UNIVERSITE SAAD DAHLEB DE BLIDA

Faculté des sciences

Département de Mathématiques

MEMOIRE DE MAGISTER

en Mathématiques

Spécialité : Modélisation mathématique pour l'aide à la décision

CONTRIBUTION A L'ETUDE DES GRAPHES μ -EXCELLENTS

Par

Soufiane KHELIFI

Devant le jury composé de:

Maître de conférences, U. de Blida	Président
Maître de conférences, U. de Blida	Promoteur
Professeur, USTHB	Examinateur
Maître de conférences, USTHB	Examinateur
Chargé de cours U. de Blida	Examinateur
	Maître de conférences, U. de Blida Maître de conférences, U. de Blida Professeur, USTHB Maître de conférences, USTHB Chargé de cours U. de Blida

Blida, Décembre 2004

RÉSUMÉ

Soit un graphe simple G = (V, E). Un sous ensemble S de V est dit dominant de G si tout sommet de V - S possède au moins un voisin dans S. Le cardinal minimum d'un ensemble dominant de G, appelé nombre de domination de G, est noté $\gamma(G)$ et tout ensemble dominant de cardinal $\gamma(G)$ est appelé $\gamma(G)$ -ensemble. D'autres types de domination sont définis en imposant une condition supplémentaire sur l'ensemble dominant. Par exemple, si on impose que tout sommet de G possède au moins deux voisins dans S, on aura la domination double et si on impose que les sommets du sous graphe induit par S sont couplés deux à deux, nous aurons la domination couplée. Pour tout paramètre $\mu(G)$, un ensemble dominant S de cardinal $\mu(G)$ vérifiant la propriété désirée est appelé $\mu(G)$ -ensemble. On dit que G est un graphe μ -excellent si tout sommet de G est contenu dans au moins un $\mu(G)$ -ensemble.

Dans mémoire, on s'intéresse à l'étude de l'excellence des graphes par rapport à certains paramètres de domination à l'aide de deux approches, la première est constructive, par contre la deuxième est basée sur la caractérisation des sommets qui ne sont dans aucun $\mu(G)$ -ensemble. Notre contribution dans ce domaine réside dans l'étude, par la deuxième approche, des arbres excellents par rapport à la domination double et la domination couplée. Ainsi, nous donnons une caractérisation des arbres excellents par rapport à ces deux types de domination.

ملخص

ليكن (Y,E) = G بيانا بسيطا. نقول أن المجموعة الجزئية S من V مسيطرة إذا كان كل رأس من S-V يملك جارا على الأقل في S. يرمز *للأ*صلي الأدنى لمجموعة مسيطرة في G، المسمى عدد السيطرة للبيان G، μ (G) و كل مجموعة مسيطرة ذات أصلي $(G)\gamma$ تسمى $(G)\gamma$ مجموعة. تعرف وسائط أخرى للسيطرة بفرض شروط أخرى على المجموعة المسيطرة. مثلا إذا فرضنا أن كل رأس من G يملك جارين على الأقل في S، فسنحصل على السيطرة المضاعفة و إذا فرضنا أن رؤوس البيان الجزئي الناتج عن S مقترنة مثنى مثنى، فسنحصل على السيطرة المتزاوجة. لكل وسيط سيطرة (G)، أي مجموعة مسيطرة ذات أصلي (G)محموعة. تعرف ومائط أخرى المعموم على المعموم المعناعفة و إذا مرضنا أن رؤوس البيان الجزئي الناتج عن S مقترنة مثنى مثنى، فسنحصل على السيطرة المتزاوجة. الكل وسيط مجموعة. نقول أن البيان G ممتاز إذا كان كل رأس من G ينتمي إلى (G)م محققة الخاصية المطلوبة تسمى (G)م

في هدا البحث نتعرض للامتياز بالنسبة لبعض وسائط السيطرة بواسطة طريقتين، الأولى بنائية أما الثانية فتتمثل في تمييز الرؤوس التي لا تنتمي إلى أي μمجموعة. إضافتنا في هدا الميدان تكمن في دراسة امتياز الأشجار، بواسطة الطريقة الثانية، بالنسبة إلى السيطرة المضاعفة و السيطرة المتزاوجة، هكذا نعطي تمييزا للأشجار الممتازة بالنسبة لهذان النوعان من السيطرة.

ABSTRACT

Let G = (V, E) be un simple graph. A subset S of V is a dominating of G if every vertex of V - S has at least a neighbour in S. The minimum cardinality of a dominating set of G, called domination number of G, is denoted $\gamma(G)$ and every dominating set of cardinality $\gamma(G)$ is called $\gamma(G)$ -set. Other types of domination are defined by imposing an additional condition on the dominating set. For example, if we impose that every vertex of G has at least two neighbours in S, we have the double domination and if we impose that the vertices of the subgraph induced by S are paired, we have the paired domination. For any parameter of domination $\mu(G)$, a dominating set S of cardinality $\mu(G)$ which verify the desired property is called $\mu(G)$ -set or simply. We say that G is a μ -excellent graph if every vertex of G is in a $\mu(G)$ -set.

In this thesis, we are interested to excellent graphs with respect to certain types of domination by two approaches; the first is a constructive one and the second is based on the characterization of the vertices which are in no $\mu(G)$ -set. Our contribution in this area is the study, by the second approach, of the families of excellent trees with respect to double domination and paired domination. Thus, we give a characterization of excellent trees with respect to those types of domination.

REMERCIEMENTS

Je tiens en premier lieu à exprimer toute ma reconnaissance à Monsieur Mostafa BLIDIA, Maître de conférences à l'université Saad Dahleb Blida, pour m'avoir offert l'opportunité d'effectuer ce mémoire. Ses idées fécondes et brillantes ont été un élément essentiel à l'aboutissement de cette étude.

J'exprime également toute ma gratitude à Monsieur Mustapha CHELLALI, Chargé de cours à l'université Saad Dahleb Blida, pour n'avoir jamais compté précieux conseils et judicieuses suggestions.

Je remercie très sincèrement Monsieur Farouk HANNANE, Maître de conférences à l'université Saad Dahleb Blida, pour avoir accepté d'être président du jury.

J'adresse tous mes remerciements à Monsieur Abdelhafid BERRACHEDI, professeur à l'USTHB, et Melle Isma BOUCHEMAKH, Maître de conférences à l'USTHB, pour m'avoir fait l'honneur d'accepter de juger mon travail.

Je remercie enfin toutes les personnes qui m'ont aidé par leur soutien et leur confiance à accomplir ce travail.

TABLE DES MATIERES

RESUME	1			
REMERCIEMENTS	4			
TABLE DES MATIERES	5			
LISTE DES ILLUSTRATIONS GRAPHIQUES ET TABLEAUX	7			
INTRODUCTION	8			
1. PRESENTATION GENERALE	10			
 1.1 Définitions et notations 1.1.1 Graphe et sous graphe 1.1.2 Voisinages 1.1.3. Graphes particuliers 1.1.4. Quelques paramètres structurels d'un graphe 1.2. La domination dans les graphes 1.3 Complexité des algorithmes 	10 10 11 12 15 15 22			
2. LES GRAPHES u-EXCELLENTS				
 2.1. Les arbres γ-excellents 2.1.1. Une construction des arbres μ-excellents 2.1.2. Les sommets contenus dans tout ou dans aucun μ-ensemble d'un arbre 2.2. Les arbres <i>i</i>-excellents 2.2.1. Une caractérisation des arbres <i>i</i>-excellents 2.3. Les arbres γ_t-excellents 2.3.1. Une caractérisation des arbres γ_t -excellents 2.3.2. Les sommets contenus dans tout ou dans aucun γ_t-ensemble d'un arbre 2.4. Les arbres Γ-excellents, β-excellents et <i>IR</i>-excellents 2.5. Quelques problèmes ouverts 	25 27 27 30 30 31 32 34 36 37			
3. LES GRAPHES $\gamma_{\times 2}$ -EXCELLENTS	38			
 3.1. Aperçu sur domination double 3.2. Les graphes γ_{×2}-excellents 3.2.1. Caractérisation des chenilles γ_{×2}-excellentes 3.2.2. Caractérisation des arbres γ_{×2}-excellents 	38 40 42 44			

4. LES GRAPHES γ_{pr} -EXCELLENTS	59			
4.1. Aperçu sur la domination couplée	59			
4.2. Les graphes γ_{pr} -excellents	62			
4.2.1. Caractérisation des chenilles γ_{pr} -excellentes	65			
4.2.2. Caractérisation des arbres γ_{pr} -excellents	67			
4.2.3. Les arbres T ayant $\gamma_{pr}(T) = 2\gamma(T)$	78			
4.2.4. Arbres γ_t -excellents et arbres γ_{pr} -excellents	80			
CONCLUSION				
REFERENCES				

LISTE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX

Un graphe G.	11
Un graphe <i>G</i> et un sous graphe $\langle H \rangle$ induit par $H = \{c, d, g\}$.	11
La chaîne P_4 et sa couronne $P_4 \circ K_{I_1}$	13
Un graphe complet à 5 sommets.	13
Un arbre.	13
Le graphe biparti complet $K_{2,3}$.	14
L'étoile $S_{I,k}$.	14
L'étoile subdivisée $S_{I,k}^*$.	14
La double étoile $S_{2,3}$.	15
Les reines dans l'échiquier.	16
Un graphe G.	17
Un graphe γ-acceptable.	22
La famille \mathscr{F} : couronnes des étoiles et des doubles étoiles.	27
Le cube Q_3 et l'étoile subdivisée $S^*_{I,k}$.	39
Le graphe G.	41
Une chenille T_c avec c(T_c)=(2,1,3,0,0,0,2,1,0,0,3,1).	43
L'élagage de l'arbre T.	51
Le cube Q_3 et l'étoile subdivisée $S^*_{I,k}$.	60
La chaîne P_4 et la 2-couronne d'une P_4 .	62
Un graphe non γ_{pr} -excellent.qui ne contient pas de CSNE.	66
L'élagage de l'arbre T.	73
Un graphe $G \gamma_{pr}$ -excellent avec $\gamma_{pr}(G) \neq 2\gamma(G)$.	80
	Un graphe <i>G</i> . Un graphe <i>G</i> et un sous graphe $\langle H \rangle$ induit par $H = \{c,d,g\}$. La chaîne P_4 et sa couronne $P_4 \circ K_1$. Un graphe complet à 5 sommets. Un arbre. Le graphe biparti complet $K_{2,3}$. L'étoile $S_{1,k}$. L'étoile subdivisée $S^*_{1,k}$. La double étoile $S_{2,3}$. Les reines dans l'échiquier. Un graphe <i>G</i> . Un graphe φ -acceptable. La famille \mathscr{F} : couronnes des étoiles et des doubles étoiles. Le cube Q_3 et l'étoile subdivisée $S^*_{1,k}$. Le graphe <i>G</i> . Une chenille T_c avec $c(T_c)=(2,1,3,0,0,0,2,1,0,0,3,1)$. L'élagage de l'arbre <i>T</i> . Le cube Q_3 et l'étoile subdivisée $S^*_{1,k}$. La chaîne P_4 et la 2-couronne d'une P_4 . Un graphe non γ_{pr} -excellent.qui ne contient pas de CSNE. L'élagage de l'arbre <i>T</i> . Un graphe $G \gamma_{pr}$ -excellent avec $\gamma_{pr}(G) \neq 2\gamma(G)$.

INTRODUCTION

Chacun de nous a vu une fois au moins un plan de métro, une carte de lignes ferroviaires ou aériennes ou un plan électrique; ainsi, tout le monde sait plus ou moins intuitivement ce qu'est un graphe. Toutefois, entre la vague notion d'un schéma formé de "points" et de "trajets" reliant ces points et la théorie mathématique des graphes, il y a une longue élaboration de concepts.

La théorie des graphes est aujourd'hui un domaine très important faisant le lien entre les mathématiques discrètes et l'informatique. Une question provenant de la modélisation de problèmes concrets (réseaux de transport, de téléphone, de microprocesseurs etc.) peut être étudiée par des méthodes purement abstraites et être appliquée en retour par des utilisateurs potentiels dans le domaine qui lui a donné naissance ou dans n'importe quel autre domaine.

Parmi les branches les plus étudiées de la théorie des graphes figure la domination dans les graphes. En effet, avec plus de 120 types de domination et plus de 1200 références, la domination constitue un domaine florissant de recherche comportant un nombre énorme de problèmes qui sont jusqu'à présent ouverts ou qui n'ont même pas été étudiés.

Dans ce mémoire, nous nous proposons d'étudier les graphes excellents par rapport aux différents types de domination. La notion d'excellence dans les graphes a été introduite récemment par FRICKE et al. [1] et a fait l'objet de plusieurs articles comme celui de HAYNES et al. [2] ou celui de HENNING [3] dans lesquels les auteurs ont obtenu des résultats importants dans un domaine qui s'avère intéressant du point de vue théorique et même pratique.

Le chapitre1 est divisé en trois sections. Dans la première, nous faisons une introduction à la théorie des graphes et définissons la plus grande partie des notions utilisées tout au long de ce mémoire. La deuxième est consacrée à une présentation générale de la domination dans les graphes. Nous commençons par l'histoire de l'étude des ensembles dominants, nous illustrerons ensuite l'intérêt que présente l'étude de la domination aussi bien dans la pratique que dans le domaine théorique. En dernier, nous présentons les problèmes les plus étudiés en domination dont le problème de l'excellence dans les graphes qui est l'objet de cette étude. Dans la troisième section, nous parlons brièvement de l'efficacité des algorithmes et de la difficulté des problèmes.

Le deuxième chapitre est consacré à l'état de l'art dans la famille des graphes excellents. Nous y présentons les différents résultats obtenus jusqu'à présent dans les classes de graphes excellents par rapport à quelques paramètres de domination.

Dans le troisième et quatrième chapitre, différents résultants obtenus en collaboration avec M. Blidia et M. Chellali sont présentés.

Le troisième chapitre est consacré à l'excellence par rapport à la domination double. Après un bref aperçu sur la domination double dans les graphes, nous donnons quelques résultats et caractérisations relatifs aux chaînes et aux chenilles excellentes. Nous caractérisons ensuite les sommets contenus dans tout ou dans aucun ensemble dominant double minimum d'un arbre et déduirons une caractérisation des arbres excellents par rapport à la domination double avant de présenter un algorithme de reconnaissance de ces arbres opérant en un temps polynomial.

Nous nous intéressons dans le quatrième chapitre aux graphes excellents par rapport à un autre type de domination appelé la domination couplée, nous commençons d'abord par illustrer ce type de domination. Ensuite, après la présentation de quelques résultats concernant la famille des graphes excellents par rapport à la domination couplée, nous abordons la caractérisation des arbres excellents basée sur celle de l'ensemble des sommets qui ne sont contenus dans aucun ensemble dominant couplé minimum d'un arbre, puis à un algorithme efficace de reconnaissance des arbres excellents par rapport au même type de domination. Dans les deux dernières parties de ce chapitre, nous montrons qu'un arbre ayant son nombre de domination couplé égal à deux fois son nombre de domination est excellent et que tout arbre excellent par rapport à la domination totale l'est aussi par rapport à la domination couplée.

CHAPITRE 1

PRÉSENTATION GÉNÉRALE

Dans la première partie de ce chapitre, nous définissons les notions utilisées tout au long de ce mémoire. Les notions propres à un chapitre donné seront définies dans le chapitre lui même. Dans la seconde partie, nous faisons une brève présentation de la domination dans les graphes. Dans la dernière, nous donnons un aperçu sur l'efficacité des algorithmes et de la complexité des problèmes.

Nous invitons le lecteur à se référer aux ouvrages de BERGE [4] et de CHARTRAND et LESNIAK [5] pour avoir plus de détails concernant les notions de théorie des graphes et aux ouvrages [6] et [7] de HAYNES et al. pour ceux concernant les notions liées à la domination.

1.1 Définitions et notations

<u>1.1.1 Graphe et sous-graphe</u>

Un graphe est un couple G = (V, E), où V est un ensemble fini d'éléments appelés sommets et E un ensemble d'éléments appelés arêtes. Une arête est une paire de sommets de V. Le cardinal de V, appelé ordre de G, est noté n. Le cardinal de E est noté m. Les sommets sont notés de manière usuelle par des lettres minuscules: v, u, x, a, a_1, y , etc. Les arêtes sont notées vu, xy, ab etc. Si e = vu ou e = uv est une arête du graphe, on dit que u et v sont les extrémités de e, que u et v sont adjacents et que e est incidente à u et v. Les sommets d'un graphe sont représentés d'habitude par des points et ses arêtes par des segments reliant deux points.

Un graphe est dit *simple* si deux sommets quelconques de G sont reliés par au plus une arête et que toute arête de G a ses extrémités distinctes. Un graphe *trivial* est un graphe d'ordre n = 1, et donc, m = 0. Dans tout ce qui suit, les graphes considérés sont simples et finis.

Par exemple, la figure 1.1 montre un graphe G avec $V(G) = \{v_1, v_2, v_3, v_4\}$ et $E(G) = \{v_1v_2, v_1v_3, v_2v_3, v_2v_4\}$.

Figure 1.1. Un graphe G.

Soit G = (V, E) un graphe simple. Pour un sous-ensemble $H \subseteq V$, *le sous-graphe induit* par H noté G[H] ou simplement $\langle H \rangle$ est le graphe ayant H pour ensemble de sommets et dont les arêtes sont celles de E ayant leurs deux extrémités dans H. Voir le sous-graphe induit par $H = \{c, d, g\}$ dans la figure 1.2.

FIGURE 1.2. Un graphe G et le sous-graphe $\langle H \rangle$ induit par $H = \{c, d, g\}$.

Nous disons qu'un sous-ensemble A de V est minimal (resp. maximal) par rapport à une propriété \mathcal{P} s'il n'existe pas d'ensemble $B \subseteq A$ (resp. $B \supseteq A$) tel que G[B] vérifie \mathcal{P} .

Nous disons qu'un sous-ensemble A de V est *minimum* ou de *taille minimale* (resp. *maximum* ou de *taille maximale*) par rapport à une propriété \mathcal{P} s'il n'existe pas d'ensemble $B \subseteq V$ tel que G[B] vérifie \mathcal{P} et |A| > |B| (resp.|B| > |A|) où |A| est le cardinal de l'ensemble A, c'est-à-dire le nombre de ses éléments.

1.1.2 Voisinages

Le voisinage ouvert d'un sommet v est $N_G(v) = \{u \in V \mid uv \in E\}$ et le voisinage fermé de v est $N_G[v] = N_G(v) \cup \{v\}$. L'ensemble $N_G(S) = \bigcup_{v \in S} N_G(v)$ (resp. $N_G[S] = N_G(S) \cup S$) est le voisinage ouvert (resp. fermé) du sous-ensemble $S \subseteq V$. S'il n'y a pas risque de confusion, les voisinages ouvert et fermé d'un sommet v seront notés simplement par N(v)

et N[v] à la place de $N_G(v)$ et $N_G[v]$ respectivement. De même, nous utiliserons les notations N(S) et N[S] au lieu de $N_G(S)$ et $N_G[S]$ respectivement. Dans la figure 1.2, $N(a) = \{c, d\}$ et $N[a] = \{a, c, d\}$, et si $S = \{d, b\}$, $N_G(S) = \{a, c, g\}$ et $N_G[S] = \{a, c, g, d, b\}$.

Le degré d'un sommet $v \in V(G)$, noté $\deg_G(v)$, est égal au cardinal de son voisinage ouvert. Un sommet de degré nul est dit un *sommet isolé* et un sommet de degré égal à un est dit *sommet pendant*. Un sommet adjacent à au moins un sommet pendant est appelé *sommet support*. On note par $\Delta(G)$ et $\delta(G)$ le *degré maximum* et *minimum* dans G respectivement. S'il n'y a aucun risque de confusion, on écrira $\deg(v)$, Δ et δ pour désigner respectivement $\deg_G(v)$, $\Delta(G)$ et $\delta(G)$. Dans la figure 1.2, le sommet b est isolé puisque $\deg_G(b) = 0$, g est un sommet pendant puisque $\deg_G(g) = 1$, c et d sont des supports, $\Delta(G) = 4$ puisque $\deg_G(c) = 4$ et $\delta(G) = 0$ puisque $\deg_G(b) = 0$.

Le voisinage privé d'un sommet v par rapport à un ensemble S est l'ensemble des sommets du voisinage fermé de v qui n'ont pas d'autres voisins dans S. Cet ensemble est noté pn [v, S] et donné par $pn [v, S] = \{u : N [u] \cap S = \{v\}\}$. Dans la figure 1.2, si $S = \{c, d, b\}$ alors $pn [c, S] = \{e, f\}$.

1.1.3 Graphes particuliers

Une chaîne C d'un graphe G = (V, E) est une suite $[v_1, v_2, ..., v_k]$ de sommets distincts tels que pour chaque $i \in \{1, ..., k - 1\}$, $v_i v_{i+1}$ soit une arête de G. De plus, si $v_1 v_k$ appartient à E, alors $[v_1, v_2, ..., v_k, v_1]$ est appelé un cycle. Pour simplifier les notations, la chaîne $[v_1, v_2, ..., v_k]$ sera notée $v_1, v_2, ..., v_{k-1}, v_k$. les sommets $v_2, ..., v_{k-1}$ sont appelés sommets intermédiaires de la chaîne. La distance entre deux sommets u et v est notée d(u, v) et c'est le nombre d'arêtes d'une plus courte chaîne entre u et v. Le diamètre du graphe G est noté $Diam(G) = \underset{u,v \in V}{Max}(d(u, v))$. Une corde est une arête reliant deux sommets non consécutifs dans une chaîne ou dans un cycle. Une chaîne (resp. cycle) sans cordes est dite (resp. dit) induite (resp. induit). La longueur d'une chaîne (resp. d'un cycle) est le nombre d'arêtes qu'elle (resp. qu'il) contient. Ainsi, la longueur de la chaîne $v_1, v_2, ..., v_k$ est k - 1.

Une chaîne induite par k sommets est notée P_k . Voir la figure 1.3.

On dit qu'un graphe G est *connexe* si pour chaque paire de sommets distincts v et u de V, il existe une chaîne joignant v et u. Une *composante connexe* d'un graphe est un sous-graphe maximal connexe.

Figure 1.3. La chaîne P_4 et sa couronne $P_4 \circ K_1$.

Le graphe complet d'ordre n, noté K_n , est le graphe simple dans lequel tous les sommets sont de degré n - 1. Ainsi deux sommets quelconques de K_n sont adjacents. Voir la figure 1.4.

Une clique est un sous-graphe complet d'un graphe G. une clique de p sommets est notée K_p .

Figure 1.4. Un graphe complet à 5 sommets.

Un arbre est un graphe connexe sans cycles. Un arbre comporte exactement (n - 1) arêtes, il est noté habituellement *T*. Voir la figure 1.5.

Figure 1.5. Un arbre.

La couronne $G = H \circ K_1$ d'un graphe H est le graphe obtenu d'une copie de H et pour tout sommet v de V(H), on relie un sommet pendant. Il est évident que l'ordre G est égal à 2n si celui de H est n. Par exemple, le graphe $P_4 \circ K_1$ est illustré dans la figure 1.3. Un graphe biparti est un graphe dont l'ensemble V de ses sommets peut être partitionné en deux sous-ensembles V_1 et V_2 tels que toute arête de E relie un sommet de V_1 à un sommet de V_2 . Un graphe biparti complet est un graphe biparti ayant la propriété supplémentaire que pour tout sommet $v \in V_1$ et $u \in V_2$, $vu \in E$. Si $|V_1| = r$ et $|V_2| = s$ alors le graphe biparti complet est noté $K_{r,s}$. Un exemple du graphe $K_{2,3}$ est montré dans la figure 1.6.

Figure 1.6. Le graphe biparti complet $K_{2,3}$.

Un cas spécial d'un graphe biparti complet dans lequel $|V_1| = 1$ et $|V_2| = s$ est appelé une étoile et noté $K_{1,s}$. Le sommet de V_1 est appelé *centre* ou *sommet central* de l'étoile. Un exemple d'une étoile est montré dans la figure 1.7.

Figure 1.7. L'étoile $S_{1,k}$.

L'opération de subdivision d'une arête uv d'un graphe G introduit un nouveau sommet w tel que $E(G \cup \{w\}) = E(G) - \{uv\} \cup \{uw, wv\}$. On appelle étoile subdivisée $S_{1,k}^*$ l'étoile dans laquelle toutes les arêtes sont subdivisées. Voir la figure 1.8.

Une double étoile $S_{r,s}$ est le graphe formé par les deux étoiles $K_{1,r}$ et $K_{1,s}$ avec une arête reliant les deux centres. Voir la figure 1.9.

Figure 1.8. L'étoile subdivisée $S_{1,k}^*$.

Figure 1.9. La double étoile $S_{2,3}$.

1.1.4 Quelques paramètres structurels d'un graphe

Un stable dans un graphe G, appelé aussi, ensemble indépendant, est un ensemble S de sommets deux à deux non adjacents. Le cardinal minimum (resp. maximum) d'un stable maximal de G noté i(G) (resp. $\beta(G)$) est appelé le nombre de domination stable (resp. le nombre de stabilité) de G.

Un couplage dans un graphe G est un sous-ensemble d'arêtes non incidentes deux à deux. On note $\beta_1(G)$ la taille maximale d'un couplage dans G et $i_1(G)$ la taille minimale d'un couplage maximal. Le couplage E est dit *parfait* dans G si tout sommet de V est incident à une arête de E. C'est-à-dire si $\beta_1(G) = n/2$.

1.2 La domination dans les graphes

Ayant présenté les notions fondamentales de la théorie des graphes, nous sommes maintenant en mesure de définir et discuter la notion d'ensemble dominant dans un graphe.

Considérons le problème suivant qui a été à l'origine de l'étude des ensembles dominants dans les graphes. La figure 1.10 montre un échiquier standard 8×8 dans lequel est placée une reine "**R**". D'après les règles du jeu d'échecs, une reine peut, en un coup, se déplacer à n'importe quelle case horizontalement, verticalement ou diagonalement. Ainsi, la reine dans la figure 1.10 peut se déplacer à (ou attaquer ou dominer) n'importe quelle case marquée par un "X". Au 19 ème siècle, les échephiles européens ont considéré le problème de déterminer le nombre minimum de reines qui peuvent être placées sur l'échiquier de telle sorte que toutes les cases de ce dernier soient attaquées ou occupées par une reine. La figure 1.10 montre un ensemble de six reines qui attaquent ou dominent toutes les cases de l'échiquier. A cette même époque, on croyait que le nombre minimum de reines pour dominer les cases d'un échiquier 8×8 était 5. Ce qui est d'ailleurs vrai.

	Х		Х					R						
Х	Х	Х												R
Х	R	Х	Х	Х	Х	Х	Х		R					
Х	Х	Х											R	
	Х		Х							R				
	Х			Х										
	Х				Х									
	Х					Х					R			

Figure 1.10. Les reines dans un échiquier

Le problème de domination des cases d'un échiquier peut être présenté d'une manière plus générale pour n'importe quelle pièce du jeu d'échecs en un problème de domination des sommets d'un graphe. En effet, Soit G = (V, E) un graphe simple dont les sommets représentent les cases de l'échiquier. Deux sommets de G sont adjacents si on peut se déplacer à partir de l'un vers l'autre en un coup de la pièce considérée. Un sous-ensemble de sommets D de V est un dominant de G si tout sommet de V - D est adjacent à au moins un sommet de D. Le cardinal minimum d'un ensemble dominant de G, appelé nombre de domination, est noté $\gamma(G)$ et tout ensemble dominant de cardinal $\gamma(G)$ est appelé $\gamma(G)$ -ensemble. Le cardinal maximum d'un ensemble dominant minimal de G appelé nombre de domination supérieur est noté $\Gamma(G)$.

