RÉPUBLIQUE ALGÉRIENNE DÉMOGRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Saad Dahleb Blida

Faculté des sciences Département de Mathématiques Domaine Mathématiques et informatiques

Mémoire En vue de l'obtention du diplôme de Master En Mathématiques

Spécialité: Modélisation stochastique et statistique

Thème

Etude et analyse du phénomène d'attente dans une station d'approvisionnement de carburant« Naftal »

Présenté par : ZEBBICHE Amina

Soutenu le 22 octobre 2017, devant le jury composé de :

Président : Mr. TAMI Omar, enseignant (M.A.A), USDB

Promotrice : Mme. DAHMANE Zineb, enseignante (M.A.A), USDB

Examinatrice: Mme. OUKID Nadia, enseignante (M.C.A), USDB

Invitée : Mme. DJARBIE Rabia, Cadre d'étude, NAFTAL

The state of the s

Année universitaire: 2016-2017

Sommaire

Remerciement	
Dédicace	
Résumé	
Introduction Générale	1
Chapitre 1:	
1.1 Présentation de l'entreprise NAFTAL 1. Introduction	3
1.3 L'organisation générale de NAFTAL	5
 1.5 Présentation de District Carburants Alger. 2. Description de la procédure de distribution. 2.4 Le centre carburant d'Alger : système de gestion de file d'attente. 3. Présentation du problème. 	8
Chapitre 2 : Théorie de file d'attente	
2.1 Introduction. 2.2 Généralités.	13
2.3 Structure de base 2.4 Caractéristique des systèmes de file d'attente	14
Processus stochastique. 2.6 Processus de naissance et de mort	
2.7 Analyse mathématique 2.8 Système de file d'attente M/M/c	
2.9 Cas particuliers du système M/M/c	19
2.9.1 système M/M/1	
2.10 Systèmes plus complexes	
2.10.1 Le coefficient de variation	.22
2.10.2.1.1 Les probabilités d'état	.22
2.10.2.1.2 Chaine de Markov induite (incluse). 2.10.2.1.3 Calcul des mesures de performance.	.25
2.10.3 Système M/G/∞	.26 .27
2.10.4.1 Approximation aux probabilités d'états.	28 29

Chapitre 3: Application

3.1 Données	30
3.2 Ajustement des lois d'arrivées	30
3.3 Identification des lois de services.	32
3.4 Approximation des mesures de performances de modèle M/G/c	33
Conclusion générale.	36
Quelque recommandation pour gérer les files d'attente	37
Bibliographie	
Annexe A	I
Annexe B	VII

Remerciement

Tout d'abord, nous remercions Dieu de nous avoir donnée la puissance pour achever nos études supérieures.

Nous tenons à remercier en premier lieu notre promotrice Mme. Zineb DAHMANE pour ses remarques, ses conseils considérables et ses critiques constrictives.

Nous adressons nos vifs remerciements à Mme. DJARBI Rabia (Naftal), pour nous avoir proposé le thème de cette étude, et surtout de nous avoir accueillis et offert toutes les facilités durant notre stage au sein de Naftal.

Nos remerciements vont également à tout le personnel du centre de formations pour leur intervention et leur aide.

Nous remercions également les membres du jury, qui nous ont fait l'honneur de nous recevoir, de nous écouter et d'examiner notre présent mémoire.

Nous exprimons vivent notre gratitude à l'ensemble de nos enseignants qui nous ont suivis inlassablement durant notre cursus universitaire.

Enfin, que tous ceux qui ont contribué de prés ou de loin, à l'établissement de ce travail, trouvent ici l'expression de notre profonde gratitude.

Amina

Dédicace

Je dédie ce mémoire

A mes chers parents ma mère et mon père

Pour leur patience, leur amour, leur soutien et leurs encouragements.

A mes frères.

A mes amies et mes camarades.

Sans oublier tout les professeurs que ce soit du primaire, du moyen, du

secondaire ou de l'enseignement supérieur.

Amina

Résumé

Dans ce travail, nous nous sommes intéressés à l'analyse de file d'attente au niveau du centre de stockage et de distribution « 169 caroubier » du district carburants d'ALGER.

Dans un premier temps, nous avons effectué une étude bibliographique sur les systèmes de files d'attente classiques, et présenté les modèles les plus connus. Par la suite nous avons utilisé des tests d'ajustements sur les intervalles de temps entre les arrivées et les durées de service qui ont abouti au modèle M/G/c. Il n'existe pas de formules analytiques pour calculer les mesures de performance d'un tel modèle. Nous généralisons la formule de POLLAZECK-Khitchinne pour établir des formules approximatives pour calculer les mesures de performance des modèles de file A/B/c où A, B appartiennent à l'ensemble des distributions {Déterministe, Exponentielle, Erlang, Gamma}.

Mots clés : test d'ajustement, file d'attente, mesure de performance, distribution exponentielle, distribution générale.

Abstract

In this work, we are interested in the analysis of queuing at the levels of storage and distribution center "169 carob" of the fuel district of ALGER.

First, we carried out a bibliographic study on traditional queuing systems and presented the best known models.

Then, we used tests of adjustments on the time intervals between arrivals and service durations in the model M / G / c. There are no analytical formulas for calculating the performance measures of such a model. We generalize the POLLAZECK-Khitchinne formula to derive approximate formulas for calculating the performance measurements of the A / B / c file models where A, B belong to the set of distributions {Determinist, Exponential, Erlang, Gamma}.

Keywords: adjustment test, queue, performance measurement, exponential distribution, general distribution.

ملخص

في هذا العمل، ونحن مهتمون في مستويات تحليل الطابور من مركز تخزين و توزيع "169 خروبة"

للوقود حي الجزائر. أولا، أجرينا مراجعة الأدبيات على أنظمة الطابور الكلاسيكية، وقدمنا نماذج شهيرة. ثم استخدمنا اختبارات على فترات زمنية بين الوافدين وحياة الخدمة توصلنا إلى نموذج M / G/c. ليس هناك صيغ تحليلية لحساب مقاييس الأداء لمثل هذا النموذج. قمنا بتعميم صيغة -POLLAZECK Khitchinne لتحديد الصيغ التقريبية لحساب تدابير الطابور لأداء نموذج A / B / C حيث تتمي A، B لجميع التوزيعات { القطعية، الأسى، إر لانج، غاما }.

كلمات البحث: تعديل اختبار طابور وقياس الأداء والتوزيع الأسي والتوزيع العام.

Atroduction general

Introduction

L'une des principales missions de NAFTAL est d'assurer le transport du carburant afin de garantir la disponibilité du produit sur le territoire national, la majorité pour ne pas dire la totalité de la flotte de transport de NAFTAL dépend de la disponibilité du produit, cette importance s'est traduite en pratique par la multiplication des points de vente afin de répondre au mieux à une demande de plus en plus croissante.

Mais avant de récolter le précieux liquide dans nos pompes, il y a une étape très importante et cruciale celle du remplissage du produit dans les camions pour la distribution. Pour cela, NAFTAL emploie divers moyens logistiques et humains.

La Branche Carburants a procédé à l'installation d'un nouveau système « file d'attente » au niveau du District Carburant d'Alger qui est venu apporter des solutions aux problèmes constatés et soulevés lors du chargement des camions.

L'article portant sur Mme Bonnes Manières [6] parodie une des réalités de la vie : l'attente en file. Pour ceux qui attendent en file, la solution est très simple : ajouter des ressources ou bien agir, faire n'importe quoi pour accélérer le service. C'est l'évidence même. Cependant, ce n'est pas aussi simple, car il faut tenir compte de certaines subtilités. Premièrement, sur une longue période, la majorité des processus de service ont une capacité de traitement supérieure à celle qui est nécessaire. Par conséquent, le problème des files d'attente ne survient que pendant de courtes périodes. Deuxièmement, il ne faut pas perdre de vue le fait qu'à certains moments, le système est vide : les employés sont inoccupés et attendent que les clients se présentent. En augmentant la capacité, on ne fait qu'augmenter le temps d'inoccupation des employés. Donc, si on veut concevoir un système de service, il faut comparer le coût associé au niveau du service (capacité) mis en place et le coût associé à l'attente des clients. La planification et l'analyse de la capacité de service sont des thèmes traités par la théorie des files d'attente. Cette théorie est une approche mathématique permettant d'analyser les files d'attente. Elle est basée sur l'étude des équipements téléphoniques automatiques réalisée au début du XXe siècle par l'ingénieur danois en télécommunication, A. K. Erlang. L'application de cette théorie n'a été généralisée à divers types de problèmes qu'après la Seconde Guerre mondiale.

La Théorie des files d'attente permet de modéliser un système admettant un phénomène d'attente, de calculer ses mesures de performances pour aider les gestionnaires dans leurs prises de décisions.

Des résultats et formulations théoriques sont bien établis pour les modèles de files d'attente avec arrivées poissoniènnes et durées de services exponentielles (M/M/c). Mais pas pour tous les systèmes tels que ceux avec arrivées poissonniènnes et durées de services non exponentielles M/G/c dont l'étude analytique est très complexe.

Nous, nous intéressons particulièrement au système d'approvisionnement des camions carburant au niveau d'une station de Naftal.

Notre but est de faire l'analyse et l'étude du phénomène d'attente au niveau de cette station d'approvisionnement. Nous allons essayer de proposer à partir d'observations réelles, un modèle aussi fidèle que possible à la réalité.

A partir de ce modèle, nous devons déterminer les mesures de performances.

Nous présentons notre travail, sous trois chapitres :

Le premier chapitre est consacré à la présentation de l'organisme d'accueil (Naftal), la description de la procédure de distribution des carburants, la position du problème ainsi que l'objectif de notre étude.

Le second chapitre présente quelques notions de file d'attente et les mesures de performance de certains systèmes.

Nous présenterons dans le troisième chapitre, les approximations des mesures de performances de notre modèle.

Enfin nous terminerons par une conclusion générale.

Classitie 1

Présentation de l'entreprise

1. Introduction [3]

Une entreprise est une cellule de production, elle regroupe un certain nombre de ressources (ressources humaines, matérielle et financière), les utilise en vue de production des biens et services. Cette production doit être vendue sur un marché en échange des biens et service produits.

L'entreprise est en relation permanente avec l'environnement, elle doit s'astreindre à maitriser l'ensemble de ses activités en les orientant vers la concrétisation d'un ou de plusieurs objectifs, ces objectifs doivent être conformes aux moyens dont elle dispose.

1.2 Historique et présentation [3][4]

1.2.1 Création:

NAFTAL est la société nationale de commercialisation et de distribution des produits pétroliers, issue de SONATRACH, le 6 avril 1981 par décret N° 80/101, il est créé une entreprise nationale dénommée « Entreprise nationale de raffinage et de distribution de produits pétroliers » par abréviation (E.R.D.P), entreprise socialiste à caractère économique.

En 25/08/1987, promulgation (publication officiel) du décret 87/189 portant la séparation des activités d'E.R.D.P en deux entités :

- NAFTAL: est désormais chargée uniquement dans le cadre du plan national de développement économique et social, de la commercialisation et de la distribution des produits pétroliers.
- * NAFTEC : chargée du raffinage du pétrole.

Au début de 1998, NAFTAL change de statut et devient société par actions SPA au capital social de 6.65 milliards DA et en 2002 augmenté à 15,65 milliards de D.

NAFTAL a commercialisé un volume total de 14,01 millions de tonnes de produits pétroliers en 2011.

L'appellation NAFTAL provient de :

- NAFT: Pétrole
- * AL: Algérie

1.2.2 Stratégie de l'entreprise

A travers son plan de développement, NAFTAL vise un double objectif :

- Pour suivre sa mission de distribution des produits pétroliers.
- Améliorer sa qualité de service.

Les principales actions menées par NAFTAL portent sur :

- La modernisation et la réhabilitation de ses infrastructures de stockage.
- la mise en conformité de ses installations avec les normes de protection de l'environnement et de sécurité industrielle.
- La modernisation et l'extension de son réseau de stations-service.
- le renouvellement de ses moyens de transport par route et de son matériel de manutention.
- L'augmentation de ses capacités de transport par pipe.
- La promotion de ses produits propres : GPL et essence sans plomb.

1.2.3 Les missions de NAFTAL:

Les missions principales à la bonne marche de l'activité NAFTAL sont :

- la distribution et la commercialisation des produits pétroliers sur le marché national.
- Stocker et transporter tout produit pétrolier commercialisé sur le territoire national.
- Procéder a toute étude de marché en matière d'utilisation et de consommation des produits pétroliers.
- Développer et mettre en œuvre les actions visant à l'utilisation optimale et rationnelle des infrastructure et moyens.
- Développer une image de marque et de qualité.

Pour assurer la disponibilité des produits sur tout le territoire, NAFTAL met à contribution plusieurs modes de transport :

- Le rail pour le ravitaillement des dépôts à partir des entrepôts.
- Le cabotage et les pipes, pour l'approvisionnement des entrepôts à partir des raffineries.
- La route pour livraison des clients et le ravitaillement des dépôts non desservis par le rail.

1.3L'organisation générale de NAFTAL

L'organigramme de la société NAFTAL se compose de trois structures principales:

- Direction générale.
- Les structures fonctionnelles.
- > Les structures opérationnelles.

