each category 

(scene or event class). Overall performance is then calculated as the average of class-wise 

performance, resulting in values that emphasize the system behavior on the smaller classes in 

the considered problem [28]. 

A Confusion matrix 

Confusion matrix (Figure 1.10) is a performance measurement for machine learning 

classification. It is a matrix of 𝑛 × 𝑛 where 𝑛 represents the number of classes. The row 

dimension contains the actual values, whereas, the column dimension consists of the predicted 

label. This Figure provides a representation of the confusion matrix with 𝑛 = 2.  

• True Positives (TP) are the cases where the actual class of the data point is 1 and the 

predicted also 1 (Positive). 

• True Negatives (TN) are the cases where the actual class of the data point is 0, while 

the predicted is 0 (Negative). 

• False Positive (FP) are the cases where the actual class of the data point is 0, while the 

predicted is 1 (Positive). 

• False Negative (FN) are the cases where the actual class of the data point is 1, while 

the predicted is 0 (Negative). 

The metrics that can be computed from the Confusion matrix includes precision, recall, F1-

score, the mean average precision and the classification accuracy.            

 

Figure 1.10: Confusion matrix  [52]. 
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B Accuracy  

Accuracy is the ratio between the number of correct predictions made by the model and 

the total number of examples. Accuracy can be computed using the previous metrics (TP, TN, 

FP, FN) as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1.7) 

C Precision and Recall  

Precision is the Fraction of predicted positives which are actually positive. Recall is the 

fraction of actual positives which are correctly predicted: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1.8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1.9) 

D F1-score 

F1-score is the average between precision and recall. It measures how many examples the 

model classifies correctly. The greater the F1-score is, the better the performance of the model. 

It is given by the equation below.               

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(1.10) 

E The mean average precision (MAP)  

Map is based on larger set of measurements. It is typically more stable (less noisy) than 

point measures such as F1-score. MAP is the mean of all the average precision across all the 

class labels. 

𝑀𝐴𝑃@𝑥 =
1

𝑁
∑ ∑ 𝑃(𝑖)min {𝐾,𝑥}

𝑖=1
𝑁
𝑛=1 , 

(1.11) 

where 𝑁 is the number of data samples, 𝐾 is the number of classes, whereas we are calculating 

the mean average precision at the top  𝑥 of labels. 𝑃(𝑖) is the precision at a cutoff 𝑖. 

F Averaging single-label scores 

When multiple class labels are to be retrieved, averaging the evaluation measures can 

give a view on the general results. It can be obtained through two averaging operations depicted 

in the equations below. 
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Let 𝑘 be the number of possible class labels and 𝐵(𝑡𝑝, tn, fp, fn) represent some specific 

binary evaluation measure 𝐵 ∈ {𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, F1 − score} that is 

calculated based on the number of the true positives (𝑡𝑝𝑖), true negatives (𝑡𝑛𝑖), false positives 

(𝑓𝑝𝑖), and false negatives (𝑓𝑛𝑖) after a binary evaluation for a label 𝑖. 

Macro-averaging measure   

𝐵𝑚𝑎𝑐𝑟𝑜 =
1

𝑘
∑ 𝐵(𝑡𝑝𝑖, 𝑓𝑝𝑖 , 𝑡𝑛𝑖 , 𝑓𝑛𝑖)

𝑘

𝑖=1

 (1.12) 

Micro-averaging measure 

𝐵𝑚𝑖𝑐𝑟𝑜 = 𝐵(∑ 𝑡𝑝𝑖

𝑘

𝑖=1

, ∑ 𝑓𝑝𝑖

𝑘

𝑖=1

, ∑ 𝑡𝑛𝑖

𝑘

𝑖=1

, ∑ 𝑓𝑛𝑖

𝑘

𝑖=1

) (1.13) 

1.7 Feature Selection 

Feature Selection is the process of determining what inputs should be presented to a 

classification algorithm. It aims to reduce the number of features by eliminating the redundant 

and irrelevant features from the feature set [53]. In addition, shrinking the feature set improves 

the generalization ability of the system and reduces the potential presence of overfitting [54]. 

There exist three main feature selection paradigms: filters, which select features based upon a 

statistical measure of correlation; wrappers, which select features based upon the performance 

of classification algorithms; and embedded methods, a wide group of algorithms which select 

features as part of the classification process [53]. In the scope of this thesis, we have focused 

on the embedded methods, we selected Neural Network models that contain built-in feature 

selection. Meaning that the model will only include features that help maximize the 

generalization ability of the system. In these cases, the model can pick and choose which 

representation of the data is best by integrating feature selection in network engineering. In 

Convolutional Neural Networks, features are dynamically selected by tuning the weights 

associated with the kernels (filters) [55]. In the Gated Convolutional Neural Network, the 

gating mechanism allows the model to select which features are relevant for predicting the 

class label [56]. 

1.8 Statistical Tests 

Recently, the machine learning community has become increasingly aware of the need 

for statistical validation of the published results [57]. Various researchers adopt different 

statistical and common-sense techniques to decide whether the differences between the 
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algorithms are real or random. In this section we shall examine several statistical tests used in 

our thesis. 

    Friedman Test 

The Friedman test is a non-parametric statistical test used to test for differences between 

several algorithms over the class labels (i.e. Sound events or tag). It first ranks the techniques 

for each class label separately according to the chosen evaluation metric (i.e. accuracy, F1-

score). The best performing technique gets the rank 1, the second best gets rank 2, etc. In case 

of ties, average ranks are assigned. Let 𝑟𝑖
𝑗
 be the rank attributed the 𝑗𝑡ℎ system on the 𝑖𝑡ℎ class 

label; and let 𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗𝑁
𝑖=1  denote the average rank of system 𝑗𝜖{1, … , 𝑡} over 𝑁 class labels. 

Under the null hypothesis, it is assumed that all algorithms are equivalent and so their ranks 

their average rank should be equal. The Friedman statistic is distributed according 𝑋𝐹
2 with 𝑡 −

1 degree of freedom for sufficiently large 𝑁 and 𝑡 (usually 𝑁 > 10 𝑎𝑛𝑑 𝑡 > 5). It is given by: 

𝑋𝐹
2 =

12𝑁

𝑡(𝑡 + 1)
 [∑ 𝑅𝑗

2 −
𝑡(𝑡 + 1)2

4
𝑗

] 

 

(1.14) 

 In their study Iman and Davenport reported that 𝑋𝐹
2 is conservative and derived a new 

statistic 𝐹𝐹 which is distributed to the F-distribution with (𝑡 − 1) and (𝑡 − 1)(𝑁 − 1) degrees 

of freedom. 

𝐹𝐹 =
(𝑁 − 1)𝑋𝐹

2

𝑁(𝑡 − 1) − 𝑋𝐹
2 . 

(1.15) 

If the null-hypothesis is rejected, we can proceed with a post-hoc test such as the Nemenyi 

test or the Bonferroni-Dunn test in order to precisely identify the differences between the 

algorithms. 

   Friedman Aligned test 

The Friedman Aligned Test is a modified version of the Friedman test [57]. The Friedman 

test offers intra-set comparability only, however, in some cases comparability among class 

labels is required. The Friedman Aligned test employs the method of aligned ranks, where a 

value of location is computed as the average performance achieved by all algorithms in each 

class label. Then, it calculates the performance obtained by an algorithm and the value of 

location. This step is repeated for algorithms and class labels. The resulting differences are 

called aligned observations, which are then ranked from 1 to 𝑘𝑛 relative to each other. The 

ranks assigned to the aligned observations are called aligned ranks. The Friedman Aligned 
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Ranks test statistic 𝑇 is compared for significance with a chi-square distribution for 𝑡 − 1 

degrees of freedom. 

𝑇 =
(𝑡 − 1)[∑ 𝑅𝑗

2̂𝑡
𝑗=1 − (𝑡𝑛2 4⁄ )(𝑡𝑛 + 1)2]

{[𝑡𝑛(𝑡𝑛 + 1)(2𝑡𝑛 + 1)] 6⁄ } − (1
𝑡⁄ ) ∑ 𝑅𝑖

2̂𝑛
𝑖=0

 , (1.16) 

where 𝑅�̂� is equal to the rank total of the 𝑖𝑡ℎ class label and 𝑅�̂�  is the rank total of the 

𝑗𝑡ℎalgorithm. If the null-hypothesis is rejected, we can proceed with a post-hoc test such as the 

Nemenyi test or the Bonferroni-Dunn test. 

 Quade test 

The Quade test offers an improvement for some specific cases where the data samples are 

more difficult or the differences registered between various algorithms over the data samples is 

larger [57]. The Quade test conducts a weighted ranking analysis over the class labels. The 

procedures start by finding the ranks 𝑟𝑖
𝑗
 in the same way as the Friedman test does. The next 

step requires the original values of performance of the classifiers 𝑥𝑖𝑗. Ranks are assigned to the 

class labels according to the size of the sample range in each class label. The Quade statistic is 

then calculated, which is distributed according to the F-distribution with 𝑡 − 1  and (𝑡 − 1)(𝑛 −

1) degrees of freedom. If the null-hypothesis is rejected, we can proceed with a post-hoc test. 

A detailed description of the mathematical process of the Quade test can be found in [57]. 

 Nemenyi test  

Nemenyi test is a post-hoc test invoked when the Friedman test rejects its null hypothesis 

and it is used when all methods are compared to each other. The performance of two classifiers 

is significantly different if the corresponding average ranks differ by at least the critical 

difference (CD). 

𝐶𝐷 = 𝑞𝛼  √
𝑡(𝑡 + 1)

6𝑁
, (1.17) 

where critical values 𝑞𝛼 are based on the Studentized range statistic divided by √2. 

 The Bonferroni-Dunn test 

The Bonferroni-Dunn test is a post-hoc test, invoked after the Friedman test. It is used 

when we are interested in comparing one technique against the other alternatives. It adjusts the 

significance level ∝ in a single step by dividing the value of ∝ by the number of comparisons 

performed 𝑡 − 1. The alternative way to compute the same test is to compute the 𝐶𝐷 (i.e. 
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Critical Differences) using the same equation as for the Nemenyi test, however using the critical 

values for ∝ (𝑡 − 1)⁄ . 

 Wilcoxon signed-ranks test  

Wilcoxon signed-ranks test is a non-parametric test and is considered the best strategy to 

compare two algorithms over multiple domains [57]. The formulation of this test is the 

following. We designate by 𝑑𝑖 the difference between the performance scores of two techniques 

on 𝑁 datasets. 𝑖 ∈ {1, …, 𝑁}. We first rank these differences according to their absolute values; 

in case of ties average ranks are attributed. Then, we compute the sum of ranks for the positive 

and the negative differences, which are denoted as 𝑅+ and 𝑅−, respectively. Their formal 

definitions are given by: 

𝑅+ = ∑ rank(𝑑𝑖)

𝑑𝑖<0

+  
1

2
 ∑ rank(𝑑𝑖)

𝑑𝑖=0

    

𝑅− = ∑ rank (𝑑𝑖)

𝑑𝑖<0

+  
1

2
 ∑ rank (𝑑𝑖)

𝑑𝑖=0

.  

 

 

 

(1.18) 

Notice that the ranks of 𝑑𝑖=0 are split evenly between  𝑅+ and 𝑅−. Finally, the statistics 

𝑇𝑤 is computed as 𝑇𝑤 = min(𝑅+, 𝑅−). For small 𝑁, the critical value for 𝑇𝑤 can be found in 

any textbook on general statistics [48], whereas for larger 𝑁, the statistics: 

𝑧 =
𝑇𝑤 −

1
4 𝑁(𝑁 + 1)

√ 1
24 𝑁(𝑁 + 1)(2𝑁 + 1)

 

 

(1.19) 

1.9 Related work 

Table 1.2 presents some literature works related to approaches that employ machine 

learning and deep learning methods along with various input representations for Audio 

Tagging. The list expedites a general overview of the different classifiers and features 

pertaining to their characteristics. It also consists of the latest matters surrounding the 

development of Audio Tagging systems. These studies analyze the behavior of different 

learning methods to extract high-level representations of input features. For instance, In [58], 

the audio clip is treated as an image. Unlike the object in the image, in audio clips from real 

life, some events, such as “Bark” may last a few minutes, while other events, such as “gunshot,” 

may only last for hundreds of milliseconds. This characteristic of sound events increases the 

difficulty of Audio Tagging based on CNN. To better use CNN to extract high-level 
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representations, Convolutional Recurrent Neural networks have been suggested to amalgamate 

convolutional and recurrent layers such as LSTMs [59] and GRUs [60] in a single deep learning 

architecture in order to emphasize the benefits of both. In addition, attention mechanisms [56] 

[61] [62] has been proposed in CNN such as the GLU. The benefits of such mechanisms have 

been shown across a range of tasks, from Audio Tagging [63], to language modeling [56], which 

shows that the attention method can alleviate the overfitting problem.  

