UNIVERSITE SAAD DAHLAB DE BLIDA

Faculté des Sciences de l'ingénieur

Département de génie civil

MEMOIRE DE MAGISTER

Spécialité: CONSTRUCTION

CONTRIBUTION À L'ANALYSE DU COMPORTEMENT DES PIEUX ISOLÉS EN PETITS DÉPLACEMENTS

Par

THARRAFI Abderrazak

Devant le jury composé de :

GRINE Khaled	MCA, Université S.D. Blida	Président
AMAR-BOUZID Djilali	MCA, Université de Médea	Examinateur
ZITOUNI Zine El Abidine	MCA, Université S.D. Blida	Examinateur
BOUAFIA Ali	Professeur, Université S.D. Blida	Rapporteur

Blida, Novembre 2011

إمحاء

إلى والدتي ووالدي وكل عائلتي و أصدقائي و زملائي،

وإلى الذي رحل عن دنيانا ربيع العام الماضي أخي الأكبر "لخضر" رحمه الله،

أهدي هذا العمل المتواضع.

ملخص

إن تحليل تشوهات وتد معزول له أهمية معتبرة في عملية تصميم الأوتاد.

هذه الأطروحة تعرض تحليلا للإزاحات الصغيرة التي تحدث لوتد معزول سواء تحت تأثير حمولة عمودية أو أفقية. في البداية قمنا بتقديم لمحة مختصرة لأهم الطرق التقليدية المعالجة لسلوك الأوتاد في مجال الإزاحات الصغيرة تحت تأثير حمولات عمودية أو أفقية. بعد ذلك أجرينا تحليلا للقياسات المباشرة لمعاملات نقل الحمولة أثناء التجارب الحقلية للتحميل العمودي على وتد.

في المرحلة الثالثة قمنا بدراسة وسيطية لقاعدة بيانات لمعطيات تجارب تحميل أفقي على نماذج مصغرة داخل جهاز الطرد المركزي لأوتاد في تربة رملية و ذلك لإيجاد أهم المعاملات المؤثرة في سلوك وتد معزول.

ولأن تجارب التحميل العمودي هي أكثر اعتيادية و أكثر سهولة و أقل تكلفة من تجارب التحميل الأفقي، فإن القسم الرابع يحتوي على مقاربة نظرية لدراسة السلوك الأفقي لوتد معزول في تربة متجانسة نسبيا انطلاقا من نتائج تجربة تحميل عمودي على الوتد نفسه.

كلمات مفاتيح: وتد، تجربة تحميل وتد، نقل الحمولة، جهاز الطرد المركزي، نموذج مصغر، دراسة وسيطية، قاعدة بيانات.

RÉSUMÉ

L'analyse de la déformation d'un pieu isolé a une importance considérable dans le dimensionnement des pieux.

Cette thèse présente une analyse des petits déplacements d'un pieu isolé aussi bien sous chargement axial que latéral.

Au début on a donné une présentation des méthodes traditionnelles de calcul des pieux isolés aux petits déplacements. Par la suite on a fait une analyse des mesures directes des paramètres de transfert de charge verticale (B_o et R_o) lors des essais de chargement verticale.

À la troisième partie une étude paramétrique d'une base de données d'essais de chargement latéral de modèles réduits centrifugés de pieux dans le sable est faite afin de dégager les paramètres clefs de la réponse latérale d'un pieu isolé.

Du fait que les essais de chargement vertical sont plus courants, plus simples et moins coûteux que ceux de chargement latéral, la quatrième partie comporte une approche théorique d'étude de la réponse latérale d'un pieu isolé dans un sol relativement homogène, à partir des résultats d'essais de chargement vertical du même pieu.

<u>Mots-clefs</u>: Pieu, Essai de chargement de pieu, Transfert de charges, Centrifugeuse, Modèle réduit, Étude paramétrique, Base de données.

ABSTRACT

The analysis of single pile displacements has a considerable importance in a pile foundation design.

This thesis presents a small displacements analysis of single pile subjected to axial or to lateral loads.

It will be presented first the usual design methods of single piles. An interpretation of direct measurement of vertical load-transfer parameters (B_o and R_o) from vertical full-scale load tests was carried out.

In the third part, a parametric study of lateral loading tests on centrifuge for single pile models in sand was undertaken to define the key parameters governing the lateral load pile behaviour.

Seeing that a full-scale vertical loading test is commonly, simply and cheaper than a lateral loading test; the fourth part consists of a theoretical study of lateral behaviour of single pile in relatively homogeneous soil, from the vertical loading test results of a same pile.

Keywords: Pile, Loading test of piles, Load-transfer, Centrifuge, Model, Parametric study, Data base.

REMERCIMENTS

Je remercie en premier lieu le professeur BOUAFIA Ali qui m'a fait l'honneur de bien vouloir diriger mes travaux de thèse, ses compétences scientifiques et ses qualités morales m'ont été d'une grande aide.

Je tiens à remercier les membres du Jury pour avoir accepté de faire partie du Jury de cette thèse.

Je remercie ma famille, mes amies, mes collègues et toute personne m'ayant soutenu durant ce travail de prés ou de loin.

TABLE DES MATIÈRES

DI	EDICACES	1
RÉ	ÉSUMÉ	2
RE	EMERCIMENTS	5
TA	ABLE DES MATIÈRES	6
LI	STE DES ILLUSTRATIONS GRAPHIQUES	8
LI	STE DES TABLEAUX	12
IN	TRODUCTION	15
1.	ÉTUDE BIBLIOGRAPHIQUE	17
	1.1. Introduction	
	1.2. Comportement des pieux sous chargement vertical	
	1.3. Comportement des pieux sous chargement latéral	
	1.4. Conclusion.	
2.	ÉTUDE EXPÉRIMENTALE DES PARAMETRES DE TRANSFERT	
	DE CHARGES SOUS UN CHARGEMENT AXIAL	61
	2.1. Introduction	
	2.2. Présentation de la méthode de transfert de charges	
	2.3. Présentation de l'essai de chargement vertical d'un pieu	
	2.4. Présentation des essais de chargement utilisés	
	2.5. Méthode d'interprétation d'un essai de chargement vertical d'un pieu.	
	2.6. Étude expérimentale des paramètres B _o et R _o	78
	2.7. Conclusion	88
3.	ÉTUDE PARAMÉTRIQUE D'UNE BASE DE DONNÉES D'ESSAIS	
	EN CENTRIFUGEUSE	89
	3.1 Introduction	89
	3.2. Présentation de l'essai en centrifugeuse	89
	3.3. Présentation de la base de données.	93
	3.4. Analyse dimensionnelle	94
	3.5. Paramètres d'étude	95

3.6. Présentation des résultats96
3.7. Conclusion
4 ANALYGE DU COMPONENTENTE D'UNI DIEU CHARGÉ L'ATTÉRAL EMENTE
4. ANALYSE DU COMPORTEMENT D'UN PIEU CHARGÉ LATÉRALEMENT
A PARTIR D'UN ESSAI DE CHARGEMENT VERTICAL103
4.1 Introduction
4.2. Étude théorique de la similitude des courbes de chargement latéral
et axial d'un pieu isolé : Étude du rapport $\frac{\alpha_H}{\alpha_V}$
4.3. Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$ obtenus par les différentes méthodes119
4.4. Formulation du rapport $\frac{\alpha_H}{\alpha_V}$
4.5. Validation de la formulation proposée
4.6. Validation de la formulation théorique de la similitude des courbes
de chargement
4.7. Conclusion
CONSLUSION GÉNÉRALE ET PERSPECTIVES132
ANNEXES
1. Liste des symboles et des abréviations
2. Résultats de l'étude expérimentale des paramètres de transfert de charge
sous chargement axial
3. Présentation de la fiche synthétique
4. Analyse adimensionnelle – Théorème des π de Buckingham
5. Analyse détaillé des essais de chargement
RÉFÉRENCES

LISTE DES ILLUSTRATIONS GRAPHIQUES

Figure 1.2. Facteurs de tassement pour D/B =25. Pieux flottants. Figure 1.3. Facteurs de tassement pour D/B =50. Pieux flottants. Figure 1.4. Facteurs de tassement pour D/B =100. Pieux flottants. Figure 1.5. Schéma du modèle élastique du système sol/pieu. Figure 1.6. Exemple de maillage d'éléments finis du problème de tassement	2323232527
Figure 1.4. Facteurs de tassement pour D/B =100. Pieux flottants. Figure 1.5. Schéma du modèle élastique du système sol/pieu.	23 25 27
Figure 1.5. Schéma du modèle élastique du système sol/pieu.	25 27
	27
Figure 1.6. Exemple de maillage d'éléments finis du problème de tassement	
d'un pieu chargé axialement.	
Figure 1.7. Schéma de transfert de charges d'un pieu isolé.	28
Figure 1.8. Courbe type de chargement d'un pieu (selon Combefort).	30
Figure 1.9. Schématisation des hypothèses de Combefort.	31
Figure 1.10. Tassement d'un pieu isolé (selon Gambin)	35
Figure 1.11. Subdivision de la circonférence du pieu.	38
Figure 1.12. Courbe de mobilisation des contraintes à l'interface sol/pieu.	39
Figure 1.13. Valeurs de I_{YH} , pieu flottant à tête libre et E_s constant.	43
Figure 1.14. Valeurs de $I_{Y'M}$, pieu flottant à tête libre et E_s constant.	43
Figure 1.15. Valeurs de I_{YM} et $I_{Y'H}$, pieu flottant à tête libre et E_s constant.	43
Figure 1.16. Valeurs de I'_{YH} , pieu flottant à tête libre et E_s variant linéairement.	44
Figure 1.17. Valeurs de I'_{YM} et $I'_{Y'H}$, pieu flottant à tête libre et E_s variant linéairement.	44
Figure 1.18. Valeurs de $I'_{Y'M}$, pieu flottant à tête libre et E_s variant linéairement.	45
Figure 1.19. Facteurs d'influence des déplacements latéraux, \mathbf{I}_{H} , pieu à tête libre, du à une charge latérale.	47

Figure 1.20.	Facteurs d'influence des déplacements latéraux, I_{HM} , pieu à tête libre du à un moment.	47
Figure 1.21.	Schéma du sol discrétisé en des ressorts lors d'un chargement latéral.	48
Figure 1.22.	Courbe P-Y selon le règlement Français (Fascicule 62).	51
Figure 1.23.	Courbe P-Y type pour le pieu P ₁ .	58
Figure 1.24.	Schématisation de certaines courbes P-Y types.	59
Figure 2.1.	Principe de transfert de charge d'un pieu isolé.	62
Figure 2.2.	Essai de chargement d'un pieu (Montivilliers-France).	63
Figure 2.3.	Essai de chargement d'un pieu (Belvedere - sud de London).	64
Figure 2.4.	Courbe charge-déplacement d'un pieu.	64
Figure 2.5.	Programme de chargement-déchargement dans un essai de pieu.	65
Figure 2.6.	Dispositif de chargement et de mesure pour essai de pieu (Schéma de principe).	66
Figure 2.7.	Courbes de distribution des efforts le long du pieu.	66
Figure 2.8.	Courbe charge-déplacement.	68
Figure 2.9.	Courbes de distribution des efforts le long du pieu.	68
Figure 2.10.	Représentation d'un élément dz du pieu.	71
Figure 2.11.	Courbe frottement latéral-tassement.	74
Figure 2.12.	Courbe frottement latéral-tassement.	74
Figure 2.13.	Ajustement de la courbe frottement latéral-tassement.	75
Figure 2.14.	Courbe pression en pointe-tassement.	77
Figure 2.15.	Courbe pression en pointe-tassement.	77
Figure 2.16.	Ajustement de la courbe pression en pointe-tassement.	78
Figure 2.17.	Courbe $\frac{B_0.B}{E_M} = f(K)$.	82
Figure 2.18.	Courbe $\frac{R_o}{E_M} = f(K)$.	82

Figure 2.19.	Courbe $\frac{B_0.B}{q_c} = f(K)$.	86
Figure 2.20.	Courbe $\frac{R_0}{q_c} = f(K)$.	87
Figure 3.1.	Poids apparent.	91
Figure 3.2.	Centrifugeuse du LCPC (centre de Nantes) en rotation.	92
Figure 3.3.	Centrifugeuse du LCPC (centre de Nantes) au repos.	92
Figure 3.4.	Courbe charge-déplacement $H = f(Y_0)$.	95
Figure 3.5.	Courbe normalisée.	96
Figure 3.6.	Courbe normalisée dans un repère bi-logarithmique.	96
Figure 4.1.	Courbe de chargement d'un pieu charge latéralement.	103
Figure 4.2.	Courbe de chargement d'un pieu charge axialement.	103
Figure 4.3.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	106
Figure 4.4.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	109
Figure 4.5.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	109
Figure 4.6.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	109
Figure 4.7.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	109
Figure 4.8.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	111
Figure 4.9.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	111
Figure 4.10.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	112
Figure 4.11.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	112
Figure 4.12.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	114
Figure 4.13.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	114
Figure 4.14.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	114

Figure 4.15.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	114
Figure 4.16.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	116
Figure 4.17.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	116
Figure 4.18.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	117
Figure 4.19.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	117
Figure 4.20.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K.	117
Figure 4.21.	Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B.	117
Figure 4.22.	Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$.	121
Figure 4.23.	Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$.	123
Figure 4.24.	Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$.	125
Figure 4.25.	Courbes expérimentales de chargement vertical et horizontal.	127

LISTE DES TABLEAUX

Tableau 1.1.	Valeurs de I_v dans un sol homogène ($v_s = 1/3$).	25
Tableau 1.2.	Valeurs de I_v dans un sol de Gibson E_s = a.z (v_s = 1/3).	25
Tableau 1.3.	Valeur du coefficient A en fonction de la densité du sable.	50
Tableau 1.4.	Valeur moyenne de E _s pour des sols sans cohésion.	50
Tableau 1. 5.	Facteur rhéologique α pour divers types des sols.	51
Tableau 1.6.	Facteur rhéologique α pour divers types de sols selon le règlement Français (Fascicule 62).	52
Tableau 1.7.	Caractéristiques des pieux d'essai.	57
Tableau 2.1.	Description des essais interprétés.	67
Tableau 2.2.	Valeurs charge-déplacement.	69
Tableau 2.3.	Distributions des efforts le long du pieu.	69
Tableau 2.4.	Calcul des frottements latéraux.	72
Tableau 2.5.	Frottements latéraux – tassements.	73
Tableau 2.6.	Valeurs de paramètres de transfert de charge.	75
Tableau 2.7.	Calcul de l'effort en pointe.	76
Tableau 2.8.	Étude statistique des valeurs du rapport $\frac{B_0.B}{E_M}$ (sols pulvérulents)	79
Tableau 2.9.	Étude statistique des valeurs du rapport $\frac{R_0}{E_M}$ (sols pulvérulents)	79
Tableau 2.10.	Étude des valeurs du rapport $\frac{B_0.B}{E_M}$ (sols fins)	80
Tableau 2.11.	Étude des valeurs du rapport $\frac{R_o}{E_M}$ (sols fins)	81
Tableau 2.12.	Étude statistique des valeurs du rapport $\frac{B_0.B}{q_c}$ (sols pulvérulents)	84
Tableau 2.13.	Étude statistique des valeurs du rapport $\frac{R_0}{q_c}$ (sols pulvérulents).	84
Tableau 2.14.	Étude des valeurs du rapport $\frac{B_0.B}{q_c}$ (sols fins).	85

Tableau 3.1.	Caractéristiques des pieux.	93
Tableau 3.2.	Ajustement des courbes de chargement.	98
Tableau 4.1.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$.	106
Tableau 4.2.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $v = 0,3$.	108
Tableau 4.3.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu = 0.49$.	109
Tableau 4.4.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu = 0,3$.	111
Tableau 4.5.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu = 0.49$.	112
Tableau 4.6.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu = 0,3$.	113
Tableau 4.7.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu = 0.49$.	114
Tableau 4.8.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$	116
Tableau 4.9.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$	116
Tableau 4.10.	Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$	117
Tableau 4.11.	Calcul du rapport $\frac{\alpha_H}{\alpha_V}$	118
Tableau 4.12.	Calcul du rapport $\frac{\alpha_H}{\alpha_V}$	118
Tableau 4.13.	Calcul du rapport $\frac{\alpha_H}{\alpha_V}$	119
Tableau 4.14.	Calcul du rapport $\frac{\alpha_H}{\alpha_V}$	119
Tableau 4.15.	Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$	120
Tableau 4.16.	Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$	122
Tableau 4.17.	Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$	124
Tableau 4.18.	Résultats des essais de chargement vertical.	128

Tableau 4.19.	Résultats d'ajustement d'essais de chargement vertical.	128
Tableau 4.20.	Résultats d'ajustement d'essais de chargement horizontal.	128
Tableau 4.21.	Calcul de K.	129
Tableau 4.22.	Résultat du calcul de α_V , α_H et K .	130
Tableau 4.23.	Comparaison des valeurs expérimentales et théoriques.	130

INTRODUCTION

Très souvent, quand le sol est moins résistant ou la charge transmise de l'ouvrage au sol est grande, la solution de fondation consiste à réaliser des fondations profondes. Le principal type de cette catégorie de fondation est les pieux.

Les pieux sont essentiellement conçus pour supporter les efforts axiaux, néanmoins certains ouvrages sont soumis à des efforts horizontaux. Les recherches sur le comportement d'un pieu isolé vis-à-vis des ces efforts appliqués ne cessent de développer des méthodes de calcul de tassement et de déflexion d'un pieu chargé axialement ou latéralement.

Les progrès importants qu'a connu la mécanique des sols, et le développement technologique et informatique ont renforcé les travaux de recherche, et les résultats ainsi obtenus s'avèrent plus représentatifs.

Le but du présent travail est de trouver des formulations simples pour le calcul des déplacements d'un pieu isolé chargé verticalement ou horizontalement, en se basant sur les données expérimentales et analytiques disponibles dans la littérature mondiale des pieux.

La première partie de ce mémoire comporte une étude bibliographique des méthodes traditionnelles de calcul des pieux en petits déplacements (tassement, déflexion), aussi bien sous chargement axial que latéral.

La deuxième partie se propose d'analyser les mesures directes des paramètres de transfert de charges verticales (B_o, R_o), lors des essais de chargement statique vertical, et trouver une corrélation entre ces paramètres et les caractéristiques géotechniques données pas les essais in-situ (PMT, CPT).

La troisième partie se consacre à une étude paramétrique d'une base de données d'essais de chargement latéral de modèles réduit centrifugés de pieux dans le sable, en vue de dégager les paramètres clefs de la réponse latéral d'un pieu isolé.

Du fait que les essais de chargement vertical sont plus courants, plus simples et moins coûteux que ceux de chargement latéral, la quatrième partie comporte une approche théorique d'étude de la réponse latérale d'un pieu isolé dans un sol relativement homogène, à partir des résultats d'essai de chargement vertical du même pieu.

En fin, on clôture cette étude par une conclusion générale sur les résultats obtenus, ainsi par des recommandations pour des futures recherches.

CHAPITRE 1

ÉTUDE BIBLIOGRAPHIQUE

1.1. Introduction:

L'estimation des déplacements (verticaux ou horizontaux) des pieux a fait l'objet de nombreuses études depuis longtemps.

Dans ce chapitre on présente une synthèse bibliographique des différentes méthodes, issues de la littérature des pieux, proposées par différents auteurs pour calculer le déplacement d'un pieu isolé aussi bien sous chargement vertical que latéral.

En se limitant aux petits déplacements, on expose au première partie les méthodes de calcul du tassement d'un pieu isolé chargé axialement, et au deuxième partie les méthodes de calcul du déplacement horizontal d'un pieu isolé charge latéralement.

1.2. Comportement des pieux sous chargement vertical :

1.2.1. Introduction:

Le tassement d'un pieu isolé sous les charges usuelles, est en général faible et ne constitue par un paramètre de calcul déterminant pour la plupart des structures de génie civil. Dans certaine cas de groupes de pieux, il peut être par contre, impératif d'estimer le tassement, ce qui suppose, bien souvent, que l'on soit déjà en mesure d'estimer correctement le tassement d'un pieu isolé. [29]

Les premiers calculs de tassement de pieu ont été conduits en élasticité linéaire à partir des formules de Boussinesq, en supposant que toute la charge était concentrée à la base, et en négligeant les terrains situés au-dessus, c'est-à-dire comme pour les semelles superficielles. Un progrès a été réalisé en 1936 lorsque Mindlin a calculé les déformations produites dans un massif élastique semi-infini, par une force concentrée en un point situé à une certaine profondeur au-dessous de la surface du massif, on s'est ainsi rapproché du cas du pieu.

Les plus grands progrès réalisés dans le domaine du tassement des pieux sont essentiellement dus aux travaux de H. Cambefort, dont la théorie ne postule pas a priori l'élasticité linéaire du sol, mais elle part directement de lois de comportement déduites d'observations expérimentales sur les pieux réels. [25]

1.2.2. Méthodes de calcul du tassement d'un pieu isolé :

Le tassement peut être déterminé expérimentalement à partir d'un essai de chargement statique. On peut aussi évaluer le tassement par calcul, en utilisant les différentes méthodes, qui peuvent être subdivisées en quatre catégories principales :

- Méthodes empiriques,
- Méthodes de la théorie d'élasticité,
- Méthodes numériques,
- Méthodes de la théorie de transfert de charges. [10]

1.2.2.1. Méthodes empiriques:[11]

En se basant sur la compilation d'un nombre de constatations sur les pieux, elles donnent une estimation approximative du tassement. Citons à titre non exhaustif :

- Formule de Vesic (1977):

Pour un sol pulvérulent et un chargement vertical loin de celui de la rupture du sol, le tassement v_o peut être estimé par :

$$\mathbf{v}_{o} = \frac{B}{100} + \Delta \mathbf{L} \tag{1.1}$$

où

 ΔL : le raccourcissement élastique du pieu, égal à $\frac{QD}{AE_p}$,

B: diamètre du pieu (en mètre),

A : aire de la section droite du pieu,

D: fiche du pieu,

Q : chargement vertical appliqué en tête du pieu,

E_p: module d'élasticité du matériau du pieu.

- Formule de Meyerhof (1956):

$$\mathbf{v}_{\mathsf{o}} = \frac{\mathsf{B}}{\mathsf{30F}_{\mathsf{S}}} \tag{1.2}$$

 $F_s = 3$ en général

- Formule de Frank (1995):

Pour un pieu foré:

$$\frac{v_0}{B} = 0.6\%$$
 (1.3)

Pour un pieu battu:

$$\frac{v_0}{B} = 0.9\%$$
 (1.4)

Ceci pour une charge égale à 0,7.Q_c, Q_c : charge verticale critique.

1.2.2.2. Méthodes d'élasticité:

Ces méthodes sont basées sur la solution fondamentale de Mindlin (1936) du problème d'une force verticale enterrée dans un massif du sol élastique semi-infini.

Le tassement vertical en tête du pieu v_o s'exprime en général sous la forme suivante :

$$v_o = \frac{QI_v}{E_s(D).B} \tag{1.5}$$

E_s(D) : module d'élasticité du sol à la base du pieu,

I_v : facteur de tassement.

- <u>Méthode de Poulos (1968)</u> :[47]

En considérant le pieu comme un cylindre de longueur D et de diamètre B, Poulos suppose que le pieu est formé de (n) éléments, chacun étant soumis à une contrainte de frottement latéral (τ) uniforme et une contrainte radiale (σ) . Une contrainte verticale (q_p) uniformément répartie est supposée appliquée à la base du pieu.

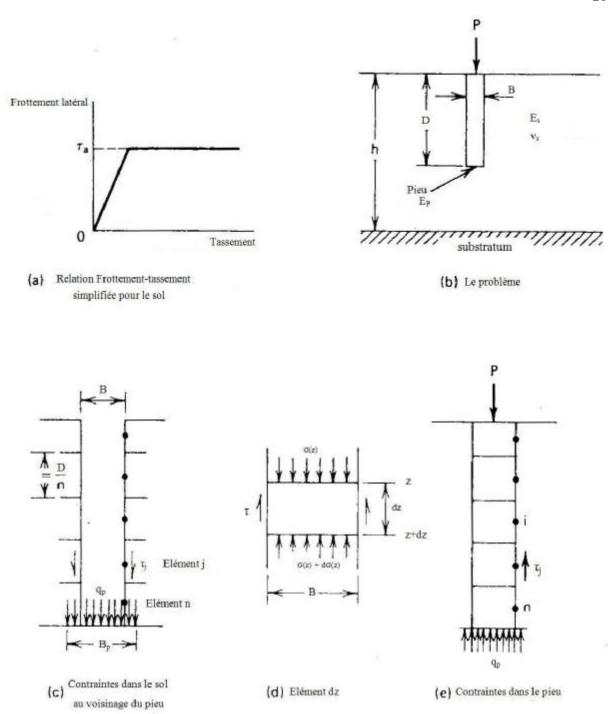


Figure 1.1: Analyse d'un pieu flottant. [47]

Poulos ne considère que les déplacements verticaux dans son calcul.

Dans le cas d'un pieu incompressible en milieu homogène, le déplacement v_o d'un point (M) du sol voisin d'un élément (i) dû aux contraintes sur un élément (j) s'écrit :

 $v_{ij} = r_{ij} \tau_j$ (élasticité linéaire)

 r_{ij} : facteur de déplacement vertical.

Donc le déplacement total de (M) est :

$$\mathbf{v}_{o} = \sum_{i=1}^{n} \mathbf{r}_{ij} \mathbf{\tau}_{i} + \mathbf{r}_{ib} \mathbf{q}_{p}$$
 (1.6)

r_{ib} : facteur de déplacement vertical de la base du pieu.

D'une façon générale on a :

$$[r] [\tau] + [r_b] q_p = \{v\}$$
 (1.7)

L'équation d'équilibre du pieu s'écrit :

$$\sum_{j=1}^{n} \tau_{j} \pi \mathbf{B} \frac{D}{n} + \mathbf{q}_{p} \frac{\pi B^{2}}{4} = \mathbf{p}$$
 (1.8)

On aura donc le système d'équations suivant :

$$\begin{cases} [r] [\tau] + [rb] qb = \{v\} \\ \\ \sum_{j=1}^{n} \tau_{j} \pi \mathbf{B} \frac{D}{n} + \mathbf{q}_{p} \frac{\pi B^{2}}{4} = \mathbf{p} \end{cases}$$
 (1.9)

Les facteurs r_{ij} et r_{ib} sont déterminés par intégration des équations de Mindlin.

• Cas de pieu rugueux et incompressible :

Le déplacement du pieu est égal au tassement du sol, on le pose égal à l'unité et on calcule la distribution des contraintes le long du pieu.

• Cas d'un pieu compressible en milieu homogène :

On suppose que:

- le pieu a un comportement élastique linéaire,
- le sol est un matériau élastique.

Dans ce cas les points du pieu n'ont plus le même déplacement le long de la profondeur.

L'équilibre d'un élément (dz) du pieu (figure 1.1.(d)), donne :

$$\sum F = 0 \longrightarrow (z) + d\sigma(z)) S + \tau(z)\pi B dz - \sigma(z) S = 0 \longrightarrow \frac{d\sigma(z)}{dz} = -\frac{\tau(z)\pi B}{S}$$

Le raccourcissement élastique de l'élément s'écrit :

$$\varepsilon = -\frac{\mathrm{dv_z}}{\mathrm{dz}} = \frac{\sigma(z)}{\mathrm{E_p}} \tag{1.10}$$

D'où l'équation différentielle donnant les tassements du pieu au niveau (z) en fonction de la contrainte $\tau(z)$:

$$\frac{d^2 v_z}{dz^2} - \frac{\pi B}{E_D S} \tau_z = \mathbf{0} \tag{1.11}$$

Finalement, on aura le système suivant :

$$\begin{cases} [r] [\tau] + [rb] qb = \{v\} \\ \sum_{j=1}^{n} \tau_{j} \cdot p \cdot B \cdot \frac{D}{n} + q_{p} \cdot \frac{\pi \cdot B^{2}}{4} = p \\ \frac{d^{2} v_{z}}{dz^{2}} - \frac{\pi B}{E_{p} S} \tau_{z} = 0 \end{cases}$$
(1.12)

En discrétisant la dernière équation par différence finis, on peut résoudre le système, et obtenir la distribution du frottement latéral ainsi que le tassement pour chaque élément.

D'autre part le tassement selon Poulos se calcule comme suit :

$$\mathbf{v}_{0} = \frac{QI_{v}}{E_{S}(D).B} \tag{1.13}$$

Les abaques suivants (figures 1.2 à 1.4) donnent le facteur de tassement I_{ν} .

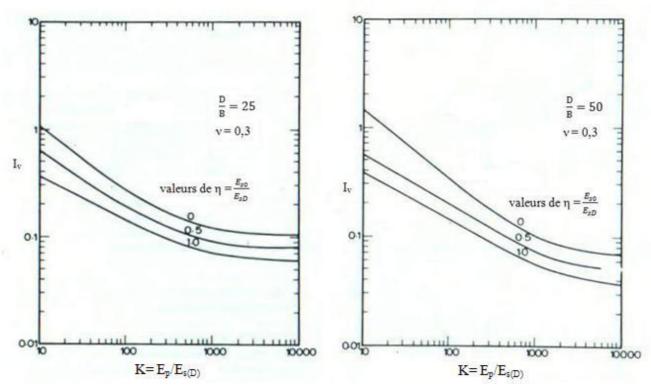


Figure 1.2: Facteurs de tassement pour D/B =25. Pieux flottants.[49]

Figure 1.3: Facteurs de tassement pour D/B =50. Pieux flottants.[49]

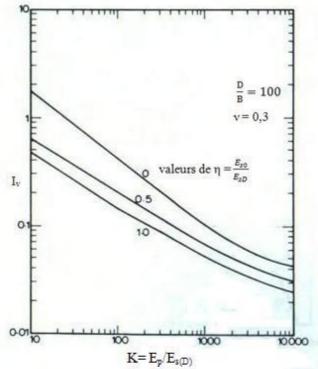


Figure 1.4: Facteurs de tassement pour D/B =100. Pieux flottants.[49]

En cas d'un sol multicouche ou non homogène, Poulos (1980) recommande de calculer un module équivalent E_s égale à la moyenne arithmétique pondérée, comme suit:

$$E_s(z) = \frac{1}{D} \sum E_i(z_i - z_{i-1})$$
 (1.14)

E_i: module de Young du sol à la profondeur z_i.

- <u>Méthode de Randolph et Wroth (1978)</u>:[53][11]

Cette méthode propose une formulation analytique du facteur de tassement, valable aussi bien pour un sol homogène que pour un sol de Gibson où $E_s(z) = a.z.$

$$I_{v} = 4(1+n) \frac{1 + \frac{8}{\pi \zeta \lambda (1-n)} \frac{D}{B} \frac{\tanh(mD)}{mD}}{\frac{4}{(1-n)\zeta} + \frac{4 \cdot \pi \cdot \pi}{\alpha} \frac{\tanh(mD)}{mD}}$$
(1.15)

avec:

$$\beta = \frac{E\left(\frac{D}{2}\right)}{E(D)} \tag{1.16}$$

$$\alpha = \ln \left[0.25 + (2.5\beta 2, -n) - 0.25).\xi, 25.\frac{D}{B} \right]$$
 (1.17)

$$\lambda = 2.(1+v).\frac{E_p}{E(D)}$$
 (1.18)

$$\mu.D = \frac{2\sqrt{2}\frac{D}{B}}{\sqrt{a\lambda}} \tag{1.19}$$

En cas d'un sol semi-infini (h infini) (figure 1.5), on prend $\zeta = 1$, et en présence d'un substratum élastique, caractérisé par un module E_b , le facteur ζ est calculé comme suit :

$$\zeta = \frac{E(D)}{E_b} \tag{1.20}$$

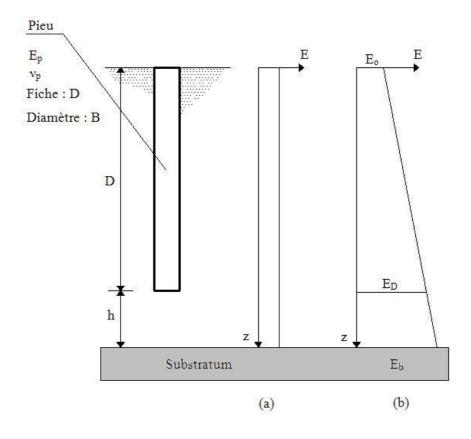


Figure 1.5: Schéma du modèle élastique du système sol/pieu (a : Sol homogène ; b : Sol de Gibson).[10]

Quelques valeurs de I_v sont résumées pour le cas d'un sol homogène, où $E_s(z)$ est constant et celui de Gibson où $E_s(z)=a.z$, dans les tableaux suivants :

Tableau 1.1: Valeurs de I_v dans un sol homogène ($v_s = 1/3$).[11]

K=1	$E_p/E_{s(D)}$	102	10°	10*	100
	5	0.2140	0.1910	0.1884	0.1882
D.D.	10	0.1733	0.1323	0.1280	0.1274
D/B	20	0.1580	0.0900	0.0820	0.0810
	50	0.1660	0.0615	0.0435	0.0414

Tableau 1.2: Valeurs de I_v dans un sol de Gibson E_s = a.z (ν_s = 1/3).[11]

K = I	$E_{p}/E_{s(D)}$	10 ²	10 ⁵	10*	10°
	5	0.2944	0.2603	0.2567	0.2563
D.D.	10	0.2595	0.1960	0.1890	0.1882
D/B	20	0.2504	0.1430	0.1290	0.1274
	50	0.2693	0.1053	0.0732	0.0692

- Méthode de Banerjee et Butterfield (1971):[23]

En ignorant la discontinuité entre le pieu et le sol, on assimile la base du pieu à un disque lisse soumis à une contrainte uniforme.

L'analyse consiste à trouver une contrainte fictive appliquée aux limites du système, et qui produit des déplacements identiques aux conditions aux limites réelles de ce dernier.

Après, on peut déterminer les contraintes et les déplacements en n'importe quel point du milieu y compris les interfaces pieu/sol et ce en intégrant les équations de Mindlin.

Butterfield impose la compatibilité des déplacements verticaux et horizontaux, et abouti à la solution suivante :

$$\{\Phi\} = [K]^{-1}\{v\} \tag{1.21}$$

où

 $\{\Phi\}$: Contraintes (verticales et radiales) au niveau de fût et à la base du pieu,

{v}: Déplacements au niveau de fût et à la base du pieu,

[K] : Matrice de rigidité.

Pour un pieu rigide, les déplacements verticaux pour tout point du fût et de la base sont les mêmes et égaux au déplacement de la tête du pieu. Le déplacement radial au niveau du fût est égal à zéro.