L'organigramme de la branche est illustré dans la figure suivante :

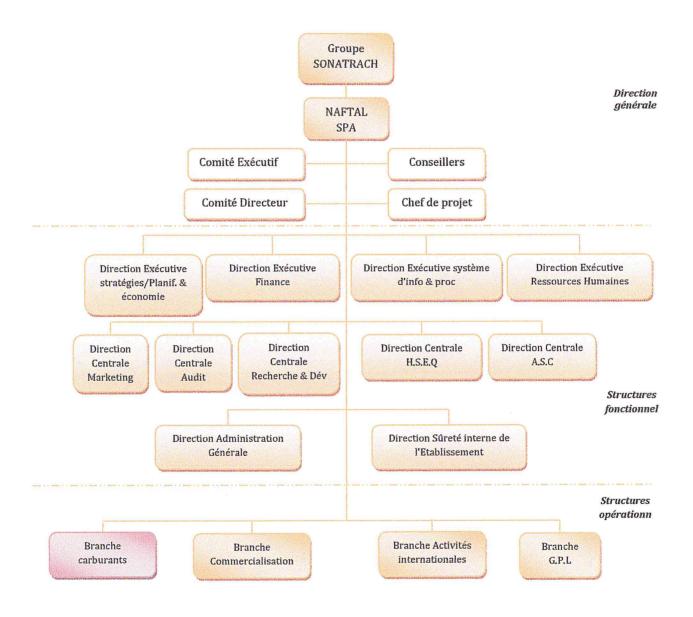


Figure 1.1: Schéma actuel d'organisation NAFTAL

1.4 Environnement de NAFTAL:

NAFTAL est approvisionnée en carburant par un seul fournisseur : NAFTAC (entreprise nationale de raffinage).

NAFTAL a cinq types de clients concernant le carburant :

- Station de services.
- P.V.A: point de vente.
- R.O: revendeur ordinaire.
- Grands consommateurs : sociétés nationales, administrations, ministères,...
- Revendeurs distributeurs: distributeurs particuliers qui revendent le gasoil dans les régions éloignées (campagnes, terres agricoles...).

La branche carburant

La *Branche carburants* est l'une des trois branches de NAFTAL (la Branche Carburants couvre l'ensemble des centres aviation et marine et l'ensemble des sites des activités carburants terre).

La branche carburant a pour mission de:

- Superviser, coordonner et contrôler les activités approvisionnement, stockage, ravitaillement, livraison et transport des carburants Aviation et Marine, sur les aéroports et ports.
- Assurer une qualité de service répondant aux attentes de la clientèle.
- Assurer la préservation de la conformité du produit dès son approvisionnement jusqu'à sa livraison ou son ravitaillement.
- Assurer la maintenance des installations de stockage et des moyens de distribution.

1.5 Présentation de District Carburants Alger

Le District est un organisme qui dépend de la branche carburant et qui a pour mission la gestion de stockage et distribution à travers les entrepôts 169,16A, 15C.

Principales tâches assignées au poste de travail sont :

- Suivre quotidiennement les mouvements produits et les stocks des dépôts Carburants.
- Consolider les situations quotidiennes et périodiques des stocks, des approvisionnements et des ravitaillements par produit et par dépôt.

 Participer à l'élaboration des rapports d'activités périodiques de sa structure.

L'organigramme ci-dessous présente les différents services de district carburants NAFTAL d'Alger :

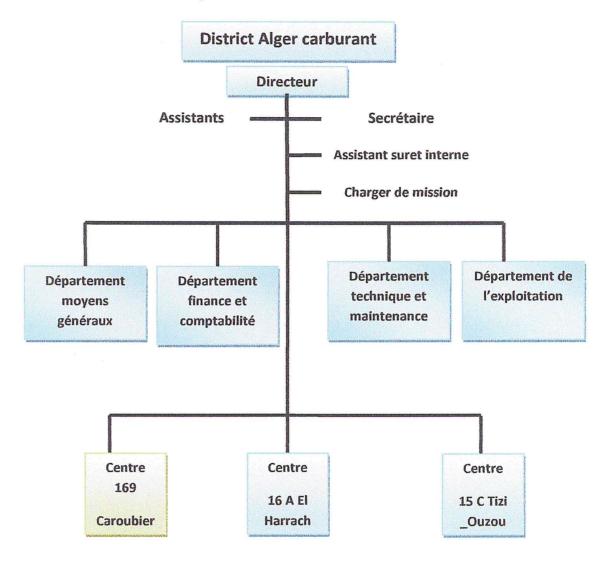


Figure 1.2 : Schéma actuel d'organisation de District Carburants Alger.

1.5.1 Missions du département exploitation :

• Assurer l'approvisionnement et le ravitaillement des carburants sur tout le territoire national en fonction du positionnement de l'entreprise vis-à-vis de la future réglementation des hydrocarbures.

- Elaborer et suivre les plans d'approvisionnement en fonction des plans de charge des différentes raffineries.
- Définir les niveaux des stocks optimaux et en assurer le maintien.

2. Description de la procédure de distribution

L'une des principales missions de NAFTAL est d'assurer le transport des carburants (Essence super, normal, sans plomb, Gasoil) afin d'améliorer l'activité de distribution et d'assurer une meilleure couverture des besoins du marché. Pour cela l'entreprise assure l'approvisionnement, le ravitaillement et la livraison depuis les sources de production qui sont les raffineries vers les entrepôts (centres de stockage primaires), en utilisant l'un des modes de transport possible : pipe-line, cabotage, et depuis les entrepôts jusqu'aux dépôts (centre de stockage secondaires) par route ou par rail, ainsi que la livraison vers les centres de consommation (stations services).

La procédure de distribution des carburants est une succession d'étapes allant de la source de production jusqu'au client, ces étapes se résument par (voir figure 2.1) :

✓ Procédure de distribution

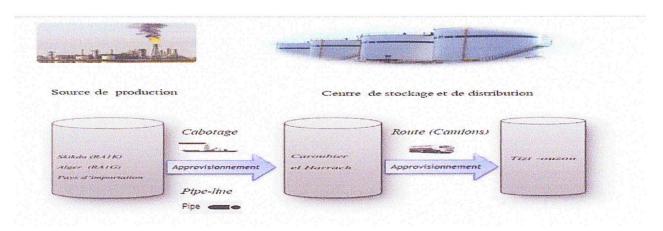


Figure 2.1: schéma actuel d'approvisionnement

2.1 Centres de stockages

Les centres de stockages se situent généralement proche des zones de consommation pour faciliter l'opération de distribution. On peut même pour des raisons d'organisation, distinguer des centres de stockage primaires et secondaires : selon leurs capacités de stockage, leurs positions géographiques par rapport aux centres de production et aux zones de consommation.

2.1.1 Centres primaires (entrepôts)

Sont des centres de distribution de grandes capacités de stockage des carburants réceptionnés à partir des raffineries.

2.1.2 Centres secondaires (dépôts)

Sont des centres de distribution dont les capacités de stockage sont inférieures a celles des entrepôts, les dépôts sont ravitailles par les entrepôts soit par wagon-citernes, soit par camion citerne pour la reconstitution de leurs stocks pour pouvoir faire face a la demande.

2.2 Transport routier

Le mode de transport utilisé pour la distribution des carburants est le transport par route en utilisant des camions citerne de diffirents capacité (27m³, 30 m³, 40 m³,...), ce mode de transport peut attiendre les zones d'accées les plus difficiles.

2.3 Les réservoirs de stockage :

Le stockage des produits se fait dans les bacs pour les produits liquides (super, gasoil, pétrole, jet, fuel lourd) et dans les sphères ou cigares pour les produits gazeux (GPL).

Figure : un réservoir de stockage

2.4 Le Centre Carburant d'Alger est pourvu d'un nouveau système de Gestion de la file d'attente

La Branche Carburants a procédé à l'installation d'un nouveau système « file d'attente » au niveau du District Carburant d'Alger qui est venu apporter des solutions aux problèmes constatés et soulevés lors des chargements des camions.

Ce système est composé des équipements suivants

- 3 Bornes.
- 2 Panneaux d'affichage.
- 2 Haut-parleurs.
- 2 Amplificateurs audio.
- 2 Ecrans plats.
- Une connexion réseau filaire et sans fil.

La borne est une unité centrale qui intègre un lecteur code à barre et une imprimante thermique. Cette borne authentifiée enregistre les données du bon d'enlèvement. Elle est installée sur deux postes d'entrées (entrée A pour le ravitaillement et entrée B pour le Réseau) et un poste de sortie (Ravitaillement et réseau).

Figure : schéma de file d'attente

Accès à la file d'attente :

Après authentification et enregistrement du bon d'enlèvement le système imprime un ticket avec un numéro d'ordre d'appel, date, heure d'impression et le matricule tracteur. Ce ticket est remis au chauffeur.

Accès au poste de chargement_:

Dès la libération du quai de chargement, l'agent sélectionne le N° du quai sur le système, il vérifié le N° d'ordre à appeler et la disponibilité du produit, de suite un appel automatique audible avec affichage est déclenché. Le chauffeur doit se présenter une 2^{eme} fois au poste d'entrée pour remettre son ticket d'ordre afin d'obtenir le ticket *ORDRE DE CHARGEMENT*.

Poste de Sortie :

L'enregistrement au poste de sortie se fait après l'achèvement de l'opération de chargement, facturation, contrôle qualité et sécurité.

3. Présentation du problème

L'une des principales missions de NAFTAL est d'assurer le transport du carburant afin de garantir la disponibilité du produit sur le territoire national. La majorité pour ne pas dire la totalité de la flotte de transport de NAFTAL dépend de la disponibilité du produit, cette importance s'est traduite en pratique par la multiplication des points de vente afin de répondre au mieux à une demande de plus en plus croissante.

Une étape très importante et cruciale dans le processus d'approvisionnement est celle du remplissage du produit dans les camions pour la distribution.

Notre but est de faire l'étude et analyse d'une file d'attente aux niveaux du centre de stockage et de distribution « 169 caroubier » du district carburants d'ALGER.

Le problème consiste à répondre aux demandes des clients tout en maximisant le nombre des camions utilisés dans la distribution et en minimisant le temps de remplissage de ces derniers.

En effet, notre travail consiste à faire une étude sur le phénomène d'attente des camions au niveau de cette station d'approvisionnement. Nous commençons d'abord par une identification des lois des arrivées et des temps de service afin de trouver le modèle mathématique qui reflète au mieux la réalité. Sur la base de ce modèle, nous allons essayer de calculer les mesures de performances, en se basant sur quelques approximations possibles.

* Caractéristiques du problème

Afin de mieux cerner le problème et ainsi pouvoir procéder à sa modélisation, nous commençons par énumérer ses différentes caractéristiques :

• L'activité d'un entrepôt est assurée par trois équipes de fonctionnaires, travaillant chaque huit heures d'affilées :

1^{er} équipe: de 06:00 à 14:00

2^{éme} équipe: de 14:00 à 22:00

3^{éme} équipe : de 22 :00 à 06 :00

- Un entrepôt peut servir plusieurs dépôts.
- Trois types de produits à transporter : Essence Sans Plombe, Essence Super et Gasoil.
- Le moyen de transport utilisé dans la partie de ravitaillement est le camion, chaque camion contient trois compartiments.
- Les quantités sortantes des entrepôts vers les dépôts sont déterminées par les demandes des dépôts.

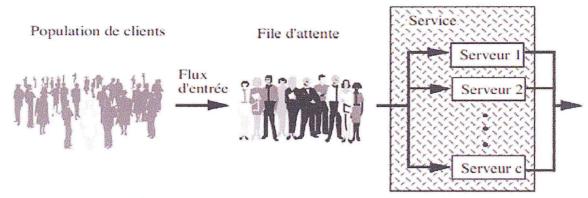
Objectif

Notre travail consiste à :

- Modéliser la file d'attente aux niveaux du centre caroubier 169.
- Analyser les temps de service et temps d'attente.

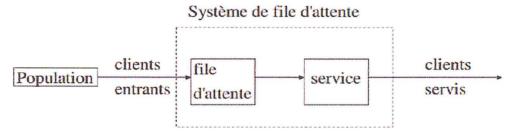
Chapitre 2

2.1 Introduction


Comme par nature, tout être humain déteste attendre pour accéder à un service. Il est tout à fait naturel de vouloir réduire le temps d'attente et par conséquent, dans l'étude des systèmes de file d'attente, on s'intéresse souvent au nombre de clients dans le système. L'évolution d'un système de file d'attente se fait généralement en fonction des arrivées des clients ainsi que des fins de services (un client peut demander plusieurs services auprès de plusieurs serveurs) qui correspondent à un départ d'un client. L'évolution d'un tel système est souvent modélisée par un processus aléatoire qui s'avère être un modèle mathématique adéquat. Les plus simples modèles sont markoviens mais dans la réalité ce n'est pas toujours vrai auquel cas on modélise avec un processus non markovien.