Furthermore, Ensemble learning which consists of building a classification model by 

integrating multiple classifiers. The combination of different models can improve the accuracy 

and robustness for the classification [49] using the complementary prediction result from 

different models. However, the ensemble learning such as Stacking [64] has been under-

explored for Audio Tagging. Most of the previous methods simply compute the average of the 

predictions [65]. 

Table 1.2: Various audio analysis classification approaches. 

1.10 Conclusion 

In this Chapter, we have provided an outline of the basic concepts of sound representation 

that are essential to understand the ideas treated in this work. We have reviewed some important 

concepts of classification in general. Many classification paradigms have been applied for 

developing audio tagging systems. Most importantly, deep learning-based systems have 

attracted a wide spread attention from the research community due to their effectiveness. 

Therefore, in the next chapter, we will give an overview of some deep learning notions, 

including several well-known deep architectures. 

 
EER 1: Event Error Rate. 

Reference Type of classifier Feature representation Performance 

[66] 
Hidden Markov Models 

(HMM) 
MFCC Accuracy=30.1% 

[67] 
Gaussian Mixture Models 

(GMM) 
MFCC F-score=13.08% 

[68] Deep Neural Networks (DNN) 

Short time Fourier 

transform, Log-Mel energy, 

MFCC 

EER1=0.1785% 

[69] 
Convolutional Recurrent Neural 

Network (CRNN) 
Log-Mel Spectrogram F-score=69.1% 

[63] 
Convolutional Gated Recurrent 

Neural Network (CGRNN) 
Mel-Filter Banks (MFB) EER1=0.11% 
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 DEEP LEARNING FOR AUDIO 

TAGGING 

2.1  Introduction 

In the previous chapter we have discussed the notions of sound acquisition and 

representation required to prepare the audio signals for machine learning and deep learning 

approaches. In addition to some concepts of machine learning. Deep learning is a modern 

machine learning method, known for its ability to express highly non-linear relationships 

between the input and the output [70]. Deep learning techniques are now the state of the art in 

many audio applications [21] due to their capacity to learn the mapping between the target 

labels and a lower level representation such as the magnitude spectrogram or even the raw audio 

signals. Moreover, Deep Neural Network is among the recently proposed deep learning 

techniques in context of sound analysis. These models require their own kind of engineering 

effort in order to find the appropriate architecture for the target task; for instance, tuning the 

hyper-parameters, choosing the right training algorithm and regularization techniques. Deep 

learning models benefits from larger datasets, in order to expose the models to a larger and 

varied training samples. Data augmentation includes a set of techniques that enhance the size 

and quality of the dataset such as mixup. 

2.2 Artificial Neural Networks 

Artificial neural networks (ANNs), also known simply as neural networks (NNs), are 

considered to be a machine learning method that is based on the inner workings of the human 

brain [21]. The objective of NNs is no different from other models, (i.e. to approximate a 

function).  NNs are composed of stacks of inter-connected artificial neuron blocks (also called 

layers) that aim to find a mapping between the input and the target output. Each network has a 

set of hyper-parameters that determine the network architecture (number of neurons in each 

layer, number of layers etc.) and a network training procedure (optimization method 

parameters, regularization parameters etc.). The most common components of NNs are 

presented in the following subsections. 
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 Neuron 

A neuron is the basic unit of a NN. Each neuron receives inputs through its incoming 

weighted connections from other neurons and possibly itself. For each connection the input is 

received as the transmitted signal multiplied by the connection weight w. The sum of the 

weighted received signals and a bias term b is computed, then passed through an activation 

function 𝐹 and finally output through an outgoing weighted connection (Figure 2.1). 

 

Figure 2.1: A simple model of a neuron [71]. 

 Layer 

Neurons in the network are grouped into layers. There is one input layer, a variable 

number of hidden layers, and one output layer. NNs that include more than one hidden layer 

are often grouped under the name deep learning. Each layer receives inputs from the proceeding 

layer (possibly itself) and delivers outputs to the following. The input layer is composed of D 

nodes, where D is the dimensionality of the input data. Each node reads one of the components 

of an input vector 𝑥𝑖 ∈ 𝑋 and outputs it to the following layers neurons. Hidden layers are 

between the input and output layer that perform intermediate computations of the network. The 

output layer in classification tasks typically consists of a neuron for each class. For a given 

output neuron k, its computed value is usually interpreted after normalization in the range [0, 

1]. The incoming connections for the neurons in one layer form a matrix W. Together with a 

bias vectors b, the weight matrices for all layers W represent the parameters 𝜃 of the model 

(Figure 2.1). 

 Activation function 

The activation function scales the activation of a neuron into an output signal. The most 

commonly used in NNs are: 
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• Sigmoid function scales the input value between 0 and 1, as we know that probability 

lies between 0 and 1. This is why it is used for predicting the probability of the output. 

It can be defined as follows. 

• Rectified linear unit (ReLu) is a thresholding function that returns the same input x 

as long as it is greater than zero otherwise it returns zero. 

 

𝑅𝑒𝐿𝑈 = max (0, 𝑥) (2.3) 

• SoftMax makes it possible for the network to output among all the possible classes, the 

class with the highest probability. It is also used to normalize the outputs of multiclass 

classification tasks. 

           Given a vector 𝑋 of inputs to the output layer where 𝑗 indexes the output units 

𝑗 = 1,2,3, … , 𝑚, it is defined for each of its components 𝑥𝑗 as: 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑗) =
𝑒

𝑥𝑗

∑ 𝑒𝑥𝑚𝑚
 , 

(2.4) 

  where 𝑥 is a vector of inputs to the output layer, 𝑗 indexes the output units. 

• Tanh function (tanh) is a hyperbolic tangent function outputs the value in the range 

[−1,1]. This function shows derivatives that can reach higher values than the sigmoid 

derivatives and is expressed as follows.  

𝑓(𝑥) =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 

(2.5) 

2.3  Training Algorithms  

 Back propagation algorithm 

         The main idea behind Back propagation (BP) is to adjust the networks weights so that 

the output values for the training data are as close as possible to the desired target output. BP is 

a method used to compute the gradients that will be used for the update of each neuron’s 

weights. Furthermore, BP can be split into two fundamental steps. 

𝜎(𝑥) =
1

1 + 𝑒𝑥
 (2.2) 
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• Forward pass: an input is applied to the first layer and propagated through the network   

so that all the weights are computed. 

 

• Backward pass: based on the desired target output, derivative of the cost function is 

back-propagated from the last layer to the first. 

The mathematical description of the backpropagation algorithm can be found in [72]. 

 Gradient Descent (GD) 

GD is the most common optimization algorithm in machine learning and deep learning 

[73]. It is used to update the parameters of a function such that it minimizes the difference 

between the function output and the desired output. It is achieved by updating the parameters 

in the opposite direction of the gradient of the hypothesis function 𝐽(𝜃). The size of the step it 

takes   for each iteration to reach the local minimum is determined by the learning rate 𝛼, and 

𝑂𝜃𝐽(𝜃) as the gradient of the hypothesis function. GD has three variants that differ based on 

the amount of data utilized to compute the gradient of the hypothesis function. 

Stochastic Gradient Descent (SGD) uses a single training dataset at a time (one row 

after another) and then iteration adjustment of weights for each row. 

Batch Gradient Descent (BGD) uses the entire dataset rows for training at the same time 

and then makes adjustments to the weights.                          

Mini-Batch Gradient Descent is a hybrid of BGD and SGD, uses more than one training 

example at a time. 

2.4 Network regularization    

There are several techniques proposed to address issues typically encountered in Machine 

Learning such as overfitting [44] and vanishing (or exploding) gradients [74]. These techniques 

are grouped under regularization techniques. Below we explained two of the techniques 

specifically designed for Neural Networks. 

 Dropout  

The term “dropout” refers to dropping units (hidden and visible) in a neural network. 

Dropping a unit out means temporarily removing it from the network, along with all its 
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incoming and outgoing connections. The Dropout algorithm temporarily removes randomly 

selected neurons by setting the selected neuron weight to zero with a certain probability. 

Therefore, these neurons do not have any effect on the output of the network. Dropout has been 

shown to address two problems, it prevents overfitting and provides a way of efficiently 

approximately combining exponentially many different Neural Network architecture [21]. 

 Batch Normalization (BN) 

Due to the vanishing (or exploding) gradients problem (Explained in section 2.7), the 

distribution of the activations for each layer becomes very diverse for deeper Neural Networks, 

which slows down the learning as each layer is updated with the same learning rate. Batch 

normalization is used as an intermediate layer that will take care of the normalization of the 

hidden units activations at each layer to zero mean and unit standard deviation [75]. It has been 

introduced to reduce the co-variance shift in the network, and to accelerate the training of neural 

networks rather than to properly regularize the model by counteracting overfitting. However, 

in [76] the authors argue that BN provides similar regularization benefits as dropout.  

2.5 Hyper-parameters of the Network 

The neural network training is dependent on numerous hyper-parameters which are 

capable of determining the capacity and the complexity of the model. The hyper-parameters 

employed in the scope of this study are as follows: 

Learning rate (α) is the scalar that determines the amount of change in the gradient 

towards the proper direction. Higher values of α leads to overshooting the optimal 

solution in the hypothesis function, while lower values of α leads to too many iterations 

to towards the best value. There is no consensus on the ideal value of the learning rate 

[21]. Thus, it should be selected by examining the performance of the model by varying 

it. 

Number of hidden layers determines the depth of the network. The higher the value is, 

the deeper the network.  

Number of units in each layer can be different for each layer. These values determine 

the number of weights in total.  
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Batch size is the number of samples processed before the weights of the model are 

updated. 

Number of epochs is a hyper-parameter that defines the number of times that the dataset 

is passed forward and backward through the neural network. The BP algorithm decreases 

the training error with the increasing number of epochs. 

2.6 Convolutional Neural Network  

CNNs are hierarchical NNs that have been designed initially for image classification. A 

typical CNN is characterized by the repetition of convolution layers, an activation function, 

followed by the pooling layers which are partially connected. Due to these layers CNN can 

achieve a complete overview of the input with a good invariance to patterns shifts. The network 

usually ends with a fully connected layer with a SoftMax output. However, several studies [77] 

have proposed an alternative to the fully connected layer since the latter is prone to overfitting, 

namely The Global Average Pooling. The actual difference, when compared to other types of 

neural networks, lies in the introduction of a combination of convolution and pooling 

operations. Moreover, CNNs use a modified version of the back-propagation algorithm to 

ensure the shared weight constraint. The sample architecture of the convolutional neural 

networks is shown in the figure below. 

 

Figure 2.2: A simple architecture of CNN [78]. 

 The convolution layer 

The convolution layer introduces a special way of receiving the input. Instead of being 

connected to all the inputs coming from the previous layer, it takes a small portion of the input 

space (i.e. The receptive field), the weights of this portion create a convolutional kernel (filter). 

It consists of sliding the filter over the input space by a certain stride value and apply the dot 
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product between the filter and a portion of the input matrix, resulting in a convolved feature 

matrix or the feature map. This mathematical operation is called convolution, which will 

vastly reduce the number of the parameter and helps the model learn the relevant features only. 

The operation is shown in Figure 2.3. 

 

Figure 2.3:  Convolution in CNN [79]. 

 The Activation layer   

The activation layer applies an activation function over each feature map returned from   

the convolution layer, to create a nonlinear relationship between the inputs and the outputs. The 

most commonly used one is the Rectified Linear Units activation function (ReLu) [80] 

(Section 2.2.3). 

 The Pooling layer  

The main idea behind the pooling layer is down-sampling in order to reduce the 

computational load by progressively reducing the spatial size of the representation. Max-

pooling is one of the most common types of pooling. It takes small rectangular blocks from the 

feature map and subsamples it to produce a single maximum output from the block then slides 

to the next block with a specific stride value. The most commonly used size of max pooling is 

2x2 [81]. An illustration of this operation is depicted in Figure 2.4. 
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Figure 2.4: Max Pooling [20]. 

 Fully Connected layer  

The neurons in a fully connected layer are arranged in a way that each node is directly 

connected to every node in both the previous and in the next layer as shown in Figure 2.2 The 

hidden layers of the network which is composed of a stacked layer of convolution and pooling 

output the feature maps, which are fed to the Dense layers. The Fully connected dense layers 

flattens the feature matrix into a one-dimensional vector, the vector is then fed to the final dense 

layer with SoftMax activation function (Section 2.2.3) to output a vector of probabilities ∈ [0,1].  

 The Global Average Pooling layer (GAP) 

The idea is to generate one feature map for each corresponding category of the 

classification task. GAP has no parameter to optimize thus the overfitting problem is avoided. 