Notons qu'un graphe G peut avoir plusieurs $\gamma(G)$ -ensembles mais un seul nombre de domination. Par exemple, dans le graphe G de la figure 1.11, $\gamma(G) = 2$ et $D_1 = \{c, d\}$ et $D_2 = \{c, g\}$ sont des $\gamma(G)$ -ensembles.

Notons qu'un ensemble dominant est minimal si et seulement si $pn[v, D] \neq \emptyset$ pour tout $v \in S$.

Bien que l'histoire de l'étude mathématique des ensembles dominants n'a commencé qu'à la fin des années 50 du siècle précèdent, ce sujet a des origines qui remontent à 1862, quand JAENISCH [8] a étudié le problème des reines dans un jeu d'échecs présenté dans le paragraphe précèdent.

En 1958, BERGE [9] donna une formulation de la domination dans les graphes orientés et appela le nombre de domination *coefficient de stabilité externe*. En 1962, ORE [10] publia

Figure 1.11. Un graphe G.

son livre de théorie des graphes dans lequel il utilisa pour la première fois les appellations "ensemble dominant" et "nombre de domination" quoi qu'il ait noté le nombre de domination d(G).

Quoi qu'il en soit, l'article de COCKAYNE et HEDETNIEMI [11] publié en 1977 qui a fait le tour des résultats obtenus dans le domaine de la domination a été le premier indice du grand intérêt que portaient les chercheurs pour ce domaine à cette époque.

La domination a pu attirer plus d'attention dans les années qui ont suivi et en 1990, HEDETNIEMI et LASKAR [12] ont publié un numéro spécial de discrete maths consacré entièrement à la domination. La bibliographie de 1990 a révélé une augmentation impressionnante du nombre de références dans ce domaine. En effet, dans une période de 30 ans, ce nombre est passé de 20 à 400 références. Cette croissance intensive est actuellement plus évidente avec plus de 1200 références dont 950 figurent dans le livre de HAYNES, HEDET-NIEMI et SLATER [6] publié en 1998.

Il se peut que ce grand intérêt à la domination provienne en partie de la variété des perspectives avec lesquelles ce problème peut être vu. Par exemple, voici quelques définitions équivalentes d'un ensemble dominant:

Recouvrement sommet-sommet: Un ensemble $S \subset V$ est un ensemble dominant du graphe G si tout sommet dans V - S possède au moins un voisin (est couvert ou dominé par un sommet) dans S.

Intersection d'ensembles: Un ensemble $S \subseteq V$ est un dominant de G si pour tout sommet $x \in V - S$,

$$N(x) \cap S \neq \emptyset.$$

Réunion de voisinages: $S \subseteq V$ est un dominant si

$$N[S] = \bigcup_{v \in S} N[v] = V.$$

Fonction de domination: Soit f la fonction $f : V \to \{0, 1\}$ telle que pour tout sommet $v \in V$,

$$\sum_{u \in N[v]} f(u) \ge 1.$$

Une autre motivation pour l'étude de la domination est la possibilité de former de nouveaux paramètres de domination. En effet, beaucoup de paramètres de domination ont vu le jour en combinant la domination avec une propriété ou condition supplémentaire \mathcal{P} dans les graphes. Ainsi, des paramètres peuvent être définis en imposant une contrainte additionnelle à l'ensemble dominant ou à l'ensemble dominé ou même à la façon de dominer. Par exemple, imposer la condition que le sous-graphe induit par l'ensemble dominant S soit indépendant, produit *la domination stable*. On peut imposer aussi que $\langle S \rangle$ soit connexe, soit une clique ou possède un cycle hamiltonien. Aussi, de nouveaux paramètres de domination sont obtenus en changeant la manière de domination, le fait d'imposer que tout sommet dans V - S possède k voisins dans S produit la k-domination. A titre d'exemple, considérons maintenant quelques types de domination parmi ceux qui feront l'objet des prochains chapitres:

La domination totale: Un sous-ensemble D de V est dit dominant total de G si tout sommet de V possède un voisin dans D. Le nombre de domination totale, noté $\gamma_t(G)$, est la taille minimum d'un ensemble dominant total de G. Par exemple dans la figure 1.11, l'ensemble $D = \{c, d\}$ est un ensemble dominant total minimum et donc $\gamma_t(G) = 2$.

La domination double: Un sous-ensemble D de V est dit dominant double de G si tout sommet de V est dominé par au moins deux sommets de D. c'est à dire ou bien le sommet $v \in D$ et possède au moins un voisin dans D, ou bien $v \in V - D$ et possède au moins deux voisins dans D. Le nombre de domination double, noté $\gamma_{\times 2}(G)$, est la taille minimum d'un ensemble dominant double de G. dans la figure 1.11, l'ensemble $D = \{c, d, e, f, g\}$ est un ensemble dominant double minimum et donc $\gamma_{\times 2}(G) = 5$.

La domination couplée: Un sous-ensemble D de V est dit dominant couplé de G si D est un dominant de G et le sous-graphe induit par D admet au moins un couplage parfait. Le

nombre de domination couplée, noté $\gamma_{pr}(G)$, est le cardinal minimum d'un ensemble dominant couplé de G. Par exemple dans la figure 1.11, l'ensemble $D = \{c, d\}$ est un ensemble dominant couplé minimum avec $E = \{cd\}$ comme couplage parfait et donc $\gamma_{pr}(G) = 2$.

De plus, l'application de la domination dans une large variété de problèmes concrets a sans doute été aussi derrière sa grande popularité. Citons par exemple des applications dans les réseaux de communication, les systèmes de surveillance, les réseaux électriques etc. En effet, à titre d'exemple, les trois types de domination qu'on vient de citer peuvent servir comme des modèles de problèmes réels:

- Prenons par exemple un réseau de micro-ordinateurs dans lequel un groupe de serveurs a l'habilité de communiquer directement avec n'importe quel micro en dehors du groupe. En plus, tout serveur doit être relié à au moins un autre serveur dans lequel la même information est dupliquée. Le plus petit groupe possible de serveurs avec cette propriété est un ensemble dominant total minimum du graphe représentant le réseau.

- Considérons le problème du placement des gardiens dans une prison. Un gardien placé sur un sommet v peut garder tous les sommets de son voisinage fermé. Dans ce cas, un ensemble dominant double D représente un ensemble de gardiens avec la propriété que tout prisonnier (un sommet de V - D) est surveillé par au moins deux gardiens, et chaque gardien (un sommet de D) est proche d'un autre gardien de telle sorte qu'ils s'assurent mutuellement aide et assistance en cas de besoin.

- Reprenons l'exemple du placement des gardiens dans une prison. Si l'on veut que les gardiens soient affectés par couples, c'est à dire que chaque gardien doit avoir un partenaire désigné. Dans ce cas l'ensemble *S* cherché n'est autre qu'un ensemble dominant couplé minimum.

Pour les raisons citées et pour bien d'autres, la domination figure aujourd'hui parmi les branches les plus étudiées de la théorie des graphes et ouvre une très grande variété de voies de recherche. Voici quelques problèmes parmi les plus étudiés actuellement dans le domaine de la domination:

Bornes sur les différents paramètres de domination: En l'absence de valeurs exactes, on est amené à rechercher des bornes supérieures et inférieures simples à vérifier pour les

paramètres de domination et de caractériser les graphes pour lesquelles ces bornes sont atteintes. Ces bornes sont en général fonction de n, $\Delta(G)$, $\delta(G)$ ou liant les paramètres de domination entre eux, etc.

Relations du type Nordhauss-Gaddum: Il s'agit de déterminer, pour un paramètre de domination quelconque $\mu(G)$, des fonctions $f_1(n, \Delta, \delta)$ et $f_2(n, \Delta, \delta)$ telles que:

$$\mu(G) + \mu(\bar{G}) \leq f_1(n, \Delta, \delta) \text{ et}$$

 $\mu(G)\mu(\bar{G}) \leq f_2(n, \Delta, \delta).$

Algorithmique de la domination: Puisque le problème de détermination des paramètres de domination dans les graphes est NP-complet en général (voir la définition de la NP-complétude dans la section suivante), la recherche d'algorithmes polynomiaux dans des classes particulières de graphes ayant des structures simples s'avère l'un des problèmes les plus intéressants liés à la domination. Par exemples, les arbres, les cactus, les graphes d'intervalles, les graphes triangulés, les graphes bipartis, etc.

Séquences de paramètres de domination: D'après la définition d'un ensemble dominant, on peut voir que la condition de maximalité d'un ensemble stable est précisément la définition d'un ensemble dominant. Ainsi, tout ensemble indépendant maximal est un dominant minimal ce qui donne la chaîne d'inégalité suivante:

$$\gamma \le i \le \beta \le \Gamma.$$

Un sous-ensemble $D \subseteq V$ est dit *irrédondant* si tout sommet $x \in D$ domine au moins un sommet de G qui n'est dominé par aucun autre sommet de D. C'est à dire que tout sommet de D est soit isolé dans D soit possède au moins un voisin privé dans V-D. Le cardinal minimum (resp. maximum) d'un ensemble irrédondant maximal est noté ir(G) (resp. IR(G)) et appelé le nombre d'irrédondance (resp. nombre d'irrédondance supérieur). En procédant de la même manière que ci-dessus, la condition de minimalité d'un ensemble dominant n'est autre que la définition d'un ensemble irrédondant. Ainsi, tout ensemble dominant minimal est un irrédondant maximal et on aura la nouvelle chaîne:

$$ir \leq \gamma \leq i \leq \beta \leq \Gamma \leq IR.$$

Les chaînes d'inégalités ont fait l'objet de plusieurs problèmes comme :

- Trouver de nouvelles extensions de cette chaîne en suivant la même démarche que cidessus.

- Caractériser les graphes pour lesquels l'égalité ou la forte égalité est vérifiée dans une ou plusieurs inégalités. La forte égalité de $\mu_1(G)$ et $\mu_2(G)$ est notée $\mu_1(G) \equiv \mu_2(G)$. Deux paramètres $\mu_1(G)$ et $\mu_2(G)$ avec $\mu_1(G) \leq \mu_2(G)$ sont dit fortement égaux si $\mu_1(G) = \mu_2(G)$ et de plus tout $\mu_1(G)$ -ensemble est aussi un $\mu_2(G)$ -ensemble. Cette notion a fait l'objet de plusieurs travaux comme ceux de HAYNES, HENNING et SLATER [13, 14].

Etude de classes de graphes ayant des propriétés liées à la domination: Un axe récent de recherche dans le domaine de la domination consiste à étudier, explorer, caractériser des classes de graphes ayant une ou plusieurs propriétés liées à la domination. Citons par exemple la classe de graphes qui fera l'objet de la présente étude, il s'agit de la classe des graphes μ -excellents:

Pour tout paramètre $\mu(G)$, un ensemble D de cardinal $\mu(G)$ vérifiant la propriété désirée est appelé $\mu(G)$ -ensemble ou simplement μ -ensemble. On dit qu'un sommet est $\mu - bon$ s'il appartient à au moins un $\mu(G)$ -ensemble et $\mu - mauvais$ sinon. Soit μg (respectivement, μb) le nombre de sommets bons (respectivement, mauvais) de G. Un graphe G est dit:

- $\mu excellent$ si tout sommet de G est μbon (c'est à dire que $\mu g = n$ et $\mu b = 0$),
- μ recommandable si $\mu g > \mu b \ge 1$,
- $\mu indésirable$ (ou $\mu pauvre$) si $\mu g < \mu b$, et
- μ acceptable (ou μ juste) si $\mu g = \mu b$.

Ce concept a été introduit par FRICKE et al. dans [1] où ils ont posé le problème de caractérisation des graphes μ -excellents, μ -recommandables, μ -indésirables et μ -justes pour n'importe quel paramètre $\mu(G) \in \{ir(G), \gamma(G), i(G), \beta(G), \Gamma(G), IR(G)\}.$

Notons que si $\mu(G)$ est défini pour un graphe G, alors $\mu(G) \leq \mu g \leq n$ et $0 \leq \mu b \leq n - \mu(G)$.

Figure 1.12. Un graphe γ -acceptable.

Par exemple, pour le cas du nombre de domination ($\mu = \gamma$), il est simple de voir que les graphes bipartis complets et les cycles sans cordes sont γ -excellents, les étoiles subdivisées $S_{1,k}^*$ avec $k \ge 2$ sont γ -recommandables (seul le sommet central est mauvais), le graphe de la figure 1.12 est γ -acceptable (les sommets bons (resp. mauvais) sont étiquetés par un b (resp. un g)) et toute étoile $S_{1,k}$ pour $k \ge 2$ est γ -indésirable.

L'étude de l'excellence dans les graphes est d'un grand intérêt du point de vue théorique et même pratique. En effet, pour tout type de domination, il est intéressant du point de vue théorique de chercher à connaître les graphes dans lesquels tout sommet est dans un μ -ensemble. Du point de vue pratique, caractériser les graphes excellents par rapport aux différents paramètres de domination serait une information supplémentaire qui peut faire la différence pour le choix d'un type de domination au moment de la modélisation de problèmes réels et même pour le choix de la structure souhaitée du graphe représentant le problème posé si le type de domination voulu est connu à priori.

1.3 Complexité des algorithmes

Le concept d'algorithme a été souvent défini par des termes équivalents plus ou moins précis: méthode, procédé, processus,...etc. Ces termes indiquent l'utilisation de règles ou d'instructions pour obtenir un résultat en un nombre fini d'étapes.

Le terme d'algorithme tient son origine du moyen orient du savant Abou Djaafar Mohammed Ibn Moussa el Khawarismi dans un ouvrage considéré comme le propulseur de ce domaine clé des mathématiques.

Un algorithme de résolution d'un problème (P) donné est une procédure décomposable en opérations élémentaires transformant une chaine de caractères représentant les données de n'importe quel exemple ou instance du problème (P) en une chaine de caractères représentant les résultats de (P).

La performance d'un algorithme est généralement mesurée selon la relation existante entre la taille de l'exemple traité (exprimée en termes du nombre n de caractères nécessaires pour le codage des données) et le temps d'éxecution (exprimé en termes du nombre f(n)d'opérations élémentaires). Les opérations élémentaires à comptabiliser sont principalement les quatres opérations usuelles, les affectations et les comparaisons. Le codage des données est tel que l'encombrement mémoire nécessaire pour stocker un nombre positif N, est égaleau plus petit entier supérieur ou égal à $\log_2(N+1)$.

Un algorithme est dit éfficace ou encore polynomial si le nombre total d'opérations élémentaires effectuées pour aboutir à la solution est borné par un polynome en la taille du problème. Autrement dit: il existe deux constantes C et k telles que $f(n) = Cn^k$. Un tel algorithme a une complexité $O(n^k)$.

Un problème est dit polynomial ou appartient à la classe P (problèmes déterministes polynomiaux) s'il existe un algorithme polynomial ou efficace pour le résoudre. Les problèmes de la classe P sont dits "faciles".

Un problème d'optimisation combinatoire consiste à chercher une meilleure solution parmi un ensemble fini de solutions réalisables.

A chaque problème d'optimisation combinatoire, on peut associer un problème de reconnaissance de la manière suivante.

Soit un problème d'optimisation combinatoire: Trouver $s' \in S | f(s') = min \{ f(s) | s \in S \}$.

Soit a un nombre, on définit le problème de reconnaissance ou de décision associé: Existe-t-il un $s' \in S | f(s') \le a$?

Un problème d'optimisation combinatoire est au moins aussi difficile que le problème de reconnaissance associé. De plus, on peut généralement prouver que le problème de reconnaissance n'est pas plus facile que le problème d'optimisation combinatoire. En d'autres termes, cela signifie qu'un problème d'optimisation combinatoire est souvent du même niveau de difficulté que le problème de reconnaissance associé.

Pour la plupart des problèmes d'optimisation combinatoire que l'on connait, on ne dispose pas d'algorithmes de résolution efficaces.

Un problème de décision est dit dans NP (problèmes non déterministes polynomiaux) (resp. CO-NP) si dans le cas où la réponse est affirmative (resp. négative), on peut produire un certificat qui permet de vérifier en temps polynomial la réponse donnée.

Etant donné que les algorithmes efficaces sont des algorithmes non déterministes, il est clair que $P \subseteq NP$. Mais la classe NP contient des problèmes pour lesquels on ne connaît pas d'algorithme polynomial de résolution. La conjecture $P \neq NP$ demeure cependant ouverte.

On dit qu'un problème (P_1) se réduit en temps polynomial à un problème (P_2) , s'il existe un algorithme pour (P_1) qui fait appel à un algorithme de résolution de (P_2) et si cet algorithme de résolution de (P_1) est polynomial lorsque la résolution de (P_2) est comptabilisée comme une opération élémentaire.

Un problème de décision dans NP est dit NP-complet si tout problème de la classe NP peut lui être réduit en temps polynomial. Ainsi, s'il existe un algorithme polynomial permettant de résoudre un problème NP-complet, il existerait un algorithme polynomial pour tous les problèmes de la classe NP.

Les problèmes NP-durs sont des problèmes au moins aussi difficiles que les problèmes NP-complets et tout problème d'optimisation combinatoire dont le problème de re reconnaissance est NP-complet est NP-dur.

Le problème de reconnaissance d'une classe de graphes: étant donné un graphe G, peuton reconnaître par un algorithme polynomial si G appartient à une classe donnée ou non.

CHAPITRE 2

LES GRAPHES μ -EXCELLENTS

Dans le chapitre introductif, nous avons défini la notion d'excellence dans les graphes par rapport à un paramètre de domination quelconque introduite par FRICKE et al. [1]. Nous nous interessons maintenant aux différents résultats obtenus dans la classe des graphes μ -excellents.

La difficulté que présente l'étude de cette classe a fait que les résultats les plus importants concernent non pas les graphes en général, mais des classes particulières de graphes.

2.1 Les arbres γ -excellents

Avant de présenter les principaux résultats relatifs aux arbres excellents par rapport à la domination, nous commençons par quelques résultats et remarques concernant les graphes γ -excellents en général.

La première proposition qu'on va voir revient à FRICKE et al. [1], il s'agit de montrer que tout graphe G est un sous-graphe induit d'un graphe γ -excellent. Il est clair que le graphe G est un sous-graphe induit du graphe $G \circ K_1$ et que $\gamma(G \circ K_1) = n$. Notons aussi que puisque V et l'ensemble des sommets pendants de $G \circ K_1$ sont des γ -ensembles de $G \circ K_1$, alors $G \circ K_1$ est un graphe γ -excellent.

Proposition 2.1. [1] Tout graphe est un sous-graphe induit d'un graphe γ -excellent.

Il est clair d'après la Proposition 2.1, que la classe des graphes γ -excellents ne peut pas être caractérisée en termes de sous-graphes induits interdits.

Corollaire 2.2. [1] Il n'existe pas de caractérisation des graphes γ -excellents en termes de sous-graphes interdits.

Notons que pour n'importe quel $\gamma(G)$ -ensemble S et n'importe quel sommet pendant v d'un graphe G, ou bien v ou bien son support u est dans S, et qu'il n'existe pas de $\gamma(G)$ - ensemble contenant v et u en même temps. FRICKE et al. [1] ont remarqué que tout support domine tous les sommets pendants qui lui sont voisins.

Remarque 2.3. [1] Pour n'importe quel graphe connexe $G \neq K_2$, tout support est γ -bon et il existe un $\gamma(G)$ -ensemble qui contient tous les supports.

Remarque 2.4. [1] Pour tout graphe γ -excellent G, tout sommet pendant est dans au moins un $\gamma(G)$ -ensemble et il n'existe pas de sommet pendant appartenant à tout $\gamma(G)$ -ensemble.

Notons aussi que si un support u est un support fort (c'est-à-dire qu'il est adjacent à au moins deux sommets pendants), alors u est dans tout $\gamma(G)$ -ensemble et donc ses sommets pendants n'appartiennent à aucun $\gamma(G)$ -ensemble.

Remarque 2.5. [1] Pour tout graphe γ -excellent G, tout support n'est adjacent qu'à un seul sommet pendant.

Le premier résultat relatif à la famille des arbres γ -excellents donné par les auteurs de [1] est la caractérisation des chaînes γ -excellentes.

Proposition 2.6. [1] La chaîne P_n est γ -excellente si et seulement si $P_n = P_2$ ou bien $n \equiv 1 \pmod{3}$.

Puisque les couronnes $G \circ K_1$ sont excellentes, dans le résultat suivant, les auteurs ont montré que tous les arbres γ -excellents T avec $diam(T) \leq 5$ sont des couronnes. Soit \mathcal{F} la famille des couronnes d'étoiles et des couronnes des doubles étoiles. Voir la figure 2.1.

Théorème 2.7. [1] Un arbre non trivial T avec $diam(T) \le 5$ est γ -excellent si et seulement si $T \in \mathcal{F}$.

Corollaire 2.8. [1] Si $T \notin \mathcal{F}$ est un arbre γ -excellent, alors $diam(T) \ge 6$ et cette borne est atteinte.

Il est évident que cette borne est atteinte avec la couronne $P_5 \circ K_1$, mais les couronnes ne sont pas les seuls graphes obtenant cette borne inférieure. Ceci est valable aussi pour la famille des étoiles doubles subdivisées.

Figure 2.1. La famille \mathcal{F} : Couronnes des étoiles et des double étoiles.

2.1.1 Une construction des arbres γ -excellents

Dans le même article, les auteurs ont proposé, en se servant du lemme suivant, une construction des arbres γ -excellents à partir de deux arbres γ -excellents.

Lemme 2.9. [1] Si T est un arbre γ -excellent d'ordre $n \ge 4$, alors il existe un $\gamma(T)$ ensemble S tel que S n'est pas indépendant.

Construction A:[1]

(1) Soient T_1 et T_2 des arbres γ -excellents (d'ordre au moins 4). d'après le Lemme 2.9, on peut supposer que S_1 et S_2 sont des γ -ensembles mais pas des *i*-ensembles de T_1 et T_2 respectivement. Soient $u \in S_1$ et $v \in S_2$ où u (resp. v) n'est pas un sommet isolé dans $\langle S_1 \rangle$ (resp. $\langle S_2 \rangle$).

(2) Soit $T = T_1 \cup T_2 + uv$.

Proposition 2.10. [1] L'arbre T obtenu par la construction A est γ -excellent.

Bien que les résultats obtenus dans l'article de FRICKE et al. [1] sont très intéressants, les auteurs n'ont pas caractérisé les arbres γ -excellents de $diam \ge 6$, mais ces derniers ont été caractérisés par SUMNER [15] dans un article qui n'est pas encore publié.

<u>2.1.2 Les sommets appartenant à tout ou à aucun γ -ensemble d'un arbre</u>

Un autre travail ayant une relation très étroite avec les arbres γ -excellents, mais qui est encore plus général, a été éffectué par MYNHARDT [16]. Il s'agit de la caractérisation des ensembles de sommets appartenant à tout ou à aucun γ -ensemble. Malgré que cet article est apparu avant même que la notion d'excellence dans les graphe ne soit introduite, les résultats qu'il contient sont très importants pour l'étude des arbres γ -excellents. En effet, une caractérisation des arbres γ -excellents est équivalente à ce que l'ensemble des sommets qui n'appartiennent à aucun γ -ensemble soit vide.

Avant de présenter ces résultats nous donnons les définitions et notations suivantes:

Définition 2.11. [16] Dans un arbre T, On définit les ensembles $\mathcal{A}(T)$ et $\mathcal{N}(T)$ par: $\mathcal{A}(T) = \{v \in V / v \text{ est dans tout } \gamma(T)\text{-ensemble}\};$ $\mathcal{N}(T) = \{v \in V / v \text{ n'est dans aucun } \gamma(T)\text{-ensemble}\}.$

Afin de faciliter la représentation, nous utiliserons souvent des arbres enracinés, on définit un arbre enraciné en un sommet r comme un arbre pendu en r, c'est à dire une arborescence de racine r (arbre orienté) où l'orientation est implicite, c'est à dire que les sommets sont classés par niveaux suivant leur distance par rapport au sommet racine r. On définit le sommet parent p(v) de v comme étant le sommet de niveau plus haut que v et adjacent à v. Le sommet u est un sommet fils de v si p(u) = v, un sommet fils n'a qu'un seul parent mais un parent peut avoir plusieurs fils. Un sommet u est descendant de v s'il est situé sur un niveau inférieur à celui de v et il existe une chaîne (allant d'un niveau à un niveau plus bas) reliant v et u. On note pour un sommet w d'un arbre enraciné T:

$$\begin{split} C(w) &= \left\{ u \in V \, / \, u \text{ est un sommet fils de } w \right\}, \\ D(w) &= \left\{ u \in V \, / \, u \text{ est un sommet descendant de } w \right\}, \\ D\left[w\right] &= D(w) \cup \left\{w\right\}, \text{ et} \\ T_w &= D\left[w\right] \cap T. \end{split}$$

On note par L(T) l'ensemble des sommets pendants de T et par S(T) l'ensemble des sommets supports de T. Un sommet de degré au moins trois est dit sommet *branche* et on note par B(T) l'ensemble des sommets branches de T. Une chaîne P dans T est dite une v - L chaîne, si elle joint v à un sommet pendant de T. On note la longueur de P par l(P), et pour j = 0, 1, et 2, on définit:

 $C^{j}(v) = \left\{ u \in C(v) : T_{u} \text{ contient une } u - L \text{ chaîne } P \text{ avec } l(P) \equiv j \pmod{3} \right\}.$

Pour un arbre T enraciné en un sommet v ($T = T_v$) dans lequel $\deg_T(u) \le 2$; $\forall u \in V(T) - \{v\}$, les ensembles $\mathcal{A}(T)$ et $\mathcal{N}(T)$ sont caractérisés par le théorème suivant:

Théorème 2.12. [16] Soit T un arbre enraciné en un sommet v avec $\deg_T(u) \le 2 \ \forall u \in V(T) - \{v\}$, alors

- $v \in \mathcal{A}(T)$ si et seulement si $|C^0(v)| \ge 2$.
- $v \in \mathcal{N}(T)$ si et seulement si $C^0(v) = \emptyset$ et $C^1(v) \neq \emptyset$.

Processus d'élagage d'un arbre par rapport à la domination [16]:

Nous décrivons maintenant une technique appelée *élagage d'un arbre* (en anglais, tree pruning) qui permet de caractériser les ensembles $\mathcal{A}(T)$ et $\mathcal{N}(T)$ pour un arbre T quel-conque.

Pour n'importe quel sommet u d'un arbre enraciné T, l'ensemble de toutes les u - Lchaînes dans T_u est noté $\Pi(u)$. Pour j = 0, 1, 2, on définit

$$\Pi^{j}(u) = \left\{ P \in \Pi(u) \mid l(P) \equiv j \pmod{3} \right\}.$$

L'élagage de T est effectué par rapport au sommet racine. Supposons que T est enraciné en v ($T = T_v$). Soit u le sommet branche à distance maximum de v (notons que $|C(u)| \ge 2$ et deg $(x) \le 2$ pour tout $x \in D(u)$).