2.2 Généralités [7]

La théorie des files d'attente, en anglais « Queueing Theory », permet de modéliser des situations où des clients arrivent à des instants aléatoires dans un lieu appelé « station » pour demander un ou plusieurs services. Le serveur peut être un guichet de banque, la caisse d'un supermarché ou d'une station service de carburants ; ou simplement un serveur informatique dont les clients sont les tâches que le serveur doit traiter. Le temps nécessaire pour servir un client est aussi supposé aléatoire. Les systèmes de files d'attente sont définis par les éléments suivants :


- a) Le flux d'arrivées des demandes.
- b) Les lois de services de chaque demande.
- c) Le nombre de serveurs.
- d) La discipline de service auprès de chaque serveur.

Il arrive qu'après un premier service, il est nécessaire d'obtenir un autre(ou plusieurs) service(s). Dans ce cas, les différentes stations sont regroupées en un réseau de systèmes de files d'attente. Lorsque la station ne possède pas de file d'attente et que le client est obligé de revenir à des instants aléatoires jusqu'à ce qu'il trouve le serveur libre, on parle de file d'attente avec rappels. Dans ce cas, il faut préciser la loi régissant les rappels (appelés aussi appels secondaires).

Elément d'un système des files d'attentes

2.3 Structure de base [7]

- **Population :** La population constitue la source de clients potentiels. Elle est caractérisée par son nombre d'élément (fini ou infini).
 - **File d'attente :** La file d'attente est caractérisée par le nombre maximum permis de clients en attente (fini ou infini)
 - **Clients**: Les clients (issus de la population) se joignent au système avec un taux moyen d'arrivée.
 - **Service**: Le service peut être assuré par un ou plusieurs serveurs. Le temps qui s'écoule entre le début et la fin de service d'un client est dénoté le temps de service suivant une loi de probabilité. Le taux de service (nombre de clients servi par unité de temps).
 - Stratégie de service : La stratégie de service réfère à l'ordre selon lequel les clients sont servis : premier arrivée premier servi, au hasard, selon des priorités.

2.4 Caractérisation d'une file d'attente [1] [2]

2.4.1 Notation de Kendall

Une file d'attente est notée A/B/m/F/K/N selon Kendall avec :

- A : Distribution des temps entre deux arrivées successives
- **B** : Distribution des durées de service.
- *m* : nombre de postes de service.

- F: capacité du système.
- K: nombre de clients dans la source (capacité de la source).
- N: discipline de la file.

Pour les arrivées et les services on utilise les symboles suivants :

- M: Loi exponentielle (Markovien).
- G: loi quelconque (Générale).
- **D** : durée constante (Déterministe).
- E: Loi d'Erlang.
- **H**: Loi hyper-exponentielle.

La discipline de service peut être :

- FIFO (First In, First Out) où FCFS (first come first served).
- LIFO (Last In, First Out).
- RANDOM clients choisis au hasard.
- PRIORITÉ (avec ou sans préemption) système de classes

2.5 Processus stochastique [1]

Un processus stochastique $\{X(t)\}_{t\in T}$ est une fonction du temps dont la valeur à chaque instant dépend de l'issue d'une expérience aléatoire. A chaque instant $t\in T$.

X(t) est donc une variable aléatoire. Un processus stochastique peut être considéré comme une famille de variables aléatoire généralement non indépendantes. L'ensemble des temps T peut être discret ou continu. X(t) définit l'état du processus à un instant donné t. L'ensemble noté S des valeurs que peut prendre le processus à chaque instant est appelé espace d'états et peut, de même que T, être discret (fini ou infini) ou continu. En fonction des valeurs possibles de T et S, on classifie les processus stochastiques de la façon suivante :

- processus à temps discret et à espace d'état discret.
- processus à temps continu et à espace d'état discret.

2.6 Processus de naissance et de mort [1]

Ces processus permettent de façon générale de décrire l'évolution temporelle de la taille d'une population d'un type donné. Dans le cas d'un système d'attente, on considère par exemple des populations comprenant tous les clients qui sont dans le système à l'instant t.

Les processus de naissance et de mort sont des processus stochastiques à temps continu et à espace d'états discret n = 0, 1, 2, Ils sont caractérisés par deux conditions importantes : ils sont sans mémoire, et à partir d'un état donné n, des transitions ne sont possibles que vers l'un ou l'autre des états voisins (n + 1)et (n - 1) pour $(n \ge 1)$.

Alors, soit $\{N(t), t \ge 0\}$ un processus de naissance et de mort à états discrets et homogène dans le temps, c'est-à-dire :

$$P(N(t+s) = j|N(s) = i) = P_{ij}(t)$$
 (2.6.1)

ne dépend pas de s. Ce processus est de naissance et de mort si :

•
$$P_{i,i+1}(\Delta t) = \lambda_i \Delta t + o(\Delta t)$$
, $i \ge 0$

•
$$P_{i,i-1}(\Delta t) = \mu_i \Delta t + o(\Delta t)$$
, $i \ge 1$

$$\quad \bullet \quad P_{i,i}(\Delta t) = 1 - (\lambda_i + \mu_i) \Delta t + o(\Delta t) \text{ , } i \geq 0 \\$$

•
$$P_{0,0}(\Delta t) = 1 - \lambda_i \Delta t + o(\Delta t)$$

•
$$P_{i,j}(\Delta t) = o(\Delta t), |i-j| \ge 2$$

•
$$P_{i,j}(0) = \delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

 λ_i : Taux de naissance (croissance).

 μ_i : Taux de mort (décroissance).

2.7 Analyse mathématique [1]

L'étude mathématique d'un système de files d'attente se fait par l'introduction d'un processus stochastique qui décrit l'évolution temporelle du système. En fonction des quantités qui déterminent la structure du système, on cherche à calculer les probabilités d'état définissant le régime transitoire du processus en question, puis le régime stationnaire. Les probabilités d'état définissant le régime transitoire dépendent de la distribution initiale du processus étudié. Ainsi, le calcul explicite du régime transitoire s'avère pénible, voir impossible, pour la plupart des modèles.

A partir de la distribution stationnaire, on peut calculer les mesures de performance du système, telles que : le temps d'attente d'un client, le temps de séjour d'un client dans le système, le taux d'occupation des dispositifs de service, la durée de la période d'activité.

- ▶ L =nombre moyen de clients dans le système.
- $ightharpoonup L_q$ =nombre moyen de clients dans la file d'attente.
- \triangleright W_q =temps moyen d'attente d'un client.
- W =temps moyen de séjour d'un client dans le système.

Ces mesures permettent de juger le comportement opérationnel d'un système d'attente. Elles ne sont pas indépendantes les unes des autres, mais sont liées par les relations suivantes :

$$L = \lambda_e W$$

$$L_q = \lambda_e W_q$$

$$W = W_q + \frac{1}{\mu}$$

$$L = L_q + \frac{\lambda_e}{\mu}$$

0ù

- $\geqslant \frac{1}{\mu}$: la durée moyenne de service $(\mu > 1)$.

Le taux d'utilisation du système : Une mesure importante d'un système de files d'attente, celle qui mesure le degré de saturation du système, est l'intensité du trafic ρ . Il représente le rapport entre la demande (mesurée grâce au taux d'arrivée λ) et la capacité de service (par le taux de service μ). $\rho = \frac{\lambda}{\mu}$.

2.8 Système de files d'attente M/M/c [1] [2] [8]

Les clients arrivent au système selon un processus de Poisson de $\tan \lambda > 0$, la loi de pst une loi exponentielle de $\tan \mu > 0$, le service est assuré par $c \geq 1$ serveurs en parallèle, la file d'attente est de capacité infini. Si l'un des serveurs est libre, le client qui arrive se dirige

avec

immédiatement vers ce serveur. Dans le cas contraire, le client prend sa place dans une file d'attente commune pour tous les serveurs. Lorsqu'un serveur se libère, le client en tête de la file occupe ce serveur. Par conséquent, la discipline d'attente est FIFO. L'état du système à la date t peut être décrit par le processus stochastique

$$\{N(t), t \ge 0\}. \tag{2.8.1}$$

Où N(t) représente le nombre de clients dans le système à l'instant t. Ce dernier est un processus de naissance et de mort dont les taux de transitions sont :

$$\lambda_n = \lambda \qquad n = 1, 2 \dots \dots$$

$$\mu_n = \begin{cases} n\mu & \text{si } 1 \le n \le c \\ c\mu & \text{si } n \ge c \end{cases}$$

$$\lambda \qquad \lambda \qquad \lambda \qquad \lambda \qquad \lambda$$

$$\mu \qquad 2\mu \qquad 3\mu \qquad c\mu \qquad c\mu$$

Evaluation de l'état dans la file d'attente M/M/c.

Du diagramme, on déduit les résultats qui suivent. L'analyse du système en régime stationnaire, à l'aide de la procédure des équations de Chapman-Kolmogorov aboutit aux équations suivantes :

$$\lambda P_{0} = \mu P_{1}$$

$$(\lambda + n\mu)P_{n} = \lambda P_{n-1} + (n+1)\mu P_{n+1} \qquad 1 \le n < c$$

$$(\lambda + c\mu)P_{n} = \lambda P_{n-1} + c\mu P_{n+1} \quad n \ge c$$

$$\sum_{n=0}^{\infty} P_{n} = 1$$

La résolution du système ci-dessus présente la distribution stationnaire suivante :

$$P_{n} = \begin{cases} \frac{\rho^{n}}{n!} P_{0}, & 0 \le n \le c \\ \frac{\rho^{c}}{c! c^{n-c}} P_{0}, & n \ge c \end{cases}$$
 (2.8.2)

0ù

$$P_0 = \left[\sum_{n=0}^{c} \frac{\rho^n}{n!} + \frac{\rho^{c+1}}{c! (c - \rho)} \right]^{-1}$$

Cette dernière existe si $\lambda < c\mu$.

La probabilité qu'un client qui entre dans le système doit attendre est donnée par :

$$P(attente) = P(X \ge c) = \sum_{n=c}^{\infty} P_n = \frac{P_c}{1-\rho}$$

A partir de la distribution stationnaire du processus, on peut calculer les mesures de performances du système. En effet

$$L = c\rho + \frac{\rho P_c}{(1 - \rho)^2}$$

$$L_q = \frac{\lambda^c \rho}{\mu^c c! (1 - \rho)^2} P_0$$

$$W_q = \frac{P_c}{\mu c (1 - \rho)^2}$$

$$W = \frac{1}{\mu} + \frac{P_c}{c\mu (1 - \rho)^2}$$

2.9 Cas particuliers du système M/M/c [1] [2] [8] 2.9.1 Système M/M/1

Le modèle M/M/1 permet d'illustrer les concepts fondamentaux liés à l'attente devant un serveur. Il est décrit par : les clients arrivent dans le système selon un processus de Poisson de taux $\lambda > 0$, les durées de service suivent une loi exponentielle de paramètre $\mu > 0$, la discipline d'attente

est *FIFO*, la file d'attente est de capacité infinie. Dans ce cas le processus est de naissance et de mort dont les taux de transition sont :

$$\begin{cases} \text{et } \lambda_n = \lambda, n \ge 0 \\ \mu_n = \mu, n \ge 1 \end{cases}$$

Pour trouver la distribution stationnaire et les mesures de performance de ce système, on remplace c par 1 dans les formules du système M/M/c; on obtient :

La distribution stationnaire:

$$P_n = (1 - \rho)\rho^n. {(2.9.1)}$$

Les mesures de performance :

$$L = \frac{\rho}{1 - \rho}.$$

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}.$$

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)}.$$

$$W = \frac{L}{\lambda} = \frac{1}{\mu - \lambda}.$$

2.9.2 Système M/M/∞

Dans le cas $c=\infty$, nous obtenons le système de files d'attente $M/M/\infty$. Il est évident qu'aucune file d'attente ne se forme : chaque client est servi dès son arrivée.

Pour le processus de naissance et le processus de mort associés à ce système on a :

$$\begin{cases} \lambda_n = \lambda \ (n \ge 0) \\ \mu_n = n\mu \ (n \ge 1) \end{cases}$$

Donc la distribution stationnaire est donnée par :

$$P_n = \frac{\left(\frac{\lambda}{\mu}\right)^n}{n!} e^{-\frac{\lambda}{\mu}} \quad n \ge 1. \quad (2.9.2)$$

et les mesures de performance suivantes:

$$L = \rho$$
;

$$W=\frac{1}{\mu};$$

tandis que
$$L_q = 0$$
 et $W_q = 0$.

2.10 Systèmes plus complexes [7]

Dans cette section, nous allons illustrer la multitude de modèle que nous pouvons utiliser selon la distribution du temps de service. En effet, le modèle M/M/1 est très limité puisqu'il suppose que, pour la grande partie des clients, le temps de service est faible. Ceci ne correspond pas nécessairement à la réalité.

En effet, il est plus possible que le temps de service soit petit ou grand pour une faible partie des clients alors que, pour la plus grande partie des clients, le temps de service est pratiquement le même.

2.10.1 Le coefficient de variation [1] [7]

Soit X une variable aléatoire. La valeur de l'espérance est notée par E(X) et la variance par $\sigma^2(X)$ et $\sigma(X)$ l'écart type. Une des façons de mesurer la variabilité de la variable aléatoire X est le carré coefficient de variation (cv^2) :

$$cv^2 = \frac{Var(X)}{E(X^2)}$$
 (2.10.1)

Ce coefficient permet de déterminer la forme des distributions utilisées pour les arrivées et le temps de service.

