PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH
BLIDA SAAD DAHLAB UNIVERSITY
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS

MASTER THESIS IN
OPERATIONAL RESEARCH

Theme:

SCHEDULING JOBS ON
IDENTICAL MACHINES WITH
AGREEMENT CONSTRAINTS

Author: N
/;;’//»///—\\ ;\\
BENYOUCEF SIDOUMMOU 79 3 \%
/ ;..v' :_ \ A
& \ j -
\ I
Defended before the jury composed of: _//
Mr. Brahim BENMEDJDOUB, B Senior lecturer at USTHB President
Mr. Karim AMROUCHE, B Senior lecturer at Algiers 3 University Director
Mr. Mohamed BENDRAOUCHE, A Senior lecturer at Blida 1 University Co-director
Mrs. Wafaa LABBI, B Senior lecturer at Algiers 3 University Examiner

Blida University, October 28th, 2018

ACKNOWLEDGEMENT

The success and final outcome of this project required a lot of guidance and
assistance from many people and I am extremely privileged to have got this all along
the completion of my project. All that I have done is only due to such assistance and I
would not forget to thank them.

Twould first like to thank my thestis director M. Karim Amrouche and my thesis
co-director M. Mohamed Bendraouche for their support and advice along the
completion of my project, and for their patience, motivation, enthusiasm, and immense
knowledge.

Besides my director and my co-director, I would like to thank my thesis
President, M. Brahim Benmedjdoub, and my thesis examiner, Mrs. Wafaa Labbi, for
their insightful comments and hard questions.

I must express my very profound gratitude to my brother Mohamed, for
prouviding me the opportunity to achieve this work. This accomplishment would not
have been possible without him.

Nobody has been more important to me in the pursuit of this project than the
members of my family. I would like to thank my parents, whose love and guidance are
with me in whatever I pursue. They are the ultimate role models. Most importantly, I
wish to thank my supportive wife, Fahima, and my three wonderful children,
Mohamed Amine, Oussama and Yacine, who provide unending inspiration.

Last but not the least, I would like to thank my brothers, sisters, nephews,
nieces and all my friends.

ABSTRACT

In this thesis, we consider the “Scheduling with Agreements” problem. The
jobs are subjected to agreement constraints modeled by a graph called “Agreement
Graph”. All the jobs are ready at time zero, the preemption is not allowed and the
objective is to minimize the makespan. We consider different types of agreement
graph: general graphs, bipartite graphs, trees and chains. This problem is NP-hard
in the general agreement graph case. However, it can be solved in a reasonable time
for a special classes of graphs. Indeed, we introduce an algorithm solving
polynomially the problem in the case of chain-type agreement graph. This algorithm
is built on the maximum weight stable set to determine a lower bound for the
problem. A mathematical formulation is proposed in both general and bipartite
graphs. To approach the optimality and obtain an upper bound for the problem, we
introduce heuristics based on lists. And, to be closer to the optimal solution, we
propose metaheuristics. All these methods are widely experimented using uniformly-
generated instances.

Keywords: Scheduling with Agreements, Identical Parallel Machines, Makespan,
Heuristics, Metaheuristics, Lower Bounds.

»

dd 3

Gl panys Jta3 @1 38192l gual casllagll punss cnl 33lsa)l po Ugun" Aladl yuad ALyl sda @
ully syl g casllegll @uudny moun ¥ g (Aoasell Zoluy 3 B3al> casllagll aren " 38lgall Ll @yl (oo
posll 138loall Auludl cilaganll (o Aalisue g losl zad Aguzll Jleal cuBgll (Son uo ol J) Jelazhl 5o
Gl eyl Wl 8 Yool Apngo Wl s . Jusdhaadl g5l (o381 ALaN 2ol colagandl Aalall 2l
G Apayles Lwad ua) Apldl Slegeydl oo Lals cilial Jodne wdy @ Ll oSy 25 pog 38152l alall
sda Cuny Al J4 e @812l Gladl puoll Al @ Wl dond sgazll S S8 e 0585 Joxll Dsaim
LS 3 Aol Lo Loptdl @ Alaell Go¥ ozl wpusdd dazull degemall a8¥ o3edl e 3o jylsl!
zalie leud WLl sia J> § gl @l e Jgsazll g el5231 Asball 5 doladl dsledl clogundl il
Byladl i Sl @39 Lule Auwsyas galio LiostBl wad «Jiadl ool) coy8l 0gS5 (Ko e2lsB (J] ilasd B3
plaiie JSay Llgde slade Atal pluzily puly Gllas e

@LLU ¢ lg.a_).z.ﬂj @Lll‘ o Aol QL@}’\ cBgll (ddslazlly a.:}b.‘il\ oYl (38lgall Foo) Uguxll Ch.&ll LAY
Ll sgaml clylall e,