Pour tout $w \in C(u)$, une priorité est assignée à w ou à la chaîne $P \in \Pi(w)$, où $w^0 \in C^0(u)$ et $P^0 \in \Pi^0(u)$ ont une priorité supérieure à celle de $w^1 \in C^1(u)$ et $P^1 \in \Pi^1(u)$ qui ont encore une priorité supérieure à celle de $w^2 \in C^2(u)$ et $P^2 \in \Pi^2(u)$.

Soit z le fils de u ayant la plus grande priorité. Pour tout $w \in C(u) - \{z\}$, effacer D[w]. Cette étape de l'élagage, où tous les fils de u excepté un sont effacés avec leurs descendants pour donner un arbre dans lequel u est de degré 2, est appelé un élagage de T_v en u. Ce processus est répété jusqu'à l'obtention d'un arbre \overline{T}_v dans lequel $\deg(u) \leq 2$ $\forall u \in V(\overline{T}_v) - \{v\}$. (\overline{T}_v est l'arbre élagué obtenu à partir de T_v). Afin de simplifier les notations, on écrit $\overline{C}^j(v)$ au lieu de $C^j_{T_v}(v)$.

Venons maintenant aux résultats montrant qu'un sommet v d'un arbre T est dans tout γ -ensemble (resp. dans aucun γ -ensemble) de T si et seulement si v est dans tout $\gamma(T)$ -ensemble (resp. dans aucun $\gamma(T)$ -ensemble) de l'arbre \overline{T}_v .

Théorème 2.13. [16] Soit un arbre T enraciné en un sommet v et soit \overline{T}_v l'arbre élagué obtenu à partir de T. Pour tout γ -ensemble \overline{X} de \overline{T}_v , il existe un γ -ensemble X de T tel que $v \in X$ si et seulement si $v \in \overline{X}$. Réciproquement, pour tout γ -ensemble X de T, il existe un γ -ensemble \overline{X} de \overline{T}_v tel que $v \in \overline{X}$ si et seulement si $v \in X$.

Corollaire 2.14. [16] Pour tout arbre T et tout sommet v de $T, v \in \mathcal{A}(T)$ si et seulement si $|\overline{C}^0(v)| \ge 2$, et $v \in \mathcal{N}(T)$ si et seulement si $\overline{C}^0(v) = \emptyset$ et $\overline{C}^1(v) \neq \emptyset$.

Ayant caractérisé l'ensemble \mathcal{N} des sommets n'appartenant à aucun γ -ensemble pour n'importe quel arbre T, la caractérisation des arbres γ -excellents devient évidente.

Corollaire 2.15. Un arbre T est γ -excellent si et seulement si pour tout sommet v de T, $\overline{C}^{0}(v) \neq \emptyset$ ou $\overline{C}^{1}(v) = \emptyset$.

2.2 Les arbres *i*-excellents

Un arbre T est dit *i*-excellent si tout sommet appartient à au moins un i(T)-ensemble. Avant de passer à la caractérisation de la famille des arbres *i*-excellents, présentons un résultat obtenu par FRICKE et al. [1] dans lequel ils ont montré que les arbres γ -excellents sont des arbres *i*-excellents.

Théorème 2.16. [1] Si T est un arbre γ -excellent, alors $\gamma(T) = i(T)$ et T est un arbre *i*-excellent.

Notons qu'un arbre *i*-excellent n'est pas nécessairement γ -excellent. Par exemple, la double étoile $S_{r,r}$ pour $r \ge 2$ est *i*-excellente mais pas γ -excellente. Aussi, notons que le théorème 2.16 ne peut être étendu aux graphes bipartis. Le graphe biparti complet $K_{r,r}$ pour $r \ge 3$, est γ -excellent et *i*-excellent mais $\gamma(K_{r,r}) = 2 \neq i(K_{r,r}) = r$; $K_{r,s}$ pour 3 < r < s est γ -excellent mais pas *i*-excellent et $\gamma(K_{r,s}) = 2 \neq i(K_{r,s}) = r$.

2.2.1 Une caractérisation des arbres i-excellents

Une caractérisation constructive des arbres *i*-excellents a été établie par HAYNES et HEN-NING [2] qui ont réussi à construire récursivement la famille T des arbres *i*-excellents à partir d'une double étoile en se servant de deux opérations. La famille \mathcal{T} : Soit \mathcal{T} la famille d'arbres qui peuvent être obtenus à partir de la séquence d'arbres $T_1, ..., T_j$ $(j \ge 1)$ tels que T_1 est une double étoile $S_{r,r}$ avec $r \ge 1$ et $T = T_j$ et si $j \ge 2, T_{i+1}$ peut être obtenu récursivement à partir de T_i pour i = 1, ..., j - 1 à l'aide de l'une des deux opérations \mathcal{T}_1 et \mathcal{T}_2 ci-dessous.

Le statut d'un sommet v, noté sta(v), peut être A ou B. Initialement, sta(v) = A si $v \in S(T_1)$ ($S(T_1)$ est l'ensemble des supports de T_1) et sta(v) = B pour tout sommet pendant de T_1 . Une fois un statut est attribué à un sommet, ce statut reste inchangé pendant la construction de l'arbre T.

Opération \mathcal{T}_1 . T_{i+1} est obtenu à partir de T_i en ajoutant une étoile $S_{1,t}$ $(t \ge 1)$ de centre w, une arête wy où $y \in V(T_i)$ et sta(y) = A et t - 1 sommets pendants adjacents à y. Poser sta(w) = A et sta(v) = B pour tout nouveau sommet pendant v.

Opération \mathcal{T}_2 . T_{i+1} est obtenu à partir de T_i en ajoutant une double étoile $S_{t,t+1}$ et l'arête wy où w est le sommet de $S_{t,t+1}$ qui est adjacent à $t \ge 0$ sommets pendants et $y \in V(T_i)$ avec $\operatorname{sta}(y) = B$. Poser $\operatorname{sta}(v) = A$ si $v \in S(S_{t,t+1}) \cup \{w\}$ et $\operatorname{sta}(v) = B$ pour chaque nouveau sommet pendant ajouté à T_i .

Venons maintenant à la caractérisation des arbres *i*-excellents:

Théorème 2.17. [2] Un arbre T est *i*-excellent si et seulement si $T \in \{K_1, K_2\}$ ou bien $T \in \mathcal{T}$.

<u>2.3 Les arbres γ_t -excellents</u>

Un arbre T est dit γ_t -excellent si tout sommet de T appartient à au moins un $\gamma_t(T)$ -ensemble. Avant de présenter les différents résultats obtenus dans la classe des graphes γ_t -excellents, commençons par donner quelques exemples de graphes appartenant à cette famille. Tout graphe complet est γ_t -excellent puisqu'il suffit de prendre deux sommets quelconques pour avoir un ensemble dominant total minimum. De plus, tous les cycles C_n et tous les graphes bipartis complets $K_{r,s}$ sont des graphes γ_t -excellents.

Le premier résultat que nous allons voir est dû à DAUTERMANN [17], il s'agit de montrer que tout graphe est un sous-graphe induit d'un graphe γ_t -excellent. Donnons tout d'abord les remarques et définitions suivantes:

Remarque 2.18. [17] Tout support doit être dans tout γ_t -ensemble.

La 2 - couronne d'un graphe G est le graphe obtenu à partir d'une copie de G, où pour tout sommet $v \in V(G)$, deux nouveaux sommets v' et v'' et les arêtes vv' et v'v'' sont ajoutés. Il est évident que G est un sous-graphe induit de la 1-couronne (ou simplement couronne) et de la 2-couronne de G. De plus, G est un sous-graphe induit de la k-couronne de G.

Proposition 2.19. [17] Tout graphe H est un sous-graphe induit d'un graphe γ_t -excellent. Preuve. Nous avons vu que tout graphe H est un sous-graphe induit de la 2-couronne de H. Soit G la 2-couronne de H. d'après la Remarque 2.18, tout $\gamma_t(G)$ -ensemble doit contenir tous les supports de G ainsi qu'un voisin de chacun d'eux. Soient S l'ensemble de tous les supports de G et L l'ensemble de tous ses sommets pendants. Alors $S \cup L$ et $S \cup V(H)$ sont tous les deux des $\gamma_t(G)$ -ensembles. Par conséquent, G est γ_t -excellent. \Box

Ceci a conduit l'auteur au corollaire suivant:

Corollaire 2.20. [17] Il n'existe pas de caractérisation de la classe des graphes γ_t -excellents en termes de sous-graphes induits interdits.

DAUTERMANN [17] a donné aussi une propriété des chaînes γ_t -excellentes.

Proposition 2.21. [17] Toute chaîne P_n pour n = 3 ou $n \equiv 2 \pmod{4}$ est γ_t -excellente.

2.3.1 Une caractérisation des arbres γ_t -excellents

Le résultat suivant dans la classe des graphes γ_t -excellents revient à HENNING [3], il s'agit d'une caractérisation constructive de la famille \mathcal{T} des arbres γ_t -excellents. Avant, de présenter ce résultat, nous avons d'abord besoin des définitions suivantes.

Définition 2.22. [3] Le nombre de domination total de G relatif à v, noté $\gamma_t^v(G)$, est le cardinal minimum d'un EDT de G contenant v. Un EDT de cardinal $\gamma_t^v(G)$ est dit $\gamma_t^v(G)$ -ensemble.

D'après cette dernière définition, un graphe G est γ_t -excellent si $\gamma_t^v(G) = \gamma_t(G)$ pour tout sommet v de G.

Définition 2.23. [3] Un sommet v est dit être dominé totalement par un ensemble $S \subseteq V(G)$ s'il est adjacent à un sommet de S. Un ensemble quasi dominant total (EQDT) de G relatif à v est un ensemble qui domine totalement tous les sommets de G excepté peut être le sommet v. Le nombre de quasi domination totale de G relatif à v, noté $\gamma_t^v(G; v)$, est le cardinal minimum d'un EQDT de G relatif à v.

Définition 2.24. [3] Un ensemble $U \subseteq V(G)$ est dominé totalement par un ensemble $S \subseteq V(G)$ si tout sommet de U est dominé totalement par S. On définit un ensemble dominant total de U dans G comme un ensemble de sommets dans G qui domine totalement U. Le nombre de domination total de U dans G, noté $\gamma_t(G; U)$, est le cardinal minimum d'un EDT de U dans G.

La famille \mathcal{T} : Soit \mathcal{T} la famille d'arbres qui peuvent être obtenus à partir de la séquence d'arbres $T_1, ..., T_j$ $(j \ge 1)$ tels que T_1 est une étoile $S_{1,r}$ pour $r \ge 1$ et $T = T_j$ et si $j \ge 2$, T_{i+1} peut être obtenu récursivement à partir de T_i pour i = 1, ..., j - 1 à l'aide de l'une des quatre opérations $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ et \mathcal{T}_4 ci-dessous.

Le statut d'un sommet v, noté sta(v), peut être A, B ou C. Initialement, si $T_1 = K_2$, alors sta(v) = A pour tout sommet v de T_1 et si $T_1 = K_{1,r}$ avec $r \ge 2$, alors sta(v) = Apour le sommet central de T_1 , sta(v) = B pour tout sommet pendant de T_1 excepté pour un seul auquel le statut C est attribué. Une fois un statut est attribué à un sommet, ce statut reste inchangé pendant la construction de l'arbre T sauf pour un sommet de statut C qui peut changer au statut A.

Opération \mathcal{T}_1 . T_{i+1} est obtenu à partir de T_i en ajoutant la chaîne u, w', w, z et l'arête uyoù $y \in V(T_i)$ et sta(y) = A. Poser sta(u) = sta(w') = B et sta(w) = sta(z) = A.

Opération T_2 . T_{i+1} est obtenu à partir de T_i en ajoutant une étoile $S_{1,t}$ pour $t \ge 3$ de centre w telle que l'arête uw est subdivisée et en ajoutant aussi l'arête uy où $y \in V(T_i)$ avec $\operatorname{sta}(y) = A$. Poser $\operatorname{sta}(w) = A$, $\operatorname{sta}(z) = C$ pour exactement un sommet pendant z adjacent à w et $\operatorname{sta}(v) = B$ pour tout sommet v restant ayant été ajouté à T_i .

Opération \mathcal{T}_3 . T_{i+1} est obtenu à partir de T_i en ajoutant la chaîne u, w, z et l'arête uy où $y \in V(T_i)$ et sta(y) = B. Poser sta(u) = B et sta(w) = sta(z) = A. Si le sommet y' de statut A adjacent à y est adjacent à un sommet c de statut C et si y' n'est pas un support fort dans T, alors on change le statut du sommet c du statut C au statut A.

Opération \mathcal{T}_4 . T_{i+1} est obtenu à partir de T_i en ajoutant une étoile $S_{1,t}$ pour $t \ge 3$ de centre w et l'arête uy où $y \in V(T_i)$ avec sta(y) = B et u est un sommet adjacent à w. Poser

sta(w) = A, sta(z) = C pour exactement un sommet pendant z ($z \neq u$) adjacent à w et et sta(v) = B pour tout sommet v restant ayant été ajouté à T_i . Si le sommet y' de statut Aadjacent à y est adjacent à un sommet c de statut C, et si y' n'est pas un support fort dans T, alors on change le statut du sommet c du statut C au statut A.

Avant de présenter le résultat principal de ce paragraphe, nous donnons quelques remarques et résultats établis par HENNING [3].

Définition 2.25. [3] Si $T \in T$ et T est obtenu par la séquence $T_1, ..., T_m$, on dit que T est de longueur m dans T.

Remarque 2.26. [3] Si $T \in T$, alors le nombre de sommets de statut A ou C est égal à deux fois la longueur de T.

Remarque 2.27. [3] Si T est un arbre non trivial et $v \in V(T)$, alors $\gamma_t^v(T; v) \leq \gamma_t(T) \leq \gamma_t^v(T; v) + 1$.

Théorème 2.28. [3] Soient $T \in T$ de longueur m dans T, v un sommet de T et U l'ensemble des sommets de T ayant un statut A ou C. alors

- *T* est un graphe γ_t -excellent et $\gamma_t(T) = 2m$;
- si sta(v) = A, alors $\gamma_t(T) = \gamma_t^v(T; v) + 1;$
- $\gamma_t(T; U) = \gamma_t(T);$
- si sta(v) = B ou C, alors $\gamma_t(T) = \gamma_t^v(T; v);$
- si sta(v) = A, alors aucun sommet pendant n'est à distance 2 ou 3 de v.

Venons maintenant à la caractérisation de la famille des arbres γ_t -excellents.

Théorème 2.29. [3] Un arbre non trivial T est γ_t -excellent si et seulement si $T \in \mathcal{T}$.

2.3.2 Les sommets appartenant à tout ou à aucun γ_t -ensemble d'un arbre

Nous présentons maintenant une caractérisation de la classe des arbres γ_t -excellents en fonction de l'ensemble de sommets qui ne sont dans aucun γ_t -ensemble d'un arbre qui a été caractérisé par, COCKAYNE, HENNING et MYNHARDT [18].

Commençons d'abord par les définitions et notations suivantes:

Définition 2.30. [18] Dans un arbre T, On définit les ensembles $\mathcal{A}_t(T)$ et $\mathcal{N}_t(T)$ par: $\mathcal{A}_t(T) = \{v \in V \mid v \text{ est dans tout } \gamma_t(T)\text{-ensemble}\};$ $\mathcal{N}_t(T) = \{v \in V \mid v \text{ n'est dans aucun } \gamma_t(T)\text{-ensemble}\}.$

Définition 2.31. [18] On définit dans un arbre enraciné T les ensembles suivants:

- $L(v) = D(v) \cap L(T);$
- $L^{j}(v) = \{u \in L(v) \mid d(u, v) \equiv j \pmod{4}\}$ et ce pour j = 0, 1, 2 ou 3.

Pour un arbre T enraciné en un sommet v dans lequel $\deg_T(u) \leq 2$; $\forall u \in V(T) - \{v\}$, les ensembles $\mathcal{A}_t(T)$ et $\mathcal{N}_t(T)$ sont caractérisés par le théorème suivant qui est dû à COCKAYNE et al. [18]:

Théorème 2.32. [18] Soit T un arbre enraciné en un sommet v avec $\deg_T(u) \le 2 \ \forall u \in V(T) - \{v\}$, alors

- $v \in \mathcal{A}_t(T)$ si et seulement si v est un support ou bien $|L^1(v) \cup L^2(v)| \ge 2;$
- $v \in \mathcal{N}_t(T)$ si et seulement si $L^1(v) \cup L^2(v) = \emptyset$.

Processus d'élagage d'un arbre par rapport à la domination totale [18]:

Décrivons maintenant le processus d'élagage d'un arbre T qui permet de caractériser les ensembles \mathcal{A}_t et \mathcal{N}_t d'un arbre T. Etant donné un sommet $u \in T$, on dit qu'on *attache* une chaîne de longueur q à u si on joint u à un sommet pendant de la chaîne P_q .

Soit v un sommet de T qui n'est pas un support. L'élagage de T est éffectué par rapport au sommet racine. Supposons alors que l'arbre T est enraciné en v $(T = T_v)$. Si $\deg_T(u) \le 2$ $\forall u \in V(T_v) - \{v\}$, alors $\overline{T}_v = T_v$. Sinon, soit w un sommet de B(T) à distance maximum de v. Notons que $|C(w)| \ge 2$ et $\deg_T(x) \le 2 \ \forall x \in D(w)$.

On applique le processus suivant:

- Si $|L^2(w)| \ge 1$, effacer D(w) et attacher une chaîne de longueur 2 à w.
- Si |L¹(w)| ≥ 1, L²(w) = Ø et |L³(w)| ≥ 1, effacer D(w) et attacher une chaîne de longueur 2 à w.
- Si |L¹(w)| ≥ 1, L²(w) = L³(w) = Ø, effacer D(w) et attacher une chaîne de longueur 1 à w.
- Si L¹(w) = L²(w) = Ø et |L³(w)| ≥ 1, effacer D(w) et attacher une chaîne de longueur 3 à w.
- Si L¹(w) = L²(w) = |L³(w)| = Ø, effacer D(w) et attacher une chaîne de longueur 4 à w.

Cette étape du processus d'élagage où tous les descendants de w sont effacés et une chaîne de longueur 1, 2, 3 ou 4 est attachée à w pour donner un arbre dans lequel deg(w) = 2est appelée un élagage de T en w. On répète ce processus jusqu'à ce qu'un arbre \bar{T}_v est obtenu avec $\deg_T(x) \leq 2 \ \forall x \in \bar{T}_v - \{v\}$. Pour simplifier les notations, nous écrirons $\bar{L}^j(v)$ au lieu de $L^j_{\bar{T}_v}(v)$.

Puisque l'arbre \overline{T}_v vérifie les conditions du théorème 2.32, le résultat suivant devient évident:

Théorème 2.33. [18] Soit v un sommet d'un arbre T, alors

- $v \in \mathcal{A}_t(T)$ si et seulement si v est un support ou $\left| \overline{L^1}(v) \cup \overline{L^2}(v) \right| \ge 2;$
- $v \in \mathcal{N}_t(T)$ si et seulement si $\overline{L}^1(v) \cup \overline{L}^2(v) = \emptyset$.

La caractérisation des arbres γ_t -excellents est donc donnée par le corollaire suivant:

Corollaire 2.34. Un arbre T est γ_t -excellent si et seulement si pour tout sommet $v, \overline{L^1}(v) \cup \overline{L^2}(v) \neq \emptyset$.

2.4 Les arbres β -excellents, Γ -excellents et *IR*-excellents

FRICKE et al. [1] ont réussi aussi à caractériser les classes des arbres β -excellents, Γ excellents et *IR*-excellents, notées respectivement par $\beta \mathcal{E}(\mathcal{T})$, $\Gamma \mathcal{E}(\mathcal{T})$ et $IR\mathcal{E}(\mathcal{T})$.

Les auteurs se sont d'abord servis de la caractérisation suivante des arbres β -excellents.

Théorème 2.35. [1] Pour tout arbre T d'ordre $n \ge 2$, T est β -excellent si et seulement si T possède un couplage parfait.

Ensuite, les auteurs ont prouvé que les classes $\beta \mathcal{E}(\mathcal{T})$, $\Gamma \mathcal{E}(\mathcal{T})$ et $IR\mathcal{E}(\mathcal{T})$ sont identiques.

Théorème 2.36. [1] Les classes suivantes d'arbres sont équivalentes:

- $\beta \mathcal{E}(\mathcal{T});$
- $\Gamma \mathcal{E}(\mathcal{T});$
- $IR\mathcal{E}(\mathcal{T})$.

2.5 Quelques problèmes ouverts

Avant de conclure ce chapitre, présentons quelques problèmes ouverts proposés par FRICKE et al. [1] ayant une relation avec l'excellence dans les graphes:

- Caractériser ou étudier les arbres excellents par rapport à d'autres paramètres de domination.
- Est t-il vrai qu'un arbre ir-excellent est γ -excellent?
- Etudier les différents concepts présentés dans le chapitre introductif. Par exemple, étudier la famille des graphes γ -indésirables.

CHAPITRE 3

LES GRAPHES $\gamma_{\times 2}\text{-}\text{EXCELLENTS}$

Bien que les résultats obtenus jusqu'à présent sur l'excellence sont importants, ils restent loin de répondre au nombre important de questions et de problèmes ouverts que présente la classe des graphes μ -excellents. Ceci est peut être dû au fait que la notion d'excellence n'a été introduite qu'en 2002, et peut être aussi à la difficulté rencontrée dans l'étude de ces graphes.

Le présent chapitre est consacré à la présentation de nouveaux résultats relatifs à une famille particulière de la classe des graphes μ -excellents, il s'agit en l'occurence de la famille des graphes $\gamma_{\times 2}$ -excellents qui constitue un axe de recherche jusqu'à présent non exploré.

Afin d'éclaircir quelques spécificités de la domination double, nous commençons par une brève présentation de quelques résultats et remarques relatifs à celle-ci.

3.1 Aperçu sur la domination double

Soit G = (V, E) un graphe simple. Un sous-ensemble S de V est un dominant double de Gsi pour tout sommet $v \in V$, on a $|N[v] \cap S| \ge 2$, c'est à dire ou bien le sommet v appartient à S et possède au moins un voisin dans S, ou bien v appartient à V - S et possède au moins deux voisins dans S. Le nombre de domination double, noté $\gamma_{\times 2}(G)$, est le cardinal minimum d'un ensemble dominant double de G. Ce concept a été introduit par HARARY et HAYNES [19] et a fait l'objet de plusieurs études comme celles de HARARY et HAYNES [19, 20, 21] ou celles de BLIDIA, CHELLALI, HAYNES et HENNING [22, 23, 24].

Dans le but de se familiariser avec le concept de la domination double, prenons par exemple les graphes de la figure 3.1. Nous pouvons facilement voir que l'ensemble $\{v_1, v_2, v_3, v_4\}$ est un ensemble dominant double minimum du cube Q_3 . Pour l'étoile subdivisée $S_{1,k}^*$ ($k \ge 2$), tout EDD de $S_{1,k}^*$ doit contenir tout sommet pendant v_i ainsi que son support u_i , ceci est dû au fait qu'un sommet pendant ne peut être dans l'ensemble dominé puisqu'il ne peut pas être dominé deux fois. Donc $\gamma_{\times 2}(S_{1,k}^*) = 2k$.

Figure 3.1. Le cube Q_3 et l'étoile subdivisée $S_{1,k}^*$.

On a vu dans l'exemple de l'étoile subdivisée $S_{1,k}^*$ de la figure 3.1 que tout sommet pendant v_i ainsi que son support u_i doivent être dans tout EDD de $S_{1,k}^*$. Ainsi la remarque suivante peut être faite pour un graphe quelconque.

Remarque 3.1. *Dans un graphe, tout ensemble dominant double contient tous les sommets pendants et sommets supports.*

Un résultat très important a été donné par HARARY et HAYNES [19], il s'agit de l'existence d'un ensemble dominant double.

Théorème 3.2. [19] Tout graphe sans sommets isolés possède un ensemble dominant double (EDD) et donc un nombre de domination double.

Concernant la minimalité des ensembles dominants doubles, CHELLALI et HAYNES [22] ont prouvé le théorème suivant:

Théorème 3.3. [22] Soient G un graphe sans sommets isolés et S un EDD de G. Alors S est minimal si et seulement si chaque sommet $v \in S$ satisfait l'une des conditions suivantes:

- *1)* v est un sommet pendant dans $\langle S \rangle$.
- 2) v est adjacent à un sommet pendant dans $\langle S \rangle$,
- 3) il existe un sommet u dans V S tel que $N(u) \cap S = \{v, w\}$.

Les remarques suivantes nous seront utiles pour la suite de notre étude:

Remarque 3.4. Pour toute chaîne P_n avec $n \ge 2$, on a: $\gamma_{\times 2}(P_n) = \begin{cases} 2n/3 + 1 \text{ si } n \equiv 0 \pmod{3} \\ 2 \lceil n/3 \rceil \text{ sinon} \end{cases}$ **Remarque 3.5.** La chaîne P_n avec $n \equiv 2 \pmod{3}$ possède un dominant double minimum unique.

Définition 3.6. On dit qu'on attache une chaîne P_n à un sommet u d'un graphe si l'on relie l'un des sommets pendants de cette chaîne à u.

Remarque 3.7. Soit C la chaîne obtenue en attachant une chaîne P_3 à l'un des sommets pendants d'une chaîne C', alors $\gamma_{\times 2}(C) = \gamma_{\times 2}(C') + 2$.

Preuve. Soit $C' = v_1, ..., v_{k-1}, v_k$ une chaîne constituée de k sommets et soit $C = v_1, ..., v_{k-1}, v_k, v_{k+1}, v_{k+2}, v_{k+3}$ la chaîne obtenue en attachant une chaîne $v_{k+1}, v_{k+2}, v_{k+3}$ au sommet v_k de C'. Soit S'un $\gamma_{\times 2}(C')$ -ensemble. Il est clair que $S = S' \cup \{v_{k+2}, v_{k+3}\}$ est un EDD de C. Donc $\gamma_{\times 2}(C) \leq \gamma_{\times 2}(C') + 2$. D'autre part, soit D un $\gamma_{\times 2}(C)$ -ensemble. d'après la Remarque 3.1, D contient v_{k+2} et v_{k+3} . Si $v_{k+1} \notin D$, alors $D' = D - \{v_{k+2}, v_{k+3}\}$ est un EDD de C'. Sinon, si D contient v_{k-1} et ne contient pas v_k , alors $D' = (D - \{v_{k+1}, v_{k+2}, v_{k+3}\}) \cup \{v_k\}$ est un EDD de C', sinon, par la minimalité de D, ce dernier contient v_k et pas v_{k-1} et donc $D' = (D - \{v_{k+1}, v_{k+2}, v_{k+3}\}) \cup \{v_k\}$ serait aussi un EDD de C'. Dans les trois cas |D'| = |D| - 2 et donc $\gamma_{\times 2}(C') \leq \gamma_{\times 2}(C) - 2$. Par conséquent, $\gamma_{\times 2}(C) = \gamma_{\times 2}(C') + 2$.