Avant de poursuivre l'analyse en valeur moyenne de la file M/G/1, il est intéressant d'appliquer ce résultat à trois cas particuliers :

- Pour une file M/M/1, le $cv^2 = 1$ alors la distribution du temps de service exponentielle.
- Pour une file M/D /1, le $cv^2 = 0$ alors la distribution du temps de service déterministe.
- Pour une file M/G/1, le $cv^2 = 2$ alors la distribution du temps de service générale.

2.10.2Le système d'attente M/G/1 [5]

Définition

Un système formé d'une file FIFO à capacité illimitée et d'un seul serveur. Le processus d'arrivées est poissonien de paramètre λ et le temps de service Y est réparti suivant une loi quelconque B(t) de densité b(t) et son espérance mathématique $E(Y) = \frac{1}{\mu}$.

Stabilité Soit S le temps de service d'un client, la file est stable si

$$\rho = \lambda E(S) < 1.$$

2.10.2.1 Les probabilités d'état [5]

La probabilité P_j est définie comme la proportion du temps pendant la quel le système contient j clients. L'utilisation d'un résultat fondamental de la théorie du processus régénératif permet de trouver la relation récursive suivante des probabilités d'états P_i

Théorème 2,10,2,1

La probabilité P_i (d'être à l'état j) satisfait la relation récursive

$$P_j = \lambda a_{j-1} P_0 + \lambda \sum_{k=1}^{j} a_{j-k} P_k$$
 $j = 1, 2, ...$ (2.10.2.1)

Où

$$a_k = \int_0^\infty \frac{e^{-\lambda t} (\lambda t)^k}{k!} b(t) dt \qquad (2.10.2.2)$$

2.10.2.2 Chaine de Markov induite (incluse) [2]

Nous nous proposons de déterminer la distribution stationnaire et les caractéristiques usuelles du processus $\{X(t); t \ge 0\}$ où X(t) est le nombre de clients dans le système à l'instant t.

Considérons le processus X(t) aux instants $t_1, t_2, t_3, ...$ où des clients terminent leur service et quittent le système. On définit ainsi un processus stochastique à temps discret :

$$\{X_n = X(t_n) ; n = 1,2,...\}$$

Où t_n est l'instant de départ de n^{ième} client. Pour vérifier que cette suite de variables aléatoires est une chaine de Markov à temps discret, on considère le nombre A_n de clients qui entrent dans le système pendant que le n^{ième} client est servi.

Les variables aléatoires A_n sont indépendants entre elles ; leur distribution commune est :

$$P(A_n = k) = a_k = \int_0^\infty \frac{e^{-\lambda t} (\lambda t)^k}{k!} b(t) dt$$

Où $a_k > 0 \ (k = 0,1,2,...)$ alors

$$X_{n+1} = \begin{cases} X_n - 1 + A_{n+1} & si \ X_n \ge 0 \\ A_{n+1} & si \ X_n = 0 \end{cases}$$

(n=0, 1, 2,...), relation qui s'écrit également

$$X_{n+1} = X_n - \delta_n + A_{n+1}$$

Avec

$$\delta_n = \begin{cases} 1 & si \ X_n > 0 \\ 0 & si \ X_n = 0 \end{cases}$$

 X_{n+1} ne dépend donc que de X_n et de A_{n+1} et non pas des valeurs prises par X_{n-1}, X_{n-2}, \dots

La suite de variables aléatoires $\{X_n : n \ge 1\}$ s'appelle *chaine de Markov induite* du processus $\{X(t) : t \ge 0\}$. Ses probabilités de transition

$$P_{ij} = P(X_{n+1} = j | X_n = i)$$

Se calculent par

$$P_{0j} = a_j \quad si \ j \ge 0$$

$$P_{ij} = a_{j-i+1} \quad si \ 1 \le i \le j+1$$

$$P_{ij} = 0 \quad ailleurs$$

Et la matrice des probabilités de transition prend la forme

$$P = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \dots \\ a_0 & a_1 & a_2 & a_3 \dots \\ 0 & a_0 & a_1 & a_2 \dots \\ 0 & 0 & a_0 & a_1 \dots \end{pmatrix}$$

Puisqu'on peut passer de chaque état vers n'importe quel autre état, il s'agit d'une chaine de Markov irréductible dont on peut montrer qu'elle converge vers une distribution limite si $\rho = \frac{\lambda}{\mu} < 1$. la quantité ρ est appelée *l'intensité de trafic*

$$\rho = E(A_n) = \lambda E(S)$$

Où S: le temps service d'un client.

Distribution stationnaire

Supposons $\rho < 1$, et $\Pi = (\pi_0, \pi_1, \pi_2, ...)$ la distribution stationnaire de la chaine de Markov induite. Il ne sera généralement pas possible de trouver la distribution Π elle-même, mais nous pouvons calculer la fonction génératrice correspondante $\Pi(z)$.

$$\Pi = \Pi P$$

Où
$$\pi_j = \sum_{i=0}^{\infty} P_{ij} \pi_i \quad (j = 0, 1, 2, \dots)$$

Ce qui s'écrit également

$$\pi_j = a_j \pi_0 + \sum_{i=0}^{j+1} a_{j-i+1} \pi_i - a_{j+1} \pi_0 \quad (j = 0,1,2,...)$$

On multiple cette équation par z^j et on somme sur j, on a

$$\sum_{j=0}^{\infty} \pi_j z^j = \pi_0 \sum_{j=0}^{\infty} a_j z^j + \frac{1}{z} \sum_{j=0}^{\infty} c_{j+1} z^{j+1} - \frac{\pi_0}{z} \sum_{j=0}^{\infty} a_{j+1} z^{j+1} \quad (j = 0, 1, 2, \dots)$$

Où

$$c_{j+1} = \sum_{i=0}^{j+1} a_{j-i+1} \pi_i$$

Et le terme général du produit de convolution des deux distributions

 $A = (a_0, a_1, a_2, ...)$ et Π . En introduisant les fonctions génératrices

$$\Pi(\mathbf{z}) = \sum_{i=0}^{\infty} \pi_i \, z^i$$

$$A(z) = \sum_{i=0}^{\infty} a_i z^i$$

Et

$$C(z) = \sum_{i=0}^{\infty} c_i z^j = \Pi(z)A(z)$$

D'où

$$\Pi(z) = \frac{\pi_0 A(z)(z-1)}{z-A(z)}$$
 et $\pi_0 = 1 - \rho$

2.10.2.3 Calcul des mesures de performance [2]

La formule de POLLACZEK-KHINTCHINE

Supposons que les clients arrivent à une station de service selon un processus de Poisson avec taux λ . Les temps de service des clients sont des variables aléatoires indépendantes ayant une distribution de probabilité commune avec les deux premiers moments finis E(S) et $E(S^2)$.

Les mesures de performance importantes sont

- L_q = le nombre de moyen de clients en attente dans la file.
- W_a = le temps moyen d'attente d'un client dans la file.

La formule Pollaczek-Khintchine est donnée par l'expression:

$$W_q = \frac{\lambda E(S^2)}{2(1-\rho)} = \rho E(S) \frac{(1+cv^2)}{2(1-\rho)}$$
 où $\rho = \lambda E(S)$

Cette formule implique aussi une expression explicite pour L_q par la formule Little

$$L_q = \lambda W_q$$
;

2.10.2.3.1 Nombre moyen de clients dans le système [2] Théorème 2.10.2.3.1

Pour le système d'attente M/G/1, le nombre moyen de clients dans le système et la fonction génératrice de la distribution stationnaire sont respectivement donnés par :

$$E(X) = L = \rho + \frac{\rho^2 + \lambda^2 var(Y)}{2(1 - \rho)}$$

et

$$\Pi(z) = \frac{\pi_0 A(z)(z-1)}{z - A(z)}$$

Le premier de ces résultats est connu sous le nom de formule de Pollazek-Khintchine ; il peut surprendre puisqu'il affirme que pour des quantités λ et ρ données, la valeur de L est minimale si le temps de service Y est constant.

2.10.2.3.2 Temps de séjour moyen

$$W = \frac{L}{\lambda} = \frac{1}{\mu} + \frac{\lambda [var(Y) + \frac{1}{\mu^2}]}{2(1-\rho)}$$

2.10.3Le Système M/G/∞:

Supposons que les clients arrivent à une station de service selon un processus de Poisson avec le taux λ . La station de service a un nombre infinie de serveurs, et que la durée de service d'un client est générale à une distribution de probabilité B(t).

En d'autres termes, il est supposé que chaque client qui arrive soit immédiatement servis. Une question est intéressante : quel est la distribution limite du nombre de serveurs occupés ?

La réponse à cette question est simple : est une distribution de Poisson de moyenne $\lambda\mu$.

$$\lim_{t\to\infty} P \text{ (k serveurs occupée à l'instant t)} = e^{-\lambda\mu} \frac{(\lambda\mu)^k}{k!}$$

2.10.3.1 Les mesures de performances

$$L = \lambda W$$

$$W = \frac{1}{\mu}$$

$$L_q = 0$$

$$W_q = 0$$

2.10.4 Le système M/G/c [5]

L'un des problèmes les plus difficiles dans la théorie des files d'attente est l'analyse de la file d'attente avec plusieurs serveurs. On prend en général le système M/G/c.

Dans ce modèle de multiserveur avec les c serveurs sont identiques et indépendants les unes des autres. Le processus d'arrivée est Poissonnien avec le taux λ et le temps de service S d'un client à une distribution de probabilité générale B (t).

Stabilité: la file est stable si
$$\rho = \frac{\lambda E(S)}{c} < 1$$

La file M/G/c ne permet aucune solution analytique simple, même pas pour le temps moyen d'attente.

Les approximations à partir de l'approche régénérative^(*) utilisé dans la section précédente (2-10-2-1 page 22) pose problème (ne peut pas être appliquée) dans le cas de file multiserveur. La raison est qu'à un instant de fin de service, la seule information du nombre de client en attente est insuffisante pour décrire le comportement futur du système.

En réalité, nous avons besoin de l'information supplémentaire sur les temps de services résiduels pour les services non encore achevés. L'inclusion totale de cette information dans la description de l'état du système rend l'analyse impossible.

Cependant, nous allons réunir l'information sur les temps de service résiduels de sorte que l'on puisse se ramener à un modèle approche ou l'analyse régénérative peut être appliquée.

Dans ce qui suit nous allons maintenant établir l'hypothèse et approximation (sous forme de proposition) concernant le comportement du processus aux instants d'achèvement de service.

Proposition (Hypothèse et approximation) 2.10.4: [5]

a) Si à l'instant de fin de service, les k clients sont en attente dans le système avec $1 \le k < c$, alors le temps jusqu'au prochain instant de fin de service est distribuée comme $\min(S_1^e, \ldots, S_k^e)$, où S_1^e, \ldots, S_k^e sont des variables aléatoire indépendantes qui ont la fonction

$$B_e(t) = \frac{1}{E(S)} \int_0^t \{1 - B(x)\} dx, \ t \ge 0,$$

comme fonction de distribution de probabilité.

a) Si à l'instant de fin de service, les k clients sont en attente dans le système avec $k \ge c$, alors le temps jusqu'au prochain instant de fin de service est distribué comme S/c, où S dénote le temps de service original du client.

Cette hypothèse et approximation peut être motivée comme suit.

Premièrement: Dans le cas où au moins un serveur est libre, la file M/G/c peut être considéré comme une file M/G/c, chaque client arrive, il est immédiatement servi.

Deuxièmement: si tous les c serveurs sont occupés, donc la file M/G/c peut être approchée à une file M/G/1, ou les c serveurs occupés sont considéré comme un seul serveur occupé.

2.1.1.1 Approximations aux probabilités d'états [5]

Selon l'hypothèse d'approximation dans la Section 2.10.2.1 (page 22) la file M/G/1 peut être approchée à une file M/G/c pour céder des approximations P_j^{app} aux probabilités d'état P_j . Ces approximations sont données dans le théorème suivant. L'approximation aux probabilités d'état implique une approximation aux probabilités de temps d'attente.

Théorème 2.10.4.1

Selon l'hypothèse d'approximation

$$\begin{split} P_j^{app} = & \frac{(c\rho)^j}{j!} P_0^{app} & (2.10.4.1) \\ P_j^{app} = & \lambda a_{j-c} P_{c-1}^{app} + \lambda \sum_{k=c}^j b_{j-k} P_k^{app} \text{ , j = c, c + 1, ... } (2.10.4.2) \end{split}$$

Où les constantes a_n et b_n sont données par

$$a_n = \int_0^\infty \{1 - B_e(t)\}^{c-1} \{1 - B(t)\} e^{-\lambda t} \frac{(\lambda t)^n}{n!} dt , n = 0,1, \dots$$

$$b_n = \int_0^\infty \{1 - B(ct)\} e^{-\lambda t} \frac{(\lambda t)^n}{n!} dt , n = 0,1, \dots$$

2.1.1.2 La fonction génératrice [5]

L'algorithme dans la Section 5.1 (page 181 [5]) donne un plan très simple de calculer

 $P_j^{app} = P_j^{exp}$ pour $0 \le j \le c - 1$. Définir la fonction génératrice

$$P_{q}(z) = \sum_{j=0}^{\infty} P_{c+j}^{app} z^{j}, |z| \leq 1.$$

C'est une affaire d'algèbre simple pour tirer (2.10.4.2) cela

$$P_{q}(z) = \lambda P_{c-1}^{app} \frac{\alpha(z)}{1 - \lambda \beta(z)} \qquad (2.10.4.5)$$

Où
$$\alpha(z) = \int_0^\infty \{1 - B_e(t)\}^{c-1} \{1 - B(t)\} e^{-\lambda(1-z)t} dt$$

$$\beta(z) = \int_0^\infty \{1 - B(ct)\} e^{-\lambda(1-z)t} dt$$

La méthode FFT (Fast Fourier Transform) peut être utilisée pour obtenir P_j^{app} pour $j \ge c$.