Pour un déplacement unitaire de la tête du pieu, l'équation (1.21) devient :

$$\begin{pmatrix} \Phi_{f} \\ \Phi_{r} \\ \Phi_{b} \end{pmatrix} = [\mathbf{K}]^{-1} \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix}$$
(1.22)

Si le déplacement radial est ignoré on aura :

$$\begin{pmatrix} \Phi_{\mathbf{f}} \\ \Phi_{\mathbf{b}} \end{pmatrix} = [K_1]^{-1} \begin{Bmatrix} \mathbf{1} \\ \mathbf{1} \end{Bmatrix}$$
(1.23)

1.2.2.3. Méthodes numériques :[10]

Les méthodes numériques deviennent un outil puissant de modélisation des problèmes d'interaction sol/fondation, et il est de plus en plus courant d'avoir le recours à la méthode des éléments finis ou méthode des différences finis pour l'analyse de tels problèmes.

L'interaction sol/pieu est modélisée par un maillage axisymétrique formé des éléments plans. Le problème peut être étudié à l'aide de tout programme général de calcul par éléments finis ou par différence finis. Citons à titre d'exemple des logiciels voués à la modélisation des problèmes géotechniques :

- Plaxis 2D,
- Crisp,
- Flac 2D.

Outre le fait que la méthode des éléments finis est un outil performant de recherche sur le comportement des pieux, elle est couramment utilisée dans les projets de fondations sur pieux ayant des aspects particuliers, en vue d'une prise en compte plus réaliste de l'interface sol/pieu.

La figure (1.6) illustre un exemple de maillage d'éléments finis autour de l'axe de symétrie verticale du système pieu/sol.

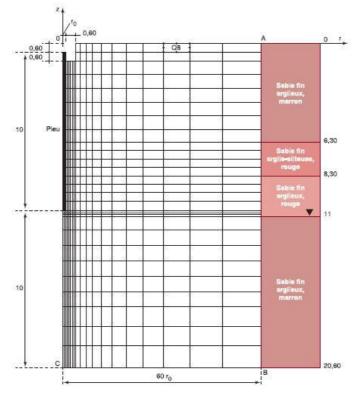


Figure 1.6 : Exemple de maillage d'éléments finis du problème de tassement d'un pieu chargé axialement [42]

1.2.2.4. Méthode de transfert de charges :

Présentation de la méthode :[11]

En ignorant la continuité du sol, on modélise l'interaction sol/pieu par une infinité de ressorts axiaux indépendants (figure 1.7). Le transfert des charges du pieu au sol se fait par le biais de ces ressorts qui reprennent les contraintes de frottement latéral $\tau(z)$ et les pressions verticales à la base du pieu q_p .

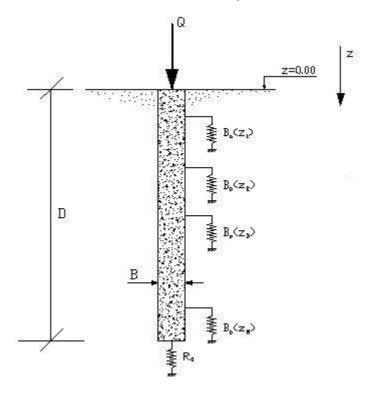


Figure 1.7 : Schéma de transfert de charges d'un pieu isolé. [11]

En supposant que ces contraintes sont proportionnelles au tassement correspondant, on aura :

$$\tau(z) = B_o(z).v(z) \tag{1.24}$$

$$\mathbf{q}_{\mathrm{p}} = \mathbf{R}_{\mathrm{o}} \frac{\mathrm{v(D)}}{\mathrm{B}} \tag{1.25}$$

L'équation différentielle qui traduit l'équilibre d'une tranche infinitésimale du pieu est la suivante :

$$\frac{d^2v}{dz^2} - a^2v = 0 ag{1.26}$$

$$\mathbf{a} = \sqrt{\frac{4B_0}{E_p B}} \tag{1.27}$$

Dans le cas d'un sol caractérisé par B_0 constant avec la profondeur, cette équation s'intègre analytiquement, et le tassement en tête du pieu est donné par :

$$\mathbf{v}_{0} = \frac{4Q}{\pi B} \frac{1 + \frac{R_{0}}{aBE_{p}} Tanh(aD)}{R_{0} + aBE_{p} Tanh(aD)}$$
(1.28)

Le facteur du tassement I_v correspondant sera :

$$I_{v} = \frac{4}{\pi} \frac{1 + \frac{\alpha}{2\sqrt{\beta.K}} \operatorname{Tanh}\left(2\frac{D}{B}\sqrt{\frac{\beta}{K}}\right)}{\alpha + 2\sqrt{\beta.K}.\operatorname{Tanh}\left(2.\frac{D}{B}\sqrt{\frac{\beta}{K}}\right)}$$
(1.29)

avec

$$\alpha = \frac{R_o}{E_o(D)} \tag{1.30}$$

$$b = \frac{B_o.B}{E_s(z)} \tag{1.31}$$

K : la compressibilité relative, $K = \frac{E_p}{E_s}$

Dans le cas d'un pieu incompressible, la solution précédente devient, en imposant

$$\frac{E_p}{E_s} = \infty :$$

$$\mathbf{v}_{0} = \frac{4Q}{\pi B} \frac{1}{(R_{0} + 4DB_{0})} \tag{1.32}$$

Méthodes de calcul par la théorie de transfert des charges :

- Méthode de Camdefort (1964):[25]

En observant un grand nombre d'essais de chargement, Cambefort déduit que les points de sol voisins du fût d'un pieu chargé, suivent le même déplacement que le pieu, tant que la contrainte de cisaillement sol/pieu est inférieure à la contrainte limite.

Au-delà de cette contrainte, il y aura un glissement se propageant de la tête du pieu vers la pointe.

Il constate que la courbe charge-tassement présente l'allure schématisée sur la figure (1.8):

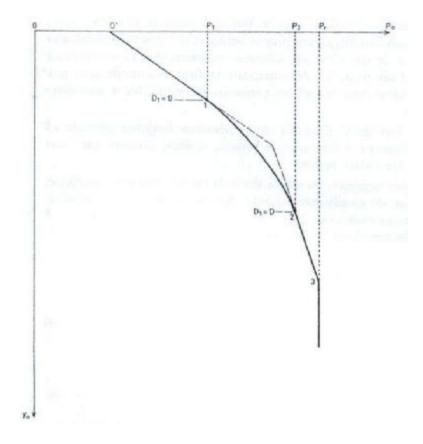


Figure 1.8 : Courbe type de chargement d'un pieu (selon Combefort).[25]

D'où il pose les hypothèses suivantes : (figure 1.9)

Au niveau de la pointe la contrainte q_p est une fonction linéaire du tassement v(D) :

$$q_{p} = q.B + \frac{R_{o}}{B}v(D)$$
 (1.33)

Au début de chargement, à une profondeur z, la contrainte de frottement est une fonction linéaire du tassement v

$$\tau(z) = A + B_o v(z) \tag{1.34}$$

En augmentant la charge il y aura décollement entre le fût du pieu et le sol dès que la déformation du sol atteint une valeur limite v_1 , et cela jusqu'à une profondeur D_1 .

On aura donc:

* Pour $z < D_1$:

La loi de frottement est :

$$\tau = g + f z \tag{1.35}$$

f = 0 en terrain cohérent

g = 0 en terrain pulvérulent

* Pour $z > D_1$:

La loi de frottement de l'adhérence

$$\tau(z) = A + B_o v(z) \tag{1.36}$$

Dès que la charge arrive à une certaine valeur, le décollement (glissement) atteint la base, seul la pointe continue à réagir suivant une loi linéaire.

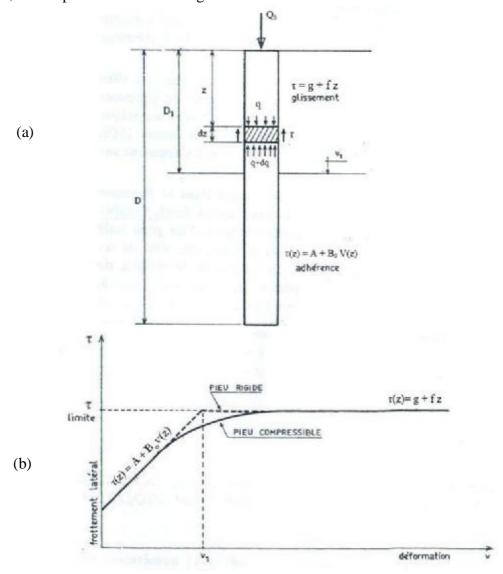


Figure 1.9 : Schématisation des hypothèses de Combefort.[25]

Relation générale entre charge et enfoncement :

L'équation d'équilibre d'un élément de pieu d'épaisseur (dz) à une profondeur (z) (figure 1.9(a)) et la loi de Hooke donnent l'équation différentielle suivante :

$$\frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{d} \mathrm{z}^2} - \frac{4 \mathrm{\tau}}{\mathrm{BE}_{\mathrm{p}}} = \mathbf{0} \tag{1.37}$$

 $Pour \ 0 < z < D_1, \quad On \ a: \tau = g + f \ z$

L'équation différentielle (1.37) devient

$$\frac{d^2v}{dz^2} - \frac{4(g+fz)}{BE_p} = 0 {(1.38)}$$

d'où le résultat :

$$v = v_0 - \frac{4z}{BE_p} \left(\frac{Q_0}{\pi B} - \frac{gz}{2} - f\frac{z^2}{6}\right)$$
 (1.39)

$$\mathbf{v}_{0} = \frac{4}{B} \left(\frac{Q_{0}}{\pi B} - \mathbf{g} \mathbf{z} - \mathbf{f} \frac{\mathbf{z}^{2}}{6} \right) \tag{1.40}$$

Pour $D_1 < z < D$, on $a : \tau(z) = A + B_0(z)$

L'équation différentielle (1.37) devient

$$\frac{d^2}{dz^2} - \frac{4(A + B_0 v(z))}{BE_p}$$
 (1.41)

On pose

$$a = \frac{4B_o}{BE_p} \tag{1.42}$$

On aura l'équation différentielle sous cette forme :

$$\frac{d^2v}{dz^2} - a^2v = a^2 \frac{A}{B_0}$$
 (1.43)

La forme de la solution générale :

$$v = Mchaz + Nshaz - \frac{A}{B_o}$$
 (1.44)

Conditions aux limites : égalité des contraintes pour $z = D_1$

On trouve:

$$\mathbf{V} = \frac{\left[\text{cha}(D-z) + \frac{R_0}{aBE_p} \text{sha}(D-z) \right] N_1 + \left(\frac{R_0}{B} \frac{A}{B_0} - QB \right) \text{cha}(z-D_1)}{\frac{(R_0}{B} \text{ch}(D-D_1) + AE_p \text{sh}(D-D_1)}{AE_p \text{sh}(D-D_1)} - \frac{A}{B_0}$$
(1.45)

$$\mathbf{q} = \frac{\left[aE_{p}sha(D-z) + \frac{R_{0}}{B}cha(D-z)\right]N_{1} + \left(\frac{R_{0}}{B}\frac{A}{B_{0}} - QB\right)aE_{p}sha(z-D_{1})}{\frac{(R_{0}}{B}cha(D-D_{1}) + aE_{p}sh(D-D_{1})}$$
(1.46)

avec:

$$\mathbf{q}_{1} = \mathbf{q}_{0} - \frac{4}{B} \left(\mathbf{g} + \mathbf{f} \frac{\mathbf{D}_{1}}{2} \right) \mathbf{D}_{1}$$
 (1.47)

Au début de chargement, tant qu'il y a adhérence entre le pieu et le sol, on a $D_1 = 0$, le tassement à z = 0 est :

$$\mathbf{V} = \frac{\left(\operatorname{ch} \operatorname{aD} + \frac{R_0}{\operatorname{aE}_p} \operatorname{sh} \operatorname{aD}\right) N_0 + \frac{R_0}{\operatorname{B} B_0} \operatorname{NB}}{\frac{R_0}{\operatorname{B}} \operatorname{ch} \operatorname{aD} + \operatorname{AE}_p \operatorname{sh} \operatorname{D}}$$
(1.48)

- <u>Méthode de Gambin (1963)</u> :[25]

Dans cette méthode, on adopte les lois de comportement suivantes :

* Au niveau de la pointe :

Si r = B/2 = rayon du pieu

Pour $r < r_o$

$$v_{p} = \frac{P}{2E} \lambda r \tag{1.49}$$

Pour $r > r_o$

$$v_{p} = \frac{P}{2E} \lambda r_{0} \left(\lambda \frac{r}{r_{0}} \right)^{\alpha} \tag{1.50}$$

 $r_o = 30$: dimension repère

 λ : coefficient de forme du pieu

 $\lambda = 1$ pour une section circulaire

 $\lambda = 1,12$ pour une section carré

 α : coefficient de structure du sol.

Cette loi est celle de la théorie pressiométrique déduite de la formule de Josselin de Jong

* Au niveau du fût du pieu :

Pour
$$r < r_0$$

$$v = C_1 \frac{\tau r}{E}$$
 (1.51)

Pour
$$r > r_0$$
 $v = C_1 \frac{\tau}{E} r \left(\frac{r}{r_0}\right)^a$ (1.52)

C₁ : coefficient numérique qui dépend de l'état de surface du pieu.

<u>Calcul du tassement</u>:

On décompose le pieu en (n) petits tronçons dont les hauteurs ($h_1,\ h_2,\ \dots,\ h_n$). (figure 1.10)

L'équilibre du tronçon (i-1) permet d'écrire :

$$q_{i} = q_{i+1} + \frac{2h_{i-1}\tau_{i-1}}{r}$$
 (1.53)

La loi de Hooke appliqué au tronçon (i) s'écrit :

$$v_{i+1} = v_i \frac{q_i h_i}{E_p}$$
 (1.54)

Puisque le frottement $(\tau_{i\text{--}1})$ provient de la déformation (v_i) on a :

$$\tau_{i-1} = \frac{v_i E_{i-1}}{C_1 r} \tag{1.55}$$

$$\tau_{i-1} = \frac{v_i E_{i-1}}{C_1 r_0 \left(\frac{r}{r_0}\right)^{\alpha}} \tag{1.56}$$

On se fixe une contrainte à la base (q_l) arbitraire, mais inférieur au terme de pointe admissible déterminé dans l'étude de la stabilité générale.

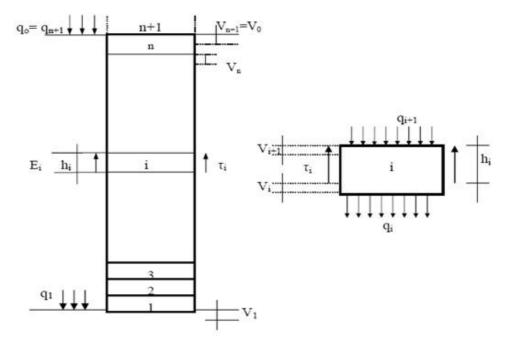


Figure 1.10: Tassement d'un pieu isolé (selon Gambin).[25]

Partant de la base et en remontant par application des formules de (1.51) à (1.54), on abouti à la valeur de la contrainte et de la déformation en tête.

$$\mathbf{v}_1 = \frac{v+1}{3E_1} \mathbf{q}_1 \mathbf{r}_0 \left(\frac{\mathbf{r}}{\mathbf{r}_0}\right) \alpha \tag{1.57}$$

$$\mathbf{v}_2 = \mathbf{v}_1 + \frac{q_1 h_1}{E_p} \tag{1.58}$$

$$v_3 = v_2 + \frac{q_2 h_2}{E_p} \tag{1.59}$$

$$q_2 = q_1 + \frac{2h_1 t_1}{r} \tag{1.60}$$

$$\operatorname{et} \tau_{1} = \frac{v_{2} E_{1}}{C_{1} r_{0} \left(\frac{r}{r_{0}}\right)^{\alpha}} \tag{1.61}$$

$$v_0 = v_n + \frac{q_n h_n}{E_p}$$
 (1.62)

$$\operatorname{et} q_{0} = q_{n} + \frac{2h_{n}t_{n}}{r_{0}} \tag{1.63}$$

avec:

$$\tau_{n} = \frac{v_{0}E_{n}}{C_{1}r_{0}\left(\frac{r}{r_{0}}\right)^{\alpha}}$$

$$(1.64)$$

- <u>Méthode de Cassan (1966)</u> :[25]

Dans cette méthode on néglige les paramètres (Q) et (A) dans les lois de comportement de Cambefort, on aura :

$$\begin{cases} \tau = B_o v(z) \\ q_p = \frac{R_o}{B} v(D) \end{cases}$$
 (1.65)

 B_{o} et R_{o} paramètres qui caractérisent la déformabilité du sol en pointe et au fût du pieu.

Détermination des paramètres R_o et B_o :

La base du pieu est assimilée à une demi-sphère rigide.

D'après la solution de Josselin de Jong, le déplacement vertical (v) de la pointe du pieu est donnée par :

$$\mathbf{v} = \frac{1+\nu}{3E} \mathbf{p} \mathbf{r} = \frac{1+\nu}{6E} \mathbf{p} \mathbf{B} \tag{1.67}$$

L'équation (b) donne donc :

$$R_0 = \frac{6E}{1+v} = 12G \tag{1.68}$$

En général v=1/3

d'où

$$R_0 = 4.5 E_s$$
 (1.69)

Pour déterminer le paramètre (B_o) , on considère le pieu comme infiniment rigide par rapport au sol.

La formule de Mindlin donne la déformation verticale du massif à une profondeur D et à une distance (B/2) de l'axe d'un pieu chargé verticalement par une force (Q).

Après simplification on aura:

$$v = \frac{bF}{E} \varsigma(m) \tag{1.70}$$

Pour v=1/3, on a :
$$\varphi(m) = 1,53 \log m + 0,95$$
 et $m = \frac{2.D}{B}$

Cassan aboutit à :

$$B_0 = \frac{E}{2(1+n)I_0} \tag{1.71}$$

$$I_0 = 0.9$$

Pour v=1/3 on aura:

$$B_o = 4.2 * E_s$$
 (1.72)

 B_o en $[kN/m^3]$ en prenant E_s en [MPa].

Expression du tassement:

L'équation d'équilibre d'un élément du pieu et de la loi de Hooke, donne l'équation différentielle suivante :

$$\frac{d^2v}{dz^2} - \frac{4B}{DE}v = 0 ag{1.73}$$

L'intégrale générale est :

$$v = M \operatorname{sh}(az) + N \operatorname{ch}(az) \tag{1.74}$$

Conditions aux limites:

en tête : z = 0 alors $v = M = v_o$

en pointe :
$$z = D$$
 alors $-E_p \frac{dv}{dz} = \frac{A_0}{B} v$

Tout calcul fait donne la formule suivante :

$$v_{0} = \frac{4.Q}{\pi.D} \frac{1 + \frac{R_{0}}{a.B.E_{p}} th \ a.D}{R_{0} + a.B.E_{p}.th \ a.D}$$
(1.75)

On définit le facteur adimensionnel du tassement par :

$$I_{v} = \frac{v_{0}.Q.E_{s}}{\pi.D}$$
 (1.76)

Posons:
$$K = E_p/E_s$$
 et $z = a.D = \frac{m}{\sqrt{Kj (m)}}$

On aura:

$$I_{v} = \frac{4}{\pi} \frac{1 + \frac{2,25 \,\text{m}}{K} \frac{\text{m}}{z} \text{thz}}{4,5 + 2K \frac{z}{m} \text{thz}}$$
(1.77)

Pour une valeur petite de z :

$$I_{v} = \frac{4}{\pi} \frac{1 + \frac{2,25 \text{ m}}{K}}{4,5 + 2K \frac{m}{j \text{ (m)}}}$$
(1.78)

Selon Cassan on peut conclure, que le facteur du tassement diminue en augmentant l'élancement (puisque $m = \frac{2.D}{B}$) et la compressibilité relative (K).

- Méthode de Christoulas (1976):[65]

On divise la circonférence du pieu en un certain nombre d'arcs égaux (θ) au milieu desquels est placée une charge ponctuelle représentant le frottement latéral sur l'arc. (Figure 1.11)

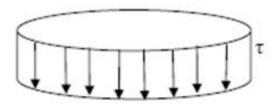


Figure 1.11 : Subdivision de la circonférence du pieu. [65]

En utilisant la formule de Mindlin pour déterminer le déplacement vertical d'un point de la circonférence, Christoulas propose la formule enveloppe suivante :

$$B_o = 0.45 * E_s, \tag{1.79}$$
 (E_s en [kPa] et B_o en [kPa/m])

On assimile la base du pieu à un disque plan et circulaire soumis à une charge verticale uniformément répartie.

La relation entre la pression q_p en pointe et le tassement v, donne la valeur suivante de R_o :

$$R_0 = \frac{32(1-n)E_s}{\pi(1+n)(3-4n)}$$
 (1.80)

Pour v = 1/3, $R_o = 3.E_s$

Pour les pieux incompressibles, l'expression du tassement est :

$$v_{o} = \frac{Q}{\pi . B(B_{o}.D + \frac{R_{o}}{4})}$$
(1.81)

En remplaçant B_o et R_o dans l'équation (1.81), on aura :

$$v_o = \frac{Q.I_o}{E_s.B} \tag{1.82}$$

$$I_{0} = \frac{1}{\pi B \left(0,45E_{s}D + \frac{3E_{s}}{4}\right)} = \frac{1}{\pi B_{o} \frac{D}{E_{s}} + \pi 0.75}$$
(1.83)

- Méthode de Frank et Zhao (1982):[8]

Suite aux observations du comportement des pieux instrumentés sujets à des essais de chargement verticaux en France, Frank et Zhao (1982) ont recommandé de construire la mobilisation du frottement latéral τ -v et celle de la pression en pointe q_p -v(D)/B telles que schématisées à la figure (1.12).

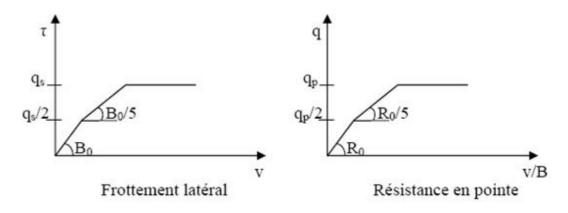


Figure 1.12: Courbe de mobilisation des contraintes à l'interface sol/pieu.[8]

Pour les sols fins :

$$B_o = 2\frac{E_m}{B} \tag{1.84}$$

et
$$R_0 = 11.E_m$$
 (1.85)

Pour les sols granulaires :

$$B_{o} = 0.8 \frac{E_{m}}{B} \tag{1.86}$$

et
$$R_0 = 4.8 \cdot E_m$$
 (1.87)

E_m: caractéristique pressiomètrique.

Principe de la méthode:

L'équation différentielle de l'équilibre d'un élément de pieu est :

$$E_{p}S\frac{d^{2}V_{z}}{dz^{2}} - \pi B\tau(z) = 0$$
 (1.88)

On propose les deux lois de comportements suivants :

$$\tau_z = A + B_0 v(z) \tag{1.89}$$

$$q_1 = \frac{R_o}{B} v(D) + QD \tag{1.90}$$

Pour $B_o \neq 0$ l'équation différentielle devient :

$$\frac{d^2 v_z}{dz^2} - \mu^2 v_z = \mu^2 \frac{A}{B_0}$$
 (1.91)

avec
$$\mu^2 = \frac{\pi B B_0}{E_p S}$$

La solution sera donc:

$$v(z) = Mchaz + Nshaz - \frac{A}{B_0}$$
 (1.92)

Le raccourcissement élastique du pieu est : $dv(z) = -\frac{N(z)A}{E_pS}dz$

D'où:

$$N(z) = -E_p S \frac{dv}{dz} M m sh (mz) + E_p S N \mu ch (mz)$$
(1.93)

Pour $B_o = 0$ et $A = \tau_1$, l'équation différentielle devient :

$$E_{p}S\frac{d^{2}v_{z}}{dz^{2}} - \pi B\tau_{1} = 0$$
 (1.94)

La solution sera:

$$v(z) = \pi \frac{D\tau_1}{E_p S} \frac{z^2}{2} + M_z + N$$
 (1.95)

$$Nz = -\pi D \tau_1 z - M \tag{1.96}$$

Ces recommandations ont été adoptées par le règlement français de calcul des fondations des ouvrages de génie civil (CCTG, fascicule 62, 1993).

La méthode a été mise au point au LCPC sous forme d'un logiciel adopté, PIVER (PIeu sous charge VERtical).

1.3. Comportement des pieux sous chargement latéral :

1.3.1 Introduction:

Les pieux sont souvent soumis à des forces latérales et à des moments. Les déplacements et les rotations en tête des pieux chargés latéralement sont considérés comme un critère nécessaire pour leur dimensionnement.

Différentes méthodes de calcul ont été développées pour ce problème. Ces méthodes sont classées en quatre groupes :[11]

- les méthodes du continuum élastique,
- les méthodes au module de réaction.
- la méthode des éléments finis / éléments frontières.
- les méthodes empiriques.

1.3.2. Méthodes de calcul de la déflexion d'un pieu isolé :

1.3.2.1 – Méthodes du continuum élastique :

Ces méthodes supposent que le massif de sol est un milieu continu et élastique. La plupart du temps, le sol est également considéré comme homogène et isotrope. Ces méthodes reposent sur la solution des équations de Mindlin (1936) où le pieu y est modélisé par une poutre longue, et le déplacement en un point du massif est liée à la pression en ce point et celle des points voisins. En outre les déplacements latéraux de la poutre sont égaux à ceux du sol c'est-à-dire qu'il y a une parfaite adhérence sol-pieu.

Plusieurs méthodes sont basées sur le principe du continuum élastique, telles que celle de Douglas et Davis (1964); Spillers et Stoll (1964); Lenci, Maurice et Madignier (1968); Matthewson (1969); Banerjee (1978); Banerjee et Davis (1978) et Poulos(1971a,1972); etc.[47]

Deux méthodes sont présentées :

- Méthodes de Poulos (1971a, 1973,1992) :[47]

Le sol est caractérisé par deux paramètres, le module d'élasticité E_s et le coefficient de Poison ν . Poulos (1971) modélise le pieu par une plaque verticale de largeur B et de longueur D. La rigidité à la flexion est constante sur toute la longueur et égale à E_pI_p . Le pieu est décomposé en éléments de même longueur, chaque élément étant soumis à une contrainte horizontale constante p. L'expression du déplacement et de rotation du pieu est fonction de deux paramètres : l'élancement du pieu D/B et le facteur de flexibilité $\mathbf{K}_R = \frac{E_pI_p}{E_sD^4}$ (rapport entre la rigidité à la flexion et le produit du module d'élasticité et de la longueur du pieu). Des abaques permettent de calculer le déplacement et la rotation du pieu à partir des paramètres énoncés ci-dessus (E_s , E_pI_p , L/B, K_R, ν) et de la charge appliquée.

Dans le cas d'un pieu flottant à tête libre, chargé horizontalement par une force H appliquée à une distance e du niveau du sol, et E_s constant et v pris égal à 0.5, le déplacement Y_o et la rotation Y_o' au niveau du sol sont donnés par :

$$\mathbf{Y}_{o} = \frac{H}{E_{c}D} \left(\mathbf{I}_{YH} + \frac{e}{D} \mathbf{I}_{YM} \right) \tag{1.97}$$

$$\mathbf{Y}_{0}' = \frac{H}{E_{S}D^{2}} (\mathbf{I}_{Y'H} + \frac{e}{D} \mathbf{I}_{Y'M})$$
 (1.98)

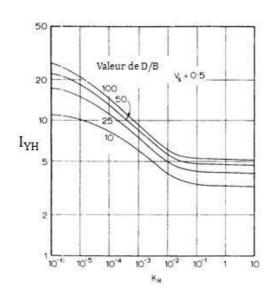
où

H: chargé appliquée

e : excentricité de la charge = M/H

M: moment appliqué au niveau du sol

 I_{YH} , I_{YM} : facteurs d'influence élastique pour le déplacement causé par la charge horizontale et le moment respectivement, pour E_s constant.

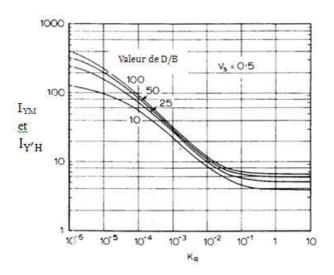

 $\mathbf{I}_{Y'H}, \mathbf{I}_{Y'M}$: facteurs d'influence élastique pour la rotation causée par la charge horizontale et le moment respectivement, pour E_s constant.

Pour un sol purement élastique, le déplacement Y_o et la rotation Y_0^\prime au niveau du sol sont donnés par :

$$Y_0 = I_{YH}(\frac{H}{E_SD}) + I_{YM}(\frac{M}{E_SD^2})$$
 (1.99)

$$\mathbf{Y}_0' = \mathbf{I}_{Y'H} \left(\frac{H}{E_S D^2} \right) + \mathbf{I}_{Y'M} \left(\frac{M}{E_S D^3} \right)$$
 (1.100)

Les facteurs d'influence sont donnés par les abaques sur les figures 1.13, 1.14 et 1.15.



Valeur de D/B

Valeur

Figure 1.13 : Valeurs de I_{YH} , pieu flottant à tête libre et E_s constant. [47]

Figure 1.14 : Valeurs de $I_{Y'M}$, pieu flottant à tête libre et E_s constant.[47]

 $\begin{array}{c} \text{Figure 1.15: Valeurs de } \ \textbf{I}_{YM} \ \text{ et } \textbf{I}_{Y'H}, \text{ pieu flottant} \\ \text{ à tête libre et } \ E_s \ constant. \ [47] \end{array}$

Dans le cas d'un pieu flottant dans un sol où le module d'élasticité E_s varie linéairement avec la profondeur ($E_s=az$), le déplacement Y_o et la rotation Y_o' au niveau du sol sont donnés par :

$$\mathbf{Y}_{0} = \frac{H}{aD^{2}} \left(\mathbf{I}'_{YH} + \frac{e}{D} \mathbf{I}'_{YM} \right) \tag{1.101}$$

$$Y'_{o} = \frac{H}{aD^{3}} (I'_{Y'H} + \frac{e}{D} I'_{Y'M})$$
 (1.102)

οù

 I'_{YH} , I'_{YM} : facteurs d'influence élastique pour le déplacement causé par la charge horizontale et le moment respectivement, pour E_s variant linéairement avec la profondeur.

 $\mathbf{I'}_{Y'H}$, $\mathbf{I'}_{Y'M}$: facteurs d'influence élastique pour la rotation causée par la charge horizontale et le moment respectivement, pour E_s variant linéairement avec la profondeur.

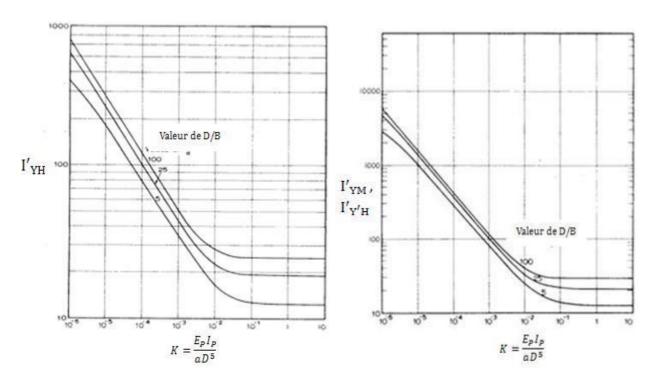


Figure 1.16 : Valeurs de I'_{YH} , pieu flottant à tête libre et E_s variant linéairement.[47]

Figure 1.17 : Valeurs de $\mathbf{I'}_{YM}$ et $\mathbf{I'}_{Y'H}$, pieu flottant à tête libre et E_s variant linéairement.[47]

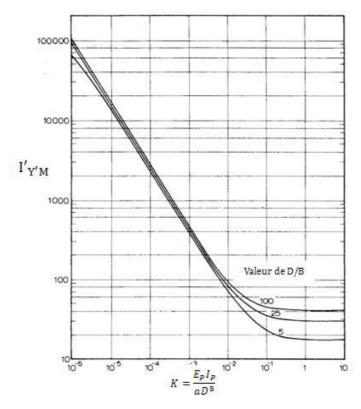


Fig 1.18 : Valeurs de $\mathbf{I'}_{Y'M}$, pieu flottant à tête libre et E_s variant linéairement.[47]

- Méthodes de Banerjee et Davis (1978) :[4]

Cette méthode a été développée pour des pieux chargés axialement et latéralement, et utilise la solution analytique des équations de Mindlin (1936). On suppose le module d'élasticité E_s varie linéairement avec la profondeur selon cette équation :

$$E(z) = E(0) + mz ag{1.103}$$

où:

E(z): module de Young à la profondeur z,

E(0) : module de Young à la surface du sol,

m : taux d'accroissement du module du module de Young avec la profondeur.

Le coefficient de Poisson est pris constant.

Les équations reliant les déplacements et les tractions superficielles pour le domaine du sol, sont couplées avec les équations de compressibilité du pieu, pour générer en fin le système d'équations suivant :

$$F\Phi = B \tag{1.104}$$

F: matrice carré, de (2p+q), des coefficients,

 Φ : vecteur des tractions superficielles au niveau de l'interface sol-pieu,

B : vecteur des conditions aux limites des déplacements,

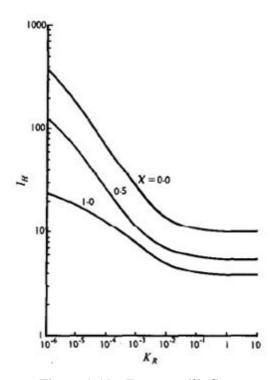
p : nombre de segments du fût,

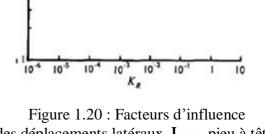
q : nombre d'éléments de base.

La solution finale reliant la charge axiale P, la charge horizontale H et le moment M en tête, au déplacement vertical, le déplacement horizontal Y et la rotation Y', est donnée par l'équation globale :

avec : f_{12} = f_{21} , f_{13} = f_{31} et f_{23} = f_{32} selon le théorème de réciprocité.

Pour un pieu chargé latéralement les termes $f_{12}=f_{21}=f_{13}=f_{31}=0$.


Les déplacements et les rotations en tête seront donnés par :


$$Y = I_{H} \frac{H}{E(L)L} + I_{HM} \frac{M}{E(L)L^{2}}$$
 (1.106)

$$\mathbf{Y}' = \mathbf{I}_{HM} \frac{H}{E(L)L^2} + \mathbf{I}_{MM} \frac{M}{E(L)L^3}$$
 (1.107)

où I_H, I_{HM} et I_{MM} sont les facteurs d'influence des déplacements.

