

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

 Saad Dahlab University

Faculty of Science

 Computer Science Department

Masters memoir

To obtain the master's degree in computer science

Option: Computer Systems and Network.

Theme

Study and Implementation of Hyper converged infrastructure

architecture.

Realized by: Supervised by:

• Yasser DILMI -Ms. Meriem ARKAM

• Akram HAMIDA -Mr. Abdelouahab GAHAR

Host Organization: OMES Algérie

Graduation Promotion: 2019/2020

Acknowledgment

Thanks to Allah for his grace, the source of our strength and courage

throughout our university studies.

We would like to express our heartfelt thanks and our deep gratitude to

Ms. Meriem ARKAM for supervising us in our final thesis, encouragement

and for leading us in our work.

We also thank OMES Algérie for the opportunity of this internship, and

Mr. Abdelouahab GAHAR for his help in the implementation and thorough

guidance.

We thank the members of the jury for agreeing to evaluate our work.

A big thank you also to our families for their moral and financial support

and for their sacrifices.

We cannot end without thanking everyone who has participated in anyway

in the development of this graduation project.

I

Abstract

Conventional approaches to IT cannot accommodate business agility, which is

challenged to accomplish. Consequently, to the emergence of the software-defined approaches,

IT organizations have moved to the forefront of the enterprise charge toward digital

transformation.

In this project, we propose a hyper-converged architecture to the OMES Algérie SARL

digitalization process. The main design consideration of this infrastructure is to further

maximize the overall system utilization and delivery, achieving High availability of data and

functionalities, backup and restoration, bandwidth control, and storage scale-out. As a

consequence, to accomplish the intended objective, the combination of multiple software-

defined solutions SDC for computational functions, SDS for storage virtualization to get rid of

the traditional storage limitation, and SDN for easy troubleshooting and flexible network

management, are needed.

At the end of this project, after benchmarking the cluster capabilities of the network

controller, storage solution and compute managers. we have managed to simulate the

infrastructure in a local lab with the sought requirements.

Keywords: SDC, SDN, SDS, Hyper Converged, Virtualization.

II

Résumé

Les approches conventionnelles de l'informatique ne peuvent pas s'adapter à l'agilité des

entreprises, qui est mise à l'épreuve. Par conséquent, avec l'émergence des approches

logicielles, les organisations informatiques sont passées au premier plan de la charge de

l'entreprise en matière de transformation numérique.

Dans ce projet, nous proposons une architecture hyper-convergente au processus de

numérisation de OMES Algérie SARL. La principale considération de cette infrastructure est

de maximiser l'utilisation et la livraison du système global, en atteignant une haute disponibilité

de données et de fonctionnalités, la sauvegarde et la restauration, le contrôle de la bande

passante et l'extensibilité du stockage. En conséquence, pour atteindre l'objectif visé, il faut

combiner plusieurs solutions logicielles : SDC pour les fonctions de calcul, SDS pour la

virtualisation du stockage afin de se débarrasser de la limitation traditionnelle du stockage, et

SDN pour un dépannage facile et une gestion souple du réseau.

À la fin de ce projet, après avoir évalué les capacités du contrôleur de réseau, la

solution de stockage et le gestionnaire de calcul, nous avons réussi à simuler l'infrastructure

dans un laboratoire local avec les exigences recherchées.

Mots Clefs : SDC, SDN, SDS, Hyper Convergée, Virtualisation.

III

 ملخص

كاتفـي المناهج التقليدية لتكنولوجيا المعلومات سرعة الأعمالأن تواكب يس من السهلل تدريجيا فظهرت، الشر

مجيات مقاربات ي مكنت ، المعرفةالبر
. من الانتقال مؤسسات تكنولوجيا المعلومات الت إلى التحول الرقمي

وعي هذا ـف ح بنية فائقة التقارب لعملية رقمنة، المشر كة نقب . يتمثل الاعتبار الرئيسي OMES Algérie SARL سرر

للبيانات المستمر حد، وتحقيق التوافر أقصى إلى وصوله زيادة استخدام النظام الشامل و فـي لتصميم هذه البنية التحتية

يق الهدف حقلتو ، التخزين. نتيجة لذلك حب وتوسيع ، عة التدفقسر فـي التحكم، النسخ الاحتياطي والاستعادة، والوظائف

مجيات بمناهج فةو هناك حاجة إلى الجمع بي الحلول المتعددة المعر ، المنشود SDSو ، للوظائف الحسابية SDCالبر

اضية للتخزين للتخلص من قيود التخزين التقليدية دارة ال وإصلاحها و شاف الأخطاء ت لسهولة اك SDNو ، للمحاكاة الافب

 لشبكة. ل مرنةال

ح وحل التخزين، حدة تحكم الشبكةبعد قياس قدرات و و ، وعي نهاية هذا المشر ـف تمكنا ،الحوسبة سب ّ وم المقب

 محلي بالمتطلبات المطلوبة. حاسوبفـي من محاكاة البنية التحتية

مجياتكلمات مفتاحية : مجيات ، الحوسبة المعرفة بالبر مجيات ،الشبكات المعرفة بالبر ،التخزين المعرف بالبر

اضية ،فائقالتقارب البنية .الافب

IV

Table of Content

Abstract .. I

Résumé ... II

 III .. ملخص

Table of Content ... IV

Figures Table .. VI

Tables List .. VIII

Glossary ... IX

General Introduction ... 1

Problematic .. 1

Objective of the project ... 2

Organization of the memoir .. 2

1 Chapter 1 Hyper-converged Infrastructure ... 3

1.1 Preface ... 3

1.2 Virtualization ... 3

1.3 Software Defined Compute ... 4

1.4 Evolution of IT Infrastructure ... 6

1.5 Software Defined Storage.. 9

1.6 The importance of software defined solutions .. 19

1.7 Conclusion ... 19

2 Chapter 2 Software-defined Network ... 20

2.1 Introduction ... 20

2.2 The motivation to SDN ... 20

2.3 Traditional network ... 21

2.4 Definition of SDN ... 23

2.5 Software Defined Network Benefits ... 24

2.6 SDN Architecture .. 25

2.7 Types of SDN controllers .. 31

2.8 Conclusion ... 33

3 Chapter 3 Implementation and tests ... 34

3.1 The working space ... 34

3.2 Conception... 34

3.3 Proxmox .. 36

3.4 Ceph .. 37

3.5 Software Defined capabilities in our cluster.. 37

V

3.6 Compute and Storage .. 37

3.7 Network ... 49

3.8 Conclusion ... 60

4 General Conclusion ... 61

Annex 1: Nodes and Ceph installations .. 62

Annex 2: Floodlight installation .. 64

Annex 3: Mininet installation .. 65

References ... 66

VI

Figures Table

Figure 1.1 traditional Architecture vs Virtual Architecture .. 4

Figure 1.2 Software Defined Compute .. 5

Figure 1.3 Types of Hypervisors ... 6

Figure 1.4 Traditional infrastructure shifting to Hyper Converged Architecture 7

Figure 1.5 Legacy system Limitation vs newer systems [13] ... 8

Figure 1.6 Hyper Convergence.. 9

Figure 1.7 Direct Attached Storage (DAS) ... 11

Figure 1.8 Network Attached Storage (NAS) ... 12

Figure 1.9 Storage Area Network (SAN) .. 13

Figure 1.10 Software-defined Storage an inside overview ... 14

Figure 1.11 Software-defined Storage benefits ... 14

Figure 1.12 Ceph Architectural Components Overview ... 18

Figure 2.1 Traditional Network [34] ... 22

Figure 2.2 Traditional network architecture and SDN network architecture. [36] 22

Figure 2.3 Software-Defined Network Benefits .. 24

Figure 2.4 Software Defined Network Architecture [50] .. 26

Figure 2.5 Traditional Network versus SDN [51] ... 27

Figure 2.6 OpenFlow Activated on SDN devices [52].. 27

Figure 2.7 OpenFlow Protocol [52] .. 28

Figure 2.8 OVSDB Architecture [54] ... 29

Figure 2.9 OpenvSwitch Data base Schema [54] .. 30

Figure 2.10 SDN controllers’ comparison [57] ... 33

Figure 3.1 Traditional company Architecture overview ... 35

Figure 3.2 Hyper-converged infrastructure proposition .. 35

Figure 3.3 Storage Cluster Components .. 37

Figure 3.4 Cluster creation with replication link ... 38

Figure 3.5 Node 2 joining the cluster using GUI in Proxmox .. 39

Figure 3.6 Cluster Nodes ... 39

Figure 3.7 High Availability Activated on VM 102 ... 40

Figure 3.8 Node 1 running VM before failure .. 41

Figure 3.9 VM Migration to Node 2 due HA .. 41

Figure 3.10 VM functioning on Node 1 .. 42

Figure 3.11 Process of Live Migrating a VM ... 43

Figure 3.12 VM 102 running on Node 2 after migration .. 43

Figure 3.13 Snapshot process for VM 102 .. 44

Figure 3.14 Rollback process of VM 102 ... 44

Figure 3.15 VM 102 after rollback status .. 45

Figure 3.16 Backup job from the cluster ... 46

Figure 3.17 Backup job from the VM ... 47

Figure 3.18 OSDs of each node ... 47

Figure 3.19 OSD Pool benchmark .. 48

Figure 3.20 Network overview of OMES Algérie structure ... 49

Figure 3.21 Floodlight web GUI ... 50

Figure 3.22 Mininet custom topology host creation snippet ... 53

VII

Figure 3.23 Mininet custom topology switches creation snippet .. 54

Figure 3.24 Mininet custom topology link attachment snippet ... 54

Figure 3.25 Floodlight topology of OMES Algérie .. 55

Figure 3.26 Host 1 Bandwidth before applying QoS .. 56

Figure 3.27 QoS Enabled in the controller .. 56

Figure 3.28 QoS Added Policy Rule ... 57

Figure 3.29 Host 1 Bandwidth after applying QoS .. 57

Figure 3.30 Rule added to the firewall .. 58

Figure 3.31 Ping before adding the rules .. 58

Figure 3.32 Ping after adding rules to firewall .. 59

Figure Annex1.1 Proxmox network management .. 62

Figure Annex 1.2 Monitor creation for each node .. 63

Figure Annex 1.3 Ceph installation .. 63

Figure Annex 1.4 Ceph cluster configuration ... 63

VIII

Tables List

Table 1-1 Ceph Storage functions comparison to GlusterFS .. 17

Table 3-1 Hardware capacity used to the appliance .. 34

Table 3-2 Difference between backup and snapshot ... 45

Table 3-3 Backup modes explanation ... 46

Table 3-4 Characteristics of Floodlight ... 50

Table 3-5 Mininet overview .. 51

IX

Glossary

SMB: Server Message Block (SMB) Protocol is a network file sharing protocol, and as

implemented in Microsoft Windows is known as Microsoft SMB Protocol. The set of message

packets that defines a particular version of the protocol is called a dialect. The Common Internet

File System (CIFS) Protocol is a dialect of SMB.