Aussi, la fonction génératrice $P_q(z)$ permet d'obtenir une approximation de nombre moyen de client dans la file. Depuis $L_q = \sum_{j=c}^{\infty} (j-c)P_j$, la dérivée $P'_q(1)$ donner une approximation à L_q .

$$L_q^{app} = \left[(1 - \rho) \ \gamma_1 \frac{c}{E(S)} + \rho \frac{1}{2} (1 + c_S^2) \right] L_q(exp)$$
 (2.10.4.6)

où
$$c_s^2 = \sigma^2(S)/E^2(S)$$
 et $\gamma_1 = \int_0^\infty \{1 - B_e(t)\}^c dt$.

La quantité L_q (exp) dénote le nombre moyen de client dans la file M/M/c. Si $c_s^2 \le 1$, la constante γ_1 sont très bien rapprochés de

$$(c+1)^{-1}c_s^2E(S)+c^{-1}(1-c_s^2)E(S).$$

Chapitre 3

Chapitre 3 Application

3.1 Données

Pendant une période de deux semaines, nous avons effectué une collecte des données aux niveaux du centre de stockage et de distribution « 169 caroubier » du district carburants d'ALGER.

Les données récoltées par chaque client sont :

- L'instant d'arrivée
- L'instant du début de service
- L'instant du départ

Les clients qui arrivent pour le chargement des camions trouvent deux postes d'entrées (entrée A pour le ravitaillement et entrée B pour le réseau) et un poste de sortie (ravitaillement et réseau).

- Le Entrée A: la file A pour les clients externes de la société, la capacité de la file est infinie
- Le Entrée B: la file B pour les clients internes de la société, la capacité de la file est infinie

Les clients se dirigent vers un post de chargement qui contient six quais (serveurs) en parallèle selon l'ordre d'arrivées et disponibilité du produit c.à.d (FIFO). Les clients de type B sont prioritaire par rapport à ceux du type A.

Avec Excel nous avons trouvé les résultats suivants :

3.2 Ajustement des Lois d'arrivées

Pour identifier des lois (arrivées et service) nous avons utilisé des tests d'ajustements sur les intervalles de temps entre les arrivées et les durées de service d'une étude de notre problème, ont abouti au modèle M/G/6.

- Pour la loi des arrivées nous avons fait le test de khi-deux (voir les tables annexe B) on trouve les résultats suivants :
- Test de khi-deux Hypothèses:

Ho = {la distribution observée n'est pas significativement différente de la distribution théorique}

Contre:

H1 = {la distribution observée est significativement différente de la distribution théorique}

Pour la file A

$$d_{A} = \sum_{i} \frac{(N_{i} - np_{i})^{2}}{np_{i}} = 229.588877$$

$$d_{A} \sim \chi_{484-12-1}^{2} = \chi_{471}^{2}$$

$$\alpha = P (d_{A} > h_{A})$$

$$\Rightarrow 1 - \alpha = P (d_{A} < h_{A})$$

$$\Rightarrow h_{A} = F_{\chi_{471}^{2}}^{-1} (1 - \alpha)$$

$$\Rightarrow h_{A} = F_{\chi_{471}^{2}}^{-1} (0,95)$$

$$\Rightarrow h_{A} = 449.1468$$

Donc:

 $d_A < h_A$ On accepte l'hypothèse H_0

Pour la file B

$$d_{B} = \sum_{i} \frac{(N_{i} - np_{i})^{2}}{np_{i}} = 30.83410 \qquad n=108$$

$$d_{B} \sim \chi_{108-9-1}^{2} = \chi_{98}^{2}$$

$$\alpha = P(d_{B} > h_{B})$$

$$\Rightarrow 1 - \alpha = P(d_{B} < h_{B})$$

$$\Rightarrow h_{B} = F_{\chi_{98}}^{-1}(1 - \alpha)$$

$$\Rightarrow h_{B} = F_{\chi_{98}}^{-1}(0,95)$$

$$\Rightarrow h_{B} = 77.9295$$

Donc:

 $d_B < h_B$ On accepte l'hypothèse H_0

* Conclusion:

On accepte que le processus d'arrivée de client soit le processus de poisson.

Pour la file A:

					Test de	khi-deux
	ddl	Ajustement	Paramètre (λ_A)	α	Valeur calculé	Valeur tabulé
Processus d'arrivées	471	Poisson	20,17	0.05	229.58	449.14

Tableau 1 : Ajustement de la loi de probabilité d'arrivée « des clients de la file A » par une loi tabulée.

Pour la file B:

					Test de	khi-deux
	ddl	Ajustement	Paramètre (λ_B)	α	Valeur calculé	Valeur tabulé
Processus d'arrivées	98	poisson	9	0.05	30.83	77.92

Tableau 2 : Ajustement de la loi de probabilité d'arrivés « des clients de la file B » par une loi tabulée.

3.3 Identification de lois de service

Pour identifier la loi de service nous allons calculer le coefficient de variation (cv^2) « voir annexe B». La question est de savoir si on peut à partir de ce coefficient, faire l'approximation de la loi de service par une combinaison de loi exponentielle.

Par exemple, lorsque le cv^2 est proche de 1, la loi exponentielle constitue une bonne approximation, alors que pour un cv^2 proche de $\frac{1}{2}$, une loi de Erlang- $2^{(*)}$ constitue une meilleure approximation. D'une manière générale, le cv^2 d'une loi de Erlang-k est égal à $\frac{1}{k}$ (voir chapitre 6 Bruno Bayna).

Dans notre cas, pour la file A on peut penser à une approximation de la loi de service par la loi de Erlang-10 puisque le $cv^2 = \frac{1}{10}$. Ce choix reste très délicat, vue la difficulté d'interpréter ce dernier sur le plan pratique.

	La file A	La file B
$cm^2 - Var(X)$	0.10	0.12
$Cv^- = \frac{1}{E(X^2)}$		

Tableau 3 : identification de la loi de probabilité des clients servis « de la file A et B » par un coefficient de variation.

Conclusion

• L'analyse statistique de l'ensemble des données collectées de notre étude de problème a abouti à un modèle M/G/6 avec deux types de clients A et B de taux d'arrivées poissoniennes respectif $\lambda_A = 20.17$ et $\lambda_B = 9$ par heure.

Par ailleurs l'identification de la loi du temps de service d'un client n'a pas été possible.

Le temps de service d'un client est distribué selon une loi générale qui n'est plus supposée exponentielle, de moyenne respective 0.29 heure et 0.34 heure (pour chaque type de client)

3.4 Approximation des Mesures de performance de modèle M/G/c

Aucun résultat théorique exact sur le calcul des mesures de performance des modèles M/G/c, Nous avons utilisé les approximations établies à la section 2.10.4 « page 27 », on a obtenu les résultats suivants :

Les tableaux 4,5 et 6 donnes les valeurs des indicateurs de performance obtenues dans les deux cas.

Le cas M/G/∞:

Mesure de performance	La file A	La file B
λ	20.17	9
μ	3.43	3
C	6	6
ρ	0.9	0.5
L	5.88	3
L_q	0	0
W	0.29	0.33
W_q	0	0

Tableau 4 : mesure de performances comparées des deux approches étudiées de modèle M/G/∞

Le cas M/G/1:

Mesure de performance	La file A	La file B
λ	20.17	9
μ	3,43	3
C	6	6
ρ	0.9	0.5
L	34.12	5
L_q	28.24	2
L_s	5.88	3
W	1.69	0.53
W_q	1.4	0.19
W_s	0.29	0.34

Tableau 5 : mesure de performances comparées des deux approches étudiées de modèle M/G/1

Le taux d'utilisation du système nécessite quelques éclaircissements. Il reflète l'étendue de l'occupation des serveurs plutôt que leur inactivité. Il est logique de penser qu'une bonne gestion des ressources implique un taux d'utilisation de 100 %. Mais on remarque que lorsque le taux d'utilisation approche de 100 % revient à augmenter à la fois le nombre de clients qui attendent L_q et le temps moyen d'attente W_q .

Le cas M/G/6: on utilise les approximations pour calculer les mesures de performance

Mesure de performance	La file A	La file B
λ	20.17	9
μ	3.43	3
C	6	6
ρ	0.9	0.5
γ	0.041	0.056
P_0	0.41	0.612
L^{app}	6	3.002
L_q^{app}	0.12	0.0002
L_{S}^{app}	5.88	3.0018
W^{app}	0.35	0.34
W_q^{app}	0.06	0.00002

~3			-	
4 5	3 -3 1	2111	0 3	
1.1	LOLL	JILL	'e 3	ŀ

Application

The second secon		
${\cal W}_s^{app}$	0.29	0.33998

Tableau 6 : mesure de performances comparées des deux files d'attente du modèle M/G/6

On a en permanence pratiquement dans la file A et B respectivement 6 et 3 clients en service (exactement 5,88 et 3.0018). Il y'a en moyenne 6 et 3 clients dans le système dont un peu plus de 0.12 clients en moyenne dans la file d'attente. Un client séjourne en moyenne 21 minutes dans la station dont 3 minutes 6 secondes dans la file d'attente.

Conclusion

L'analyse des files d'attente peut être un aspect important de la conception des systèmes. Il est important de définir si la population de clients potentiels est infinie ou bien si elle se limite à un nombre fini de clients.

Les files d'attente ont tendance à se former, bien que, d'un point de vue macro, les systèmes ne soient pas congestionnés. Les arrivées aléatoires des clients combinées à la variabilité des temps de service créent temporairement des congestions dans le système, d'où la création de files d'attente. Dans certains cas, il arrive rarement que les serveurs soient inactifs.

Contrairement aux modèles multi serveurs avec des arrivées poissoniennes et des durées de services exponentielles M/M/c, ceux avec distributions quelconques sont plus complexes à analyser. Dans notre cas, l'existence de deux types de clients ajoute une autre difficulté à notre problème.

L'utilisation de la formule de POLLACZEK-Kitchinne pour obtenir des approximations des mesures de performances de notre modèle n'a été possible que sous l'hypothèse d'un seul type de clients.

Les données issues d'une étude de cas dans un centre de stockage et de distribution « 169 caroubier » du district carburants d'ALGER nous ont permis de conclure que les arrivées des clients sont poissoniennes de taux respectifs $\lambda_A = 20.17$ et $\lambda_B = 9$ par heure et de durées de service générale de moyenne respectives 0.29 heure et 0.34 heure.

Cette étude nous a également permis de conclure que l'intensité de service est élevée car les serveurs passent 98% de leur temps occupés, ce qui assure à la station une pleine utilisation de ses ressources.

En résumé, l'imagination et la créativité sont importantes pour quiconque veut concevoir un système et gérer l'attente de façon optimale. On ne devrait pas tenir compte uniquement des approches mathématiques.

Quelques recommandations pour gérer les files d'attente :

- Déterminer un temps d'attente tolérable pour les clients. Combien de temps vos clients peuvent- ils attendre ? Fixez vos objectifs en fonction de ce qui est acceptable.
- Essayer de divertir les clients pendant l'attente. Musique, café, magazines, télévision sont autant de sources de distraction qui font patienter les clients.
- *Informer les clients de la durée de l'attente*. Ce point est particulièrement important lorsque l'attente risque d'être longue. Expliquez aux clients pourquoi l'attente est anormalement longue, et ce que vous êtes en train de faire pour y remédier.
- Éloigner les employés visibles qui ne sont pas concernés par le service. Il n'y a rien de plus frustrant pour une personne qui attend en file que de voir un employé occupé à faire autre chose que de venir répondre aux clients qui attendent.
- Segmenter la clientèle. Si un groupe de clients peut être servi rapidement, créez une file d'attente spéciale pour ne pas les faire attendre plus que nécessaire.
- Former et sensibiliser le personnel à la gentillesse. En plus du sourire quotidien et de l'accueil chaleureux, et même personnalisé, le personnel doit être capable d'affronter les situations difficiles et de réagir de manière à détendre l'atmosphère lorsque les clients s'impatientent.
- Encourager les clients à venir durant les périodes mortes. Informez les clients sur les périodes moins achalandées.
- Avoir une vision à long terme concernant la gestion de l'attente. Mettez en place un processus d'amélioration continue concernant la réduction de l'attente. Réfléchissez sur les moyens d'accélérer le processus de traitement des clients. Automatisez lorsque cela est possible sans pour autant éliminer le contact personnalisé. On a toujours besoin d'un peu d'attention.