Ces équations concernent les pieux à tête libre. Les facteurs I_H , I_{HM} et I_{MM} sont donnés par des abaques en fonction de la rigidité relative $\mathbf{K}_R = \frac{E_P I_P}{E(D).D^4}$ et l'indice d'homogénéité $\chi = \frac{E(0)}{E(D)}$

X = 0.0

Figure 1.19 : Facteurs d'influence des déplacements latéraux, \mathbf{I}_{H} , pieu à tête libre, du à une charge latérale.[4]

Figure 1.20 : Facteurs d'influence des déplacements latéraux, I_{HM} , pieu à tête libre du, à un moment.[4]

D'après ces auteurs, le facteur de flexibilité K_R a un effet considérable sur les facteurs de déplacement. Cet effet est plus important que celui de l'élancement (D/B). De ce fait, il est possible de réduire les déplacements horizontaux d'un pieu chargé latéralement, selon cette méthode, par augmentation du diamètre du pieu. D'après les auteurs $K_R = 0.1$ correspond à un pieu très rigide et $K_R = 10^{-4}$ correspond à un pieu flexible.

100

INM

1.3.2.2 – Méthodes au module de réaction :

Ce sont les méthodes de transfert de charge les plus couramment utilisées, elles sont basées sur le modèle de Winkler (1987) introduisant la notion de module de réaction.

Elles consistent à modéliser l'interaction entre le sol et le pieu par une série de ressort indépendants entre eux et de raideur variable. La raideur permet de relier directement la réaction latérale du sol (P) et le déplacement du pieu (Y). Ces méthodes sont à la base des courbes P-Y.

Le modèle de Winkler énoncé en 1867, définit le sol comme étant un empilement de tranches indépendantes. Chaque tranche de sol est modélisée par un ressort horizontal sur lequel s'appuie le pieu, comme le montre la figure 1.21.

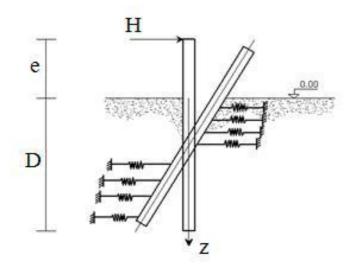


Figure 1.21 : Schéma du sol discrétisé en des ressorts lors d'un chargement latéral. [11]

La pression sur une tranche de sol ne dépend que du déplacement horizontal de cette dernière et d'un coefficient de réaction du sol :

$$p = k_h(z).Y(z)$$
 ou $P = E_sY(z)$ en posant $E_s = k_h(z)B$ (1.108)

avec

p: pression (N/m²),

 $k_{\text{h}}(z)$: coefficient de la réaction à une profondeur z (N/m³),

Y(z): le déplacement du pieu pour une profondeur z (m),

P: la réaction du sol (N/m^2) ,

 E_s : le module de réaction du sol pour une profondeur z (N/m^2) ,

B: diamètre du pieu (m).

L'équation d'équilibre statique sur un tronçon de pieu est :

$$\mathbf{E}_{\mathbf{p}}\mathbf{I}_{\mathbf{p}}\frac{\partial^{4}\mathbf{Y}}{\partial z^{4}} = -\mathbf{P} \iff \mathbf{E}_{\mathbf{p}}\mathbf{I}_{\mathbf{p}}\frac{\partial^{4}\mathbf{Y}}{\partial z^{4}} + \mathbf{E}_{\mathbf{s}}\mathbf{Y}(\mathbf{z}) = \mathbf{0}$$
(1.109)

Dans le cas d'un sol sec et homogène où le module de réaction du sol est constant, quelle que soit la profondeur considérée, cette équation s'intègre pour donner le déplacement Y_o et la rotation Y_o' en surface du sol, pour un pieu libre en tête, comme suit :

$$\mathbf{Y}_{0} = 2 \frac{H}{E_{S}L_{0}} + 2 \frac{M_{0}}{E_{S}L_{0}^{2}} \tag{1.110}$$

$$Y_0' = 2\frac{H}{E_S L_0^2} + 4\frac{M}{E_S L_0^3} \tag{1.111}$$

 L_{o} : la longueur élastique ou longueur de transfert du pieu dont l'expression est :

$$\mathbf{L}_{\mathbf{0}} = \sqrt[4]{\frac{4\mathsf{E}_{\mathbf{p}}\mathsf{I}_{\mathbf{p}}}{\mathsf{E}_{\mathbf{s}}}} \tag{1.112}$$

Dans le cas du massif de Gibson où le module de réaction varie linéairement avec la profondeur, tel que $E_s(z)=N_H.z$, l'intégration numérique de cette équation par la méthode des différences finis donne (Reese et Matlock, 1960) :

$$Y_{0} = 2.4 \frac{H}{N_{H}^{3/5} \cdot (E_{p}I_{p})^{2/5}} + 1.6 \frac{M_{0}}{N_{H}^{2/5} \cdot (E_{p}I_{p})^{3/5}}$$
(1.113)

$$Y_{o}' = 1.6 \frac{M_{o}}{N_{H}^{2/5} \cdot (E_{p}I_{p})^{3/5}} + 1.74 \frac{M_{o}}{N_{H}^{1/5} \cdot (E_{p}I_{p})^{4/5}}$$
(1.114)

- Expression du module de réaction :

Terzaghi (1955) détermine le module de réaction du sol E_s à partir du module d'Young du matériau E constituant le sol.

Pour le sable :

$$\frac{E_s}{E} = 0.74 \tag{1.115}$$

avec

 $E = A\gamma z$

A: un coefficient adimensionnel fonction de la densité du massif de sable (Tableau1.3),

 γ : le poids volumique du sol,

z : la profondeur.

Tableau 1.3 : Valeur du coefficient A en fonction de la densité du sable.[59]

Densité du sable	Lâche	Moyen	Dense
А	100-300	300-1000	1000-2000

Poulos (1971) propose pour des sables (sol sans cohésion) une valeur moyenne du module de réaction en fonction du type de sol (Tableau 1.4). Ce module est déterminé à partir d'essais sur pieux réels réalisés par Broms (1964) pour des sols non-cohérents.

Tableau 1.4 : Valeur moyenne de E_s pour des sols sans cohésion.[59]

Densité du sable	Intervalle de la valeur de E _s (MPa)
Lâche	914 – 2109,20
Moyen	2109,20 - 4218,40
Dense	4218,40 - 9843

Poulos établit que le rapport entre le module de réaction du sol E_s et le module d'Young du matériau E constituant le sol est égal à :

$$\frac{E_{s}}{E} = 0.82 \tag{1.116}$$

Ménard, Bourdon et Gambin (1969) proposent de calculer le rapport entre le module de la réaction du sol E_s et le module pressiomètrique E_M en fonction d'un coefficient rhéologique α , du diamètre du pieu B et d'un diamètre de référence B_o qui est égal à 0,6 m.

$$\frac{E_{s}}{E_{M}} = \begin{cases} \frac{3}{\frac{2}{3} \left(\frac{B_{0}}{B}\right) \left(2,65\frac{B}{B_{0}}\right)^{\alpha} + \frac{\alpha}{2}} & \text{Pour } B > B_{o} \\ \\ \frac{18}{4(2,65)^{\alpha} + 3\alpha} & \text{Pour } B < B_{o} \end{cases}$$
 (1.117)

Tableau 1.5 : Facteur rhéologique α pour divers

types des sols (Baguelin et al (1978).[59]

Type	α
Tourbe	1
Argile	2/3
Limon	1/2
Sable	1/3
Sable et gravier	1/3

- Les courbes P-Y:

L'analyse complète du comportement d'un pieu vis-à-vis d'un chargement latérale se fait le plus souvent à partir des méthodes qui nécessitent de modéliser l'interaction sol-pieu c'est-à-dire la loi de réaction du sol en fonction du déplacement horizontal du pieu communément appelée « courbe P-Y ». Plusieurs formulations, tant d'origine empirique que théorique, ont été proposées pour décrire la courbes P-Y, notamment :

- la méthode de l'institut américain du pétrole API, basée sur les caractéristiques C et ϕ .
- la méthode de l'institut japonais des recherches portuaires PHRI, basée sur l'essai de pénétration standard SPT.
- La méthode pressiométrique du LCPC, basée sur l'essai pressiométrique. Dans cette méthodes la courbe P-Y est bilinéaire (figure 1.22). la première droite a une pente E_s . [8]

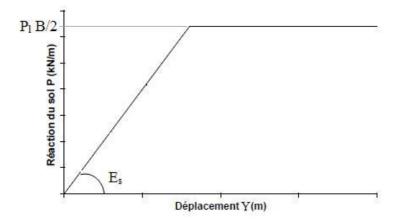


Figure 1.22 : Courbe P-Y selon le règlement Français (Fascicule 62) .[8]

La formulation de E_s est la suivante :

$$\frac{E_{s}}{E_{M}} = \begin{cases} \frac{18E_{M}.B}{4(B_{o})\left(2,65\frac{B}{B_{0}}\right)^{\alpha} + 3.B.\alpha} & \text{Pour } B > B_{o} \\ \\ \frac{18.E_{M}}{4.(2,65)^{\alpha} + 3.\alpha} & \text{Pour } B < B_{o} \end{cases}$$
 (1.118)

 α : un coefficient rhéologique caractérisant le sol, B_{o} =0,6m.

Tableau 1.6 : Facteur rhéologique α pour divers types de sols selon le règlement Français (Fascicule 62).[59]

	Tourbe	Argile		Limon		Sable		Grave	
Туре	α	E_{M}/p_{1}	α	E_{M}/p_{1}	α	E_{M}/p_{1}	α	E_{M}/p_{1}	α
Surconsolidé ou très serré	-	>16	1	>14	2/3	>12	1/2	>10	1/3
Normalement consolidé ou normalement serré	1	9-16	2/3	8-14	1/2	7-12	1/3	6-10	1/4
Sous-consolidé altéré et remanié ou lâche	1-	7-9	1/2	5-8	1/2	5-7	1/3	-	-

La deuxième droite correspond à l'état d'équilibre limite décrit par une réaction horizontale ultime égale à P_f B. On admet souvent que le rapport P_f/P_l de l'essai pressiométrique est indépendant de la nature du sol et peut être pris égale à $\frac{1}{2}$.

1.3.2.2.1 Logiciel PILATE (Baguelin, Frank et Guegan 1976):

C'est une méthode numérique qui consiste à décomposer le sol en tranches horizontales suffisamment minces de façon que chaque couche puisse être caractérisée par une seule courbe P-Y, celle qui correspond au milieu de la couche.

La résolution de l'équation :

$$\mathbf{E}_{\mathbf{p}}\mathbf{I}_{\mathbf{p}}\frac{\partial^{4}\mathbf{y}}{\partial \mathbf{z}^{4}} + \mathbf{E}_{\mathbf{s}}\mathbf{y}(\mathbf{z}) = \mathbf{0}$$
 (1.119)

pour chaque couche nécessite la détermination de quatre constantes d'intégration, soit en total 4N constantes pour N couches et pour raison de continuité le nombre d'inconnus se réduit à 4N-4 constantes.

La connaissance des conditions aux limites permet de déterminer les quatre inconnues supplémentaires.

La solution générale s'écrit :

$$Y(X) = e^{X}(C_{1}\cos X + C_{2}\sin X) + e^{-X}(C_{3}\cos X + C_{4}\sin X)$$
 (1.120)

avec

C₁, C₂, C₃ et C₄ : constantes d'intégration,

X : profondeur réduite, $X = \frac{Z}{L_n}$

$$L_{o}$$
 : longueur élastique, L_{0} = $\sqrt[4]{\frac{4E_{p}I_{p}}{E_{s}}}$

Le système d'équations globale s'écrit :

$$[A]{R} = {B}$$
 (1.121)

[A]: matrice (4Nx4N) construite à partir de quatre fonctions de base de l'équation homogène de chaque couche et de leurs trois premières dérivées, ce sont des fonctions de z inconnues à chaque itération.

{R}: vecteur (4N) des constantes d'intégrations inconnues.

{B}: vecteur (4N) construite à partir des solutions particulaires des équations avec second membre et des conditions imposées aux extrémités.

<u>1.3.2.3 – Méthodes des éléments finis :</u>

Ces méthodes consistent à modéliser le sol par éléments finis. Elles se proposent de déterminer en un grand nombre de point de la structure, constituant les nœuds du réseau, la contrainte exercée, la déformation, etc... L'outil informatique est utilisé pour résoudre les équations d'équilibre.

Elles constituent un outil puissant pour représenter les cas complexes (multicouche, 3D,...). Par contre cette modélisation nécessite de connaître les lois de comportement appropriées du sol. De plus il est délicat des reproduire l'état des contraintes initiales du massif autour du pieu.

On présente à titre d'exemple deux méthodes :

- Méthode de Randolph (1981) :[54]

L'auteur a effectué une étude paramétrique pour des pieux dans un sol homogène, caractérisé par un module de cisaillement G et un coefficient de Poisson v, et aussi pour des pieux dans un sol à rigidité proportionnelle avec la profondeur. Ce dernier type de sol peut se caractériser par un paramètre m, qui donne le taux d'accroissement du module de cisaillement avec la profondeur

$$G = mz ag{1.122}$$

Il a constaté que l'effet des variations du coefficient de Poisson sur la déformation d'un pieu chargé latéralement pourrait être adéquatement représenté par considération d'un paramètre G^* donné par :

$$G^* = G(1 + \frac{3v}{4}) \tag{1.123}$$

(ou pour le sol avec rigidité proportionnelle à la profondeur, $\mathbf{m}^* = \mathbf{m}(1 + \frac{3\nu}{4})$)

Ces paramètres (G* et m*) seront utilisés pour éviter la nécessité d'inclure des solutions distinctes pour différentes valeurs du coefficient de Poisson)

Pour les conditions de sol homogène, l'auteur a constaté que les déformations du pieu au niveau du sol obtenu d'après les analyses par éléments finis peuvent être données par :

$$Y_{o} = 0.25 \frac{H}{G^{*}r_{o}} \left(\frac{E_{p}}{G^{*}}\right)^{-\frac{1}{7}} + 0.27 \frac{H}{G^{*}r_{o}^{2}} \left(\frac{E_{p}}{G^{*}}\right)^{-\frac{3}{7}}$$
(1.124)

$$Y_0' = 0.27 \frac{H}{G^* r_0^2} \left(\frac{E_p}{G^*}\right)^{-\frac{3}{7}} + 0.8 \frac{M}{G^* r_0^3} \left(\frac{E_p}{G^*}\right)^{-\frac{3}{7}}$$
(1.125)

Pour le cas d'un sol avec une rigidité proportionnelle à la profondeur les expressions correspondantes sont :

$$Y_{0} = 0.54 \frac{H}{m^{*}r_{0}^{2}} \left(\frac{E_{p}}{m^{*}r_{0}}\right)^{-\frac{3}{9}} + 0.60 \frac{M}{m^{*}r_{0}^{3}} \left(\frac{E_{p}}{m^{*}r_{0}}\right)^{-\frac{5}{9}}$$
(1.126)

$$\mathbf{Y}_{0}' = \mathbf{0.60} \, \frac{\mathbf{H}}{\mathbf{m}^{*}\mathbf{r}_{0}^{3}} \left(\frac{\mathbf{E}_{p}}{\mathbf{m}^{*}\mathbf{r}_{0}}\right)^{-\frac{5}{9}} + \mathbf{1.13} \, \frac{\mathbf{M}}{\mathbf{m}^{*}\mathbf{r}_{0}^{4}} \left(\frac{\mathbf{E}_{p}}{\mathbf{m}^{*}\mathbf{r}_{0}}\right)^{-\frac{7}{9}}$$
(1.127)

En notant l'effet de la variation de la longueur du pieu sur des déformations au niveau de la surface du sol, la longueur critique (à partir de laquelle la longueur du pieu n'a pas d'influence sur la déformation en tête du pieu) peut être corrélée avec le coefficient de rigidité. Les expressions des longueurs critiques sont :

Dans un sol homogène :
$$\mathbf{D}_{c} = 2\mathbf{r}_{0} \left(\frac{\mathbf{E}_{p}}{\mathbf{G}^{*}}\right)^{\frac{2}{7}}$$
 (1.128)

Dans un sol à rigidité proportionnelle à la profondeur :
$$\mathbf{D}_{c} = 2\mathbf{r}_{0} \left(\frac{E_{p}}{m^{*}r_{0}}\right)^{\frac{2}{9}}$$
 (1.129)

 E_p : module de Young effectif pour pieu circulaire plein de rayon B.

Pour un sol dont la rigidité se situe entre ces deux cas extrêmes, on définit un module G_c qui est la valeur moyenne de G^* . G_c peut être pris comme la valeur de G^* à $D_c/2$.

La longueur critique est définie par :
$$\mathbf{D}_{c} = 2\mathbf{r}_{0} \left(\frac{E_{p}}{G_{c}}\right)^{\frac{2}{7}}$$
 (1.130)

Le concept du module caractéristique G_c peut être utilisé pour combiner les équations [(1.124)-(1.125)] et [(1.126)-(1.127)] pour donner une expression générale du déplacement, rotation et moment d'un pieu chargé latéralement dans un sol quelconque :

$$\mathbf{Y} = \frac{\left(E_{\rm p}/G_{\rm c}\right)^{1/7}}{\rho_{\rm c}G_{\rm c}} \left[\mathbf{0.27H} \left(\frac{D_{\rm c}}{2}\right)^{-1} + \mathbf{0.3M} \left(\frac{D_{\rm c}}{2}\right)^{-2} \right]$$
(1.131)

$$\mathbf{Y}' = \frac{\left(\mathbf{E}_{p}/\mathbf{G}_{c}\right)^{1/7}}{\rho_{c}\mathbf{G}_{c}} \left[\mathbf{0.3H} \left(\frac{\mathbf{D}_{c}}{2}\right)^{-2} + \mathbf{0.8}(\rho_{c})^{1/2} \mathbf{M} \left(\frac{\mathbf{D}_{c}}{2}\right)^{-3} \right]$$
(1.132)

avec

 ρ_c : paramètre qui reflète l'homogénéité relative du sol, il est définit par :

$$\rho_{c} = \frac{G_{z=D_{c}/4}^{*}}{G_{z=D_{c}/2}^{*}} = \frac{G_{z=D_{c}/4}^{*}}{G_{c}}$$
(1.133)

Pour un pieu à tête fixe, le moment de fixation (Y'=0) est donné par :

$$\mathbf{M}_{\text{max}} \simeq (\mathbf{0}, \mathbf{1}/\rho_{\text{c}})\mathbf{H}\mathbf{D}_{\text{c}} \tag{1.134}$$

Conduisant à une déflexion Y_0 qui est approximativement la moitie de celle d'un pieu à tête libre sous une charge latérale H.

Le moment maximal est à une profondeur entre $D_c/4$ (sol homogène) et $D_c/3$ (sol à rigidité proportionnelle à la profondeur)

- Méthode de Kooijman (1989) :[35]

Dans cette méthode le système sol-pieu est divisé en deux sous-systèmes (pieu et sol). En respectant les conditions de compatibilités et d'équilibre, ces deux sous-systèmes sont couplés par la suite.

Le pieu est assimilé à une poutre en flexion soumise aux pressions du sol. Son comportement est exprimé par l'équation fondamentale d'une poutre sur appuis élastiques :

$$\begin{cases} \frac{d^2M}{dz^2} = -\mathbf{H} + \mathbf{E}\mathbf{y} \\ \frac{d^2M}{dz^2} = -\frac{M}{E_p I_p} \end{cases}$$
(1.135)

H: charge latérale.

Ce système d'équations est résolu numériquement en divisant le pieu en petits éléments, chaque élément a ses propres valeurs de E et H.

Le sol est considéré comme un multicouche élastique continu.

La réponse du sol sera :

$$\mathbf{F}_{i} = \sum \mathbf{E}_{sy} \, \mathbf{y}_{j} \tag{1.136}$$

avec

F_i: force d'interaction entre le pieu et la couche i,

y_i : le déplacement de la couche j à l'interface sol-pieu.

Les coefficients E_{sy} sont constants dans le cas d'un model linéaire du sol, l'équation s'écrit donc :

$$F = E_i y_i + H_i \tag{1.137}$$

H_i: représente la contribution de toutes les couches sauf de la couche i,

 E_i : constante de raideur déterminé à partir du model de sol $y_i = 1$ et $y_j = 0$ pour toutes les autres couches.

<u>1.3.2.4 – Méthodes empiriques :</u>

Dans de nombreux cas, il est commode d'utiliser des méthodes indicatives pour fournir des prévisions réalistes du comportement des pieux. Les méthodes empiriques donnent une estimation approximative du déplacement d'un pieu. On présente ici la méthode proposé par Bouafia.

- Méthode de Bouafia (2007) :[15]

Cinq essais de chargement latéral en vrais grandeur, sur différents pieux instrumentés et forés dans un sol sableux ont été interprétés par Bouafia.

Le tableau (1.7) présente les caractéristiques des pieux d'essai.

Tableau 1.7 : Caractéristiques des pieux d'essai.[15]

Site	Pieu	B (m)	D/B	$E_p I_p (k N m^2)$
S_1	T_5	0.050	14.2	59.74
	T_{10}	0.100	15.3	868.9
	T_{15}	0.150	15.3	4,331.6
S_2	$P_{\rm I}$	0.500	10.0	56,370
7.4	P_2	0.900	5.50	743,600

Un exemple des courbes P-Y, qui résulte de l'essai sur le pieu P_1 sont présenté sur la figure (1.23).

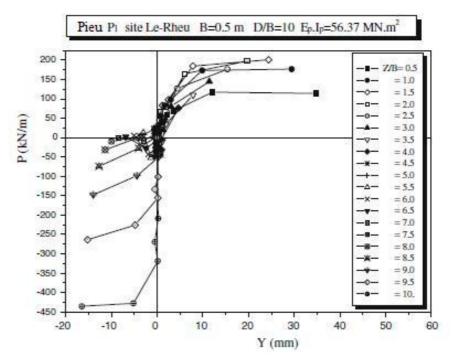


Figure 1.23 : Courbe P-Y type pour le pieu P₁.[15]

Bouafia propose la corrélation du module initial de réaction latéral E_{ti} et le module de préssiométrique E_{M} , pour $D/B \ge 10$, comme suit :

$$\mathbf{E}_{ti}(\mathbf{z}) = \mathbf{E}_{M} \cdot \mathbf{0.28. K}_{r}^{-0.55}$$
 (1.138)

avec:

 \mathbf{K}_{r} : la rigidité latéral, défini par :

$$\mathbf{K}_{r} = \frac{E_{p}I_{p}}{E_{c}D^{4}} \tag{1.139}$$

E_p: module de Young du pieu,

Ip: moment d'inertie du pieu,

D: longueur du fiche du pieu,

 $\boldsymbol{E}_{\boldsymbol{c}}$: module pressiométrique équivalent caractérisant le sol, définit par :

$$\mathbf{E}_{c} = \frac{1}{D} \int_{0}^{D} \mathbf{E}_{M} \mathbf{dz} \tag{1.140}$$

 $\boldsymbol{E}_{\boldsymbol{M}}$: module pressiométrique, donné par l'essai pressiométrique (PMT).

Bouafia propose aussi la corrélation de la réaction limite P_u et la pression limite net p_l^* , pour $D/B \ge 10$, comme suit :

$$P_u = 3. p_l^* . B \sqrt{K_r} \tag{1.141}$$

Et dans le cas d'un pieu à section circulaire pleine, les relations simplifiées suivantes sont proposées :

$$\frac{E_{ti}}{E_M} \approx \frac{5}{4} \left(\frac{D}{B}\right)^2 \frac{1}{\sqrt{K}} \tag{1.142}$$

$$\frac{P_u}{p_l^* B} = \frac{2}{3} \frac{\sqrt{K}}{\left(\frac{D}{R}\right)^2} \tag{1.143}$$

où $K = \frac{E_p}{E_s}$: compressibilité relative pieu/sol.

Le déplacement référence $Y_{réf}$, qui correspond au point d'intersection de la première portion linéaire de la courbe P-Y de pente E_{ti} et l'asymptote horizontal correspondant à la résistance latéral $P_uY_{réf}$, est exprimé par la la formule (1.144) proposé suivante :

$$\frac{Y_{r\acute{e}f}}{B} \approx 11 K_r \frac{p_l^*}{E_M} \tag{1.144}$$

La figure (1.24) montre la courbe P-Y proposée par Bouafia comparée à celle proposée par Menard et al. et celle proposé par le règlement Français (Fascicule 62).

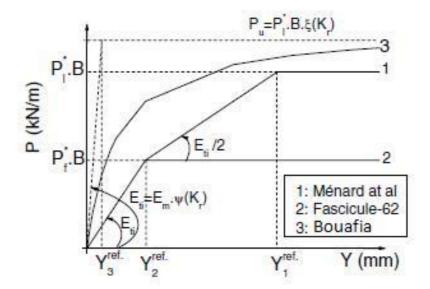


Figure 1.24 : Schématisation de certaines courbes P-Y types.[15]

1.4. Conclusion:

Dans ce chapitre une étude bibliographique a été faite, les méthodes traditionnelles de calcul du tassement d'un pieu isolé chargé axialement, ont été présentées en première partie, puis dans la deuxième partie on a présenté les méthodes traditionnelles de calcul du déplacement d'un pieu isolé chargé latéralement.

Pour les deux cas, les méthodes de calcul sont groupées en quatre principales catégories :

- Méthodes empiriques basé sur la compilation d'un nombre de constatations sur les pieux.
- Méthodes d'élasticité considérant le sol comme un massif élastique, linéaire et isotrope.
- Méthodes numérique basées sur la modélisation de l'interface sol/pieu, par un maillage d'éléments finis et utilisant l'outil informatique.
- Méthodes de la théorie de transfert de charges, discrétisant l'interface sol/pieu par une infinité de ressorts indépendants permettant le transfert de charges du pieu au sol.

CHAPITRE 2

ÉTUDE EXPÉRIMENTALE DES PARAMETRES DE TRANSFERT DE CHARGE SOUS UN CHARGEMENT AXIAL

2.1. Introduction:

Une des méthodes d'étude du comportement des pieux est la méthode de transfert de charge qu'a connu, ces dernières années, une large utilisation dans les projets de fondation sur pieux et dans la programmation informatique.

Cette méthode, qui sera présentée dans ce chapitre, est caractérisée par les paramètres de transfert de charge B_o , q_s , R_o et q_l dans le cas de chargement vertical. Ces paramètres sont mesurés lors des essais de chargement vertical d'un pieu.

L'essai de chargement vertical, qui sera aussi présenté dans ce chapitre, est réservé dans la plupart des cas, aux grands projets de fondations vu le coût élevé de cet essai. Ainsi, dans le but de trouver une corrélation entre les deux paramètres de transfert de charge (B_o et R_o) et les caractéristiques géotechniques in-situ telles que le module pressiométrique E_M et la pression pénétrométrique q_c , nous avons étudié la variation des paramètres B_o et R_o avec E_M et q_c .

Les résultats de cette étude seront présentés et comparés aux valeurs recommandées par les méthodes de calcul, dans la dernière étape du présent chapitre.

2.2. Présentation de la méthode de transfert de charge:[11]

La méthode de transfert de charge, ou méthode des courbes t-z et q-z, est l'une des principales méthodes de calcul des tassements des pieux isolés soumis à des charges axiales.

Cette méthode se base sur la discrétisation de l'interface sol/pieu en une infinité de ressorts indépendants, reprenant les contraintes de frottement latérale τ et les pressions verticales q_p à la base du pieu, comme le schématise la figure (2.1).

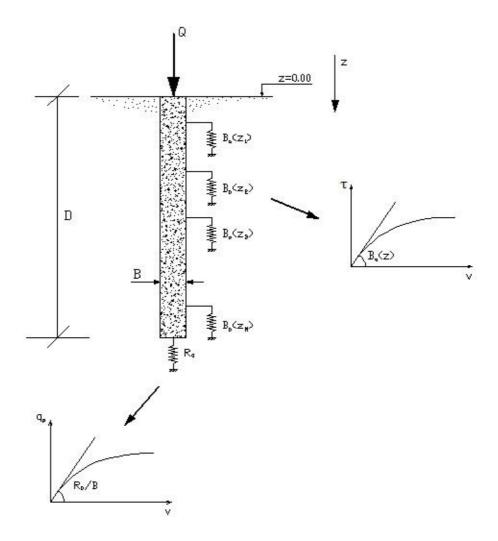


Figure 2.1: Principe de transfert de charge d'un pieu isolé.[11]

On suppose que les contraintes mobilisées à l'interface sol/pieu, à une profondeur donnée, sont proportionnelles aux tassements correspondants, telles que :

$$\tau(\mathbf{z}) = \mathbf{B}_{0}(\mathbf{z}).\mathbf{v}(\mathbf{z}) \tag{2.1}$$

$$\mathbf{q}_{\mathrm{P}} = \frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{B}}.\,\mathbf{v}(\mathbf{z}) \tag{2.2}$$

L'équilibre d'une tranche infinitésimale du pieu se traduit par l'équation différentielle suivante :

$$\frac{\mathrm{d}^2 \mathbf{v}}{\mathrm{d}\mathbf{z}^2} - \mathbf{a}^2 \cdot \mathbf{v} = \mathbf{0} \tag{2.3}$$

$$\mathbf{a} = \sqrt{\frac{4B_0}{E_P B}} \tag{2.4}$$

Dans le cas d'un sol caractérisé par B_0 constant avec la profondeur, cette équation s'intègre analytiquement et le tassement en tête du pieu est donnée par :

$$v_{o} = \frac{4Q}{\pi B} \frac{1 + \frac{R_{0}.Tanh(aD)}{a.B.E_{p}}}{R_{0} + a.B.E_{p}.Tanh(a.D)}$$
(2.5)

Dans le cas d'un pieu incompressible, la solution précédente devient, en imposant $E_p\!/E = \infty \text{:}$

$$\mathbf{v}_0 = \frac{4Q}{\pi B} \, \frac{1}{(R_0 + 4.D.B_0)} \tag{2.6}$$

2.3. Présentation de l'essai de chargement vertical d'un pieu:

Un essai de chargement vertical d'un pieu consiste à appliquer sur la tête du pieu une charge Q et à mesurer les déplacements correspondants v_o de sa tête, comme l'illustrent les figures (2.2-2.3).

Figure 2.2: Essai de chargement d'un pieu (Montivilliers-France).[22]

Figure 2.3: Essai de chargement d'un pieu (Belvedere - sud de London) [58]

L'essai de chargement vertical d'un pieu a pour but de déterminer directement la courbe charge-enfoncement du pieu, dont un exemple est montré à la figure (2.4).

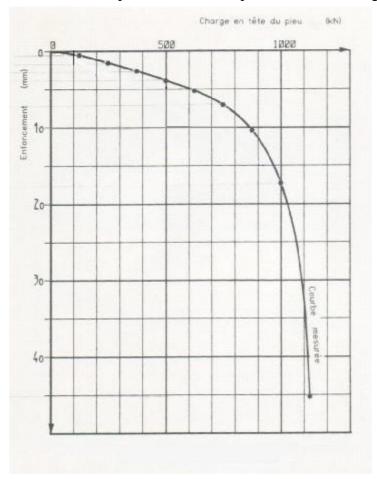


Figure 2.4: Courbe charge-déplacement d'un pieu

Tous les modes opératoires régissant cet essai recommandant d'appliquer la charge Q_o, par paliers croissants, d'égale durée (figure 2.5).

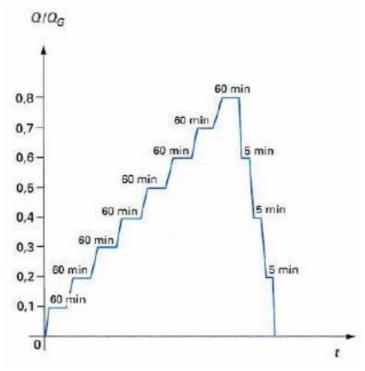


Figure 2.5: Programme de chargement-déchargement dans un essai de pieu [29]

Le Q_G est une charge définie en fonction des matériaux constitutifs du pieu et de l'usage futur du peu d'essai.

L'appareillage nécessaire à la réalisation d'un tel essai comprend habituellement : figure (2.6) [29]

- Un dispositif de réaction : massif poids constitué de cuves remplies de gravillons ou poutres de réaction avec ancrage (pieux pouvant être sollicités à l'arrachement ou tirants précontraints),
- Un dispositif de chargement : vérin hydraulique transmettant l'effort au pieu par l'intermédiaire d'une rotule et d'une plaque de répartition,
- Un dispositif de mesures :
 - mesure des charges: manomètres branchés sur circuit d'alimentation du vérin ou perso électrique intercalé entre le vérin et le pieu.
 - on peut également mesurer les efforts à différents niveaux du fût : on instrumente alors le pieu d'extensomètres à différents profondeurs (jauges collées, extensomètre amovible, etc.) figure (2.7).

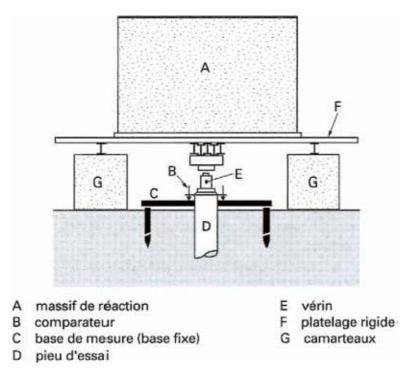


Figure 2.6 : Dispositif de chargement et de mesure pour essai de pieu (schéma de principe). [29]

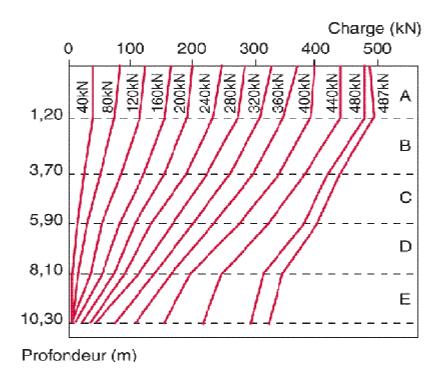


Figure 2.7 : Courbes de distribution des efforts le long du pieu [41]

Bien que ce type d'essai soit relativement coûteux, il est courant pour les grands chantiers, comportant un grand nombre de fondations profondes.

2.4. Présentation des essais de chargement utilisés:

Les données d'essais de chargement utilisés dans notre étude ont été collectées de la littérature mondiale sur les pieux. Ces essais sont décrits dans le tableau (2.1).