NFS: Sun Network Filesystem (NFS) protocol provides transparent remote access to shared

files across networks. The NFS protocol is designed to be portable across different machines,

operating systems, network architectures, and transport protocols [1].

Bit rot: is the slow deterioration in the performance and integrity of data stored on storage

media. It is also known by the names bit decay, data rot, data decay and silent corruption [2].

Replication: Data replication is the process of copying data from one location to another, the

technology helps an organization possess up-to-date copies of its data in the event of a disaster

[3].

Snapshot: snapshot is a copy of a storage volume, file or database as they appeared at a given

point in time and are used as method of data protection. In the event of a failure, users can

restore their data from the most recent snapshot before the failure [4].

Block Storage: Block storage is an approach to data storage in which each storage volume acts

as an individual hard drive that is configured by the storage administrator. In the block storage

model, data is saved to the storage media in fixed-sized chunks called blocks. Each block is

associated with a unique address, and the address is the only metadata assigned to each block

[5].

Object storage: Object storage keeps the blocks of data that make up a file together and adds

all of its associated metadata to that file. But object storage also adds extended metadata to the

file and eliminates the hierarchical structure used in file storage, placing everything into a flat

address space, called a storage pool [6].

Object storage daemon: the object storage daemon this is the software that is responsible for

providing access to the data, and it optional for one per disk or one per path, OSDs are

responsible also for serving stored objects to clients, and also for peering with other OSDs for

replication and recovery tasks [7].

1

General Introduction

Data centers are at the center of modern software technology, serving a critical role in

the expanding capabilities for enterprises. Whereas businesses just a few decades ago relied on

error-prone paper-and-pencil documentation methods, data centers have vastly improved the

usability of data. They have enabled businesses to do much more with much less, both in terms

of physical space and the time required to create and maintain data. However, data centers are

positioned to play an even more important role in the advancement of technology, with new

concepts entering the landscape that represents a dramatic shift in the way data centers are

conceived, configured, and utilized.

IT organizations have moved to the forefront of the enterprise charge toward digital

transformation. The traditional data center, also known as a “siloed” data center, relies heavily

on hardware and physical servers, that are restricted by the size of the physical space in which

the hardware is stored. Nonetheless, this solution became less efficient with how much the data

is growing it led ITs to quickly moving from merely managing infrastructure to deliver agile,

flexible, and responsive systems that enable success. To make this change, IT organizations

must leverage the new infrastructure that is more efficient and agile. During a server refresh,

the underlying architecture can be upgraded to hyper-converged infrastructure (HCI) to meet

digital business-changing demands for new products and services.

Hyper-Converged Infrastructure is a relatively new concept that was first introduced

around 2013, HCI is a software-defined IT infrastructure that virtualizes all of the elements of

conventional "hardware-defined" systems, it seeks to do the same, but adds more value by

throwing in software-defined solutions and doesn't place much emphasis on networking. Today

hyper-converged infrastructure can come as an appliance, a reference architecture, or as

software that's flexible in terms of the platform it runs on, in converged infrastructure, the

server, compute and networking components remain separate and are not integrated into nodes

as they are with hyper-converged systems.

Problematic

OMES Algérie is aiming to digitalize its working space and create an optimized Data

Center that could be centrally and easily managed, scalable and flexible because they are using

2

a traditional way on their premises, as a consequence, they proposed a modern solution that is

more advanced than the traditional approach, this solution is the hyper-convergence.

Objective of the project

In our project we are aiming to study and implement the approach of Hyper-Converged

architecture in a LAN with most of its core components, software-defined storage, software-

defined compute, and software-defined Network ensuring these requirements:

• High availability of functionalities and data.

• Live migration for maintenance.

• Backups and restorations.

• Access restriction.

• Bandwidth limitation QoS.

Organization of the memoir

To facilitate reading our work, this memoir will be organized as follows:

• Chapter 1: Hyper-Converged Infrastructure-: in this chapter we are going to

explain the story behind the hyper convergence and how software defined

solutions helped datacenters evolve.

• Chapter 2: Software Defined Network-: we are going to explain the software

defined network and present its literature review.

• Chapter 3: Implementation and tests: in this chapter we will demonstrate our

solution, and how it may help digitalize the OMES Algérie system.

3

1 Chapter 1 Hyper-converged Infrastructure

1.1 Preface

Virtualization fundamentally and permanently changed IT and the data center. Today,

most services are running inside virtual environments, and IT often takes a “virtualized first”

approach to new application and service deployment. That is, administrators consider the virtual

environment for running new applications rather than just building a new physical environment

[8].

In a converged infrastructure, the server, compute and networking components remain

separate and are not integrated into nodes, this relatively led to a new concept called Hyper-

converged Infrastructure, HCI is a software-defined IT infrastructure that virtualizes all of the

elements of conventional "hardware-defined" systems into a single node, weather its Storage

arrays, Network switches or compute power, it seeks to do the same, but adds more value and

doesn't place much emphasis on networking. Today hyper-converged infrastructure can come

as an appliance, a reference architecture, or as software that's flexible in terms of the platform

it runs on [9].

To fully understand hyper-convergence it is important to understand the evolution of

traditional IT industry that led to this point, and the importance of the virtualization in creating

a scalable and reliable enterprise solution [8].

1.2 Virtualization

Virtualization as a term, is the process of running a virtual instance of a computer system

in a layer abstracted from the actual physical resources. Typically, it refers to running multiple

OS’s on a computer system at the same time. To the applications running on VM, it will seem

as if they’re on their own dedicated hardware, where the operating system, libraries, and various

programs are unique to the guest virtualized system and unconnected to the host OS which sits

below it [10].

There are several reasons why individuals use virtualization:

• For desktop users, the main use is to be able to run applications meant for a

different operating system without having to switch computers or reboot into a

different system.

4

• For administrators of servers, virtualization also offers the ability to run different

operating systems, but perhaps, more importantly, it offers a way to segment a

large system into many smaller parts, allowing the server to be used more

efficiently by a number of different users or applications with different needs. It

also allows for isolation, keeping programs running inside of a virtual machine

safe from the processes taking place in another virtual machine on the same host

[10].

Figure 1.1 traditional Architecture vs Virtual Architecture

1.3 Software Defined Compute

The software defined compute made a huge impact on the information technology field,

by introducing several new ways to the hardware resource management and utilization.

1.3.1 Definition

SDC is when a compute function is virtualized and abstracted from the hardware it is

on, creating an operation that can be managed through a central interface. With software-

defined compute, management can be moved to a central interface that sees all computing

resources as one element. [11]

5

Figure 1.2 Software Defined Compute

1.3.2 Flexibility of SDC

Software-defined compute will pool the computational functions across any number of

processing units and the workload could be spread among them instead of being assigned to

one specific device. In addition, the compute functions can be moved around to different pieces

of virtual infrastructure, depending on the availability of resources, without having to manually

change the hardware, using virtualization technologies, the infrastructure can be broken up into

resources that can be allocated on demand, thus will enable for a flexible infrastructure. [11]

By employing software-defined compute and virtualization, network managers can

streamline many management processes by simplifying the data center so that it can be more

easily scaled. Hardware components tend to be generic and industry-standard, so they can be

easily added to satisfy demand [11].

1.3.3 Hypervisors

The hypervisor, also called a virtual machine manager, is a program that allows multiple

operating systems to share a single hardware host. In appearance, each operating system has

exclusivity of the processor, memory, and all other resources of the host. However, in reality,

it is the hypervisor that controls the processor and host resources, alternately allocating to each

operating system what it needs and ensuring that these guest systems (or virtual machines) do

not interfere with each other [12].

6

Hypervisors have been traditionally split in Two types:

• Type one, or bare metal hypervisors that run guest virtual machines directly on

a system's hardware, essentially behaving as an operating system.

• Type two, or hosted hypervisors behave more like traditional applications that

can start or stop like normal programs. In modern systems, this split is less

prevalent, particularly with systems like KVM.

Figure 1.3 Types of Hypervisors

The main hypervisors on the market are those of VMware (ESX), Microsoft (Hyper-V),

RedHat (KVM), Oracle (Oracle VM) and the open-source hypervisor Xen.

The main Type 2 solutions are VirtualBox (Oracle/Sun), VMware Workstation (on

Windows and Linux) and Fusion (on Mac), and the open-source hypervisor QEMU [10].

1.4 Evolution of IT Infrastructure

IT Infrastructure went through different phases since the initial stages and each vendor

adapted these phases to their own plans and terms. However, there is an agreement that the path

was not exactly straight forward and different steps have been taken. passing by the 3-tiers

“Siloed” architecture, managing it was not quite the optimal task, as it had the compute server

attached to a separate independent storage and network devices, which lead to higher

complexity level and different user interfaces to manage the many hardware components.

7

This motivated IT researchers to come up with solutions that eliminated as many

hardware components, user management interfaces as possible from the 3-tiers “siloed”

architecture, without sacrificing any of the benefits that the architecture environment had

provided.

Eventually leading to the appearance of Converged Infrastructure, then Hyper-

Convergence and the concept of a software defined data center.

Figure 1.4 Traditional infrastructure shifting to Hyper Converged Architecture

1.4.1 Legacy infrastructure

The legacy Infrastructure is a preliminary stage of convergence in computing. Legacy

system is an old method, technology, or computer system. Datacenters as all the digital

solutions begun with a traditional infrastructure that were hardware-centric, in other words the

compute power, storage arrays, and network components of the stack are physically detached

and managed separately. However, the growing of digital businesses introduced different

problems from a technological and interoperability point of view, such as the slow hard disks,

unoptimized network devices, data loss, no deduplication, and separate management platforms,

on top of these dilemmas there was a vendor compatibility problem, some of the hardware was

not compatible with others which forced companies to stick to limited hardware vendors [8].

8

Figure 1.5 Legacy system Limitation vs newer systems [13]

1.4.2 Convergence

Convergence in infrastructure, also known as converged architecture, is data center

management approach that packages compute, networking, servers, storage, and virtualization

tools on a prequalified turnkey appliance. Converged systems also include a toolkit of

management software.

Converged infrastructure is gaining momentum as IT companies shift away from

owning and managing hardware to a flexible self-service model in which resources are used on

demand. Rather than multiple IT assets existing in independent silos, converged infrastructure

bundles hardware components with management software to orchestrate and provision the

resources as a single integrated system.

The motivation of a converged infrastructure is the reduction of complexity of data center

management. The main design factor is to remove hardware incompatibility issues. Ease of

deployment of Converged Infrastructure is certainly a big appeal point [8].

1.4.3 Hyper convergence

One of the trending topics in the IT industry right now, is Hyper Convergence. In this

model, infrastructure is strongly software-centric which means instead of delivering server

functions via hardware, HCI does it through software, as a consequence it tightly integrates

compute, storage, networking and virtualization resources in a single system that usually

consists of x86 hardware, as opposed to the traditional infrastructure, where most of these

resources were separate physical elements.