CONTENTS

Introduction

1. Notions on graph theory, complexity & combinatorial optimization

I. Notions on graph theoryc.oouiiiiiiiiieie e,
1. L

2. DIEBPBEE s i iv0 0550056t irtimiimmmmmmmenmmas s s sy S5 § S EEES TS $95 554 31

8. Complement of a graph & subgraph..........ccovvvveiiiniieiieiineennn..

4, Chains and treES ...uu.vv.iveiee et eeieee e e e e eanes

5. ROOLEA TrBES. .. vvttet et cee et

6. SEADIE ST 1vuveiriiiinitie et e et e e e e et e eeereeeeas

T Bipartite graphooooviiii e

II. Complexity theorycu.viiieie e
1. ALZOrIERIM Lot

% Basy and hard problemsooovuininiiieiiiieeeeeeeeeeeeeeeeeeeeee

3. Polynomially solvable problemsc.ouviueeieneniiieeeeeeeeeeeen

4. NP-Hard problemsooeiiiniuineeii e e
ITI. Combinatorial optimization problem ..
D BTN i stmiiasimismmsitmmmsamesmmomsmsmamrasaa wa i i w3 e A HRE PSS 0 AT ST

A. Resolution by enumerative algorithms...........c.cocuviuviveieninininnennnn..

1. Linear and integer programming formulations.......................

2. Dynamic programminge.eueeeuuensooeieeeeeeeeeeeee e

3. Branch and boundc.oooiiiiiii e
B. Resolution by near-optimal methodscocvveirimieeiiieeeeeeeeeeeeeeeee,
1. Pairwise Interchange.ccoo.vvivieiuinie i e,

2. Adjacent pairwise interchange............cocveevenininiiieininneinninnnn.

3. Insertion method.........coovvviiniiiiii e,

4. Simulated annealingcocoeeiriiiiiiieriiie e

5. Tabu searchc..ce.n....

6. Genetic algorithmsc.ovieiniiii e

7. Harmony Searchooooiiuiiiiiniiie e e

8. Other metaheuristicsooiveiviiriiii e

2. Scheduling problems
1. The role of sSChedUlingccooeiiiuieinii e
2. Scheduling problemsoooouiiniriei e
3. Machine environment ..
4. JODS AALA teuvinii it
5. Optimality Criteria «uuvvuieireiit e e
6. Classification of scheduling problemscocoviiiiiiiiiiiiiiiiie i,
T.Gantt Chart ...
3. State of the art and mathematical model

1. Problem AERTHEIOI con vonoon srssmmrmm i m—m————"— - oo o5 5 b o on
P\ [7= oo <
B MLOEIVABIONL o aysvmenmmornmresssmmsnabasemsasesssasmyensssmms saonem e se smos s o sssaws s es sen s
4. State 0T the @rt vuoviie i e
5. Some previous KNown resulbs.........c.vviuiiiieiiiire e,
B. M atlvernationl DHola]. o s smsmmisosmannome it samsmmsmmss

10
10
10
11
11
11
12
12
12
13
13
13
13
13
14
14
14
14
15
15
15
15
15
15
15
16
16
16
16
17
17
17
18
18
19
19
21
22
22
23
23
24
25
26

A. General agreement graph case.......

B. Bipartite agreement graph case

4. Lower bounds
Maximum weight stable set problem .

A. General agreement graph case

1. Algorithm: GWMIN
2. Algorithm: GWMIN2

3. Lower bounds for a general graph

B. Bipartite agreement graph case.........

—t

on g £a B0

...

..

Maximum weight stable set in bipartite graphso.veevveevveennnnn.
Algorithm: Spanning tree
Algorithm: Maximum weight stable set in treescccccvvvvveeveveeenen..
Algorithm: Maximum weight stable set in bipartite graphs..............
Algorithm: Maximum weight stable set in chains.............cccccceenn...

6. Algorithm yielding an optimal schedule in a chain.cecovvvun....
5. Near-optimal methods
| B (o1 E T = SR

1. Definitions
2. Notations

3. List algorithmocovviviinninnnns.
II. Local search methods
1. Pairwise interchange (PI)
2. Adjacent pairwise interchange (API)............coooiiiiiiiiiiiiin

3. Insertion method (IM)
III. Metaheuristics

4. Simulated annealing (SA)......
5. Harmony search (HS)..................
6. Numerical experiments

I. Heuristics experiments

...

...

...

...

..

...

A. General agreement graph Case.......c.ooovvivieiiiineii i

B. Bpartite agreement graph case.........cooeveiiiiiiiiiii e

I1. Metaheuristics eXperiments. .. .oue.euure it iee ettt iee et ee et eee e eeeaanes

A. General agreement graph Case.......covevviiriniiriiiienierenisiesensecennnes

B. Bipartite agreement graph case..........ococoviiiiiiiiiiiiiiie

III.Exact method experiments, Cplex implementationccccovvvvnninnnnn.