Dibliographic JUDIOSTADILIC

Bibliographie

- [1]. Bruno BAYNAT, Théorie des files d'attentes : Des chaines de Markov aux réseaux à forme produit, HERMES Science Europe 2000.
- [2]. Alan RUEGG, « Processus stochastiques avec applications aux phénomènes d'attente et de fiabilité ».
- [3]. BENCHABANE Kamilia KESSIRA Amel, Thème « Dimensionnement et approvisionnement optimal en carburants du district d'Alger », Mémoire de Master USTHB (Université des Sciences et de la Technologie Houari BOUMEDIENE), 03/ROMIR/13.
- [4]. MOFREDJ Amina BENSAIDANE Naima, Thème: traitement des Ecarts d'Exploitation, Mémoire de Master USTHB (Université des Sciences et de la Technologie Houari BOUMEDIENE), 04/RO2MIR/13.

Site Web

- [5]. Henk C. Tijms, A First Course in stochastic Models, Vrije Universiteit, Amesterdam, The Netherlands, 2003.
- [6]. M^{me} Bonnes Manières «Gestion des opérations chapitre 19».
- [7]. Yannik Noury Rapport de recherche : « Gestion des files d'attente : le cas chirurgies » Directeur Yves Richelle, Département de sciences économiques, Université de Montréal, mai 2004.
- [8]. Doghmane Samia Thème « Sur le comportement asymptotique du système de files d'attentes M/G/1 avec rappels » Directeur de mémoire Dr.N.Djelleb M.C Université d'annaba, Mémoire de Magister, Université BADJI Mokhtar Annaba, Année 2012.
- [9]. Rédacteur M^{me} BOUNAZA Kahina Ingenieur qualité, « Branche Carburants : Manuel du Système de Management Intégré Qualité, Sécurité, et Environnement », Edition : février 2015.
- [10] IVO ADAN, « Stochastic models for Design and Planning », University of Amsterdam 2000.
- [11] IVO. ADAN, W.A VAN DE WAARSENBURG, J. WESSELS, « Analyzing Ek/Er/c Queues », ACM Portal of technologie, 2004.

[12] RICHAR C. LARSON,, AMADEO R.ODONI, « Urban Operations Research », Prentice-Hall N.J 1997-1999.

[13] ROBERT B. COOPER, « Introduction to Queueing Theory », *Elsevier North Holland, Inc*, 1981, 347pp.

Annexe A

1. Processus de Poisson

Le processus en question est utilisé pour décrire la réalisation dans le temps d'évènements aléatoires d'un type donné.

La description mathématique d'un flux d'événements aléatoires peut se faire de deux manières différentes:

1. On considère le nombre d'évènements X(t) se produisant dans [0,t] et on cherche à déterminer la loi de probabilité de cette variable aléatoire discrète.

Le processus $\{X(t), t \geq 0\}$ est appelé processus de comptage.

2. On considère les intervalles de temps qui séparent les instants d'apparition de deux évènements consécutifs. Ce sont des variables aléatoires continues, positives et en général indépendantes et identiquement distribuées.

On dit qu'un processus de comptage $\{X(t), t \ge 0\}$ est un processus de Poisson s'il satisfait aux 3 conditions suivantes:

• Le processus est homogène dans le temps: la probabilité d'avoir k évènements dans un intervalle de longueur t ne dépend que de t et non pas de la position de l'intervalle par rapport à l'axe temporel:

$$P_k(t) = P(X(t) = k).$$

 Pour tout système d'intervalles disjoints, les nombres d'évènements s'y produisant sont des variables aléatoires indépendantes.

• La probabilité
$$P_k(\Delta t) = \begin{cases} o(\Delta t) & \text{si } k \geq 2 \\ \lambda \Delta t + o(\Delta t) & \text{si } k = 1, \text{où } \lambda \text{ est la densité ou intensité} \\ 1 - \lambda \Delta t + o(\Delta t) & \text{si } k = 0 \end{cases}$$

du processus (le nombre moyen d'évènements qui apparaissent par unité de temps).

Théorème 1: Pour un processus de Poisson, on a:

$$P(X(t) = k) = P_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \lambda > 0, k \ge 0;$$

$$E[X(t)] = \lambda t \ et \ Var[X(t)] = \lambda t.$$

Ces relations définissent le régime transitoire du processus de Poisson. Aucun régime stationnaire n'existe vu que $P_k = \lim_{t \to \infty} P_k(t) = 0, \forall k \ge 0$.

Théorème 2: Le temps V qui sépare un instant quelconque du prochain événement est une variable aléatoire repartie selon une loi $\exp(\lambda)$.

2. Loi exponentielle

La densité de probabilité d'une loi exponentielle de paramètre λ est donnée par: $f(t) = \lambda e^{-\lambda t}$, $t \ge 0$. La fonction de répartition est de la forme:

$$F(t) = 1 - e^{-\lambda t}, t \ge 0.$$

3. Loi d'Erlang

Par définition, la loi d'Erlang $E_k(\lambda)$ est la loi suivie par la somme de k variables aléatoires indépendantes chacune distribuées selon la loi exponentielle de paramètre λ . Ainsi, si des évènements aléatoires indépendants arrivent selon un processus de Poisson, alors la date t_k d'arrivée du k^{ieme} événement est gouvernée par la loi d'Erlang.

Les fonctions de densité de probabilités et de répartition sont données par :

$$f(t) = \frac{\lambda^k t^k e^{-\lambda t}}{(k-1)!} \text{ et } F(t) = 1 - e^{-k\lambda t} \sum_{j=0}^{k-1} \frac{(k\lambda t)^j}{j!}, t \ge 0.$$

4. Loi hyper exponentielle:

Soit $\lambda_1, \ldots, \lambda_n$, n réels positifs différents. Une variable aléatoire X continue à valeurs dans \mathbb{R}^+ suit une loi hyper exponentielle d'ordre n et de paramètres $\lambda_1, \ldots, \lambda_n$ si sa fonction de densité de probabilités est donnée par:

$$f(t) = \sum_{i=1}^n a_i \lambda_i e^{-\lambda_i t} 1_{\mathbb{R}^+}(t)$$
 où $a_i = \prod_{j=1, j \neq i}^n \frac{\lambda_j}{\lambda_i - \lambda_j} i = 1, \dots, n.$

5. Fonction génératrice

Soit X une variable aléatoire discrète non négative telle que

$$P(X = k) = P_k$$
, $k = 0,1,2,...$

La fonction génératrice de X est définie par :

$$f(z) = E[z^X] = \sum_{k=0}^{\infty} P_k z^k = 0.$$

On vérifie immédiatement que f(z) est définie au moins pour $|z| \le 1$ (z une variable complexe).

 $f(0) = P_0$ et f(1) = 1

D'autres propriétés élémentaires des fonctions génératrices sont identiques ciaprès :

• La loi de probabilité $\{P_n\}$ est caractérisée de façon unique par la fonction génératrice associée f(z) et l'on a

$$P_k = \frac{f^{(k)}(0)}{k!}$$
, $k = 0,1,2,...$

Où

$$f^{(k)}(0) = \left[\frac{d^k}{dz^k}f(z)\right]_{z=0}$$

- E(x) = f'(1) et E(x2) = f''(1) + f'(1).
- Si X et Y deux variables aléatoires indépendantes à valeurs entières non négatives, la fonction génératrice de X + Y et le produit des fonctions génératrices de X et deY.

6. Transformée de Laplace

Lorsque la variable aléatoire positive X est du type continu, sa distribution peut être caractérisée par la transformée de Laplace de la densité f(x):

$$\bar{f}(s) = E(e^{-sX)} = \int_{0}^{\infty} f(X)e^{-sX}dX$$

Où s est une variable complexe. Cette intégrale est définie au moins pour $Re \ge 0$. La transformée de Laplace de f(X) sera également notée L[f(X)].

7. Processus d'arrivées

7.1 TEST D'AJUSTEMENT

La méthode consiste à comparer l'histogramme des fréquences et la distribution de la loi de probabilité servant de modèle théorique. Pour cela, après avoir découpé l'intervalle d'observation en k classes, on construit un indice d mesurant l'écart constaté entre les effectifs réels et les effectifs théoriques.

$$d = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}$$

Où n_i = effectif observé dans la classe i

n = effectif total observé

 p_i = probabilité d'obtenir une observation de la loi de probabilité théorique

dans la classe i

 np_i = effectif théorique dans la classe i

Comme le nombre moyen d'occurrences dans cet intervalle est λ , alors la probabilité qu'il existe exactement k occurrences (k étant un entier naturel, k = 0, 1, 2, ...) est

$$P(k) = P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$$

Où

- e est la base de l'exponentielle (2,718...)
- k! est la factorielle de k
- λ est un nombre réel strictement positif.

On dit alors que X suit la *loi de Poisson* de paramètre λ .

Hypothèses:

Ho = {la distribution observée n'est pas significativement différente de la distribution théorique}

Contre:

H1 = {la distribution observée est significativement différente de la distribution théorique}

Ces Hypothèses sont vraies pour tous les jours ; et on prend α =0,05.

Statistique de test:

On utilise la statistique

$$d = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}$$

On sait que

$$d \to \chi^2_{_{(k-r-1)}}$$

- k est le nombre de classes.
- r le nombre de paramètres qui ont été estimés pour que la loi théorique soit entièrement déterminée.

Règle de décision:

d > h on rejette Hod < h on accepte Ho

Détermination du seuil critique:

 $\alpha = P$ [rejeter H_o quand H_o vraie] = P [d > h quand H_o vraie] = P $\chi^2_{(k-r-1)} > h$

α étant donné, on en déduit la valeur de h.

Processus régénératif

Les processus régénératifs ont été utilisés pour modéliser les problèmes de contrôle des stocks. L'inventaire dans un entrepôt tel que celui-ci diminue via un processus stochastique en raison des ventes jusqu'à ce qu'il soit réapprovisionné par une nouvelle commande.

En probabilité appliquée , un **processus régénératif** est une classe de processus stochastique avec la propriété que certaines parties du processus peuvent être traitées comme étant statistiquement indépendantes l'une de l'autre. Cette propriété peut être utilisée dans la dérivation des propriétés théoriques de ces processus.

Histoire

Les processus régénératifs ont d'abord été définis par Walter L. Smith dans Actes de la Royal Society A en 1955.

Définition

Un processus régénératif est un processus stochastique avec des points temporels dans lesquels, d'un point de vue probabiliste, le processus se redresse. Ce point de temps peut être déterminé par l'évolution du processus. C'est-à-dire que le processus $\{X(t), t \geq 0\}$ est un processus régénératif si il existe des

points de temps $0 \le T_0 < T_1 < T_2 < ...$ de sorte que le processus post- $T\{X(T_k + t): t \ge 0\}$

• A la même distribution que le processus post-

$$T_0\{X(T_0 + t): t \ge 0\}$$

• Est indépendant du processus pré $T_k \{ X(t) : 0 \le t < T_k \}$

Pour $k \ge 1$. Intuitivement, cela signifie qu'un processus régénératif peut être divisé en cycles iid .

Lorsque $T_0 = 0$, X(t) s'appelle un processus régénératif non résolu. Sinon, le processus s'appelle un processus de régénération retardé.

Exemples

- Les processus de renouvellement sont des processus régénératifs, T_1 étant le premier renouvellement.
- En alternance des processus de renouvellement, où un système alterné entre un état 'on' et un 'off' state.
- Une chaîne de Markov récurrente est un processus de régénération, T_1 étant le moment de la première récidive. Cela inclut les chaînes de Harris.
- Le mouvement brownien réfléchi est un processus de régénération (où l'on mesure le temps qu'il faut des particules pour partir et revenir).

Propriétés

Par le théorème de la récompense de renouvellement, avec la probabilité 1

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t X(s)ds = \frac{E[R]}{E[\tau]}$$

où τ est la longueur du premier cycle et $R = \int_0^t X(s) ds$ est la valeur au cours du premier cycle.

 Une fonction mesurable d'un processus régénératif est un processus de régénération avec le même temps de régénération.

AMBERCO.