9

This kind of infrastructure does not only focus on centralizing and compacting the local

datacenter, but also the integration and consolidation of management and resources from remote

datacenters, extending the management and administration beyond the boundaries of the local

facilities. Most hyper-converged systems require a minimum of three hardware nodes for high

availability and can be expanded through the addition of nodes to the base unit. A grouping of

nodes is known as a cluster [8].

Figure 1.6 Hyper Convergence

Basically, hyper-convergence reduces the complexities and incompatibility issues

associated with traditional datacenters. One of the most important features of HCI is the single

point of management that allows administrators to use a console that unifies setup,

management, configure, and monitor all resources and how easy it is to scale up once you

reached the capacity of your infrastructure by just adding more nodes [14].

1.5 Software Defined Storage

Software defined storage is a term for computer program that manages storage and all

its functionalities.

1.5.1 Introduction

In the most traditional IT architectures, computer programs or applications transform

raw data into business value by processing data in various ways. However, the data does not

normally occupy the application it is stored elsewhere, in a storage device. But imagine placing

software in the data path between apps and storage devices, the applications can see no change,

on the hand of the storage perspective everything has changed and this is the basis of SDS [15].

10

The SDS is a type of storage system to cope with the phenomenon of exponential growth

in data volume, particularly related to the massive adoption of the Internet and mobile

technologies. Something that traditional storage solutions do not allow. Their design is rigid,

and does not offer the scalability and flexibility needed to cope with the explosion of Big Data.

The explosion in the volume of unstructured data is indeed contributing to the rise of SDS, the

only type of system that allows the scale of a storage architecture to change as needed [16].

Unlike SAN (Storage Area Network) and NAS (Network Area Storage) systems, which

inseparably couple hardware and software, Software Defined Storage products allow users to

update their software independently of the hardware. Common features of these devices include

the ability to aggregate storage resources. The scale of a system can be scaled on a cluster of

servers. The shared storage pool is managed through a single administration interface. Finally,

rules are defined to control storage functionality [17].

1.5.2 Software Defined Storage motivations

People started to figure out how to scale data up, in other words they took the computer

in between the client and the data to replace it with a giant spendy computer, this is called

scaling up. However, they realized that this approach is broken. As a consequence, they went

instead to scaling out, so alternatively to what they have today and make it bigger, they are

taking what they have today and making it broader, which means you have more of it and you

are parallelizing work, which is a whole new approach [18].

As people begin to figure this out, they started to build appliances that do this so all

these computers and all these disks in this scale out storage architecture are put in a one box

and this is what we call storage appliance [18].

1.5.3 Storage solutions

Before the software defined storage that tend to virtualize the storage by putting a

software layer between the applications and storage devices, it existed before other storage

solutions that are still efficient and used today in businesses infrastructure to store their data

electronically and making them accessible easily and reliably [17].

1.5.3.1 Direct Attached Storage

Direct-attached storage (DAS) is a digital storage array directly attached to the server

and been accessed directly through host bus adapter and not accessible to other servers. The

11

hard disk or SSD is usually the form of DAS. In the companies and enterprises, the individual

disk drives of a server are referred to as direct attachment storage, as are groups of drives that

are external to the server but directly connected by a small computer system interface (SCSI),

serial advanced technology attachment (SATA), serial attachment SCSI (SAS), or iSCSI [19].

Despite that DAS is less expensive than NAS and SAN, it does not have the performance

to stand tall above SAN and DAS, moreover it doesn’t offer advanced features like remote

replication and snapshots [19].

Figure 1.7 Direct Attached Storage (DAS)

1.5.3.2 Network Area Storage

Network-attached storage (NAS) is a dedicated file storage connected to a local area

network, usually through an ethernet connection that enables multiple users and heterogeneous

client devices to retrieve data from centralized disk capacity, NAS is easy to manage, reliable

and provides a consolidated storage space however the average data transfer speed is not

sufficient with the growth of the data and the human errors are not tolerated which may cause

you to lose your NAS [20].

12

Figure 1.8 Network Attached Storage (NAS)

1.5.3.3 Storage Area Network

Storage area network (SAN) is a block-based storage and a dedicated high-speed

network or sub-network that interconnects and presents shared pools of storage devices to

multiple data path, in other words SAN breaks up the data into blocks and then stores those

blocks as a separate pieces, each with a unique identifier then placing them wherever it is most

efficient, whenever a user query a data it will be re-assembled through the network and retrieved

quickly. SANs Allow high fault tolerance, good RAID storage configuration and high-speed

data transfer rate all of these will offer scalability [21].

13

Figure 1.9 Storage Area Network (SAN)

Usual infrastructure goes to one server for each application with different storage

compute needs, and they expand as they go. However, this is only valuable on the short-term

but over time the growing complexity will lead to a cluttered environment with more silos, less

visibility and less flexibility, but with SDS abstraction of the of application layer from storage

resources it made the architecture more flexible and the data more portable fixing the common

issues.

1.5.4 Definition of SDS

Software-defined storage is an approach to data management in which data storage

resources are abstracted from the underlying physical storage hardware. Therefore, a solution

with a service management interface, including automation, standard interfaces, virtualized data

path, scalability and transparency. The resource flexibility is paired with programmability to

enable storage that rapidly and automatically adapts to new demands. In the SDS model, the

disks, enclosures, and networking components are all interchangeable, but the software

intelligence managing the hardware does not need to be replaced [22].

14

Figure 1.10 Software-defined Storage an inside overview

1.5.5 Software Defined Storage Benefits

Software-defined storage has rapidly become a key technology for enterprises looking

to modernize or create their data centers, as more IT enterprises moves to the on premises

infrastructure, optimizing the management of their data centers becomes critical to the success

of the digital business, despite the efficiency of the existing storage solutions the need for a

better solution that coop with the evolving technologies is becoming a must for businesses.

Figure 1.11 Software-defined Storage benefits

15

Management: management of storage use while knowing the available resources is simplified

due automation and transparency, in addition You can execute every enterprise level function

(snapshots, full clone, or create DR copy) supported by your SDS node [15]

Scalability: As your application data and I/O performance demands continue to grow, your

ability to scale on the fly will be crucial to stay ahead. This can only be achieved if you have

an adaptive infrastructure in place, SDS has the ability to scale out the storage infrastructure

without impeding performance [15].

Flexibility: Software defined storage combines storage virtualization with advanced storage

management capabilities, when you scale out your business storage arrays it doesn’t matter

which vendor because SDS provide this leverage of flexibility [15].

Performance: refers to the amount of work performed by SDS components in relation to the

time and resources used, SDS auto-tiering provides massive benefits both from performance

and costs perspectives. When it comes to the average hot-data changes per day, studies have

shown it is less than 5% of your total used capacity. This means that you really don’t need flash

for all of your data [15].

High Availability: Availability is usually expressed as a percentage of the time available in a

given year. Unavailability of services can generally occur as a result of system failures, SDS

provide the availability by replications and backups across the pool [15].

Note: Having 2 active software-defined nodes will reduce hardware-related downtime by 100% and will provide a fully-

automated failover infrastructure for your hypervisors, databases, and applications [23]

1.5.6 SDS existing solution

There are multiple existing solutions some are paid others are opensource such as Ceph

storage, and GlusterFS.

1.5.6.1 GlusterFS

GlusterFS is free open source software and scale-out storage network file system

suitable for data-intensive tasks such as cloud storage and media streaming solution that

provides flexible and agile unstructured data storage and can utilize common off-the-shelf

hardware [24].

16

GlusterFS provides new opportunities to unify data storage, increase performance, and

make availability and manageability more improved in order to meet a broader set of storage

challenges and needs, it can be installed and managed on-premise, or in a public cloud [25].

GlusterFS aggregates disk storage resources from multiple servers through network

interconnects into one large single global parallel network file system. with stackable user space

design, it delivers exceptional performance for diverse workloads and is a key development

block of GlusterFS [24]:

• Accessible using standard protocols like NFS and SMB.

• Provides replication, geo-replication, snapshots and Bit rot detection.

• Allows optimization for different workloads.

• Scales to multiple petabytes.

1.5.6.2 Ceph Storage

Ceph is an open source platform for distributed storage, it is part of the Software-defined

Storage (SDS) family of solutions, its use cases vary from cloud infrastructure and

hyperconverged infrastructure to big data analytics and rich media. This SDS approach

separates the physical storage hardware from the intelligence of data storage management. This

has several advantages [26].

• As a distributed platform it provides very large scalability, extending storage to several

petabytes; while offering strong resilience, as data is replicated to different locations in

a cluster. In the event of a disk failure, the platform "rebuilds" itself.

• Administration is also simplified through automated policy-based management.

• It provides interfaces for multiple storage types within a single cluster.

• Because of its RADOS (Reliable Autonomic Distributed Object Store) abstraction layer,

Ceph allows storage in block, object or Posix-compatible file system mode, the standard

that defines common interfaces for Unix-like systems.

• Ceph provides scaling and fault management capabilities, which makes it ideal for

microservice and container-based workloads such as cloud, OpenStack or others mainly

for how effective Ceph addresses large data volume storage needs [7] [27].

17

Table 1-1 Ceph Storage functions comparison to GlusterFS

 Ceph Storage GlusterFS

Pros

• Object storage strengths.

• Better performance on simpler

hardware.

• Easy integration into all systems, no

matter the operating system being

used.

• Block device for Linux.

• RADOS compatibility.

• Easier possibilities to create Client-

specific modifications.

• Block device for Linux.

• CephFS file system for Linux.

• No central metadata server

necessary.

• Quicker storage algorithm.

• File system strengths.

• Lower complexity.

• Better suitability for saving

larger files (starting at

around 4 MB per file).

• Better suitability for data

with sequential access.

• Easy integration into Linux

systems.

• POSIX-compatibility.

Cons

• Weaker file system functions

• Higher integration effort needed due

to completely new storage structures

• Integration into Windows

systems can only be done

indirectly

18

1.5.7 Ceph Architecture

 The Ceph architecture is really an impressive technology approach we will be

representing it with this diagram and explain each component

Figure 1.12 Ceph Architectural Components Overview

RADOS: Reliable Autonomic Distributed Object Store (RADOS) is an open source object

storage service that is an integral part of the Ceph distributed storage system, and this is

basically how it works, when having multiple disks either SSDs, HDDs, NVMEs or even a raid

groups and on top of each disk there is a file system i.e. BTRFS, XFS or EXT4 on top of those

file system there are OSDs “Object Storage Daemon” this is the software layer and what it does

is it takes each of those disks and makes it part of the Ceph storage cluster, so it is a simple

piece of software when you configure it and point it to a path and it turns that path into a storage

location for the storage cluster, also when you interact with the storage cluster you interact with

the entire cluster as a logical unit not as individual series of posts [18].