A. General agreement graph Case......cccevvvriviiiviiiiieiii i,

B. Bipartite agreement graph case..........coovviiiiiiiiiiiiiiiiie e
Conclusion
References

26
27
28
28
29
29
30
31
32
32
32
33
34
38
38
42
42
42
42
43
45
45
45
46
47
47
47
50
50
51
05
57
58
60
61
61
65

67

68

LIST OF TABLES

Table 3.1 — Jobs processing times of the example...........covviiiiiiiniiininin.. 25
Table 3.2 — Some previous kKnown results..........o..cveveieiieiiiiineiieiineeinnnn. 25
Table 4.1 — Node weights of the example.............oooiiiiiiiiiiiiiieene 29
Table 4.2 — Node weights of the example.......o.ooviviiniieiiiiie e 35
Table 4.3 — Summary of 1teration L.........oiiiviiiiniiiiiiiiiee e 36
Table 4.4 — Summary of 1teration 2.........coiuveiuiiiiiiii i cie e eeienen. 37
Table 4.5 — Summary of iteration S..........ocuviviiiiieeiiiieieie e e 37
Table 5.1 —HeUTISti08 TIBh.cmsonsssssssnsvcionstnss s snssnisessnssnrsnssnnrnnnsnnssmenmnsmeswns 43
Table 5.2 — Jobs processing times of the example.........ccooviviiiiiiiiineinnan. ... 43
Table 6.1 — Average performance by jobs number..........ccccoveieiuiiieinieinnn... 51
Table 6.2 — Average performance by graph density............cocvvviviviiiinininn.n.. 52
Table 6.3 — Average performance by machines number.............................. 53
Table 6.4 — Average performance by proc. times range.............c.ovevvvveennnn.. 53
Table 6.5 — Heuristics overall performance foe general graph...................... 54
Table 6.6 — Heuristics performance by jobs number..........cccooiviiiiniininnnn... 5b
Table 6.7 — Heuristics performance by graph density..........c.covvivieinin... 56
Table 6.8 — Heuristics performance by proc. times range.............ccocevevvnenn.. 56
Table 6.9 — Heuristics bipartite overall performance...............occevevviiininnnn.. 57
Table 6.10 — Heuristics overall performance..........ocvoiveiiiiiiniiiiinnieninnenn.n. 87
Table 6. 1], =~ General EBml, TR0 s o506 5 A6 s S5 mmss 58
Table 6.12 — General graph, n=100.........cccuviiiirrireiiiiriiirre e vnenenen 59
Table 6.13 — General graph, n=500........ccooiiiiiiiiiiiiie e e 60
Table 6.14 — Bipartite graph, n=50.......c.ceoiiiiiiiiiiiiie e e 60
Table 6.15 — Bipartite graph, n=100.......ccooiiririiiiiie i e 60
Table: B 16 — Formanlalion B L... ... oo cocimommmsmisis e s v oo 56 059 61
Table 6.17 — Formulation Fla.......cccooiiiiiiiiiiiiiie e e 61
Table 6.18 — Formulation Flb.......coooiiiii e e 61
Table 6.19 — Run. time/n, all d, Fl...coiiiiiie e 63
Table 6.20a,b,c,d,e — d=10%, 30%, 50%, 70%, 90%.....ceuemeeeeeeeeieeeeeeeeeee e 64
Table 6.21a,b.c.d.¢ — d=10%, 30%, 50%, T0%; QOB . ses s s w5 smswminssmmsmnennsssmmmsnnnsss 65

LIST OF FIGURES

Figure 1.1 — Graph example.......cccooiiiiiiiii e
Fignrie 1.28 —ROUtBl Br08s . ss.iv.ssnsensintinibn bn isin ioiiin Sion b i B o § 608808 4ok Hx §Hx B 2 00
Figure 1.2D —CRhain......ccouieieiiiie e e e e e
Figure 2.1 — Gantt chart example.......oooovriiiiniiiie e
Figure 3.1 — Agreement graph of the example.........covviviiiiiiiiviiniiiniinanenen.
Figure 3.2 — Gantt chart of the example..........cooviiiiiiiiiiiiiiiiiiiiieen,
Figure 4.1 — Agreement graph of the example..........c.oooieiiiiiiiiiiiiiiinan..
Figure 4.2 — Graph of the example.......c.cccoveieiviiiiiiiinninnnn.. SRR R 8 6 85

Figure 4.3 — Stable set of iteration L.......cccveviiiiiiiiiiiiii e,
Figure 4.4 — Stable set of iteration 2.........cooveiiviiiiiiiiii e
Figure 4.5 — Stable set of iteration 3......ccceviiiivriiiiiiii i
Figure 4.6 — Type 1 Chain.....oovviiiiiniiiiiiiree e et eae e
§ e] = ST e o i e e 520k 0 & 6801 6 5 § 8 5 8 S0 i
Figure 5.1 — Agreement graph of the example.......c..oveiviiviiiiiiiiiiiinnnn.
Figure 5.2 — Gantt chart of iteration 1.........cooviiiiiiiiiiiiiiiceeee,
Figure 5.3 — Gantt chart of iteration 2..........cccovivviiiiiiiiiiiii e
Figure 5.4 — Gantt chart of iteration 3.......ccceiiiiiiiiiiiiii e,
Figure 5.5 — Gantt chigel of THePation B . o «s s ux cavssnans so envavsnn s 5es 0514 8 smsmpmensmss
Graph 6.1a — Var. of HL13 Cmax/n (general graph)............cooiiiiiiiiit.