Tableau 2.1 : Description des essais interprétés

N°	Nombre d'essai	Site	Caractéristiques du sol	Essais in-situ	Pieu	Réf.
1	1	Montivilliers Près du Havre (France)	1,5-11m: alternance de limons sableux et tourbeux 11 – 16m: sable et graviers et sable limoneux Nappe d'eau à 2m du plate forme d'essai	PMT CPT	Pieu vissé moulé D = 15m B = 0,41/0,62m	[22]
2	1	Kallo (Belgique)	0 - 5m : limon 5 - 16m : sable > 16m : argile Nappe d'eau à 2m du terrain naturel	PMT CPT	Profilé H 400x368x24 D = 14m	[21]
3	1	San Francisco (Etats Unis)	0 – 1,37m : remblai de gravier sableux 1,37 – 12,2m : sable 12,2 – 14,3m : argile raide > 14,3m : Bed-Rock	СРТ	Tube en acier à base fermé, battu dans le sable D = 9,15m B = 0,273m	[20]
4	1	Merville (France)	Argile des Flandres	PMT CPT	Caisson fermé D = 12,17m B = 0,533m	[7]
5	3	São Carlos (Brésil)	Sable argileux Nappe d'eau à 10m du terrain naturel	СРТ	En béton armé, foré à sec D = 10,6m $B_1 = 0,35m$ $B_2 = 0,40m$ $B_3 = 0,50m$	[41]
6	1	Site de Cran (France)	Sédiments argileux fins	PMT CPT	Pieu tubulaire métallique fermé à la base D = 17m B = 0,273m	[52]

2.5. Méthode d'interprétation d'un essai de chargement vertical d'un pieu:

La méthode suivie pour interpréter chaque essai de chargement vertical de pieu est décrite par l'exemple suivant :

On va traiter le cas de l'essai de chargement vertical, réalisé pas le LCPC sur le site du centre commercial de la Lézarde à Montivilliers (Seine-Maritime), près du Havre, sur un pieu vissé, de section circulaire de diamètre de 410/620mm. [22]

De cet essai on obtient la courbe charge-déplacement, représenté sur la figure (2.8), et les courbes de distribution des charges suivant les profondeurs, représentées sur la figure (2.9).

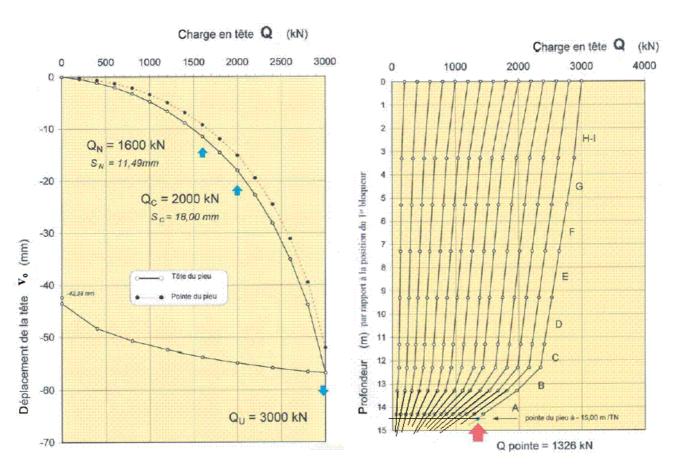


Figure 2.8 : Courbe charge-déplacement.[22]

Figure 2.9 : Courbes de distribution efforts le long du pieu.[22]

1 – Digitalisation des courbes charge-déplacement résultant de l'essai de chargement. On aura pour cet exemple le tableau de valeurs suivant (Tableau 2.2):

Tableau 2.2 : Valeurs charge-déplacement

Charge Q (KN)	Déplacement v _o (mm)		
200	0,4562		
400	1,0589		
600	2,0976		
800	3,2819		
1000	4,7575		
1200	6,6708		
1400	8,7289		
1600	11,3696		
1800	14,4471		
2000	17,8158		
2200	22,6409		
2400	28,0485		
2600	35,0580		
2800	43,8159		
3000	56,7962		

2 – Digitalisation des courbes de distribution des efforts le long du pieu, on aura les valeurs sur les tableaux (2.3 - 2.4 - 2.5), où :

Q : la charge en tête du pieu,

z : la profondeur,

N : effort à une profondeur z.

Tableau 2.3 : Distributions des efforts le long du pieu

Q (kN)	200	400	600	800	1000	1200
z (m)	N (kN)					
0,0	189,26691	391,15161	593,03632	794,92102	996,80573	1186,15222
-3,3	143,77121	320,42032	497,06946	673,71857	850,36768	1027,01685
-5,3	126,45657	290,5675	454,59882	618,55054	807,89709	971,92841
-7,3	109,30115	273,25287	424,66638	576,15955	740,19086	904,22217
-9,3	91,9865	243,40004	382,27539	533,60931	697,64062	849,05414
-11,3	87,36927	213,54721	352,34296	491,13867	629,93445	781,34796
-12,3	72,44286	198,5412	337,33691	463,51486	602,3902	753,72412
-13,3	44,89865	171,0766	284,63675	398,11728	536,99261	688,40613
-14,3	29,89263	92,9816	181,30617	269,63071	357,95529	471,59503

Tableau 2.3 (suite): Distributions des efforts le long du pieu

Q (kN)	1400	1600	1800	2000	2200	2400
z (m)	N (kN)					
0,0	1388,03699	1602,45984	1791,8064	1993,69116	2195,57593	2384,76318
-3,3	1203,66589	1380,31506	1569,58191	1733,61328	1948,19543	2162,698
-5,3	1135,95972	1312,60889	1501,87573	1665,9071	1867,79175	2094,91211
-7,3	1080,87134	1244,90259	1434,16956	1598,20093	1800,08557	2001,97034
-9,3	1013,08551	1177,11682	1353,84558	1517,79724	1719,7616	1909,02844
-11,3	932,76147	1109,41064	1298,67749	1437,47327	1639,35791	1828,62488
-12,3	905,21729	1069,16895	1271,1333	1409,92908	1611,81372	1788,46289
-13,3	814,58411	953,37982	1079,55774	1193,11792	1357,14929	1508,56274
-14,3	547,22217	635,54675	736,48914	824,89325	925,75604	1039,31616

Q (kN)	2600	2800	3000
z (m)	N (kN)	N (kN)	N (kN)
0,0	2586,72754	2801,22998	2990,49683
-3,3	2389,73853	2629,5564	2869,29443
-5,3	2296,79688	2523,91699	2751,03735
-7,3	2191,2373	2405,73975	2620,24219
-9,3	2110,91309	2300,10059	2502,06494
-11,3	2005,35364	2181,9231	2383,80786
-12,3	1965,11194	2141,76123	2318,41016
-13,3	1647,35852	1786,1543	1950,18555
-14,3	1140,33813	1266,51611	1392,61438

3 – Calcul du frottement latéral τ :

L'équilibre d'un élément (dz) du pieu (figure 2.10), donne :

$$\sum F = 0 \longrightarrow (\sigma(z) + d\sigma(z)) S - \tau(z)Pdz - \sigma(z) S = 0$$
 (2.7)

avec

S : aire de la section droite du pieu,

P: périmètre du pieu.

En développant l'équation (2.7), on trouve :

$$\tau(z) = \frac{S}{P} \frac{d\sigma(z)}{dz} \tag{2.8}$$

Pour le cas de pieu à section constante S:

$$\sigma = \frac{dN}{S} \longrightarrow \frac{d\sigma}{dz} = \frac{1}{S} \frac{dN}{dz}$$

D'où

$$\tau(z) = \frac{1}{P} \frac{dN(z)}{dz} \tag{2.9}$$

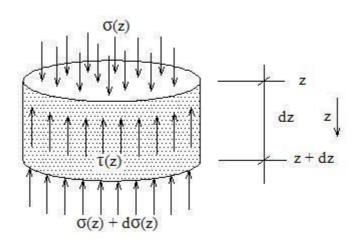


Figure 2.10 : Représentation d'un élément dz du pieu

L'équation (2.9) est utilisée pour le calcul des frottements latéraux.

Le pieu d'essai a une section circulaire de diamètre de 410/620mm, le périmètre P est :

$$P = \pi \times 0.62 = 1.9478 \text{ m}$$

On calcul la dérivée de N(z),

Pour z = 3.3m

On a
$$N(3,3) = 143,77121 \text{ kN}$$

La dérivée
$$\frac{dN(3,3)}{dz} = 8,657 \text{ kN/m}$$

En appliquant l'équation (2.9), on trouve :

$$\tau(3,3) = \frac{1}{1,9478} \frac{\text{dN}(3,3)}{\text{dz}} = \frac{8,657}{1,9478} = 4,445 \text{ kPa}$$

Les résultats de calcul de tous les valeurs de τ sont présentés sur le tableau (2.4)

Tableau 2.4 : Calcul des frottements latéraux

Q (kN)		200 kN			400 kN		600 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	
-3,3	143,77121	8,657	4,445	320,4203	14,926	7,663	497,06946	21,235	10,902	
-5,3	126,45657	8,618	4,424	290,5675	11,792	6,054	454,59882	18,101	9,293	
-7,3	109,30115	8,618	4,424	273,2529	11,792	6,054	424,66638	18,081	9,283	
-9,3	91,9865	5,483	2,815	243,4000	14,926	7,663	382,27539	18,081	9,283	
-11,3	87,36927	8,618	4,424	213,5472	14,966	7,684	352,34296	14,986	7,694	
-12,3	72,44286	21,235	10,902	198,5412	21,235	10,902	337,33691	33,853	17,380	
-13,3	44,89865	21,275	10,923	171,0766	52,780	27,097	284,63675	78,015	40,053	
-14,3	29,89263	15,006	7,704	92,9816	78,095	40,094	181,30617	103,331	53,050	

Q (kN)		800 kN			1000 kN		1200 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z)[kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ[kPa]	
-3,3	673,71857	27,584	14,162	850,36768	21,235	10,902	1027,01685	27,544	14,141	
-5,3	618,55054	24,390	12,522	807,89709	27,544	14,141	971,92841	30,699	15,761	
-7,3	576,15955	21,235	10,902	740,19086	27,564	14,151	904,22217	30,719	15,771	
-9,3	533,60931	21,255	10,912	697,64062	27,564	14,151	849,05414	30,719	15,771	
-11,3	491,13867	24,430	12,542	629,93445	30,699	15,761	781,34796	30,738	15,781	
-12,3	463,51486	46,511	23,879	602,3902	46,471	23,858	753,72412	46,471	23,858	
-13,3	398,11728	96,942	49,770	536,99261	122,217	62,746	688,40613	141,065	72,422	
-14,3	269,63071	128,487	65,965	357,95529	179,037	91,918	471,59503	216,811	111,311	

Q (kN)	1	400 kN		1	1600 kN		1800 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ[kPa]	N(z) [kN]	dN(z)/dz	τ[kPa]	N(z) [kN]	dN(z)/dz	τ[kPa]	
-3,3	1203,66589	33,853	17,380	1380,31506	33,853	17,380	1569,58191	33,853	17,380	
-5,3	1135,95972	30,699	15,761	1312,60889	33,853	17,380	1501,87573	33,853	17,380	
-7,3	1080,87134	30,719	15,771	1244,90259	33,873	17,390	1434,16956	37,008	19,000	
-9,3	1013,08551	37,027	19,010	1177,11682	33,873	17,390	1353,84558	33,873	17,390	
-11,3	932,76147	33,853	17,380	1109,41064	37,047	19,020	1298,67749	27,564	14,151	
-12,3	905,21729	59,089	30,336	1069,16895	78,015	40,053	1271,1333	109,560	56,248	
-13,3	814,58411	178,998	91,897	953,37982	216,811	111,311	1079,55774	267,322	137,243	
-14,3	547,22217	267,362	137,264	635,54675	317,833	163,175	736,48914	343,069	176,131	

Q (kN)	2	2000 kN		2	2200 kN		2400 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ[kPa]	N(z) [kN]	dN(z)/dz	τ[kPa]	N(z) [kN]	dN(z)/dz	τ[kPa]	
-3,3	1733,61328	33,853	17,380	1948,19543	40,202	20,640	2162,6980	33,893	17,401	
-5,3	1665,9071	33,853	17,380	1867,79175	37,027	19,010	2094,9121	40,182	20,629	
-7,3	1598,20093	37,027	19,010	1800,08557	37,008	19,000	2001,9703	46,471	23,858	
-9,3	1517,79724	40,182	20,629	1719,7616	40,182	20,629	1909,0284	43,336	22,249	
-11,3	1437,47327	33,853	17,380	1639,35791	33,873	17,390	1828,6249	40,182	20,629	
-12,3	1409,92908	122,178	62,726	1611,81372	141,104	72,443	1788,4629	160,031	82,160	
-13,3	1193,11792	292,518	150,179	1357,14929	343,029	176,111	1508,5627	374,573	192,306	
-14,3	824,89325	368,225	189,046	925,75604	431,393	221,477	1039,3162	469,247	240,911	

Q (kN)	2	2600 kN		2	2800 kN		3000 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ kPa]	N(z) [kN]	dN(z)/dz	τ[kPa]	N(z) [kN]	dN(z)/dz	τ[kPa]	
-3,3	2389,73853	46,471	23,858	2629,5564	52,820	27,118	2869,29443	59,129	30,357	
-5,3	2296,79688	49,625	25,478	2523,91699	55,954	28,727	2751,03735	62,263	31,966	
-7,3	2191,2373	46,471	23,858	2405,73975	55,954	28,727	2620,24219	62,243	31,956	
-9,3	2110,91309	46,471	23,858	2300,10059	55,954	28,727	2502,06494	59,109	30,346	
-11,3	2005,35364	46,511	23,879	2181,9231	49,625	25,478	2383,80786	62,263	31,966	
-12,3	1965,11194	178,998	91,897	2141,76123	197,884	101,594	2318,41016	216,811	111,311	
-13,3	1647,35852	412,387	211,719	1786,1543	437,623	224,675	1950,18555	462,898	237,652	
-14,3	1140,33813	507,020	260,304	1266,51611	519,638	266,782	1392,61438	557,571	286,257	

4 – On fait correspondre les valeurs du frottement latéral τ aux tassements en tête pour chaque charge en supposant le pieu incompressible, ce qui est admis pratiquement, on aura les valeurs sur le tableau (2.5) suivant :

Tableau 2.5 : Frottements latéraux - tassements

	z [m]	3,3	5,3	7,3	9,3	11,3	12,3m	13,3	14,3
Q [kN]	v [mm]	τ [kPa]							
200	0,4562	4,445	4,424	4,424	2,815	4,424	10,902	10,923	7,704
400	1,0589	7,663	6,054	6,054	7,663	7,684	10,902	27,097	40,094
600	2,0976	10,902	9,293	9,283	9,283	7,694	17,380	40,053	53,050
800	3,2819	14,162	12,522	10,902	10,912	12,542	23,879	49,770	65,965
1000	4,7575	10,902	14,141	14,151	14,151	15,761	23,858	62,746	91,918
1200	6,6708	14,141	15,761	15,771	15,771	15,781	23,858	72,422	111,311
1400	8,7289	17,380	15,761	15,771	19,010	17,380	30,336	91,897	137,264
1600	11,3696	17,380	17,380	17,390	17,390	19,020	40,053	111,311	163,175
1800	14,4471	17,380	17,380	19,000	17,390	14,151	56,248	137,243	176,131
2000	17,8158	17,380	17,380	19,010	20,629	17,380	62,726	150,179	189,046
2200	22,6409	20,640	19,010	19,000	20,629	17,390	72,443	176,111	221,477
2400	28,0485	17,401	20,629	23,858	22,249	20,629	82,160	192,306	240,911
2600	35,0580	23,858	25,478	23,858	23,858	23,879	91,897	211,719	260,304
2800	43,8159	27,118	28,727	28,727	28,727	25,478	101,594	224,675	266,782
3000	56,7962	30,357	31,966	31,956	30,346	31,966	111,311	237,652	286,257

De ce tableau on peut tracer les courbes τ -v.

Pour z = 3.3m, on aura la courbe sur la figure (2.11).

Figure 2.11 : Courbe frottement latéral-tassement

5 – On fait ajustement de chaque courbe τ -v pour avoir la pente initiale B_o et la valeur du frottement limite q_s , (figure 2.12).

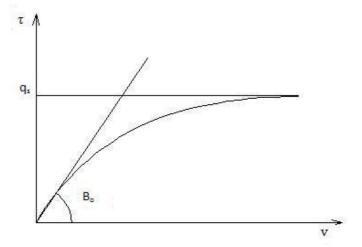


Figure 2.12 : Courbe frottement latéral-tassement

Pour chaque essai de chargement vertical, on aura les paramètres de transfert de charge B_o et q_s .

Pour z = 3.3m (figure 2.13).

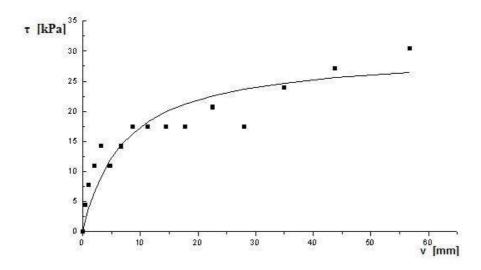


Figure 2.13 : Ajustement de la courbe frottement latéral-tassement

On aura pour cette courbe:

 $B_o = 4159,53 \text{ kPa/mm}$

 $q_s = 29.7361 \text{ kPa}$

Tous les résultats de cet essai sont sur le tableau (2.6)

Tableau 2.6 : Valeurs de paramètres de transfert de charges.

z (m)	B _o (kPa/mm)	q _s (kPa)
-3,3	4159,53	29,7361
-5,3	3926,51	32,1391
-7,3	4104,59	32,3191
-9,3	4421,28	31,2528
-11,3	3980,72	30,2287
-12,3	6827,06	145,3695
-13,3	18361,22	304,1567
-14,3	25332,89	357,0338

6 – Calcul de l'effort en pointe q_p :

Pour le calcul de l'effort en pointe q_p , on a utilisé l'équation (2.10) suivante :

$$q_P = \frac{N_P}{S} \tag{2.10}$$

avec:

N_P: charge vertical en pointe,

S: la section du pieu.

Pour la charge vertical en tête 200 kN, en pointe on a $N_P = 29,4813$ (Tableau 2.7).

La section du pieu : $S = \pi (B/2)^2 = \pi (0.62/2)^2 = 0.3019 \text{ m}^2$

Pour le calcul de l'effort en pointe, on a utilisé l'équation (2.10).

$$q_P = \frac{29,4813}{0,3019} = 97,65 \text{ kPa}$$

Le résultat d'interprétation pour tout l'essai de chargement est présenté sur le tableau (2.7).

Tableau 2.7 : Calcul de l'effort en pointe.

Q (kN)	v (mm)	N _p (kN)	q _p (kPa)
200	0,3114	29,4813	97,65
400	0,6220	92,7699	307,29
600	1,2238	168,7162	558,85
800	2,1169	244,6625	810,41
1000	3,3012	333,2666	1103,90
1200	4,9233	434,5284	1439,31
1400	6,8358	497,8170	1648,95
1600	9,1851	573,6832	1900,24
1800	11,8249	649,7096	2152,07
2000	15,0489	738,3137	2445,56
2200	19,4371	839,5754	2780,97
2400	24,4078	953,4949	3158,31
2600	30,9812	1029,4412	3409,87
2800	39,4462	1168,6762	3871,07
3000	51,9904	1320,4887	4373,93

De ce tableau, on trace la courbe q_p -v (figure 2.14).

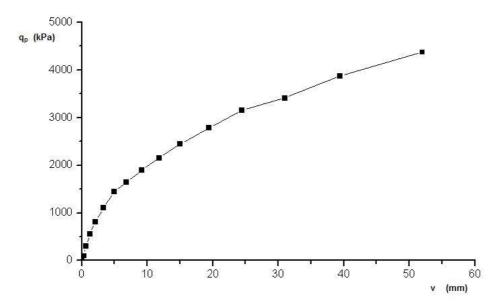


Figure 2.14 : Courbe pression en pointe-tassement

7 – On fait ajustement de chaque courbe q_p -v pour avoir la pente initiale R_o/B et la valeur de l'effort limite q_l , (figure 2.15).

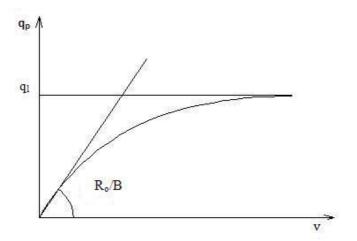
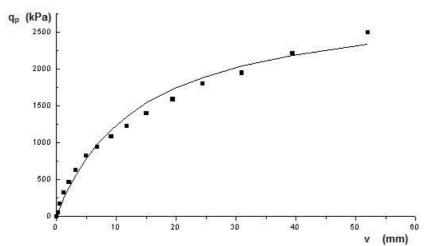



Figure 2.15 : Courbe pression en pointe-tassement

La figure 2.16 présente le résultat d'ajustement de la courbe q_p-v.

Figure 2.16 : Ajustement de la courbe pression en pointe-tassement

Pour chaque essai de chargement vertical, on aura les paramètres de transfert de charge au niveau de la pointe, R_o et q_l . L'essai de chargement vertical traité dans cet exemple donne les paramètres de transfert de charge au niveau de la pointe, R_o et q_l , suivants :

$$R_o/B = 374,094 \text{ x } 10^3 \text{ kPa/m}$$
 \longrightarrow $R_o = 374,094 \text{ x } 10^3 \text{ x } 0,410 = 231,938 \text{ x } 10^3 \text{ kPa}$ $q_l = 5174,490 \text{ kPa}$

Les résultats de tous les essais sont présentés en annexe 2.

2.6. Étude expérimentale des paramètres Bo et Ro:

On propose dans cette partie une approche de détermination des paramètres de mobilisation des efforts aux interfaces sol/fût du pieu B_o et sol/pointe du pieu R_o , en fonction des caractéristique géotechniques données par les essais in-situ, à savoir, le module pressiométrique E_M , donné par l'essai pressiometrique (PMT), et la pression pénétrométrique q_c donnée par l'essai du pénétromètre statique (CPT).

<u>2.6.1. Corrélation avec le module pressiometrique E_M :</u>

2.6.1.1. Étude statistique des rapports $\frac{B_0.B}{E_M}$ et $\frac{R_0}{E_M}$:

Nous avons mené une étude statistique des rapports $\frac{B_o.B}{E_M}$ et $\frac{R_o}{E_M}$, déterminés par l'interprétation des essais de chargement vertical.

- Cas de sols pulvérulents :

L'étude statistique des valeurs des rapports $\frac{B_0.B}{E_M}$ et $\frac{R_0}{E_M}$ pour le cas des sols pulvérulents est présentée sur les tableaux (2.8) et (2.9) suivants :

Tableau 2.8 : Étude statistique des valeurs du rapport $\frac{B_0.B}{E_M}$ (sols pulvérulents)

Référence	В	D	D/B	B _o .B/E _M	N	Marge	Moyenne	Ecartype	Coef. Variation	
[22]				0,588						
Zone 2	0,62	,62 15	24,19	0,646						
11 - 16 m		13	24,19	1,409						
				1,635						
					1,122	10	0.254 1.425 0.004	0,804	0,433	E2 020/
				0,719	10	0,354 - 1,635	0,004	0,433	53,82%	
[21]	0.240	11	20.04	0,536						
Zone 1	0,368	14	38,04	0,578						
5 - 16 m				0,452						
				0,355						

Tableau 2.9 : Étude statistique des valeurs du rapport $\frac{R_0}{E_M}$ (sols pulvérulents)

Référence	В	D	D/B	R_o/E_M	N	Marge	Moyenne	Ecartype	Coef. Variation
[22] Zone 2 11 - 16 m	0,62	15	24,19	21,070	2	12,684 - 21,070	16,877	5,930	35,14%
[21] Zone 1 5 - 16 m	0,368	14	38,04	12,684	2	12,004 - 21,070	10,077	3,730	33,1470

Pour le rapport $\frac{B_0.B}{E_M}$, la moyenne trouvée est de 0,804.

Une étude de Frank et Zhao (1982) [10] a permis de proposer pour les sols granulaires $\frac{B_0.B}{E_M} = 0.8$.

Mais pour le rapport $\frac{R_o}{E_M}$ nous avons trouvé 16,877, alors que Frank et Zhao proposent plutôt $\frac{R_o}{E_M}=4.8$.

- Cas de sols fins :

Pour le cas des sols fins, l'étude statistique des valeurs des rapports $\frac{B_0.B}{E_M}$ et $\frac{R_0}{E_M}$ déterminées par l'interprétation des essais de chargement vertical, a abouti aux résultats présentés sur les tableaux (2.10) et (2.11) suivants :

Tableau 2.10 : Étude des valeurs du rapport $\frac{B_0.B}{E_M}$ (sols fins)

Référence	В	D	D/B	B _o .B/E _M	N	Marge	Moyenne	Ecartype	Coef. Variation
[22] Zone 1 1,5 - 11 m	0,62	15	24,19	2,222 1,966 0,640 0,835 1,803 1,854 3,482 1,943 3,747 1,495 1,276 0,523	36	0,447 - 6,006	1,923	1,348	70,07%
[52]	0,273	17	62,27	0,750 0,674 1,319 1,550 1,272					
[21] Zone 2 0 - 5 m	0,368	14	38,04	1,075					

Coef. Référence \mathbf{N} Moyenne | Ecartype В D D/B R_o/E_M Marge Variation 21,922 0,533 | 12,17 | 22,83 | 20,690 20,69 - 23,779 3 22,130 7% [7] 1,555 23,779

Tableau 2.11 : Etude des valeurs du rapport $\frac{R_o}{E_M}$ (sols fins)

On voit que la moyenne des valeurs de $\frac{B_0.B}{E_M}$ trouvée est de 1,923 et elle est proche à celle proposée par Frank et Zhao qui est, pour les sols fins $\frac{B_0.B}{E_M} = 2$.

Pour le rapport $\frac{R_o}{E_M}$ on a trouvé une moyenne de 22,130, alors que Frank et Zhao proposent $\frac{R_o}{E_M} = 11$, pour les sols fins.

2.6.1.2. Étude de la variation des rapports $\frac{R_0}{E_M}$ et $\frac{B_0.B}{E_M}$ en fonction de la compressibilité K:

Dans le but de voir comment varie les rapports $\frac{R_o}{E_M}$ et $\frac{B_o.B}{E_M}$ en fonction de la compressibilité relative sol/pieu définie par (2.11), on a fait une étude des fonctions $\frac{R_o}{E_M} = \mathbf{f}(\mathbf{K})$ et $\frac{B_o.B}{E_M} = \mathbf{f}(\mathbf{K})$.

$$K = \frac{E_P}{E_M^e} \tag{2.11}$$

E_P: module de Young du pieu

 E_M^e : module pressiométrique équivalent, défini par (2.12).

$$\mathbf{E}_{\mathrm{M}}^{\mathrm{e}} = \int_{0}^{\mathrm{D}} \mathbf{E}_{\mathrm{M}}(\mathbf{z}) d\mathbf{z} \tag{2.12}$$

Les résultats obtenus sont présentés sur les figures (2.17) et (2.18).

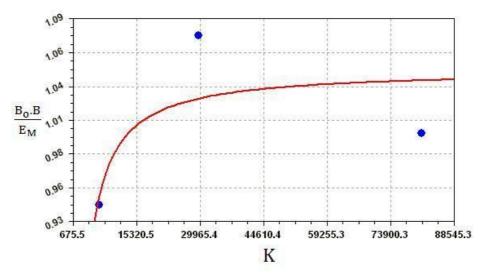


Figure 2.17 : Courbe $\frac{B_0.B}{E_M} = f(K)$.

L'ajustement de la courbe $\frac{B_o.B}{E_M}=f(K)$ nous a permis de proposer la formulation analytique suivante :

$$\frac{B_0.B}{E_M} = 1 - \frac{649}{K} \tag{2.13}$$

Pour les intervalles de valeurs étudiées de K $\mbox{ et } \frac{B_o.B}{E_M} \mbox{ suivants} :$

K: de 6755,15 à 81109,79

$$\frac{B_{0}.B}{E_{M}}: de\ 0,946\ \ \grave{a}\ \ 1,076.$$

Le coefficient d'ajustement est 72,5%.

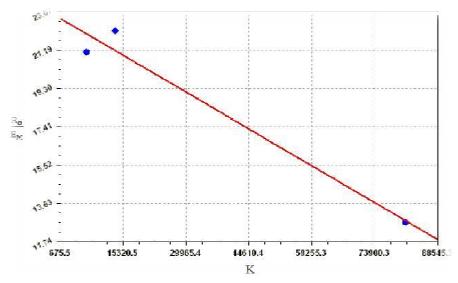


Figure 2.18 : Courbe $\frac{R_0}{E_M} = f(K)$

L'ajustement de la courbe $\frac{R_0}{E_M} = f(K)$, donne la formulation analytique proposée suivante:

$$\frac{R_0}{E_M} = 22.8 - 124.10^{-6} K \tag{2.14}$$

Pour les intervalles de valeurs étudiées de K et $\frac{R_o}{E_M}$ suivants :

K: de 6755,15 à 81109,79

$$\frac{B_0.B}{E_M}$$
: de 12,684 à 22,13.

Le coefficient d'ajustement est 98%.

2.6.2. Corrélation avec la pression pénétrométrique q_c: 2.6.2.1. Étude statistique des rapports $\frac{B_o.B}{q_c}$ et $\frac{R_o}{q_c}$:

L'étude statistique des rapports $\frac{B_o.B}{q_c}$ et $\frac{R_o}{q_c}$, déterminés par l'interprétation des essais de chargement verticaux a donné les résultats suivants :

- Cas de sol pulvérulent :

L'étude statistique des rapports $\frac{B_0.B}{q_c}$ et $\frac{R_0}{q_c}$ pour le cas des sols pulvérulents est présentée sur les tableaux (2.12) et (2.13).

- Cas de sols fins :

Pour le cas des sols fins, l'étude statistique des valeurs de $\frac{B_0.B}{q_c}$ déterminées par l'interprétation des essais de chargement vertical, a abouti aux résultats présentés sur le tableau (2.14).

Tableau 2.12 : Étude statistique des valeurs du rapport $\frac{B_o.B}{q_c}$ (sols pulvérulents)

Référence	В	D	D/B	B _o .B/q _c	N	Marge	Moyenne	Ecartype	Coef. Variation
[22]				0,411					
[22]	0,62	15	24,19	0,442					
Zone 2	0,02	13	24,17	0,681					
11 - 16 m				3,455					
				0,651					
[21]				0,855					
	0,368	14	38,04	0,550					
Zone 1		'-	30,04	1,020					
5 - 16 m				0,825					
				0,615					
				3,696					
				2,528					
[20]	0,273	,273 9,15	33,52	1,116	27	27 0,411 - 319,973		61,059	325,47%
				4,128			18,760		
				31,691					
				41,392					
	0,35	10,6	30,29	18,286					
	0,33	10,0	30,27	11,932					
				2,514					
				20,207					
[41]	0,40	10,6	26,5	10,983					
[יידי]	0,40	10,0	20,3	6,041					
				2,578	_				
				319,973					
	0,50	10.6	5 21,2	14,486					
	0,50	10,6		3,369					
				2,105					

Tableau 2.13 : Étude statistique des valeurs du rapport $\frac{R_0}{q_c}$ (sols pulvérulents)

Référence	В	D	D/B	R _o /q _c	N	Marge	Moyenne	Ecartype	Coef. Variation
[22]									
Zone 2	0,62	15	24,19	31,891					
11 - 16 m									
[21]									
Zone 1	0,368	14	38,04	23,358	5	4,178 - 492,985	165,286	213,952	129,44%
5 - 16 m									
[20]	0,273	9,15	33,52	274,017					
[/1]	0,35	10,60	30,29	492,985					
[41]	0,50	10,60	21,20	4,178					

Tableau 2.14 : Étude des valeurs du rapport $\frac{B_o.B}{q_c}$ (sols fins)

Référence	В	D	D/B	B _o .B/q _c	N	Marge	Moyenne	Ecartype	Coef. Variation
[22] Zone 1 1,5 - 11 m	0,62 0,53		24,2 22,8	B ₀ ·B/q _c 4,728 4,017 3,817 2,261 13,716 6,940 11,356 23,012 17,574 37,452 18,830 11,003 11,864 7,074 7,771 20,465 17,896 39,004 21,190 11,319 14,006 9,762 8,369 25,086 18,036 44,478 20,218 12,269 14,615 9,961 10,461 20,831 17,896 37,011 16,204 10,715 9,514 9,762 9,714 22,010 15,689 35,708	N 50	Marge 0,257 - 44,478	Moyenne	Ecartype 9,91	Coef. Variation
[52] [21]	0,27		62,3	35,708 14,403 12,084 6,658 19,579 26,381 20,272 0,257					
Zone 2 0 - 5 m	0,37	14	38	3,546					

2.6.2.2. Étude de la variation des rapports $\frac{R_0}{q_c}$ et $\frac{B_0.B}{q_c}$ en fonction de la compressibilité K:

L'étude des rapports $\frac{R_0}{q_c}$ et $\frac{B_0.B}{q_c}$ en fonction de la compressibilité relative sol/pieu définie par (2.15), aboutit aux résultats présentés sur les figures (2.19) et (2.20).

$$\mathbf{K} = \frac{\mathbf{E_P}}{\mathbf{q_C^e}} \tag{2.15}$$

E_P: module de Young du pieu

 q_c^e : pression pénétromètrique équivalente, définie par (2.16)

$$\mathbf{q}_{c}^{e} = \int_{0}^{D} \mathbf{q}_{c}(\mathbf{z}) d\mathbf{z}$$
 (2.16)



Figure 2.19 : Courbe $\frac{B_0.B}{q_c} = f(K)$

L'ajustement de la courbe $\frac{B_0.B}{q_c} = f(K)$, nous a permis de proposer la formulation analytique suivante :

$$\frac{B_0.B}{q_c} = 18 - \frac{124.10^3}{K} \tag{2.17}$$

Pour les intervalles de valeurs étudiées de K et $\frac{B_0.B}{q_c}$ suivants :

K: de 8168,78 à 510014,97.

$$\frac{B_0.B}{q_c}$$
: de 4,18 à 274,02.

Le coefficient d'ajustement est 99%.

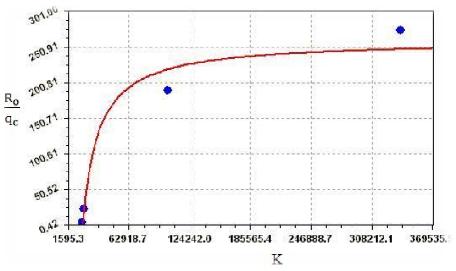


Figure 2.20 : Courbe $\frac{R_0}{q_c} = f(K)$

L'ajustement de la courbe $\frac{R_0}{q_c}=f(K)$, donne la formulation analytique suivante :

$$\frac{R_o}{q_c} = 260 - \frac{4.1 \cdot 10^6}{K} \tag{2.18}$$

Pour les intervalles de valeurs étudiées de K $\mbox{ et } \frac{R_o}{q_c}$ suivants :

K: de 15953,27 à 337391,62.

$$\frac{R_o}{q_c}$$
: de 4,18 à 274,02.