The global average pooling mechanism computes the mean value for each feature map and 

supplies it to the final dense layer with a SoftMax activation function. The SoftMax function 

takes each value and converts it to a probability (with the probability of all values summing to 

1.0). However, in  [82] the authors have used a fully connected layer  along with the GAP layer. 

The GAP computes the mean value for each feature map and supplies the result to the input of 

each unit in a single fully connected layer. 

2.7 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a type of neural networks that are beneficial to 

use with sequential data [83]. The structure of RNN is similar to that of the standard neural 

network, with a distinction that RNNs allow their neurons to share their outputs with pervious 

layer neurons, creating a feedback cycle. This indicates that an RNN may sustain the temporal 

activations even in the absence of input [84]. Therefore, RNNs are dynamical systems with a 

dynamical memory over time that can compute sequences of different lengths. However, the 

complexity of RNN structure makes it hard to train properly due to the vanishing gradient and 



CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING 

33 

exploding gradient problems. RNNs uses a straightforward extension of the backpropagation 

algorithm, denoted Back Propagation Through Time (BPPTT) [85]. There are various 

variations of RNNs, we note among them Long Short-Term Memories (LSTMs) and Gated 

Recurrent Units (GRUs). An example of the RNN architecture is illustrated in Figure 2.5. 

 

Figure 2.5: Left: Visual illustration of the RNN recurrence relation, Right: The RNN states are recurrently unfolded 

over the sequence t-1, t, t+1 [86]. 

 Recurrent layer 

The recurrence relationship defines how the state evolves step by step over the sequence 

via a feedback loop over previous states. The recurrent layer applies the same function 𝑓 over 

a sequence recurrently. The recurrence relation given by: 

𝑆𝑡 = 𝑓(𝑆𝑡−1, 𝑋𝑡), (2.6) 

where 𝑓 is a differentiable function, 𝑆𝑡 is a vector of values called the internal network state at 

a step t of both the current input as well as the previous state, 𝑋𝑡 input at step t, and 𝑆𝑡−1 is the 

network's summary of all of the previous inputs. 

The recurrent layer through the backpropagation algorithm updates a set of three 

parameters (weights), namely U, W and V. The vector U transforms the input 𝑋𝑡 into the 

state  𝑆𝑡, W transforms the previous state 𝑆𝑡−1 into the current state 𝑆𝑡 and V maps the newly 

computed internal state 𝑆𝑡−1 to the output 𝑌𝑡. They apply a linear transformation over their 

respective input. The internal state and the output of the network can be defined as follows: 

𝑆𝑡 = 𝑓(𝑊𝑆𝑡−1, 𝑈𝑋𝑡), (2.7) 

𝑌𝑡 = 𝑉𝑆𝑡, 
(2.8) 
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where f is the non-linear activation function such as tanh, sigmoid, or ReLU and 𝑋𝑡  denotes 

the input vectors ( 𝑥1,…, 𝑥𝑡). The state 𝑆𝑡 represents a sequence of state vectors (𝑠1, ...,𝑠𝑡). 

Finally, the output 𝑌𝑡 is a sequence of probability vectors (𝑦1,..,. 𝑦𝑡) of the next input in the 

sequence. Through this recurrence relation, each state is dependent on all of the previous 

computations, which allows RNN to have memory over time and to compute sequences of 

different lengths. 

 The exploding and vanishing problem 

In theory, RNNs can remember information for arbitrarily a long period of time. 

However, in practice, they are limited to looking back only a few steps [86]. This issue is known 

as vanishing and exploding gradients problem. These problems arise during the training of a 

deep network when the gradients are being propagated back in time all the way to the initial 

layer. The gradients coming from the deeper layers have to go through continuous matrix 

multiplications because of the chain rule, and as they approach the earlier layers, if they have 

small values ( less than 1), they shrink exponentially until they vanish and make it impossible 

for the model to learn , this refers to the vanishing gradient problem. On the other hand, if they 

have large values (more than 1) they get larger and eventually blow up and crash the model, 

this refers to the exploding gradient problem. To cope with these shortcomings, Gated 

Recurrent Layer Methods such as Gated Recurrent Units (GRU) and Long-Short Term Memory 

Networks (LSTM) [59],  have been introduced. 

 Long Short-Term Memory (LSTM) 

Hochreiter and Schmidhuber have studied the problems of vanishing and exploding 

gradients extensively and have proposed a solution called Long Short-Term Memory network 

[59]. LSTMs can handle long-term dependencies due to a specially crafted memory. It contains 

special units called memory blocks in the recurrent hidden layer. The memory blocks contain 

memory cells with self-connection which stores the temporal state of the network; in addition 

to a special multiplicative unit called Gates to control the flow of information. Each memory 

block contains an input gate, output gate and a forget gate. The input gate controls the flow of 

input activations into the memory cell. The output gate controls the output flow of cell 

activations into the rest of the network. Finally, the forget gate scales the internal state of the 

cell before adding it as input to the cell through the self-recurrent connection of the cell; 

Therefore, adaptively forgetting or resetting the cell memory. The forget gate addresses a 

weakness of LSTM models preventing them from processing continuous input streams that are 

not segmented into subsequences [87].  
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 Gated Recurrent Unit (GRU) 

GRU is a type of recurrent method that was introduced as an improvement over LSTM 

[60]. The idea behind GRU and LSTM is very similar, which is to allow the relevant 

information from the previous timesteps to be stored in the cell state, and to control the cell 

state through the gates that learns which information is relevant for the given task. The main 

difference is that GRUs combine the forget and the external input gates of LSTM in a single 

gate called the update gate; hence, has less parameters compared to LSTM. In addition to the 

update gate, GRU has an additional cell called the reset gate. Both gates are composed of 

weights and an activation function. Each cell includes a cell state, which consists of the 

accumulated information from the previous timesteps. During training, the gate weights learnt 

by which proportions to combine the cell state and the input for the current timestep to produce 

the gated unit output for the current timestep. The reset gate adjusts the incorporation of new 

input with the previous memory and the update gate controls how much to preserve of the 

previous memory. Furthermore, an enhanced version has been introduced, namely bi-

directional GRU [88] allows to process the sequence input in two directions including forward 

and backward ways, which can increase the model capacity and flexibility [60]. 

2.8 Convolutional Recurrent Neural Network 

Another increasingly common hybrid architecture is to follow one or more convolutional 

layers by recurrent layers. This approach is alternately known as Convolutional Recurrent 

Neural Networks (CRNN). Combining convolutional and recurrent layers in a single deep 

learning architecture integrates the strength of both CNNs and RNNs, which has shown 

excellent performance in sound analysis applications [69] [17], while overcoming their 

individual weaknesses. 

Convolutional neural networks are able to extract higher level features that are invariant 

to local spectral and temporal shifts. Furthermore, convolutional layers can be used to learn 

filters (i.e. weight kernels) that are shared among the input and shifted in both time and 

frequency. However, the temporal context that can be modeled using convolutional layers is 

limited [1]. Recurrent layers, with a gated structure such as GRUs and LSTMs can be used to 

extract long term temporal information among the consecutive time frames by utilizing 

information from the earlier time frames as a feedback for the calculation of the higher-level 

representation for the current frame.  

In order to find the optimal hyper-parameters for the deep neural networks, a grid search 

is performed including the combinations of some of the hyper-parameters such as the number 
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of layers, number of units in each layer etc. Figure 2.6 depicts the effect of the number of 

network parameters on the performance of RNN, CNN and CRNN when tested on TUT-SED 

synthetic 2016 dataset [69]. For the same number of parameters, CRNN shows a better 

performance than CNN and RNN methods in most cases. This observation confirms that 

combining the CNNs and RNNs into CRNN classifier is a more efficient and powerful way of 

utilizing the network parameters compared to CNN and RNN. The effect of sequence length, 

(i.e. the number of frames per input example) has been investigated by Cakır et al. [69]. Their 

results indicate that CRNNs can model the whole event in a single sequence, which results in 

improving the performance. In addition, the longest temporal context that RNN can model is 

not sufficient to model the events as a whole in a single sequence. This can be explained with 

the role of the convolutional layer in CRNN architecture. Convolutional layers learn filters that 

are invariant to short term temporal variations and they effectively pre-process the features to 

be used in longer temporal context in the following recurrent layers. 

 

Figure 2.6: Number of parameters vs F1-score for CNN, RNN and CRNN [69]. 

2.9 Gated Convolutional Neural Network and Gated Convolutional Recurrent Neural 

Network 

Gated Convolutional Neural Network (GCNN) and Gated Convolutional Recurrent 

Neural Network (GCRNN) are variants of CNN and CRNN, respectively. The difference is that 

each convolutional layer is replaced with a Gated Convolutional layer. Gating mechanism has 

been shown to be essential for Recurrent Neural Networks to reach state-of-the-art performance 

[21]. This mechanism has shown to produce better results for several task such as audio 

classification [89], language modeling [56]. 

 Gated Linear Units 

The Gated Linear Unit (GLU) [22] is used as an activation function to replace the 

Rectified linear activation function (ReLu) in CRNN and CNN. The structure of GLU is shown 
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in Figure 2.7 GLU can reduce the gradient vanishing problem for deep networks [22] by 

providing a linear path for the gradients propagation while keeping nonlinear capacities through 

the sigmoid operation. Similar to the gating mechanisms in Long-Short Memories (LSTM) or 

Gated Recurrent Units, GLU can control the amount of information of a time-frequency 

representation unit flow to the next layer. GLU are defined as: 

                                    𝑌 = (𝑊 ∗ 𝑋 + 𝑏) ⊙ 𝛿(𝑉 ∗ 𝑋 + 𝑐), (2.9) 

where 𝛿 denotes the sigmoid function, the symbol ⊙ is the element-wise product and ∗ is the 

convolution operator. 𝑊 and 𝑉 are convolutional filters, 𝑏 and 𝑐 are biases. 𝑋 denotes the input 

tensor in the first layer or the feature maps in the interval layers in the model. The value of 

sigmoid function ranges from 0 or 1, so if a GLU gate value is close to 1, then the time-

frequency unit is attended. Whereas, if a GLU gate value is near 0, then the corresponding time-

frequency unit is ignored. Thus, the network learns sound events and ignore the unrelated 

sounds.  

 

Figure 2.7:  GRU structure [15]. 

2.10 Mixup 

Data Augmentation encompasses a suite of techniques that enhance the size and quality 

of the training datasets [32]. It is widely used along with Deep Learning models in order to 

address the overfitting problem [30]. Numerous data augmentation techniques have been 

introduced in the literature such as: Mixup, Time Stretching, and Pitch Shifting [90]. In our 

study, we have chosen Mixup approach due to its simplicity and its significant improvements 

of audio classification systems [33]. 

Mixup is a method that randomly mixes a pair of inputs and their associated target values 

[91]. Consider a pair of inputs, 𝑥1and 𝑥2, and its corresponding binary label, 𝑦1 and 𝑦2. To mix 

these, a parameter,  α ∈ [0, 1] is used as a mix ratio.  
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𝑥 = α𝑥1 + (1 − α)𝑥2 (2.10) 

𝑦 = α𝑦1 + (1 − α)𝑦2 (2.11) 

The outputs x, y are then used as the training examples. 

2.11 Ensemble Methods 

  Stacked generalization 

Stacked generalization (stacking) is a general method which uses a high-level model to 

combine lower-level models to achieve greater predictive accuracy [92] (see Figure 2.8),it  first 

creates T level-1 classifiers, 𝐶1 , … . , 𝐶𝑇  , based on a cross-validation partition of the training 

data. To do so, the entire training dataset is divided into B blocks, and each model-1 classifier 

is first trained on a different set of B-1 blocks of the training data. Each classifier is then 

evaluated on the 𝐵𝑡ℎ  block (i.e. not seen during training). The outputs of these classifiers on 

their pseudo-training blocks constitute the training features for the level-2 (meta) classifier, 

which effectively serves as the combination rule for the level-1 classifiers. Note that the meta-

classifier is not trained on the original feature space, but rather on the predictions of level-1 

classifiers. 

 

Figure 2.8: The stacking mechanism. 

2.12 Summary of empirical and theoretical findings on CNN, CRNN, GCNN and 

GCRNN 

Empirical studies have shown that different deep architectural designs such as CNN, 

CRNN, GCNN and GCRNN often have an advantage over shallow architectures when dealing 

with complex learning problems [1] [55] [21].  

In recent studies, the focus of research shifted from parameter optimization and 

connections readjustment towards the improvement of the architectural design of the deep CNN 



CHAPTER 2: DEEP LEARNING FOR AUDIO TAGGING 

39 

networks [55]. This shift resulted in many new architectural designs such as CRNN. Cakir et 

al. have evaluated CRNN on three datasets of real-life sound recordings (i.e. TUT Sound Events 

Synthetic 2016, TUT-SED 2009 and TUT-SED 2016) and compared its performance to CNN 

and RNN. Their results show an improvement in performance of CRNN method over CNN and 

RNN [8]. The performance of CRNN indicates an architectural advantage compared to the rest. 