LIBRADOS: it’s a native protocol its job is to give an application when linked to librados the

intelligence to speak to the storage cluster, so LIBRADOS provides direct access to RADOS

for applications [18].

19

RADOSGW: is an HTTP REST gateway for the RADOS object store, a part of the Ceph

distributed storage system [18].

RBD: Ceph block devices are thin-provisioned, resizable and store data striped over multiple

OSDs in a Ceph cluster. Ceph block devices leverage RADOS capabilities such as snapshotting,

replication and consistency. Ceph’s RADOS Block Devices (RBD) interact with OSDs using

kernel modules or the librbd library [18].

CephFS: is a POSIX-compliant file system built on top of Ceph’s distributed object store,

RADOS. CephFS endeavors to provide a state-of-the-art, multi-use, highly available, and

performant file store for a variety of applications, including traditional use-cases like shared

home directories, HPC scratch space, and distributed workflow shared storage [7].

1.6 The importance of software defined solutions

As with all previous technological revolutions in the infrastructural & enterprise world,

the Software-Defined approaches will force organizations to adapt. Software-defined

environments will require rethinking many IT processes including automation, metering, and

billing and executing service delivery, service activation, and service assurance [28].

While a widespread transition to the SDDC could take years, this process will certainly

become a necessity for the industry very, very soon. Those who will refuse to change their

approach to IT, will eventually become obsolete, just like the critics who opposed virtualization

as a whole in the past. [28]

1.7 Conclusion

In this chapter, we talked about the evolution of the IT infrastructure, we have discussed

the core components of SDC and SDS solutions in order to apply its concepts in our project.

In the next chapter we are going to view and discuss the network side of the software

defined approach that will be a crucial part in the implementation.

20

2 Chapter 2 Software-defined Network

2.1 Introduction

Nowadays, the internet has known a huge success. It has become a universal and

indispensable tool for businesses and the daily lives of billions of people. With the explosion

in the number of mobile devices, the massive use of social networks and the emergence of new

IT trends such as Cloud Computing, virtualization, BIG-DATA and the Internet of Things, that

generate large volumes of data, the Internet is facing the challenge of handling these

increasingly gigantic volumes of traffic [29].

However, the Internet has become a critical infrastructure because of the lack of changes

in the core network layer and the rigidity of the deployed equipment, which makes the

establishment and deployment of new network services difficult and costly, one of the

remaining problems that everyone wants to solve is the establishment of strong, safe and low-

cost solutions that can be relied on and are easy to process while still being powerful enough to

solve any future problems that may arise [29].

This gave researchers a reason to move to a centralized controlled architecture, dynamic,

easy to manage and highly scalable, hence the Software-Defined Network (SDN), has

revolutionized the traditional approach to networks. In this chapter, we present the SDN

technology while introducing the need to have a programmable network [30].

2.2 The motivation to SDN

Over the past decade, we have witnessed many changes in these traditional networks,

which have led the technologists to developing these devices, and networks to try and evolve

this model. The main drivers for change are the size of the networks which have grown

massively due to the number of devices which need connectivity from virtual machines sprawl

to tablets and smart phones.

The rate of change in configuration of the devices is also Affected by the explosive rollout

of applications being developed using new methods and in order to make changes to these

devices a network admin has to connect to each device and make the configuration change. To

add to the complexity each device vendor uses their own configuration language, user interface

and syntax making it a highly skilled time-consuming task [31].

21

2.3 Traditional network

The structure of the Internet and computer networks generally consists of different

network devices such as routers, switches and different types of middleboxes that are vertically

integrated and designed by chips with high throughput and specific function [32]. traditional

network equipment currently in use consists of two fundamentals parts: control plan and data

plan (the brain and body). The function of the first part is to make decisions and initiate

processes, such as routing or redirection of traffic, whereas the second part deals with the

implementation of all the decisions made by the first part, i.e. when a packet arrives on a port

of a switch or router, they apply the routing or switching rules that are written into its operating

system [33].

It is difficult to manage networks and to apply new policies effectively, because each

device operates with a protocol of a given level and must be appropriately configured to

communicate with each other. So, it is not easy to add a rule because there is no standardized

way to do so, but also because one device may conflict with one of the many other devices on

the network. In addition, rules were originally intended to be static and therefore the network

is static and poorly adapted to the needs and current technologies.

Network administrators when managing and configuring one of these network devices,

a set of specific and predefined command lines based on an integrated operating system is used.

As a result, it can be argued that managing a large number of network devices is a great

challenge that is prone to many errors.

Networking has not experienced the same revolution of the Personal Computer such as

commoditizing hardware, offering a choice between multiple operating systems and creating a

market of competing applications. All manufacturers of network machines have developed very

complicated systems. Thus, traditional networks suffer from significant gaps in research and

innovation, reliability, scalability, flexibility and management. As a consequence, for

businesses it's an expensive market [33].

22

Figure 2.1 Traditional Network [34]

Since the birth of the Internet, networks are expanding and new technologies such as the

cloud, social networks and virtualization have emerged, the need for networks with higher

bandwidth, greater accessibility and higher dynamic management has become a critical issue

[35].

To solve the problems and limitations of traditional networks, a structure has been

proposed, known as SDN, where the control of the network is separated from the transmission

mechanism and can be programmed and controlled directly.

Figure 2.2 Traditional network architecture and SDN network architecture. [36]

23

2.4 Definition of SDN

Software-defined network (SDN) is a technology that makes the network

programmable. SDN has a network architecture where the control plane is totally decoupled

from the data plane. The control plane does the management of network devices, while the data

plane is the Hardware layer responsible for transferring network packets according to the

policies defined in the control plane. This decoupling transform network switches/routers into

simple control devices, while the logic command is implemented in the controller which

functions as a centralized network operating system. Thus, the SDN is composed of two entities:

the controller and Forwarding Devices (switch or router).

The SDN as a set of solutions/architectures to remove boundaries existing between the

worlds of applications and the network. This makes it more globally recognized today as an

architecture to open the network to applications. This integrates the two parts:

• Allowing APIs to program the network to accelerate deployment.

• Allowing the network to better identify the applications transported in order to better

manage them. (quality of service, safety, traffic engineering...)

24

2.5 Software Defined Network Benefits

The goal of these innovations is to simplify network administration and, following the

example of what virtualization has achieved in the world of servers, to make the consumption

of network resources by applications more flexible.

Figure 2.3 Software-Defined Network Benefits

Scalability: This defines the ability of the SDN, more specifically in the control plan, to

Manage and process an increasing workload. Scalability aims to expand the capacity of the

SDN by implementing mechanisms such as devolving [37], clustering [38] and "high

processing" [39] to cope with the increasing load.

High Availability: HA is an important aspect of today's services that should be available

whenever a customer requests a particular service or resource. Availability is usually expressed

as a percentage of the time available in a given year. Unavailability of services can generally

occur as a result of network outages or system failures [40], [41]. Network providers typically

deploy backup to provide HD by implementing redundant server hardware, redundant server

components, and server and network OS.

Security: The security of the SDN consists in protecting the information against theft or damage

to hardware and software as well as against interruption of services [42], [43]. Securing the

25

SDN encompasses the physical security of the hardware, as well as the prevention of logical

threats that may come from the network or data. The vulnerabilities of the SDN are the gateway

to intentional or accidental security attacks.

Reliability: The SDN is considered reliable when reporting data failures by real time. In such

a system, there should be a specified minimum reliability for the routing of critical data. In

current implementations, the SDN controllers [44] must be capable of meeting the real-time

reliability and punctuality requirements of routing.

Performance: Performance refers to the amount of work performed by SDN components in

relation to the time and resources (e.g., CPU and RAM) used [45]. It There are many different

ways to measure the performance of a network [46], [47], because every network is different in

nature and design. With regard to the SDN, the measures important are bandwidth, throughput,

latency and jitter.

Elasticity: Elasticity in the SDN is the ability to provide and maintain a level of service

acceptable even in the event of a service, network or node failure. When an SDN is faulty, the

network must provide continuous operational service with the same performance. In order to

increase the elasticity of the SDN, challenges and potential risks need to be identified and to

protect services [48]

2.6 SDN Architecture

The structure of the SDN consists of three main parts. The lowest level, includes the

data plane, at the highest level there is the application plane, and the control plane is between

them. Communication between the controllers/control plane and the data plane is managed via

the Southbound Interface (SBI) at the SDN switch, and communication between the

applications (network API’s) and the controllers is handled by the Northbound Interface (NBI)

in the control plane. [49].

26

Figure 2.4 Software Defined Network Architecture [50]

Using the repartition between control plane and data plane, applications follow their

own particular purpose such as security method, QoS, traffic, engineering and network

measurement and monitoring solutions. In addition, the controller helps to achieve their goal

by controlling the SDN switches via flow tables. In others, the network adapts to user needs,

and using the controller and the APIs, network managers can easily control the network

automatically by adding new functions to the control plane, without making any changes to the

data plane [50].

2.6.1 Data plane

An SDN infrastructure, like a traditional network, is composed of a set of network

equipment, the main difference lies in the fact that these traditional physical devices are now

simple transmission elements without integrated control or software to make autonomous

decisions. Network intelligence is removed from the devices in the data plane to a logically

centralized control system, i.e. the Network Operating System (NOS) and applications, as

shown in figure 2.5. Most importantly, these new networks are built on open and standard

interfaces (e.g. OpenFlow), a crucial approach to ensure compatibility of configuration and

communication and interoperability between different data devices and control plans. In other

words, these open interfaces allow controller entities to dynamically program heterogeneous

27

transmission devices, which is difficult in traditional networks because of the wide variety of

proprietary interfaces and the closed distributed nature of the control plane interface.

Figure 2.5 Traditional Network versus SDN [51]

In an SDN/OpenFlow architecture, there are two main elements, the controllers and the

transmission devices. A data plane device is a hardware or software element specialized in

packet transmission, while a controller is the network brain running on a conventional hardware

platform. An OpenFlow-compatible transmission device is based on a flow table pipeline where

each flow table input has three parts: (1) a matching rule; (2) actions to be performed on the

matching packets and (3) counters that keep statistics of the matching packets. This high-level,

simplified model derived from OpenFlow is currently the most widely used design of SDN data

plan devices.

Figure 2.6 OpenFlow Activated on SDN devices [52]

2.6.2 Southbound Interface

The southbound interface of the SDN controller needs a way to communicate with

network forwarding devices, some types of information that needs to be communicated includes

28

packet handling, instructions alerts of packet arrivals on network, nodes notifications of status

changes like links going up or down and providing statistics information like flow counters all

this happens over the southbound interface, that’s why the southbound API are a crucial

component and the most critical in the SDN system. The are many SDN protocols on the

southbound interfaces such as OpenFlow, OpFlex, POF and OpenState. However, the most

used protocol for packet handling instructions is OpenFlow.