Graph 6.1b — Var. of HLL13 dev. /n (general graph).......c.occvviveiieiiiiiiiennnnnn.
Graph 6.2a — Var. of HLL13 Cmax/m (general graph).........c.c.cooeiiiiinnnnin.

Graph 6.2b — Var. of HL13. dev. /m (general graph).........c..covvvieieieiininnnneen.

Graph 6.3a — Var. of HLL13 Cmax/d (general graph)cccoovvvieiiiiinninnn.

Graph 6.3b — Var. of HL13. dev. /d (general graph)........cccovevviuiiiinininnnn.n.

Graph 6.4a — Var. of HL13 Cmax/n (bipartite graph).......cccecvieiieirnicrennnnnn
Graph 6.4b — Var. of HL13 dev. /m(bipartite graph).......c.cooovieiiiiiiiiinnan
Graph 6.5 — Formulation Fl.......cooiiiii e
Graph 6.6 — Formulation Fla......ccooiiiiiiiiiiiir e

Graph 6.7 — Formulation F1b.....ociiiiiiiiiiiiiiiiiiriir e enes

Graph 6.8 — Max jobs/graph density (F1)....c.ooviiniiiiniiiiiiiiiine e,
Graph 6.9 — Run. time/jobs number (F1).......ooeiiiniiiiiiiiiiiie e
Graph 6.10 — Max jobsferaph density (F'la)u.ssssasamassssssmmmmsssssnssis cons
Graph 6.11 — Time run./n (@ll d) - Fla....ccoiviniiiii
Graph 6.12a,b,c,d,e — d=10%, 30%, 50%, 70%, 90%....uuueeereiriieeieeeciiiaeeaaeeee.

LIST OF ALGORITHMS

Algorithm: GWMIN... ..o e 29
Algorithm: GWIMINZ......vniriiiii it 30
Algorithm: ST (Spanning TTree)........cvuiuviuee it 32
Algorithm: MWST (Maximum weight Stable set in Tree)......... ccceeevevneen... 34
Algorithm: MWSB (Maximum Weight Stable set in Bipartite graph).......... 35
Algorithm: OSC (Optimal Schedule in a Chain)............cocevvvvvinveieeeiinannennn. 38
Algorithm: LS (List algorithm).........cc.oiuiuiiiniii e e 43
Algorithm: PI (Pairwise Interchange)............cceuvvriviuieniunieis ceeieeineennnn 45
Algorithm: API (Adjacent Pairwise Interchange)...............cocooovviiiniinn..n. 46
Algorithm: IM (Insertion Method)..........viuiiiiiieii i e 46
Algorithm: SA (Simulated Annealing)..........ccovviiiiiniieiiiiiieiee e 47
Alporithm: HS (Hartmony SEarth). . vuer.ieesieiiniinisniiminisessniiossnssessnnscsrnsars 49

INTRODUCTION

Scheduling is a decision-making process that is used in many manufacturing
and services industries. It deals with the allocation of resources to tasks over given
time periods and its goal is to optimize one or more objectives. The resources and
tasks in an organization can take many different forms. The resources may be
machines in a workshop, runways at an airport or processing units in a computing
environment. The tasks may be operations in a production process, take-offs and
landings at an airport or executions of computer programs. The objectives can also
take many different forms. One objective may be the minimization of the completion
time of the last task and another may be the minimization of the number of tasks
completed after their respective due dates.

In a parallel-machine scheduling problem, we are given a set of jobs with associated
processing times, and a set of identical machines, each of which can process at most
one job at a time. The parallel-machine scheduling problem is to assign each job to
exactly one machine so as to minimize the maximum completion time.

In a classical parallel-machine scheduling problem, the issue of a simultaneous job
processing doesn’t arise. However, in many cases, there exist constraints between
jobs, called conflict constraints. This problem arise when certain jobs cannot be
processed simultaneously on different machines because they share the same
resources. This problem is called “Scheduling with Conflicts” or SWC, in short.

This problem has been introduced first by Baker and Coffman (1996) [1] as “Mutual
Exclusion Scheduling”. Even et al. [14] have studied later a problem called
“Scheduling with Conflicts”. In these problems, conflict between jobs is modeled by a
graph, called “conflict graph”, where two jobs related in this graph cannot be
processed simultaneously on different machines.

In this thesis, we consider a problem equivalent to “Scheduling with Conflicts” but
using the complement of the conflict graph, called “Agreement Graph”, introduced by
[Bendraouche and Boudhar, 2012][3].

This thesis is composed of six chapters. The first one is dedicated to notions on graph
theory, complexity theory and combinatorial optimization, where graph notions used
throughout this thesis (trees, rooted trees, chains, bipartite graphs, stable sets...),
complexity notions and most common combinatorial problems are highlighted.

In the chapter 2, we introduce the scheduling problems including the parallel-
machine problems. In the chapter 3, we define our problem with an example, and give
some notations, motivations, a state of the art of the problem, some known previous
results and a linear mathematical formulation of the problem for general and

bipartite agreement graphs.