Identification de la loi d'arivée des client de file B par le test de khi-deux avc n=108

				The state of the s		$(n_i - nP_i)^2$	
Н	n_i	P_i	nP_i	n_i - nP_i	$(n_i - nP_i)^2$	nP_i	
6_7	10	0,11299782	12,2037647	-2,20376465	4,85657864	0,397957416	
7_8	2	0,00660227	0,71304497	1,28695503	1,65625325	2,322789326	
8_9	0	0,00017689	0,01910379	-0,01910379	0,00036495	0,019103785	
9_10	4	0,04107139	4,43571015	-0,43571015	0,18984334	0,04279886	
10_11	6	0,10219876	11,0374663	-5,03746629	25,3760666	2,299084407	
11_12	8	0,13623387	14,7132579	-6,71325792	45,067832	3,063076321	
12_13	6	0,10219876	11,0374663	-5,03746629	25,3760666	2,299084407	
13_14	0	0,00017689	0,01910379	-0,01910379	0,00036495	0,019103785	
14_15	8	0,13623387	14,7132579	-6,71325792	45,067832	3,063076321	
15_16	4	0,04107139	4,43571015	-0,43571015	0,18984334	0,04279886	
16_17	2	0,00660227	0,71304497	1,28695503	1,65625325	2,322789326	
17_18	2	0,00660227	0,71304497	1,28695503	1,65625325	2,322789326	
18_19	8	0,13623387	14,7132579	-6,71325792	45,067832	3,063076321	
19_20	6	0,10219876	11,0374663	-5,03746629	25,3760666	2,299084407	
20_21	6	0,10219876	11,0374663	-5,03746629	25,3760666	2,299084407	
21_22	0	0,00017689	0,01910379	-0,01910379	0,00036495	0,019103785	
22_23	5	0,07097136	7,66490715	-2,66490715	7,1017301	0,926525262	
23_00	7	0,12614247	13,623387	-6,62338697	43,8692549	3,220143054	
00_01	3	0,01901453	2,05356952	0,94643048	0,89573066	0,436182293	
01_02	7	0,12614247	13,623387	-6,62338697	43,8692549	3,220143054	
02_03	2	0,00660227	0,71304497	1,28695503	1,65625325	2,322789326	
03_04	6	0,10219876	11,0374663	-5,03746629	25,3760666	2,299084407	
04_05	6	0,10219876	11,0374663	-5,03746629	25,3760666	2,299084407	
05_06	0	0,00017689	0,01910379	-0,01910379	0,00036495	0,019103785	
Somme n_i	108					30,83410191	
moyenne	8,64						

					test de khi-deux	
	ddl	Ajustement	Paramètre	а	Val calculer	val tabulée
proce d'arriv	98	poisson	9	0,05	30,83	77.9295

 $d = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i} \text{=30.83} \hspace{0.5cm} \text{; ddl=108-9-1=98}$

 $\chi_{98}^2 = 77.9295$

 ${\cal H}_0$: Le processus d'arrivée est de poisson

77.92 > 30.83 : on accepte que le processus

 H_1 : Le processus d'arrivée n'est pas de poisson

d'arrivées est de poisson

Le temps service de chaque client de la file B avec n=108

Tchar(min)	Tcharg^2
19,06	363,2836
20,83	433,8889
21,78	474,3684
17,53	307,3009
14,06	197,6836
20,93	438,0649
18,93	358,3449
13,3	176,89
9,72	94,4784
16,5	272,25
20,05	402,0025
14,2	201,64
13,2	174,24
18,05	325,8025
17,35	301,0225
20,67	427,2489
10,68	114,0624
19,23	369,7929
13,42	180,0964
12,92	166,9264
19,62	384,9444
17,15	294,1225
15,23	231,9529
13,97	195,1609
22,42	502,6564
19,23	369,7929
28,38	805,4244
15,4	237,16
11,83	139,9489
11,83	139,9489
13,68	187,1424
28,32	802,0224
23,05	531,3025
11,83	139,9489
37,27	1389,0529
37,73	1423,5529
15,28	233,4784
29,67	880,3089
15,93	253,7649
15,3	234,09

17	289
20,33	413,3089
18,83	354,5689
22,5	506,25
22,25	495,0625
34,83	1213,1289
36,7	1346,89
23,68	560,7424
23,5	552,25
21,83	476,5489
25,5	650,25
26,67	711,2889
22	484
12,28	150,7984
30	900
14,57	212,2849
15,32	234,7024
19,98	399,2004
19,7	388,09
14	196
12,97	168,2209
17,7	313,29
24,83	616,5289
23,55	554,6025
20,92	437,6464
23,75	564,0625
15,5	240,25
35,67	1272,3489
17	289
20,33	413,3089
18,83	354,5689
22,5	506,25
22,25	495,0625
34,83	1213,1289
36,67	1344,6889
23,68	560,7424
23,5	552,25
21,83	476,5489
13,48	181,7104
15,9	252,81
15,63	244,2969
18,63	347,0769
10,6	112,36
11,25	126,5625
14,7	216,09

	1	1
	10,53	110,8809
	14,43	208,2249
	16,83	283,2489
	15,5	240,25
	14,72	216,6784
	17,78	316,1284
	12,93	167,1849
	37,27	1389,0529
	37,73	1423,5529
	15,28	233,4784
	29,67	880,3089
	15,93	253,7649
	15,3	234,09
	17	289
	20,33	413,3089
	18,83	354,5689
	22,5	506,25
	22,25	495,0625
	34,83	1213,1289
	36,7	1346,89
	23,68	560,7424
	23,5	552,25
	21,83	476,5489
somme	2188,85	49707,5311
E(X)	20,2671296	
$E(X^2)$		460,254918
var	49,4983742	
cv2	0,12050538	
μ(min)	0,04934098	
μ(heur)	2,96045869	

$$E(X)=20.26$$

$$cv^{2} = \frac{var(X)}{E(X^{2})} = 0.1205$$

Distribution de loi service générale μ =2.96 \cong 3 client/h

Identification de la loi d'arivée des client de file A par le test de khi-deux avc n=484

						$(n_i - nP_i)$
Н	n_i	P_i	nP_i	n_i - nP_i	$(n_i - nP_i)^2$	nP_i
6_7	49	2,4249E-08	1,1737E-05	48,9999883	2400,99885	204574554
7_8	25	0,0464446	22,4791887	2,52081131	6,35448964	0,2826832
8_9	10	0,00534941	2,58911576	7,41088424	54,9212051	21,212340
9_10	41	1,6118E-05	0,00780087	40,9921991	1680,36039	215406,650
10_11	51	3,8674E-09	1,8718E-06	50,9999981	2600,99981	138954277
11_12	29	0,01347655	6,52264848	22,4773515	505,231331	77,4580039
12_13	14	0,03682962	17,8255374	-3,82553743	14,6347366	0,82099834
13-14	27	0,02690707	13,0230216	13,9769784	195,355924	15,0008139
14_15	34	0,00134624	0,65158157	33,3484184	1112,11701	1706,79629
15_16	17	0,07403541	35,8331371	-18,8331371	354,687053	9,89829756
16_17	27	0,02690707	13,0230216	13,9769784	195,355924	15,0008139
17_18	19	0,08804032	42,6115141	-23,6115141	557,5036	13,0834027
18_19	10	0,00534941	2,58911576	7,41088424	54,9212051	21,2123405
19_20	19	0,08804032	42,6115141	-23,6115141	557,5036	13,0834027
20_21	29	0,01347655	6,52264848	22,4773515	505,231331	77,4580039
21_22	6	0,000163	0,07889428	5,92110572	35,0594929	444,385733
22_23	16	0,06241001	30,2064461	-14,2064461	201,823111	6,68145833
23_00	14	0,03682962	17,8255374	-3,82553743	14,6347366	0,82099834
00_01	29	0,01347655	6,52264848	22,4773515	505,231331	77,4580039
01_02	7	0,00046961	0,22729067	6,77270933	45,8695917	201,810273
02_03	9	0,0026526	1,28385905	7,71614095	59,5388311	46,3748967
03_04	0	1,7447E-09	8,4445E-07	-8,4445E-07	7,1309E-13	8,4445E-07
04_05	0	1,7447E-09	8,4445E-07	-8,4445E-07	7,1309E-13	8,4445E-07
05_06	2	3,5479E-07	0,00017172	1,99982828	3,99931316	23290,2351
Somme	484					229,588877
	20,1666667					
	\$				test de k	hi-deux
	ddl	Ajustement	Paramètre	а	Val calculer	val tabulée
proce rriv	471	poisson	20,1666667	0,05	229,588877	449.1468

 $d = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}$ =229.58 ;ddl=484-12-1=471

 H_0 : Le processus d'arrivée est de poisson

 H_1 : Le processus d'arrivée n'est pas de poisson

 $\chi^2_{471} = 449.1468$

449.14 > 229.58: on accepte que le processus

d'arrivées est de poisson

Le temps de service de chaque client de la file A avec n=484

Tcharg(min)	T(charg^2)
23,85	568,8225
16,71	279,2241
21,15	447,3225
15,3	234,09
20,55	422,3025
17,48	305,5504
10,98	120,5604
24,03	577,4409
19,35	374,4225
20,56	422,7136
6,03	36,3609
8,36	69,8896
18,48	341,5104
19,55	382,2025
6,53	42,6409
6	36
10,56	111,5136
9,13	83,3569
15,73	247,4329
17,32	299,9824
10,48	109,8304
10,02	100,4004
23,03	530,3809
25,45	647,7025
18,8	353,44
21,02	441,8404
6,82	46,5124
8,32	69,2224
7,98	63,6804
14,68	215,5024
5,72	32,7184
6,7	44,89
17,56	308,3536
24,02	576,9604
21,96	482,2416
6,15	37,8225
19,95	398,0025
8,88	78,8544
6	36
22,9	524,41
22,68	514,3824
19,92	396,8064

21,55	464,4025
15,15	229,5225
19,36	374,8096
9,35	87,4225
18,72	350,4384
25,06	628,0036
23,12	534,5344
12,15	147,6225
11,9	141,61
18,96	359,4816
16,72	279,5584
7,4	54,76
8,72	76,0384
19,56	382,5936
17,73	314,3529
20,1	404,01
18,3	334,89
20,75	430,5625
14,38	206,7844
5,6	31,36
8,55	73,1025
9,93	98,6049
9,28	86,1184
8,72	76,0384
7,93	62,8849
23,73	563,1129
10,72	114,9184
21,75	473,0625
19,88	395,2144
24,55	602,7025
9,75	95,0625
4,95	24,5025
5,73	32,8329
13,92	193,7664
14,63	214,0369
19,93	397,2049
20,86	435,1396
21,92	480,4864
12,9	166,41
11,7	136,89
14,36	206,2096
5,1	26,01
18,56	344,4736
10,56	111,5136
9,2	84,64

17,96	322,5616
17,71	313,6441
17,38	302,0644
19,03	362,1409
20,38	415,3444
14,56	211,9936
11,6	134,56
8,9	79,21
9,73	94,6729
21,86	477,8596
10,95	119,9025
20,55	422,3025
21,06	443,5236
20,93	438,0649
21,68	470,0224
22,52	507,1504
11,05	122,1025
14,1	198,81
6,7	44,89
20,38	415,3444
16,92	286,2864
6,06	36,7236
19,72	388,8784
21,52	463,1104
23,73	563,1129
22,76	518,0176
21,1	445,21
20,52	421,0704
21,03	442,2609
5,53	30,5809
6,06	36,7236
6,92	47,8864
20,93	438,0649
7,08	50,1264
8,52	72,5904
13,08 14,02	171,0864
4,15	196,5604 17,2225
5,15	26,5225
5,13	26,3223
8,15	66,4225
8,28	68,5584
5,45	29,7025
20,1	404,01
6,15	37,8225
0,23	

15,1	228,01
7,9	62,41
6,12	37,4544
5,55	30,8025
22,72	516,1984
7,56	57,1536
8,92	79,5664
7,98	63,6804
10,55	111,3025
13,9	193,21
9,48	89,8704
6,13	37,5769
21,85	477,4225
10,06	101,2036
10,52	110,6704
19,12	365,5744
18,1	327,61
23,1	533,61
7,13	50,8369
13,88	192,6544
8,06	64,9636
8,52	72,5904
16,98	288,3204
20,35	414,1225
21,56	464,8336
9,53	90,8209
21,9	479,61
23,08	532,6864
8,15	66,4225
6,13	37,5769
5,12	26,2144
20,42	416,9764
21,26	451,9876
9,95	99,0025
5,1	26,01
28,56	815,6736
24,88	619,0144
13,08	171,0864
5,1	26,01
21,73	472,1929
5,93	35,1649
10,73	115,1329
5,12	26,2144
5,15	26,5225
8,82	77,7924

22,13	489,7369
7,36	54,1696
8,12	65,9344
22,08	487,5264
5,43	29,4849
20,36	414,5296
24,13	582,2569
19,1	364,81
19,06	363,2836
20,2	408,04
21,08	444,3664
21,55	464,4025
20,06	402,4036
23,13	534,9969
13,15	172,9225
22,43	503,1049
19,96	398,4016
24,73	611,5729
21,9	479,61
21,55	464,4025
20,16	406,4256
22,22	493,7284
21,9	479,61
23,13	534,9969
21,9	479,61
22,72	516,1984
21,15	447,3225
10,38	107,7444
18,35	336,7225
21,15	447,3225
26,15	683,8225
21,88	478,7344
20,2	408,04
20,55	422,3025
28,15	792,4225
20,38	415,3444
19,53	381,4209
19,56	382,5936
21,55	464,4025
17,9	320,41
16,93	286,6249
19,72	388,8784
20,36	414,5296
19,9	396,01
20,02	400,8004