2.6.2.1 OpenFlow Protocol

OpenFlow is a protocol that describes the interaction of one or more control servers with

OpenFlow-enabled switches. OpenFlow is standardized by the Open Networking Foundation

(ONF). An OpenFlow controller installs flow table entries in the switches, so that the switches

can transfer traffic based on these entries. Thus, the OpenFlow switches depend on the

configuration of the controllers. [53].

Figure 2.7 OpenFlow Protocol [52]

2.6.2.2 OVSDB Protocol

It’s true that OpenFlow is the most widely used Southbound protocol however it doesn’t

work alone, complementary to OpenFlow is the OVSDB protocol which is a network

management protocol used to manage network device configurations an OpenvSwitch and is

also being adopted by some hardware-based switches, OF-Config is a management protocol

developed by the ONF and is supposed to work with any OpenFlow compatible device, while

the OVSDB protocol is specifically developed for OpenvSwitch. OVSDB works with the

software and hardware implementation of OVS.

29

Figure 2.8 OVSDB Architecture [54]

OVSDB manages switching operations such as creating interfaces, defining QoS

policies or shutting down a physical port. The figure 2.8 illustrates the architecture of the

OVSDB. An OVS instance consists of a database server (ovsdb-server) and a vswitch daemon

(ovs-vswitchd). The management and control cluster consists of the OVSDB managers and the

OpenFlow controller, which can be located in the same or different devices. While the controller

communicates with the switches via the OpenFlow channel, the OVSDB server talks to its

manager via the OVSDB management protocol. The OVSDB switch daemon, located in a

switch, monitors the database for additions, deletions, and changes to this information. Any

changes in the database are applied to the switch. The OVSDB server stores switch information

in a database. The configuration in OVSDB is permanent; the switch will not lose its

configuration if the switch is restarted.

The OVSDB is formalized in RFC7047 [54]. Many OpenFlow controllers, such as

OpenDayLight and Ryu have an API to communicate with OVSDB. This support allows the

integration of switch management into the OpenFlow application.

The following diagram shows the relationship among tables in the database. Each node

represents a table. Tables that are part of the ‘‘root set’’ are shown with double borders. Each

edge leads from the table that contains it and points to the table that its value represents. Edges

are labeled with their column names, followed by a constraint on the number of allowed values:

? for zero or one, * for zero or more, + for one or more. Thick lines represent strong references;

thin lines represent weak references [54].

30

Figure 2.9 OpenvSwitch Data base Schema [54]

2.6.3 Control Plane

Traditional operating systems provide abstractions (e.g. high-level programming APIs)

to access lower-level devices, manage concurrent access to underlying resources (e.g. hard disk,

network adapter, CPU, memory) and provide protection mechanisms. These features and

resources are key tools to increase productivity and make life easier for system and application

developers. Their Widespread use has greatly contributed to the evolution of various

ecosystems (e.g., the programming languages) and the development of a variety of applications.

However, networks have been managed and configured using sets device-specific lower-level

instructions and network operating systems mostly closed source such as Cisco IOS or Juniper

JunOS. In addition, the idea of operating systems abstracting the specific characteristics of the

devices and providing Transparently, common functionalities are still largely absent in the

networks. For example, today's designers of routing protocols are faced with complex

distributed algorithms to solve network problems. Network practitioners are therefore always

solving the same problems over and over again.

The SDN is promised to facilitate network management and ease the burden of solving

network problems through the logically centralized control offered by a network operating

system. Second, the SDN controller acts as the "brain" of the network. It provides SDN users

with a central view of the entire network and allows network administrators to tell switches and

routers how the transfer plan should direct network traffic [53].

31

2.6.4 Northbound API

The Southbound API already has a widely accepted protocol (OpenFlow), but a

common Northbound API remains an open issue. For the time being, it may still be a bit too

early to define a standard Northbound API, as the use cases are still under development.

Existing controllers such as Floodlight, Trema, NOX and OpenDayLight offer and define their

own Northbound APIs. However, each one of them has its own specific definitions.

Programming languages can provide a wide range of abstractions and powerful mechanisms

such as application composition, fault tolerance in the data plane, and a variety of building

blocks to facilitate the development of software modules and applications.

It is unlikely that a single Northbound API will be a winner, as the requirements of

different network applications are very different. APIs for security applications are likely to be

different from those for routing applications. ONF's architectural work [55] includes the

possibility of providing northbound APIs to allow dynamic and granular control of network

resources from client applications, possibly across different business and organizational

boundaries.

2.6.5 Application Plane

As shown in figure 2.4, the application layer is above the control layer. Through the

control layer, SDN applications can easily access a global view of the network with

instantaneous status via Northbound, for example, the ALTO Protocol (Application Layer

Traffic Optimization) [56]. With this information, SDN applications can programmatically

implement strategies to manipulate the underlying physical networks using a high-level

language provided by the control layer.

2.7 Types of SDN controllers

• Beacon: Beacon is an SDN controller that was introduced in 2010. It has been used in

several research projects. It is a Java-based controller. It can run on many platforms,

including high-end multi-core Linux and Android phones.

• OpenDayLight: OpenDayLight is inspired by Beacon. It is a Java-based controller

derived from Beacon. It supports OpenFlow and other Southbound APIs. The

OpenDayLight is present in its own Java Virtual Machine (JVM).

32

• Maestro: Maestro is the first OpenFlow control system that exploits parallelism. In

Maestro, programmers can modify the functionality of the data plane by writing simple

single threaded programs. Maestro has its own set of concepts and techniques that

support the OpenFlow protocol. It is a highly portable Java-based controller for different

operating systems and architectures.

• IRIS: IRIS is an SDN controller platform that is created to control the OpenFlow base.

It can manage a large network. IRIS supports architectures that are horizontally scalable.

Thus, servers can be added dynamically to the controller cluster. This increases the

performance factor of the flat control.

• NOX: NOX is the first SDN OpenFlow Controller platform for building network

control applications. It was initially developed by Nicira Networks, alongside of

OpenFlow. Later, NOX was given to the SDN community. Applications can be in

Python or C++ and can be loaded dynamically.

• POX: Pox is similar to the NOX Controller. POX is an SDN controller that enables

rapid network development and prototyping. It follows the OpenFlow protocol, and

serves as a framework between OpenFlow switches.

• Floodlight: Floodlight is an open source SDN controller. It is an enterprise-class

OpenFlow controller, based on Java. It works with both physical and virtual switches

that use the OpenFlow protocol.

• DISCO: Disco is a distributed controller. It is mainly used for WAN networks and

overlay networks. Each controller is responsible for one network domain. The regulators

communicate with each other through an inter-controller channel. DISCO can adapt

dynamically to different heterogeneous network topologies.

• Ryu: Ryu means "flow" in Japanese. Ryu is a component-based SDN controller,

provides many extended software components and APIs to create and manage network

applications. Ryu supports protocols such as OpenFlow, Netconf, OF-config, etc. Ryu

is fully implemented in Python language. It is licensed under the Apache 2.0 license.

33

Figure 2.10 SDN controllers’ comparison [57]

2.8 Conclusion

In this chapter, we have provided a theoretical background on Software Defined

Networks (SDNs), presenting the architecture and advantages of the latter, we have also treated

the essential components of this solution in order to apply its concepts to our context.

34

3 Chapter 3 Implementation and tests

 In this chapter, we will present the development environment of our system, specifying

the tools we’ve chosen to build and deploy it, then we will present an overview of the

functionalities proposed in the previous chapters, as well as the main interfaces that composes

it.

3.1 The working space

 First of all, the table 3-1 demonstrate the specification of the hardware used in our

project, we will start with a description of the environment and the tools chosen for the

realization of our system.

Table 3-1 Hardware capacity used to the appliance

Hardware Capacity

CPU Intel I7-4800 MQ 4 Cores 8 threads

RAM 16 Giga Bytes DDR3 frequency 1600 MHz

Storage 1 TB of spinner Hard Drive of 7200 rpm

Resource virtualization allows us to benefit from value optimization, currently we use

virtualization machines based on VMware Workstation Pro v15 that allow us to isolate and

better use our hypervisors and VMs.

3.2 Conception

As can be seen from figure 3.1, the traditional architecture of our organism is composed

of three layers which are networking, server computation and storage system. However, the

cost efficiency is not optimal for the company use, and the growth of the data will overwork

this traditional architecture.

35

Figure 3.1 Traditional company Architecture overview

 To solve the issues related to the above and previous architecture we opt in to create a

modernized and optimized infrastructure that group up the essential layers of the infrastructure

in one appliance and answer the demands of the company, the figure 3.2 shows the intended

architecture for OMES Algérie.

Figure 3.2 Hyper-converged infrastructure proposition

36

3.3 Proxmox

We are going to use PROXMOX VE 6.2-4 hypervisor for the many features it has

related to our project goal in this memoir. Proxmox VE is a platform to run virtual machines

and containers. It is based on Debian Linux, and completely open source. For maximum

flexibility, they implemented two virtualization technologies - Kernel-based Virtual Machine

(KVM) and container-based virtualization (LXC). One main design goal was to make

administration as easy as possible.

You can use Proxmox VE on a single node, or assemble a cluster of many nodes. All

management tasks can be done using our web-based management interface, Proxmox VE uses

a RESTful API. They chose JSON as primary data format, and the whole API is formally

defined using JSON Schema. This enables fast and easy integration for third party management

tools like custom hosting environments.

The Proxmox VE storage model is very flexible. Virtual machine images can either be

stored on one or several local storages or on shared storage like NFS and on SAN. There are no

limits, you may configure as many storage definitions as you like. You can use all storage

technologies available for Debian Linux. One major benefit of storing VMs on shared storage

is the ability to live-migrate running machines without any downtime, as all nodes in the cluster

have direct access to VM disk images.

Proxmox VE uses a bridged networking model. All VMs can share one bridge as if

virtual network cables from each guest were all plugged into the same switch. For connecting

VMs to the outside world, bridges are attached to physical network cards and assigned a TCP/IP

configuration. For further flexibility, VLANs (IEEE 802.1q) and network bonding/aggregation

are possible. In this way it is possible to build complex, flexible virtual networks for the

Proxmox VE hosts, leveraging the full power of the Linux network stack.

Reasons on why we chose Proxmox:

• Open source Software

• Linux Kernel

• Web-based interface

• REST API

37

3.4 Ceph

Ceph is a both, self-healing and self-managing shared, reliable and highly scalable

storage system, also is one of the popular and more utilized open source SDS Solutions and we

chose it because it works smoothly with our system hardware and is integrated in the latest

version of Proxmox as well as for what it offers us to do in our project.

3.5 Software Defined capabilities in our cluster

The reason we chose Hyper converged solution is because how much the software

defined solutions helped us, in reaching the goal of the project, creating the cluster and

managing it.

3.6 Compute and Storage

Clustered storage is the use of two or more storage servers (nodes) working together to

increase performance, capacity, or reliability.