It gathers the capabilities of both CNN and RNN in one classifier. However, their proposed 

CRNN strongly depends on the amount of available annotated data. Specifically, when the 

performance of CRNN for TUT-SED 2016 (78 minutes) is compared to the performance on 

TUT-SED 2009 (1133 minutes) and TUT-SED Synthetic 2016 (566 minutes), there is a clear 

performance drop both in the absolute performance and in the relative improvement with 

respect to other methods. Dependency on large amounts of data is a common limitation of 

current deep learning methods. Similar findings have been reported in [93]. 

Recently, attention-based neural networks have been applied to a wide variety of tasks, 

such as speech recognition [94] [95], visual object classification [96]. The term attention means 

to focus on specific parts of the input. Xu et al. have proposed an attention based neural network 

for audio tagging that can automatically select the important frames for the targets, while 

ignoring the unrelated parts (e.g. the background noise segments) [63]. They have compared 

the proposed method with two state-of-the-art systems that used CNN as a classifier, Lidy-CNN 

[97] and Cakir-CNN [14]. The results indicate that the attention-based method reduces the 

Event Error Rate from 0.13 to 0.11 on average.  In addition, the gated network performs better 

in detecting the long-term patterns of the “child speech” which occur frequently in the whole 

dataset. Similar results have been reported by Xu et al. [3]. In their study, they have applied the 

learnable Gated Linear Unit (GLU) to replace the ReLU activation after each layer of the 

Convolutional Recurrent Neural Network for audio tagging and weakly supervised sound event 

detection. The audio tagging results show that the gated CRNN gains effective improvement 

with a F1-score of 54.2 compared the DCASE2017 baseline [98] with F1-score of 18.2. 

2.13 Challenges  

 Intra-class variability 

Sound event classes for Sound analysis tasks are often defined broadly such as phone 

ringing, doorbell etc. This presents a challenge for sound analysis methods in the form of intra-

class variability. For instance, doorbell class can be used to represent all types of doorbells, 

whose acoustic characteristics can vary significantly among the examples of this class. 

Therefore, in order to claim that a sound analysis system can robustly detect doorbells, it should 
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be able to do so on a wide variety of doorbells. This requires the sound analysis method to be 

able to detect or extract the acoustic features that are found in common among different 

examples of the same class [22]. 

 Noisy labels 

Although the dataset is labeled only a portion of it is verified and the rest is not guaranteed 

to have the true labels. This problem can be formulated as a form of label noise. These 

mislabeled instances are considered to be outliers which are generally the result of four potential 

sources. Firstly, the information which is provided to the expert may be insufficient to perform 

reliable labelling. Secondly, since collecting reliable labels is time consuming and costly task, 

there is increasing interest in using less reliable labels provided by non-expert such as using 

automated classification methods. Thirdly, when the labeling task is subjective, the problem of 

inter-expert variability might occur. Inter-expert variability is defined broadly as the presence 

of important variability in the labeling by several experts. Eventually, label noise can also 

simply come from data encoding or communication. Furthermore, these noisy labels may lead 

to lower classification problem and slower optimization, thus they should be taken into account 

in learning problems [99]  [66]. 

2.14 Conclusion  

Throughout this chapter, we have reviewed some important concepts of deep learning 

methods. First, we have presented the deep neural networks architectures used in our work. We 

have also presented Mixup, a data augmentation technique and Stacking ensemble learning 

approach, highlighting the importance of these techniques in order to obtain a reliable robust 

Audio Tagging system. Furthermore, we have summarized some empirical and theoretical 

findings on the differences of the architectures presented in this chapter. Finally, we have 

discussed the challenges related to Audio Tagging research. 
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PART II: EXPERIMENTS  

In this part we describe the methodology that we have followed for evaluating and 

comparing different deep learning approaches. It is composed of two chapters. In the first 

chapter we present the experimental setup defined to evaluate the performance of our Audio 

Tagging system, whereas in the second chapter, we discuss the results of our experiments. 
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 DESIGN AND ANALYSIS OF 

AUDIO TAGGING: EXPERIMENTAL SETUP 

3.1 Introduction 

This chapter presents the experimental setup used to conduct our experiments. First, in 

Section 3.2 we present our dataset. Next, in Section 3.3, we present the tools that we have used 

to conduct our experiments. Then, in Section 3.4 we present the setup for the proper steps for 

design of experiments in context of sound analysis.  

3.2 Dataset 

We have conducted series of experiments on Freesound Dataset Kaggle 2018 

(FSDKaggle2018). consisting of audio samples from Freesound annotated using a vocabulary 

of 41 labels from Google’s AudioSet Ontology [33]: 

• Tearing 

• Bus 

• Shatter 

• Gunshot, gunfire 

• Fireworks 

• Writing 

• Computer keyboard 

• Scissors 

• Microwave oven 

• Keys jangling 

• Drawer open or close 

• Squeak 

• Knock 

• Telephone 

• Saxophone 

• Oboe 

• Flute 

• Clarinet 

• Acoustic guitar 

• Tambourine 

• Glockenspiel 

• Gong 

• Snare drum 

• Bass drum 

• Hi-hat 

• Electric piano 

• Harmonica 

• Trumpet 

• Violin, fiddle 

• Double bass 

• Cello 

• Chime 

• Cough 

• Laughter 

• Applause 

• Finger snapping 

• Fart 

• Burping, eructation 

• Cowbell 

• Bark 

• Meow 

FSDKaggle2018 is a reduced subset of FSD [17], which is a large-scale, general-purpose 

open audio dataset that is currently under development. It is composed of audio content 

collected from Freesound [100] (i.e.  Freesound is a sound sharing site developed and 

https://freesound.org/
https://research.google.com/audioset/
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maintained by the Music Technology Group in Barcelona). It contains a total of 11 073 files 

provided as uncompressed waveforms with 16-bit bit depth and 44.1 kHz sample rate.  

The ground truth data provided in this dataset has been obtained after a data labeling 

process which resulted into two types of annotations: 

Manually-verified annotations represent the part of the dataset that was manually 

verified by human annotators that manually assessed the presence/absence of an automatically 

assigned sound category. In most cases, there is no additional acoustic material other than the 

labeled category. In few cases, there may be some additional sound events, but these additional 

events will be out-of-domain (i.e. they do not belong to any of the 41 AudioSet categories of 

FSDKaggle2018). 

Non-manually verified annotations are mainly composed of un-rated candidate 

annotations, and complemented with a small amount of rated annotations. These  annotations 

are most probably not accurate. Some of the audio clips annotated as non-verified could present 

several sound sources (even though only one label is provided as ground truth). These additional 

sources are typically out-of-domain, but in few cases, they could be within the domain. Figure 

3.1 shows the distribution of manually-verified and non-verified annotations per category in the 

training set. 

FSDKaggle2018 dataset was split into two sets a train set and a test set: The train set is 

meant to be for system development and includes 9473 audio clips unequally distributed among 

41 categories. The minimum number of audio clips per category in the train set is 94, and the 

maximum is 300. The total duration of the train set is almost 18h. Out of the 9473 clips from 

the train set, 3710 have manually-verified annotations and 5763 have non-verified annotations. 

Figure 3.1 shows the distribution of manually-verified and non-verified annotations per 

category in the train set. The test set is composed of 1600 clips with manually-verified 

annotations and with a similar category distribution to that of the manually-verified portion of 

the train set. The minimum number of manually-verified audio clips per category in the test set 

is 25, and the maximum is 110. These annotations are complemented with 7800 non annotated 

clips which are also included in the test set but that will not be used for evaluating our systems.  
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Figure 3.1: Distribution of manually-verified and non-verified annotations per category in the train set. 

3.3 Tools  

We have carried our experiments using Python which is an object-oriented open source 

programming language [101]. First, we have performed feature engineering using Spyder which 

is a scientific environment based on Python [102]. We have displayed our features using 

Librosa 0.7.2 which is a Python package for signal processing [103]. Moreover, the deep 

learning process was performed using a set of Python packages such as Tensorflow and Keras 

which are high-level APIs for building and training deep learning models. Other libraries that 

were invoked include Numpy, Seaborn and Pandas, etc [78] [79].  

We have trained our models using Google Colaboratory which is a free Cloud service. 

it consists of executable Python notebooks stored within Google Drive and connected to a Cloud 

based runtime to perform the execution of the Python code on Nvidia Tesla K80 GPU. Figure 

3.2 shows a screenshot of Colab notebook. 

 

Figure 3.2: Screenshot of Colab notebook. 
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3.4 Design and analysis of Audio Tagging systems  

We aim at building different Single-tag Audio Tagging systems that are able to 

recognize an increased number of sound events of very diverse nature (including musical 

instruments, human sounds, domestic sounds, animals, etc.). Furthermore, we use data with 

annotations of varying reliability (i.e. Manually-verified annotations and Non-manually 

verified annotations). Specifically, we illustrate the principles of designing machine learning 

experiments for building Audio Tagging systems. To this end, we have carried out two sets of 

experiments. 

First, we have examined Log-Mel Spectrogram feature extraction technique using two 

different sets of parameters along with four deep learning architectures (VGG13, GCNN, 

CRNN and GCRNN), while varying their parameters. Giving eight models in total, these 

models involve the use of preprocessing techniques and data augmentation in order to improve 

their performance and reduce overfitting. We have utilized the F1-score along with Accuracy 

and MAP@3 metrics to perform the evaluation of our systems. 

Second, we have investigated the effect of combining, the predictions of the previously 

trained models. In order to consolidate their strengths, to achieve this, we used a popular 

technique called stacking. Figure 3.3 and Figure 3.9 shows the General schema for the first and 

second case study respectively.  

 

Figure 3.3: General schemas that highlight the primary steps for conducting the first case study. 
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 Cross validation 

We have performed a stratified 5-cross validation to split the training set into non-

overlapping training and validation sets. We have used the training set for learning the models, 

whereas the validation set was employed for model selection. We have shuffled our data to 

generate different combinations in order to ensure that across each fold, there was a similar 

number of manually verified examples and the events are approximately equally represented. 

Cross validation leads to a considerable computation time increment, but it is a very common 

procedure used during model selection stage. We test the best model, (i.e. the result of model 

selection), on the provided test set. We have performed 5-fold cross validation using Scikit-

learn library. 

 Feature Engineering  

A Preprocessing 

After visualizing our raw data (waveform) we have noticed that some of them contained 

long sequences of silence. In order to remove them, we have started by segmenting our input 

audio files into small frames and by calculating their Root Mean Square (RMS) energy. The 

segments that were lower than the fixed threshold was judged to be unimportant and, hence, 

removed. However, the rest of the segments were kept to be used as inputs to our neural 

networks. Figure 3.4 depicts silence removal for one sound taken from our dataset. The 

extracted non-silent sections are encased in a black rectangle.  

 

Figure 3.4: The silence removal process applied on the file “071e836c.wav”. 

B Feature extraction 

We have implemented two configurations for the frequency domain features Log-Mel 

Spectrograms. Figure 3.5 presents the feature extraction process that we have followed in our 

work. 
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Figure 3.5: The process of feature extraction. 

Table 3.1 summarizes the parameters used for extracting the Log-Mel Spectrogram features.  

Table 3.1: Log-Mel Spectrogram setup. 

           Parameters Configuration A Configuration B 

           Sample rate 32 000 Hz 32 000 Hz 

           Window size 1024 512 

             Hop size 512 256 

           Mel bands 64 64 

        Window function Hamming Hamming 

Figures 3.6 and 3.7 depict the Log Mel-Spectrogram features for configuration A and B 

respectively of one preprocessed sound taken from our dataset. 

 

Figure 3.6: The Log-Mel Spectrogram (Configuration A) of “fff81f55_0.wav”. 



CHAPTER 3: DESIGN AND ANALYSIS OF AUDIO TAGGING: EXPERIMENTAL SETUP 

48 

 

 

Figure 3.7: The Log-Mel Spectrogram (Configuration B) of “fff81f55_0.wav”. 

To address the problem of variable length sequence (or variable length inputs), which 

requires for our data to be transformed such that each sequence has the same length. We have 

decided to split each feature vector into chunks of a fixed size (128 × 64 where the first axis is 

the temporal dimension). This corresponds to 2 seconds chunks and 1 second chunks for 

configurations A and B, respectively. When the length of the feature vector was greater than 

the chunk size, an additional chunk was added to include the remainder of the audio file; 

whereas, when it was lower, the feature vector was padded. 

 Data Augmentation 

Due to the limited size of our dataset and to improve the classification accuracy further, 

we explore the use of mixup data augmentation method with an alpha value set to 1.0. 