<u>3.2 Les graphes</u> $\gamma_{\times 2}$ -<u>excellents</u>

Rappelons qu'un graphe G est $\gamma_{\times 2}$ -excellent si tout sommet de G est dans au moins un $\gamma_{\times 2}(G)$ -ensemble. Afin d'illustrer cette définition, donnons quelques exemples. Il est clair, d'après la Remarque 3.1, que l'étoile $S_{1,k}$ ainsi que la double étoile $S_{r,s}$ sont $\gamma_{\times 2}$ -excellentes. On peut facilement voir aussi que le graphe biparti complet $K_{r,s}$ et le cycle C_n sont $\gamma_{\times 2}$ excellents. Par contre, le graphe G de la figure 3.2 n'est pas $\gamma_{\times 2}$ -excellent puisque le sommet w n'appartient à aucun $\gamma_{\times 2}(G)$ -ensemble.

Notre premier résultat relatif aux graphes $\gamma_{\times 2}$ -excellents montre que tout graphe est un sous-graphe induit d'un graphe $\gamma_{\times 2}$ -excellent. En effet, considérons la couronne $G \circ K_1$ d'un graphe G. d'après la Remarque 3.1, le graphe $G \circ K_1$ possède un $\gamma_{\times 2}$ -ensemble unique contenant tous ses sommets (qui sont soit des sommets pendants soit des supports). Par conséquent, le graphe $G \circ K_1$ est $\gamma_{\times 2}$ -excellent. D'où notre première proposition:

Proposition 3.8. Tout graphe est un sous-graphe induit d'un graphe $\gamma_{\times 2}$ -excellent.

Figure 3.2. Le graphe G.

Corollaire 3.9. Il n'existe pas de caractérisation des graphes $\gamma_{\times 2}$ -excellents en termes de sous-graphes induits interdits.

Ce corollaire est une conséquence directe de la proposition 3.8.

Notre résultat suivant concerne les chaînes, il s'agit de la caractérisation des chaînes $\gamma_{\times 2}$ -excellentes.

Proposition 3.10. Une chaîne P_n est $\gamma_{\times 2}$ -excellente si et seulement si n = 2 ou $n \equiv 0$ ou $1 \pmod{3}$.

Preuve. Il est clair que P_2 *est une chaîne* $\gamma_{\times 2}$ *- excellente.*

Pour montrer qu'une chaîne P_n avec $n \equiv 0 \pmod{3}$ est $\gamma_{\times 2}$ - excellente, procédons par induction sur le nombre de sommets de la chaîne. On sait que les chaînes P_3 et P_6 sont $\gamma_{\times 2}$ excellentes, supposons que la chaîne $C' = v_1, ..., v_{n-1}, v_n$ avec n = 3k est $\gamma_{\times 2}$ - excellente et montrons que la chaîne $C = v_1, ..., v_{n-1}, v_n, v_{n+1}, v_{n+2}, v_{n+3}$ ayant 3(k + 1) sommets l'est aussi.

D'après la Remarque 3.7, tout $\gamma_{\times 2}(C')$ -ensemble peut être étendu à un $\gamma_{\times 2}(C)$ -ensemble en ajoutant les deux sommets v_{n+2} et v_{n+3} et puisque C' est $\gamma_{\times 2}$ - excellente, il nous reste à montrer qu'il existe un $\gamma_{\times 2}(C)$ - ensemble qui contient le sommet v_{n+1} . Soit S' un $\gamma_{\times 2}(C')$ ensemble contenant le sommet v_{n-2} . On sait d'après la Remarque 3.1 que v_{n-1} et v_n appartiennent aussi à S'. Soit $S = (S' \cup \{v_{n+1}, v_{n+2}, v_{n+3}\}) - \{v_n\}$, on peut facilement voir que S est un EDD de C et puisque |S| = |S'| + 2, et d'après la Remarque 3.7, S est un $\gamma_{\times 2}(C)$ ensemble qui contient v_{n+1} . Donc C est $\gamma_{\times 2}$ - excellente. Les mêmes arguments peuvent être utilisés pour montrer qu'une chaîne P_n avec $n \equiv 1 \pmod{3}$ est $\gamma_{\times 2}$ - excellente.

Réciproquement, montrons que si une chaîne est constituée de $n \equiv 2 \pmod{3}$ *sommets*

avec $n \neq 2$, alors elle n'est pas $\gamma_{\times 2}$ - excellente. Puisqu'une chaîne P_n avec $n \equiv 2 \pmod{3}$ et $n \neq 2$ possède un $\gamma_{\times 2}$ - ensemble unique, alors celle-ci n'est pas $\gamma_{\times 2}$ - excellente.

Avant de présenter un résultat qui nous sera utile pour la suite, donnons les définitions suivantes:

Définition 3.11. Une chaîne C, dans un graphe G, est dite séparatrice si elle relie deux sommets supports de G et $\deg_G(v) = 2$ pour tout sommet v de C.

Puisque tous les sommets pendants et tous les supports d'un graphe sont dans tout $\gamma_{\times 2}$ ensemble de ce graphe et d'après la Proposition 3.10, une chaîne C est $\gamma_{\times 2}$ -excellente si et seulement si sa chaîne séparatrice est constituée de $n \equiv 0$ ou $2 \pmod{3}$ sommets.

Une chaîne séparatrice est dite séparatrice $\gamma_{\times 2}$ -excellente (CSE) si elle est constituée de $n \equiv 0$ ou 2(mod 3) et séparatrice non $\gamma_{\times 2}$ -excellente (CSNE) si elle est constituée de $n \equiv 1 \pmod{3}$.

Proposition 3.12. Si un graphe G est $\gamma_{\times 2}$ -excellent, alors G ne contient pas de CSNE.

Preuve. Utilisons la contraposée et montrons que si G contient au moins une CNSE, alors G n'est pas $\gamma_{\times 2}$ -excellent. Puisque la CSNE sépare deux supports qui sont, d'après la Remarque 3.1, dans tout $\gamma_{\times 2}$ -ensemble, le reste du graphe n'influe pas sur l'appartenance des sommets de cette chaîne aux $\gamma_{\times 2}(G)$ -ensembles (les sommets de la chaîne peuvent être traités comme si on avait cette chaîne seulement) et donc le graphe G n'est pas $\gamma_{\times 2}$ -excellent.

Il est clair que la réciproque n'est pas vraie. Prenons par exemple l'étoile subdivisée $S_{1,k}^*$ avec $(k \ge 3)$ dont le sommet central ne peut appartenir à aucun $\gamma_{\times 2}(S_{1,k}^*)$ -ensemble donc elle n'est pas $\gamma_{\times 2}$ - excellente alors qu'elle ne contient pas de CSNE.

<u>3.2.1 Caractérisation des chenilles</u> $\gamma_{\times 2}$ -excellentes

Nous allons maintenant voir une famille d'arbres très étudiée appelée *les chenilles*. Une chenille est un arbre non trivial T_c dont l'élimination de tous les sommets pendants produit une chaîne $P_k = v_1, v_2, ..., v_k$ appelée *le squelette* de la chenille tel que chaque sommet de T_c est ou bien sur la chaîne ou bien adjacent à un sommet de la chaîne P_k . Le code d'une chenille T_c est $c(T_c) = (c_1, c_2, ..., c_k)$ où c_i est le nombre de sommets pendants adjacents

à un sommet v_i . il est à noter que $c_1 \neq 0$ et $c_k \neq 0$. Aussi, par convention, $c_1 \geq c_k$. Par exemple, voir la figure 3.3 ci-dessous:

Figure 3.3. Une Chenille T_c avec $c(T_c) = (2, 1, 3, 0, 0, 0, 2, 1, 0, 0, 3, 1)$.

Pour l'étude des chenilles, nous allons considérer *les chaînes séparatrices* situées entre deux supports consécutifs, c'est-à-dire celles constituées par les sommets v_i ayant un $c_i =$ 0 et notons par z_i le nombre de sommets qui constituent une chaîne séparatrice C_i . Par exemple, dans le graphe T_c de la figure 3.3 ci-dessus, $C_1 = v_4, v_5, v_6$ avec $z_1 = 3$ et $C_2 =$ v_9, v_{10} avec $z_2 = 2$.

Puisqu'une chenille est constituée de sommets supports, de sommets pendants et de chaînes séparatrices, et d'après la Proposition 3.12, nous pouvons donner ci-après une car-actérisation des chenilles $\gamma_{\times 2}$ -excellentes.

Théorème 3.13. Une chenille T_c est $\gamma_{\times 2}$ -excellente si et seulement si toutes ses chaînes séparatrices sont des CSE.

Preuve. D'après la Proposition 3.12, si T_c est $\gamma_{\times 2}$ -excellente, alors toutes ses chaînes séparatrices sont des CSE.

Réciproquement, montrons que si toutes les chaînes séparatrices de T_c sont des CSE, alors la chenille T_c est $\gamma_{\times 2}$ -excellente. Procédons par induction sur le nombre k de supports constituant la chenille. Notons que les sommets pendants reliés à un support jouent le même rôle, c'est pourquoi nous considérons un seul sommet pendant par support.

Si k = 2, la chenille est formée par une CSE reliant deux supports avec leurs sommets pendants. Dans ce cas, T_c est une chaîne formée d' un nombre de sommets $n \equiv 0$ ou $1 \pmod{3}$ qui est, d'après la Proposition 3.10, $\gamma_{\times 2}$ -excellente.

Soit $k \ge 3$, soit T'_c la chenille formée par k supports reliés par des CSE et soit v le dernier support de T'_c et v' son sommet pendant. Supposons que T'_c est $\gamma_{\times 2}$ -excellente

et montrons que la chenille T_c obtenue en ajoutant à T'_c une CSE avec $v_1, v_2, ...v_j$ ainsi qu'un support v_{j+1} avec son sommet pendant v'_{j+1} est $\gamma_{\times 2}$ -excellente. Soient S' un $\gamma_{\times 2}(T'_c)$ ensemble quelconque de T'_c , $C = v', v, v_1, v_2, ...v_j, v_{j+1}, v'_{j+1}$.et D un $\gamma_{\times 2}(C)$ -ensemble. puisque $\{v, v'\} \subset S'$ et. $\{v, v'\} \subset D$, il est clair que $S = S' \cup (D - \{v, v'\})$ est un EDD de T_c et donc $\gamma_{\times 2}(T_c) \leq \gamma_{\times 2}(T'_c) + (\gamma_{\times 2}(C) - 2)$. D'autre part, soit B un $\gamma_{\times 2}(T_c)$ ensemble. On peut facilement voir que $B' = B \cap V(T'_c)$ est un EDD de T_c de cardinal $|B| - (\gamma_{\times 2}(C) - 2)$ et donc $\gamma_{\times 2}(T'_c) \leq \gamma_{\times 2}(T_c) - (\gamma_{\times 2}(C) - 2)$ et par conséquent, $\gamma_{\times 2}(T_c) = \gamma_{\times 2}(T'_c) + (\gamma_{\times 2}(C) - 2)$. Puisque tout $\gamma_{\times 2}(T'_c)$ -ensemble peut être étendu à un $\gamma_{\times 2}(T_c)$ -ensemble en ajoutant $D - \{v, v'\}$, et puisque T'_c est $\gamma_{\times 2}$ -excellente, alors tout sommet de T'_c est dans un $\gamma_{\times 2}(T_c)$ -ensemble, il nous reste alors à montrer que tout sommet de la chaîne $v_1, v_2, ...v_j$ appartient à un $\gamma_{\times 2}(T_c)$ -ensemble. Puisque la chaîne C est $\gamma_{\times 2}$ -excellente, alors tout sommet de la chaîne $v_1, v_2, ...v_j$ appartient à au moins un $\gamma_{\times 2}(C)$ ensemble qui peut être étendu à un $\gamma_{\times 2}(T_c)$ -ensemble en ajoutant $S' - \{v, v'\}$.

<u>3.2.2 Caractérisation des arbres</u> $\gamma_{\times 2}$ -excellents

Nous passons à une caractérisation des arbres $\gamma_{\times 2}$ -excellents basée sur la détermination des sommets n'appartenant à aucun $\gamma_{\times 2}$ -ensemble.

1- Les sommets appartenant à tout ou à aucun $\gamma_{\times 2}$ -ensemble d'un arbre:

Nous commençons tout d'abord par donner les définitions et résultats suivants:

Définition 3.14. [25] Soit T un arbre enraciné en un sommet v, $P^{j}(w)$ est l'ensemble des sommets $u \in L(w)$ tels que $d(w, u) \equiv j \pmod{3}$ et $\deg x = 2$ pour tout sommet intermédiaire x de la chaîne w - u pour j = 0, 1 ou 2.

Définition 3.15. [25] Dans un arbre T, l'ensemble $\mathcal{A}_{\times 2}(T)$ (resp. $\mathcal{N}_{\times 2}(T)$) est l'ensemble des sommets de T qui sont dans tout (resp. dans aucun) ensemble dominant double minimum de T.

Nous donnons maintenant un résultat qui nous permettra d'éliminer des chaînes à 3 sommets et nous sera donc utile pour caractériser les ensembles $\mathcal{A}_{\times 2}(T)$ et $\mathcal{N}_{\times 2}(T)$.

Lemme 3.16. [25] Soient T' un arbre et $v \in V(T')$. Soit T l'arbre obtenu à partir de T' en attachant une chaîne P_3 à un sommet pendant u de T' avec $v \notin N[u]$, alors

- (a) $\gamma_{\times 2}(T) = \gamma_{\times 2}(T') + 2;$
- (b) $v \in \mathcal{A}_{\times 2}(T')$ si et seulement si $v \in \mathcal{A}_{\times 2}(T)$;
- (c) $v \in \mathcal{N}_{\times 2}(T')$ si et seulement si $v \in \mathcal{N}_{\times 2}(T)$.

Preuve. Supposons que l'arbre T est obtenu à partir de T' en ajoutant la chaîne x, y, z et l'arête ux.

(a) Tout $\gamma_{\times 2}(T')$ -ensemble peut être étendu à un EDD de T en ajoutant l'ensemble $\{y, z\}$, d'où $\gamma_{\times 2}(T) \leq \gamma_{\times 2}(T') + 2$. D'autre part, soient D un $\gamma_{\times 2}(T)$ -ensemble et $D' = D \cap V(T')$. Si $x \notin D$, alors D' est un EDD de T', sinon $(x \in D)$, alors |D'| = |D| - 3 et x peut être remplacé dans D par u si $u \notin D$ ou par w sinon (où w est le support de u). Dans les deux cas, les ensembles $D' \cup \{u\}$ et $D' \cup \{w\}$ sont des EDD de T' de cardinal |D| - 2 d'où $\gamma_{\times 2}(T') \leq \gamma_{\times 2}(T') - 2$ et donc $\gamma_{\times 2}(T) = \gamma_{\times 2}(T') + 2$.

(b) Supposons que $v \notin A_{\times 2}(T')$. Soit D' un $\gamma_{\times 2}(T')$ -ensemble qui ne contient pas v alors $D' \cup \{y, z\}$ est un $\gamma_{\times 2}(T)$ -ensemble qui ne contient pas v et donc $v \notin A_{\times 2}(T)$. Réciproquement, supposons que $v \in A_{\times 2}(T')$. Soit D un $\gamma_{\times 2}(T)$ -ensemble et $D' = D \cap V(T')$. Si $x \notin D$, alors D' est un EDD de T' avec |D'| = |D| - 2. Par conséquent, D' est un $\gamma_{\times 2}(T')$ -ensemble avec $v \in D' \subset D$. Si $x \in D$, d'après (a), $D' \cup \{u\}$ et $D' \cup \{w\}$ sont des $\gamma_{\times 2}(T')$ -ensembles qui, donc, contiennent v. Dans tous les cas qu'on a vus et puisque $v \notin N[u], v \in D$ et donc $v \in A_{\times 2}(T)$.

(c) Supposons que $v \notin \mathcal{N}_{\times 2}(T')$. Soit D' un $\gamma_{\times 2}(T')$ -ensemble qui contient v. Il est clair que $D = D' \cup \{y, z\}$ est un $\gamma_{\times 2}(T)$ -ensemble qui contient v et donc $v \notin \mathcal{N}_{\times 2}(T)$. Inversement, supposons que $v \in \mathcal{N}_{\times 2}(T')$. Soient D un $\gamma_{\times 2}(T)$ -ensemble quelconque et $D' = D \cap V(T')$. Si $x \notin D$, alors D' est un $\gamma_{\times 2}(T')$ -ensemble et donc $v \notin D'$ et par conséquent, $v \notin D$. Si $x \in D$, on a vu dans (a) que les ensembles $D' \cup \{u\}$ et $D' \cup \{w\}$ sont des $\gamma_{\times 2}(T')$ -ensembles qui, donc, ne contiennent pas v. Dans tous les cas qu'on a vus et puisque $v \notin N[u]$, $v \notin D$ et donc $v \in \mathcal{N}_{\times 2}(T)$.

Définition 3.17. [25] Soit T un arbre enraciné en v, on définit l'ensemble $W^*(T_v)$ par:

$$W^*(T_v) = \left\{ w^* \in C(v) \mid L(w^*) = P^2(w^*), \ \left| P^2(w^*) \right| \ge 2 \text{ et } P^0(w^*) \cup P^1(w^*) = \emptyset \right\}.$$

Remarque 3.18. [25] Soit T un arbre enraciné en v avec $|W^*(T_v)| \ge 2$ et $C(v) - W^*(T_v) \ne \emptyset$ et soit $w^* \in W^*(T_v)$. Alors $v \in \mathcal{A}_{\times 2}(T_v)$ (resp. $\mathcal{N}_{\times 2}(T_v)$) si et seulement si $v \in \mathcal{A}_{\times 2}(T'_v)$ (resp. $\mathcal{N}_{\times 2}(T'_v)$) où $T'_v = T_v - \bigcup_{z \in W^*(T_v) - w^*} T_z$.

Remarque 3.19. [25] Soit T un arbre enraciné en v. Soit $w^* \in W^*(T_v)$ avec $|P^2(w^*)| \ge 3$. Alors $v \in \mathcal{A}_{\times 2}(T_v)$ (resp. $\mathcal{N}_{\times 2}(T_v)$) si et seulement si $v \in \mathcal{A}_{\times 2}(T'_v)$ (resp. $\mathcal{N}_{\times 2}(T'_v)$) où T'_v est l'arbre obtenu à partir de T_v en remplaçant $D[w^*]$ par une chaîne P_5 de centre w^* .

Pour la suite, nous admettrons que pour tout sommet $w^* \in W^*(T_v), |C(w^*)| = 2$. Nous introduisons maintenant un théorème qui caractérise les ensembles $\mathcal{A}_{\times 2}(T)$ et $\mathcal{N}_{\times 2}(T)$ pour un arbre T enraciné en v tel que $\deg(u) \leq 2 \ \forall u \notin W^*(T) \cup \{v\}$.

Théorème 3.20. [25] Soit T un arbre enraciné en v tel que $\deg(u) \le 2 \forall u \notin W^*(T) \cup \{v\}$. On a

a) $v \in \mathcal{A}_{\times 2}(T)$ si et seulement si une au moins des conditions suivantes est vérifiée:

- v est un sommet support; - v est un sommet pendant; - $|P^{1}(v)| \ge 2;$ - $|P^{0}(v)| \ge 3;$ - $|P^{1}(v)| = 1 \text{ et } |P^{0}(v)| \in \{1, 2\};$ - $|P^{1}(v)| = 1, W^{*} \ne \emptyset \text{ et } P^{2}(v) \cup P^{0}(v) = \emptyset$ - $|P^{0}(v)| = 2 \text{ et } |P^{2}(v)| \ge 1.$

b) $v \in \mathcal{N}_{\times 2}(T)$ si et seulement si $|P^2(v)| \ge 2$ et $P^1(v) \cup P^0(v) = \emptyset$.

Preuve. D'après la Remarque 3.1, le théorème 3.20 est vérifié pour les cas où v est un support ou sommet pendant. Pour la suite, supposons que v n'est pas un sommet support ni un sommet pendant. D'après le Lemme 3.16, l'arbre T_v peut être ramené à un arbre T_v^* en

remplaçant chaque chaîne v - b de T_v par une chaîne v - b de longueur j avec j = 3, 4, 2si $b \in P^i(v)$ pour i = 0, 1, 2 respectivement et les chaînes $w^* - b$ (où $b \in P^2(w^*)$) par des chaînes de longueur 2. Par conséquent, on aura $v \in \mathcal{A}_{\times 2}(T_v)$ (resp. $\mathcal{N}_{\times 2}(T_v)$) si et seulement si $v \in \mathcal{A}_{\times 2}(T_v^*)$ (resp. $\mathcal{N}_{\times 2}(T_v^*)$). Il est clair maintenant que tout sommet pendant de T_v^* est à distance 2, 3 ou 4 de v. Pour des raisons de simplicité d'écriture, nous noterons T_v^* par T. Commençons par la condition suffisante:

Cas 1: $|P^1(v)| \ge 2$.

Soient D un $\gamma_{\times 2}(T)$ -ensemble quelconque, u et x deux sommets de $P^1(v)$ à distance 4 de v avec $P_u = v, u_1, u_2, u_3, u$ et $P_x = v, x_1, x_2, x_3, x$ les v - u et v - x chaînes respectivement. d'après la Remarque 3.1, $\{u, u_3, x, x_3\} \subset D$. Si $v \notin D$, alors $\{u_1, u_2, x_1, x_2\} \subset D$. Dans ce cas, $D' = (D - \{u_2, x_2\}) \cup \{v\}$ est un EDD de T de cardinal inférieur à celui de D, contradiction. Par conséquent, $v \in \mathcal{A}_{\times 2}(T)$.

Cas 2: $|P^0(v)| \ge 3$.

Soient D un $\gamma_{\times 2}(T)$ -ensemble quelconque, u, x et w 3 sommets de $P^0(v)$ à distance 3 de v avec $P_u = v, u_1, u_2, u, P_x = v, x_1, x_2, x$ et $P_w = v, w_1, w_2, w$ les v - u, v - x et v - w chaînes respectivement. d'après la Remarque 3.1, $\{u, u_2, x, x_2, w, w_2\} \subset D$. Si $v \notin D$, alors $\{u_1, x_1, w_1\} \subset D$. Mais alors $D' = (D - \{x_1, w_1\}) \cup \{v\}$ est un EDD de T de cardinal inférieur à celui de D, contradiction. Par conséquent, $v \in \mathcal{A}_{\times 2}(T)$.

Cas 3: $|P^1(v)| = 1$ et $|P^0(v)| \in \{1, 2\}$.

Soient D un $\gamma_{\times 2}(T)$ -ensemble quelconque, u et x deux sommets de $P^1(v)$ et $P^0(v)$ à distance 4 et 3 respectivement de v avec $P_u = v, u_1, u_2, u_3, u$ et $P_x = v, x_1, x_2, x$ les v - u et v - x chaînes respectivement. On sait que $\{u, u_3, x, x_2\} \subset D$. Si $v \notin D$, alors $\{u_1, u_2, x_1\} \subset D$. Dans ce cas, $(D - \{u_2, x_1\}) \cup \{v\}$ est un EDD de T de cardinal inférieur à celui de D, contradiction. Par conséquent, $v \in \mathcal{A}_{\times 2}(T)$. Les mêmes arguments peuvent être utilisés pour montrer le cas $|P^0(v)| = 2$.

Cas 4: $|P^1(v)| = 1, W^* \neq \emptyset$ et $P^0(v) \cup P^2(v) = \emptyset$.

Soient D un $\gamma_{\times 2}(T)$ -ensemble quelconque, u un sommet de $P^1(v)$ à distance 4 de v et $w^* \in W^*(T)$ avec $P_u = v, u_1, u_2, u_3, u$ la v - u chaîne. Dans ce cas, w^* est double dominé. Si $v \notin D$, alors pour dominer $v, \{u_1, u_2, w^*\} \subset D$. Mais alors $(D - \{u_2, w^*\}) \cup \{v\}$ est un EDD de T de cardinal inférieur à celui de D, contradiction. Par conséquent, $v \in \mathcal{A}_{\times 2}(T)$.

Cas 5: $|P^0(v)| = 2 \text{ et } |P^2(v)| \ge 1.$

Soient D un $\gamma_{\times 2}(T)$ -ensemble quelconque, $u, x \in P^0(v)$ et $w \in P^2(v)$, 3 sommets à distance 3, 3 et 2 de v avec $P_u = v, u_1, u_2, u$, $P_x = v, x_1, x_2, x$ et $P_w = v, w_1, w$ les v - u, v - x et v - w chaînes respectivement. On a alors $\{u, u_2, x, x_2, w, w_1\} \subset D$. Si $v \notin D$, alors

 $\{u_1, x_1\} \subset D$. Il est simple de voir que $(D - \{x_1, u_1\}) \cup \{v\}$ est un EDD de T de cardinal inférieur à celui de D, contradiction. Par conséquent, $v \in \mathcal{A}_{\times 2}(T)$.

Cas 6: $|P^2(v)| \ge 2$ et $|P^1(v)| = |P^0(v)| = 0$.

Dans ce cas, l'arbre T est formé d'au moins deux chaînes P_2 attachées à v et éventuellement des sommets de $W^*(T)$. d'après la Remarque 3.1, tous les supports et tous les sommets pendants appartiennent à tous les EDD de T. Puisque les sommets de $W^*(T)$ sont doublement dominés par leurs descendants et v est doublement dominé par au moins deux supports, alors v ne peut appartenir à aucun $\gamma_{\times 2}(T)$ -ensemble. Par conséquent, $v \in \mathcal{N}_{\times 2}(T)$.

Notons que les démonstrations des cas 1, 2, 3, 4 et 6 sont valables pour un ensemble $W^*(T)$ quelconque.

Pour prouver la condition nécessaire, considérons en plus des cas précédents les cas suivants:

Cas 7: $|P^0(v)| = 2$ et $|P^1(v)| = |P^2(v)| = 0$.

Nous considérons deux cas:

a)- $W^*(T) = \emptyset$: L'arbre T est dans ce cas une chaîne $P_7 = u, u_2, u_1, v, x_1, x_2, x$. d'après la Remarque 3.4, $\gamma_{\times 2}(P_7) = 2 \left\lceil \frac{7}{3} \right\rceil = 6$. Il est clair que $D_1 = \{u, u_2, u_1, x_2, x_1, x\}$ et $D_2 = \{u, u_2, u_1, v, x_2, x\}$ sont des $\gamma_{\times 2}(T)$ -ensembles et par conséquent, $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

b)- $W^*(T) \neq \emptyset$. d'après la Remarque 3.18, supposons que $W^*(T) = \{w^*\}$. Dans ce cas, l'arbre T est formé de deux chaînes $P_1 = x_1, x_2, x$ et $P_2 = u_1, u_2, u$ attachées à v respectivement en x_1 et u_1 ainsi qu'une chaîne P_5 de centre w^* attaché à v. Soit D un $\gamma_{\times 2}(T)$ -ensemble. Supposons que $v \in \mathcal{A}_{\times 2}(T)$. Il est clair que D doit contenir v et exactement l'un des sommets w^* , x_1 ou u_1 , donc $(D - \{v, w^*, x_1, u_1\}) \cup \{x_1, u_1\}$ est un $\gamma_{\times 2}(T)$ -ensemble qui ne contient pas v d'où la contradiction. Supposons maintenant que $v \in \mathcal{N}_{\times 2}(T)$. Alors, $\{x_1, u_1\} \subset D$. Mais alors $(D - \{u_1\}) \cup \{v\}$ est un $\gamma_{\times 2}(T)$ -ensemble qui contient v, d'où la contradiction. Par conséquent, $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

Cas 8: $|P^1(v)| = 1$, $|P^2(v)| \ge 1$ et $|P^0(v)| = 0$.