Le coefficient d'ajustement est 98%.

II.7. Conclusion:

Ce chapitre contient une analyse des paramètres de transfert de charge B_o et R_o mesurés directement des données expérimentales de quelques essais de chargement statique vertical réalisés dans différentes régions du monde.

Une présentation de la méthode de transfert de charge a été donnée, ainsi qu'une présentation de l'essai de chargement statique vertical.

Un exemple détaillé d'interprétation d'un essai de chargement vertical illustre la méthode suivie.

Afin de trouver une corrélation entre les deux paramètres de transfert de charge $(B_o \text{ et } R_o)$ et les caractéristiques géotechniques in-situ telles que le module pressiométrique E_M et la pression pénétrométrique q_c , nous avons fait une étude de la variation des paramètres B_o et R_o avec E_M et q_c .

Les résultats trouvés ont été comparés aux valeurs recommandées par les méthodes de calcul.

CHAPITRE 3

ÉTUDE PARAMÉTRIQUE D'UNE BASE DE DONNÉES D'ESSAIS EN CENTRIFUGEUSE

3.1 Introduction

Le but de cette étude paramétrique d'une base de données d'essais en centrifugeuse est la détermination des paramètres clefs de la réponse latérale d'un pieu isolé.

Dans ce chapitre on donne une idée sur l'essai en centrifugeuse, puis on présente la base de données utilisée pour cette étude, ensuite on mène une analyse dimensionnelle du problème. Enfin on présente les résultats obtenus.

3.2. Présentation de l'essai en centrifugeuse :[9]

3.2.1. Les conditions de similitude :

Pour étudier le comportement d'un ouvrage géotechnique (fondations, tunnels, barrages...), on doit suivre une des trois voies suivantes :

- La modélisation numérique,
- L'essai en vraie grandeur,
- L'essai sur modèle réduit (modélisation physique).

Dans le cas de l'essai sur modèle réduit, les conditions de similitudes doivent être vérifiées, affin de pouvoir extrapoler correctement les résultats du modèle au prototype.

Les conditions de similitude sont des relations entre échelles des grandeurs. Elles peuvent être déduites en imposant la conservation de l'équation décrivant le phénomène, aussi bien en prototype qu'en modèle.

Pour déduire les conditions de similitude on utilise :

- Les équations d'équilibre dynamique,
- La loi du comportement,
- Les conditions aux limites.

Dans le premier cas (équations d'équilibre dynamique), on obtient deux conditions absolues de similitude, qui doivent être respectées, indépendamment de la loi de comportement ou de la nature de chargement. Ces deux conditions sont :

$$\sigma^* = \rho^* \cdot \mathbf{g}^* \cdot \mathbf{L}^* \tag{3.1}$$

$$\mathbf{u}^* = \mathbf{g}^*(\mathbf{t}^*)^2 \tag{3.2}$$

où, chaque grandeur q a l'échelle $\mathbf{q}^* = \frac{q_{\text{modèle}}}{q_{\text{prototype}}}$.

 σ^* : échelle des contraintes,

ρ*: échelle des masses volumiques,

g*: échelle de gravité,

L*: échelle des dimensions,

u*: échelle des déplacements,

t*: échelle de temps.

3.2.2. Essai sur modèle réduit en macrogravité :

Dans le cas où on veut utiliser le même matériau prototype pour réaliser le modèle $(\rho^*=1)$, et mener l'essai tel que le modèle répond au même niveau de déformation $(\epsilon^*=1)$ et contrainte $(\sigma^*=1)$ que le prototype, on est dans le cas d'essai sur modèle réduit en macrogravité. Dans ce cas la condition (3.1) devient :

$$g^*. L^* = 1$$
 \longrightarrow $g^* = \frac{1}{L^*}$

Si on a, par exemple:
$$L^* = \frac{L_{modèle}}{L_{prototype}} = \frac{1}{10}$$
 ,

on aura

$$g^* = \frac{g_{\text{modèle}}}{g_{\text{prototype}}} = 10$$
 \longrightarrow $g_{\text{modèle}} = 10.g_{\text{prototype}}$

Il faut, donc, augmenter le poids dix fois, et puisqu'on a : Poids = masse x g Il faut ajouter d'autres force massiques, soit par :

- force centrifuge,
- force d'écoulement d'eau,
- d'autres.

Pour le premier cas on utilise la centrifugeuse.

3.2.3. Essai en centrifugeuse

L'idée de ce type d'essai consiste à augmenter les forces de masse en ajoutant la force centrifuge. Dans un repère relatif, le modèle est soumis à un poids apparent plus grand que le poids réel dû à la gravité terrestre.

De cet effet, la centrifugation des modèles réduits permet de reproduire des états de contrainte semblables à ceux régnant dans l'ouvrage prototype. Les conditions de similitude mécanique étant satisfaites, les résultats expérimentaux peuvent être extrapolés directement du modèle réduit vers l'ouvrage prototype.

Dans le repère relatif:

Poids réel = masse (M) x g

Force centrifuge = $M \times a_n = MR\omega^2$

La résultante $\overrightarrow{F} = M\overrightarrow{g} + M\overrightarrow{a_n} = M(\overrightarrow{g} + \overrightarrow{a_n})$: poids apparent

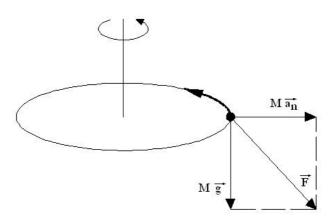


Figure 3.1: Poids apparent

Les principales caractéristiques techniques d'une centrifugeuse sont :

- Rayon de rotation
- Accélération maximale
- Nacelle pivotante :
 - Longueur plate-forme
 - Largeur plate-forme
 - Hauteur libre
- Masse maximale embarquable du modèle.

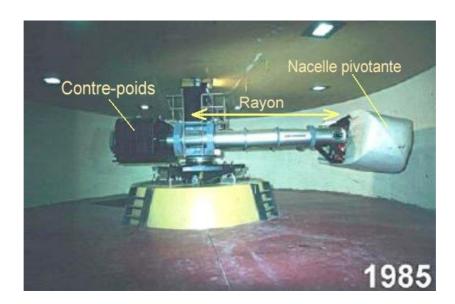


Figure 3.2 : Centrifugeuse du LCPC (centre de Nantes) en rotation. [63]

Figure 3.3 : Centrifugeuse du LCPC (centre de Nantes) au repos.[63]

Aujourd'hui, la modélisation physique d'ouvrage en centrifuge est une approche expérimentale répandue. Elle est utilisée régulièrement pour obtenir des données expérimentales difficiles à acquérir in-situ, en plus la haute qualité des essais menés en centrifugeuse.

3.3. Présentation de la base de données :

La base de données a été construite par collection des thèses et mémoires traitant la modélisation des pieux chargés latéralement en centrifugeuse, les données trouvées sont saisis sous forme de fiches dont un modèle est présenté en annexe 3.

3.3.1. Nature du sol:

La totalité des sols utilisés dans les essais de la base de données sont de nature sableuse.

3.3.2. caractéristiques des pieux :

Le mode d'introduction dans le sol et la nature de surface de chaque pieu sont regroupé dans le tableau 3.1.

Tableau 3.1 : Caractéristiques des pieux

N°	Pieu		ntroduction s le sol	Nature de la surface		Référence
		Foré	Battu	Lisse	Rugueuse	
1	P1	•			•	[61]
2	P1	•			•	[61]
3	P3	•		•		[61]
4	P3		•	•		[13]
5	P4	•		•		[14]
6	P4	•		•		[14]
7	P1	•		•		[13]
8	P1	•		•		[13]
9	P2	•		•		[13]
10	P1	•		•		[13]
11	P2	•			•	[13]
12	P1	•			•	[17]
13	P2	•			•	[17]
14	P5	•				[40]
15	P5		•	•		[57]
16	P6		•	•		[59]
17	P6		•	•		[59]
18	P5		•	•		[32]

3.4. Analyse dimensionnelle:

Plusieurs paramètres influent sur le comportement d'un pieu isolé chargé latéralement. Pour connaître l'effet de chaque paramètre séparément, on a mené une analyse dimensionnelle.

La méthode de π de Vashy-Buckingham, exposée en annexe 4, a été utilisée pour cette analyse dimensionnelle.

La fonction qui décrit le comportement d'un pieu isolé chargé latéralement aux petits déplacements est de la forme suivante :

$$f(B,D,E_p,q_c,v,Y_0,H,\alpha_H,\gamma) = 0$$
 (3.3)

En suivant les étapes de calcul de la méthode, cette fonction sera réduite à la forme:

$$g(\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6, \pi_7) = 0$$
 (3.4)

avec:

 $\pi_1 = \frac{D}{B}$: L'élancement du pieu.

$$\pi_2 = \frac{E_p I_p}{q_c D^4}$$
: La rigidité relative pieu/sol.

 $\pi_3 = \frac{Y_0}{B}$: Le déplacement normalisé en surface du sol.

 $\pi_4 = \frac{\alpha_H}{\nu B^2}$: La raideur latérale normalisée du pieu.

 $\pi_5 = \nu$: Coefficient de Poisson.

 $\pi_6 = \frac{H}{\gamma \pi B^2 \frac{D}{4}}$: L'effort horizontal normalisé par rapport au poids du sol contenu dans le forage du pieu.

$$\pi_7 = \frac{1}{D} \int_0^D \frac{q_c(z)}{\sigma_{v_0}(z)} dz$$
: La résistance pénétrométrique normalisée équivalente

3.5. Paramètres d'étude :

3.5.1. Coefficient de Poisson:

À cause de l'influence négligeable du coefficient de Poisson, il ne sera pas pris en considération.

3.5.2. La rigidité relative sol/pieu :

La rigidité relative pieu/sol est le rapport de la rigidité du pieu (E_pI_p) à celle du sol $(\boldsymbol{q}_c^e\,\boldsymbol{D}^4)$, avec :

$$\mathbf{q}_{c}^{e} = \frac{1}{D} \int_{0}^{D} \mathbf{q}_{c} (\mathbf{z}) d\mathbf{z}$$
 (3.5)

q^e_c: Pression pénétrométrique équivalente.

3.5.3. L'élancement du pieu :

L'élancement du pieu est le rapport entre la fiche du pieu D et son diamètre B.

3.5.4. Pente initiale (α_H) de la courbe charge-déplacement:

Le paramètre α_H est la pente initiale de la courbe charge-déplacement $H=f(Y_0)$, cette dernière prend l'allure montrée sur la figure (3.4).

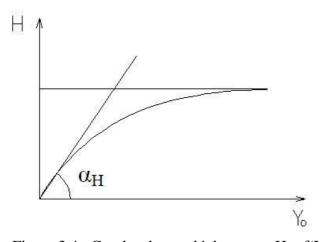
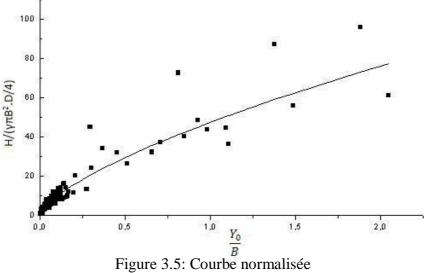


Figure 3.4 : Courbe charge-déplacement $H = f(Y_0)$

Pour les très faibles charges horizontales le déplacement est proportionnel à la charge :

$$\mathbf{H} \simeq \alpha_{\mathbf{H}} \mathbf{Y}_{\mathbf{0}} \tag{3.6}$$

D'où:


$$\alpha_{\rm H} \simeq \frac{\rm H}{\rm Y_0} \tag{3.7}$$

3.6. Présentation des résultats :

3.6.1. Courbes de chargement normalisées :

Généralement au stade d'avant projet on a besoin d'une idée sur le déplacement d'un pieu sous un chargement donné. Pour cette raison, on a voulu trace une courbe estimant, les déplacements d'un pieu isolé chargé latéralement.

Tous les données de la base de données sont regroupées dans le même repère, en prenant comme abscisses les valeurs de $\frac{Y_0}{B}$ variant entre 0,3% et 205%, et comme ordonnées les valeurs du paramètre $\frac{H}{\gamma\pi B^2\frac{D}{4}}$ qui varient entre 0,83% et 96,0%. La figure (3.5) présente la courbe obtenue.

Dans un repère bi-logarithmique les courbes auront l'allure présentée sur la figure (3.6).

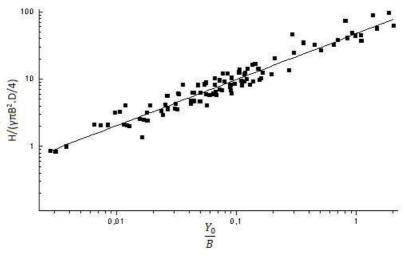


Figure 3.6 : Courbe normalisée dans un repère bi-logarithmique L'ajustement de tous les points donne la courbe d'équation :

$$\frac{H}{\gamma \pi B^2 \frac{D}{4}} = 47,52 \left(\frac{Y_0}{B}\right)^{0.683} \tag{3.8}$$

Le coefficient d'ajustement est 96,57%.

L'utilité pratique de cette courbe consiste à estimer les déplacements horizontaux d'un pieu isolé pour une charge latérale de service donnée, comme le montre l'exemple suivant :

Pour un pieu foré dans un sable dense, γ =20 kN/m³, $\mathbf{q}_c^e = 5$ MPa, de diamètre B=1,20m et de fiche D=20m, on peut estimer le déplacement horizontal du pieu sous une charge H=200kN, par :

Pour H = 200kN
$$\longrightarrow \frac{H}{\gamma \pi B_{\frac{2D}{4}}} = \frac{200}{20 \cdot \pi \cdot (1,20)^2 \cdot (\frac{20}{4})} = 0,4421$$

L'équation (3.8)
$$\longrightarrow$$
 $Y_0 = \left(\frac{1,20}{47,52}0,4421\right)^{\frac{1}{0,683}} = 1,386 \text{x} 10^{-3} \text{m} = 1,386 \text{mm}$

En remarquant que l'équation (3.8) de la courbe (figure 3.5) ne fait pas dégager la charge horizontale limite sur un pieu isolé dans le sable, les courbes de chargement $H=f(Y_o)$ ont été un ajustées avec la fonction hyperbolique :

$$H = \frac{Y_0}{\frac{1}{\alpha_H} + \frac{Y_0}{H_u}} \tag{3.9}$$

Les résultats d'ajustement des courbes de chargement sont donnés sur le tableau (3.2), avec :

 $\alpha_{\rm H}$: pente initiale de la courbe de chargement H= f(Y),

H_u: la charge limite

R: coefficient d'ajustement.

Tableau 3.2 : Ajustement des courbes de chargement

Essai 1		Essai 2		Es	Essai 3		Essai 4	
H (kN)	Y _o (mm)	H (kN)	Y _o (mm)	H (kN)	Y _o (mm)	H (kN)	Y _o (mm)	
31,86	4,25	31,86	3,72	62,5	5,95	426,33	256,50	
63,72	12,74	63,72	9,56	125,0	17,86	604,90	354,00	
95,60	22,31	95,60	16,47	184,5	38,68	652,88	423,00	
127,45	32,93	127,45	23,90	250,0	68,45	709,80	490,75	
159,30	45,69	159,30	32,93	312,5	104,20	726,50	545,75	
191,17	59,50	191,17	42,50	375,0	151,80		-	
218,60	76,48	218,60	53,12	497,5	226,20			
				500,0	327,40			
				562,5	553,60			

	Ajust. Hyperb.		Ajust.	Hyperb.	Ajust.	Hyperb.	Ajust. Hyperb.	
	α_{H}	6,4441	α_{H}	8,0802	α_{H}	7,2599	α_{H}	2,3177
Ī	Hu	369,7173	Hu	421,4774	Hu	645,7715	Hu	1848,105
	R	0,968201	R	0,978609	R	0,993762	R	0,908688

Essai 5		Essai 6		Essai 7		Essai 8	
H (kN)	Y _o (mm)						
20,78	3,40	19,88	3,10	50,62	11,83	46,58	12,20
38,46	10,60	34,84	8,50	101,52	38,14	96,97	32,21
53,52	17,48	54,81	18,00	153,23	80,81	146,76	56,18
75,36	37,50	89,10	39,60	203,00	137,11	197,37	83,18
		103,29	46,00				

	Ajust. Hyperb.		Ajust. Hyperb.		Ajust.	Hyperb.	Ajust. Hyperb.	
	α_{H}	6,4870	α_{H}	5,7203	α_{H}	4,4987	α_{H}	4,0273
I	Hu	106,6423	H_{u}	154,8328	H_{u}	290,2271	Hu	453,6382
	R	0,99021	R	0,968126	R	0,988811	R	0,98017

Tableau 3.1 : Ajustement des courbes de chargement (Suite)

Essai 9		Essai 10		Essai 11		Essai 12	
H (kN)	Y _o (mm)	H (kN)	Y _o (mm)	H (kN)	Y _o (mm)	H (kN)	Y _o (mm)
44,00	2,54	69,89	15,70	44,03	2,76	51,31	9,02
103,20	11,64	101,72	25,15	106,62	11,08	101,80	21,45
126,20	16,32	149,97	39,71	130,32	15,32	153,84	36,52
183,35	28,81	200,88	59,68	191,41	27,68	202,10	52,93
242,12	44,84			247,29	40,20		
299,85	61,73			303,70	53,88		
357,94	81,41			400,77	79,60		
420,30	100,26			487,95	104,24		
478,00	125,10					•	

Ajust. Hyperb.		Ajust. Hyperb.		Ajust. Hyperb.		Ajust. Hyperb.	
α_{H}	10,2604	α_{H}	4,9306	α_{H}	10,9401	α_{H}	6,1065
Hu	676,5947	Hu	630,2966	Hu	744,3493	Hu	516,6913
R	0,948198	R =	0,994400	R	0,938981	R	0,989491

Ess	ai 13	Essai 14		
H (kN)	Y _o (mm)	H (kN)	Y _o (mm)	
51,72	3,45	160,00	4,68	
108,50	10,34	320,00	30,00	
133,42	14,15	480,00	48,68	
187,00	24,16	640,00	70,12	
249,60	37,33	752,00	88,16	
307,40	50,58			
366,30	65,04			
423,10	80,49			
486,70	98,75			

Ajust.	Hyperb.	Ajust. Hyperb.		
α_{H}	11,7083	α_{H}	22,6175	
Hu	748,5668	H_{u}	1049,944	
R	0,962142	R	0,887163	

3.6.2. Étude de
$$\frac{\alpha_{\rm H}}{v^{\rm B}^2} = f(K_r)$$
:

Dans le but de trouver une relation entre le paramètre $\frac{\alpha_H}{\gamma B^2}$ et la rigidité relative pieu/sol, K_r , définie par :

$$\mathbf{K}_{\mathbf{r}} = \frac{\mathbf{E}_{\mathbf{p}}\mathbf{I}_{\mathbf{p}}}{\mathbf{q}_{\mathbf{p}}^{\mathbf{p}}\mathbf{D}^{4}} \tag{3.10}$$

où

E_pI_p : la rigidité du pieu,

 \mathbf{q}_{c}^{e} : la pression pénétrométrique équivalente, définie par (3.5),

D: la fiche du pieu.

L'ajustement des valeurs de $\frac{\alpha_{\rm H}}{\gamma {\rm B}^2} = f(K_r)$ avec la fonction hyperbolique

$$\frac{\alpha_{\rm H}}{\gamma B^2} = \frac{K_{\rm r}}{a + bK_{\rm r}} \tag{3.11}$$

donne l'équation (3.12) suivante:

$$\frac{\alpha_{\rm H}}{\gamma B^2} = \frac{K_{\rm r}}{-4,62.10^{-6} + 1,29.10^{-3} K_{\rm r}}$$
(3.12)

Le coefficient d'ajustement est 99,8%.

L'équation (3.12) permet l'estimation de la pente initiale de la courbe chargedéplacement $H = f(Y_0)$, à partir de la rigidité relative pieu/sol, K_r , qui représente les caractéristiques du pieu et du sol (équation (3.10)). De là, pour de faibles charges latérales appliquées à un pieu isolé, on peut estimer les déplacements engendrés par ces charges, à partir des caractéristique du pieu (E_pI_p) et celles du sol (\mathbf{q}_c^e) .

En appliquant l'équation proposée (3.12) à l'exemple précédent, avec $E_pI_p=3257,20~\text{MN.m}^2$, on aura :

L'équation (3.10)
$$K_r = \frac{E_p I_p}{q_c^e D^4} = \frac{3257,20}{5 \text{ x } (20)^4} = 4,0715 \cdot 10^{-3}$$

L'équation (3.12)
$$\longrightarrow \frac{\alpha_{\text{H}}}{\gamma \text{B}^2} = \frac{4,0715.10^{-3}}{-4,62.10^{-6} + 1,29.10^{-3}(4,0715.10^{-3})} = 6439,852$$

On a $\gamma=20~kN/m^3\,et~B=1,20~m,$ la pente initiale α_H sera donc :

$$\alpha_{\rm H} = 6439,\!852~x~20~x~(1,\!20)^2 = 185467,\!738~kN/m$$

Pour de faibles charges latérales on a : $H = 185,468 \cdot 10^3 \text{ Y}_0$

Pour
$$H = 10 \text{ kN}$$
 $Y_0 = \frac{H}{\alpha_H} = \frac{10}{185,468.10^3} = 5,392.10^{-5} \text{ m} = 5,392.10^{-2} \text{mm}$

3.6.3. Étude de $H_u = f(q_c^e)$:

La variation de la charge latérale limite appliquée au pieu isolé liée à celle de la pression pénétromètrique équivalente \mathbf{q}_c^e , a été ajuste avec la fonction :

$$\mathbf{H}_{\mathbf{u}} = \alpha (\mathbf{q}_{\mathbf{c}}^{\mathbf{e}})^{\beta} \tag{3.13}$$

avec un coefficient d'ajustement est 83,6%, l'ajustement donne :

$$\mathbf{H}_{\mathbf{u}} = 2.84(\mathbf{q}_{\mathbf{c}}^{\mathbf{e}})^{2.47} \tag{3.14}$$

H_u: la charge latérale limite en (kN),

 \mathbf{q}_c^e : la pression pénétrométrique équivalente en (MPa), définie par (3.3).

L'équation (3.14) permet d'estimer la charge latérale limite que peut supporter un pieu isolé, à partir de la pression pénétrométrique équivalente \mathbf{q}_c^e , donné par l'essai du pénétromètre statique (CPT).

En appliquant l'équation proposée (3.13) à l'exemple précédent, on aura :

L'équation (3.13)
$$\longrightarrow$$
 $H_u = 2,84 (q_c^e)^{2,47} = 2,84(5)^{2,47} = 151,277 MN$

La charge latérale limite que peut supporter le pieu est 151,3 MN.

3.7. Conclusion:

Dans ce chapitre on a mené une étude paramétrique d'une base de données d'essais en centrifugeuse afin de déterminer les paramètres clefs de la réponse latérale d'un pieu isolé.

Au début on a donné une présentation de l'essai en centrifugeuse, commençant par les conditions de similitudes et l'essai sur modèle réduit en macrogravité puis l'essai en centrifugeuse.

Une présentation de la base de données d'essais en centrifugeuse a été faite. En suite on a mené une analyse dimensionnelle pour connaître l'effet de chaque paramètre séparément.

Une courbe de chargement normalisée a été donnée et une formulation analytique a été proposée dont l'utilité pratique a été illustré par un exemple d'application.

Afin de pouvoir estimer la pente initiale de la courbe de chargement en fonction de rigidité relative pieu/sol, une équation a été proposée avec un exemple d'application.

Enfin on a donné une formulation donnant la charge latérale limite supportée par un pieu en fonction de la pression pénétrométrique équivalente.

CHAPITRE 4

ANALYSE DU COMPORTEMENT D'UN PIEU CHARGÉ LATÉRALEMENT A PARTIR D'UN ESSAI DE CHARGEMENT VERTICAL

4.1 Introduction

Dans certains cas pratiques un pieu peut être chargé latéralement, par exemple dans le cas de poussée des terres sur la culée d'un viaduc, ou le déplacement latéral d'une couche d'argile mole sous un remblai d'accès à un pont. Il existe même des structures qui ne travaillent qu'horizontalement, telles que les ouvrages d'accostage qui peuvent recevoir de la part des navires des efforts horizontaux considérables.

Pour étudier la réaction d'un pieu sous de telle chargement, parfois on doit effectuer des essais de chargement latéral d'un pieu, ce type d'essai est très compliqué et très coûteux.

Pour éviter les essais de chargement latéral, et en observant les courbes de chargement d'un pieu chargé latéralement (figure 4.1) et celle d'un pieu chargé axialement (figure 4.2), qui ont des formes semblables, on a voulu étudier la similitude de ces courbes, affin de trouver une possibilité de déduire le comportement d'un pieu isolé sous chargement latéral, à la base d'un essai de chargement axial traditionnel.

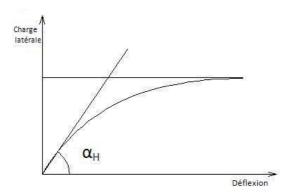


Figure 4.1 : Courbe de chargement d'un pieu charge latéralement

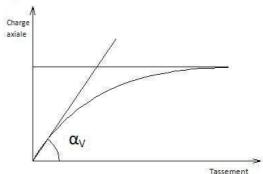


Figure 4.2 : Courbe de chargement d'un pieu charge axialement

En se limitant au domaine de petits déplacements, on va étudier le rapport des pentes initiales des deux courbes de chargement $\frac{\alpha_H}{\alpha_V}$.

4.2. Étude théorique de la similitude des courbes de chargement latéral et axial d'un pieu isolé : Étude du rapport $\frac{\alpha_H}{\alpha_V}$:

Dans cette étude théorique, on a pris des méthodes de calcul d'un pieu isolé chargé latéralement et axialement; pour chaque méthode on déduit l'expression de la pente initiale de la courbe de chargement axial α_V et celle de la pente initiale de la courbe de chargement latéral α_H , puis on exprime la formulation du rapport des deux pentes initiales $\frac{\alpha_H}{\alpha_V}$.

4.2.1. Théorie de transfert de charge:

- Pieu court et rigide dans un sol homogène :

La déflexion d'un pieu sous chargement latéral est :[8]

$$\mathbf{Y}_0 = \frac{4H}{E_S D} + \frac{6M_0}{E_S D^2} \tag{4.1}$$

E_s: module de réaction latérale du sol.

Pour $M_0 = 0$

$$\mathbf{Y}_0 = \frac{4\mathbf{H}}{\mathbf{E}_{\mathbf{S}} \, \mathbf{D}} \tag{4.2}$$

A partir de l'équation (4.2) on exprime α_H par :

$$\alpha_{\rm H} = \frac{\rm H}{\rm Y_0} = \frac{\rm E_s \, D}{\rm 4} \tag{4.3}$$

D: la fiche du pieu

Le tassement sous chargement axial s'écrit :[8]

$$\mathbf{v}_0 = \frac{4Q}{\pi B} \frac{1}{(R_0 + 4DB_0)} \tag{4.4}$$

A partir de l'équation (4.4) on exprime α_V par :

$$\alpha_{\rm V} = \frac{\rm Q}{\rm v_0} = \frac{\rm \pi B}{\rm 4} \, \left(\rm R_o + 4 \rm D \rm B_o \right)$$
 (4.5)

Après tout calcul, on aboutit à l'expression du rapport des pentes suivante :

$$\frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \frac{1}{\pi \left(\frac{(R_0/E_{\rm S})}{(D/B)} + 4\left(\frac{BB_0}{E_{\rm S}}\right)\right)} \tag{4.6}$$

Une étude précédente de Yaich-Achour (2003) [65] a permis de proposer les expressions suivantes :

$$\frac{B_0 B}{E_S} = \frac{1}{3} \left(\frac{D}{B}\right)^{-0.13}$$
 quelles que soient K et v (4.7)

$$\frac{R_o}{E_s(D)} = \frac{0.47}{0.83 - \nu}$$
 quelles que soient K et D/B (4.8)

 $E_s(D)$: module de déformation du sol au niveau de la pointe du pieu (Z=D) K: compressibilité relative pieu/sol (E_p/E_s).

L'expression (4.6), devient :

$$\frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \frac{1}{\pi \left(\frac{0.47}{(0.83 - \nu)({\rm D/B})} + \frac{4}{3}({\rm D/B})^{-0.13}\right)}$$
(4.9)

Le tableau 4.1 donne les valeurs de ce rapport de pentes initiales pour différentes valeurs de l'élancement D/B et pour v = 0.3 et 0.5.

D	В	D/B	ν	ν	$\alpha_{\rm H}/\alpha_{\rm V}$ (v=0,3)	$\alpha_{\rm H}/\alpha_{\rm V}$ (v=0,5)
10	1	10	0.3	0.5	0.2955	0.2815
15	1	15	0.3	0.5	0.3193	0.3083
20	1	20	0.3	0.5	0.3359	0.3267
25	1	25	0.3	0.5	0.3487	0.3407
30	1	30	0.3	0.5	0.3591	0.3520
35	1	35	0.3	0.5	0.3679	0.3615
40	1	40	0.3	0.5	0.3756	0.3697
45	1	45	0.3	0.5	0.3823	0.3769
50	1	50	0.3	0.5	0 3884	0.3834

Tableau 4.1 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$.

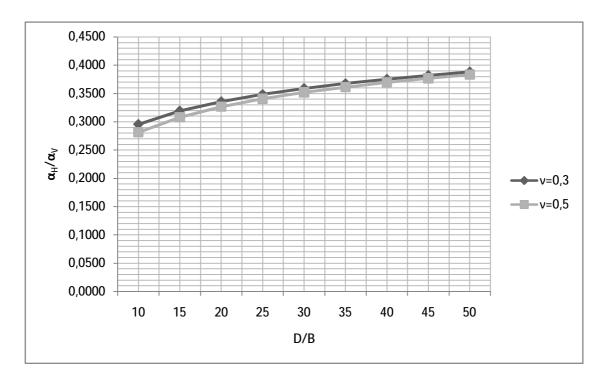


Figure 4.3 : Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

Les courbes sur la figure 4.3 montrent clairement l'effet négligeable du coefficient de Poisson sur le rapport des pentes initiales.

- Pieu long et flexible dans un sol homogène :

La déflexion d'un pieu sous chargement latéral c'écrit :[8]

$$\mathbf{Y}_0 = \frac{2H}{E_S L_0} + \frac{2M_0}{E_S L_0^2} \tag{4.10}$$

où:

E_s: module de réaction latérale du sol.

 $L_{\mbox{\tiny 0}}$: longueur élastique ou longueur de transfert, définie par :

$$\mathbf{L}_0 = \sqrt[4]{\frac{4\mathsf{E}_p\mathsf{I}_p}{\mathsf{E}_s}} \tag{4.11}$$

Pour $M_0 = 0$

$$\mathbf{Y}_{0} = \frac{^{2H}}{^{E_{S} L_{0}}} \tag{4.12}$$

A partir de l'équation (4.12) on exprime α_H par :

$$\alpha_{\rm H} = \frac{\rm H}{\rm Y_0} = \frac{\rm E_s \, L_0}{2} \tag{4.13}$$

$$L_0 = \sqrt[4]{\frac{4E_pI_p}{E_s}} \tag{4.14}$$

Le tassement sous chargement axial s'écrit : [8]

$$V_{o} = \frac{4Q}{\pi B} + \frac{1 + \frac{R_{0} Tanh(aD)}{aBE_{p}}}{R_{0} + aBE_{p} Tanh(aD)}$$
(4.15)

$$\mathbf{a} = \sqrt{\frac{4B_0}{E_p B}} \tag{4.16}$$

A partir de l'équation (4.15) on exprime α_V par :

$$\alpha_{V} = \frac{Q}{v_0} = \frac{\pi B}{4} \left(\frac{R_0 + aBE_p Tanh(aD)}{1 + \frac{R_0 Tanh(aD)}{aBE_p}} \right)$$
(4.17)

Après tout calcul, on aboutit à l'expression du rapport des pentes

$$\frac{\alpha_{H}}{\alpha_{V}} = \frac{2\sqrt[4]{4I_{p}K}\left(1+\left(\frac{R_{0}}{E_{S}}\right)\frac{Tanh\left(\sqrt{\left(\frac{D}{B}\right)^{2}\frac{4}{K}\frac{B_{0}B}{E_{S}}}\right)}{\left(2\sqrt{\frac{B_{0}B}{E_{S}}K}\right)}\right)}{\pi B\left(\left(\frac{R_{0}}{E_{S}}\right)+\left(2\sqrt{\frac{B_{0}B}{E_{S}}K}\right)Tanh\left(\sqrt{\left(\frac{D}{B}\right)^{2}\frac{4}{K}\frac{B_{0}B}{E_{S}}}\right)\right)}$$
(4.18)

En utilisant les expressions (4.7) et (4.8) on aura alors :

$$\frac{\alpha_{H}}{\alpha_{V}} = \frac{2\sqrt[4]{4I_{p}K} \left(1 + \left(\frac{0.47}{0.83 - \nu}\right) \frac{Tanh\left(\sqrt{\frac{4}{3K}}\left(\frac{D}{B}\right)^{1.87}\right)}{\left(2\sqrt{\frac{K}{3(D/B)^{0.13}}}\right)}\right)}{\pi B\left(\left(\frac{0.47}{0.83 - \nu}\right) + \left(2\sqrt{\frac{K}{3(D/B)^{0.13}}}\right)Tanh\left(\sqrt{\frac{4}{3K}}\left(\frac{D}{B}\right)^{1.87}\right)\right)}$$
(4.19)

Les tableaux 4.2 et 4.3 donnent respectivement les valeurs de ce rapport de pentes initiales pour différentes valeurs de l'élancement D/B et de K (E_p/E_s) pour $\nu=0,3$ et $\nu=0,49$

Tableau 4.2 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu=0,3$

		$\alpha_{\rm H}$ $/\alpha_{ m V}$							
D/B	10	15	20	25	30	35	40	45	50
K	10	13	20	23	30	33	40	40	30
1000	0,1409	0,1169	0,1024	0,0929	0,0865	0,0820	0,0789	0,0766	0,0750
10000	0,1831	0,1555	0,1362	0,1218	0,1107	0,1018	0,0946	0,0886	0,0836
100000	0,2246	0,1998	0,1807	0,1654	0,1529	0,1423	0,1333	0,1255	0,1187
1000000	0,2578	0,2386	0,2227	0,2093	0,1977	0,1875	0,1784	0,1704	0,1631
10000000	0,2812	0,2680	0,2564	0,2462	0,2370	0,2286	0,2209	0,2138	0,2073

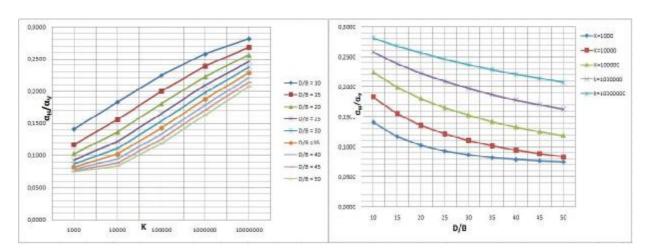


Figure 4.4 : Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.5 : Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

 α_H/α_V D/B 10 20 30 40 15 25 35 45 50 K 1000 0,0800 0,0762 0,1416 0,1177 0,1033 0,0939 0,0875 0,0831 0,0777 0,1832 0,1364 0,1220 0,1109 0,1020 0,0948 0,0888 0,0838 10000 0,1557 100000 0,2246 0,1998 0,1807 0,1654 0,1529 0,1423 0,1333 0,1256 0,1188 1000000 0,2578 0,2386 0,2228 0,2093 0,1977 0,1875 0,1784 0,1704 0,1631 0,2812 0,2564 0,2462 0,2370 0,2286 0,2209 0,2138 0,2073 10000000 0,2680

Tableau 4.3 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu=0,49$

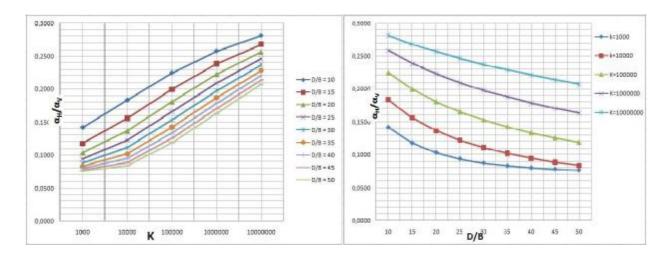


Figure 4.6 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.7 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

4.2.2. Méthode d'élasticité de Randolph et Wroth (1978,1981):

A) Pour un sol homogène :

La déflexion d'un pieu sous chargement latéral s'écrit :[54]

$$Y_{o} = 0.25 \frac{H}{G^{*} \frac{B}{2}} \left(\frac{E_{p}}{G^{*}}\right)^{-\frac{1}{7}}$$
(4.20)

avec

$$\mathbf{G}^* = \mathbf{E}_{s} \frac{(4+3\nu)}{8(1+\nu)} \tag{4.21}$$

 E_s : module d'élasticité du sol E_p : module d'élasticité du pieu

De l'équation (4.20) l'expression de α_H est :

$$\alpha_{\rm H} = \frac{H}{Y_0} = \left(1 + \frac{3}{4}\nu\right) \frac{E_{\rm s}}{1+\nu} \ B\left[K \frac{2(1+\nu)}{(1+\frac{3}{4}\nu)}\right]^{\frac{1}{7}}$$
(4.22)

K : la compressibilité relative, définie par :

$$\mathbf{K} = \frac{\mathbf{E}_{\mathbf{p}}}{\mathbf{E}_{\mathbf{s}}} \tag{4.23}$$

Le tassement sous chargement axial s'écrit :[53]

$$\mathbf{v}_0 = \frac{Q.I_v}{E_S(D).B} \tag{4.24}$$

 $I_{\rm V}$: facteur de tassement, valable aussi bien pour un sol homogène que pour un sol de Gibson.

$$I_{v} = 4(1+n) \frac{1 + \frac{8}{\pi \zeta \lambda (1-n)} \frac{D}{B} \frac{\tanh(mD)}{mD}}{\frac{4}{(1-n)\zeta} + \frac{4.\pi.\pi}{\alpha} \frac{\tanh(mD)}{mD}}$$
(4.25)

A partir de l'équation (4.24) on exprime α_V par

$$\alpha_{\rm V} = \frac{\rm Q}{\rm v_o} = \frac{\rm E_s(D)B}{\rm I_V} \tag{4.26}$$

Après tout calcul, on a abouti à l'expression du rapport des pentes suivante :

$$\frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \mathbf{f} \left(\left(\frac{4+3\nu}{4(1+\nu)} \right)^{\frac{6}{7}} I_{\rm v} (2K)^{1/7} \right)$$
(4.27)

Les tableaux 4.4 et 4.5 donnent respectivement les valeurs de ce rapport de pentes initiales pour différentes valeurs de l'élancement D/B et de K pour v = 0.3 et v = 0.49.