In chapter 4, lower bounds based on the maximum weight stable set in general and
bipartite agreement graphs have been introduced. Two algorithms based on Greedy
strategies to determine an approximate solution of the maximum weight stable set
problem have been described and illustrated with 2 examples in a general graph case.
A combinatorial algorithm of solving polynomially the problem of maximum weight
stable set is detailed and applied to arbitrary bipartite graphs, trees and chains. A
polynomial algorithm yielding an optimal schedule in the case of chain-type
agreement graph has been described with a proof of its efficiency.

In section 1 of chapter 5, we introduce some heuristics, based on lists, to find a near-
optimal solutions. And for approaching more the optimality, some local search
methods and metaheuristics, a simulated annealing among them, are detailed under
a form of algorithms in sections 2 and 3.

Finally, chapter 6 is dedicated to various experiments on heuristics, metaheuristics
and mathematical formulations based on a uniformly generated instances. Tables
and graphs showing some interesting results close this thesis.

Chapter 1

Notions on Graph Theory,
Complexity and
Combinatorial Optimization

I. Notions on Graph Theory

1. Basics

A graph G consists of two sets: a set V = {v,v,,...,v,} whose elements are called
vertices (or nodes) and a set E = {ey, ey, ..., e} Whose elements are distinct pairs of
vertices of G, called edges (or lines). The set V is called the vertex set of G and E is the
edge set and the graph G is noted G = (V, E).

Let G = (V,E) be a graph and e = {u, v} an edge of G. Since {u, v} is 2-element set, we
may write {v,u} instead of {u, v}. It is often more convenient to represent the edge e
by e = uv or e = vu. The vertices u and v are called the extremities of the edge e. We
further say that u and v are adjacent in G and that e joins u and v.

Every graph can be represented by a diagram where the vertices are represented by

points or circles and the edges by lines.

Example: Let G = (V,E) be a graph, where

V = {uy, uy, us, uy, us, ug} is the vertex set and

E = {uy, uy}, {ug, ug}, {ug, ugl, {uz, us}, {uz, us}, {us ug} is the edge set.

Us is an isolated vertex.

10

Chapter 1 Notions on Graph Theory and Complexity

Uq U, @

Fig. 1.1- Graph example

If e = uv is an edge of a graph G, then the vertex u and the edge e are said to be
incident with each other as are v and e. If two distinct edges say e and f are incident
with a common vertex, then they are said to be adjacent edges.

A graph with p-vertices and q-edges is called a (p, q) graph. The (1, 0) graph is called
trivial graph. The complete graph K, is the graph with n vertices and an edge joining

every pair of vertices.

2. Degrees
Let G = (V,E) be a graph. The number of edges incident to a vertex v of G is called
the degree of a vertex v and is denoted by d;(v) (or d(v)). A vertex having no incident
edges is called an isolated vertex (vertex of degree 0). A vertex of degree one, is called
a pendent vertex or an end vertex.
The set of neighbors of a vertex v in G is denoted by N; (v).
An adjacency matrix for a simple graph G whose vertices are explicitly ordered
Vy,Vy, ..., Uy 1s the n X n matrix A = (a;;) such that

o { 1 ifv; and v; are adjacent

ij —

0 otherwise

3. Complement of a graph and subgraph

Let G = (V,E) be a graph. The complement of G is the graph, noted G = (V,E), such
that {x,y} € E if and only if {x,y} ¢ E.

A graph H = (W, F) is called a subgraph of a graph G = (V,E) if W € V and F €
E. If W =V, H is called a spanning subgraph.

If A € V, the subgraph induced by A is the subgraph of G noted G, = (4, E4), where E4

is the set of all edges having their extremities in A.

4. Chains and trees
In a graph, a chain (or path) of length k in G is a sequence P of distinct vertices of the
form P = {xg, Xy, ..., X;}. The vertices x; and x; are linked by P and are called its ends;

the vertices x4, ..., xx_; are the inner vertices of P (Fig. 1.2b).

11

Chapter 1 Notions on Graph Theory and Complexity

We say that a graph G = (V,E) is connected if for any two vertices x,y € V, there is a
chain in G joining the vertices x and y. A graph that is not connected is said to be
disconnected and is composed of connected components.

A closed chain is a cycle. An acyclic graph is one with no cycles, also called a forest. A
connected forest is called a tree (fig. 1.2a). Thus, a forest is a graph whose components
are trees. The vertices of degree 1 in a tree are its leaves. A subtree of a graph is a
subgraph which is itself a tree. If this tree is a spanning subgraph of the graph G, it

is called a spanning tree of the graph G.

Example: Uy Uy

U

Uy Ug u6 Ug
Fig.1.2a — Tree T (rooted at u,) Fig. 1.2b - Chainin T

5. Rooted trees

A rooted tree is a tree with a designated vertex called the root. Designating a root
imposes a hierarchy on the vertices of a rooted tree, according to their distance from
that root (Fig. 1.2a). If vertex v immediately precedes vertex w on the path from the
root to w, then v is parent of w and w is child of v. A leaf in a rooted tree is any vertex
having no children. Figure 1.2-a represents a tree rooted at u;. u, and u; are nodes of

level 2. uy, us and ug are nodes of level 3 and are also leaves.