Soit u un sommet de $P^1(v)$ à distance 4 de v avec $P_u = v, u_1, u_2, u_3, u$ la v - uchaîne. Alors tout autre sommet pendant de T est à distance 2 de v excepté peut être pour des sommets pendants descendants de sommets de $W^*(T)$. On sait que tout $\gamma_{\times 2}(T)$ ensemble contient tous les sommets supports ainsi que tous les sommets pendants. Pour double dominer les sommets v, u_1 et u_2 , tout $\gamma_{\times 2}(T)$ -ensemble doit contenir exactement deux d'entre eux. Par conséquent, il existe des $\gamma_{\times 2}(T)$ -ensembles D_1 avec $\{u_2, u_1\} \subset D_1$ et D_2 avec $\{u_1, v\} \subset D_2$, d'où $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

Cas 9: $|P^0(v)| = 1$, $|P^2(v)| \ge 1$ et $|P^1(v)| = 0$.

Soit u un sommet de $P^1(v)$ à distance 3 de v avec $P_u = v, u_1, u_2, u$ la v - u chaîne. Alors tout autre sommet pendant de T est à distance 2 de v excepté peut être pour des sommets pendants descendants de sommets de $W^*(T)$. On sait que tout $\gamma_{\times 2}(T)$ -ensemble contient tous les sommets supports ainsi que tous les sommets pendants. Pour double dominer les sommets v et u_1 , tout $\gamma_{\times 2}(T)$ -ensemble doit contenir exactement l'un d'entre eux. Par conséquent, il existe des $\gamma_{\times 2}(T)$ -ensembles D_1 avec $u_1 \in D_1$ et D_2 avec $v \in D_2$, d'où $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

Cas 10: $W^* \neq \emptyset$, $|P^0(v) \cup P^2(v)| = 1$ et $P^1(v) = \emptyset$.

D'après la Remarque 3.18, supposons que $W^*(T) = \{w^*\}$ et considérons deux cas:

a) $|P^0(v)| = 1$. Dans ce cas, l'arbre T est formé d'une chaîne $P_1 = x_1, x_2, x$ attachée à ven x_1 et d'une chaîne P_5 de centre w^* attaché à v. Il est évident que $D_1 = \{x_1, x_2, x, w^*\} \cup$ $D(w^*)$ et $D_2 = \{x_1, x_2, x, v\} \cup D(w^*)$ sont des $\gamma_{\times 2}(T)$ -ensembles. Par conséquent $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

b) $|P^2(v)| = 1$. Dans ce cas, l'arbre T est formé d'une chaîne $P_1 = x_1, x$ attachée à v en x_1 et d'une chaîne P_5 de centre w^* attaché à v. Il est évident que $D_1 = \{x_1, x, w^*\} \cup D(w^*)$ et $D_2 = \{x_1, x, v\} \cup D(w^*)$ sont des $\gamma_{\times 2}(T)$ -ensembles. Par conséquent $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

Cas 11: $|W^*(T)| \ge 2 \text{ et } P^0(v) \cup P^1(v) \cup P^2(v) = \emptyset.$

Dans ce cas, tous les $C(v) = W^*(T)$ avec $|W^*(T)| \ge 2$. Puisque tous les sommets de $W^*(T)$ sont dominés, il nous reste à dominer le sommet v, il suffit donc de prendre deux sommets de $W^*(T)$ ou bien le sommet v et un sommet de $W^*(T)$. Par conséquent, $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

2- L'élagage d'un arbre par rapport à la domination double [25]:

Supposons que l'arbre T est enraciné en v qui n'est pas un support ni un sommet pendant.

Si deg $(x) \le 2 \ \forall x \in (V(T) - W^*(T_v)) - \{v\}$, alors $\overline{T}_v = T_v$. Sinon soit u un sommet de B(T) à distance maximum de v. Notons que $|C(u)| \ge 2$ et deg $(x) \le 2 \ \forall x \in D(u)$.

On applique le processus suivant:

- Si $|P^1(u)| \ge 1$, effacer D(u) et attacher une chaîne P_1 (un sommet) à u.
- Si $|P^2(u)| \ge 1$, $|P^0(u)| \ge 1$ et $P^1(u) = \emptyset$, effacer D(u) et attacher une chaîne P_1 à u.
- Si $|P^2(u)| \ge 2$ et $P^0(u) \cup P^1(u) = \emptyset$, alors
 - si $u \in C(v)$, effacer D(u) et attacher deux chaînes P_2 à u.
 - si d(v, u) = 2 et $p(u) \notin B(T)$, effacer D(u) et attacher une chaîne P_2 à u.
 - si $u \notin C(v)$ et $d(v, u) \neq 2$ ou bien $p(u) \in B(T)$, effacer D[u].
- Si $|P^0(u)| \ge 2$ et $P^1(u) \cup P^2(u) = \emptyset$, effacer D(u) et attacher une chaîne P_3 à u.

Cette étape du processus d'élagage est appelée un élagage de T en u. On répète ce processus jusqu'à ce qu'un arbre \overline{T}_v soit obtenu avec $\deg(x) \le 2 \forall x \in (V(T) - W^*(T_v)) - \{v\}$.

Pour faciliter la compréhension de cette technique, nous donnons l'exemple illustratif suivant: considérons l'arbre T de la figure 3.4 ci-dessous. v, w, u, x, y et z sont les sommets branches de T, w est celui qui est à distance maximum 3 de v et puisque $|P^1(w)| \ge 1$, on efface D(w) et on attache une chaîne P_1 à w. On considère maintenant le sommet y qui est à distance 2 de v. Puisque $|P^1(y)| \ge 1$ on efface D(y) et on attache une chaîne P_1 à y. Il nous reste alors trois sommets à traiter z, u et x qui sont à distance 1 de v. Sachant que $z \in C(v)$, $|P^1(z) \cup P^0(z)| = 0$ et $|P^2(z)| \ge 2$, on efface D(z) et on attache deux chaînes P_2 à z. Concernant le sommet x, puisque $|P^0(x)| \ge 1$ et $|P^2(x)| \ge 1$ et $P^1(x) = \emptyset$, alors on efface D(x) et on attache chaîne P_1 à x. Puisque $|P^0(v)| \ge 2$ et $P^1(v) \cup P^2(v) = \emptyset$, alors on efface D(u) et on attache une chaîne P_3 à u. d'après le Théorème 3.20, $v \notin \mathcal{A}_{\times 2}(T) \cup \mathcal{N}_{\times 2}(T)$.

Figure 3.4. L'élagage de l'arbre T.

Afin de valider cette méthode, nous allons montrer que les opérations de l'élagage préservent les propriétés d'appartenance du sommet v à tout ou à aucun ensemble dominant double minimum de T.

Remarque 3.21. Soient T un arbre enraciné en v et u le sommet branche à distance maximum de v. d'après le Lemme 3.16, l'arbre T peut être réduit en remplaçant toute u - xchaîne de T par une u - x chaîne de longueur j, où j = 3, 1, 2 si $x \in P^i(u)$, i = 0, 1, 2 **Lemme 3.22.** [25] Soient T un arbre enraciné en v et u un sommet branche à distance maximum de v avec $k_1 = |P^1(u)|$, $k_2 = |P^2(u)|$ et $k_3 = |P^0(u)|$. Si

- (1) k₁ ≥ 1, poser T' l'arbre obtenu de T en effaçant D(u) et en attachant une chaîne P₁
 à u.
- (2) $k_2 \ge 1$, $k_3 \ge 1$ et $k_1 = 0$, poser T' l'arbre obtenu de T en effaçant D(u) et en attachant une chaîne $P_1 a u$.
- (3) $k_2 \ge 2, k_1 + k_3 = 0$ et $u \in C(v)$ poser T' l'arbre obtenu de T en effaçant D(u) et en attachant deux chaînes P_2 à u.
- (4) $k_2 \ge 2, k_1 + k_3 = 0, d(v, u) = 2$ et $p(u) \notin B(T)$ poser T' l'arbre obtenu de T en effaçant D(u) et en attachant une chaîne P_1 à u.
- (5) $k_2 \ge 2, k_1 + k_3 = 0, u \notin C(v)$ et $d(v, u) \ne 2$ ou bien $p(u) \in B(T) \{v\}$ poser T'l'arbre obtenu de T en effaçant D[u].
- (6) k₃ ≥ 2 et k₁ + k₂ = 0, poser T' l'arbre obtenu de T en effaçant D(u) et en attachant une chaîne P₁ à u.

alors pour chacun des cas précédents:

- (a) $v \in \mathcal{A}_{\times 2}(T)$ si et seulement si $v \in \mathcal{A}_{\times 2}(T')$;
- (b) $v \in \mathcal{N}_{\times 2}(T)$ si et seulement si $v \in \mathcal{N}_{\times 2}(T')$.

Preuve. Soient $[a_i]$, $[t_j, u_j]$ et $[x_k, y_k, z_k]$ des chaînes d'ordre 1, 2 et 3 respectivement, attachées à u où $a_i, u_j, z_k \in L(T) \cap D(u)$, pour $0 \le i \le k_1$, $0 \le j \le k_2$ et $0 \le k \le k_3$.

Cas 1. $k_1 \ge 1$. *Soit* $T' = T - (D(u) - \{a_1\})$.

 $\begin{array}{l} \textit{Montrons d'abord que } \gamma_{\times 2}(T') = \gamma_{\times 2}(T) - (k_1 - 1) - 2k_2 - 2k_3. \textit{ Tout } \gamma_{\times 2}(T') \textit{-ensemble } \\ \textit{peut être étendu à un EDD de T en ajoutant l'ensemble } \{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\} \textit{ pour } i \in \{2, ..., k_1\}, j \in \{1, ..., k_2\} \textit{ et } k \in \{1, ..., k_3\} \textit{ et } \textit{ donc } \gamma_{\times 2}(T) \leq \gamma_{\times 2}(T') + (k_1 - 1) + 2k_2 + 2k_3. \\ \textit{D'autre part, soit D un } \gamma_{\times 2}(T) \textit{-ensemble et } D' = D \cap T'. \textit{ Il est clair que } D' = D - (\{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\}) \textit{ pour } i \in \{2, ..., k_1\}, j \in \{1, ..., k_2\} \textit{ et } k \in \{1, ..., k_3\} \textit{ est un EDD de } T', \\ \textit{donc } \gamma_{\times 2}(T') \leq \gamma_{\times 2}(T) - (k_1 - 1) - 2k_2 - 2k_3 \textit{ d'où } \gamma_{\times 2}(T') = \gamma_{\times 2}(T) - (k_1 - 1) - 2k_2 - 2k_3. \end{array}$

(a) Supposons que $v \in \mathcal{A}_{\times 2}(T')$. Soit D un $\gamma_{\times 2}(T)$ -ensemble quelconque. On a vu que $D' = D - (\{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\})$ pour $i \in \{2, ..., k_1\}$, $j \in \{1, ..., k_2\}$ et $k \in \{1, ..., k_3\}$ est un EDD de T' de cardinal $\gamma_{\times 2}(T) - (k_1 - 1) - 2k_2 - 2k_3$, c'est donc un $\gamma_{\times 2}(T')$ -ensemble. Donc $v \in D' \subset D$. Par conséquent $v \in \mathcal{A}_{\times 2}(T)$.

Inversement, supposons que $v \in \mathcal{A}_{\times 2}(T)$ et soit S' un $\gamma_{\times 2}(T')$ -ensemble quelconque. On sait que $S = S' \cup \{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\}$ pour $i \in \{2, ..., k_1\}, j \in \{1, ..., k_2\}$ et $k \in \{1, ..., k_3\}$ est un $\gamma_{\times 2}(T)$ -ensemble, donc $v \in S$. Puisque $v \notin \{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\}, v \in S'$ d'où $v \in \mathcal{A}_{\times 2}(T')$.

(b) Supposons maintenant que $v \in \mathcal{N}_{\times 2}(T')$. Soit D un $\gamma_{\times 2}(T)$ -ensemble quelconque. On a vu que $D' = D - (\{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\})$ pour $i \in \{2, ..., k_1\}$, $j \in \{1, ..., k_2\}$ et $k \in \{1, ..., k_3\}$ est un $\gamma_{\times 2}(T')$ -ensemble. Donc $v \notin D'$ et puisque $v \notin \{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\}$ pour $i \in \{2, ..., k_1\}$, $j \in \{1, ..., k_2\}$ et $k \in \{1, ..., k_3\}$, $v \in \mathcal{N}_{\times 2}(T)$.

Inversement, supposons que $v \in \mathcal{N}_{\times 2}(T)$ et soit S' un $\gamma_{\times 2}(T')$ -ensemble quelconque. On sait que $S = S' \cup \{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\}$ pour $i \in \{2, ..., k_1\}, j \in \{1, ..., k_2\}$ et $k \in \{1, ..., k_3\}$ est un $\gamma_{\times 2}(T)$ -ensemble, donc $v \notin S$. Puisque $v \notin \{a_i\} \cup \{t_j, u_j\} \cup \{y_k, z_k\},$ $v \notin S'$ d'où $v \in \mathcal{N}_{\times 2}(T')$. Notons que les mêmes arguments ont été utilisés pour (a) et (b), donc, pour la suite, nous nous contenterons de montrer le cas (a).

Cas 2. $k_2 \ge 1$, $k_3 \ge 1$ *et* $k_1 = 0$. *Soit* $T' = T - (D(u) - \{t_1\})$.

Montrons que $\gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2(k_2 - 1) - 2k_3 - 1$. Tout $\gamma_{\times 2}(T')$ -ensemble peut être étendu à un EDD de T en ajoutant l'ensemble $\{u_1, t_j, u_j\} \cup \{y_k, z_k\}$ pour $j \in \{2, ..., k_2\}$ et $k \in \{1, ..., k_3\}$ et donc $\gamma_{\times 2}(T) \leq \gamma_{\times 2}(T') + 2(k_2 - 1) + 2k_3 + 1$. Soit D un $\gamma_{\times 2}(T)$ -ensemble arbitraire. Si $u \in D$, alors $D' = D - (\{u_1, t_j, u_j\} \cup \{y_k, z_k\})$ pour $j \in \{2, ..., k_2\}$ et $k \in \{1, ..., k_3\}$ est un EDD de T'. Si $u \notin D$, alors $k_3 = 1$ (sinon on aurait une contradiction sur la taille de D) et donc $x_1 \in D$. Alors $D' = (D - (\{u_1, t_j, u_j\} \cup \{x_1, y_1, z_1\})) \cup \{u\}$ pour $j \in \{2, ..., k_2\}$ est un EDD de T'. Dans les deux cas, $|D'| = |D'| - 2(k_2 - 1) - 2k_3 - 1$ et donc $\gamma_{\times 2}(T') \leq \gamma_{\times 2}(T) - 2(k_2 - 1) - 2k_3 - 1$. Par conséquent $\gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2(k_2 - 1)$ $1) - 2k_3 - 1$.

(a) Supposons que $v \in \mathcal{A}_{\times 2}(T')$ et soit D un $\gamma_{\times 2}(T)$ -ensemble arbitraire. On a vu que $D' = (D - (\{u_1, t_j, u_j\} \cup \{x_1, y_k, z_k\})) \cup \{u\}$ pour $j \in \{2, ..., k_2\}$ et $k \in \{2, ..., k_3\}$

est un $\gamma_{\times 2}(T')$ -ensemble. Alors $v \in D'$ et puisque $v \notin \{u_1, t_j, u_j\} \cup \{x_k, y_k, z_k\}$ pour $j \in \{2, ..., k_2\}$ et $k \in \{2, ..., k_3\}, v \in D$. Par conséquent $v \in \mathcal{A}_{\times 2}(T)$.

Réciproquement, supposons que $v \in \mathcal{A}_{\times 2}(T)$ et soit S' un $\gamma_{\times 2}(T')$ -ensemble quelconque. Nous avons vu que $S = S' \cup \{u_1, t_j, u_j\} \cup \{y_k, z_k\}$ pour $j \in \{2, ..., k_2\}$ et $k \in \{1, ..., k_3\}$ est un $\gamma_{\times 2}(T)$ -ensemble, d'où $v \in S$. Puisque $v \notin \{u_1, t_j, u_j\} \cup \{y_k, z_k\}$ pour $j \in \{2, ..., k_2\}$ et $k \in \{1, ..., k_3\}$, alors $v \in S'$, d'où $v \in \mathcal{A}_{\times 2}(T')$.

Cas 3. $k_2 \ge 2, k_1 + k_3 = 0$ *et* $u \in C(v)$. *Soit* $T' = T - (D(u) - \{t_1, u_1, t_2, u_2\})$. *Ce cas découle directement du lemme 3.16 et de la remarque 3.19.*

Cas 4. $k_2 \ge 2, k_1+k_3 = 0, d(v, u) = 2 \text{ et } p(u) \notin B(T).$ Soit $T' = T - (D(u) - \{t_1, u_1\})$. On montre au début que $\gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2(k_2 - 1).$ Tout $\gamma_{\times 2}(T')$ -ensemble peut être étendu à un EDD de T en ajoutant l'ensemble $\{t_j, u_j\}$ pour $j \in \{2, ..., k_2\}$ et donc $\gamma_{\times 2}(T) \le \gamma_{\times 2}(T') + 2(k_2 - 1).$ D'autre part, soit D un $\gamma_{\times 2}(T)$ -ensemble quelconque. Si $u \in D$, alors $D' = D - \{t_j, u_j\}$ pour $j \in \{2, ..., k_2\}$ est un EDD de T'. Si $u \notin D$, alors w = p(u) doit être dans D pour qu'il soit double dominé. Donc $D' = D - \{t_j, u_j\}$ pour $j \in \{2, ..., k_2\}$ est un EDD de T', d'où $\gamma_{\times 2}(T') \le \gamma_{\times 2}(T) - 2(k_2 - 1).$ Par conséquent, $\gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2(k_2 - 1).$

(a) Supposons que $v \in \mathcal{A}_{\times 2}(T')$ et soit D un $\gamma_{\times 2}(T)$ -ensemble arbitraire. On a vu que $D' = D - \{u_j, t_j\}$ pour $2 \le j \le k_2$ est un EDD de T' de cardinal $\gamma_{\times 2}(T) - 2(k_2 - 1)$ ce qui signifie que c'est un $\gamma_{\times 2}(T')$ -ensemble. Alors $v \in D' \subset D$. Par conséquent $v \in \mathcal{A}_{\times 2}(T)$.

Inversement, supposons que $v \in \mathcal{A}_{\times 2}(T)$ et soit S' un $\gamma_{\times 2}(T')$ -ensemble quelconque. On sait que $S = S' \cup \{u_j, t_j\}$ pour $2 \le j \le k_2$ est un $\gamma_{\times 2}(T)$ -ensemble, d'où $v \in S$. Puisque $v \notin \{u_j, t_j\}$ pour $2 \le j \le k_2$, alors $v \in S'$ d'où $v \in \mathcal{A}_{\times 2}(T')$.

Cas 5. $k_2 \ge 2, k_1 + k_3 = 0, u \notin C(v)$ et $d(v, u) \ne 2$ ou bien $p(u) \in B(T) - \{v\}$. Soit T' = T - D[u].

Montrons que $\gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2k_2$. Tout $\gamma_{\times 2}(T')$ -ensemble peut être étendu à un EDD de T en ajoutant l'ensemble $\{t_j, u_j\}$ pour $j \in \{1, ..., k_2\}$ et donc $\gamma_{\times 2}(T) \leq \gamma_{\times 2}(T') + 2k_2$. D'autre part, soit D un $\gamma_{\times 2}(T)$ -ensemble quelconque. Si $u \notin D$, alors $D' = D - \{t_j, u_j\}$ pour $j \in \{1, ..., k_2\}$ est un EDD de T'. Sinon $u \in D$, si $w \notin D$, $D' = (D - \{t_j, u_j, u\}) \cup \{p(u)\}$ pour $j \in \{1, ..., k_2\}$ serait un EDD de T', sinon, c'est à dire $y \in D$,

 $D' = (D - \{t_j, u_j, u\}) \cup \{x\} \text{ pour } j \in \{1, ..., k_2\} \text{ serait aussi un EDD de } T' \text{ où } x \in N(w) - \{v, u\} \text{ (}x \notin D \text{ par minimalité de } D\text{) et donc } \gamma_{\times 2}(T') \leq \gamma_{\times 2}(T) - 2k_2. \text{ Par conséquent,} \gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2k_2.$

(a) Supposons que $v \in \mathcal{A}_{\times 2}(T')$. Soit D un $\gamma_{\times 2}(T)$ -ensemble arbitraire. Nous venons de voir que dans les trois cas D' est un $\gamma_{\times 2}(T')$ -ensemble. Puisque $v \notin \{w, x\}$, alors $v \in D'$ et donc $v \in D$. Par conséquent $v \in \mathcal{A}_{\times 2}(T)$.

Réciproquement, supposons que $v \in \mathcal{A}_{\times 2}(T)$ et soit S' un $\gamma_{\times 2}(T')$ -ensemble quelconque. On sait que $S = S' \cup \{u_j, t_j\}$ pour $1 \le j \le k_2$ est un $\gamma_{\times 2}(T)$ -ensemble, donc $v \in S$. Puisque $v \notin \{u_j, t_j\}$ pour $1 \le j \le k_2$, alors $v \in S'$, d'où $v \in \mathcal{A}_{\times 2}(T')$.

Cas 6. $k_3 \ge 2$ et $k_1 + k_2 = 0$. Soit $T' = T - (D(u) - \{x_1, y_1, z_1\})$.

Nous montrons d'abord que $\gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2(k_3 - 1)$. Soit S' un $\gamma_{\times 2}(T')$ -ensemble. Si $u \in S'$, alors $S = S' \cup \{y_k, z_k\}$ pour $k \in \{2, ..., k_3\}$ est un EDD de T. Sinon ($u \notin S'$), alors $x_1 \in S'$ et puisque u est dominé par x_1 et w, alors $(S' - \{x_1\}) \cup \{u\}$ est un $\gamma_{\times 2}(T')$ -ensemble et donc $S = (S' - \{x_1\}) \cup \{u, y_k, z_k\}$ pour $k \in \{2, ..., k_3\}$ est un EDD de T de cardinal $\gamma_{\times 2}(T') + 2(k_3 - 1)$ d'où $\gamma_{\times 2}(T) \leq \gamma_{\times 2}(T') + 2(k_3 - 1)$. D'autre part, soit D un $\gamma_{\times 2}(T)$ -ensemble. Si $u \in D$ (au cas où il existe un sommet x_k dans D, sans perte de généralité, supposons que c'est x_1), alors $D - \{y_k, z_k\}$ pour $k \in \{2, ..., k_3\}$ est un EDD de T de T'. Sinon ($u \notin D$), il est clair que dans ce cas $k_3 = 2$ et $\{x_1, x_2\} \subset D$, on a alors $D' = (D - \{x_2, y_2, z_2\}) \cup \{u\}$ est un EDD de T' de cardinal $\gamma_{\times 2}(T') = \gamma_{\times 2}(T) - 2(k_3 - 1)$.

(a) Supposons que $v \in \mathcal{A}_{\times 2}(T')$ et soit D un $\gamma_{\times 2}(T)$ -ensemble arbitraire. Dans les deux cas ci-dessus, D' est un $\gamma_{\times 2}(T')$ -ensemble et puisque $v \notin \{x_k, y_k, z_k, u\}$ pour $1 \le k \le k_3$, alors $v \in D'$. Donc $v \in D$. Par conséquent $v \in \mathcal{A}_{\times 2}(T)$.

Réciproquement, supposons que $v \in \mathcal{A}_{\times 2}(T)$ et soit S' un $\gamma_{\times 2}(T')$ -ensemble quelconque. On a vu que dans les deux cas S est un $\gamma_{\times 2}(T)$ -ensemble et donc $v \in S$. Puisque $v \notin \{x_k, y_k, z_k, u\}$ pour $1 \le k \le k_3$, alors $v \in S'$, d'où $v \in \mathcal{A}_{\times 2}(T')$.

3- Résultat principal:

Théorème 3.23. [25]Soit v un sommet d'un arbre T, alors

- $v \in \mathcal{A}_{\times 2}(T)$ si et seulement si $v \in \mathcal{A}_{\times 2}(\bar{T}_v)$;
- $v \in \mathcal{N}_{\times 2}(T)$ si et seulement si $v \in \mathcal{N}_{\times 2}(\bar{T}_v)$.

Preuve. Le théorème 3.23 est une conséquence directe du lemme 3.16, du théorème 3.20 et du lemme 3.22.

Ayant caractérisé l'ensemble $\mathcal{N}_{\times 2}(T)$ pour n'importe quel arbre T, La caractérisation des arbres $\gamma_{\times 2}$ -excellents est équivalente à ce que cet ensemble soit vide.

Corollaire 3.24. Un arbre T est $\gamma_{\times 2}$ -excellent si et seulement si pour tout $v \in T$, $|P^2(v)| \leq 1$ ou $P^1(v) \cup P^0(v) \neq \emptyset$ dans l'arbre \overline{T}_v .

4- Reconnaissance d'un arbre $\gamma_{\times 2}$ -excellent

Nous proposons maintenant un algorithme de reconnaissance d'un arbre $\gamma_{\times 2}$ -excellent basé sur la caractérisation ci-dessus (corollaire 3.24):

Algorithme : Reconnaissance d'un arbre $\gamma_{\times 2}$ -excellent

Input: Un arbre T tel que $|V(T)| \ge 2$. (les sommets de T sont numérotés de 1 à |V(T)|).

Etape 1: Poser r = 1.

Etape 2: Si r = |V(T)| + 1, **TERMINER.** T est $\gamma_{\times 2}$ -excellent. Sinon, Poser $T = T_r = T_v$.

Etape 3: Utiliser la méthode de recherche en largeur (breadh-first search) pour explorer tous les sommets de T. Si v est un support ou un sommet pendant, poser r = r + 1 et aller à l'étape 2. Sinon, déterminer la distance d(v, x) pour tout $x \in V(T_v)$ et générer la séquence des sommets branches $(u_1, ..., u_k)$ telle que:

$$d(v, u_1) \le d(v, u_2) \le \dots \le d(v, u_k)$$

Poser $B(T) = \{u_1, ..., u_k\}$ et m = k.

Etape 4: Si m = 0 (ie $B(T) = \emptyset$), aller à 6. Sinon, aller à l'étape 5.

Etape 5: Poser $u = u_m$. Pour tout fils x de u, soit x' l'unique sommet pendant de T_x .