 Classification approaches 

A two-stage classification method which consists of a training and a testing stage for 

Audio Tagging is illustrated in Figure 3.8. It is performed based on audio segments with a single 

class annotated throughout. The 41 annotations are encoded into target outputs which are used 

in the training stage with audio signals. In this case the classes are mutually exclusive, this 

condition is included into the neural network architecture by using an output layer with softmax 

activation function, which normalizes the output frame-level class probabilities to sum up to 

one. These probabilities are used to get the overall classification output by summing up class-

wise, the frame-level class presence probabilities. Finally, the label with the highest combined 

probability is assigned. In our case, the predictions for chunks from the original audio files were 

merged using geometric mean to produce clip level predictions. This process was repeated for 
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the best four epochs selected according to (Map@3) metric resulting into four prediction 

probabilities for each audio clip.  Then, these probabilities were merged using arithmetic 

mean to produce the final prediction for each audio clip.   

Arithmetic and Geometric mean  

Calculating the average of a variable or a list of numbers is a common operation in 

machine learning.  The average (mean) is a single number that represents the most common 

value for a list of numbers. More technically, it is the value that has the highest probability from 

the probability distribution that describes all possible values that a variable may have. 

Arithmetic mean  

The arithmetic mean (�̅�) is calculated as the sum of the data values  divided by the total 

number of values, referred to as N. 

�̅� =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 . (3.1) 

The arithmetic mean can be calculated using the mean NumPy function. 

Geometric mean  

The geometric mean of a series of positive numbers 𝑥1, 𝑥2 … , … , … , 𝑥𝑛  is defined as 

the 𝑛𝑡ℎ root of its product:  

(∏ 𝒙𝒊

𝒏

𝒊=𝟏

)

𝟏
𝒏

= √𝒙𝟏𝒙𝟐 ⋯ 𝒙𝒏
𝒏  . 

 

(3.2) 

The geometric mean can be calculated using the gmean SciPy function. 

 

Figure 3.8: The training and testing phase of an Audio Tagging system. 

https://machinelearningmastery.com/continuous-probability-distributions-for-machine-learning/
https://en.wikipedia.org/wiki/Arithmetic_mean
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
http://scipy.github.io/devdocs/generated/scipy.stats.gmean.html
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A. Neural network architectures  

We have built four neural network architectures VGG13, CRNN, GCNN and GCRNN. 

The first one is a standard CNN that was inspired by the VGG13 network proposed in [106]. 

Each convolutional block consists of two convolutional layers followed by a max pooling layer 

that halves each spatial dimension. After each convolution, which uses the rectifier (ReLU) 

activation function, batch normalization is applied as a form of regularization. After the 

convolutional blocks, each feature map is averaged to a scalar value. Finally, a softmax layer is 

used to generate the predictions.  

The CRNN architecture is an extension of VGG13. Instead of averaging across both 

spatial dimensions after the convolutions, only the frequency dimension is averaged initially. 

A bidirectional recurrent layer is then applied to output a feature vector for each time step. 

Finally, these feature vectors are averaged. By using a recurrent layer, the temporal dynamics 

of the input can be learned.  

The two remaining architectures are GCNN and GCRNN. GCNN is a variant of VGG13; 

whereas, GCRNN is a variant of CRNN. The difference is that each convolutional layer is 

replaced with a gated convolutional layer. Note that these architectures were inspired from 

papers [79, 80, 81]. 

 Table 3.2 describes the neural network architectures used in the first case study; 

convolutional blocks parameters are encapsulated by square brackets. The first two parameters 

in each line are the kernel size and the number of filters. ‘BN’ refers to batch normalization. 

‘GLU’ and ‘Bi-GRU’ refer to Gated Linear Units and Bidirectional Gated Recurrent Units, 

respectively. 
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Table 3.2: Description of the neural network architectures. 

Feature size VGG13 CRNN GCNN GCRNN 

128 × 64 Log-Mel Spectrogram 

64 × 32 [
3 × 3, 64, BN, ReLU 
3 × 3, 64, BN, ReLU

] [
3 × 3, 64, BN, ReLU 
3 × 3, 64, BN, ReLU

] [
3 × 3, 64, BN, GLU 
3 × 3, 64, BN, GLU

] [
3 × 3, 64, BN, GLU 
3 × 3, 64, BN, GLU

] 

2x2 Max Pooling 

32 × 16 [
3 × 3, 128, BN, ReLU 
3 × 3, 128, BN, ReLU

] [
3 × 3, 128, BN, ReLU 
3 × 3, 128, BN, ReLU

] [
3 × 3, 128, BN, GLU 
3 × 3, 128, BN, GLU

] [
3 × 3, 128, BN, GLU 
3 × 3, 128, BN, GLU

] 

2x2 Max Pooling 

16 × 8 [
3 × 3, 256, BN, ReLU 
3 × 3, 256, BN, ReLU

] [
3 × 3, 256, BN, ReLU 
3 × 3, 256, BN, ReLU

] [
3 × 3, 256, BN, GLU 
3 × 3, 256, BN, GLU

] [
3 × 3, 256, BN, GLU 
3 × 3, 256, BN, GLU

] 

2x2 Max Pooling 

8 × 4 [
3 × 3, 512, BN, ReLU 
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, ReLU 
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, GLU 
3 × 3, 512, BN, GLU

] [
3 × 3, 512, BN, GLU 
3 × 3, 512, BN, GLU

] 

2x2 Max Pooling 

4 × 2 [
3 × 3, 512, BN, ReLU 
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, ReLU 
3 × 3, 512, BN, ReLU

] [
3 × 3, 512, BN, GLU 
3 × 3, 512, BN, GLU

] [
3 × 3, 512, BN, GLU 
3 × 3, 512, BN, GLU

] 

  Bi-GRU, 512, ReLU  Bi-GRU, 512, ReLU 

Global Average Pooling 

Softmax (41 Classes) 
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B. Ensemble learning  

In order to build an ensemble model, we have followed Stacking paradigm. Recall that 

the Stacking model is composed of two levels. Level 1 consists of deep learning models 

trained using two Log-Mel Spectrogram features. Level 2 is a shallow-architecture classifier 

using the meta-features obtained from level 1. These meta-features are obtained by running the 

previous classifiers (Section A) for each out-of-fold training data to predict the probabilities 

for each sample in the validating set by using the whole training dataset. For each classifier, the 

probabilities for 41 classes are be used as the meta-features, which are concatenated to generate 

the new training dataset, and used as the input for level 2. 

For the ensemble learning in level 2, we employ the linear regression algorithm. Inspired 

by [107], we weigh each training sample. The sample weight of a manually verified sample 

is set to 1.0, while the weight of a non-manually verified sample is set as a constant value 

0.65. In this way, manually verified samples are preferred. Figure 3.9 shows the conceptual 

architecture of the stacking ensemble used for the second case study. 

Figure 3.9: Exhibits a general schema that highlight the primary steps for conducting the second case study. 
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 Evaluation Procedures 

The main goal of our work is to compare the performances of several Audio Tagging 

systems, while varying the learning paradigms and their parameters. We have tested the 

performance of each system using the following evaluation procedure. After generating the out 

of fold predictions for both the training and testing set using 5-fold cross validation. Only 

predictions that correspond to manually verified samples from each fold were used to perform 

class-wise evaluation using the mean average precision (MAP@3), F1-score and averaging the 

former evaluation metrics using macro\micro averaging. We also used accuracy to evaluate 

the overall performance of the two main case studies. Most importantly, we have based our 

discussions and conclusions on strong statistical tests. 

3.5 Conclusion 

In this chapter, we have described the setup used to conduct our experimental enquiries, 

starting from cross validation to classification step. We have presented two general schemes 

(i.e. 4 individual learners and an ensemble learning approach “Stacking”) that highlight the key 

steps for carrying out our first and second set of experiments. In the following chapter, we will 

present the results of these experiments and analyze them in order to derive guidelines for 

building audio tagging systems based on numerous statistical comparisons.
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 DESIGN AND ANALYSIS OF 

AUDIO TAGGING: RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter discusses the experimental results that we have obtained during our 

experiments. In Sections 4.2 and 4.3 we analyze and discuss the results of the first and second 

set of our experiments. In Section 4.2.3 we talk about the training time of our experimental 

studies. 

4.2 First Set of Experiment: The individual models  

We have conducted extensive experimental comparison among Audio Tagging methods 

using various deep learning architectures based on data with annotations of varying reliability. 

Specifically, we have thoroughly examined Log-Mel Spectrogram features using two different 

configurations. Most importantly, we have investigated four deep learning architectures 

VGG13, GCNN, CRNN and GCRNN giving eight Audio Tagging systems in total. Table 4.1 

describes these models. For additional information on these architectures and their parameters, 

please refer to Sections 3.4.4. For evaluation, we have used the F1-score along with MAP@3 

metrics. Furthermore, we have based our discussions and conclusions on various statistical 

tests.   

Table 4.1: Summary of the first set of experiment models. 

Table 4.2 gives the F1-score of the eight individual models. The first column represents 

the tag, whereas, the rest of the columns designate the systems that are tested in our experiment. 

The last two rows specify the macro and micro average of each system over all classes, 

respectively. Table 4.3 shows the average MAP@3 over all events. 

Abbreviation Classification Model Feature Set 

VGG13A 
Convolutional Neural Network 

Log-Mel Spectrogram of Configuration A 

VGG13B Log-Mel Spectrogram of Configuration B 

CRNNA 
Convolutional Recurrent Neural Network 

Log-Mel Spectrogram of Configuration A 

CRNNB Log-Mel Spectrogram of Configuration B 

GCNNA 
Gated Convolutional Neural Network 

Log-Mel Spectrogram of Configuration A 

GCNNB Log-Mel Spectrogram of Configuration B 

GCRNNA 
Gated Convolutional Recurrent Neural Network 

Log-Mel Spectrogram of Configuration A 

GCRNNB Log-Mel Spectrogram of Configuration B 
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Table 4.2: F1-score (%) results of the eight individual models. 

Tag CRNNA CRNNB VGG13A VGG13B GCRNNA GCRNNB GCNNA GCNN𝑩 

Acoustic guitar 85.13 85.06 85.23 85.59 85.74 84.29 86.83 85.32 

Applause 96.69 95.82 95.56 97.28 95.27 96.69 96.99 96.72 

Bark 93.83 93.21 93.25 85.43 93.36 90.35 94.77 88.53 

Bass drum 96.56 96.93 96.20 94.17 96.57 94.90 96.60 95.60 

Burping 98.14 98.16 96.36 99.06 97.24 97.52 96.93 99.08 

Bus 86.05 78.55 84.26 77.78 84.85 74.32 84.69 81.28 

Cello 92.57 91.09 92.60 90.72 90.55 91.86 92.21 89.53 

Chime 80.36 71.42 79.71 71.86 81.77 74.08 79.64 71.39 

Clarinet 93.35 93.97 95.42 93.11 91.14 92.12 92.89 94.46 

keyboard 82.85 87.20 85.86 89.79 83.09 86.78 88.54 89.58 

Cough 88.75 93.27 89.63 90.88 90.20 92.49 89.52 92.15 

Cowbell 92.04 93.44 92.90 91.64 94.44 92.09 92.68 92.66 

Double bass 93.34 92.23 92.45 92.15 92.56 93.63 92.92 92.08 

Drawer 80.01 80.38 82.19 79.26 85.27 82.04 83.93 77.78 

Electric piano 92.66 93.64 93.07 92.60 96.27 93.22 94.05 93.94 

Fart 86.39 85.15 86.09 85.73 86.75 86.58 86.83 87.77 

Finger snapping 95.77 91.49 94.06 92.72 95.54 90.79 93.22 94.33 

Fireworks 68.33 61.07 66.22 63.44 69.21 61.69 65.46 65.69 

Flute 96.56 96.08 95.85 96.52 94.98 96.59 94.59 98.00 

Glockenspiel 81.75 69.87 82.94 70.12 83.45 68.20 79.13 67.13 

Gong 85.46 87.04 85.25 88.11 86.29 87.68 87.67 89.06 

Gunshot 85.60 81.94 84.70 81.73 82.99 84.11 84.05 82.89 

Harmonica 90.20 91.96 91.41 91.68 88.41 89.71 88.67 89.75 

Hi-hat 89.92 91.32 88.94 89.72 89.40 91.55 87.85 91.78 

Keys jangling 85.55 79.00 79.50 76.26 82.00 80.63 77.54 77.25 

Knock 
87.99 88.41 85.63 90.37 86.43 89.52 87.44 87.10 

Laughter 88.39 91.71 87.84 88.36 87.89 91.17 87.99 89.77 

Meow 93.41 91.99 91.38 89.62 92.75 91.66 90.91 88.98 

Microwave 88.17 87.82 85.22 86.07 84.32 84.70 84.07 85.71 

Oboe 97.89 96.23 98.11 96.04 97.38 96.68 96.28 97.19 

Saxophone 95.43 96.06 96.18 96.14 94.81 95.59 94.97 96.33 

Scissors 67.62 65.01 67.59 69.06 65.94 66.07 63.00 69.08 

Shatter 89.67 87.89 87.34 80.60 91.85 83.10 85.42 81.53 

Snare drum 92.50 90.86 89.84 88.85 90.67 92.31 91.45 88.53 

Squeak 40.10 41.44 45.30 38.39 46.60 42.07 44.19 40.00 

Tambourine 91.28 89.96 90.23 90.96 90.21 90.12 90.65 89.19 

Tearing 70.75 67.73 70.09 70.44 70.40 66.85 69.98 69.84 

Telephone 76.42 79.94 79.20 78.90 78.25 80.65 79.38 81.70 

Trumpet 92.34 92.21 92.90 91.88 91.68 93.79 91.75 91.23 

Violin 95.90 95.74 96.15 95.71 94.99 95.98 96.27 94.89 

Writing 82.19 85.00 81.78 83.22 82.59 85.34 78.93 85.58 

Macro Average 87.02 86.03 86.69 85.41 86.93 85.84 86.36 85.86 

Micro Average 88.53 87.89 88.45 87.40 88.30 87.82 88.13 87.78 



CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION 

56 

Table 4.3: Overall MAP@3 results (%) of the eight individual models. 