3.6.1 Cluster Creation

In our case, we used a 3-node cluster for each department to ensure all functionalities

that we implemented in our project.

Figure 3.3 Storage Cluster Components

First of all, we need to set up 3 Proxmox nodes, for that we will use the iso downloaded

from the official website, after installing the nodes like shown in the ANNEXE using these IP

addresses

38

Node 1 GUI manager IP: 192.168.1.111

Node 1 replication IP: 192.168.2.111

Node 2 GUI manager IP: 192.168.1.112

Node 2 replication IP: 192.168.2.112

Node 3 GUI manager IP: 192.168.1.113

Node 3 replication IP: 192.168.2.113

Then we proceed with the cluster creation, the figure 3.4 below shows how to do so:

Figure 3.4 Cluster creation with replication link

After creating the cluster in the parent Node in this case we chose Node 1, we proceed

with joining the other 2 nodes to the cluster with the following process shown in the figure 3.5

below:

39

Figure 3.5 Node 2 joining the cluster using GUI in Proxmox

We do the same thing with node 3, hence we end up with Proxmox cluster that can be

managed by any GUI managing IP from the cluster in the figure 3.6:

Figure 3.6 Cluster Nodes

3.6.2 High Availability

Virtualization environments like Proxmox VE make it much easier to reach high

availability because they remove the “hardware” dependency. They also support redundancy

all over the cluster. So, if one host fail, you can simply start those services on another host

within your cluster.

To reach the HA in Proxmox VE we must follow certain requirement:

• At least three nodes in the cluster, preferably any odd number.

• Shared storage for VMs or containers.

• Hardware redundancy.

40

To ensure the availability of the different functionalities intended to OMES Algérie, we

used Proxmox VE for its easy use and implementation of those important features.

First of all, we are going to activate the HA on the VM we want to keep safe and

functioning in case of a node failure, there are two methods for this, either we use the GUI like

on the figure 3.7 which is the easy way.

Figure 3.7 High Availability Activated on VM 102

Otherwise we can do it via the shell (CLI) by inserting the follow commands:

ha-manager add vm:102

ha-manager set vm:102 --state stopped

ha-manager set vm:102 --state started

qm start 102

As you can see in the figure 3.8 after activating high availability on the functioning VM

in node 1, we are going to simulate the node failure to do so we will shut it down manually.

41

Figure 3.8 Node 1 running VM before failure

After simulating the node failure, the VM migrated with all its resources to node 2 due

to the HA feature that was enabled on it as shown in figure 3.9:

Figure 3.9 VM Migration to Node 2 due HA

42

3.6.3 Live migration

VM migration is possible, but usually it’s required to be offline, so live migration is the

movement of a virtual machine from one node to another while continuously powered-up.

When properly carried out, this process takes place without any noticeable effect from the point

of view of the end user. Live migration allows an administrator to take a node offline for

maintenance or upgrading without subjecting the system's users to downtime.

One of the most significant advantages of live migration is the fact that it facilitates

proactive maintenance.

We will demonstrate how we can use this feature in our cluster either with CLI:

qm migrate <vmid> <target>

live migration using the GUI is much simpler and easier, all you need to do is to select

your VM after that you click on the migrate button on the Proxmox GUI to migrate it to a

specific node in your cluster, this will allow us mostly to keep the functions of that Virtual

machine usable and give us the ability to do the maintenance, the figure 3.10 below will show

the process.

Figure 3.10 VM functioning on Node 1

The moment you commence the live migration for a specific virtual machine (VM) a

prompt on the screen will pop up showing you the requested migration and if the High

43

availability option is enabled, the live migration process takes time depending on the hardware

and resources.

Figure 3.11 Process of Live Migrating a VM

After this, Live migration is fully achieved with no perceived downtime, as a

consequence the running system stays unaffected and there’s no data loss or any sort of

technical issue while doing so.

Figure 3.12 VM 102 running on Node 2 after migration

3.6.4 Snapshot

By using Proxmox VE snapshots, you can preserve the virtual machine state. A snapshot

includes the contents of the virtual machine memory, virtual machine settings, and the state of

all the virtual disks. The figure 3.13 below represents the process used to create a snapshot for

a specific VM.

44

Figure 3.13 Snapshot process for VM 102

When the rollback shown in figure 3.14, you restore the memory, virtual disks and all

settings of the virtual machine to the state they were in when you took the snapshot.

Figure 3.14 Rollback process of VM 102

The reason the snapshots are important is that when we execute some commands or do

some operation the cluster, we need to make sure to make a replicate to the VM as a pre-caution

for any unexpected events, that’s why before any maintenance to any function in the cluster a

snapshot is required by the administration team.

45

Figure 3.15 VM 102 after rollback status

3.6.5 Backup

 The difference between snapshots and backups is that backup are independent from the

VM, in other words if you VM is removed you will still be able to restore it using a backup, on

the same state the day you took it, unlike snapshots which are dependent to the VM, also the

backup take more storage and could be stored anywhere in the cluster. The table 3-2 shows the

differences between snapshots and backup.

Table 3-2 Difference between backup and snapshot

 Backup Snapshot

Storage Capacity Big Small

Storage flexibility on cluster

VM independent

Automation

Time Consumption Slow Fast

Also, there are backup modes could be used depending on our needs, the table 3-3

explains those modes.

46

Table 3-3 Backup modes explanation

Backup mode Explanation

Stop

This mode provides the highest consistency of the backup, at the cost of a

short downtime in the VM operation. It works by executing an orderly

shutdown of the VM, and then runs a background Qemu process to back up

the VM data. After the backup is started, the VM goes to full operation

mode if it was previously running. Consistency is guaranteed by using the

live backup feature.

Suspend

This mode is provided for compatibility reason, and suspends the VM

before calling the snapshot mode. Since suspending the VM results in a

longer downtime and does not necessarily improve the data consistency,

the use of the snapshot mode is recommended instead.

Snapshot

This mode provides the lowest operation downtime, at the cost of a small

inconsistency risk. It works by performing a Proxmox VE live backup, in

which data blocks are copied while the VM is running

The reason backups could help us in our project is that there will be some features

installed in one of the node’s VMs and those features are crucial so for an added safety measure

to the cluster functioning we do those backups the figure 3.16 shows the process:

Figure 3.16 Backup job from the cluster

47

As well as the full cluster backup, there is also an only VM backup when we tried to do

maintenance risking the data loss the figure 3.17 shows how we did that:

Figure 3.17 Backup job from the VM

There are multiple compression methods we could use, we used the fast and good

compression ZSTD type because it offers a very wide range of compression / speed trade-off,

while being backed by a very fast decoder, also we chose mode snapshot to take the state of the

VM on real time.

3.6.6 Object storage daemon (OSD)

ceph-osd is the object storage daemon for the Ceph distributed file system. It is

responsible for storing objects on a local file system and providing access to them over the

network.

3.6.6.1 OSD Creation

The following process shows the creation of ceph-osd, we will use the extra disk of

100GB to make OSDs for each node then we group them in a pool storage called omesCeph:

Figure 3.18 OSDs of each node

48

3.6.6.2 OSD benchmark

Ceph includes the rados bench command, designed specifically to benchmark a

RADOS storage cluster. On the created OSD pool that is running on 7200 rpm hard drive we

will perform a rados bench write, as shown below.

We can run it from any node in the cluster since they are all connected to the same OSD

pool then we will execute the following command on Node1 for example:

#rados bench -p omesCeph 15 write –no-cleanup

 The output of the above command is shown in the figure 3.19, as we can see that it

executing concurrent writes of 4194304 bytes to objects of the same size.

Figure 3.19 OSD Pool benchmark

 The output is giving us a good indicator how fast our cluster is writing data, which is

12MB/sec and the maximum bandwidth is 40MB/sec.

49

3.7 Network

 Our aim after studying the OMES Algérie structure is to achieve this topology to provide

the optimal network use for each department with good quality of service and security.

Figure 3.20 Network overview of OMES Algérie structure

3.7.1 Floodlight

One of Big Switch Networks major contributions to the open source community is an

OpenFlow controller based on Java and under Apache license named Floodlight.

The architecture of this controller is based on Big Network Controller (BNC). Like

many other controllers, when we run Floodlight, the operations of the north and south-facing

controllers become active. In other words, when you run Floodlight, the controller, and all

configured module applications execute as well. Nordic API (Application Programming

Interface) REST (representational state transfer) exposed by all current modules become

available via the specified REST port. All application can interact (retrieve information and

50

invoke services) with the controller by sending HTTP REST commands. On the other hand,

towards the south, the provider module of Floodlight will start listening on the Transmission

Control Protocol (TCP) port specified by OpenFlow connections from OpenFlow switches.

The term "modular architecture" is used to describe the architecture of the controller

Floodlight. The basic architecture includes various modules, this module also translates the

messages OpenFlow into Floodlight events. Floodlight also offers examples of applications,

including a firewall.

Figure 3.21 Floodlight web GUI

 The table 3-4 shows the characteristics of floodlight controller:

Table 3-4 Characteristics of Floodlight

Characteristics Floodlight

Developed by Big Switch Networks

Supported by Big Switch Networks

Language written in Java

Supported Languages Java, Python

Open source Yes

User Interface Web

Virtualization Mininet, OpenvSwitch

Interface
Southbound (OpenFlow)

Northbound (Java, REST)

Platform Linux, MAC, Windows

51

3.7.2 Mininet

Mininet is a network emulator we used, it creates a network of virtual hosts, switches,

and controllers and links. In other words, Mininet is an SDN environment emulator, developed

by Stanford University, and can be used to build virtual networks. Mininet supports research,

development, learning, prototyping, testing, debugging and any other task that can benefit from

a complete experimental network on a computer.

Mininet:

• Can be used out of the box without programming, but also provides a simple Python

API

• and scalable for network creation and experimentation.

• Supports custom topologies and includes a basic set of topologies set up.

• Provides a simple and inexpensive network testbed for application development

OpenFlow

• Allows complex topology tests to be performed without the need to wire a physical

network

• Includes a topology and OpenFlow-sensitive CLI for debugging or running network-

wide tests.

• Allows several simultaneous developers to work independently on the same topology.

Table 3-5 Mininet overview

General Mininet

Free software Yes

Open Source Yes

Supported in Windows No

Supported in Linux Yes

Simulation Mode No

Emulation Mode Yes

Hosts created by Mininet run standard Linux network software (standard Linux network

software), the switches are of the OpenvSwitch type which support the OpenFlow protocol. and

SDN, via a:

• Command line.

52

• Interactive interface.

• Python Script.

3.7.3 OpenvSwitch

It is an essential component in our emulation, OpenvSwitch (OVS) is a widely used tool

in the SDN world. It is a virtual switch under the Apache 2.0 open source license that is used

to interconnect virtual machines.