6. Stable set (or independent set)

A stable set (or independent set) in a graph is a set of vertices no two of which are
adjacent. A stable set in a graph is maximum if the graph contains no larger stable
set and maximal if the set cannot be extended to a larger stable set. The cardinality

of a maximum stable set in a graph G is called the stability number of G and is denoted
by a(G).

7. Bipartite graph

A bipartite graph is a graph ¢ = (V, E) whose node set IV can be partitioned into two
stable subsets S; and S,. G is noted G = (51, So; E).

If further all the vertices of S; are adjacent to all vertices of S,, then G is called a

complete bipartite graph. A bipartite graph cannot contain an odd cycle (a cycle of
odd length). Forests and trees both are bipartite graphs.

12

Chapter 1 Notions on Graph Theory and Complexity

To illustrate these concepts we introduce some decision problems which play an

important role in proving that decision problems are NP-complete.
Partition: Given n integers a4, ay, ..., a, and the value b = E ..
2

Is there a subset I c {1,...,n} such that Y, a; = Yigya; = b?

Satisfiability: Given n Boolean variables, U = {uy,u,,...,u,}, and a set of m clauses,
C={cy,cy...,Ccn}, Or its complement (negation), is there an assignment of truth
values to the boolean variables so that every clause is simultaneously true?
3-Dimensional Matching (3DM): We are given a set NS W X X XY where W, X,
and Y are disjoint sets with the same number of g elements.

Does N contain a matching, that is, a subset M € N with g elements such that no two

elements of M agree in any coordinate?

III. Combinatorial Optimization Problem

Definition

The combinatorial optimization problem (COP in short) is defined by a given finite
set of feasible solutions S and an objective function f:S — R, where the objective is to

find an element xy from S verifying

f(xo) = min f(x)
This problem is called a minimization problem, and noted {i‘:“en S]“ (x)
Max f(x)
XESs

We can also define the maximization problem { , which follows naturally

from the minimization problem since we have

max f(x) = —min(—f (x))

A. Resolution by enumerative algorithms
1. Linear and integer programming formulations
The most basic mathematical program is the Linear Program (LP). The LP refers to
an optimization problem in which the objective and the constraints are linear in the
decision variables. It can be formulated as follows:
Minimize Z = cx

Ax < b

x20
An Integer Program (IP) is basically a linear program with the additional
requirement that the variables have to be integers. If only a subset of the variables
are required to be integer and the remaining ones are allowed to be real, the problem
is referred to as a Mixed Integer Program (MIP). In contrast to the LLP, an efficient

(polynomial time) algorithm for the IP or MIP does not exist.

14

Chapter 1 Notions on Graph Theory and Complexity

2. Dynamic programming

A dynamic programming algorithm has the property that each partial solution is
represented by a state to which a value (or cost) is assigned. When two or more partial
solutions achieve the same state, one with the lowest value is retained, while the
others are eliminated. It is necessary to define the states in such a way that this type

of elimination is valid.

3. Branch and bound

The process of solving a problem using a branch and bound algorithm can be
conveniently represented by a search tree. Each node of the search tree corresponds
to a subset of feasible solutions to a problem. A branching rule specifies how the
feasible solutions at a node are partitioned into subsets, each corresponding to a

descendant node of the search tree.

B. Resolution by near-optimal methods

The NP-hardness of an optimization problem suggests that it is not always possible
to find an optimal solution quickly. Therefore, instead of searching for an optimal
solution with enormous computational effort, we may instead use a local search
method or an approximation algorithm to generate approximate solutions that are
close to the optimum with considerably less investment in computational resources.

1. Pairwise interchange

The pairwise interchange (PI) is a permutation-based local search method used to
generate a near-optimal solution of a scheduling problem. It operates by job
interchanging on a pre-defined list.

2. Adjacent pairwise interchange

The adjacent pairwise interchange (API) method is the same as PI except that the
jobs to be interchanged must be adjacent in the current permutation.

3. Insertion method

Insertion method is a variable neighborhood search method proceeding by inserting
a randomly chosen position of a job in front (or back) of another randomly chosen job
position.

4. Simulated annealing

In simulated annealing, a probabilistic acceptance rule is used. More precisely, any
move that results in an improvement in the objective function value, or leaves the
value unchanged, is accepted. On the other hand, a move that increases the objective
function value by 4 is accepted with probability exp(—At), where t is a parameter
known as the temperature. The value of t changes during the course of the search;

typically t starts at a relatively high value and then gradually decreases.

15

Chapter 2 Scheduling Problems

Chapter 2
Scheduling Problems

1. The role of scheduling

Scheduling is a decision-making process that is used on a regular basis in many
manufacturing and services industries. It deals with the allocation of resources to
tasks over given time periods and its goal is to optimize one or more objectives. The
resources and tasks in an organization can take many different forms. The resources
may be machines in a workshop, runways at an airport, crews at a construction site,
processing units in a computing environment, and so on. The tasks may be operations
in a production process, take-offs and landings at an airport, stages in a construction

project, executions of computer programs, and so on.