 CRNNA  CRNNB VGG13A VGG13B GCRNNA GCRNNB GCNNA GCNN𝑩 

Macro Average 90.73 90.51     90.40 89.75 90.64 90.27 90.38 90.22 

Micro Average 92.83 91.66     91.67 91.01 91.64 91.50 91.55 91.44 

The previous results indicate that CRNNA achieves the best scores, whereas, VGG13B 

produces the lowest ones. Most importantly, incorporating the recurrent layer (i.e. GRU), has 

demonstrated a positive impact for assigning sound tags. This improvement is due to combining 

the strengths of both CNN and RNN, which is well-known for better modeling long temporal 

sequences [21]. However, our initial analysis does not reveal considerable differences. In 

addition, according to numerous papers on Statistical Machine Learning, when the results on 

different categories of data are not comparable, their averages are meaningless [108]. To cope 

with this shortcoming, appropriate statistical tests should be conducted thoroughly [57]. To this 

end, we have statistically compared the performances of these techniques using 3 tests: 

Friedman test, Friedman Aligned test and Quade test. Under the null hypothesis, we have 

assumed that all systems are equivalents and the observed differences are merely due to chance. 

Table 4.4 summarizes the obtained statistics. 

Table 4.4:  Summary of the test statistics. 

Audio Tagging System Friedman Ranking Friedman Aligned Ranking Quade Ranking 

CRNNA 3.70 134.16 3.56 

CRNNB 4.58 169.24 4.58 

VGG13A 4.41 149.95 4.38 

VGG13B 5.15 199.61 5.41 

GCRNNA 4.41 155.34 3.81 

GCRNNB 4.52 173.77 4.73 

GCNNA 4.56 160.90 4.68 

GCNNB 4.66 173.02 4.84 

Test Statistic 7.63 37.50 3.45 

Degrees of Freedom 7 7 7 and 280 

p-value 0.36 3.8×𝟏𝟎−𝟔 1.5×𝟏𝟎−𝟑 

The results shown in the above table indicate that Friedman Aligned and Quade tests 

reject the null hypothesis with a very high level of significance (p-value
FA

= 3.8×10
-6

and p-

valueQ=1.5×10
-3

), which confirms the existence of at least one pair of systems with 

significantly different performances. However, the Friedman test fails to reject this hypothesis. 

This behavior is expected since this latter test considers that all tags are equal in terms of 

importance, while the Friedman Aligned and Quade tests take into account the fact that some 
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events are more difficult than others, and compute the ranks of each technique across all class 

labels [57].   

The above results also indicate that Configuration A of the feature extraction technique 

shows slightly better performance than Configuration B. Furthermore, the MAP@3 scores 

given in table 4.3 confirms this claim. In order to further investigate this observation, we have 

followed up these tests with multiple Wilcoxon signed-ranks tests, provided in the following 

subsection. 

 Case Study A: impact of feature extraction  

This section is devoted to investigating the influence of the parameters used for extracting 

Log-Mel features on the performance of the deep learning models. To this end, we have carried 

out pairwise comparisons between CRNNA and CRNNB, VGG13A and VGG13B, GCRNNA and 

GCRNNB, GCNNA and GCNNB. Due to its robustness, we have considered using the Wilcoxon 

signed-ranks test. A summary of this test statistics is shown in Table 4.5.  We report in each 

entry of this table the number of Win/Tie/Loss, on which there is a statistically significant 

win/loss of the systems trained using Configuration A over Configuration B features. An entry 

is bold if the number of wins/losses is significant using the Wilcoxon signed-ranks test. 

Table 4.5: Summary of the Wilcoxon signed-ranks statistics. 

 
Deep neural networks architectures 

VGG13 CRNN GCNN GCRNN 

W/T/L 25/0/16 24/0/17 23/0/18 19/0/22 

p-value 0.05 0.18 0.63 0.46 

Decision VGG13A wins 

over VGG13B 

Could not reject the 

null hypothesis 

Could not reject the 

null hypothesis 

Could not reject the 

null hypothesis 

We observe in Table 4.5 that, overall, Configuration A wins in most cases. Most 

importantly, the results indicate that VGG13A is significantly better than VGG13Bwith p-value 

≤ 0.05. However, data are not sufficient to reach the same conclusion regarding CRNN, GCRNN, 

and GCNN as depicted in Table 4.5. 

Figures 4.2 and 4.3 show the confusion matrices of CRNNA and CRNNB, respectively, 

computed on the test set.  The matrices indicate appreciable diagonals, meaning that many 

classes are correctly classified. However, we observe that some classes are easier to classify 

while the others are not; for instance, in case of Squeak, Scissors and Fireworks, all Audio 

Tagging systems exhibit low generalization ability (Table 4.2). We believe this behavior occurs 
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due to two main reasons: (1) Some of the mostly misclassified classes are difficult to distinguish 

even for human beings; for example, Fireworks are sometimes predicted as Gunshots or Tearing 

sounds (line 18 of CRNNA confusion matrix). (2) Some of these events are rare and were mostly 

not manually verified; for instance, Scissors and Telephone events are rare; 78.90% of Squeak 

sound data are not manually verified. In addition, we observe that for some events such as 

“Computer Keyboard” and “Knock”, systems that were trained using Configuration B features 

outperform those trained using Configuration A features, as indicated in Table 4.2. Figure 4.1 

shows two representations of a sound file of the event “Computer Keyboard”.  

 

 

Time domain representation. 

 

Spectrogram representation. 

Figure 4.1: Two representations of a “Computer Keyboard” sound file. 

The event “Computer Keyboard” belongs to the category of impulsive signals. It is worth 

underscoring that systems built using smaller windows work significantly better on impulsive 

signals [109]. Recall that Configuration B uses a smaller window for extracting features, 

whereas, Configuration A uses a larger one, please refer to Section 3.4.2. This fact justifies 

previous observation concerning the outperformance of Configuration B over Configuration A 

-based systems in case of impulsive events. 
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Figure 4.2: CRNNA confusion matrix. 
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Figure 4.3: CRNNB confusion matrix. 
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 Case Study B: Impact of the gating mechanism 

We aim at studying the impact of the gating mechanism on the performance of our Audio 

Tagging systems. To this end, we have carried out pairwise comparisons between GCNNA and 

VGG13A, GCNNB and VGG13B, GCRNNA and CRNNA, GCRNNB and CRNNB. Similarly, to the 

previous experiment, we have considered using the Wilcoxon signed-ranks test. A summary of 

this test statistics is shown in Table 4.6. Similarly, we report in each entry of this table the 

number of win/Tie/loss of the models which use the gating mechanism over the non-gating-

based systems. An entry is bold if the number of wins/losses is significant using the Wilcoxon 

test.  

Table 4.6: Summary of Wilcoxon. 

 
GCNNA against 

VGG13A 

GCNNBagainst 

VGG13B 

GCRNNA against 

CRNNA 

GCRNNB against 

CRNNB 

W/T/L 18/0/23 24/0/17 16/0/25 22/0/19 

p-value 0.29 0.06 0.29 0.84 

Decision Could not reject the 

null hypothesis 

GCNNB wins over 

VGG13B 

Could not reject the 

null hypothesis 

Could not reject the 

null hypothesis 

The results shown in Table 4.6 indicate that GCNNB exhibits significantly better 

performance compared to VGG13Bwith p-value ≤ 0.06. However, introducing the gating 

mechanism does not demonstrate any improvement on the remaining models. More 

specifically, the gating-based systems lose in most cases, which is not expected since these 

approaches are complex but generally very effective and accurate [3] [15]. Many reasons may 

cause this behavior. It can be related to the hyperparameters used for training such as the batch 

size, the learning rate, the number of epochs, etc. In addition, the introduction of the mixup step 

can make the learning more challenging, as reported by many studies [110] [111]. To further 

investigate this issue, we have trained GCNNA for another extra 20 epochs, without varying the 

other hyperparameters.  We report in Figure 4.4 both the training and validation losses during 

the learning process, and in Figure 4.5 the changes in the average accuracy.  
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Figure 4.4: Training and validation loss during the learning process of GCNNA. 

    

Figure 4.5: Training and validation loss during the learning process of GCNNA. 

The analysis of the results illustrated in Figures 4.4 and 4.5 is summarized as follows: 

Figure 4.4 indicates that the training loss is higher than the validation loss, contrary to intuition. 

The main reason for this behavior is that the loss function for validation does not use either 

regularization nor augmentation, whereas the training process uses more data, resulting in 

higher average loss values. Similar results have been reported in [112]. 



CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION 

63 

As depicted in the zoom of the accuracy plot (Figure 4.5), the performance exhibits an 

improvement as the number of epochs increases. We observe a rise of 2% between epoch 20 

and epoch 40. This latter finding coincides with our initial intuition regarding the parameters 

setting for the gating models. We can conclude that gating-based systems need to be trained for 

longer runs. 

CONFUSION MATRIX 

Figures 4.6 and 4.7 show the confusion matrices of GCRNNA and GCRNNB, respectively, 

computed on the test set. The obtained results (Table 4.2 and Figures 4.6, 4.7) reveal that, for 

some of the audio classes such as “Applause” “Bass drum” and “Burping”, the gating-based 

and non-gating-based systems perform similarly. Interestingly, for some rare events such as 

“Fireworks”, “Scissors” and “Telephone”, the generalization ability of the gating-based 

systems is higher. Therefore, introducing the gating mechanism can improve the overall 

performance in case of rare or non-manually verified events. Similar results have been reported 

in [3] [21]. 

 Systems complexity 

Table 4.7 gives the trainable parameters and training time of the 4 neural network 

architectures. 

Table 4.7:  Number of trainable parameters and training time for each system. 

VGG13 models yield the lowest training time since they have the least number of 

parameters. The second-best result is attributed to CRNN systems, whereas, the gating-based 

systems achieve the worst results in terms of the training time and the architecture complexity. 

Although CRNN does not provide the best training time, it succeeds at capturing most events 

present in our dataset, requiring bearable training time. It is worth underscoring that these 

results represent the time required for building our models, while the prediction time is 

instantaneous for all systems.  

 

 
VGG13 GCNN CRNN GCRNN 

Trainable parameters 9 430 761 18 834 601 12 600 553 22 004 393 

Training time 20h38 33h 25h 37h50 
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Figure 4.6: GCRNNA   confusion matrix. 
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Figure 4.1: GCRNNB confusion matrix. 



CHAPTER 4: DESIGN AND ANALYSIS OF AUDIO TAGGING: RESULTS AND DISCUSSION 

66 

 Summary of the first of experiment 

From the above results we can derive several lessons: 

• Some audio events are easier to classify while others are not. 

• The introduction of the gating mechanism can improve the overall performance in 

case of rare or non-manually verified events. In addition, such mechanism works 

better when the model is trained for longer runs, i.e. higher number of epochs. 

• The systems that were trained using a smaller window for extracting features can 

detect better impulsive events. 

However, it is hard to make a firm generalization on the acoustic characteristics of these 

events that can explain the above observations. In addition, some systems capture sound events 

that are impulsive, rare, or even non-manually verified, with various confidences. Specifically, 

the individual models provide sufficiently diverse predictions of the events present in the 

dataset. Therefore, a proper combination of these models would improve substantially the 

generalization ability.  Ensemble learning combines the strengths of each model by merging 

their predictions [49]. Numerous studies have demonstrated that amalgamating several learners 

could improve the generalization ability [45] [113]. An ensemble made of our eight systems 

would learn: (1) impulsive events; (2) events that are rare or non-manually verified. In the next 

set of experiments, we further investigate the use of a well-known ensemble learning technique 

“Stacking”. 