Pour i = 0, 1 et 2 poser

$$P^{i}(u) = \{x' \in L(u) \mid d(u, x') \equiv i \pmod{3}\}.$$

- Si $|P^1(u)| \ge 1$, soit $z \in C(u)$ alors poser

$$T = T - (D(u) - z).$$

et B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

- Si $|P^2(u)| \ge 1$, $|P^0(u)| \ge 1$ et $P^1(u) = \emptyset$, soit $z \in C(u)$ alors poser

$$T = T - (D(u) - z).$$

et B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

- Si
$$|P^2(u)| \ge 2$$
 et $P^0(u) \cup P^1(u) = \emptyset$ soit $\{z, x\} \in C(u)$, alors
∗ Si $u \in C(v)$, poser

$$T = T - \bigcup_{w \in C(u) - \{z, x\}} D[w].$$

et $B(T) = B(T) - u$, $m = m - 1$, et aller à l'étape 4.
* Si $d(v, u) = 2$ et $p(u) \notin B(T_v)$, poser

$$T=T-\underset{w\in C(u)=z}{\cup}D\left[w\right].$$
et $B(T)=B(T)-u,$
 $m=m-1$ et aller à l'étape 4

* Sinon, poser

$$T = T - D\left[u\right].$$

et B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

- Si $|P^0(u)| \ge 2$ et $P^1(u) \cup P^2(u) = \emptyset$, soit $z \in C(u)$ tel que $z' \in T_z$ et $z' \in P^0(u)$. Alors poser

$$T = T - \bigcup_{w \in C(u) - z} D[w].$$

et B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

Etape 6: Si $|P^2(v)| \ge 2$ et $P^0(v) \cup P^1(v) = \emptyset$. TERMINER. T n'est pas $\gamma_{\times 2}$ -excellent. Sinon poser r = r + 1 et aller à l'étape 2.

La complexité de cet algorithme est estimée comme suit: le temps nécessaire pour l'étape 3 est $O(|V(T_v)|)$, L'étape 5 nécessite pour, un sommet branche u, un temps de O(|C(u)|). Donc le temps écoulé entre la boucle entre l'étape 4 et l'étape 5 est $O(|V(T_v)|)$. Puisque ce traitement est effectué au plus $|V(T_v)|$ fois, alors le temps total d'exécution de cet algorithme est $O(|V(T_v)|^2)$.

Remarque 3.25. La caractérisation des ensembles $A_{\times 2}$ et $N_{\times 2}$ pour n'importe quel arbre peut être utilisée pour reconnaître d'autres classes d'arbres. En effet, nous pouvons utiliser cette caractérisation pour:

- La reconnaissance des arbres ayant un dominant double minimum unique sachant qu'un graphe G possède un μ -ensemble unique si et seulement si puisque $\mathcal{A}_{\mu}(G) \cup$ $\mathcal{N}_{\mu}(G) = V(G).$
- La reconnaissance des arbres γ_{×2}-recommandables, des arbres γ_{×2}-justes et des arbres γ_{×2}-indésirables puisque dans un arbre G, γ_{×2}b = |N_{×2}(G)| et γ_{×2}g = V(G) |N_{×2}(G)|.

CHAPITRE 4

LES GRAPHES γ_{m} -EXCELLENTS

Le présent chapitre est consacré à l'étude des graphes excellents par rapport à la domination couplée. Similairement aux graphes $\gamma_{\times 2}$ -excellents, la famille des graphes γ_{pr} -excellents n'a fait, jusqu'à présent, l'objet d'aucune étude. Les différents résultats obtenus seront présentés après un bref aperçu sur la domination couplée dans les graphes.

4.1 Aperçu sur la domination couplée

Soit G = (V, E) un graphe simple. On définit un ensemble dominant couplé S avec un couplage M comme étant un ensemble dominant $S = \{v_1, v_2, ..., v_{2t-1}, v_{2t}\}$ avec un ensemble indépendant d'arêtes $M = \{e_1, e_2, ..., e_t\}$, où chaque arête e_i relie deux élements de S de telle sorte que M soit un couplage parfait dans le sous-graphe induit par S. Si $v_j v_k \in M$ alors on dit que les sommets $v_j, v_k \in S$ sont couplés dans S. Le nombre de domination couplée $\gamma_{pr}(G)$ est le cardinal minimum d'un ensemble dominant couplé (EDC) de G. Il est à noter que tout graphe sans sommets isolés admet un dominant couplé, il suffit de prendre l'ensemble des sommets extrémités des arêtes d'un couplage maximal quelconque dans G. La domination couplée a été introduite par HAYNES et SLATER [26] et a fait l'objet de quelques travaux, citons essentiellement ceux de HAYNES et SLATER [26, 27], PROF-FITT, HAYNES et SLATER [28], FITZPATRICK et HARTNELL [29], STUDER, HAYNES et LAWSON [30], CHELLALI et HAYNES [22, 31] et dernièrement celui de QIOA, KANG, CARDEI et DU [32].

Par exemple, pour le graphe Q_3 de la figure 4.1, $S_1 = \{v_1, v_2, v_3, v_4\}$ avec $M_1 = \{v_1v_2, v_3v_4\}$ ou S_1 avec $M'_1 = \{v_1v_4, v_2v_3\}$ sont des ensembles dominants couplés minimum de ce graphe et $\gamma_{pr}(Q_3) = 4$. Pour l'étoile subdivisée $S^*_{1,k}$ de la figure 4.1, notons que si S est un EDC quelconque de $S^*_{1,k}$ et $v_i \in S$, alors $u_i \in S$ tel que u_i et v_i sont couplés dans S, et si $v_i \notin S$, alors $u_i \in S$ pour dominer v_i , et u_i et w sont couplés. Puisque w ne peut être couplé qu'une fois, $\gamma_{pr}(S^*_{1,k}) = 2k$.

FIGURE 4.1. Le cube Q_3 et l'étoile subdivisée $S_{1,k}^*$.

Nous avons vu que tout sommet u_i de l'étoile subdivisée $S_{1,k}^*$ doit être dans tout EDC de celle-ci. Les arguments qu'on a présentés sont valables pour tout graphe.

Remarque 4.1. *Si u est adjacent à un sommet pendant de G*, *alors u est dans tout EDC de G*.

Une condition nécessaire et suffisante pour qu'un ensemble dominant couplé soit minimal dans un graphe G a été donnée par CHELLALI et al. [22].

Théorème 4.2. [22] Soient G un graphe sans sommets isolés et S un dominant couplé de G. Alors S est minimal si et seulement si toute paire de sommets x, y de S satisfait l'une des conditions suivantes:

- 1) $\langle S \{x, y\} \rangle$ ne contient pas de couplage parfait,
- 2) ou bien x est un sommet pendant dans $\langle S \rangle$ adjacent à y ou bien y est un sommet pendant dans $\langle S \rangle$ adjacent à x,
- 3) il existe un sommet $u \in V S$ tel que $N(u) \cap S \subseteq \{x, y\}$.

Nous donnons maintenant des remarques et des résultats qui nous seront utiles pour la suite:

Remarque 4.3. *Pour une chaîne* P_n , $\gamma_{pr}(P_n) = 2 \left\lceil \frac{n}{4} \right\rceil$. *Et de plus on a:*

- $\gamma_{pr}(P_n) = \frac{n}{2}$ si $n \equiv 0 \pmod{4}$;
- $\gamma_{pr}(P_n) = \frac{n+3}{2}$ si $n \equiv 1 \pmod{4}$;
- $\gamma_{pr}(P_n) = \frac{n+2}{2}$ si $n \equiv 2 \pmod{4}$;

• $\gamma_{pr}(P_n) = \frac{n+1}{2}$ si $n \equiv 3 \pmod{4}$.

Remarque 4.4. Soient T un arbre de diamètre au moins 2 et y un sommet de L(T), alors il existe un $\gamma_{pr}(T)$ -ensemble qui ne contient pas y.

Remarque 4.5. Une chaîne P_n avec $n \equiv 0 \pmod{4}$ possède un dominant couplé minimum unique. De plus, ce dernier ne contient aucun des sommets pendants de la chaîne.

Remarque 4.6. Une chaîne P_n avec $n \equiv 3 \pmod{4}$ ne possède aucun dominant couplé minimum contenant les deux sommets pendants.

Preuve. Soit la chaîne $C = v', v, v_1, ..., v_j, v_{j+1}, v'_{j+1}$ où v et v_{j+1} sont ses deux supports, v' et v'_{j+1} ses deux sommets pendants telle que $j \equiv 3 \pmod{4}$, (c'est à dire j = 4k + 3). Supposons qu'il existe un $\gamma_{pr}(C)$ -ensemble S tel que $\{v, v', v_{j+1}, v'_{j+1}\} \subset S$. (v' et v'_{j+1} couplés avec v et v_{j+1} respectivement). Pour dominer tous les sommets de la chaîne C, il nous reste à dominer la chaîne $C' = v_2, ..., v_{j-1}$ (puisque v_1 et v_j sont dominés par v et v_{j+1}). Nous savons que C' contient j - 2 donc 4k + 1 sommets, d'où $\gamma_{pr}(C') = 2 \left\lceil \frac{4k+1}{4} \right\rceil$ nous aurions donc $\gamma_{pr}(C) = \gamma_{pr}(C') + 4 = 2(k+1) + 4 = 2k + 6$. Par contre, on sait que C contient j + 4 (4k + 7) sommets et donc $\gamma_{pr}(C) = \left\lceil \frac{4k+7}{4} \right\rceil = 2(k+2) = 2k + 4$ d'où la contradiction.

Remarque 4.7. Soient T' un arbre et u' un sommet de T'. Soit T l'arbre obtenu de T' en attachant une chaîne P_4 à u', alors

• $\gamma_{pr}(T) = \gamma_{pr}(T') + 2;$

Preuve. Supposons que T est obtenu à partir de T' en lui ajoutant la chaîne u, w, x, y et l'arête uu'.

Tout $\gamma_{pr}(T')$ - ensemble peut être étendu à un EDC de T en ajoutant l'ensemble $\{w, x\}$ et donc $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2$. Vu la remarque 4.4, soit D un $\gamma_{pr}(T)$ - ensemble dans lequel x est couplé avec w et $D' = D \cap V(T')$. Nous pouvons supposer que $u \notin D$, sinon on peut le remplacer par un sommet de N(u'). Donc D' est un EDC de T' d'où on a $\gamma_{pr}(T) - 2 \leq$ $\gamma_{pr}(T') \leq |D'| = \gamma_{pr}(T) - 2$. Par conséquent, $\gamma_{pr}(T) = \gamma_{pr}(T') + 2$.

<u>4.2 Les graphes γ_{pr} -excellents</u>

Un graphe γ_{pr} -excellent est un graphe dans lequel tout sommet est dans au moins un γ_{pr} ensemble. Avant de présenter les différents résultats établis dans la classe des graphes γ_{pr} excellents, nous illustrons ce concept par quelques exemples. On peut facilement voir que l'étoile subdivisée $S_{1,k}^*$ de la figure 4.1 est γ_{pr} -excellente puisque, d'après la Remarque 4.1, l'ensemble des sommets u_i est contenu dans tout EDC, ces sommets seront couplés avec leurs sommets pendants excepté peut être un seul d'entre eux qui peut être couplé avec w. Les cycles C_n et les graphes bipartis complets sont γ_{pr} -excellents. Par contre la chaîne P_4 de la figure 4.2 qui, d'après la Remarque 4.5, possède un γ_{pr} -ensemble unique ne contennant aucun de ses sommets pendants, n'est pas γ_{pr} -excellente.

Figure 4.2. La chaine P_4 et la 2-couronne d'une P_4 .

Notre premier résultat dans la famille des graphes γ_{pr} -excellents concerne les sousgraphes induits. On sait que le graphe G est un sous-graphe induit de la 2-couronne de G. Prenons par exemple la 2-couronne de la chaîne P_4 (figure 4.2). d'après la Remarque 4.1, tout support de cette 2-couronne est dans tout EDC et peut être couplé soit avec son sommet pendant ou avec son autre voisin qui est un sommet de la chaîne P_4 . Et donc cette 2-couronne est γ_{pr} -excellente. Ceci est valable aussi pour n'importe quel graphe G. En effet, il est clair que les ensembles $L \cup S$ et $S \cup V(G)$ sont des ensembles dominants couplés minimum de la 2-couronne de G où S et L sont respectivement les ensembles des supports et des sommets pendants de la 2-couronne de G. Par conséquent, la 2-couronne d'un graphe G quelconque est γ_{pr} -excellente.

Proposition 4.8. Tout graphe est un sous-graphe induit d'un graphe γ_{pr} -excellent.

Comme conséquence directe de ce résultat, nous avons le corollaire suivant:

Corollaire 4.9. Il n'existe pas de caractérisation des graphes γ_{pr} -excellents en termes de sous-graphes induits interdits.

On peut facilement vérifier que les chaînes P_5 , P_9 , P_6 , P_{10} ... sont γ_{pr} -excellentes. Par contre, les chaînes P_4 , P_8 , P_7 , P_{11} ... ne sont pas γ_{pr} -excellentes, d'où la caractérisation des chaînes γ_{pr} -excellentes.

Proposition 4.10. La chaîne P_n est γ_{pr} – excellente si et seulement si n = 3 ou $n \equiv 1$ ou $2 \pmod{4}$.

Preuve. Il est clair que la chaîne P_3 est γ_{pr} -excellente. Montrons que la chaîne P_n avec $n \equiv 1 \pmod{4}$ est γ_{pr} -excellente. Procédons par induction sur le nombre de sommets. On peut facilement voir que les chaînes P_5 et P_9 sont γ_{pr} -excellentes. Supposons que la chaîne $C' = v_1, ..., v_{n-1}, v_n$ avec n = 4k + 1 est γ_{pr} - excellente et montrons que la chaîne $C = v_1, ..., v_{n-1}, v_n, v_{n+1}, v_{n+2}, v_{n+3}, v_{n+4}$ ayant 4(k+1) + 1 sommets l'est aussi.

D'après la Remarque 4.7, tout $\gamma_{pr}(C')$ -ensemble peut être étendu à un $\gamma_{pr}(C)$ -ensemble en ajoutant les deux sommets v_{n+2} et v_{n+3} . Puisque C' est γ_{pr} - excellente, il nous reste à montrer que les sommets v_{n+1} et v_{n+4} 'sont dans des $\gamma_{\times 2}(C)$ - ensembles. Soit S' un $\gamma_{\times 2}(C')$ ensemble contenant le sommet v_{n-3} . Si v_{n-3} est couplé avec v_{n-2} et donc v_{n-1} avec v_n , alors $(S' - \{v_{n-1}, v_n\}) \cup \{v_{n+1}, v_{n+2}, v_{n+3}, v_{n+4}\}$ est un $\gamma_{pr}(C)$ - ensemble contenant v_{n+4} et v_{n+1} . Si v_{n-3} est couplé avec v_{n-2} , alors v_{n-1} est couplé avec v_n ou v_{n-2} et donc $(S' - \{v_{n-1}, v_{n-2}\}) \cup \{v_n, v_{n+1}, v_{n+3}, v_{n+4}\}$ est un $\gamma_{pr}(C)$ - ensemble contenant v_{n+4} et v_{n+1} . Par conséquent, la chaîne C est γ_{pr} - excellente. Les mêmes arguments peuvent être utilisés pour montrer qu'une chaîne P_n avec $n \equiv 2 \pmod{4}$ est γ_{pr} - excellente.

Réciproquement, montrons qu'une chaîne constituée de $n \equiv 0$ *ou* $3 \pmod{4}$ *sommets avec* $n \neq 3$ *n'est pas* γ_{pr} *- excellente.*

D'après la Remarque 4.5, une chaîne P_n avec $n \equiv 0 \pmod{4}$ possède un γ_{pr} - ensemble unique, donc cette chaîne n'est pas γ_{pr} - excellente.

Concernant les chaînes P_n avec $n \equiv 3 \pmod{4}$, puisque le quatrième sommet d'une telle chaîne est à distance 3 et n - 4 des deux sommets pendants de la chaîne $(n - 4 \equiv 3 \pmod{4})$, nous montrons dans le paragraphe suivant (théorème 4.17) que le quatrième sommet de cette chaîne n'appartient à aucun γ_{pr} - ensemble et par conséquent celle-ci n'est pas γ_{pr} excellente. Puisque la chaîne qui sépare (ou relie) les deux supports d'une chaîne $P_n \gamma_{pr}$ -excellente avec $n \equiv 1 \pmod{4}$ (resp. $n \equiv 2 \pmod{4}$) est formée de $n - 4 \equiv 1 \pmod{4}$ (resp. $n - 4 \equiv 2 \pmod{4}$) sommets, nous donnons la définition suivante:

Définition 4.11. Une chaîne séparatrice est dite séparatrice γ_{pr} -excellente (CSE) si elle est d'ordre $n \equiv 1$ ou $2 \pmod{4}$ et séparatrice non γ_{pr} -excellente (CSNE) si elle est d'ordre $n \equiv 0$ ou $3 \pmod{4}$.

Nous présentons maintenant un résultat très important qui concerne les graphes γ_{pr} -excellents.

Théorème 4.12. Si G est un graphe γ_{pr} -excellent, alors il ne contient pas de CSNE déconnectantes.

Preuve. On montre le théorème par l'absurde. Supposons que G est un graphe γ_{pr} excellent qui contient une CSNE déconnectante. Soient $C = v_1, ..., v_j$ la CSNE ayant j sommets, v et v_{j+1} les sommets supports de G adjacents respectivement à v_1 et v_j , et soient v' et v'_{j+1} des sommets pendants de G reliés respectivement à v et v_{j+1} .

Cas 1. $j \equiv 0 \pmod{4}$.

Soient G_1 et G_2 les deux sous-graphes de G obtenus en omettant les deux arêtes vv_1 et v_jv_{j+1} tels que $v \in G_1$ et $v_{j+1} \in G_2$. Puisque G est un graphe γ_{pr} -excellent, il existe un γ_{pr} -ensemble S_1 de G contenant v' qui est donc couplé avec v dans S_1 . Puisque v_{j+1} est un support, alors $v_{j+1} \in S_1$. Si $v'_{j+1} \in S_1$, alors v_{j+1} serait couplé avec v'_{j+1} et les j+4 sommets de la chaîne $v', v, ..., v_{j+1}, v'_{j+1}$ seraient donc dominés par un γ_{pr} -ensemble de G contenant les deux sommets pendants, on peut, d'après la Remarque 4.5, trouver un dominant couplé de cardinal inférieur à celui de S_1 , d'où la contradiction. Alors $v'_{j+1} \notin S_1$. D'autre part, v_{j+1} ne peut être couplé avec v_j car sinon, d'après la Remarque 4.5, on peut avoir un $\gamma_{pr}(G)$ -ensemble de cardinal inférieur à celui de S_1 , supposons alors que v_{j+1} est couplé avec un sommet $x \in G_2 - \{v'_{j+1}\}$. De la même manière, soit S_2 un γ_{pr} -ensemble de G contenant v'_{j+1} et non v' et dans lequel v est couplé avec un sommet $y \in G_1 - \{v'\}$.

Soient $S'_1 = S_1 \cap G_1$, $S'_2 = S_1 \cap G_2$, $S''_1 = S_2 \cap G_1$ et $S''_2 = S_2 \cap G_2$, alors par la minimalité de S_1 et S_2 , nous avons $|S'_1| = |S''_1|$ et $|S'_2| = |S''_2|$. Par conséquent, $S = (S_1 - S'_2) \cup S''_2$ serait un $\gamma_{pr}(G)$ -ensemble contenant v, v', v_{j+1} et v'_{j+1} d'où la contradiction avec la remarque 4.5. Dans le cas où $G_1 = \langle \{v, v'\} \rangle$ ou $G_2 = \langle \{v_{j+1}, v'_{j+1}\} \rangle$, le résultat est immédiat d'après la Remarque 4.5.

Cas 2. $j \equiv 3 \pmod{4}$.

Soient G_1 et G_2 les deux sous-graphes de G obtenus en omettant les deux arêtes v_1v_2 et $v_{j-1}v_j$ tels que $v_1 \in G_1$ et $v_j \in G_2$. Puisque G est un graphe γ_{pr} -excellent, il existe un γ_{pr} -ensemble S_1 de G contenant v' qui est donc couplé avec v dans S_1 . Puisque v_{j+1} est un support, alors $v_{j+1} \in S_1$. Si $v'_{j+1} \in S_1$, alors v_{j+1} serait couplé avec v'_{j+1} . Dans ce cas, les j + 4 sommets de la chaîne $v', v, ..., v_{j+1}, v'_{j+1}$ seraient dominés par un $\gamma_{pr}(G)$ ensemble qui contient ses deux sommets pendants et d'après la Remarque 4.6 on a une contradiction. Donc $v'_{j+1} \notin S_1$. D'autre part, supposons que v_{j+1} est couplé v_j dans S_1 , sinon $(v_{j+1} \text{ est couplé avec un sommet } x \in G_2 - \{v_{j+1}, v_j\})$, S_1 peut être ramené à un $\gamma_{pr}(G)$ -ensemble dans lequel v_{j+1} est couplé v_j . En effet, soit D_1 un γ_{pr} -ensemble de la chaîne $v', v, v_1, ..., v_j, v_{j+1}, v'_{j+1}$ qui contient v' et dans lequel v_{j+1} est couplé v_j (D_1 existe d'après les Remarques 4.4 et 4.6). D'après la Remarque 4.3, $|D_1| = \frac{j+5}{2}$ et $|D_1 \cap C| =$ $\frac{j+5}{2}-3=\frac{j-1}{2}$. Il est clair d'après la même Remarque que $|S_1 \cap C| = \frac{j+1}{2}$ (pour dominer la chaîne $v_2, ..., v_{j-1}$). Par conséquent, l'ensemble $S' = (S_1 - (S_1 \cap C)) \cup (D_1 \cap C) \cup \{z\}$ est un $\gamma_{pr}(G)$ -ensemble dans lequel v_{j+1} est couplé avec v_j et x est couplé avec son voisin z (z existe par minimalité de S_1). De la même manière, soit S_2 un γ_{pr} -ensemble de G contenant v'_{i+1} et non v' et dans lequel v est couplé avec v_1 .

Soient $S'_1 = S_1 \cap G_1$, $S'_2 = S_1 \cap G_2$, $S''_1 = S_2 \cap G_1$ et $S''_2 = S_2 \cap G_2$, alors par la minimalité de S_1 et S_2 , nous avons $|S'_1| = |S'_1|$ et $|S'_2| = |S''_2|$. Par conséquent, nous avons un $\gamma_{pr}(G)$ -ensemble $S = (S_1 - S'_2) \cup S''_2$ contenant v, v', v_{j+1} et v'_{j+1} d'où la contradiction.

La réciproque de ce théorème n'est pas vraie. En effet, le graphe de la figure 4.3 qui ne contient pas de CSNE n'est pas γ_{pr} -excellent puisque v ne peut appartenir à aucun γ_{pr} -ensemble de ce graphe.

<u>4.2.1 Caractérisation des chenilles</u> γ_{pr} -<u>excellentes</u>

Puisqu'une chenille est constituée de supports, de chaînes séparatrices et de sommets pendants, alors d'après le Théorème 4.12, nous donnons ci-après une caractérisation des chenilles γ_{pr} -excellentes.

Figure 4.3. Un graphe non γ_{pr} -excellent qui ne contient pas de CSNE.

Proposition 4.13. Une chenille T_c est γ_{pr} -excellente si et seulement si toutes ses chaînes séparatrices sont des CSE.

Preuve. Nous montrons d'abord que si T_c est une chenille γ_{pr} -excellente alors celle-ci ne contient pas de CSNE. d'après le Théorème 4.12, si T_c est γ_{pr} -excellente, alors toutes ses chaînes séparatrices sont des CSE.

Réciproquement, Montrons que si toutes les chaînes séparatrices d'une chenille T_c sont des CSE, alors T_c est γ_{pr} -excellente. Procédons par induction sur le nombre k de supports constituant la chenille T_c ($k \ge 2$).

Si k = 2, la chenille est formée par une CSE reliant deux supports. Dans ce cas, T_c est une chaîne avec un nombre de sommets $i \equiv 1$ ou $2 \pmod{4}$ qui est, d'après la Proposition 4.10, γ_{pr} -excellente.

Soit $k \ge 3$, soit T'_c la chenille formée par les k supports reliés par des CSE et soient v le dernier support de T'_c et v' un sommet pendant relié à v. Supposons que T'_c est γ_{pr} -excellente et montrons que la chenille T_c obtenue en ajoutant à T'_c une chaîne $C = v_1, v_2, ..., v_j$, v_{j+1}, v'_{j+1} avec $j \equiv 1$ ou $2 \pmod{4}$ et une arête vv_1 , est γ_{pr} -excellente (dans ce cas , la chaîne $v_1, v_2, ..., v_j$ est une CSE).

Puisque T'_c est γ_{pr} -excellente, Soient S' un $\gamma_{pr}(T'_c)$ -ensemble contenant v', qui est donc couplé avec v, et $C_1 = v', v, v_1, v_2, ... v_j, v_{j+1}, v'_{j+1}$. Puisque C_1 est formée de j+4 sommets, alors elle est, d'après la Proposotion 4.10, γ_{pr} -excellente . Soit D un $\gamma_{pr}(C_1)$ -ensemble qui contient v' qui est donc couplé avec v ($\{v, v'\} \subset D$). Il est clair que $S = S' \cup (D - \{v, v'\})$ est un EDC de T_c et donc $\gamma_{pr}(T_c) \leq \gamma_{pr}(T'_c) + (\gamma_{pr}(C_1) - 2)$. D'autre part, soit B un $\gamma_{pr}(T_c)$ ensemble dans lequel v est couplé avec v' (B existe puisque T'_c et C_1 sont γ_{pr} -excellentes). On peut facilement voir que $B' = B \cap V(T'_c)$ est EDC de T'_c de cardinal $|B| - (\gamma_{pr}(C_1) - 2)$ d'où $\gamma_{pr}(T'_c) \le \gamma_{pr}(T_c) - (\gamma_{pr}(C_1) - 2)$, donc $\gamma_{pr}(T_c) = \gamma_{pr}(T'_c) + (\gamma_{pr}(C) - 2)$.

Puisque tout $\gamma_{pr}(T_c')$ -ensemble peut être étendu à un $\gamma_{pr}(T_c)$ -ensemble en ajoutant $D - \{v, v'\}$, et puisque T_c' est γ_{pr} -excellente, alors tout sommet de T_c' , est dans un $\gamma_{pr}(T_c)$ ensemble. Montrons maintenant que tout sommet de la chaîne $v_1, v_2, ... v_j$ appartient à un $\gamma_{pr}(T_c)$ -ensemble. En effet, puisque la chaîne C_1 est γ_{pr} -excellente, alors tout sommet de C_1 appartient à au moins un $\gamma_{pr}(C_1)$ -ensemble qui peut être étendu à un $\gamma_{pr}(T_c)$ ensemble contenant ce sommet en ajoutant $S' - \{v, v'\}$. Par conséquent la chenille T_c est γ_{pr} -excellente.

<u>4.2.2 Caractérisation des arbres</u> γ_{pr} -<u>excellents</u>

Le premier résultat de cette partie est la caractérisation des sommets appartenant à tout ou à aucun ensemble dominant couplé minimum d'un arbre, et comme conséquence de ce résultat découle une caractérisation des arbres γ_{pr} -excellents équivalente à ce que l'ensemble des sommets n'appartenant à aucun EDC minimum soit vide.