OpenvSwitch is therefore a software implementation of an Ethernet switch. Concretely,

it consists of a service (ovs-vswitchd) and a kernel module (openvswitch_mod). The service

allows to effectively switch packets to the right virtual ports, while the kernel module allows to

capture the traffic coming from the network interfaces. To work like any switch, OpenvSwitch

uses the notion of ports. Each port is made of one or several interfaces, which correspond to

interfaces of the host system (logical or physical). It has many of the features of a layer 2 switch

and even a layer 3 switch, for example:

• VLAN tag (802.1Q standard).

• Protocol spanning tree.

• Quality of Service (QoS).

• Supports the OpenFlow Protocol.

To know the global state of a switch we use this command line:

#sudo ovs-vsctl show

The creation of a switch is done by the following command line:

#sudo ovs-vsctl add-br <virtual name of the switch>

Then we add ports to the created switch by the following command line:

#sudo ovs-vsctl add-port <virtual name of the switch> <name of the port>

3.7.4 iPerf

iPerf is a live network measurement tool whose main objective is to determine the

maximum achievable throughput on the network. It can be used for other measurements such

53

as jitter and frame/packet loss. It is customizable to generate UDP and TCP packets from

different MTUs with a specified rate and transmission interval.

This tool acquires its statistics based on the number of packets transmitted during the

transmission time and interval. It consists of two elements, a client and a server. The client

generates traffic to the server according to the desired flow specifications, and determines an

average transmitted bandwidth, while the server receives the generated traffic, performs

statistics, and sends the results back to the client. iPerf works at the application level, which

means that the measured throughput is not exclusive of link performance, but also of packet

processing via the TCP / IP model. Additionally, iPerf runs at the user space level of the

Linux operating system, working on top of the system architecture and using system calls to

utilize resources.

3.7.5 Python

Python is an interpreted, object-oriented, high-level programming language with

dynamic semantics. we used Python to create our own topology in Mininet network emulator

based on OMES Algérie department conception, we used the following script to create our own

topology that we worked on.

We started with writing the script of adding hosts to the topology we are working on

and the figure 3.22 shows it.

Figure 3.22 Mininet custom topology host creation snippet

54

After that we continue the script writing by adding the needed switches

Figure 3.23 Mininet custom topology switches creation snippet

 After the hosts and switches creation we need to ensure their connectivity by adding

bidirectional links between hosts and switches and eliminate the one single point of failure,

hence having multiple routes.

Figure 3.24 Mininet custom topology link attachment snippet

After executing the above python script resulted in the following topology that represent

the OMES Algérie.

55

Figure 3.25 Floodlight topology of OMES Algérie

3.7.6 Quality of Service

QoS controls and manages network resources by setting priorities for specific types of

data on the network, in our Case we Applied a Bandwidth control type of quality of Service,

we limited certain hosts to a certain Bandwidth speed so that it will be used optimally by each

employee.

This Bandwidth control is Flexible, we can change it at any time however we like and

easily apply it to the whole network.

First of all, we launch the topology on Mininet using the below command line:

#sudo mn --custom ~/mininet/custom/tp.py --topo network --switch ovsk --

controller=remote,ip=192.168.1.47,port=6633 --ipbase=10.0.0.0/8

Figure 3.26 shows the output of ping test from host 1 to host 5 before applying QoS

bandwidth limitation:

56

Figure 3.26 Host 1 Bandwidth before applying QoS

As you can see the bandwidth is 25.4 Gbits/s without the limitation now we enable the

quality of service queue using the below command

#sudo./qosmanager2.py -e

The figure 3.27 shows the output after activating the above command.

Figure 3.27 QoS Enabled in the controller

Now we will be activating the quality of service on host 1 and we will limit the

bandwidth to 4Mbits using the below command in the shell.

#sudo ./qospath2.py -a -S 10.0.0.1 -D 10.0.0.5 -N 4Mbit_1-5 -J '{"eth-

type":"0x0800","queue":"2"}'

The output of the above command is demonstrated in the figure 3.27 showing that the

queue rule has been added to the qosmanager in the controller.

57

Figure 3.28 QoS Added Policy Rule

Figure 3.29 shows the bandwidth of the path from host 1 to host 5 after applying the

Bandwidth QoS.

Figure 3.29 Host 1 Bandwidth after applying QoS

3.7.7 Firewall

The security aspect is one of the crucial things in datacenters, so to secure our

implemented approach we are going to use the firewall in the SDN controller to do as intended,

first we need to enable it in the controller using this command:

#curl http://192.168.1.47:8080/wm/firewall/module/enable/json -X PUT -d ' '

58

After we activate the firewall all the flows will be dropped due to implicit deny. To

enable communication, rules must be inserted into the firewall so that any incoming packet is

checked with the rule before an ALLOW or DENY action is performed on the packet.

To implement the firewall, we will be using a scenario where we authorize all flow

passing between switch with MAC «00:00:00:00:00:00:00:01» and switch with MAC

«00:00:00:00:00:00:00:02»

#curl -X POST -d '{"switchid": "00:00:00:00:00:00:00:01"}'

http://192.168.1.47:8080/wm/firewall/rules/json

#curl -X POST -d '{"switchid": "00:00:00:00:00:00:00:02"}'

http://192.168.1.47:8080/wm/firewall/rules/json

The output of the above commands is shown in figure 3.30:

Figure 3.30 Rule added to the firewall

 The “POST” method will insert the rules into the firewall rules file, each incoming

packet will be checked against these rules and if a match is found the action (ALLOW /

DENY) will be applied depending to the rule.

Figure 3.31 Ping before adding the rules

59

 The figure 3.31 demonstrate the results of a ping after activating the firewall and before

adding the rules, we can see that the flow is dropped.

 The figure 3.32 demonstrate that the ping now is reachable due the rules added to the

firewall:

Figure 3.32 Ping after adding rules to firewall

 We can add rules that DENY the traffic between a specific source MAC to a specific

destination MAC using these commands:

#curl -X POST -d '{"src-mac": "00:00:00:00:00:00:00:20", "dst-mac":

"00:00:00:00:00:00:00:10","action" : "DENY" }' http://192.168.1.47:8080/wm/firewall/rules/json

#curl -X POST -d '{"src-mac": "00:00:00:00:00:00:00:10", "dst-mac":

"00:00:00:00:00:00:00:20","action" : "DENY" }' http://192.168.1.47:8080/wm/firewall/rules/json

 Further to what we already demonstrated, we can also DENY or ALLOW access

between hosts IPs, this will allow us to restrict undesired access from within the LAN to the

datacenter as well, an example is shown in the commands that follows between host 10.0.0.1

and 10.0.0.5

#curl -X POST -d ‘{“src- ip”: “10.0.0.1”, “dst-ip": "10.0.0.5","dl-type":"ARP", "action" : "DENY" }'

http://192.168.1.47:8080/wm/firewall/rules/json

#curl -X POST -d ‘{“src- ip”: “10.0.0.5”, “dst- ip ": "10.0.0.1","dl-type":"ARP", "action" : "DENY" }'

http://192.168.1.47:8080/wm/firewall/rules/json

60

#curl -X POST -d ‘{“src- ip”: “10.0.0.1”, “dst- ip ": "10.0.0.5","nw-proto":"ICMP", "action" : "DENY"

}' http://192.168.1.47:8080/wm/firewall/rules/json

#curl -X POST -d ‘{“src- ip”: “10.0.0.5”, “dst- ip ": "10.0.0.1," nw-proto":"ICMP", "action" : "DENY"

}' http://192.168.1.47:8080/wm/firewall/rules/json

3.8 Conclusion

This chapter has been devoted to details of the implementation and performance study

of the suggested cluster; It first gives an overview of the intended architecture and the used

tools. After that, the design and implementation of the functionalities requested. Finally, we

discuss the results obtained after each test either on the compute and storage part or the Network

part.

61

4 General Conclusion

IT businesses need an agile and reliable infrastructure, to deal with the explosion of

massive data and handling the increasingly gigantic volumes of traffic. This led to the

emergence of new software defined solutions embedding ever more intelligence in the

datacenters. These IT trends is where the strength of hyper-convergence lies, which no longer

evolves with the heaviness of hardware but with the speed of the software.

We first highlighted the importance of virtualization in evolving the traditional IT

datacenters, we then explained the story of hyper-convergence, talking about two of its key

components, the SDC and SDS. After that we introduced SDN and a comparison between the

traditional network and SDN, explaining this latter architecture and how it functions. We finally

showed how we implement those three software-defined solutions together to create our hyper

converged architecture solution for this project.

The results of our project were satisfying, and we can say that we have reached the goal

of the requested objective which was:

• Datacenter high availability, recovery and maintenance fundamental

functionalities.

• Network access restriction.

• Bandwidth limitation on controller QoS.

This internship was an enriching experience from a technical point of view, in terms of

the technologies covered. Both in terms of network and system administration and in terms of

discovering the business world.

However, the full development of functionalities for such a project was never fully

achieved for due to constraints such as Covid-19, hardware resources and time. So, in order to

improve this present work, we propose to:

• Apply disaster recovery system in the datacenter.

• Apply intelligent QoS based on flow and traffic.

• Add more security to the datacenter.

62

Annex 1: Nodes and Ceph installations

To create our cluster, we need first to install Proxmox on the nodes following these

steps:

1. Proxmox Download.

We start by downloading Proxmox from the official website

https://www.proxmox.com/en/downloads/item/proxmox-ve-6-2-iso-installer

2. VM Configuration.

After downloading Proxmox we create our first node using this VM specifications:

• 2 network adapters for replications.

• 4 gigs of ram at least.

• 2 vCPU at least.

• 20GB of storage at least.

3. Proxmox installation.

Now we proceed with the installation process:

• The node names.

• The IP address to access web GUI.

Figure 0Annex1.1 Proxmox network management

4. Ceph installation.

After the creation of the cluster like shown in Chapter 3.7.1 we proceed with the setup

of monitors for each node:

https://www.proxmox.com/en/downloads/item/proxmox-ve-6-2-iso-installer

63

Figure 0.2 Monitor creation for each node

 Then we need to install the Ceph storage features in every node:

Figure Annex 1.3 Ceph installation

We will end up with the configuration for only the parent node, the other nodes will be

automatically configured after the installation:

Figure Annex 1.4 Ceph cluster configuration

64

Annex 2: Floodlight installation

1. Pre-requisites

-OS: Any Linux distribution.

-JDK and ANT:

#sudo apt-get install java-1.8.0-openjdk java-1.8.0-devel

#sudo apt-get install ant

2. Floodlight download

-Download the source from Github.