2. Scheduling problems

The machine scheduling problems can be described as follows. There are m machines
that are used to process n jobs. A schedule specifies, for each machine i (i = 1, ..., m)
and each job j (j = 1,...,n), one or more time intervals throughout which processing
is performed on j by i. A schedule is feasible if there is no overlapping of time intervals
corresponding to the same job (so that a job cannot be processed by two machines at
once), or of time intervals corresponding to the same machine (so that a machine
cannot process two jobs at the same time), and also if it satisfies various requirements

relating to the specific problem type.

17

Chapter 2 Scheduling Problems

3. Machine environment

Different configurations of machines are possible. An operation refers to a specified
period of processing by some machine type. We assume that all machines become
available to process jobs at time zero.

In a single-stage production system, each job requires one operation, whereas in
multi-stage systems the jobs require operations at different stages.

Single-stage systems involve either a single machine, or m machines operating in
parallel, or dedicated machines. In the case of parallel machines, each machine has
the same function. We consider three main cases:

- Identical parallel machines: in which each processing time is independent
of the machine performing the job;

- Uniform parallel machines: in which the machines operate at different
speeds;

- Unrelated parallel machines: in which the processing time of a job depends
on the machine assignment.

Multi-stage systems comprise several stages, each having a different function. We
distinguish three main cases:

- Flow shop: There are m machines in series. Each job has to be processed on
each one of the m machines. All jobs have to follow the same route, i.e., they
have to be processed first on machine 1, then on machine 2, and so on. After
completion on one machine a job joins the queue at the next machine.

- Job shop: In a job shop with m machines each job has its own predetermined
route to follow. A distinction is made between job shops in which each job visits
each machine at most once and job shops in which a job may visit each machine
more than once.

- Open shop: There are m machines. Each job has to be processed again on each
one of the m machines. However, some of these processing times may be zero.
There are no restrictions with regard to the routing of each job through the
machine environment. The scheduler is allowed to determine a route for each
job and different jobs may have different routes.

4. Jobs data

The processing requirements of each job j are given by the processing time p; or p;;.
It depends on whether machines are identical or not.

In addition to its processing requirements, a job is characterized by its availability
for processing, any dependence on other jobs, and whether interruptions in the
processing of its operations are allowed. The availability of each job j may be

restricted by its release date r; that defines when it becomes available for processing,

18

Chapter 2 Scheduling Problems

and/or by its deadline c]j that specifies the time by which it must be completed. Job
dependence arises when there are precedence constraints on the jobs or when some
jobs are not mutually in agreement, i.e. they cannot be processed at the same time on

different machines. In general, all data p;, p;j, 15, d;, Jj, w; are assumed to be integer.

5. Optimality criteria

For each job j, an integer due date d; and a positive integer weight w; may be
specified.

Given a schedule, we can compute for job j: the completion time, the flow time, the
lateness, the earliness, the tardiness, the unit penalty,...

Some commonly used optimality criteria involve the minimization of: the maximum
completion time, or makespan C,,,,, the maximum lateness, the maximum cost, the

maximum earliness, ...

6. Classification of scheduling problems

Scheduling problems are characterized by a 3-fields classification: a/8/7Y [21]

a. Machine environment a
The machine environment is characterized by @ = a;,a, of two parameters.
a; € {0,P,Q,R,0,],F), where @ denotes the empty symbol (thus, a = a, if a; = @)
- @: single machine
- P:identical parallel machines
- Q: uniform parallel machines
- R:unrelated parallel machines
- 0:open shop
- J:job shop
- F: flow shop
and a, € {k, 0}
- k: fixed number of machines
- @: arbitrary number of machines
b. Jobs characteristics f8
The job characteristics are specified by a set f containing at the most 8 elements
B= B1.B2,B3,B4s, Bs,Bs, B7, Bs
- By € (@, pmtn) : indicates whether preemption (or job splitting) is allowed;
- [, € (@, res): there are or not specified resource constraints;
- B3 € (@, prec,tree, chain): describes precedence relations between jobs. It
denotes respectively independent tasks, general precedence constraints,
precedence constraints forming a tree or a set of chains;

- By €@, 1y): If By=1;, then release dates may be specified for each job;
19

Chapter 2 Scheduling Problems

If B, does not appear in f, then r; = 0 for all jobs;

- PBs € (@, pj = p,p € P): specifies restrictions on the processing times or on the
number of operations;

- Bs €(®, d): If B = d,, then a deadline d, is specified for each job J;, i.e. job
J; must finish not later than time d;

- Py € (@, s-batch, p-batch): indicates a batching problem. p-batching (s-
patching) denotes that the length of a batch is equal to the maximum (sum) of
processing times of all jobs in the batch;

- Pg € (@, no-wait): Indicates whether a no-wait property is specified, for
dedicated machines.

c. Optimality criteria Y
We denote the completion time of job J; by C;, and the associated cost by f;(C;).