1- Les sommets appartenant à tout ou à aucun γ_{pr} -ensemble d'un arbre

Nous commençons tout d'abord par donner les définitions et résultats suivants:

Définition 4.14. On définit les ensembles $\mathcal{A}_{pr}(G)$ et $\mathcal{N}_{pr}(G)$ d'un graphe G par: $\mathcal{A}_{pr}(G) = \{ v \in V \mid v \text{ est dans tout } \gamma_{pr}(G)\text{-ensemble} \};$ $\mathcal{N}_{pr}(G) = \{ v \in V \mid v \text{ n'est dans aucun } \gamma_{nr}(G)\text{-ensemble} \}.$

Définition 4.15. Soit T un arbre enraciné. Pour tout sommet v de T, on définit l'ensemble: $L^{j}(v) = \{u \in L(v) \mid d(u, v) \equiv j \pmod{4}\}$ et ce pour j = 0, 1, 2 ou 3.

Nous donnons maintenant un résultat qui nous permettra de négliger des chaînes P_4 et qui sera utilisé pour caractériser les ensembles $\mathcal{A}_{pr}(T)$ et $\mathcal{N}_{pr}(T)$.

Lemme 4.16. [33] Soient T' un arbre et $v \in V(T')$. Soit u' un sommet de T' tel que $N(u') - \{v\} \neq \emptyset$. Soit T l'arbre obtenu de T' en attachant une chaîne P_4 à u'. Alors

(a)- $v \in \mathcal{A}_{pr}(T')$ si et seulement si $v \in \mathcal{A}_{pr}(T)$;

(b)- $v \in \mathcal{N}_{pr}(T')$ si et seulement si $v \in \mathcal{N}_{pr}(T)$.

Preuve. Supposons que T est obtenu à partir de T' en lui ajoutant la chaîne u, w, x, y et l'arête uu'.

(a) Supposons que $v \notin \mathcal{A}_{pr}(T')$. Soit S' un $\gamma_{pr}(T')$ - ensemble qui ne contient pas v, $S = S' \cup \{w, x\}$ est tel que $|S| = \gamma_{pr}(T') + 2$, d'après la Remarque 4.7, S est un $\gamma_{pr}(T)$ ensemble qui ne contient pas v, donc $v \notin \mathcal{A}_{pr}(T)$.

Réciproquement, supposons que $v \in \mathcal{A}_{pr}(T')$. Soient D un $\gamma_{pr}(T)$ - ensemble quelconque de T et $D' = D \cap V(T')$. On sait que x est couplé avec l'un de ses voisins w ou y dans D. Si $u \notin D$, alors D' est un EDC de T de cardinal $\gamma_{pr}(T) - 2$, c'est donc un $\gamma_{pr}(T')$ - ensemble. Puisque $v \in \mathcal{A}_{pr}(T'), v \in D' \subset D$. Si $u \in D$, nous considérons deux cas:

Cas 1: u est couplé avec w et donc x est couplé avec y. Dans ce cas $u' \notin D$. Supposons le contraire que $u' \in D$. Alors $D - \{y, u\}$ est un EDC de T de cardinal $\gamma_{pr}(T) - 2$, d'où la contradiction. De plus, nous montrons que si $v \in \mathcal{A}_{pr}(T') \cup \mathcal{N}_{pr}(T')$, alors $v \neq u'$. Supposons que v = u', par minimalité de D, $(N(u') - \{u\}) \cap D = \emptyset$. Soit $u^* \in N(u') - \{u\}$ $(u^* existe d'après le choix de u')$, Il est évident que u^* est dominé par un voisin a qui est couplé avec b et que b possède un voisin privé c par rapport à D sinon, $(D' - \{b\}) \cup \{u^*\}$ serait un EDC de T' de cardinal |D| - 4, contradiction. Donc $D' \cup \{u^*, c\}$ et $D' \cup \{u^*, u'\}$ sont des $\gamma_{pr}(T')$ -ensembles, d'où la contradiction. Par conséquent, $D' \cup \{u', u^*\}$ est un EDC de T' de cardinal $\gamma_{pr}(T) - 2$ qui est donc un $\gamma_{pr}(T')$ - ensemble.

Cas 2: u est couplé avec u' et x avec y ou w. Il est clair qu'il existe au moins un sommet $u^* \in N(u') - \{u\}$ tel que $u^* \notin D$. Montrons que si $v \in \mathcal{A}_{pr}(T') \cup \mathcal{N}_{pr}(T')$, alors $v \neq u^*$. Supposons que $v = u^*$ et soit le sommet $a \in N(u') - \{u, u^*\}$ qui est couplé dans D avec b. b possède un sommet privé c par rapport à D car sinon $D' - \{b\}$ serait un EDC de T' de cardinal |D| - 4, une contradiction. Il en résulte que $D' \cup \{u^*\}$ et $D' \cup \{c\}$ sont deux $\gamma_{pr}(T')$ ensembles, d'où la contradiction. Donc $D' \cup \{u^*\}$ est un $\gamma_{pr}(T')$ - ensemble. Dans tous les cas, puisque $v \in \mathcal{A}_{pr}(T')$ et $v \neq u^*$, alors $v \in D' \subset D$. Par conséquent, $v \in \mathcal{A}_{pr}(T')$.

(b) Supposons que $v \notin \mathcal{N}_{pr}(T')$. Soit S' un $\gamma_{pr}(T')$ - ensemble qui contient v. Alors $S = S' \cup \{w, x\}$ est $\gamma_{pr}(T)$ - ensemble qui contient v et donc $v \notin \mathcal{N}_{pr}(T)$.

Réciproquement, supposons que $v \in \mathcal{N}_{pr}(T')$. Soient D un $\gamma_{pr}(T)$ - ensemble arbitraire et $D' = D \cap V(T')$. En suivant les mêmes démarches que dans (a), $D', D' \cup \{u', u^*\}$ et $D' \cup \{u^*\}$ sont les $\gamma_{pr}(T')$ - ensembles obtenus à partir de D. Puisque $v \in \mathcal{N}_{pr}(T')$ et $v \notin D'$, donc $v \notin D$. Par conséquent, $v \in \mathcal{N}_{pr}(T)$. Nous introduisons à présent un théorème qui caractérise les ensembles $\mathcal{A}_{pr}(T)$ et $\mathcal{N}_{pr}(T)$ pour un arbre T enraciné en un sommet v avec $\deg_T(u) \leq 2$ pour tout sommet $u \in V(T) - \{v\}$.

Théorème 4.17. [33] Soit un arbre T enraciné en un sommet v tel que $\deg_T(u) \le 2 \ \forall u \in V(T) - \{v\}$, alors

- $v \in \mathcal{A}_{pr}(T)$ si et seulement si ou bien v est un support ou bien $|L^1(v)| \ge 2$ ou bien $|L^1(v)| = 1$ et $|L^2(v)| \ge 1$;
- $v \in \mathcal{N}_{pr}(T)$ si et seulement si $|L^3(v)| \ge 1$ et $L^1(v) \cup L^2(v) = \emptyset$.

Preuve. D'après la Remarque 4.1, le théorème 4.17 est vérifié pour le cas où v est un support. Pour la suite, nous allons considérer le cas où v n'est pas un support.

Considérons maintenant le cas où tous les sommets pendants de T sont tous à distance $j \equiv 0 \pmod{4} (L(v) = L^0(v))$. L'arbre T peut être obtenu d'un arbre $T' = P_5$ ayant vcomme sommet pendant en repétant l'application du lemme 4.16. Nous aurons $v \in \mathcal{A}_{pr}(T)$ (resp. $v \in \mathcal{N}_{pr}(T)$) si et seulement si $v \in \mathcal{A}_{pr}(T')$ (resp. $v \in \mathcal{N}_{pr}(T')$, d'où le résultat. En effet dans ce cas $v \notin \mathcal{A}_{pr}(T) \cup \mathcal{N}_{pr}(T)$ et $v \notin \mathcal{A}_{pr}(T') \cup \mathcal{N}_{pr}(T')$.

Pour la suite, nous allons considérer le cas où $L(v) \neq L^0(v)$ *.*

D'après le Lemme 4.16, l'arbre T peut être ramené à un arbre T^{*} obtenu en remplaçant la chaîne de v à w de T par une chaîne de v à w de longueur j, j = 0, 5, 2, 3 si $w \in L^i(v)$, i = 0, 1, 2, 3 respectivement et ce pour tout sommet $w \in L(v)$. Par conséquent, on aura $v \in \mathcal{A}_{pr}(T)$ (resp. $\mathcal{N}_{pr}(T)$) si et seulement si $v \in \mathcal{A}_{pr}(T^*)$ (resp. $\mathcal{N}_{pr}(T^*)$).

Considérons le cas où v est un sommet pendant de T^* qui est donc une chaîne d'ordre $n \ge 3$ avec $|L^1(v) \cup L^2(v) \cup L^3(v)| = 1$. Si $|L^3(v)| = 1$ $(|L^1(v) \cup L^2(v)| = 0)$, alors $T^* = P_4$ et le résultat découle de la remarque 4.5. Si $|L^3(v)| = 0$ $(|L^1(v) \cup L^2(v)| = 1)$, alors $T^* = P_3$ ou P_5 et donc le résultat vient directement des remarques 4.4 et 4.5.

On considère maintenant le cas où v n'est pas un sommet pendant de T^* .

Cas 1: $|L^1(v)| \ge 2$.

Soient D un $\gamma_{pr}(T)$ – ensemble quelconque, u et w deux sommets pendants à distance 5 de v avec $P_u = v, u_1, ..., u_4, u$ et $P_w = v, w_1, ..., w_4, w$ la chaîne de v à u et la chaîne de $v \ \dot{a} \ w \ respectivement.$ Pour $i \in \{u, w\}$, on définit $D_i = V(P_i) \cap D$. Si $v \notin D$, alors $\{u_2, w_2\} \subseteq D$ et ce pour dominer $\{u_1, w_1\}$. Donc $|D_i| = 4$. Mais alors, puisque D domine $v, D' = (D - (D_u \cup D_w)) \cup \{v, u_1, u_3, u_4, w_3, w_4\}$ est un EDC de T avec $|D'| < |D| = \gamma_{pr}(T)$, d'où la contradiction. Donc $v \in \mathcal{A}_{pr}(T)$.

Cas 2: $|L^1(v)| = 1$ et $|L^2(v)| \ge 1$.

Soient D un $\gamma_{pr}(T)$ – ensemble quelconque, u et w deux sommets pendants à distance 5 et 2 de v avec $P_u = v, u_1, ...u_4, u$ et $P_w = v, w', w$ la chaîne de v à u et la chaîne de v à wrespectivement. Si $v \notin D$, $u_2 \in D$ et ce pour dominer u_1 . On a donc deux cas à considèrer, soit u_2 est couplé avec u_3 ou bien u_2 est couplé avec u_1 et u_4 avec u_3 ou u. Dans le premier cas $\{w, w', u_2, u_3, u_4, u\} \subseteq D$, c'est à dire que w est couplé avec w' et u_4 avec u, et donc $(D \cup \{v\}) - \{w, u, u_2\}$ est un EDC de T de cardinal inférieur à $\gamma_{pr}(T)$ d'où la contradiction. Dans le deuxième cas et sans perdre de généralité, supposons que u_4 est couplé avec u_3 d'où $\{w, w', u_1, u_2, u_3, u_4\} \subseteq D$ et donc $(D \cup \{v\}) - \{w, u_1, u_2\}$ est un EDC de T de cardinal inférieur à $\gamma_{pr}(T)$ d'où la contradiction. Par conséquent, $v \in D$ et donc $v \in \mathcal{A}_{pr}(T)$.

Cas 3: $|L^3(v)| \ge 2$ et $|L^1(v) \cup L^2(v)| = 0$.

Dans ce cas, tout sommet pendant est à distance 3 de v. Il est facile de voir que tout $\gamma_{pr}(T)$ -ensemble contient exactement deux sommets autres que v dans chaque chaîne allant de v vers un sommet pendant avec au moins un support qui n'est pas couplé avec son sommet pendant et ce afin de dominer v. Par conséquent, il n'existe pas de $\gamma_{pr}(T)$ -ensemble qui contient v d'où $v \in \mathcal{N}_{pr}(T)$.

Cas 4: $|L^1(v)| = 0$ et $|L^2(v)| \ge 1$.

Soit u un sommet pendant à distance 2 de v et u' son support. Tous les autres sommets pendants sont à distance 2 ou 3 de v. Tout $\gamma_{pr}(T)$ - ensemble contient tous les supports de T et chacun d'eux est couplé avec l'un de ses voisins et donc $\gamma_{pr}(T) \ge 2 |L(v)|$. Il est clair que $D = S(T) \cup L(T)$ est un EDC de T de cardinal 2 |L(v)| (D ne contient pas v), et donc $\gamma_{pr}(T) = 2 |L(v)|$. De plus D et $(D - \{u\}) \cup \{v\}$ sont des $\gamma_{pr}(T)$ - ensembles, d'où $v \notin \mathcal{A}_{pr}(T) \cup \mathcal{N}_{pr}(T)$.

Cas 5: $|L^1(v)| = 1$ et $|L^2(v)| = 0$.

Soit u un sommet pendant à distance 5 de v et $P_u = v, u_1, ..., u_4, u$ est la chaîne reliant v et u. Tous les autres sommets pendants sont à distance 3 de v et puisqu'ils jouent tous le même rôle, supposons que w est le seul sommet pendant à distance 3 de v et $P_w = v, w_1, w_2, w$ est la chaîne reliant v à w. Donc T est peut être consideré comme une chaîne P_9 et d'après la Remarque 4.3, $\gamma_{pr}(T) = \frac{9+3}{2} = 6$. Il est clair que $D = \{u, u_1, u_4, v, w_2, w\}$ et $D' = \{u, u_1, u_2, u_4, w_1, w\}$ sont des $\gamma_{pr}(T)$ - ensembles. Par conséquent, $v \notin \mathcal{A}_{pr}(T) \cup \mathcal{N}_{pr}(T)$.

Puisque les 5 cas traités ci-dessus englobent tous les cas possibles la preuve du théorème, celle-ci est achevée.

En effet, les cas ci-après ne figurent pas dans la démonstration d'une manière explicite puisqu'ils sont vérifiés par l'un ou plusieurs des 5 cas, et découle du fait que si $v \in \mathcal{A}_{pr}(T)$, alors $v \notin \mathcal{N}_{pr}(T)$ et si $v \in \mathcal{N}_{pr}(T)$, alors $v \notin \mathcal{A}_{pr}(T)$.

- Si
$$|L^1(v)| \ge 2$$
 et $|L^3(v)| = 0$, alors $v \notin \mathcal{N}_{pr}(T)$ et ce cas se ramène au cas 1.

- Si $|L^2(v)| \ge 2$ et $|L^3(v)| = 0$, alors $v \notin \mathcal{N}_{pr}(T)$ et ce cas se ramène au cas 4.

- Si $|L^{1}(v)| = 1$ et $|L^{2}(v)| = 1$ et $|L^{2}(v)| = 0$, alors $v \notin \mathcal{N}_{pr}(T)$ et ce cas se ramène au cas 2.

- Si
$$|L^1(v)| = 0$$
, alors $v \notin \mathcal{A}_{pr}(T)$ et ce cas se ramène aux cas 3 et 4.

2- L'élagage d'un arbre par rapport à la domination couplée [33]:

Supposons que l'arbre T est enraciné en v $(T = T_v)$ (v n'est pas un support). Si $\deg_T(u) \leq 2$ pout tout sommet $u \in V(T) - \{v\}$, alors $\overline{T}_v = T_v$. Sinon, soit w un sommet de B(T) à distance maximum de v. Notons que $|C(w)| \geq 2$ et $\deg_T(x) \leq 2 \ \forall x \in D(w)$.

On applique le processus suivant:

- Si $|L^2(w)| \ge 1$, effacer D(w) et attacher une chaîne P_2 à w.
- Si $|L^1(w)| \ge 1$ et $L^2(w) = \emptyset$, effacer D(w) et attacher une chaîne P_1 à w.
- Si $|L^3(w)| \ge 1$ et $L^1(w) \cup L^2(w) = \emptyset$, effacer D(w) et attacher une chaîne P_3 à w.
- Si $L^1(w) \cup L^2(w) \cup L^3(w) = \emptyset$, effacer D(w) et attacher une chaîne P_4 à w.

Cette étape du processus d'élagage où tous les descendants de w sont effacés et une chaîne P_1 , P_2 , P_3 ou P_4 est attachée à w pour donner un arbre dans lequel deg(w) = 2 est appelée un élagage de T en w. On répète ce processus jusqu'à ce qu'un arbre \overline{T}_v est obtenu avec $\deg_T(x) \leq 2 \ \forall x \in \overline{T}_v - \{v\}$.
Pour faciliter la compréhension de cette technique, nous donnons l'exemple illustratif suivant. considérons l'arbre T de la figure ci-dessous.v, w, u, s, x, y, et z sont les sommets branches de T, w est celui qui est à distance maximum 4 de v et puisque $|L^1(w)| = 2$ et $|L^2(w)| = 0$, on efface D(w) et on attache une chaîne d'ordre 1.On a maintenant trois sommets u, y et z à distance 2 de v. Puisque $|L^3(u)| = 2$ et $|L^1(u) \cup L^2(u)| = 0$, on attache une chaîne P_3 à la place de D(u). On voit que $|L^2(y)| = 1$, alors on efface D(y) et on attache une chaîne P_2 et puisque $|L^2(z)| = 2$, alors on remplace D(z) par une chaîne P_2 . Il nous reste, à présent, deux sommets branches à distance 1. Puisque $|L^2(s)| = 1$, on remplace D(z) par une chaîne P_2 . Par contre puisque $|L^1(x)| = 1$ et $|L^2(x)| = 0$, alors D(x) est remplacé par une chaîne P_1 . D'après le Théorème 4.17, $v \in \mathcal{A}_{pr}(\overline{T}_v)$.

Figure 4.4. L'élagage de l'arbre T

Afin de valider cette méthode, nous allons montrer que les opérations du processus de remplacement présenté précédemment préservent les propriétés d'appartenance du sommet v à tout ou à aucun γ_{pr} -ensemble de T.

Lemme 4.18. [33] Soient T un arbre enraciné en v et w un sommet branche à distance maximum de v avec $k_1 = |L^1(w)|, k_2 = |L^2(w)|$ et $k_3 = |L^3(w)|$. Si

- (a) $k_2 \ge 1$, poser T' l'arbre obtenu de T en remplaçant D(w) par une chaîne P_2 .
- (b) $k_1 \ge 1$ et $k_2 = 0$, poser T' l'arbre obtenu de T en remplaçant D(w) par une chaîne P_1 .
- (c) $k_3 \ge 1$ et $k_1 + k_2 = 0$, poser T' l'arbre obtenu de T en remplaçant D(w) par une chaîne P_3 .

Alors pour chaque cas:

- (1) $v \in \mathcal{A}_{pr}(T')$ si et seulement si $v \in \mathcal{A}_{pr}(T)$.
- (2) $v \in \mathcal{N}_{pr}(T')$ si et seulement si $v \in \mathcal{N}_{pr}(T)$.

Preuve. Si $L(w) = L^0(w)$, alors le résultat est vérifié par le lemme 4.16, donc supposons que $L(w) \neq L^0(w)$.

Pour des raisons de simplicité, l'arbre T_v est réduit en remplaçant la w - u chaîne de T par une w - u chaîne de longueur j, où j = 0, 1, 2, 3 si $u \in L^i(w)$, i = 0, 1, 2, 3respectivement et ce pour tout sommet $u \in L(w)$.

Soient $[a_i]$, $[t_j, u_j]$ et $[x_k, y_k, z_k]$ des chaînes d'ordre 1, 2 et 3 respectivement, attachées à w où $a_i, u_j, z_k \in L(T) \cap D(w)$, pour $0 \le i \le k_1$, $0 \le j \le k_2$ et $0 \le k \le k_3$.

Cas 1. $k_2 \ge 1$. Soit $T' = T - (D(w) - \{t_1, u_1\})$.

Montrons en premier que $\gamma_{pr}(T) = \gamma_{pr}(T') + 2(k_2 - 1) + 2k_3$. Soit D un $\gamma_{pr}(T)$ ensemble arbitraire. Si w est couplé avec un sommet de C(w), alors sans perte de généralité, supposons que w et t_1 sont couplés dans D. Donc, $|D \cap D(w)| = 2(k_2 - 1) + 2k_3 + 1$ et $D' = D - (D(w) - \{t_1\})$ est un EDC de T'. Sinon (w peut être couplé avec p(w) ou bien $w \notin D$), $|D \cap D(w)| = 2k_2 + 2k_3$ et donc $D' = D - (D(w) - \{t_1, u_1\})$ est un EDC de T'. Dans les deux cas nous avons $\gamma_{pr}(T') \leq \gamma_{pr}(T) - 2(k_2 - 1) - 2k_3$. D'autre part, tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un EDC de T en ajoutant $\{t_j, u_j\} \cup \{x_k, y_k\}$ où $j = 2, ..., k_2$ et $k = 1, ..., k_3$, d'où $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2(k_2 - 1) + 2k_3$. Par conséquent, $\gamma_{pr}(T) = \gamma_{pr}(T') + 2(k_2 - 1) + 2k_3$.

(1) Supposons que $v \in \mathcal{A}_{pr}(T')$. Soit D un $\gamma_{pr}(T)$ -ensemble quelconque. Nous avons vu ci-dessus que $D' = D - (D(w) - \{t_1\})$ et $D' = D - (D(w) - \{t_1, u_1\})$ sont les $\gamma_{pr}(T')$ ensembles obtenus à partir de D. Puisque $v \in D' \subset D$, alors $v \in \mathcal{A}_{pr}(T)$. Réciproquement, supposons que $v \in \mathcal{A}_{pr}(T')$. Soit S' un $\gamma_{pr}(T')$ -ensemble. On sait que S' peut être étendu à un $\gamma_{pr}(T)$ -ensemble S en ajoutant $\{t_j, u_j\} \cup \{x_k, y_k\}$ où $j = 2, ..., k_2$ et $k = 1, ..., k_3$. Par conséquent, $v \in S$, et donc $v \in \mathcal{A}_{pr}(T')$.

(2) Supposons maintenant que $v \in \mathcal{N}_{pr}(T')$ et soit D un $\gamma_{pr}(T)$ -ensemble arbitraire. De la même manière que ci-dessus, $D' = D - (D(w) - \{t_1\})$ et $D' = D - (D(w) - \{t_1, u_1\})$ sont des $\gamma_{pr}(T')$ -ensembles. Puisque $v \notin D'$ et $v \notin D[w]$, $v \in \mathcal{N}_{pr}(T)$. Réciproquement, supposons que $v \in \mathcal{N}_{pr}(T)$ et soit S' un $\gamma_{pr}(T')$ -ensemble. On sait que S' peut être étendu à un $\gamma_{pr}(T)$ -ensemble S en ajoutant l'ensemble $\{t_j, u_j\} \cup \{x_k, y_k\}$ avec $2 \leq j \leq k_2, 1 \leq k \leq k_3$, et puisque $v \notin S$ et $v \notin D[w], v \in \mathcal{N}_{pr}(T')$.

Notons que les mêmes arguments ont été utilisés pour (1) et (2), donc, pour la suite, nous nous contenterons de montrer le cas (1).

Cas 2.
$$k_1 \ge 1$$
 et $k_2 = 0$. *Soit* $T' = T - (D(w) - \{a_1\})$

On montre au début que $\gamma_{pr}(T) = \gamma_{pr}(T') + 2k_3$. Soit D un $\gamma_{pr}(T)$ -ensemble arbitraire. Si w est couplé avec l'un de ses fils, alors sans perte de généralité, supposons que w et a_1 sont couplés dans D. Donc $|D \cap D(w)| = 2k_3 + 1$ et $D' = D - (D(w) - \{a_1\})$ est un EDC de T'. Sinon, $|D \cap D(w)| = 2k_3$ et donc D' = D - D(w) est un EDC de T'. Dans les deux cas, $|D'| = |D| - 2k_3$, nous avons donc $\gamma_{pr}(T') \leq \gamma_{pr}(T) - 2k_3$. Tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un EDC de T en ajoutant $\{x_k, y_k\}$ où $k = 1, ..., k_3$, donc $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2k_3$. Par conséquent, $\gamma_{pr}(T) = \gamma_{pr}(T') + 2k_3$.

(1) Supposons que $v \in A_{pr}(T')$. Soit D un $\gamma_{pr}(T)$ -ensemble arbitraire. Nous venons de voir que $D' = D - (D(w) - \{a_1\})$ et D' = D - D(w) sont les $\gamma_{pr}(T')$ -ensembles obtenus de D (suivant que w est couplé avec un fils ou bien p(w) respectivement). Puisque $v \in D' \subset D$, alors $v \in A_{pr}(T)$. Inversement, supposons que $v \in A_{pr}(T)$. Soit S' un $\gamma_{pr}(T')$ -ensemble. On sait que S' peut être étendu à un $\gamma_{pr}(T)$ -ensemble S en ajoutant $\{x_k, y_k\}$ où $k = 1, ..., k_3$. Puisque, $v \in S$ et $v \notin D[w]$, donc $v \in A_{pr}(T')$.

Cas 3. $k_3 \ge 1$ et $k_1 + k_2 = 0$. Soit $T' = T - (D(w) - \{x_1, y_1, z_1\})$.

Montrons que $\gamma_{pr}(T) = \gamma_{pr}(T') + 2(k_3 - 1)$. Soit D un $\gamma_{pr}(T)$ -ensemble arbitraire. Si w est couplé dans D avec un sommet x_k , alors sans perte de généralité, supposons que c 'est x_1 . Il est clair que $D' = D - (D(w) - \{x_1, y_1, z_1\})$ est un EDC de T'. Sinon, si w est dominé par un sommet x_k (qui est couplé avec un sommet y_k dans D), sans perte de généralité, supposons que $x_1 \in D$ et donc $D' = D - (D(w) - \{x_1, y_1, z_1\})$ est un EDC de T'. Dans les deux cas, $|D'| = |D| - 2(k_3 - 1)$, d'où $\gamma_{pr}(T') \leq \gamma_{pr}(T) - 2(k_3 - 1)$. Tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un EDC de T en ajoutant $\{x_k, y_k\}$ où $k = 2, ..., k_3$, donc $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2(k_3 - 1)$. Par conséquent, $\gamma_{pr}(T) = \gamma_{pr}(T') + 2(k_3 - 1)$.

(1) Supposons que $v \in \mathcal{A}_{pr}(T')$. Soit D un $\gamma_{pr}(T)$ -ensemble arbitraire. On sait que $D' = D - (D(w) - \{x_1, y_1, z_1\})$ est le $\gamma_{pr}(T')$ -ensemble obtenu à partir de D. Puisque

 $v \in D' \subset D$, alors $v \in \mathcal{A}_{pr}(T)$. Réciproquement, supposons que $v \in \mathcal{A}_{pr}(T')$. Soit S' un $\gamma_{pr}(T')$ -ensemble. On sait que $S = S' \cup \{x_k, y_k\}$ pour $k = 2, ..., k_3$ est un $\gamma_{pr}(T)$ -ensemble, il contient donc v. Par conséquent, $v \in \mathcal{A}_{pr}(T')$.

3- Résultat principal

Nous pouvons maintenant caractériser les ensembles $\mathcal{A}_{pr}(T)$ et $\mathcal{N}_{pr}(T)$ pour tout graphe T.

Théorème 4.19. [33]Soit v un sommet d'un arbre T, alors

- $v \in \mathcal{A}_{pr}(T)$ si et seulement si $v \in \mathcal{A}_{pr}(\bar{T}_v)$;
- $v \in \mathcal{N}_{pr}(T)$ si et seulement si $v \in \mathcal{N}_{pr}(\bar{T}_v)$.