4.3 Second Set of Experiment: Ensemble of models 

In this section, we have investigated the effect of combining the predictions of the 

previously trained models. In order to achieve this, we have employed a popular technique 

called stacking. The resulting system is made of our eight models. Table 4.8 summarizes the 

obtained performance results. The last row specifies the averaged rank obtained by the 

Friedman test of each method. Note that we also include the performance of each individual 

model in order to highlight the improvement provided by Stacking these learners. 
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Table 4.8: F1-score (%) results of the eight individual models vs STACKED8 model. 

Tag CRNNA CRNNB VGG13A VGG13B GCRNNA GCRNNB GCNNA GCNN𝑩 STAKED8 

Acoustic guitar 85.13 85.06 85.23 85.59 85.74 84.29 86.83 85.32 87 .50 

Applause 96.69 95.82 95.56 97.28 95.27 96.69 96.99 96.72 98 .46 

Bark 93.83 93.21 93.25 85.43 93.36 90.35 94.77 88.53 98 .18 

Bass drum 96.56 96.93 96.20 94.17 96.57 94.90 96.60 95.60 98 .25 

Burping 98.14 98.16 96.36 99.06 97.24 97.52 96.93 99.08 100 .0 

Bus 86.05 78.55 84.26 77.78 84.85 74.32 84.69 81.28 89 .36 

Cello 92.57 91.09 92.60 90.72 90.55 91.86 92.21 89.53 96 .15 

Chime 80.36 71.42 79.71 71.86 81.77 74.08 79.64 71.39 76 .06 

Clarinet 93.35 93.97 95.42 93.11 91.14 92.12 92.89 94.46 100 .0 

keyboard 82.85 87.20 85.86 89.79 83.09 86.78 88.54 89.58 88 .46 

Cough 88.75 93.27 89.63 90.88 90.20 92.49 89.52 92.15 91 .80 

Cowbell 92.04 93.44 92.90 91.64 94.44 92.09 92.68 92.66 93 .98 

Double bass 93.34 92.23 92.45 92.15 92.56 93.63 92.92 92.08 96 .39 

Drawer 80.01 80.38 82.19 79.26 85.27 82.04 83.93 77.78 82 .76 

Electric piano 92.66 93.64 93.07 92.60 96.27 93.22 94.05 93.94 93 .75 

Fart 86.39 85.15 86.09 85.73 86.75 86.58 86.83 87.77 93 .33 

Finger snapping 95.77 91.49 94.06 92.72 95.54 90.79 93.22 94.33 96 .97 

Fireworks 68.33 61.07 66.22 63.44 69.21 61.69 65.46 65.69 66 .67 

Flute 96.56 96.08 95.85 96.52 94.98 96.59 94.59 98.00 98 .15 

Glockenspiel 81.75 69.87 82.94 70.12 83.45 68.20 79.13 67.13 72 .34 

Gong 85.46 87.04 85.25 88.11 86.29 87.68 87.67 89.06 90 .91 

Gunshot 85.60 81.94 84.70 81.73 82.99 84.11 84.05 82.89 88 .06 

Harmonica 90.20 91.96 91.41 91.68 88.41 89.71 88.67 89.75 93 .75 

Hi-hat 89.92 91.32 88.94 89.72 89.40 91.55 87.85 91.78 93 .51 

Keys jangling 85.55 79.00 79.50 76.26 82.00 80.63 77.54 77.25 80 .00 

Knock 87.99 88.41 85.63 90.37 86.43 89.52 87.44 87.10 87 .67 

Laughter 88.39 91.71 87.84 88.36 87.89 91.17 87.99 89.77 89 .47 

Meow 93.41 91.99 91.38 89.62 92.75 91.66 90.91 88.98 91 .53 

Microwave 88.17 87.82 85.22 86.07 84.32 84.70 84.07 85.71 87 .10 

Oboe 97.89 96.23 98.11 96.04 97.38 96.68 96.28 97.19 97 .56 

Saxophone 95.43 96.06 96.18 96.14 94.81 95.59 94.97 96.33 99 .10 

Scissors 67.62 65.01 67.59 69.06 65.94 66.07 63.00 69.08 77 .55 

Shatter 89.67 87.89 87.34 80.60 91.85 83.10 85.42 81.53 90 .91 

Snare drum 92.50 90.86 89.84 88.85 90.67 92.31 91.45 88.53 97 .14 

Squeak 40.10 41.44 45.30 38.39 46.60 42.07 44.19 40.00 50 .00 

Tambourine 91.28 89.96 90.23 90.96 90.21 90.12 90.65 89.19 93 .83 

Tearing 70.75 67.73 70.09 70.44 70.40 66.85 69.98 69.84 72 .73 

Telephone 76.42 79.94 79.20 78.90 78.25 80.65 79.38 81.70 82 .98 

Trumpet 92.34 92.21 92.90 91.88 91.68 93.79 91.75 91.23 94 .74 

Violin 95.90 95.74 96.15 95.71 94.99 95.98 96.27 94.89 97 .30 

Writing 82.19 85.00 81.78 83.22 82.59 85.34 78.93 85.58 84 .75 

Macro Average 87.02 86.03 86.69 85.41 86.93 85.84 86.36 85.86 89 .25 

Micro Average 88.53 87.89 88.45 87.40 88.30 87.82 88.13 87.78 90 .88 
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The results given in Table 4.8 indicate that STACKED8 outperforms the other methods in 

most cases. In order to confirm the significance of the observed differences, we have compared 

the performances of these techniques using the average ranks over the 41 events. Following 

Demasar’s recommendations [48], we have first conducted a Friedman test to statistically 

compare the performance of these systems, assuming that all systems perform similarly. this 

test rejects this hypothesis with 𝑋𝐹
2 =  58.92 >  𝑋2(8)  =  47.97  for 𝛼 = 1.0 1.0 × 10−7 (𝑋𝐹

2 

is distributed according to the 𝑋2distribution with 9 − 1 = 8 degrees of freedom), and therefore 

confirms the existence of at least one pair of techniques with significantly different 

performances.   

Second, because we are only interested in comparing STACKED8with the other alternatives, 

we proceeded with a Bonferroni Dunn test while considering STACKED8 as the control system. 

Figure 4.8 shows the results of the Bonferroni-Dunn test at a 0.1% significance level with the 

critical value 𝑞0.001 = 3.83  and the critical difference CD =  2.32. On the horizontal axis, we 

represent the average ranks of each method (given in Table 4.8), and we mark using a thick line 

the interval of one CD to the left and to the right of the average rank of STACKED8Any system 

with a rank outside this area is significantly different from the control system.                                              

The analysis of Bonferroni-Dunn test results illustrated by Figure 4.8 indicates that 

STACKED8 has the lowest rank and all the other techniques fall outside the marked interval. 

Therefore, we can conclude that STACKED8 significantly outperforms the individual models, 

which is consistent with our initial observations.  

 

Figure 4.8: Comparison of the Stacked8 model with the other stacked models with the Bonferroni Dunn test.  

 Case Study A: STACKED8 system 

In order to get a better insight on the effect of Stacking on each kind of the sound events, 

we depict in Figure 4.9 the confusion matrix of STACKED8 estimated on the test set. 
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Figure 4.1:  STACKED8  confusion matrix. 
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Based on our comparative analysis of the confusion matrices of STACKED8(Figure 4.8), 

along with CRNNA (Figure 4.2), CRNNB  (Figure 4.3), we can derive the following findings: 

1. In case of many rare events such as “Scissors” and “Bus”, the stacking considerably 

improves the performance of the individual learners. For instance, the F1-score of 

scissors has increased by at least 8.5% (please refer to Table 4.8). 

2. In the case of the non-manually verified data such as “Snare drum” (80% of the samples 

are non-manually verified), the stacking model boosts the score of the best model by 

5%. Moreover, the number of false negatives has decreased drastically. For instance, 

we observed in Figure 4.2 and Figure 4.9. “Snare_drum” has been misclassified with 

“Violin”,” Hi_hat”, “Gong” and “Cowbell. Stacking has shown remarkable decrease in 

the number of false negatives. 

3. The stacked ensemble provides better tagging scores of the impulsive events than 

CRNNA and CRNNB. Specifically, the classification rates of some impulsive sounds like 

“Gunshots”, “Computer Keyboard” and “Finger snapping” have known a remarkable 

rise, please refer to Figures 4.3, 4.4 and Table 4.8.  

Based on these insights, we conclude that stacking provides an appropriate combination 

of systems: (1) trained on Configuration A and B features; (2) built using numerous deep neural 

network architectures; which elevates the generalization ability of the individual models. 

 Case Study B: Impact of the size of the stacked model  

This section is devoted to investigating how the size of the stacked ensemble influences 

the performance. We have carried out the following experiment. We have trained 4 stacked 

models; each model is composed of 4 base learners. A summary of these stacked models is 

given in Table 4.9. We have measured the F1-score of these systems on the test set. The results 

are provided in Table 4.10. We also report the F1-score of the STACKED8 model as the control 

system. 

Table 4.9: The base learners of the 4 stacked models. 

 Base models 

Config
A

 VGG13A, CRNNA, GCNNA, GCRNNA 

Config
B

 VGG13𝐵, CRNN𝐵, GCNN𝐵, GCRNN𝐵 

Mixab VGG13A, CRNNA, VGG13B, CRNNB 

MixG GCNNA, GCRNNA, GCNNB, GCRNNB 
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Table 4.10: F1-score (%) results of all the stacked models. 

Class Config
A

 Config
𝑩

 Mix𝒂𝒃 Mix𝑮 STACKED8 

Acoustic guitar 86.42 86.75 87.50 88.89 87 .50 

Applause 96.97 98.46 96.97 96.97 98 .46 

Bark 96.43 98.18 98.18 96.43 98 .18 

Bass drum 96.55 98.25 94.92 98.25 98 .25 

Burping 98.46 98.41 100.00 98.46 100 .00 

Bus 89.36 82.61 89.36 89.36 89 .36 

Cello 93.20 92.31 95.24 95.15 96 .15 

Chime 81.82 69.57 78.26 76.06 76 .06 

Clarinet 99.12 97.39 98.25 99.12 100 .00 

keyboard 88.00 92.31 92.31 90.20 88 .46 

Cough 90.32 94.92 91.80 91.80 91 .80 

Cowbell 96.30 93.98 95.12 96.30 93 .98 

Double bass 93.98 93.83 95.12 95.24 96 .39 

Drawer 89.66 76.36 82.76 89.29 82 .76 

Electric_piano 95.38 95.38 95.38 93.75 93 .75 

Fart 88.14 91.80 93.10 93.33 93 .33 

Finger_snapping 96.97 96.97 96.97 96.97 96 .97 

Fireworks 71.43 60.38 67.86 65.45 66 .67 

Flute 98.18 98.18 98.15 97.25 98 .15 

Glockenspiel 84.62 65.31 75.00 75.00 72 .34 

Gong 88.31 90.91 90.91 90.91 90 .91 

Gunshot 84.38 87.02 88.37 87.02 88 .06 

Harmonica 93.75 93.94 93.75 92.31 93 .75 

Hi-hat 93.67 92.11 93.51 93.67 93 .51 

Keys_jangling 81.48 77.78 81.48 80.77 80 .00 

Knock 88.00 87.67 90.41 88.00 87 .67 

Laughter 89.47 92.31 92.31 88.00 89 .47 

Meow 91.53 89.66 93.10 91.53 91 .53 

Microwave 91.53 87.10 88.52 90.00 87 .10 

Oboe 97.56 97.62 97.56 97.56 97 .56 

Saxophone 97.74 97.72 97.74 98.64 99 .10 

Scissors 75.00 74.51 77.55 74.51 77 .55 

Shatter 92.86 89.29 92.86 92.86 90 .91 

Snare_drum 95.77 94.12 97.14 97.14 97 .14 

Squeak 50.00 44.07 52.63 51.72 50 .00 

Tambourine 92.50 93.83 93.83 92.50 93 .83 

Tearing 69.70 73.24 76.47 71.64 72 .73 

Telephone 81.72 82.22 83.87 84.44 82 .98 

Trumpet 94.74 96.00 94.74 94.74 94 .74 

Violin 97.30 96.83 97.74 97.30 97 .30 

Writing 81.97 88.14 86.67 83.33 84 .75 

Macro Average 89.27 87.99 89.84 89.31 89 .25 

Micro Average 90.63 89.69 91.25 90.81 90 .88 
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In order to study these results and reveal significant differences, we have carried out 

statistical tests. We have first conducted the Friedman test, while assuming that the observed 

differences are due to random behavior. This test rejects our hypothesis with α = 0.02, which 

indicates an existence of at least one pairwise significant difference. For further analysis of 

these results, we have compared these scores in a pairwise manner based on the Wilcoxon test 

in Table 4.11. The first row of each entry specifies the number of Win/Tie/Loss of the technique 

in the column over the technique in the row; whereas, the second row shows the p-values for 

the Wilcoxon test. If the entry is bold, this means that the number of wins/losses over 41 is 

statistically significant using the Wilcoxon test. 
 