Tableau 4.4 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu=0,3$

	$\alpha_{\rm H}$ $/\alpha_{ m V}$								
D/B	10	15	20	25	30	35	40	45	50
K	10	13	20	23	30	วัว	40	40	30
100	0,3492	0,3245	0,3179	0,3180	0,3206	0,3241	0,3277	0,3312	0,3344
1000	0,3702	0,2944	0,2512	0,2239	0,2055	0,1926	0,1833	0,1766	0,1716
10000	0,4973	0,3843	0,3171	0,2722	0,2398	0,2154	0,1963	0,1809	0,1683
100000	0,6885	0,5306	0,4361	0,3726	0,3266	0,2916	0,2640	0,2416	0,2231
1000000	0,9564	0,7367	0,6054	0,5170	0,4529	0,4041	0,3656	0,3344	0,3085
10000000	1,3289	1,0236	0,8411	0,7182	0,6292	0,5614	0,5079	0,4644	0,4284

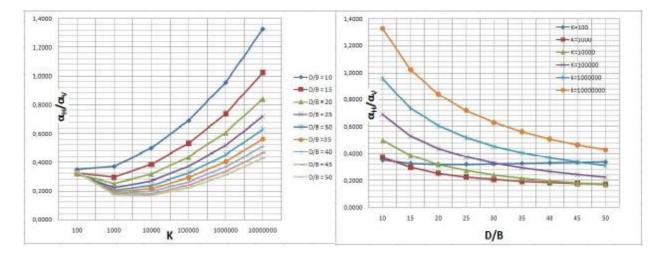


Figure 4.8 : Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.9 : Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

Tableau 4.5 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V} \;\; pour \; \nu = 0,\!49$

		α_{H} / α_{V}							
D/B	10	15	20	25	30	35	40	45	50
K	10	13	20	25	30	3	40	40	30
100	0,3465	0,3256	0,3204	0,3212	0,3243	0,3281	0,3319	0,3357	0,3391
1000	0,3655	0,2952	0,2542	0,2277	0,2097	0,1969	0,1876	0,1807	0,1757
10000	0,4905	0,3854	0,3212	0,2775	0,2458	0,2216	0,2025	0,1871	0,1743
100000	0,6792	0,5320	0,4418	0,3801	0,3349	0,3002	0,2727	0,2503	0,2316
1000000	0,9434	0,7387	0,6132	0,5273	0,4644	0,4161	0,3777	0,3464	0,3203
10000000	1,3107	1,0264	0,8519	0,7326	0,6452	0,5781	0,5247	0,4811	0,4448

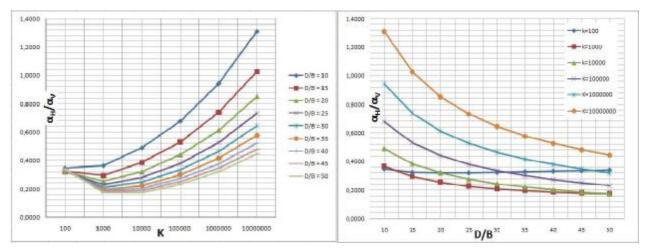


Figure 4.10 : Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.11 : Courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

B) Pour un sol de Gibson:

La déflexion d'un pieu sous chargement latéral s'écrit :[54]

$$Y_0 = 0.54 \frac{H}{m^* \cdot \left(\frac{B}{2}\right)^2} \left(\frac{E_p}{m^* \cdot \frac{B}{2}}\right)^{-\frac{3}{9}}$$
(4.28)

avec

$$E_s(z) = a.z$$

$$\mathbf{m}^* = \frac{a}{2(1+\nu)} \left(1 + \frac{3\nu}{4} \right) \tag{4.29}$$

De l'équation (4.28) l'expression de α_H est :

$$\alpha_{\rm H} = \frac{a(4+3\nu)B^2}{17,28(1+\nu)} \left[\frac{16E_{\rm p}(1+\nu)}{a(4+3\nu)B} \right]^{\frac{3}{9}}$$
(4.30)

Le tassement sous chargement axial s'écrit :[53]

$$\mathbf{v}_0 = \frac{Q.I_v}{E_S(D).B} = \frac{Q.I_v}{a.D.B}$$
 (4.31)

 $I_{\rm V}$: facteur de tassement, valable aussi bien pour un sol homogène que pour un sol de Gibson.

$$I_{v} = 4(1+n) \frac{1 + \frac{8}{\pi \zeta \lambda (1-n)} \frac{D}{B} \frac{\tanh(mD)}{mD}}{\frac{4}{(1-n)\zeta} + \frac{4 \cdot \pi \cdot \pi}{\alpha} \frac{\tanh(mD)}{mD}}$$
(4.32)

A partir de l'équation (4.31) on exprime α_V par :

$$\alpha_{V} = \frac{Q}{v_{o}} = \frac{a.D.B}{I_{V}} \tag{4.33}$$

Après tout calcul, on a abouti à l'expression du rapport des pentes suivante :

$$\frac{\alpha_{\rm H}}{\alpha_{\rm V}} = 0.1458 \, I_{\rm v} \left[\frac{K}{({\rm D/B})^2} \left(\frac{4+3\nu}{1+\nu} \right)^2 \right]^{\frac{1}{3}}$$
(4.34)

Le tableau 4.6 et 4.7 donnent respectivement les valeurs de ce rapport de pentes initiales pour différentes valeurs de l'élancement D/B et de K pour v = 0.3 et v = 0.49

Tableau 4.6 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu = 0.3$

	α_{H} / α_{V}								
D/B	10	15	20	25	30	35	40	45	50
K	10	13	20	25	30	33	40	40	30
100	0,0916	0,0674	0,0556	0,0484	0,0434	0,0397	0,0368	0,0344	0,0324
1000	0,1490	0,0942	0,0682	0,0534	0,0441	0,0378	0,0332	0,0298	0,0272
10000	0,3095	0,1898	0,1325	0,0997	0,0788	0,0645	0,0543	0,0466	0,0407
100000	0,6642	0,4060	0,2822	0,2113	0,1661	0,1351	0,1128	0,0961	0,0832
1000000	1,4304	0,8740	0,6072	0,4544	0,3570	0,2903	0,2422	0,2061	0,1782
10000000	3,0815	1,8828	1,3081	0,9788	0,7689	0,6252	0,5216	0,4439	0,3838

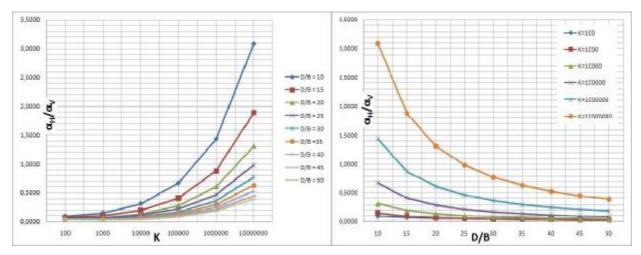


Figure 4.12 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.13 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

i									
	α_{H} / α_{V}								
D/B	10	15	20	25	30	35	40	45	50
K	10	13	20	25	30	33	40	40	50
100	0,0882	0,0658	0,0545	0,0476	0,0428	0,0392	0,0364	0,0340	0,0321
1000	0,1429	0,0922	0,0675	0,0533	0,0442	0,0379	0,0334	0,0301	0,0274
10000	0,2965	0,1857	0,1313	0,0997	0,0794	0,0653	0,0552	0,0475	0,0416
100000	0,6362	0,3971	0,2797	0,2114	0,1673	0,1369	0,1148	0,0982	0,0853
1000000	1,3702	0,8550	0,6020	0,4547	0,3598	0,2942	0,2465	0,2106	0,1827
10000000	2,9519	1,8419	1,2967	0,9795	0,7749	0,6336	0,5310	0,4536	0,3935

Tableau 4.7 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$ pour $\nu = 0.49$

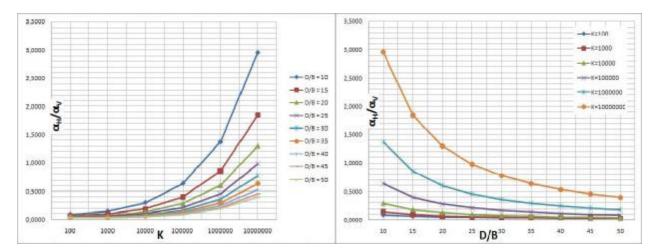


Figure 4.14 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.15 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

4.2.3. Méthode de Poulos (1968, 1979):

La déflexion d'un pieu sous chargement latéral s'écrit :[46]

$$\mathbf{Y}_0 = \frac{\mathbf{H}}{\mathbf{E}_e \mathbf{D}_e} \mathbf{I}_{YH} \tag{4.35}$$

avec

E_e: module de Young du sol à la profondeur effective D_e du pieu,

D_e: longueur effective du pieu,

 \mathbf{I}_{YH} : Facteur d'influence élastique pour le déplacement causé par la charge horizontale

Le calcul de ce facteur fait introduire la nature du sol (homogène ou de Gibson) et le type du pieu (flexible ou rigide).

A partir de l'équation (4.35) l'expression de α_H est :

$$\alpha_{\rm H} = \frac{E_{\rm e}D_{\rm e}}{I_{\rm YH}} \tag{4.36}$$

Le tassement sous chargement axial s'écrit :[49]

$$\mathbf{v}_0 = \frac{Q.I_v}{E_S(D).B} \tag{4.37}$$

D'après l'équation (4.37) l'expression de α_V est :

$$\alpha_{\rm V} = \frac{\rm Q}{\rm v_o} = \frac{\rm E_s(D).B}{\rm I_V} \tag{4.38}$$

I_V : coefficient du tassement

L'expression du rapport des pentes est :

$$\frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \frac{D_{\rm e}}{B} \frac{I_{\rm V}}{I_{\rm YH}} \tag{4.39}$$

Le tableau 4.8 donne les valeurs de ce rapport de pentes initiales pour différentes valeurs de l'élancement D/B et pour $\nu=0.5$

Tableau 4.8 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$

_		$\alpha_{\rm H}$ / $\alpha_{ m V}$							
D/B	10	15	20	25	30	35	40	45	50
K	10	13	20	23	30	วัว	40	40	30
100	0,2825	0,2707	0,2630	0,2552	0,2514	0,2462	0,2424	0,2399	0,2388
1000		0,3133	0,2880	0,2685	0,2451	0,2276	0,2120	0,1965	0,1809
10000				0,3752	0,3423	0,3124	0,2826	0,2588	0,2350

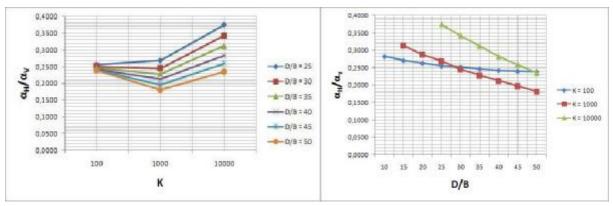


Figure 4.16 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.17 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

A) Sol de Gibson:

Le tableau 4.9 donne les valeurs de ce rapport de pentes initiales pour différentes valeurs de l'élancement D/B et de K pour $\nu = 0.5$

Tableau 4.9 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$

	α_{H} / α_{V}						
D/B	10	25	50	100			
K	10	25	50				
100	0,0789	0,1000	0,1393	0,1933			
1000		0,0657	0,0625	0,0682			
10000		0,0841	0,0637	0,0421			

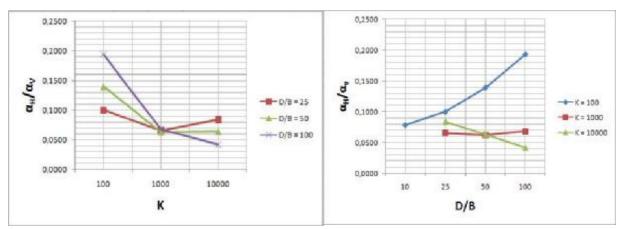


Figure 4.18 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.19 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

4.2.4. Méthode de Banerjee et Davis (1978):[4]

La méthode est limitée aux sols de Gibson.

Le tableau 4.10 donne les valeurs de ce rapport de pentes initiales pour différentes valeurs de l'élancement D/B et pour $\nu=0.5$

Tableau 4.10 : Valeurs du rapport $\frac{\alpha_H}{\alpha_V}$

	$\alpha_{\rm H}$ $/\alpha_{ m V}$							
D/B	20	25	30	35	40	45		
K	20	25	30	33	40	40		
100	0,0477	0,0417	0,0397	0,0391	0,0401	0,0454		
500	0,0580	0,0458	0,0387	0,0336	0,0313	0,0320		
1000	0,0653	0,0504	0,0416	0,0355	0,0327	0,0318		
10000	0,1254	0,0955	0,0814	0,0689	0,0626	0,0589		

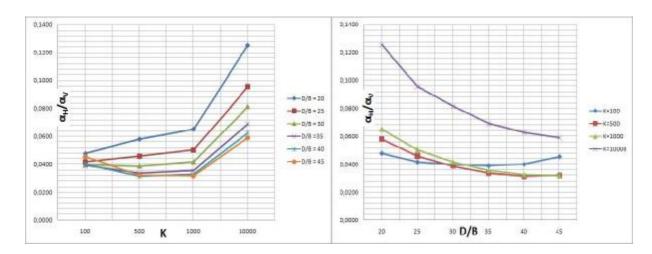


Figure 4.20 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K

Figure 4.21 : courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B

4.2.4. Modélisation par éléments finis :

Des études précédentes de Yaich-Achour (2004) [65] et Lachenani (2003) [35] à la base de la modélisation par éléments finis, ont permis d'obtenir des valeurs numériques du facteur d'influence I_{YH} et celles du coefficient de tassement I_{V} .

Nous avons utilisé leurs résultats pour calculer le rapport des pentes initiales par la formule :

$$\frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \frac{D}{B} \frac{I_{\rm V}}{I_{\rm YH}} \tag{4.40}$$

Nous avons abouti aux résultats regroupés aux tableaux 4.11, 4.12, 4.13 et 4.14.

A) Sol homogène cas v = 0.3:

Tableau 4.11 : Calcul du rapport $\frac{\alpha_H}{\alpha_V}$

		Lachenani	Yaich- Achour	
D/B	K	$\mathbf{I}_{ ext{YH}}$	I_{v}	$\alpha_{\text{H}}/\alpha_{\text{V}}$
10	300	4,5412	0,1387	0,3054
10	500	4,2329	0,1310	0,3095
10	5000	3,1496	0,1202	0,3816
10	10000	2,9657	0,1196	0,4033
10	100000	2,7158	0,1191	0,4385

Tableau 4.12 : Calcul du rapport $\frac{\alpha_H}{\alpha_V}$

		Lachenani	Yaich- Achour	
D/B	K	$\mathbf{I}_{ ext{YH}}$	$\mathbf{I}_{\mathbf{v}}$	α_{H}/α_{V}
20	300	9,0742	0,1016	0,2239
20	500	8,4360	0,0903	0,2141
20	5000	5,8113	0,0720	0,2478
20	10000	5,1958	0,0709	0,2729
20	100000	3,8083	0,0699	0,3671

B) Sol de Gibson cas v = 0.3:

Tableau 4.13 : Calcul du rapport $\frac{\alpha_H}{\alpha_V}$

			Yaich-	
		Lachenani	Achour	
D/B	K	I _{YH}	I _v	α _H / α _V
10	300	22,1857	0,1911	0,0861
10	500	19,5392	0,1830	0,0937
10	5000	11,3076	0,1648	0,1457
10	10000	10,4372	0,1639	0,1570
10	100000	9,4049	0,1632	0,1735

Tableau 4.14 : Calcul du rapport $\frac{\alpha_H}{\alpha_V}$

		Lachenani	Yaich- Achour	
D/B	K	I _{YH}	I _v	α_{H}/α_{V}
20	300	69,2565	0,1580	0,0456
20	500	60,1062	0,1383	0,0460
20	5000	28,1298	0,1107	0,0787
20	10000	23,6444	0,1091	0,0923
20	100000	14,7014	0,1077	0,1465

En observant les courbes du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de la compressibilité K et celles du rapport $\frac{\alpha_H}{\alpha_V}$ en fonction de l'élancement D/B, on voit que le rapport $\frac{\alpha_H}{\alpha_V}$ augmente avec la compressibilité K et diminue avec l'élancement D/B et cela pour toutes les méthodes.

$\underline{4.3.}$ Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$ obtenus par les différentes méthodes :

Les valeurs de $\frac{\alpha_H}{\alpha_V}$ obtenus par les différentes méthodes de calcul des tassements et déflexions des pieux isolés chargés axialement et latéralement, sont comparées entre eux.

Cette comparaison est présentée aux tableaux 4.15, 4.16 et 4.17 et aux graphes 4.22, 4.23 et 4.24.

Pour un sol homogène, $\nu = 0.3$:

Tableau 4.15 : Comparaison des valeurs de $\,\frac{\alpha_H}{\alpha_V}\,$

			α_{H}/α_{V}									
	D/B	10			15			20				
	K	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos		
	1000	0,3702	0,1409		0,2944	0,1169	0,3133	0,2512	0,1024	0,2880		
1	10000	0,4973	0,1831		0,3843	0,1555		0,3171	0,1362			
1	00000	0,6885	0,2246		0,5306	0,1998		0,4361	0,1807			
10	000000	0,9564	0,2578		0,7367	0,2386		0,6054	0,2227			
10	000000	1,3289	0,2812		1,0236	0,2680		0,8411	0,2564			

					α_{H}/α_{V}					
D/B		25			30			35		
K	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	
1000	0,2239	0,0929	0,2685	0,2055	0,0865	0,2451	0,1926	0,0865	0,2276	
10000	0,2722	0,1218	0,3752	0,2398	0,1107	0,3423	0,2154	0,1018	0,3125	
100000	0,3726	0,1654		0,3266	0,1529		0,2916	0,1423		
1000000	0,5170	0,2093		0,4529	0,1977		0,4041	0,1875		
10000000	0,7182	0,2492		0,6292	0,2370		0,5614	0,2286		

		α_{H}/α_{V}								
D/B		40			45			50		
K	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	
1000	0,1833	0,0789	0,2120	0,1766	0,0766	0,1965	0,1716	0,0750	0,1809	
10000	0,1963	0,0946	0,2826	0,1809	0,0886	0,2588	0,1683	0,0836	0,2350	
100000	0,2640	0,1333		0,2416	0,1255		0,2231	0,1187		
1000000	0,3656	0,1784		0,3344	0,1704		0,3085	0,1631		
10000000	0,5079	0,2209	·	0,4644	0,2138		0,4284	0,2073		

N.B: t.t.charge = théorie de transfert de charge.

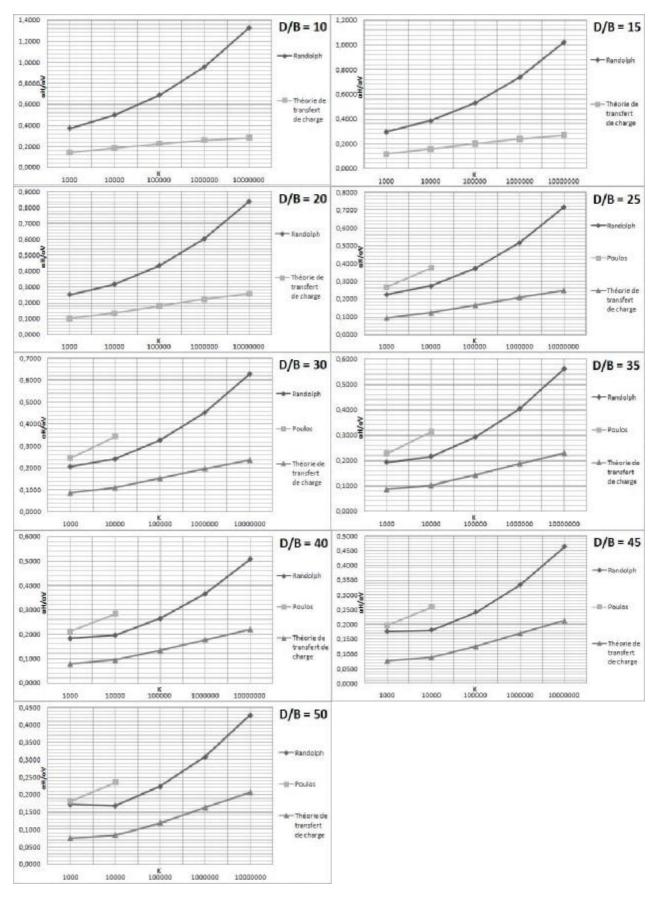


Figure 4.22 : Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$

Pour un sol homogène, $\nu = 0.49$:

Tableau 4.16 : Comparaison des valeurs de $\,\frac{\alpha_{H}}{\alpha_{V}}\,$

		α_{H}/α_{V}								
D/B	10			15			20			
K	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	
1000	0,3655	0,1416		0,2952	0,1177	0,1330	0,2542	0,1033	0,2880	
10000	0,4905	0,1832		0,3854	0,1557		0,3212	0,1364		
100000	0,6792	0,2246		0,5320	0,1998		0,4418	0,1807		
1000000	0,9434	0,2578		0,7387	0,2386		0,6132	0,2228		
10000000	1,3107	0,2812		1,0264	0,2680		0,8519	0,2564		

		$lpha_{H}/lpha_{V}$								
D/B	25			30			35			
K	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	
1000	0,2277	0,0939	0,2685	0,2097	0,0875	0,2451	0,1969	0,0810	0,2276	
10000	0,2775	0,1220	0,3752	0,2458	0,1109	0,3423	0,2216	0,1020	0,3124	
100000	0,3801	0,1654		0,3349	0,1529		0,3002	0,1423		
1000000	0,5273	0,2093		0,4644	0,1977		0,4161	0,1875		
10000000	0,7326	0,2462		0,6452	0,2370		0,5781	0,2286		

			α_{H}/α_{V}								
	D/B	40			45			50			
	K	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	Randolph	t.t.charge	Poulos	
	1000	0,1876	0,0800	0,2120	0,1807	0,0777	0,1965	0,1757	0,0762	0,1809	
	10000	0,2025	0,0948	0,2826	0,1871	0,0888	0,2588	0,1743	0,0838	0,2350	
	100000	0,2727	0,1333		0,2503	0,1256		0,2316	0,1188		
•	1000000	0,3777	0,1784		0,3464	0,1704		0,3203	0,1631		
1	0000000	0,5247	0,2209		0,4811	0,2138		0,4448	0,2073		

Figure 4.23 : Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$

Pour un sol de Gibson, v = 0.5:

Tableau 4.17 : Comparaison des valeurs de $\,\frac{\alpha_{\text{H}}}{\alpha_{\text{V}}}\,$

		$\alpha_{\text{H}} / \alpha_{\text{V}}$							
D/B	10		15			20			
	Dandalah	Doules	Baneerje	Dondolnk	Doules	Baneerje	Dandalah	Doules	Baneerje
K	Randolph	Poulos	et Davis	Randolph	Poulos	et Davis	Randolph	Poulos	& Davis
1000	0,1490			0,0942			0,0682		0,0653
10000	0,3095			0,1898			0,1325		0,1254
100000	0,6642			0,4060			0,2822		
1000000	1,4304			0,8740			0,6072		
10000000	3,0815			1,8828			1,3081		

					α_{H}/α_{V}				
D/B	25			30			35		
K	Randolph	Poulos	Baneerje	Randolph	Poulos	Baneerje	Randolph	Poulos	Baneerje
			et Davis			et Davis			& Davis
1000	0,0534	0,0657	0,0504	0,0441		0,0416	0,0378		0,0355
10000	0,0997	0,0841	0,0955	0,0788		0,0814	0,0645		0,0689
100000	0,2113			0,1661			0,1351		
1000000	0,4544			0,3570			0,2903		
10000000	0,9788			0,7689			0,6252		

						α_H/α_V				
	D/B	40			45			50		
	K	Randolph	Poulos	Baneerje	Randolph	Poulos	Baneerje	Randolph	Poulos	Baneerje
				et Davis			et Davis			& Davis
	1000	0,0332		0,0327	0,0298		0,0318	0,0272	0,0625	
1	10000	0,0543		0,0626	0,0466		0,0589	0,0407	0,0637	
1	00000	0,1128			0,0961			0,0832		
10	000000	0,2422			0,2061			0,1782		
10	000000	0,5216			0,4439			0,3838		

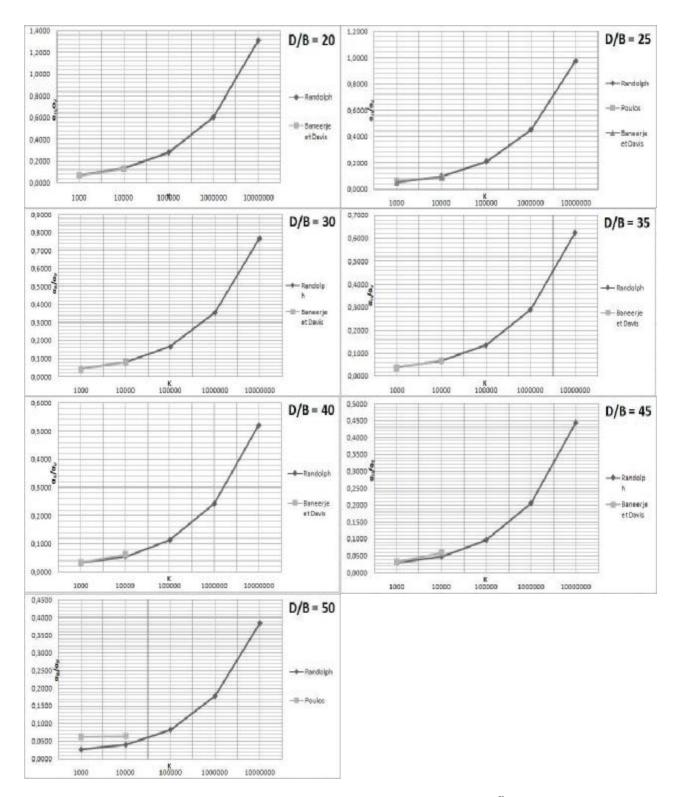


Figure 4.24 : Comparaison des valeurs de $\frac{\alpha_H}{\alpha_V}$

En faisant cette comparaison on a remarqué que les résultats obtenus par ces différentes méthodes de calcul sont proches, sauf pour le cas de la méthode de transfert de charge où les valeurs obtenus sont inférieures à celles obtenus par les autres méthodes; et cela est expliqué par le fait que la méthode de transfert de charge ne prend en considération que la composante tangentielle verticale de la contrainte appliquée sur le fût du pieu par le sol.

Vu ces résultats, nous avons adopté la méthode de Randolph et Wroth pour le calcul du rapport des pentes initiales $\frac{\alpha_H}{\alpha_V}$.

4.4. Formulation du rapport $\frac{\alpha_H}{\alpha_V}$

Après l'adaptation de la méthode Randolph et Wroth pour le calcul du rapport des pentes initiales $\frac{\alpha_H}{\alpha_V}$, nous avons effectué l'ajustement de cette méthode.

4.4.1. Ajustement de la méthode de Randolph et Wroth:

Pour un sol homogène :

$$\frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \mathbf{a} \, \left(\frac{\rm D}{\rm B}\right)^{\rm b} \tag{4.41}$$

$$\begin{cases} a = f(K) = \alpha K^{\beta} \\ b = g(K) = -\frac{K}{\alpha' + \beta' K} \end{cases}$$
(4.42)

$$\Rightarrow \frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \mathbf{f}(\mathbf{K}) \left(\frac{\mathbf{D}}{\mathbf{B}}\right)^{\mathbf{g}(\mathbf{K})} \tag{4.43}$$

Pour v = 0.3 (comportement drainé (à long terme) des sols fins saturés, ou comportement des sols pulvérulents) :

$$\Rightarrow \frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \frac{1}{3} \, \mathbf{K}^{0,2} \, \left(\frac{\rm D}{\rm B}\right)^{-\left(\frac{\rm K}{670 + {\rm K}\sqrt{2}}\right)} \tag{4.44}$$

Le coefficient d'ajustement est 98%.

Pour v = 0.49 (comportement non drainé (à court terme) des sols fins saturés):

$$\Rightarrow \frac{\alpha_{\rm H}}{\alpha_{\rm V}} = \frac{1}{3} \, \mathbf{K}^{0,2} \, \left(\frac{\rm D}{\rm B}\right)^{-\left(\frac{\rm K}{2636+1.5\rm K}\right)} \tag{4.45}$$

Le coefficient d'ajustement est 98%.

4.5. Validation de la formulation proposée :

Pour confronter les résultats obtenus par l'étude théorique du rapport des pentes initiales $\frac{\alpha_H}{\alpha_V}$, on a analysé des essais de chargement latéral et axial en vraie grandeur, en vue de déterminer les valeurs expérimentales du rapport des pentes initiales.

4.5.1. Exemple d'analyse d'un essai de chargement :

Il s'agit des essais de chargement statique axial et latéral, menés au site de la centrale électrique de Jijel.[16], figure 4.25

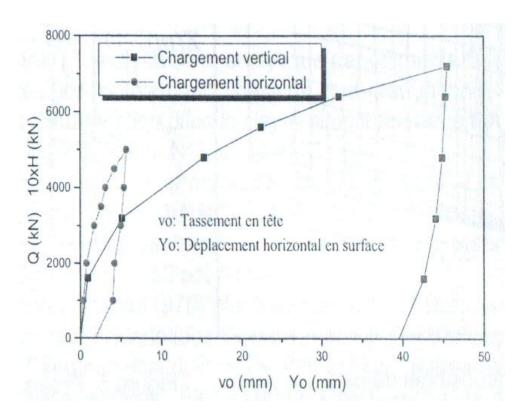


Figure 4.25 : Courbes expérimentales de chargement vertical et horizontal.[16]

On digitalise ces deux courbes pour avoir les valeurs sur le tableau 4.18.

Tableau 4.18 : Résultats des essais de chargement vertical

Central thermique de Jijel

	ociti di tilorili	que de sijei	
Chargen	nent vertical	Chargeme	nt horizontal
Q (kN)	V _o (mm)	H (kN)	Y _o (mm)
0,0000	0,0000	0,0000	0,0000
1607,3100	0,9032	100	0,2246
3182,7100	5,1823	200	0,7296
4791,9600	15,3725	300	1,7046
5591,8500	22,4375	350	2,4726
6409,4600	32,1297	400	3,0539
7218,0500	45,5740	450	4,1980
		500	5,7173

On effectue un ajustement hyperbolique des ces valeurs pour avoir les valeurs des pentes initiales, le résultat de cet ajustement est sur les tableaux 4.19 et 4.20.