Preuve. Le théorème 4.19 est une conséquence directe du lemme 4.16, du théorème 4.17 et du lemme 4.18.

Comme conséquence immédiate des résultats précédents, nous déduisons le résultat principal de ce paragraphe.

Corollaire 4.20. [33] T est un arbre $\gamma_{pr}(T)$ -excellent si et seulement si il n'existe pas de sommet v vérifiant $|L^3(v)| = 0$ ou $L^1(v) \cup L^2(v) \neq \emptyset$ dans l'arbre T_v obtenu par l'élagage de l'arbre T enraciné en v.

4- Reconnaisance d'un arbre γ_{pr} -excellent.

De manière similaire au chapitre précédent, nous proposons ci-après un algorithme de reconnaissance d'un arbre γ_{pr} -excellent:

Algorithme : Reconnaissance d'un arbre γ_{pr} -excellent.

Input: Un arbre T tel que $|V(T)| \ge 2$ (les sommets de T sont numérotés de 1 à |V(T)|)

Etape 1: Poser r = 1

Etape 2: Si r = |V(T)| + 1, **TERMINER.** T est γ_{pr} -excellent. Sinon, Poser $T = T_r = T_v$.

Etape 3: Utiliser la méthose breadh-first pour explorer tous les sommets de T. Si v est un support, poser r = r + 1 et aller à l'étape 2. Sinon, déterminer la distance d(v, x) pour tout $x \in V(T_v)$ et génerer la séquence des sommets branches $(u_1, ..., u_k)$ telle que:

$$d(v, u_1) \le d(v, u_2) \le \dots \le d(v, u_k)$$

Poser $B(T) = \{u_1, ..., u_k\}$ et m = k.

Etape 4: Si m = 0 (ie $B(T) = \emptyset$), aller à 6. Sinon, aller à l'étape 5.

Etape 5: Poser $u = u_m$. Pour tout fils x de u, soit x' l'unique sommet pendant de T_x .

Pour i = 0, 1, 2 et 3, poser

$$L^{i}(u) = \{ x' \in L(u) \mid d(u, x') \equiv i \pmod{4} \}.$$

- Si $|L^2(u)| \ge 1$, soit $z \in C(u)$ tel que $z' \in T_z$ et $z' \in L^2(u)$. Alors poser

$$T = T - \bigcup_{w \in C(u) - z} D[w].$$

et poser B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

- Si $|L^1(u)| \ge 1$ et $L^2(u) = \emptyset$, soit $z \in C(u)$ tel que $z' \in T_z$ et $z' \in L^1(u)$. Alors poser

$$T = T - \underset{w \in C(u) - z}{\cup} D\left[w\right]$$

et poser B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

- Si $|L^3(u)| \ge 1$ et $L^1(u) \cup L^2(u) = \emptyset$, soit $z \in C(u)$ tel que $z' \in T_z$ et $z' \in L^3(u)$. Alors poser

$$T = T - \bigcup_{w \in C(u)-z} D[w].$$

et poser B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

- Si $L^1(u) \cup L^2(u) \cup L^3(u) = \emptyset$, soit $z \in C(u)$ tel que $z' \in T_z$ et $z' \in L^0(u)$. Alors poser

$$T = T - \bigcup_{w \in C(u)-z} D[w]$$

et poser B(T) = B(T) - u, m = m - 1 et aller à l'étape 4.

Etape 6: Si $|L^3(v)| \ge 1$ et $L^1(v) \cup L^2(v) = \emptyset$. TERMINER. T n'est pas γ_{pr} -excellent. Sinon poser r = r + 1 et aller à l'étape 2.

De même que pour l'algorithme de reconnaisance d'un graphe $\gamma_{\times 2}$ -excellent, cet algorithme est de complexité $O(|V(T_v)|^2)$.

Remarque 4.21. La caractérisation des ensembles \mathcal{A}_{pr} et \mathcal{N}_{pr} pour arbre T peut être utilisée pour reconnaître les arbres ayant un γ_{pr} -ensemble unique, les arbres γ_{pr} -recommandables, les arbres γ_{pr} -justes et les arbres γ_{pr} -indésirables voir la remarque 3.25.

<u>4.2.3 Les arbres</u> T ayant $\gamma_{pr}(T) = 2\gamma(T)$.

Les arbres vérifiant $\gamma_{pr}(T) = 2\gamma(T)$ ont fait l'objet de plusieurs études. Dans ce paragraphe, nous montrons que ces arbres sont γ_{pr} -excellents.

Les deux lemmes suivants, se trouvant dans [26], nous seront utiles pour la suite:

Lemme 4.22. [26]Si G est un graphe sans sommets isolés, alors $\gamma_{pr}(G) \leq 2\gamma(G)$.

Lemme 4.23. [26] Si $\gamma_{pr}(G) = 2\gamma(G)$ alors tout $\gamma(G)$ -ensemble est un i(G)-ensemble.

Il est bien connu que dans tout graphe G, il existe un $\gamma(G)$ -ensemble qui contient tous les sommets supports de G. De ce fait, et d'après le Lemme 4.23, nous faisons la remarque suivante:

Remarque 4.24. Si T est un arbre non trivial avec $\gamma_{pr}(T) = 2\gamma(T)$, alors T ne contient pas de supports adjacents.

Nous pouvons à présent prouver que tout arbre T avec $\gamma_{pr}(T) = 2\gamma(T)$ est γ_{pr} -excellent.

Théorème 4.25. Si T est un arbre avec $\gamma_{pr}(T) = 2\gamma(T)$ alors T est γ_{pr} -excellent.

Preuve. Nous procédons par induction sur le nombre de sommets de T. Soit T un arbre avec $\gamma_{pr}(T) = 2\gamma(T)$. Si n = 2, 3 alors T est un arbre γ_{pr} -excellent. Si n = 4 alors d'après la Remarque 4.24, $T \neq P_4$ et donc T est une étoile γ_{pr} -excellente. Si n = 5 alors d'après la Remarque 4.24, T n'est pas une double étoile. Par conséquent, $T = P_5$ ou $K_{1,4}$ et T est donc un arbre γ_{pr} -excellent.

Soit $n \ge 6$ et supposons que tout arbre T' d'ordre n' < n dans lequel $\gamma_{pr}(T') = 2\gamma(T')$ est γ_{pr} -excellent. Soit T un arbre d'ordre n avec $\gamma_{pr}(T) = 2\gamma(T)$. On pend l'arbre T au sommet r et soit u un support à distance maximum de r. Si u = r alors $T = T_u$ est une étoile γ_{pr} -excellente. Donc supposons que $u \neq r$ et soit v le parent de u dans l'arbre pendu. On peut prendre $\deg_T(v) \ge 2$ sinon T serait une étoile γ_{pr} -excellente. d'après la Remarque 4.24, v n'est pas un support et donc tout fils de v est un support. Si v = r alors T est une étoile subdivisée et alors T est un arbre γ_{pr} -excellent. Ainsi, supposons que $v \neq r$ et soit wle parent de v. Alors $\deg_T(w) \ge 2$ puisque v n'est pas un support. Nous allons considérer deux cas:

Cas 1. $\deg_T(v) \ge 3$.

Ainsi, v a au moins un fils autre que u qui est un support. Soit $T' = T - T_u$. Alors $\gamma(T') = \gamma(T) - 1$. Aussi, tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un γ_{pr} -ensemble de T en ajoutant les sommets u et d, où $d \in L(u)$. Donc $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2$. D'autre part, dans tout $\gamma_{pr}(T)$ -ensemble S, au moins un fils de v est couplé avec l'un de ses sommets pendants. Sans perte de généralité, supposons que u est couplé avec son sommet pendant d, alors $S - \{u, d\}$ est un $\gamma_{pr}(T')$ -ensemble et donc $\gamma_{pr}(T') \leq \gamma_{pr}(T) - 2$. D'où $\gamma_{pr}(T') = \gamma_{pr}(T) - 2$ et par conséquent, $\gamma_{pr}(T') = 2\gamma(T')$. D'après l'hypothèse d'induction, T' est un arbre γ_{pr} -excellent et puisque tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un $\gamma_{pr}(T)$ -ensemble en ajoutant $\{u, d\}$, alors tout sommet de T est dans un $\gamma_{pr}(T')$ -ensemble. Par conséquent, T est γ_{pr} -excellent.

Cas 2. $\deg_T(v) = 2$.

Soit $T' = T - T_v$. Il est clair que $\gamma(T') = \gamma(T) - 1$. Puisque tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un $\gamma_{pr}(T)$ -ensemble en ajoutant u et d (où $d \in L(u)$), alors $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2$. Supposons que $\gamma_{pr}(T') > \gamma_{pr}(T) - 2$. Alors d'après le Lemme 4.22, $2\gamma(T') \geq \gamma_{pr}(T') > \gamma_{pr}(T) - 2 = 2\gamma(T) - 2$, d'où $\gamma(T') > \gamma(T) - 1$, d'où la contradiction. Par conséquent, $\gamma_{pr}(T) = \gamma_{pr}(T') + 2$ et alors $\gamma_{pr}(T') = 2\gamma(T')$. D'après l'hypothèse d'induction, T' est un arbre γ_{pr} -excellent et puisque tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un $\gamma_{pr}(T)$ ensemble en ajoutant $\{u, d\}$ ou $\{u, v\}$, alors tout sommet de T est dans un $\gamma_{pr}(T')$ -ensemble et donc T est aussi un arbre γ_{pr} -excellent.

Le graphe G de la figure 4.5 montre que la réciproque de ce théorème n'est pas vraie puisque G est γ_{pr} -excellent mais $\gamma_{pr}(G) = 10 \neq 2\gamma(G) = 12$.

Figure 4.5. Un graphe $G \gamma_{pr}$ -excellent avec $\gamma_{pr}(G) \neq 2\gamma(G)$

<u>4.2.4 Arbres</u> γ_t -excellents et arbres γ_{pr} -excellents

Dans ce paragraphe, nous mettons en évidence un résultat très important montrant qu'un arbre γ_t -excellent est γ_{pr} -excellent.

Nous avons vu dans le chapitre 2, section 3 que la famille des arbres γ_t -excellents est exactement la famille \mathcal{T} d'arbres construits récursivement à l'aide des quatres opérations présentées dans la même section. Nous montrons que tout arbre de cette famille est γ_{pr} -excellent.

D'après la construction de la famille T des arbres γ_t -excellents, Henning a fait la remarque suivante:

Remarque 4.26. [3] Soient $T \in \mathcal{T}$ et v un sommet de T.

- Si sta(v) = C, alors v est un sommet pendant de T adjacent à un support fort de statut A;
- Si sta(v) = B, alors v est adjacent à un seul sommet de statut A;
- Si sta(v) = A, alors tout voisin de v est de statut B excepté un;
- *Tout support est de statut A.*

HENNING [3] a montré que l'ensemble U des sommets de statut A ou C d'un arbre $T \in \mathcal{T}$ est un $\gamma_t(T)$ -ensemble. Il est clair que U est un EDC aussi du fait qu'il possède un couplage parfait, et puisque tout EDC est un EDT, nous faisons les remarques suivantes.

Remarque 4.27. Pour tout graphe G sans sommets isolés, $\gamma(G) \leq \gamma_t(G) \leq \gamma_{pr}(G)$.

Remarque 4.28. *D'après les Remarques 4.26 et 4.27, l'ensemble U est un* γ_{pr} *-ensemble de l'arbre* $T \in \mathcal{T}$.

Nous montrons maintenant que tout arbre $T \in \mathcal{T}$ est un arbre γ_{pr} -excellent.

Théorème 4.29. Soient T un arbre de la famille T de longueur k. Alors

- (a) T est un arbre γ_{pr} -excellent;
- (b) Pour tout sommet a de statut A, il existe un $\gamma_{pr}(T)$ -ensemble S dans lequel a est couplé avec son voisin b de statut A ou C tel que $pn[b,S] = \emptyset$.

Preuve. Puisque T est de longueur k dans \mathcal{T} , il peut être obtenu à partir d'une séquence $T_1, ...T_k$ d'arbres où T_1 est une étoile $S_{1,r}$ avec $r \ge 1$ et $T = T_k$ et si $k \ge 2$, T_{i+1} peut être obtenu à partir de T_i par l'une des opérations $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ ou \mathcal{T}_4 pour i = 1, ..., k - 1. Nous procédons par induction sur la longueur k de la séquence de construction de T.

Si $T = T_1$, alors (a) et (b) sont vérifiés. Supposons que (a) et (b) sont vérifiés pour tout arbre de T construit par k - 1 opérations. Soient $T' = T_{k-1}$ et T l'arbre construit à partir de T' à l'aide de l'une des 4 opérations définies par Henning [3] figurant dans le Chapitre 2 Section 3 (on garde les mêmes notations utilisées par Henning) et soit S un $\gamma_{pr}(T)$ -ensemble. On considère 4 possibilités selon l'opération par laquelle T est obtenu à partir de T'.

Cas 1. T est obtenu à partir de T' par l'opération T_1 .

T est obtenu à partir de *T'* en ajoutant la chaîne u, w', w, z et l'arête yu où $y \in V(T')$ et sta(y) = A. Avec sta(u) = sta(w') = B et sta(w) = sta(z) = A.

(a) On sait, d'après la Remarque 4.7, que $\gamma_{pr}(T) = \gamma_{pr}(T') + 2$, alors tout $\gamma_{pr}(T')$ ensemble peut être étendu à un $\gamma_{pr}(T)$ -ensemble en ajoutant l'ensemble $\{w', w\}$. Puisque T' est γ_{pr} -excellent, il existe pour tout sommet $x \in V(T') \cup \{w', w\}$ un $\gamma_{pr}(T)$ -ensemble contenant x. Il nous reste donc à montrer qu'il existe des $\gamma_{pr}(T)$ -ensembles contenant u et z. Puisque T' vérifie (b), soit S' un $\gamma_{pr}(T')$ -ensemble dans lequel y est couplé avec son voisin v de statut A ou C tel que $pn [v, S'] = \emptyset$. Il est clair que $S = S' \cup \{w, z\}$ est un EDC de T de cardinal |S'| + 2, c'est donc un $\gamma_{pr}(T)$ -ensemble qui contient z. D'autre part, on peut facilement voir que $S = S' \cup \{w', w, u\} - \{v\}$ est un $\gamma_{pr}(T)$ -ensemble contenant u. Donc (a) est vérifié.

(b) D'après l'hypothèse d'induction, on sait que pour tout sommet $v \in T'$ tel que sta(v) = A, il existe un $\gamma_{pr}(T')$ -ensemble D' dans lequel v est couplé avec son voisin u de statut A ou C tel que $pn [u, D'] = \emptyset$. Puisque tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un $\gamma_{pr}(T)$ -ensemble en ajoutant $\{w', w\}$, alors pour tout sommet $v \in T'$ de statut A, il existe un $\gamma_{pr}(T)$ -ensemble S dans lequel v est couplé avec son voisin u de statut A ou C tel que $pn(u, S) = \emptyset$. Il nous reste donc à montrer qu'il existe un $\gamma_{pr}(T)$ -ensemble S dans lequel v est couplé avec son voisin v de statut A ou C tel que $pn(u, S) = \emptyset$. Il nous reste donc à montrer qu'il existe un $\gamma_{pr}(T)$ -ensemble dans lequel v est couplé avec son voisin v de statut A ou C tel que $pn[v, S'] = \emptyset$, nous pouvons facilement vérifier que $S = S' \cup \{u, w, z\} - \{v\}$ est un $\gamma_{pr}(T)$ -ensemble dans lequel les sommets w et z sont couplés tel que $pn[z, S] = pn[w, S] = \emptyset$.

Cas 2. T *est obtenu à partir de* T' *par l'opération* T_2 *.*

T est obtenu à partir de T' en ajoutant l'étoile $S_{1,r}$ avec $r \ge 3$ de centre w et ayant une arête uw subdivisée, et ajouter l'arête yu où $y \in V(T')$ et sta(y) = A. Notons w' le sommet adjacent à u et w, et z le sommet un des sommets pendants adjacents à w. Avec sta(w) = A, sta(z) = C et sta(v) = B pour tout sommet restant ajouté v.

En utilisant les mêmes arguments que dans le cas 1, nous montrons que (a) et (b) sont vérifiés.

Cas 3. T *est obtenu à partir de* T' *par l'opération* T_3 *.*

T est obtenu à partir de *T'* en ajoutant la chaîne u, w, z et l'arête yu où $y \in V(T')$ et sta(y) = B. Avec sta(u) = B et sta(w) = sta(z) = A.

Montrons d'abord que $\gamma_{pr}(T) = \gamma_{pr}(T') + 2$. Tout $\gamma_{pr}(T')$ -ensemble peut être étendu à un EDC de T en ajoutant $\{w, u\}$ et donc $\gamma_{pr}(T) \leq \gamma_{pr}(T') + 2$. D'autre part, d'après la Remarque 4.28, l'ensemble U un est $\gamma_{pr}(T)$ -ensemble. Il est clair que $U' = U - \{w, z\}$ est un EDC de T' (puisque y possède un voisin de statut A) et donc $\gamma_{pr}(T') \leq |U| - 2 = \gamma_{pr}(T) - 2$. Par conséquent, $\gamma_{pr}(T) = \gamma_{pr}(T') + 2$.

(a) Puisque tout $\gamma_{pr}(T')$ -ensemble peut être ramené à un $\gamma_{pr}(T)$ -ensemble en ajoutant $\{u, w\}$, et puisque T' est γ_{pr} -excellent, alors pour tout sommet $v \in V(T') \cup \{u, w\}$,

il existe un $\gamma_{pr}(T)$ -ensemble qui contient v. Montrons maintenant qu'il existe un $\gamma_{pr}(T)$ ensemble contenant le sommet z. Soit S' un $\gamma_{pr}(T')$ -ensemble. On peut facilement vérifier que l'ensemble $S = S' \cup \{w, z\}$ est un $\gamma_{pr}(T)$ -ensemble, d'où T est γ_{pr} excellent.

(b) Puisque tout $\gamma_{pr}(T')$ -ensemble peut être ramené à un $\gamma_{pr}(T)$ -ensemble en ajoutant $\{u, w\}$, et puisque T' vérifie (b), alors pour tout sommet $v \in V(T')$ tel que sta(v) = A, il existe un $\gamma_{pr}(T)$ -ensemble S dans lequel v peut être couplé avec son voisin u de statut A ou C tel que $pn [u, S] = \emptyset$. Il nous reste maintenant à montrer qu'il existe un $\gamma_{pr}(T)$ -ensemble S_1 dans lequel les sommets w et z sont couplés tel que $pn [w, S_1] = pn [z, S_1] = \emptyset$. Soit S'_1 un $\gamma_{pr}(T')$ -ensemble qui contient y. Il est clair que $S_1 = S'_1 \cup \{w, z\}$ est un $\gamma_{pr}(T)$ -ensemble dans lequel w est couplé avec z tel que $pn [w, S_1] = pn [z, S_1] = \emptyset$.

Cas 4. T est obtenu à partir de T' par l'opération T_4 .

T est obtenu à partir de *T'* en ajoutant l'étoile $S_{1,r}$ avec $r \ge 3$ de centre *w* et l'arête yu où $y \in V(T')$ et sta(y) = B et *u* est un sommet adjacent à *w*. Soit *z* le sommet de statut *C* adjacent à *w*. Avec sta(w) = A et sta(v) = B pour tout sommet restant ajouté *v*.

En utilisant les mêmes arguments que dans le cas 3, nous pouvons montrer que (a) et (b) sont vérifiés.

Comme conséquence directe du théorème précédent, nous donnons le corollaire suivant

Corollaire 4.30. Un arbre γ_t -excellent est γ_{pr} -excellent.

Ce résultat peut être obtenu également des deux corollaires 2.34 et 4.20. En effet, Si un arbre T est γ_t -excellent, alors, d'après le Corollaire 2.34, pour tout sommet v de T, nous avons $\bar{L}^1(v) \cup \bar{L}^2(v) \neq \emptyset$. Par conséquent, d'après le Corollaire 4.20, T est γ_{pr} -excellent.

Il suffit de prendre la chaîne P_5 pour montrer que la réciproque n'est pas vraie.

CONCLUSION

Nous nous sommes intéressés dans cette étude aux graphes excellents par rapport aux différents paramètres de domination. Nous avons d'abord essayé de faire le point sur ce qui a été fait dans ce domaine, puis nous nous sommes orientés vers l'étude de l'excellence par rapport à deux types de domination qui sont la domination double et la domination couplée.

Les résultats que nous avons obtenus sont intéressants du fait qu'en plus de la caractérisation des chaînes, des chenilles et des arbres excellents par rapport à ces deux types de domination, nous avons pu caractériser les sommets qui sont dans tout et les sommets qui ne sont dans aucun ensemble dominant minimum par rapport aux nombres de domination double et couplée d'un arbre ce qui est un résultat tout aussi important puisqu'il peut être utilisé dans d'autres études comme l'unicité des ensembles dominants doubles ou couplés dans les arbres ou même l'égalité et la forte égalité entre les ensembles dominants minimum par rapport aux différents types de domination dans un graphe. Aussi, nous avons proposé des algorithmes polynomiaux de reconnaissance des arbres excellents par rapport à la domination double et la domination couplée.

Bien que ces résultats et ceux qui ont été obtenus bien avant soient importants, nous sommes loin de répondre aux nombreuses questions ou d'aborder les différents problèmes que présente la famille des graphes excellents. En effet, le fait que le concept de l'excellence dans les graphes est assez récent et la difficulté rencontrée dans son étude ont fait que le nombre de paramètres qui ont fait l'objet d'études ne dépasse pas une dizaine et que la plupart des résultats obtenus concernent des classes plus ou moins simples comme les chaînes, les chenilles ou les arbres.

De ce fait, la famille des graphes excellents constitue un domaine prometteur qui ouvre beaucoup de perspectives de recherche comme l'étude de l'excellence par rapport à d'autres paramètres de domination ou la caractérisation de classes de graphes plus générales pour les paramètres déjà étudiés.

REFERENCES

[1] Fricke G. H., Haynes T. W., Hedetniemi S. M., Hedetniemi S. T. et Laskar R. C., "Excellent trees", Bull. Inst. Combin. Appl. 34, (2002), 27–38.

[2] Haynes T.W., Henning M. A., "A characterisation of *i*-excellent trees", Discrete Mathematics 248, (2002), 69–77.

[3] Henning M. A., "Total domination excellent trees", Discrete Mathematics 263, (2003), 93–104.

[4] Berge C., "Graphes et hypergraphes", Dunod, deuxième édition, 1970.

[5] Chartrand G. et Lesniak L., "Graphs & Digraphs", Third Edition, Chapman & Hall, London, 1996.

[6] Haynes T. W., Hedetniemi S. T. et Slater P. J., "<u>Fundamentals of Domination in Graphs</u>", Marcel Dekker, New York, 1998.

[7] Haynes T. W., Hedetniemi S. T. et Slater P. J., "<u>Domination in Graphs: Advanced Topics</u>", Marcel Dekker, New York, 1998.

[8] De Jaenisch C. F., "<u>Applications de l'analyse mathématiques au jeu d'échecs</u>", Petrograd, 1962.

[9] Berge C., "<u>Theory of graphs and its applications</u>", Methuen, London, 1962. [10] Ore O., "Theory of graphs", Amer. Soc. Colloq., Pub 38, Providence, R.I., (1962).

[11] Cockayne E.J. et Hedetniemi S.T., "Towards a theory of domination in graphs", Networks 7, (1977), 247-261.

[12] Hedetniemi S.T. et Laskar R.C., "Bibliography on domination in graphs and some basic definitions of domination parameters", Discrete Mathematics 86, (1990), 257-277.

[13] Haynes T. W., Henning M. et Slater P. J., "Strong equality of domination parameters in trees", Discrete Mathematics 260, (2003), 77-87.

[14] Haynes T. W., Henning M. et Slater P. J., "Strong equality of upper domination and independence in trees", Utilitas Math. 59, (2001), 111-124.

[15] Sumner D., "personal communication to Haynes", May 2000.

[16] Mynhardt C.M., "Vertices contained in every minimum dominating set of a tree", J. Graph Theory 31(3), (1999), 163–177.

[17] Dautermann R. E., "vertices in total dominating sets", In Partial Fulfillment of the quirements for the Degree Master of Science. 70

[18] Cockayne E. J., Henning M. et Mynhardt C. M., "Vertices contained in all or in no minimum total dominating set of a tree", Discrete Mathematics 260, (2003), 37–44.

[19] Harary F. et Haynes T. W., "Double domination in graphs", Ars Combin. 55, (2000), 201-213.

[20] Harary F. et Haynes T. W., "Nordhaus-Gaddum inequalities for domination in graphs", Discrete Mathematics 155, (1996), 99–105.

[21] Harary F. et Haynes T. W., "The k-tuple domatic number of a graph", Math. Slovaca

48, (1998), No. 2, 161-166. [22] Chellali M. et Haynes T.W., "On paired and double domination in graphs", accepté à Utilitas Maths.

[23] Blidia M., Chellali M. et Haynes T.W., "Characterization of trees with equal paired and double domination numbers", soumis à Discrete Mathematics.

[24] Blidia M., Chellali M. et Haynes T.W. et M. Henning, "Independent and double domination in trees", Soumis à Utilitas Math.

[25] Blidia M., ChellaliM. et Khelifi S., "Vertices belonging to all or to no minimum double domination sets of trees", en cours de préparation.

[26] Haynes T.W. et Slater P. J., "Paired-domination in graphs", Networks 32, (1998), 199-06.

[27] Haynes T. W. et Slater P. J., "Paired-domination and the paired-domatic number", Congr. umer. 109, (1995), 65–72.

[28] Proffitt K.E., Haynes T.W. et Slater P., "Paired domination in grid graphs", Congressus Numerantium 150, (2001), 161-172.

[29] Fitzpatrick S. et Hartnell B., "Paired-domination", Discuss. Math.-Graph Theory 18, (1998), 63–72.

[30] Studer D.S., Haynes T.W. et Lawson L.M., "Induced-paired domination in graphs", Ars Combinatoria 57, (2000), 111-128.

[31] Chellali M. et Haynes T.W., "trees with unique minimum paired-domination sets", accepté à Ars Combinatoria.

[32] Qiao H., Kang L., Cardei M. et Du D-Z., "Paired domination of trees", Soumis.

[33] Blidia M., Chellali M. et Khelifi S., "Vertices in minimum paired domination sets of trees", Soumis à Utilitas Math.

[34] Blidia M., ChellaliM. et Khelifi S., "Les graphes $\gamma_{\times 2}$ -excellents", exposé présenté dans le séminaire du département de mathématiques de l'université Saad Dahleb Blida.

[35] Blidia M., Chellali M. et Khelifi S., "Les sommets contenus dans tout ou dans aucun ensemble dominant couplé minimum d'un arbre et arbres γ_{pr} -excellents", exposé présenté par Monsieur M. Blidia au COSI 2004 Tizi ouzou.

[36] Blidia M., Chellali M. et Khelifi S., "Les sommets contenus dans tout ou dans aucun γ_{\times_2} ensemble d'un arbre", communication acceptée pour les JIE'2 Octobre 2004 à l'université Saad Dahleb Blida.