-use the ANT command. (The ant command is a tool that creates the construct the application

from the compilation process until the execution)

#git clone git://github.com/floodlight/floodlight.git

#cd floodlight

#ant

3. Floodlight run

-execute the file floodlight.jar that been created from the previous ant command:

#java -jar target/floodlight.jar

4. Access to floodlight controller

-open any web browser and access using the URL below:

http://floodlight_ip:8080/ui/index.html

65

Annex 3: Mininet installation

The installation and configuration of Mininet is done on a node independent of our

controller, but it is possible to install them on the same machine, the configuration steps can be

summarized in the following points:

• To install natively from source, first you need to get the source code:

#git clone git://github.com/mininet/mininet

• Note that the above git command will check out the latest Mininet and download

it then we will need to check the version:

#cd mininet

#git tag # list available versions

#git checkout –b 2.2.0b3 # or whatever version you wish to install

• Now we install Mininet using the following command:

#mininet/util/install.sh -a

66

References

[1] "NFS: Network File System Protocol Specification," [Online]. Available: https://tools.ietf.org/html/rfc1094. [Accessed 29 07 2020].

[2] M. Rouse, "Bit Rot," [Online]. Available: https://searchstorage.techtarget.com/definition/bit-

rot#:~:text=Bit%20rot%20is%20the%20slow,data%20decay%20and%20silent%20corruption..

[3] "Data Replication," [Online]. Available: https://searchdisasterrecovery.techtarget.com/definition/data-

replication#:~:text=Data%20replication%20is%20the%20process,the%20event%20of%20a%20disaster.. [Accessed 29 07 2020].

[4] "Snapshot," [Online]. Available: https://searchstorage.techtarget.com/definition/point-in-time-snapshot-PIT-snapshot. [Accessed 29 07

2020].

[5] "Block Storage," [Online]. Available: https://searchstorage.techtarget.com/definition/block-storage. [Accessed 29 07 2020].

[6] "Object Storage," [Online]. Available: https://searchstorage.techtarget.com/definition/object-storage. [Accessed 29 07 2020].

[7] "Ceph Storage Documentation," [Online]. Available: https://docs.ceph.com/docs/master/. [Accessed 28 07 2020].

[8] S. D. Lowe, in Hyperconverged infrastructure for dummies, USA, HP, 2019, p. 12.

[9] J. G. a. D. D. Scott D. Lowe, Building a Modern Data Center Principles and Strategies of Design, USA: Atlantis Computing, 2016.

[10] "What Is Virtualization," [Online]. Available: https://opensource.com/resources/virtualization. [Accessed 28 06 2020].

[11] "What is Software-Defined Compute? Definition, Benefits, and Infrastructure," [Online]. Available:

https://www.sdxcentral.com/networking/sdn/definitions/what-is-software-defined-compute/. [Accessed 30 07 2020].

[12] "What is a hypervisor?," [Online]. Available: https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor. [Accessed 15 07

2020].

[13] "Legacy systems & digital transformation, a love-hate relationship," [Online]. Available: https://www.tremend.com/legacy-systems-

digital-transformation-love-hate-

relationship#:~:text=have%20to%20reinvent%20their%20entire%20digital%20infrastructure%20to%20take%20advantage. [Accessed

02 08 2020].

[14] A. Kingatua, "Hyper-converged Infrastructure Guide," 8 04 2018. [Online]. Available: https://hostadvice.com/hosting-guides/hyper-

converged-infrastructure-guide/. [Accessed 22 07 2020].

[15] "Software-Defined Storage," [Online]. Available: https://www.datacore.com/software-defined-storage/. [Accessed 25 07 2020].

[16] C. Harvey, "Software defined storage combines storage virtualization with advanced storage management capabilities to offer

enterprises benefits like lower costs and greater flexibility.," 22 02 2018. [Online]. Available:

https://www.enterprisestorageforum.com/storage-software/what-is-software-defined-storage.html. [Accessed 25 07 2020].

[17] "What is software-defined storage?," [Online]. Available: https://www.redhat.com/en/topics/data-storage/software-defined-storage.

[Accessed 25 07 2020].

[18] R. Turk, "Ceph Intro & Architectual Overview," 22 05 2013. [Online]. Available: https://www.slideshare.net/buildacloud/ceph-intro-

and-architectural-overview-by-ross-turk. [Accessed 25 07 2020].

[19] M. Rouse, "Direct Attached Storage," [Online]. Available: https://searchstorage.techtarget.com/definition/direct-attached-storage.

[Accessed 25 07 2020].

[20] M. Rouse, "Network Attached Storage," [Online]. Available: https://searchstorage.techtarget.com/definition/network-attached-storage.

[Accessed 25 07 2020].

[21] M. Rouse, "Storage Area Network (SAN)," [Online]. Available: https://searchstorage.techtarget.com/definition/storage-area-network-

SAN. [Accessed 25 07 2020].

[22] "What Is Software-Defined Storage NetApp?," [Online]. Available: https://www.netapp.com/us/info/what-is-software-defined-

storage.aspx. [Accessed 28 07 2020].

[23] "Software Defined Storage," [Online]. Available: https://www.datacore.com/software-defined-storage/. [Accessed 27 07 2020].

67

[24] "Introducing Gluster File System," [Online]. Available: https://staged-gluster-

docs.readthedocs.io/en/release3.7.0beta1/Administrator%20Guide/GlusterFS%20Introduction/. [Accessed 29 07 2020].

[25] "About GlusterFS," [Online]. Available: https://rajeshjoseph.gitbooks.io/test-

guide/content/?fbclid=IwAR0EvPJY_QmYjeVM8iHg1k9_OdvMS0iO430LL9S84f7uYqBhF7WAtdBAbCE. [Accessed 29 08 2020].

[26] "Ceph, la technologie qui "disrupte" le marché du stockage," [Online]. Available: https://www.journaldunet.com/solutions/cloud-

computing/1179361-ceph-la-technologie-qui-disrupte-le-marche-du-stockage/. [Accessed 28 07 2020].

[27] "GlusterFS vs. Ceph: a comparison of two storage systems," 28 07 2020. [Online]. Available:

https://www.ionos.com/digitalguide/server/know-how/glusterfs-vs-ceph/. [Accessed 27 08 2020].

[28] ""Software-Defined" for Dummies," [Online]. Available: https://ssh.guru/software-defined-for-dummies/. [Accessed 05 08 2020].

[29] F. Benamrane, Etude des Performance des Architectures du Plan de Contrôle des Réseaux Software-Defined network, Rabat: PhD

thesis, Mohammed V University, January 18, 2017.

[30] M. Said Seddiki, Allocation dynamique des ressources et gestion de la qualité de service, 14 december 2015.

[31] A. Anwar, "SDN (Software-Defined Networking) Primer, and Why we Need SDN," 30 10 2015. [Online]. Available:

https://blog.turbonomic.com/blog/on-technology/sdn-software-defined-networking-primer-and-why-we-need-sdn. [Accessed 27 08

2020].

[32] R. Braden, D. Clark and S. Shenker, "Integrated Services in the Internet Architecture: An Overview," Jan, 1994.

[33] M. Altufaili, "Intelligent Network Bandwidth Allocation using SDN," International Journal of Engineering Research & Technology,

vol. 4, 2015.

[34] A. Malik, A. Benjamin and K. Chih-heng, "THRIFTY: Towards High Reduction In Flow Table memory," in 2018 Imperial College

Computing Student Workshop (ICCSW 2018) Volume: 66, London, UK , september 2018.

[35] "The Road to SDN- ACM Queue," [Online]. Available: https://queue.acm.org/detail.cfm?id=2560327. [Accessed 28 June 2020].

[36] L. Genge and L. Wen, "A novel industrial control architecture based on Software-Defined Network," 2018.

[37] M. Yu, J. Rexford, M. J. Freedman and J. Wang, "Scalable Flow-based Networking with DIFANE," in the ACM SIGCOMM 2010

Conference, New York City, 2010.

[38] Y. Ganjali and A. Tootoonchian, "HyperFlow: A Distributed Control Plane for OpenFlow," INW/WREN, 2010.

[39] T. Eugene and Z. Cai, "Maestro: Achieving scalability and coordination in centralized network control plane," 2012.

[40] B. Rimal, A. Jukan, D. Katsaros and Y. Goeleven, "Architectural requirements for cloud computing systems: an enterprise cloud

approach," journal of Grid Computing, pp. 3-26, 2011.

[41] M. Armbrust, A. Fox, R. Griffith and Al, "A view of Cloud Computing," Communication of the ACM, 2010.

[42] S. Scott-Hayward, G. O'Callaghan and S. Sezer, "SDN Security; a survey, IEEE SDN for Future Networks and Services," SDN4FNS,

2013, pp. 1-7.

[43] R. Kloeti, "OpenFlow: a security analysis," April 2013. [Online]. Available: ftp://yosemite.ee.ethz.ch/pub/students/2012‐HS/MA‐

2012‐20signed.pdf. [Accessed 05 July 2020].

[44] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov and R. Smeliansky, "Advanced Study of SDN/OpenFlow controllers," in 9th

central and eastern European Software Engineering Conference, Russia, 2013.

[45] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll and P. TranGia, "Modeling and Performance evaluation of an OpenFlow

architecture.," in Teletraffic Congress (ITC), Sept 2011.

[46] "Cbench Controller Benchmarker | BibSonomy," [Online]. Available:

https://www.bibsonomy.org/bibtex/111bc70e4d8012f1196123dbc3e310b7. [Accessed 06 July 2020].

[47] M. Jarschel, F. Lehrieder, Z. Magyari and R. Pries, "A flexible OpenFlow controller benchmark," in Proc. EWSDN, 2012, pp. 48-53.

[48] D. Tipper, "Resilient network design: challenges and future directions.," Telecommunication Systems, vol. 1, no. 56, pp. 5-16, 2014.

68

[49] R. Masoudi and A. Ghaffari, "Software defined networks: A survey," J. Netw. Comput. Appl, vol. 67, pp. 1-25, may 2016.

[50] D. B. Hoang, "Software Defined Networking ? Shaping up for the next disruptive step?," in Telecommunications Association, 2015.

[51] "An SDN Perspective to Mitigate the Energy Consumption of Core Networks – GEANT2," in International Seeds Conference 2017.

[52] "OpenFlow-mininet," [Online]. Available: https://sites.google.com/site/mininetbasic/open-flow/openflow. [Accessed 06 July 2020].

[53] B. Wolfgang and M. Michael, "Software-Defined Networking Using OpenFlow: Protocols,Applications and Architectural Design

Choices," in future internet, 12 May 2014.

[54] B. Pfaff and B. Davie, "The Open vSwitch Database Management Protocol," [Online]. Available: https://tools.ietf.org/html/rfc7047.

[Accessed 08 July 2020].

[55] "SDN architecture - PDF," [Online]. Available: https://www.opennetworking.org/wp-

content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf.

[56] V. K. Gubrani, M. Schraf, T. V. Lakshman, V. Hilt and E. Marocco, "Abstracting network state in Software Defined Networks (SDN)

for rendezvous services," in IEEE International Conference on Communications (ICC) ,p.6627-6632, 2012.

[57] O. Salman, H. E. Imad, A. Kayssi and A. Chehab, "SDN controllers: A comparative study," in Computer Science 2016 18th

Mediterranean Electrotechnical Conference (MELECON), 2016.