18,72	350,4384
20,35	414,1225
20,2	408,04
20,35	414,1225
21,15	447,3225
20,55	422,3025
20,72	429,3184
19,9	396,01
16,96	287,6416
19,72	388,8784
20,72	429,3184
20,93	438,0649
19,55	382,2025
19,9	396,01
20,9	436,81
21,9	479,61
19,55	382,2025
20,56	422,7136
19,56	382,5936
20,2	408,04
21,15	447,3225
20,73	429,7329
21,13	446,4769
21,12	446,0544
22,56	508,9536
23,13	534,9969
22,13	489,7369
19,73	389,2729
20,56	422,7136
18,76	351,9376
20,38	415,3444
22,03	485,3209
21,15	447,3225
21,9	479,61
20,9	436,81
20,72	429,3184
21,15	447,3225
22,9	524,41
20,9	436,81
20,2	408,04
19,95	398,0025
19,9	396,01
28,12	790,7344
21,08	444,3664
22,15	490,6225

22,2	492,84
28,05	786,8025
21,08	444,3664
18,93	358,3449
21,2	449,44
21,15	447,3225
22,08	487,5264
18,15	329,4225
21,15	447,3225
20,13	405,2169
25,9	670,81
19,22	369,4084
17,92	321,1264
20,18	407,2324
20,18	407,2324
18,56	344,4736
23,36	545,6896
21,55	464,4025
18,9	357,21
19,95	398,0025
18,6	345,96
18,55	344,1025
21,52	463,1104
24,13	582,2569
24,15	583,2225
13,55	183,6025
20,06	402,4036
21,12	446,0544
18,08	326,8864
17,/3	314,3529
20,02	400,8004
27,05	731,7025
25,15	632,5225
21,55	464,4025
23,75	564,0625
9,18 20,52	84,2724
23,9	421,0704 571,21
22,73	516,6529
16,72	279,5584
19,95	398,0025
18,98	360,2404
21,92	480,4864
19,95	398,0025
21,15	447,3225
	,

20,36	414,5296
15,35	235,6225
18,73	350,8129
22,9	
23,12	524,41 534,5344
19,72	2 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30,52	388,8784 931,4704
22,15	490,6225
17,55	308,0025
19,06	363,2836
19,75	390,0625
20,72	429,3184
23,12	534,5344
20,73	429,7329
22,35	499,5225
23,15	535,9225
20,06	402,4036
19,75	390,0625
23,53	553,6609
21,55	464,4025
18,98	360,2404
22,38	500,8644
25,05	627,5025
21,15	447,3225
20,15	406,0225
21,55	464,4025
20,53	421,4809
19,92	396,8064
19,55	382,2025
20,02	400,8004
17,9	320,41
23,55	554,6025
21,75	473,0625
19,36	374,8096
24,73	611,5729
20,73	429,7329
18,55	344,1025
18,9	357,21
23,12	534,5344
19,35	374,4225
20,02	400,8004
15,18	230,4324
19,93	397,2049
20,03	401,2009
19,36	374,8096

19,53	381,4209
19,56	382,5936
18,36	337,0896
22,15	490,6225
21,15	447,3225
21,13	446,4769
25,35	642,6225
23,03	530,3809
20,73	429,7329
29,36	862,0096
22,1	488,41
21,13	446,4769
19,35	374,4225
20,35	414,1225
21,36	456,2496
22,36	499,9696
01:55	532,6864
21,36	456,2496
21,9	479,61
20,7	428,49
18,36	337,0896
14,36	206,2096
21,36	456,2496
19,1	364,81
17,03	290,0209
16,36	267,6496
19,55	382,2025
19,16	367,1056
20,18	407,2324
19,36	374,8096
20,22	408,8484
21,7	470,89
17,13	293,4369
20,26	410,4676
19,28	371,7184
18,36	337,0896
19,35	374,4225
16,23	263,4129
16,97	287,9809
13,03	169,7809
15,37	236,2369
7,06	49,8436
14,5	210,25
14,28	203,9184
12,62	159,2644

16,23	263,4129
12,1	146,41
9,22	85,0084
12,4	153,76
12,25	150,0625
13,3	176,89
9,72	94,4784
16,5	272,25
20,05	402,0025
14,02	196,5604
13,02	169,5204
18,05	325,8025
14,35	205,9225
20,67	427,2489
13,42	180,0964
12,92	166,9264
10,68	114,0624
19,23	369,7929
12,23	149,5729
7,95	63,2025
18,27	333,7929
26,67	711,2889
16,97	287,9809
24,23	587,0929
14,06	197,6836
14,38	206,7844
13,67	186,8689
22,08	487,5264
14,06	197,6836
12,62	159,2644
28,32	802,0224
23,05	531,3025
20,93	438,0649
18,93	358,3449
11,83	139,9489
13,3	176,89
9,72	94,4784
16,5	272,25
20,05	402,0025
14,2	201,64
13,2	174,24
18,05	325,8025
13,42	180,0964
12,92	166,9264

	10,68	114,0624
	19,23	369,7929
	19,06	363,2836
	20,83	433,8889
	21,78	474,3684
	17,53	307,3009
	14,06	197,6836
	20,93	438,0649
	18,93	358,3449
	13,3	176,89
	9,72	94,4784
	16,5	272,25
	20,05	402,0025
	14,2	201,64
	13,2	174,24
	18,05	325,8025
	17,35	301,0225
	20,67	427,2489
	13,42	180,0964
	12,92	166,9264
	10,68	114,0624
	19,23	369,7929
	19,62	384,9444
	17,15	294,1225
	15,23	231,9529
	13,97	195,1609
	22,42	502,6564
	19,23	369,7929
	28,38	805,4244
	15,4	237,16
	11,83	139,9489
	11,83	139,9489
	13,68	187,1424
	28,32	802,0224
	23,05	531,3025
	11,83	139,9489
	37,27	1389,0529
	37,73	1423,5529
somme	8468,5	164173,795
E(X)	17,4969008	
$E(X^2)$		339,202055
var(X)	33,0605168	
cv2	0,10799095	
μ	0,05715298	
μ	3,42917872	

E(X)=17.49

$$cv^2 = \frac{Var(X)}{E(X^2)} = 0.1079$$

Distribution de loi service générale µ=3.43 client/h

Loi de Khi-deux

Le tableau donne x tel que P(K > x) = p

H	6	m	6	7	mlc	7 M	12	0	2	0	0	2	2	6	7 7		6	2	2	4	4	00			00	7 0		7	0	4	2	20 10	7 0		100		1	1	10	\$ †	10	0.	10	100	20 1	1
0,01	6.6349	9,2103	11,3449	13,276	15,0863	18,4753	20,0902	21,6660	23,209	24,7250	26,217	27,6882	29,141	30,5779	32,4087	34.8053	36,1909	37,5662	38,932	40,2894	41,6384	42,9798	44,314	45,641	40,3023	49,5879	50,8922	63,690	76,1539	88,3794	100,4252	112,3288	125,116	158,950	181,8403	204,5301	227,0561	249,445	304,9396	359,9064	468,7245	576,4928	683,5156	789,9735	895,9843	1001,6296
0,02	5.4119	7,8240	9,8374	11,6678	13,3882	16,6224	18,1682	19,6790	21,1608	22,6179	24,0540	25,4715	26,8728	28,2595	30,0332	32,3462	33.6874	35,0196	36,3434	37,6595	38,9683	40,2704	41,5661	42,8558	75 A188	46.6927	47,9618	60,4361	72,6133	84,5799	96,3875	108,0693	119,6485	153.9182	176,4709	198,8464	221,0772	243,1869	298,0388	352,4246	460,2108	567,0698	673,2703	778,9721	884,2789	989,2631
0,05	3.8415	5,9915	7,8147	9,4877	11,0705	14,0671	15,5073	16,9190	18,3070	19,6751	21,0261	22,3620	23,6848	24,9958	2062,02	28.8693	30,1435	31,4104	32,6706	33,9244	35,1725	36,4150	37,6525	38,8851	40,1133	42.5570	43,7730	55,7585	67,5048	79,0819	90,5312	101,8795	113,1453	146.5674	168,6130	190,5165	212,3039	233,9943	287,8815	341,3951	447,6325	553,1268	658,0936			970,9036
0,1	2.7055	4,6052	6,2514	7,7794	9,2364	12,0170	13,3616	14,6837	15,9872	17,2750	18,5493	19,8119	21,0641	22,3071	24,2418	25,9894	27,2036	28,4120	29,6151	30,8133	32,0069	33,1962	34,3816	35,5632	37 9159	39.0875	40,2560	51,8051	63,1671	74,3970	85,5270	96,5782	118 4980	140,2326	161,8270	183,3106	204,7037	226,0210	279,0504	331,7885	436,6490	540,9303	644,8004	748,3591	851,6/12	954,7819
0,2	1.6424	3,2189	4,6416	5,9886	7,2893	9,8032	11,0301	12,2421	13,4420	14,6314	15,8120	16,9848	18,1508	19,3107	21,4031	22,7595	23,9004	25,0375	26,1711	27,3015	28,4288	29,5533	30,6752	31,7946	340766	35,1394	36,2502	47,2685	58,1638	68,9721	79,7146	90,4053	111 6667	132,8063	153,8537	174,8283	195,7434	216,6088	268,5986	320,3971	423,5895	526,4014	628,9433			935,4987
0,8	0.0642	0,4463	1,0052	1,6488	2,3425	3,8223	4,5936	5,3801	6,1791	6,9887	7,8073	8,6339	9,4673	10,3070	1200011	12,8570	13,7158	14,5784	15,4446	16,3140	17,1865	18,0618	18,9398	2078,61	21 5880	22.4751	23,3641	32,3450	41,4492	50,6406	59,8978	69,2069	87 9453	106,8056	125,7581	144,7834	163,8682	183,0028	231,0128	279,2143	376,0218	473,2099	570,6680	668,3308	766,1555	864,11431
0,9	0.0158	0,2107	0,5844	1,0636	1,6103	2,8331	3,4895	4,1682	4,8652	5,5778	6,3038	7,0415	7,7895	8,5468	10 0852	10,8649	11,6509	12,4426	13,2396	14,0415	14,8480	15,6587	16,4734	18,130	18 9397	19.7677	20,5992	29,0505	37,6886	46,4589	55,3289	64,2778	13,2911	100,6236	119,0293	137,5457	156,1526	174,8353	221,8059	269,0679	364,2074	459,9261	556,0560	652,4973	749,1852	846,0746 864,1125
0,95	0.0039	0,1026	0,3518	0,7107	1,1455	2,1673	2,7326	3,3251	3,9403	4,5748	5,2260	5,8919	6,5706	7,2609	8 6718	9,3905	10,1170	10,8508	11,5913	12,3380	13,0905	13,8484	14,6114	15,3792	16 9779	17,7084	18,4927	26,5093	34,7643	43,1880	51,7393	60,3915	77 9295	95,7046	113,6593	131,7561	149,9688	168,2786	214,3916	260,8781	354,6410	449,1468	544,1801	639,6130		
0,98	0.0006	0,0404	0,1848	0,4294	0,7519	1,5643	2,0325	2,5324	3,0591	3,6087	4,1783	4,7654	5,3682	5,9849	7,2550	7,9062	8,5670	9,2367	9,9146	10,6000	11,2926	11,9918	12,6973	14,4086	14 8475	15.5745	16,3062	23,8376	31,6639	39,6994	47,8934	56,2128	73 1422	90,3667	107,8149	125,4400	143,2096	161,1003	206,2490	251,8637	344,0781	437,2194	531,0191	625,3175	V20,010/	\$15,0267 831,3702
0.99	0,0002	0,0201	0,1148	0,2971	0,5543	1,2390	1,6465	2,0879	2,5582	3,0535	3,5706	4,1069	4,6604	5,2293	5,0162	7,0149	7,6327	8,2604	8,8972	9,5425	10,1957	10,8564	11,5240	12,1981	13 5647	14.2565	14,9535	22,1643	29,7067	37,4849	45,4417	53,54UI	70 0649	86,9233	104,0344	121,3456	138,8204	156,4320	200,9386	245,9725	337,1553	429,3875	522,3651	615,90%5		
0,995	0.0000	0,0100	0,0717	0,2070	0,4117	0,9893	1,3444	1,7349	2,1559	2,6032	3,0738	3,5650	4,0747	4,6009	5,4422	6,2648	6,8440	7,4338	8,0337	8,6427	9,2604	9,8862	10,5197	11,1602	12 4613	13,1211	13,7867	20,7065	27,9907	35,5345	43,2752	51,1719	59,1963	83,8516	100,6548	117,6793	134,8844	152,2410	196,1606	240,6634	330,9028 337,1553	422,3034	514,5289	504,3795	704 7750	194,47 W
666'0	0,0000	0,0020	0,0243	0,0908	0,2102	0,5985	0,8571	1,1519	1,4787	1,8339	2,2142	2,6172	3,0407	3,4827	4 4161	4,9048	5,4068	5,9210	6,4467	6,9830	7,5292	8,0849	8,6493	17776	10 3909	10,9861	11,5880	17,9164	24,6739	31,7383	39,0364	46,5199	61 9179	77,7551	93,9256	110,3603	127,0111	143,8428	186,5541	229,9634	318,2596		1		724 E 608 704 775 0 109,8969	1 ## DEDC
a	- L	7	m	4 1	יו ע	2	80	6	10	11	12	13	14	15	17	18	19	20	21	22	23	24	52	27	78	29	30	40	20	9	02	80	100	120	140	160	180	200	250				-	-	000	

2 of the state of