Tableau 4.19 : Résultats d'ajustement d'essais de chargement vertical

Ajustement hyperbolique						
Pente initiale α _V =	1088,3080 kN/mm					
Asymptote Horizontal =	7987,169 kN					
coefficient d'ajustement R =	98,80%					

Tableau 4.20 : Résultats d'ajustement d'essais de chargement horizontal

Ajustement hype	Ajustement hyperbolique						
Pente initiale α _H =	398,6817 kN/mm						
Asymptote Horizontal =	613,9763 kN						
coefficient d'ajustement R =	99,16%						

Calcul de
$$\mathbf{K} = \frac{E_p}{E_s^e}$$
:

On utilise les formules de Randolph (4.26) et (4.25) :

$$\alpha_{\rm V} = \frac{E_{\rm s}({\rm D})B}{I_{\rm V}}$$

$$I_{v} = 4(1+n) \frac{1 + \frac{8}{\pi \zeta \lambda (1-n)} \frac{D}{B} \frac{\tanh(mD)}{m.D}}{\frac{4}{(1-n)\zeta} + \frac{4.\pi.\pi}{\alpha} \frac{\tanh(m.D)}{m.D}}$$

On fait un calcul inverse par tâtonnement, en partant de la valeur de $\,\alpha_V\,$ donnée, on tire la valeur de $\,K.$

Le calcul se fait comme le montre le tableau 4.21.

Tableau 4.21 : Calcul de K

I	D	В	D/B	E _s (D)	Ep	ξ	β	α	λ	μD	K	Tanh (μD)/μD	ν	I_{v}	α _{V(calculé)}	$\alpha_{V(exp)}$	Différence
	•	•	Х	0	•	•	•	Х	Х	Х	Х	Х	•	Х	Х	•	α _{V(calculé)} - α _{V(exp)}

- · valeur donnée
- x valeur calculée
- o valeur variée jusqu'à que la différence ($\alpha_{V(calcul\acute{e})}$ $\alpha_{V(exp)}$) soit égale à zéro.

Pour cet exemple voici les valeurs trouvées :

D	В	D/B	E _s (D)	Ep	ξ	β	α	λ	μD	K
23	1	23	117,4959	32000	1	1	4,3883	708,11011	1,1670	272,3500

Tanh (μD)/μD	ν	I_{v}	α _V (calculé)	$\alpha_{V(exp)}$	Différence
0,7055	0,3	0,1080	1088,3080	1088,3080	0,0000

Puisqu'on a maintenant les valeurs de α_V , K et D/B, on peut calculer le α_H par la formule d'ajustement (4.44) (v=0.3):

$$\frac{\alpha_H}{\alpha_V} = \frac{1}{3} \ \textbf{K}^{0,2} \ \left(\frac{D}{B}\right)^{-\left(\frac{K}{670 + K\sqrt{2}}\right)}$$

Dans cet exemple, on a:.

 $\alpha_V = 1088,308 \text{ kN/mm}$

$$\frac{D}{B} = 23$$

$$K = 272,35$$

En remplacent ces valeurs dans (4.44)

$$\Rightarrow \quad \alpha_{H} = 1088,308 \left[\frac{1}{3} (272,35)^{0,2} (23)^{-\left(\frac{272,35}{670 + 272,35\sqrt{2}}\right)} \right]$$

On aura donc: $\alpha_H = 490,6436 \text{ kN/mm}$

On a fait ce calcul pour les autres essais de chargements, les résultats sont donnés sur le tableau (4.22).

Tableau 4.22 : Résultat du calcul de α_V , α_H et K

Référence	α_{V} (kN/mm)	α _H (kN/mm)	K
[16]	1088,3080	490,6436	272,3500
[3]	62,9857	16,3050	12232,8434
[30],[31]	1688,0060	310,7130	1621,7944
[30],[31]	1261,3410	214,6244	2296,3184

Les détails de calcul pour les autres essais sont présentés en annexe 5.

4.6. Validation de la formulation théorique de la similitude des courbes de chargement:

Pour valider la formulation théorique obtenue on va comparer les valeurs expérimentales et théoriques de :

- La pente initiale α_H ,
- Le rapport des pentes initiales $\frac{\alpha_{\rm H}}{\alpha_{\rm V}}$,
- Le déplacement Y₀ pour un petit chargement H.

Tableau 4.23 : Comparaison des valeurs expérimentales et théoriques

a_{H}	(kN/mm)	α	$_{ m H}$ / $lpha_{ m V}$	Y _{0 (mm)}			
Théorique	Expérimental	Théorique	Expérimental	H (kN)	Théorique	Expérimental	
490,6436	398,6817	0,4508	0,3663	100	0,2038	0,2246	
16,3050	20,6729	0,2589	0,3282	4,60	0,2225	0,2150	
310,7130	81,0737	0,1841	0,0480	100	0,3218	0,7542	
214,6244	113,3663	0,1702	0,0899	100	0,4659	0,4369	

4.7. Conclusion:

Pour étudier la réaction d'un pieu sous un chargement latéral on doit parfois faire un essai de chargement latéral d'un pieu, un essai assez complique et coûteux.

L'idée de déduire le comportement d'un pieu chargé latéralement à partir d'un essai de chargement vertical est à la base de cette étude fait dans ce chapitre.

Les formes semblables des courbes de chargement des essais de chargement latéral et vertical, nous ont menés à faire une étude de similitude des ces courbes. Commençant par une étude théorique du rapport des pentes initiales des deux courbes de chargement.

Ce rapport a été exprimé analytiquement pour chacune des méthodes traditionnelles de calcul du déplacement d'un pieu isolé. Les résultats trouvés ont été comparés entre eux.

On a adopté la méthode Randolph, et on a proposé une formulation du rapport des pentes initiales, puis la validation de cette formulation a été faite en comparant les résultats théoriques à celle expérimentales.

CONSLUSION GÉNÉRALE ET PERSPECTIVES

Le travail présenté dans ce mémoire est une contribution à l'étude des déplacements des pieux isolés chargés verticalement ou latéralement.

La première partie a été consacrée à une synthèse bibliographique des différentes méthodes de calcul de tassement d'un pieu isolé chargé verticalement et de déflexion d'un pieu isolé chargé horizontalement. Ces méthodes sont groupées en quatre catégories, soit pour ceux de calcul du tassement ou de calcul de déflexion. La première catégorie sont les méthodes empiriques basées sur la compilation d'un nombre de constatations sur les pieux, la seconde catégorie sont les méthodes de la théorie d'élasticité considérant le sol comme un milieu continu élastique linéaire, la troisième catégorie sont les méthodes numérique qui modélisent l'interface sol/pieu par un maillage d'éléments finis et utilisant les moyens informatiques de calcul. La dernière catégorie concerne les méthodes basées sur la théorie de transfert de charges, qui discrétisent l'interface sol/pieu en une infinité de ressorts indépendants.

Dans la deuxième partie, on a interprété des essais de chargement vertical en vraie grandeur réalisés dans différentes régions du monde, pour mesurer les paramètres de transfert de charges (B_o, R_o). Ces données d'essais ont été collectées de la littérature mondiale des pieux. Une étude a été faite pour trouver une relation entre les paramètres de transfert de charge et les caractéristiques géotechniques du sol déterminer à partir des essais in-situ (PMT, CPT). L'objectif étant de déterminer, dans un projet de fondations sur pieux, ces paramètres à partir des essais in-situ courants d'une étude géotechnique.

La troisième partie est une étude paramétrique d'une base de données d'essais en centrifugeuse. Une analyse dimensionnelle a été faite pour trouver les paramètres clefs de la réponse latérale d'un pieu isolé. Une courbe normalisée $\frac{H}{\gamma\pi B^2\frac{D}{4}}$ en fonction de $\frac{Y_0}{B}$ a été déduite, et des formulations analytiques d'utilité pratique importante ont été proposées.

Dans la quatrième partie on a étudié la similitude des courbes de chargement vertical et horizontal, afin de pouvoir déduire le comportement d'un pieu isolé sous chargement latéral, à la base d'un essai de chargement axial traditionnel, et cela par l'étude du rapport des pentes initiales des ces courbes. Une étude théorique a été faite, puis on a confronté les résultats trouvés avec des données expérimentaux afin de valider les résultats théoriques.

En fin, on propose des recommandations pour des futures recherches :

- Augmentation du nombre d'essais de chargement à interprétés afin d'obtenir une formulation plus précise.
- Elargir l'étude expérimentale aux autres paramètres de transfert de charges, à savoir le frottement latérale limite q_s et la contrainte verticale limite en pointe du pieu q_l.

ANNEXE 1

LISTE DES SYMBOLES ET DES ABREVIATIONS

B : diamètre du pieu

 B_o : pente initiale de la courbe τ-v

D : fiche du pieu dans le sol

E_p : module de Young du pieu

 E_s : module de réaction du sol pour une profondeur z (N/m2),

E_s : module de Young du sol

 $E_s(D)$: module de Young du sol à la base du pieu

E_M : module pressiométrique à une profondeur donnée

I_v : facteur du tassement en tête du pieu

K : compressibilité relative pieu/sol (E_p/E_s)

K_R : facteur de flexibilité

Q_o : charge verticale appliquée en tête du pieu

R_o : pente initiale de la courbe qp-v/BS : aire de la section droite du pieu

a : pente du module d'Young du sol en fonction de la profondeur

h : hauteur de la partie du pieu dans la couche résistante du sol

q_c(z) : pression pénétromètrique

q^e : pression pénétromètrique équivalente

 q_l : contrainte verticale limite en pointe du pieu

 q_p : contrainte normale à la base du pieu

q_s : frottement latéral verticale limite

 $\tau(z)$: contrainte de frottement latéral

υ_s : coefficient de Poisson du sol

υ_p : coefficient de Poisson du pieu

 χ : indice d'homogénéité (E_0/E_D)

ANNEXE 2

RESULTATS DE L'ÉTUDE EXPÉRIMENTALE DES PARAMETRES DE TRANSFERT DE CHARGE SOUS UN CHARGEMENT AXIAL

- 1. Essai N°1 (Site: Kallo Belgique) [21]
 - 1) <u>Digitalisation des courbes charge-déplacement</u> :

Tableau 1 : Valeurs charge-déplacement

Essai c	le chargement
Charge	
(kN)	Dépla. tête Y ₀ (mm)
0,000	0,000
508,823	1,397
1002,580	2,852
1490,280	4,486
1776,300	5,275
2005,100	6,061
2261,000	6,849
2516,880	7,815
2763,720	8,780
3010,540	9,864
3260,310	11,365
3484,460	82,027

2) <u>Digitalisation des courbes de distribution des efforts le long du pieu</u> :

Tableau 2 : Distributions des efforts le long du pieu

	N	N	N	N	N	N	N	N	N	N
z (m)	(MN)									
0,004	0,506	0,996	1,494	1,753	2,004	2,260	2,523	2,774	3,013	3,260
1,506	0,500	0,990	1,483	1,734	1,973	2,232	2,479	2,730	2,968	3,190
4,510	0,493	0,978	1,459	1,710	1,961	2,216	2,463	2,714	2,956	3,190
7,515	0,421	0,889	1,357	1,600	1,855	2,093	2,349	2,587	2,829	3,072
8,507	0,342	0,742	1,154	1,363	1,593	1,810	2,035	2,269	2,486	2,725
10,489	0,268	0,622	0,992	1,153	1,358	1,553	1,741	1,945	2,162	2,379
11,497	0,210	0,470	0,751	0,896	1,040	1,176	1,321	1,470	1,615	1,768
12,505	0,148	0,306	0,510	0,659	0,774	0,880	0,995	1,093	1,204	1,335
13,513	0,107	0,222	0,350	0,418	0,478	0,541	0,609	0,673	0,746	0,826

3) Calcul des valeurs de τ :

Tableau 3 : Calcul des frottements latéraux

		500 kN			1000 kN			1500 kN	
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
-1,5	500,000	1,245	0,537	989,720	5,440	2,345	1483,320	9,697	4,180
-4,5	492,530	13,187	5,684	977,640	16,795	7,239	1458,500	21,052	9,074
-7,5	420,880	51,552	22,221	888,950	88,437	38,119	1357,010	118,210	50,953
-8,5	341,660	57,943	24,975	741,640	103,690	44,694	1154,420	141,968	61,193
-10,5	268,330	47,293	20,385	621,500	105,795	45,601	991,730	161,118	69,447
-11,5	210,410	60,045	25,881	469,980	157,895	68,058	750,840	240,885	103,830
-12,5	148,240	51,530	22,211	305,710	123,885	53,399	509,960	200,475	86,412
-13,5	107,350	40,890	17,625	222,210	83,500	35,991	349,890	160,070	68,996

		1750 kN			2000 kN			2250 kN	
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
-1,5	1734,400	9,342	4,027	1972,710	11,108	4,788	2232,280	8,630	3,720
-4,5	1709,550	22,465	9,683	1960,640	19,632	8,462	2215,940	23,178	9,991
-7,5	1599,610	136,668	58,909	1854,920	148,730	64,108	2093,210	162,190	69,909
-8,5	1362,920	170,718	73,585	1592,700	189,868	81,839	1809,740	205,810	88,711
-10,5	1153,430	181,328	78,158	1357,670	217,483	93,742	1553,440	252,615	108,886
-11,5	895,520	247,270	106,582	1040,220	291,935	125,834	1176,360	336,645	145,106
-12,5	658,890	238,775	102,920	773,800	281,335	121,265	880,150	317,480	136,845
-13,5	417,970	240,920	103,845	477,550	296,250	127,694	541,400	338,750	146,013

		2500 kN			2750 kN			3000 kN	
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
-1,5	2479,050	9,697	4,180	2730,130	9,342	4,027	2968,440	12,532	5,402
-4,5	2462,770	21,757	9,378	2713,820	23,883	10,295	2956,370	23,182	9,992
-7,5	2348,510	175,668	75,719	2586,830	179,930	77,556	2829,350	192,675	83,050
-8,5	2035,260	230,275	99,256	2269,300	239,863	103,389	2486,340	252,610	108,884
-10,5	1740,660	283,465	122,183	1944,910	318,558	137,309	2161,920	354,735	152,903
-11,5	1321,030	372,810	160,694	1469,990	426,000	183,621	1614,660	479,185	206,545
-12,5	995,040	355,775	153,351	1092,910	398,340	171,698	1203,550	434,495	187,282
-13,5	609,480	385,560	166,190	673,310	419,600	180,862	745,670	457,880	197,362

		3250 kN		3500 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	
-1,5	3189,710	23,175	9,989	3453,530	16,793	7,239	
-4,5	3190,400	19,632	8,462	3445,710	21,050	9,073	
-7,5	3071,920	193,397	83,361	3327,230	204,032	87,945	
-8,5	2724,620	260,073	112,100	2958,660	268,575	115,765	
-10,5	2378,930	391,963	168,949	2621,500	417,500	179,957	
-11,5	1767,850	521,725	224,881	1955,080	557,905	240,476	
-12,5	1335,480	470,680	202,879	1505,690	511,105	220,304	
-13,5	826,490	508,990	219,392	932,870	572,820	246,905	

4) Les résultats de calcul des valeurs de τ :

Tableau 4 : Frottements latéraux - tassements

		1	2	3	4
		` 4.5			
	1	à - 1,5 m	à - 4,5 m	à - 7,5 m	à - 8,5 m
charge [kN]	v [mm]	τ [kPa]	τ [kPa]	τ [kPa]	τ [kPa]
500	1,397	0,537	5,684	22,221	24,975
1000	2,852	2,345	7,239	38,119	44,694
1500	4,486	4,180	9,074	50,953	61,193
1750	5,275	4,027	9,683	58,909	73,585
2000	6,061	4,788	8,462	64,108	81,839
2250	6,849	3,720	9,991	69,909	88,711
2500	7,815	4,180	9,378	75,719	99,256
2750	8,780	4,027	10,295	77,556	103,389
3000	9,864	5,402	9,992	83,050	108,884
3250	11,365	9,989	8,462	83,361	112,100
3500	82,027	7,239	9,073	87,945	115,765

		5	6	7	8
		à - 10,5 m	à - 11,5 m	à - 12,5 m	à - 13,5 m
charge [kN]	v [mm]	τ [kPa]	τ [kPa]	τ [kPa]	τ [kPa]
500	1,397	20,385	25,881	22,211	17,625
1000	2,852	45,601	68,058	53,399	35,991
1500	4,486	69,447	103,830	86,412	68,996
1750	5,275	78,158	106,582	102,920	103,845
2000	6,061	93,742	125,834	121,265	127,694
2250	6,849	108,886	145,106	136,845	146,013
2500	7,815	122,183	160,694	153,351	166,190
2750	8,780	137,309	183,621	171,698	180,862
3000	9,864	152,903	206,545	187,282	197,362
3250	11,365	168,949	224,881	202,879	219,392
3500	82,027	179,957	240,476	220,304	246,905

5) Valeurs de paramètres de transfert de charge :

Tableau 5 : Valeurs de paramètres de transfert de charge

B ₀ (kPa/m)	q _s (kPa)
1199,0510	7,9427
14897,8200	10,0755
36591,8000	91,0828
41668,8100	120,6781
30572,9600	196,6327
42430,8000	261,8347
37452,5200	241,0349
30361,7400	282,4599

6) Calcul de l'effort en pointe q_p :

Tableau 6 : Calcul de l'effort en pointe

	Section : 1	1104 cm ²	
Charge (kN)	v (mm)	N _p (kN)	q _p (kPa)
500,000	1,397	99,33	899,728
1000,000	2,852	205,73	1863,496
1500,000	4,486	312,14	2827,355
1775,000	5,275	333,41	3020,018
2000,000	6,061	384,50	3482,790
2250,000	6,849	435,56	3945,290
2500,000	7,815	495,14	4484,964
2750,000	8,780	546,20	4947,464
3000,000	9,864	610,05	5525,815
3250,000	11,365	665,40	6027,174
3500,000	82,027	801,48	7259,783

$$R_{o}$$
 /B = 1102,918 x 10³ kPa/m \longrightarrow R_{o} = 1102,918 x 10³ x 0,368 = 405,874 x 10³ kPa q_{l} = 7974,149 kPa

2. Essai N°2 (Site de Cran - France) [52]

1) Les résultats de calcul des valeurs de τ :

Tableau 7 : Frottements latéraux – tassements

2 -	4 m	4 -	6 m	6 -	6 - 8 m		8 - 11 m		11 - 17 m	
v (mm)	τ [kPa]	v (mm)	τ [kPa]							
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
0,24	0,87	0,17	1,97	0,15	2,63	0,10	2,20	0,11	1,54	
0,45	1,68	0,38	4,24	0,30	5,12	0,21	5,49	0,15	3,59	
0,73	2,62	0,58	6,29	0,45	7,46	0,33	8,93	0,23	5,93	
1,02	3,42	0,81	7,90	0,64	9,51	0,50	12,15	0,31	8,42	
1,36	4,00	1,09	9,36	0,87	11,27	0,68	15,37	0,48	11,42	
1,71	4,36	1,38	10,08	1,14	12,65	0,87	18,37	0,63	14,71	
2,23	4,65	1,83	10,22	1,55	12,87	1,23	21,08	0,89	19,10	
3,62	4,84	3,20	10,64	2,85	12,55	2,47	20,69	2,03	24,07	

2) Valeurs de paramètres de transfert de charge :

Tableau 8 : Valeurs des paramètres de transfert de charge

B ₀ (kPa/m)	q _s (kPa)
5531,7810	6,9518
19225,8100	13,7265
32245,1800	15,5886
36889,9300	29,8203

3. Essai N°3 (Site: San-Francisco – Etats Unis) [20]

1) <u>Digitalisation des courbes charge-déplacement</u>:

Tableau 9 : Valeurs charge-déplacement

Charge (kN)	v (mm)
0,000	0,000
93,464	0,081
138,619	0,122
182,726	0,244
223,681	0,407
272,514	0,652
316,619	0,998
363,773	1,569
410,965	3,097
452,764	6,275
475,688	8,618

2) <u>Digitalisation des courbes de distribution des efforts le long du pieu</u> :

Tableau 10 : Distributions des efforts le long du pieu

z (m)	N (kN)									
1,524	93,464	137,230	181,725	222,183	272,077	315,224	363,773	410,965	452,764	475,688
3,048	89,633	122,225	161,335	200,440	250,334	294,829	342,030	390,571	435,066	457,994
4,267	100,781	128,836	167,946	198,961	242,108	282,562	323,020	366,172	405,273	425,500
6,096	110,670	128,644	158,311	189,326	228,427	263,492	299,896	336,305	374,062	394,289
7,620	102,739	113,644	137,916	164,881	201,298	230,961	261,976	298,384	334,789	359,061
9,144	72,941	77,067	97,298	121,571	148,540	193,040	214,616	263,165	299,569	327,887

3) Calcul des valeurs de τ :

Tableau 11 : Calcul des frottements latéraux

	93,464 kN			138,619 kN			182,726 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 1,524	93,464	2,514	2,931	137,230	9,846	11,479	181,725	13,379	15,599
- 3,048	89,633	-3,316	-3,866	122,225	2,211	2,578	161,335	3,978	4,638
- 4,267	100,781	-7,276	-8,483	128,836	-2,659	-3,100	167,946	-0,078	-0,091
- 6,096	110,670	-0,101	-0,118	128,644	4,974	5,799	158,311	9,325	10,872
- 7,620	102,739	12,379	14,432	113,644	16,922	19,729	137,916	20,017	23,338
- 9,144	72,94	19,553	22,797	77,067	24,001	27,983	97,298	26,652	31,074

Tableau 11 (suite): Calcul des frottements latéraux

	223,681 kN			272,514 kN			316,619 kN		
z [m]	N(z) [kN]	(z) [kN] dN(z)/dz τ [kPa]		[kN] $dN(z)/dz$ τ [kPa] $N(z)$ [kN] $dN(z)/dz$ τ [kPa]		N(z) [kN]	dN(z)/dz	τ [kPa]	
- 1,524	222,183	14,267	16,634	272,077	14,267	16,634	315,224	13,383	15,603
- 3,048	200,440	7,740	9,024	250,334	10,508	12,251	294,829	11,723	13,668
- 4,267	198,961	3,241	3,778	242,108	7,114	8,294	282,562	10,245	11,945
- 6,096	189,326	10,654	12,422	228,427	12,641	14,738	263,492	15,886	18,522
- 7,620	164,881	22,229	25,917	201,298	26,210	30,558	230,961	23,114	26,949
- 9,144	121,571	28,419	33,134	148,540	34,618	40,362	193,040	24,883	29,011

	363,773 kN			410,965 kN			452,764 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 1,524	363,773	14,267	16,634	410,965	13,382	15,602	452,764	11,613	13,540
- 3,048	342,030	14,931	17,408	390,571	16,699	19,469	435,066	18,027	21,017
- 4,267	323,020	14,119	16,461	366,172	18,173	21,188	405,273	20,753	24,196
- 6,096	299,896	18,762	21,875	336,305	20,606	24,025	374,062	21,417	24,970
- 7,620	261,976	27,979	32,621	298,384	23,996	27,977	334,789	24,440	28,494
- 9,144	214,616	31,076	36,232	263,165	23,110	26,944	299,57	23,110	26,944

	475,688 kN							
z [m]	N(z) [kN]	τ [kPa]						
- 1,524	475,688	11,610	13,536					
- 3,048	457,994	19,133	22,308					
- 4,267	425,500	21,860	25,487					
- 6,096	394,289	20,090	23,423					
- 7,620	359,061	21,785	25,400					
- 9,144	327,887	20,455	23,849					

4) Les résultats de calcul des valeurs de τ :

Tableau 12 : Frottements latéraux – tassements

		à - 1,524	à - 3,048	à - 4,267	à - 6,096	à - 7,620	à - 9,144
charge [kN]	v [mm]	τ [kPa]					
93,464	0,081	2,931	-3,866	-8,483	-0,118	14,432	22,797
138,619	0,122	11,479	2,578	-3,100	5,799	19,729	27,983
182,726	0,244	15,599	4,638	-0,091	10,872	23,338	31,074
223,681	0,407	16,634	9,024	3,778	12,422	25,917	33,134
272,514	0,652	16,634	12,251	8,294	14,738	30,558	40,362
316,619	0,998	15,603	13,668	11,945	18,522	26,949	29,011
363,773	1,569	16,634	17,408	16,461	21,875	32,621	36,232
410,965	3,097	15,602	19,469	21,188	24,025	27,977	26,944
452,764	6,275	13,540	21,017	24,196	24,970	28,494	26,944
475,688	8,618	13,536	22,308	25,487	23,423	25,400	23,849

5) Valeurs de paramètres de transfert de charge :

Tableau 13 : Valeurs de paramètres de transfert de charge

B ₀ (kPa/m)	q _s (kPa)
212482,600	16,4183
41582,030	23,3737
16237,110	31,8944
75993,250	25,0994
1381511,000	28,6779
989946,900	35,4679

6) Calcul de l'effort en pointe q_p :

Tableau 14 : Calcul de l'effort en pointe

Chargement (kN)	v (mm)	N _p (kN)	q _p (kPa)
93,464	0,081	72,941	1246,11
138,619	0,122	77,067	1316,60
182,726	0,244	97,298	1662,22
223,681	0,407	121,571	2076,90
272,514	0,652	148,540	2537,63
316,619	0,998	193,040	3297,86
363,773	1,569	214,616	3666,46
410,965	3,097	263,165	4495,86
452,764	6,275	299,569	5117,78
475,688	8,618	327,887	5601,56

$$R_0 / B = 8559,670 \text{ kPa/m} \longrightarrow R_0 = 8559,670 \text{ x } 10^3 \text{ x } 0,273 = 2336,79 \text{ x } 10^3 \text{ kPa}$$
 $q_t = 5847,428 \text{ kPa}$

4. <u>Essais N°4-5-6</u> (Site : São Carlos -Brésil) [41]

1) <u>Digitalisation des courbes charge-déplacement</u> :

Tableau 15 : Valeurs charge-déplacement

Pieu φ =0,35		Pieu φ =0,40		Pieu φ =0,50		
Charge (kN)	v (mm)	Charge (kN)	v (mm)	Charge (kN)	v (mm)	
40	0	40	0,09	100	0	
80	0,02	80	0,50	200	0,14	
120	0,19	120	0,81	300	0,66	
160	0,71	160	1,05	400	2,4	
200	1,38	200	1,34	450	9,65	
240	2,91	240	1,85	-708,36	40,38	
280	6,5	280	2,40			
320	21,7	320	3,41			
332	35,14	360	4,70			
		400	7,05			
		440	11,82			
		480	24,92			
		487	40,28			

2) <u>Digitalisation des courbes de distribution des efforts le long du pieu</u> :

Tableau 16 : Distributions des efforts le long du pieu

			Pieu ф =0,35 m						
	40	80	120	160	200	240	280	320	332
z (m)	N (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)
0,00	40,00	80,00	120,00	160,00	200,00	240,00	280,00	320,00	332,00
1,20	40,00	80,00	120,00	160,00	199,26	239,71	277,94	320,00	332,00
3,70	37,57	69,50	95,28	131,62	163,24	199,26	228,68	282,35	307,35
5,90	33,89	58,57	74,04	97,06	114,71	130,15	152,21	185,29	208,82
8,10	28,73	50,58	58,68	69,85	78,68	92,65	105,15	140,44	169,12
10,30	27,26	43,33	47,01	52,94	60,29	72,79	85,29	115,44	142,65

				Pieu φ ∍	=0,40 m		
	40	80	120	160	200	240	280
z (m)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)
0,00	40,00	80,00	120,00	160,00	200,00	247,96	283,67
1,20	40,00	73,28	114,10	153,89	190,63	232,46	272,26
3,70	25,12	49,61	84,30	120,02	153,69	189,40	222,06
5,90	14,73	28,00	52,49	81,06	106,57	133,10	167,79
8,10	5,37	13,53	33,94	52,31	71,69	89,04	110,47
10,30	4,17	5,19	4,17	9,27	18,45	32,74	40,90

320	360	400	440	480	487
Nc (kN)					
327,55	369,39	400,00	440,00	480,00	487,00
307,97	345,73	391,65	440,00	480,00	494,71
259,81	296,55	341,44	382,26	420,01	439,40
200,45	234,12	276,98	322,90	381,06	402,49
137,00	164,55	197,20	248,22	314,55	346,18
72,53	107,23	154,17	217,43	293,96	323,55

		Рieu ф =	:0,50 m		
	100	200	300	400	450
z (m)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)	Nc (kN)
0,00	100,00	200,00	300,00	400,00	450,00
1,20	100,00	195,03	300,00	391,01	450,00
3,70	54,49	121,41	205,54	327,92	391,97
5,90	39,20	82,22	130,98	195,03	273,42
8,10	15,30	43,02	68,83	99,43	149,14
10,30	7,65	12,43	23,90	44,93	66,92

3) Calcul des valeurs de τ :

Pieu $\Phi = 0.35 \text{ m}$:

Tableau 17 : Calcul des frottements latéraux

	40 kN				80 kN		120 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
-1,2	40,00	0,972	0,884	80,00	4,200	3,818	120,00	9,888	8,989
-3,7	37,57	1,322	1,202	69,50	4,584	4,167	95,28	9,771	8,883
-5,9	33,89	2,009	1,826	58,57	4,300	3,909	74,04	8,318	7,562
-8,1	28,73	1,507	1,370	50,58	3,464	3,149	58,68	6,143	5,585
-10,3	27,26	0,668	0,607	43,33	3,295	2,996	47,01	5,305	4,822

Tableau 17 (suite): Calcul des frottements latéraux

	160 kN			200 kN			240 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	t [kPa]
-1,2	160,00	11,352	10,320	199,26	14,408	13,098	239,71	16,180	14,709
-3,7	131,62	13,531	12,301	163,24	18,234	16,576	199,26	23,797	21,633
-5,9	97,06	14,039	12,762	114,71	19,218	17,471	130,15	24,230	22,027
-8,1	69,85	10,027	9,116	78,68	12,368	11,244	92,65	13,036	11,851
-10,3	52,94	7,686	6,988	60,29	8,359	7,599	72,79	9,027	8,207

	280 kN			320 kN			332 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
-1,2	277,94	19,704	17,913	320,00	15,060	13,691	332,00	9,860	8,964
-3,7	228,68	27,232	24,756	282,35	29,589	26,899	307,35	27,323	24,839
-5,9	152,21	28,075	25,523	185,29	32,252	29,320	208,82	31,416	28,560
-8,1	105,15	15,209	13,826	140,44	15,875	14,432	169,12	15,039	13,671
-10,3	85,29	9,027	8,207	115,44	11,364	10,331	142,65	12,032	10,938

Pieu $\Phi = 0.40 \text{ m}$:

Tableau 18 : Calcul des frottements latéraux

	40 kN			80 kN			120 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 1,20	40,00	5,952	4,724	73,28	9,468	7,514	114,10	11,920	9,460
- 3,70	25,12	5,337	4,236	49,61	9,645	7,655	84,30	13,190	10,468
- 5,90	14,73	4,489	3,562	28,00	8,200	6,508	52,49	11,445	9,084
- 8,10	5,37	2,400	1,905	13,53	5,184	4,114	33,94	10,982	8,716
- 10,30	4,17	0,545	0,433	5,19	3,791	3,009	4,17	13,532	10,740

	160 kN			200 kN			240 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 1,20	153,89	13,548	10,752	190,63	14,776	11,727	232,46	17,224	13,670
- 3,70	120,02	15,629	12,404	153,69	18,097	14,363	189,40	21,407	16,990
- 5,90	81,06	15,389	12,213	106,57	18,636	14,791	133,10	22,809	18,102
- 8,10	52,31	16,316	12,949	71,69	20,027	15,895	89,04	22,809	18,102
- 10,30	9,27	19,564	15,527	18,45	24,200	19,206	32,74	25,591	20,310

		280 kN			320 kN			360 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	
- 1,20	272,26	20,080	15,937	307,97	19,264	15,289	345,73	19,672	15,613	
- 3,70	222,06	22,374	17,757	259,81	23,123	18,352	296,55	24,025	19,067	
- 5,90	167,79	25,361	20,128	200,45	27,911	22,152	234,12	30,000	23,810	
- 8,10	110,47	28,839	22,888	137,00	29,073	23,074	164,55	28,839	22,888	
- 10,30	40,90	31,623	25,097	72,53	29,305	23,258	107,23	26,055	20,678	

	400 kN			440 kN			480 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 1,20	391,65	20,084	15,940	440,00	23,096	18,330	480,00	23,996	19,044
- 3,70	341,44	24,692	19,597	382,26	25,039	19,872	420,01	20,850	16,548
- 5,90	276,98	32,782	26,017	322,90	30,464	24,177	381,06	23,968	19,022
- 8,10	197,20	27,911	22,152	248,22	23,970	19,024	314,55	19,795	15,711
- 10,30	154,17	19,559	15,523	217,43	13,995	11,108	293,96	9,359	7,428

		487 kN	
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 1,20	494,71	22,124	17,559
- 3,70	439,40	19,451	15,437
- 5,90	402,49	21,186	16,815
- 8,10	346,18	17,941	14,239
- 10,30	323,55	10,286	8,164

Pieu $\Phi = 0.50 \text{ m}$:

Tableau 19 : Calcul des frottements latéraux

		100 kN			200 kN			300 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	
-1,2	100,00	18,204	11,595	195,03	29,448	18,757	300,00	37,784	24,066	
-3,7	54,49	12,577	8,011	121,41	23,631	15,051	205,54	35,837	22,826	
-5,9	39,20	8,907	5,673	82,22	17,816	11,348	130,98	31,070	19,790	
-8,1	15,30	7,170	4,567	43,02	15,861	10,103	68,83	24,336	15,501	
-10,3	7,65	3,477	2,215	12,43	13,905	8,856	23,90	20,423	13,008	

		400 kN		450 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	
-1,2	391,01	25,236	16,074	450,00	23,212	14,785	
-3,7	327,92	42,820	27,274	391,97	38,549	24,554	
-5,9	195,03	51,930	33,076	273,42	55,189	35,152	
-8,1	99,43	34,114	21,728	149,14	46,932	29,893	
-10,3	44,93	24,773	15,779	66,92	37,373	23,804	

4) Les résultats de calcul des valeurs de τ :

Pieu $\Phi = 0.35 \text{ m}$:

Tableau 20 : Frottements latéraux – tassements

		à - 1,20 m	à - 3,70 m	à - 5,90 m	à - 8,10 m	à - 10,30 m
charge [kN]	v [mm]	τ [kPa]				
40	0	0,884	1,202	1,826	1,370	0,607
80	0,02	3,818	4,167	3,909	3,149	2,996
120	0,19	8,989	8,883	7,562	5,585	4,822
160	0,71	10,320	12,301	12,762	9,116	6,988
200	1,38	13,098	16,576	17,471	11,244	7,599
240	2,91	14,709	21,633	22,027	11,851	8,207
280	6,5	17,913	24,756	25,523	13,826	8,207
320	21,7	13,691	26,899	29,320	14,432	10,331
332	35,14	8,964	24,839	28,560	13,671	10,938