Table 4.11: Pairwise comparisons of F1-score results based on Wilcoxon signed-ranks test. 

We can sum-up the analysis of the previous results as follows: 

(1) Overall, Mixab yields a remarkable performance. Most importantly, it significantly 

outperforms the STACKED8 model by a p-value= 0.08. A possible explanation of this 

behavior might be related to the correlation among the individual members of the 

STACKED8 model. It is widely acknowledged that an ensemble made of correlated, or 

non-diverse, members leads to lower generalization power [114]. We believe that the 

STACKED8 ensemble is composed of highly correlated members, which justifies the 

obtained results. A further investigation and experimentation is required to solidify 

our conclusion. These results suggest an appealing future work direction. 

(2) Config
B

exhibits very poor performance, which is expected since, according to our 

previous findings (case study A from the first set of experiments), Configuration B-

based systems have delivered better results on impulsive events, but have exhibited 

an overall weaker performance than the other counterparts. Note that our dataset is 

  
Config

A
 Config

𝑩
 MixG Mixab 

STACKED8 
W/T/L 14/0/27 15/0/26 15/1/25 21/1/19 

p-value 0.24 0.02 0.65 0.08 

Config
A

 
W/T/L 

 
17/3/21 15/15/11 21/10/10 

p-value 
 

0.41 0.32 0.05 

Config
𝑩

 
W/T/L 

  
23/5/13 26/7/8 

p-value 
  

0.03 0.0006 

MixG 

W/T/L 
   

20/10/11 

p-value 
   

0.04 
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not domain specific. It is composed of events that some of them are impulsive, 

whereas, some are not. Therefore, configuration B may not generalize well which 

justifies the reported weak performance. This fact justifies the reported low 

performance, which is consistent with our previous findings. 

(3) The Gating-based systems are significantly worse than the non-gating-based systems, 

which is consistent with our previous findings. As highlighted in case study B (first 

set of experiments), we have trained the gating-based models for 20 epochs only. 

Our experimental investigation Case study B (first set of experiments) has shown 

that such systems should been trained for longer runs.      

Based on these observations, we can conclude that the size of the ensemble can 

significantly influence the power of Stacking. Specifically, our analysis indicates that a smaller 

ensemble can yield better results. Note that several experimental and theoretical studies have 

shown that large ensembles do not always guarantee better predictive performance [115] [116] 

[117] This fact coincides with our previous conclusions. Furthermore, stacking the gating-based 

systems causes a drop in the predictive scores, which is expected since our individual models 

have not been well trained, please refer to Case study A (first set of experiments) for additional 

justification. 

4.4 Conclusion and summary of experimental findings 

From these experiments, we can derive 4 lessons:  

1. Integrating gated recurrent units within CNN can induce better systems for Audio 

Tagging. 

2. Introducing (i) the gating mechanism and (ii) the feature extraction configurations yield 

models which produce diverse and complementary predictions. 

3. Stacking demonstrates a remarkable improvement of the individual learners' 

performances. Most importantly, it provides a proper fusion of their predictions, which 

leads to better handling of events, including rare and impulsive cases. 

4. Combining a larger number of models can entail a deterioration in the overall 

performance. An ensemble made of VGG13A, CRNNA, VGG13Band CRNNByields 

significantly better scores than STACKED8.  
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CONCLUSION    

The primary goal of this thesis was to conduct an empirical analysis and comparisons 

among Single-tag Audio Tagging systems that are able to recognize an increased number 

of sound events of very diverse nature. To this end, we have carried out two sets of 

experiments on FSDKaggle2018 dataset. Our main contribution is three folds: (1) We 

describe the major steps involved in the design and analysis of several Audio Tagging 

systems. (2) We present extensive experimental comparisons founded on strong statistical 

tests. (3) We test the impact of stacking 8 deep learning models on the overall performance. 

A detailed description of our work is provided below. First, we have investigated four deep 

learning architectures (VGG13, GCNN, CRNN and GCRNN). In addition, we have trained these 

models on Log-Mel Spectrogram features using two different configurations for extraction. 

From this experimental study, we can derive the following conclusions:  

1. The integration of gated recurrent units within CNN (i.e. CRNN) can induce better 

systems for Audio Tagging. 

2. The gating mechanism works better when the model is trained for longer runs, i.e. 

higher number of epochs. 

3. The mechanism for extracting the feature sets plays an important role for designing 

Audio Tagging systems. Models trained on features extracted using a smaller window 

are better at capturing impulsive events, but show an overall weak performance. In 

addition, the confusion matrices indicate that the mechanism for extracting features 

induce models which produce diverse yet complementary predictions.  

Second, motivated by the fact that the individual models produce diverse predictions, 

we have considered ensembling the predictions of all the trained models through stacking. 

Based on our analysis, we can conclude that: 

1. Stacking demonstrates a remarkable improvement of the individual learners' 

performances. Most importantly, it provides a proper fusion of their diverse predictions, 

which better captures events, including rare and impulsive cases. 

2. Combining a larger number of models can entail a deterioration in the overall 

performance. An ensemble made of VGG13A, CRNNA, VGG13B and CRNNB yields 

significantly better scores than STACKED8. 
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Limits and Future work 

In the previous section, we have summarized our main contributions. However, it is of 

paramount importance to specify the limitations of our work and highlight potential future 

work directions. The success of the ensembling method relies mainly on the fusion of the 

individual learners predictions. However, in our experiments we have only considered the 

stacking mechanism. An appealing work direction would be to thoroughly investigate other 

fusion methods such as Grading [118], Adaptive fusion and co-operative training [119], 

Mathematical programming [49], and even ensemble pruning techniques [120]. Similarly, the 

hyperparameters used for training the deep learning models considerably affect the 

generalization ability. For instance, in the first set of experiments, we have found that 

training the gating-based models for longer runs improves the performance. Due to the lack 

of a dedicated computational platform, we have trained our models for 20 epochs only. A 

natural extension of this work would be to investigate tuning several hyperparameters like: 

the number of epochs, the batch size, the learning rate, and exploring other data augmentation 

techniques. The majority of the available sound datasets are made of a large amount of 

labeled and unlabeled data. To cope with this matter, it would be interesting to investigate 

semi-supervised approaches such as pseudo-labeling [121], which offers an elegant 

mathematical model that serves this purpose very well. 

During this project, we have encountered many struggles. The training of the learning 

models took a very long time due to the lack of dedicated computational platforms. In addition, 

when performing model selection, storing the trained classifiers caused a considerable increase 

in the usage of memory space. 

This field of research is interesting as it contributes directly to the development of smart 

cities. We have acquired knowledge and many skills throughout the past 8 months, such as: 

fundamentals of Machine Learning and key steps for conducting proper Machine Learning 

experiments. We have also learned the analysis of the experimental findings based on statistical 

tests. Moreover, we have mastered Python and have discovered “Google Collaboratory” 

platform that we will continue using for future machine learning projects.
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APPENDIX A: DEMONSTRATION 
A.1 Introduction 

In this section, we present the web application we developed for our Audio tagging 

systems. First, in Section A.1 we present the tools that we have used for development. Next, in 

Section A.2 we describe all the possible interaction with the application. 

A.2 Development tools 

Hardware device/ Environmental setup 

In order to create this website, we have used the following resources: 

The application was developed on a desktop running on Windows 10 operating system, with 

Intel Core i4 and 4 Gb RAM. 

Table A.1: Development tools. 

Tools Description /functionality 

FLASK Flask is a micro-framework designed to create a web application in a 

short time. We have used flask for the backend development of this 

application. It only implements the core functionality giving developers 

the flexibility to add the feature as required during the implementation. 

HTML Hypertext Markup Language is the standard markup language for 

documents designed to be displayed in a web browser. 

CSS 

 

Cascading Style Sheet is a style language that separates the style of a 

web document from its content. It is used to customize the layout and 

control the appearance of web pages written by markup languages. 

BOOTSTRAP Bootstrap is a popular front-end development framework that includes 

HTML, CSS and JS components. We have used bootstrap to facilitate 

the design of our webpages. 

PYTHON Python is an object-oriented open source programming language. We 

used python as the main programming language for this project. 

JQUERY Jquery is a lightweight JavaScript library used for enabling the 

interactivity of the web pages. 

TENSORFLOW TensorFlow is an open-source software library for high performance 

numerical computation. It is a Machine Learning tool mainly designed 

to process neural network models.  

KERAS Keras is a high-level neural network API, Keras is written in pure Python 

and based on Tensorflow. 



APPENDIX 

77 

A.3 Developed system 

In the pipeline of designing Audio Tagging systems, creating the model is the hardest, 

but it is not the end. In order to benefit from the created models, we deployed the pretrained 

models online to be accessed by internet users using Flask micro web framework, Python, 

HTML (HyperText Markup Language), CSS (Cascading Style Sheet), and JavaScript. Simple 

web pages are built where the user   can access the application and upload an audio clip to the 

server. Based on the deployed models, the audio clip is classified and its class label is returned 

back to the user with additional information on the process. The following sections demonstrate 

several parts of the application: 

Home 

The home page (Figure A.1) is the main page where the user can navigate to different 

parts of the application. it consists of three main parts: 

• Header which is on the top of the page. It consists of five tabs (About, Technology, Use 

Cases, Blogs and Contact page) and a logo. When the user clicks on one of these tabs 

the corresponding page is displayed. 

• The work area which is located below the navigation bar is where the primary 

interaction with the app occurs. It includes a list of our systems (VGG13A, VGG13B, 

CRNNA, CRNNB, GCNNA, GCNNB, GCRNNA, GCRNNB and the five stacked models). In 

order to access the aforementioned systems hover and click on their corresponding card. 

• Footer located below the work area. Here, we can find “Contact” links in the bottom 

center of the footer (email, phone etc.) as well as our social media accounts. 

The rest of the web pages follow the same template as the home page depicted in the Figure 

below. 
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Figure A.1: The home page. 
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The System web Page 

When the user chooses an audio tagging system, the page shown in Figure A.2 pops up 

on the screen. The Audio tagging module consists of an audio player which contains the general 

information of the audio file (current time/end time, name of the audio file and the pause /play 

button) that helps users control the audio player. Note that we have dedicated a separate web 

page for each individual model (VGG13A, VGG13B, CRNNA, CRNNB, GCNNA, GCNNB, GCRNNA, 

GCRNNB). Note that the Stacked models (STACKED8, Config
A

, Config
B

, MixG and Mixab) are 

given in a separate page (Figure A.2) in order to observe the differences in between the stacked 

models and their base learner. The process of prediction is as follows: 

1. First, the user chooses the audio file to upload from the internal storage (computer) to 

the web server by clicking on the upload button. Note that our web application only 

deals with (.wav) audio files and any other extension is not supported. Figure A.3 

depicts the upload process. 

 

 

Figure A.2: The system page before any prediction process. 
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Figure A.3: The upload process. 

2. Second, once the audio file is selected, the user can click on the predict button (below 

the audio player). This process goes through the following steps: first the Feature 

Engineering process (pre-processing, acoustic feature extraction), followed by the 

classification process. When the prediction process is done the results are shown at the 

bottom of the web page. 

3. Third, the result section for the individual models contains a list of the 3 best predictions 

tags ordered from the most probable to the least. Note that true tags are displayed in 

green. Additional information are provided when the user chooses the” More details” 

options. This latter includes details on the feature engineering step. Moreover, the 

user can play the audio file and its preprocessed version, view time representation of 

the audio files and the Spectrogram resulted from the feature extraction step. As for 

the stacked models page, the result section contains an additional table displaying the 

predictions for the four 4 stacked models and their base models as shown in Figure A.5. 
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Figure A.4: The results page. 
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Additional web pages 

The about page (Figure A.5) contains the general description of audio tagging, an overview of 

the applications characteristics and advantages.  

Use cases page (Figure A.6) shows a brief description of a wide range of applications related 

to Audio Tagging.  

Blogs (Figure A.7) includes some interesting blogs and articles related to audio tagging and 

many other sound analysis tasks. 

Technology (Figure A.8) provides a brief description on the main concepts used to build a 

system capable of recognizing wide variety real-world sounds.  
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Figure A.5: The about page. 
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Figure A.6: The use case page. 
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Figure A.1 : The blogs page. 
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