Pieu $\Phi = 0.40 \text{ m}$:

Tableau 21 : Frottements latéraux – tassements

		à - 1,20 m	à - 3,70 m	à - 5,90 m	à - 8,10 m	à - 10,30 m
charge [kN]	v [mm]	τ [kPa]				
40	0,09	4,724	4,236	3,562	1,905	0,433
80	0,50	7,514	7,655	6,508	4,114	3,009
120	0,81	9,460	10,468	9,084	8,716	10,740
160	1,05	10,752	12,404	12,213	12,949	15,527
200	1,34	11,727	14,363	14,791	15,895	19,206
240	1,85	13,670	16,990	18,102	18,102	20,310
280	2,40	15,937	17,757	20,128	22,888	25,097
320	3,41	15,289	18,352	22,152	23,074	23,258
360	4,70	15,613	19,067	23,810	22,888	20,678
400	7,05	15,940	19,597	26,017	22,152	15,523
440	11,82	18,330	19,872	24,177	19,024	11,108
480	24,92	19,044	16,548	19,022	15,711	7,428
487	40,28	17,559	15,437	16,815	14,239	8,164

Pieu $\Phi = 0.50 \text{ m}$:

Tableau 21 : Frottements latéraux – tassements

		à 4 20 m	à 2.70 m	à E 00 m	à 0.40 m	à - 10,30
charge [kN]	v [mm]	à - 1,20 m τ [kPa]	à - 3,70 m τ [kPa]	à - 5,90 m τ [kPa]	à - 8,10 m τ [kPa]	m τ [kPa]
Charge [KIN]	v [IIIIII]	ι[ΚΙα]	ι[ΚΙα]	ι [ΚΙ α]	ι[Μα]	ı [Ma]
100	0,14	11,595	8,011	5,673	4,567	2,215
200	0,66	18,757	15,051	11,348	10,103	8,856
300	2,4	24,066	22,826	19,790	15,501	13,008
400	9,65	16,074	27,274	33,076	21,728	15,779
450	40,38	14,785	24,554	35,152	29,893	23,804

5) Valeurs de paramètres de transfert de charge :

Pieu $\Phi = 0.35 \text{ m}$:

Tableau 22 : Valeurs de paramètres de transfert de charge

B ₀ (kPa/m)	q _s (kPa)
62078,2700	18,0577
81246,8700	25,6271
50358,7800	29,2520
76433,0800	13,9530
17629,2400	10,9183

Pieu $\Phi = 0.40 \text{ m}$:

Tableau 23 : Valeurs de paramètres de transfert de charge

B ₀ (kPa/m)	q _s (kPa)
33285,0300	18,2476
34705,3509	20,4055
26466,4721	25,9895
33857,4500	21,8605
15818,1600	23,9313

Pieu $\Phi = 0.50 \text{ m}$:

Tableau 24 : Valeurs de paramètres de transfert de charge

B ₀ (kPa/m)	q _s (kPa)
123730,7000	26,0712
439642,5000	24,7185
27926,5700	36,9266
15106,6800	31,0419
10332,7100	24,8013

6) Calcul de l'effort en pointe q_p :

Pieu $\Phi = 0.35 \text{ m}$:

Tableau 25 : Calcul de l'effort en pointe

Charge (kN)	v (mm)	N _p (kN)	q _p (kPa)
40	0,00	27	280,63
80	0,02	42	436,54
120	0,19	45	467,72
160	0,71	49	509,30
200	1,38	57	592,45
240	2,91	67	696,38
280	6,50	78	810,72
320	21,70		
332	35,14		

$$R_0 / B = 3477,94 \times 10^3 \text{ kPa/m}$$
 $R_0 = 3477,94 \times 10^3 \times 0,35 = 1217,179 \times 10^3 \text{ kPa}$ $q_t = 815,513 \text{ kPa}$

Pieu $\Phi = 0.50 \text{ m}$:

Tableau 26 : Calcul de l'effort en pointe

Charge (kN)	v (mm)	N _p (kN)	q _p (kPa)
100	0,14	7	8,91
200	0,66	11	14,01
300	2,40	18	22,92
400	9,65	37	47,11
450	40,38	55	70,03

$$R_0 / B = 20,63 \times 10^3 \text{ kPa/m}$$
 $R_0 = 20,63 \times 10^3 \times 0,50 = 10,315 \times 10^3 \text{ kPa}$ $q_l = 75,327 \text{ kPa}$

5. Essai N°7 (Site: Merville – France) [7]

1) <u>Digitalisation des courbes charge-déplacement</u> :

Tableau 27 : Valeurs charge-déplacement

charge [kN]	v [mm]
272,24	0,5725
546,12	1,1674
827,84	1,8610
1098,71	2,9979
1352,28	8,4305
1620,10	32,0672
1909,57	82,7006
2750,00	95,7610

2) <u>Digitalisation des courbes de distribution des efforts le long du pieu</u> :

Tableau 28 : Distributions des efforts le long du pieu

z (m)	N (kN)	N (kN)	N (kN)	N (kN)	N (kN)	N (kN)	N (kN)	N (kN)
-0,75	253,77	523,52	792,23	1054,18	1221,06	1229,49	1229,49	1269,53
-1,75	223,16	480,01	749,262	1003,09	1118,38	1141,25	1141,25	1171,67
-2,75	218,11	471,58	737,04	990,258	1056,01	1110,44	1142,75	1093,25
-4,75	183,2	390,44	608,56	832,6	933,47	975,7	975,7	975,7
-6,75	160,38	336,8	508,39	719,761	845,136	873,127	873,127	873,127
-7,75	126,14	263,47	421,329	617,874	726,398	755,297	755,297	755,297
-8,75	107,21	222,6	355,452	537,665	605,628	633,666	648,98	656,28
-9,75	85,96	178,29	296,032	546,262	531,723	531,723	568,43	581,723
-10,75	64,62	136,39	213,02	348,985	421,01	432,999	443,131	455,042
-11,75	64,2	105,89	146,471	240,753	324,375	335,826	341,595	341,59

3) Calcul des valeurs de τ :

Tableau 29 : Calcul des frottements latéraux

	272,24 kN			,	546,12 kN	12 kN 827,84 k			
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 0,75	253,770	30,610	18,665	523,520	43,510	26,530	792,230	42,968	26,200
- 1,75	223,160	17,830	10,872	480,010	25,970	15,835	749,262	27,595	16,826
- 2,75	218,110	11,253	6,861	471,580	24,500	14,939	737,040	38,231	23,312
- 4,75	183,200	14,433	8,800	390,440	33,695	20,546	608,560	57,163	34,855
- 6,75	160,380	22,825	13,918	336,800	50,075	30,534	508,390	68,573	41,813
- 7,75	126,140	26,585	16,210	263,470	57,100	34,817	421,329	76,469	46,627
- 8,75	107,210	20,090	12,250	222,600	42,590	25,970	355,452	62,649	38,200
- 9,75	85,960	21,295	12,985	178,290	43,105	26,284	296,032	71,216	43,424
- 10,75	64,620	10,880	6,634	136,390	36,200	22,073	213,020	74,781	45,598
- 11,75	64,200	0,42	0,256	105,89	30,5	18,598	146,471	66,55	40,579

	1	098,71 kN		1352,28 kN			1620,10 kN		
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]
- 0,75	1054,180	51,090	31,152	1221,060	102,680	62,610	1229,490	88,240	53,805
- 1,75	1003,090	31,961	19,488	1118,380	82,525	50,320	1141,250	59,525	36,296
- 2,75	990,258	45,831	27,945	1056,010	61,820	37,695	1110,440	49,090	29,933
- 4,75	832,600	67,624	41,234	933,470	52,719	32,145	975,700	59,328	36,176
- 6,75	719,761	79,153	48,264	845,136	81,453	49,666	873,127	84,558	51,560
- 7,75	617,874	91,048	55,517	726,398	119,754	73,021	755,297	119,731	73,006
- 8,75	537,665	35,806	21,833	605,628	97,338	59,352	633,666	111,787	68,163
- 9,75	546,262	94,340	57,524	531,723	92,309	56,286	531,723	100,334	61,179
- 10,75	348,985	152,755	93,143	421,010	103,674	63,216	432,999	97,949	59,725
- 11,75	240,753	108,232	65,995	324,375	96,635	58,924	335,826	97,173	59,252

	,	1909,57 kN		2172,29 kN			
z [m]	N(z) [kN]	dN(z)/dz	τ [kPa]	N(z) [kN]	dN(z)/dz	τ [kPa]	
- 0,75	1229,490	88,240	53,805	1269,530	97,860	59,671	
- 1,75	1141,250	43,370	26,445	1171,670	88,140	53,744	
- 2,75	1142,750	41,013	25,008	1093,250	68,598	41,828	
- 4,75	975,700	67,406	41,101	975,700	55,031	33,555	
- 6,75	873,127	84,558	51,560	873,127	84,558	51,560	
- 7,75	755,297	112,074	68,338	755,297	108,424	66,112	
- 8,75	648,980	93,434	56,972	656,280	86,787	52,919	
- 9,75	568,430	102,925	62,759	581,723	100,619	61,353	
- 10,75	443,131	113,418	69,157	455,042	120,067	73,211	
- 11,75	341,595	101,536	61,912	341,59	113,452	69,178	

4) Les résultats de calcul des valeurs de τ :

Tableau 12 : Frottements latéraux – tassements

		à - 1,524	à - 3,048	à - 4,267	à - 6,096	à - 7,620	à - 9,144
charge [kN]	v [mm]	τ [kPa]					
93,464	0,081	2,931	-3,866	-8,483	-0,118	14,432	22,797
138,619	0,122	11,479	2,578	-3,100	5,799	19,729	27,983
182,726	0,244	15,599	4,638	-0,091	10,872	23,338	31,074
223,681	0,407	16,634	9,024	3,778	12,422	25,917	33,134
272,514	0,652	16,634	12,251	8,294	14,738	30,558	40,362
316,619	0,998	15,603	13,668	11,945	18,522	26,949	29,011
363,773	1,569	16,634	17,408	16,461	21,875	32,621	36,232
410,965	3,097	15,602	19,469	21,188	24,025	27,977	26,944
452,764	6,275	13,540	21,017	24,196	24,970	28,494	26,944
475,688	8,618	13,536	22,308	25,487	23,423	25,400	23,849

5) Valeurs de paramètres de transfert de charge :

Tableau 13 : Valeurs de paramètres de transfert de charge

B ₀ (kPa/m)	q _s (kPa)
35298,7600	58,0169
17085,1200	38,3428
19041,5000	33,0736
81663,2800	36,5888
80179,3800	51,9823
177484,8000	67,7145
77137,0600	55,7254
56258,0900	62,7635
26713,2500	73,0710
34465,1000	67,0543

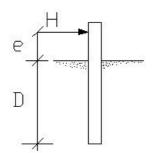
6) Calcul de l'effort en pointe q_p :

Tableau 14 : Calcul de l'effort en pointe

Chargement (kN)	v (mm)	N _p (kN)	q _p (kPa)
272,24 kN	0,5725	60,20	363,31
546,12 kN	1,1674	105,89	639,05
827,84 kN	1,8610	146,4705	883,95
1098,71 kN	2,9979	240,7527	1452,94
1352,28 kN	8,4305	324,3746	1957,60
1620,10 kN	32,0672	335,8263	2026,71
1909,57 kN	82,7006	341,595	2061,53
2172,29 kN	95,7610	341,59	2061,52

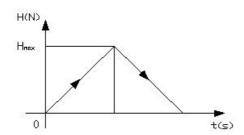
$$R_0$$
 /B = 1084,984 x 10³ kPa/m \rightarrow R_0 = 1084,984 x 10³ x 0,533 = 578,296 x10³ kPa q_l = 2110,101 kPa

6. <u>Essai N°8</u> (Site: Montivilliers – France) [22] (traité comme exemple ci-dessus)


ANNEXE 3

PRÉSENTATION DE LA FICHE SYNTHÉTIQUE

FICHE SYNTHÉTIQUE D'ESSAI SUR MODÈLES RÉDUITS EN CENTRIFUGEUSE


<u>Référe</u>	<u>nce :</u>			
Titre:				
<u>Pieu :</u>	B =m	, D =m	, $E_pI_p = \dots Nm^2$	$(E_p = \dots MPa)$
	Echelle de réduc	tion $N_g = \dots$		
<u>Centrif</u>	fugeuse :			
Sol: N	Nature du sol,	$\gamma_{ m d}$ =kN	I/m^3 , $I_d = \dots$	%

Courbe de chargement :

Essai n°				
H modèle (N)				
Y ₀ modèle (mm)				
H prototype (kN)				
Y ₀ prototype (mm)				

You déplacement en surface du sol

ANNEXE 4

ANALYSE DIMENSIONNELLE : THEOREME DES π DE BUCKINGHAM

1. <u>Introduction</u>:

Quand le nombre de grandeurs ou de variables physiques vaut quatre ou plus, le théorème en π de Buckingham fournit un excellent outil pour rassembler ces grandeurs en groupements significatifs sans dimensions, dont le nombre est minimum, à partir des quelles on peut établir une équation. On appelle les groupements sans dimensions des termes en π . Ecrit sous forme mathématique, s'il y a n quantités physiques q (telle que la vitesse, la densité, la viscosité, la pression de l'aire) et k grandeurs fondamentales (telle que la force, la longueur et le temps), alors mathématiquement :

$$f_1 = (q_1, q_2, q_3,, q_n)$$

Cette expression peut être remplacée par l'équation :

$$\Phi(\pi_1, \pi_2, \pi_3...., q_{n-k})=0$$

où n'importe quelle terme en π ne dépend pas de plus de (k+1) quantité physiques q et où chacun des termes en π sont de monômes des quantités q indépendants et sans dimension.

2. Méthode:

- 1. Faire la liste des n grandeurs q entrant dans un problème particulier, notant leurs dimensions et le nombre k des grandeurs fondamentales. Il y aura (n-k) termes en π .
- 2. Choisir k des ces quantités, aucune n'étant sans dimensions, et deux d'entres elles n'ayant pas les mêmes dimensions. Toutes les grandeurs fondamentales doivent être comprises dans les grandeurs choisies.
- 3. Le premier terme en π peut s'exprimer comme produit des grandeurs choisies chacune élevées à un exposant inconnu, et d'une autre quantité élevée à une puissance connue (généralement prie comme égale à un).
- 4. Retenir les grandeurs choisies en (2) comme variables de référence et choisir l'une des variables restantes pour établir le prochain terme en π . Répéter ce procédé pour les termes en π successifs.

5. Pour chaque terme en π , trouver les exposants inconnus par l'analyse dimensionnelle.

3. Relations utiles:

- **a**. Une grandeur sans dimension est un terme en π .
- **b**. Si deux quantités physiques ont les mêmes dimensions, est un terme en π .
- c. On peut remplacer n'importe terme en π par une de ses puissances, π -1 inclus.
- ${f d}$. On peut remplacer n'importe terme en π par son produit par une constante numérique.
- e. On peut exprimer tout terme en π comme fonction des autres termes en π . Par exemple, s'il y a deux termes en π , $\pi_1 = \Phi(\pi_2)$.

ANNEXE 5

ANALYSE DÉTAILLÉE DES ESSAIS DE CHARGEMENT

- 1. Essai N°1 (Site : Plancoët France) [3]
 - Digitalise des courbes de chargement (latéral et axial) et ajustement hyperbolique :

	Planco			
Chargem	ent vertical	Chargement horizontal		
Q (t)	Vo (mm)	H (t)	Yo (mm)	
0,0000	0,0000	0,000	0,0000	
2,0969	0,2171	0,4600	0,2150	
4,2492	0,8436	1,2200	0,6650	
6,4060	1,8817	1,9800	1,2250	
8,5183	3,5395	2,7450	1,8070	
10,8377	5,4456	3,5100	2,3620	
12,8901	8,6503	4,2700	3,0850	
15,1106	20,3412			

Ajustement	hyperbolique
P. initiale =	6,298568
A. Horiz. =	16,91103
R =	0,9960325

Ajustement h	yperbolique
P. initiale =	2,067291
A. Horiz. =	11,96014
R =	0,961811

- Calcul de K:

D	В	D/B	E _s (D)	Ep	ξ	β	α	λ	μD	К
6100	280	21,78571429	0,0017	21	1	1	4,3340	31805,3929	0,1660	12232,8434
[mm]	[mm]		[t/mm ²]	[t/n	nm²]				

Tanh (μD)/μD	ν	I_{v}	α _{V(calculé)}	α _{V(exp)}	Différence
0,9909	0,3	0,0763	6,2986	6,2986	0,0000

[t/mm] [t/mm]

- Estimation du déplacement en tête du pieu :

D	В	D/B	K	α _H /α _{V (ajusté)}	$\alpha_{\text{H}}/\alpha_{\text{V (exp)}}$	α_{v}	α_{H}	α _{H (exp)}
6100	280	21,7857	12232,8434	0,2589	0,32821603	6,2986	1,6305	2,0673
[mm]	[mm]					[t/mm]	[t/mm]	[t/mm]

Н	Yo (estimé)	Yo (exp)
0,460	0,2225	0,2150
[t]	[mm]	[mm]

2. <u>Essai N°2</u> (Site : Evripos - Grèce) [30], [31]

Pieu TP-1:

- Digitalise des courbes de chargement (latéral et axial) et ajustement hyperbolique :

	TP-1- E	VI	ripos	
Chargen	nent vertical		Chargemen	t horizontal
Q (kN)	Vo (mm)		H (kN)	Yo (mm)
0,0000	0,0000		0	0,0000
829,0240	0,5824		100	0,7542
1609,8400	0,9642		200	3,2170
2403,3000	1,3210		300	6,8688
3183,4400	1,7903		400	11,6245
3975,8200	2,2848		500	16,5505
4805,2300	2,8172		600	23,3444
5596,8400	3,4118		700	29,6288
6363,8500	3,9687			
7179,9500	4,6137			
7488,6200	4,9166			

Ajustemen	t hyperbolique
P. initiale =	1688,006000
A. Horiz. =	146024,1000
R =	0,2234668

Ajust. hyp	erbolique
P. initiale =	81,073730
A. Horiz. =	888,10330
R =	0,9622711

- Calcul de K:

D	В	D/B	E _s (D)	Ep	ξ	β	α	λ	μD	К
31,7	0,75	42,2667	129,4862	210000	1	1	4,9968	4216,66556	0,8236	1621,7944
[m]	[m]		[MPa]	[MPa]						_

Tanh (μD)/μD	ν	I_{v}	α _{V(calculé)}	$\alpha_{V(exp)}$	Différence
0,8220	0,3	0,0575	1688,0060	1688,0060	0,0000
			[kN/mm]	[kN/mm]	

- Estimation du déplacement en tête du pieu :

D	В	D/B	K	α _H /α _V (ajusté)	α _H /α _{V (exp)}	$\alpha_{\scriptscriptstyle V}$	αн	αн (ехр)
31,7	0,75	42,2667	1621,7944	0,1841	0,0480	1688,0060	310,7130	81,0737
[m]	[m]					[kN/mm]	[kN/mm]	[kN/mm]

Н	Y _{o (estimé)}	Y _{o (exp)}
100	0,3218	0,7542
[kN]	[mm]	[mm]

Pieu TP-2:

- Digitalise des courbes de chargement (latéral et axial) et ajustement Hyperbolique :

Pylône central	TP-2- Evrinos
i yione centiai	II Z EVIIPOS

	J. J		
Chargen	nent vertical	Chargemen	t horizontal
Q (kN)	Vo (mm)	H (kN)	Yo (mm)
0,0000	0,0000	0	0,0000
840,8120	0,8329	100	0,4369
1622,2300	1,2140	200	1,8714
2403,5700	1,6077	300	5,4161
3196,1800	2,1895	400	10,8167
4013,2800	2,8341	500	17,0612
4781,2400	3,3782	600	27,5255
5597,5600	4,1482	700	35,1206
6390,6400	4,6548		
7194,9900	5,3495		
7887,9200	5,9558		

Ajustement	t hyperbolique
P. initiale =	1261,341000
A. Horiz. =	-70774,1400
R =	-0,27909

Ajust. hyperbolique				
P. initiale =	113,366300			
A. Horiz. =	772,118900			
R =	0,9779038			

- Calcul de K:

D	В	D/B	E _s (D)	Ep	ξ	β	α	λ	μD	К
31,7	0,75	42,2667	91,4507	210000	1	1	4,9968	5970,4279	0,6921	2296,3184
[m]	[m]		[MPa]	[MPa]						_

Tanh (μD)/μD	ν	I_{v}	αv(calculé)	α _{V(exp)}	Différence
0,8659	0,3	0,0544	1261,3410	1261,3410	0,0000
·			[L.N.L./	[I.N.] /	

[kN/mm] [kN/mm]

- Estimation du déplacement en tête du pieu :

D	В	D/B	K	α _H /α _{V (ajusté)}	$\alpha_{\text{H}}/\alpha_{\text{V (exp)}}$	α_{v}	$lpha_{H}$	α _{H (exp)}
31,7	0,75	42,2667	2296,3184	0,1702	0,0899	1261,3410	214,6244	113,3663
[m]	[m]					[kN/mm]	[kN/mm]	[kN/mm]

Н	Y _{o (estimé)}	Y _{o (exp)}
100	0,4659	0,4369
[kN]	[mm]	[mm]

RÉFÉRENCES

- 1. Adam, M. et Lejay, J., "Etude des pieux Sollicités Horizontalement, Détermination du Module de Réaction dans un Sol Donné", Annales de l'ITBTP N°280 1971.
- 2. Baguelin, F., Bustamante, M., Frank, R., et Jezequel J.-F., "La Capacité Portante des Pieux", Annales de l'ITBTP N°330, 1975.
- 3. Baguelin, F., Jezequel, J.-F., "Étude Expérimentale du Comportement de Pieux Sollicités Horizontalement", Annales de l'ITBTP N°297, Septembre 1972.
- 4. Banerjee, P.K and Davies, T.G., "The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils", Géotechnique 28, N° 3, 1978, pp. 309-326.
- 5. Benali, A., "Analyse Semi-Empirique de la Portance des Pieux Isolés", Thèse de Magister, Département de Génie-Civil, Université de Blida, 2002.
- 6. Bertero, M., Paviani, A., Bustamante, M. et Gianeselli, L., "Capacité Portante d'un Pieu de Très Grande Longueur Foré dans des Sols Compressibles", Actes du colloque organisé par l'Ecole Nationale des Pontes et Chaussées, Paris, 19-21 Mars 1991, pp: 353-360.
- 7. Borel, S., "Comportement et dimensionnement des fondations mixtes", Étude et Recherches des Laboratoires de Ponts et Chaussées, Géotechnique et risques naturels GT 73.
- 8. Bouafia, A., "Calcul Pratique des Fondations et des Soutènements", Edition Office Des Publications Universitaires, Alger, (2005), 254 p.
- 9. Bouafia, A., "Modélisation physique en Géotechnique", Cours de 1^{ère} Année Magistère, Département de Génie-Civil, Université de Blida, 2008.
- Bouafia, A., "Génie Civil Conception et Calcul des Ouvrages Géotechniques", Edition Eurl Pages Bleues Internationales, Bouira, Algérie, 2010, 386 p.
- 11. Bouafia, A., "Les Essais in-Situ dans les Projets de Fondations", Edition Office Des Publications Universitaires, Alger, (2006), 307 p.
- 12. Bouafia, A., "Mécanique des sols appliquée, problèmes résolus", Edition Office des Publications Universitaires, Alger, (2009), 165 p.
- 13. Bouafia, A., "Modélisation des pieux chargés latéralement en centrifugeuse", Thèse de Doctorat, Ecole Centrale de Nantes, Nantes, France, 1990, 267 p.
- 14. Bouafia, A., "Modélisation par centrifugation pieu isolé chargé latéralement", Mémoire DEA, Ecole Centrale de Nantes, Nantes, France, 1987.
- 15. Bouafia, A., "Single piles under horizontal loads in sand: determination of P–Y curves from the prebored pressuremeter test", Geotech. Geol. Eng., 25, 2007, pp. 283–301.

- 16. Bouafia, A., Ameur-Bouzid, D. et Lachenani, A., "Fondations sur pieux de la centrale thermique de Jijel Analyse des essais de chargement", 14^{ème} Congrès Régional Africain de Mécanique des Sols et de Géotechnique, Yaoundé, Cameroun, 26-28 Novembre 2007.
- 17. Bouguerra, A., "Effet de la proximité d'une pente sur la résistance latérale d'un pieu", Mémoire DEA, Ecole Centrale de Nantes, France, 1991.
- 18. Brant, L., et Ling, H.I., "Centrifuge Modeling of Piles Subjected to Lateral Loads", Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Geotechnical Symposium, Rome, Mars 16-17, 2006, pp: 895–907.
- 19. Briaud, J.-L., Moore, B.H. et Mitchell, G.B., "Analysis of pile load tests at Lock and Dam 26", Foudation Engineering-Current principles and practices, vol. 2, Edited by: Fred H. Kulhawy, Illinois, June 25-29, 1989, pp: 925-942.
- 20. Briaud, J.-L., Tucker, L.M., NG, E., "Axially load 5 pile group and single pile in sand", Proceeding of the twelfth international conference on soil mechanics and foundation engineering, volume N°1, Rio de Janeiro, 1989, pp:1121-1124.
- 21. Bustamante, M., "Aspects particuliers de la portance des pieux", Journées de Mécanique des Sols de Saint Bieuc, 20-21-22 Juin 1989
- 22. Bustamante, M., Gianesselli, L. et Thiriat, D., "Portance d'un pieu refoulant, ancré dans un sable", Bulletin des Laboratoires des Ponts et Chaussées 250-251, Mai-Juin-Juillet-Août 2004, pp : 33-41.
- 23. Butterfield, R. and Banerjee, P.K., "The elastic analysis of compressible piles and pile groups", Géotechnique 21, N°1, 1971, pp: 43-60.
- 24. Cambarieu, O., "Propositions d'évaluation pour le calcul du facteur de portance pressiométrique des fondations profondes", Bulletin des Laboratoires des Ponts et Chaussées 229, Novembre-Décembre 2000, pp : 21-31.
- 25. Cassan, M., "Les Essais in situ en Mécanique des Sols", Tome II: Applications et Méthodes de Calcul, 1978, Edition Eyrolles, 331 p.
- 26. De Beer, E., "Different behavior of bored and driven piles", Deep Foundations on Bored and Auger Piles, 1988, pp. 47-81.
- 27. Farrell, E., Lehane, B. and Looby, M., "An intrumented driven pile in Dublin boulder clay", Proc. Instn. Civ. Engng. 131, October 1998, pp. 233 241.
- 28. Fleming, W. G. K., "A new method for single pile settlement prediction and analysis", Géotechnique 42, N° 3, 1992, pp: 411-425.
- 29. Frank, R., "Calcul des fondations superficielles et profondes", Techniques de l'Ingénieur (TI) et presse de l'École nationale des Ponts et Chaussées, (1999).

- 30. Frank, R., Kalteziotis, N., Bustamante, M., Christoulas, S., and Zervogiannis, H., "Evaluation of Performance of Two Piles Using Pressuremeter Method", Journal of Geotechnical Engineering, American Society of Civil Engineers, Geotechnical Engineering Division, Vol. 117, N°5, May, 1991, pp: 695-713.
- 31. Frank, R., Zervogiannis, H., Christoulas, S., Papadopoulos, V., et Kalteziotis, N., "Comportement de pieux d'essais instrumentés sous charge horizontale", Can. Geotech. J. 30, 1-11, 1993.
- 32. Hajialilue Bonab, M., "Modélisation physique et numérique d'un pieu isolé dans du sable soumis à un impact latéral en tête", Thèse de Doctorat, Université de CAEN, France, 2003, 227p.
- 33. Costet, J., et Sanglerat, G., "Cours Pratique de Mécanique des Sols. 2. calcul des ouvrages", 1983, 464 p.
- 34. Koike, M., Matsui, T. and Matsui, K., "Vertical loading tests of large bored piles and their estimation", Deep Foundations on Bored and Auger Piles, 1988, pp. 531-536.
- 35. Lachenani, A., "Contribution à l'Étude des Pieux Chargés Horizontalement Modélisation par Éléments Finis et Analyse d'une Base de Données", Thèse de Magister, Département de Génie-Civil, Université de Blida, 2003.
- 36. LCPC, "La mesure des déformations à l'aide des extensomètres amovibles LPC", Méthode d'essai LPC n°34, 1990.
- 37. LCPC, "Recommandations pour la préparation d'un essai de chargement statique de pieu instrumenté à l'aide d'un extensomètre LPC", Méthode d'essai LPC n°45, 1996.
- 38. Liu, J. et Zhang, K., "Analysis of pile load-transfer under pile-side softening", Journal. Cent. South Univ. Technol., Vol. 10, N° 3, Septembre 2003, pp: 231-236.
- 39. Matsui, T., Nakabayashi, S., B., "Deformation behavior of bored pile on a bearing layer", X ECSMFE, Florence, May 1991, pp. 493 -496.
- 40. Mezazigh, S., "Etude expérimentale des pieux chargés latéralement –proximité d'un talus et effet de groupe", Thèse de Doctorat, Ecole Centrale de Nantes, France, 1995, 272p.
- 41. Neves, M., Mestat, P., Frank, R. et Degny, É., "Etude du comportement de pieux forés : I-Expérimentations *in situ* et en laboratoire", Bulletin des Laboratoires des Ponts et Chaussées 231, Mars-Avril 2001, pp : 39-54.
- 42. Neves, M., Mestat, P., Frank, R. et Degny, É., "Etude du comportement de pieux forés : II-Modélisation par éléments finis", Bulletin des Laboratoires des Ponts et Chaussées 231, Mars-Avril 2001, pp : 55-67.
- 43. Newman, R.L., Chapman T.J. and Simpson, B., "Evaluation of pile behavior from pressuremeter tests", X ECSMFE, Deformation of Soils and Displacements of Structures, volume II, 1991, pp: 501 -504.

- 44. O'Neill, M.W. and Reese, L.C., "Behavior of Bored Piles in Beaumont clay", Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 98, N° SM2, Februray 1972, pp: 195-213.
- 45. Philipponnat, G., "Fondations et Ouvrages en Terre", Editions Eyrolles, France, 1979, 417p.
- 46. Poulos, H.G., and Hull, T.S., "Analytical Geomechanics in Foudation Engineering a Study of Laterally Loaded Piles", Research Report N° R667, School of Civil and Mining Engineering, Centre For Geotechnical Research, The University of Sydney, Australia, December 1992.
- 47. Poulos, H.G., "Pile Foundation analysis and design", Series in geotechnical Engineering, Edition John Wiley, 1980.
- 48. Poulos, H.G., "Pile foundations subjected to lateral loading", Symposium on Geotechnical Aspects of Coastal and Offshore Structures", Bangkok, 14-18 December 1981, pp. 79-93.
- 49. Poulos, H.G., "Pile foundations subjected to vertical loading", Symposium on Geotechnical Aspects of Coastal and Offshore Structures", Bangkok, 14-18 December 1981, pp. 61-78.
- 50. Poulos, H.G., "Settlement of Single Piles in Nonhomogenous Soil", Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 105, N° GT5, May 1979, pp: 627-641.
- 51. Poulos, H.G., and Hull, T.S., "Analytical Geomechanics in Foudation Engineering a Study of Laterally Loaded Piles", Research Report N° R667, School of Civil and Mining Engineering, Centre For Geotechnical Research, The University of Sydney, Australia, December 1992.
- 52. Puech, A., Brucy, F., et Ma, E., "Calcul de la capacité axiale des pieux de fondations marines à partir du pressiomètre autoforeur", Symposium sur la pressiomètre et ses applications en mer, Session: 4 « Le pressiomètre et les fondations mécaniques », Paris, France, 19-20 Avril 1982.
- 53. Randolph, M.F. and Wroth, C.P., "Analysis of Deformation of Vertically Loaded Piles", Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 104, N° GT12, December 1978, pp. 1465-1488.
- 54. Randolph, M.F., "The response of flexible piles to lateral loading", Géotechnique 31, N° 02, 1981, pp247-259.
- 55. Reese, L.C., Van Impe, W.F, "Single Piles and Pile Groups Under Lateral Loading".
- 56. Reese, L.C., Wang, S.-T., Reuss, R., "Tests of auger piles for design of pile-supported rafts", Proceeding of the 2nd International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Ghent, Belgique, 1- 4 Juin 1993, pp : 343-346.
- 57. Remaud, D., "Pieux sous charges latérales Etude expérimentale de l'effet du groupe", Thèse de Doctorat, Ecole Centrale de Nantes, France, 1999, 343p.
- 58. Roger Bullivant Limited, "PILE TESTING", www.roger-bullivant.co.uk.

- 59. Rosquoët, F., "Pieux sous charge latérale cyclique", Thèse de Doctorat, Ecole Centrale de Nantes, Nantes, France, 2004, 300 p.
- 60. Roy, M. et Tanguay, L., "Capacité Portante des Pieux isolés dans des Argiles Sensible : étude de cas par la méthode pénétrométrique", Can. Geotech. J. 26, 1989, pp : 375-384.
- Schoefs, F., "Comportement d'un pieu isolé sous charge latérale monotone et cyclique",
 Rapport de mémoire DEA génie civil, Université de Nantes, France, 1993.
- 62. Thasnanipan, N., Tanseng, P. et Anwar, M.A., "Large diameter bored piles in multi-layered soils of Bangkok", Deep Foundations on Bored and Auger Piles, 1998, pp. 511-518.
- 63. Thorel, L., Rault, G., Garnier, J., Murillo, C., Gaudicheau, P., Néel, A. et Favraud, C., "Mesure en macrogravité sur modèles réduits d'ouvrage géotechniques", Bulletin des Laboratoires des Ponts et Chaussées 273, Décembre 2008, pp : 93-131.
- 64. Van Wambeke, A., "Comparaison entre observation et prévision de la capacité portante et des tassements de pieux isolés battus dans une argile raide et fissurée à partir des essais pressiométriques", SOLS SOILS N°33, 1980, pp : 7 35.
- 65. Yaich-Achour, N., "Paramètre de Transfert de charges des Fondations Profondes Analyse d'une Banque de Données", Thèse de Magister, Département de Génie-Civil, Université de Blida, 2004.
- 66. Zhang, H., "Finite Layer Method for Analysis of Piled Raft Foundations", Thèse de Doctorat, The University of Sydney, Février 2000.
- 67. Zhu, H., et Chang, M.-F., "Load Transfert Curves along Bored Piles Considering Modulus Degradation", Journal of Geotechnical and Geoenvironmental Engineering, September 2002, pp: 764-774.