There are essentially two types of total cost functions:
Frax(€) = max(fi(CD} and BA() = Ty AlCD)

The scheduling problem is to find a feasible schedule which minimizes the total cost
function. The most common objective functions are:

- Cj : completion time of job j;

- §;: start time

- W, : waiting time

- F;=Cj—r;:flow time

- Lj =(;—d; : lateness

- T; = Max{C; — d;, 0} : tardiness

- Ej = Max{0,—L;} : earliness

- Uj={0siC; < d;,1otherwise} : unit penalty

- Cmax = Max{C;} : schedule length, makespan or completion time

1 s
= Y%, F; : mean flow time

F =
SR - — % Xi=a WiF; [Y=g Wy Weighted mean flow time

n
J:

- Tmax = Max{T}} : maximum tardiness
- Xj=1T; : total tardiness

}1:1 w;T; : total weighted tardiness

1 w; C; : total weighted completion time

- Lipax {L;i} : maximum lateness

1 .
= = ", T; : mean tardiness
n Lj=11]

I |

i : .
w= Y1 wiTj / X7=1 wj : weighted mean tardiness

&

= Y71 U; : number of tardy jobs
20

Chapter 2 Scheduling Problems

- Uy = Yj-1w;U; : weighted number of tardy jobs.

Example 1: 1|7, prec| ¥ w; C; is the problem of scheduling jobs with release dates and
precedence constraints on a single machine to minimize the total weighted
completion time.

Example 2: R|pmtn|L,,, is the problem of preemptively scheduling jobs on an
arbitrary number of unrelated parallel machines to minimize the maximum lateness.
Example 3: P|AgreeG = (V,E)|Cpqy is the problem of scheduling jobs, related by an
agreement graph, on identical parallel machines to minimize the makespan (which

1s the subject of our thesis).

7. Gantt chart

Gantt chart is a graphical presentation of a schedule of jobs on machines. X-axis chart
represents time and rectangular block on y-axis represents machine. A horizontal bar
shows each job’s start and finish time on particular machine. The job number is
inscribed in the rectangle. The length of the rectangle is scaled to represent job’s
processing time. The start and finish time of a job are indicated at the starting and
terminating vertical sides of the job rectangle. Bars representing machines also

indicate idle intervals on the machine.

Example

The following Gantt chart shows a schedule of 6 jobs processed on 3 parallel

machines.
Machine M, Job J Job Js h
Machine M, ~]Objl | ‘ Job Jg
Machine M, - Job], JobJy | .
PR ——] i s o T —> Lime

0 1 Z 3 4 5 6 7
Fig 2.1. Gantt chart example

The makespan of the schedule is Cp.x = 7.

21

Chapter 3 State of the Art and Mathematical Model

Chapter 3

State of the Art and
Mathematical Model

1. Problem definition

We define the problem of Scheduling With Agreements (SWA) as follows
[Bendraouche and Boudhar, 2012][3]. There are m identical parallel machines. There
is a set V of n jobs with processing times {p;};¢;. Agreement between jobs are derived
from a graph G = (V,E), called agreement graph, with vertex set V = {J1, /5, ...,Jn} and
edge set E. Each edge in E models a pair of agreeing jobs that may be scheduled
concurrently on different machines. A schedule is an assignment of time intervals on
the m machines to the n jobs.

A schedule is feasible if each job J; is assigned an interval of length p; on one machine,
intervals on the same machine do not overlap and intervals assigned to non-agreeing
jobs (jobs not connected with an edge in the agreement graph) do not overlap.
Furthermore, we suppose that all jobs are available for processing at time zero, and
the preemption (or job splitting) is not allowed. The makespan of a schedule is the
completion time of the most loaded machine. The objective is to find a feasible

schedule that minimizes the makespan.

22

Chapter 3 State of the Art and Mathematical Model

2. Notations

As a description of the problem, we use the three-field classification a|f|y introduced
by graham et al [21]. (See chapter 2).

So we adopt this notations:

The a field: a = a4, a,
a; = P, the shop has an identical parallel machines system

a, € {@, m}, machines number is arbitrary or fixed to m

The g field: g = B4, B2, B3

B1 € {0, AgreeG = (V,E),AgreeG = (S, S1,E)}, agreement graph 1is respectively
complete, general or bipartite.

B2 € {@,1;}, respectively, all jobs are ready at time zero or there is arbitrary ready
dates for all jobs.

B3 €{D,"p; = p","p; € P"}, the processing times are respectively arbitrary, identical

equal to p or from a set P.

The y field: y = Cun

The aim is to minimize the maximum completion time or makespan.

For instance, Pm| AgreeG = (S, S1,E)}, pi = 1|Cpqy 1s the problem with m identical
parallel machines where jobs are related by a bipartite agreement graph, and the
processing times are all equal to the unit.

According to these notations, our general problem would be expressed as:
P|AgreeG = (V,E)|Chax

which is NP-Hard since it contains, for a complete agreement graph, the well-known

problem P||Cpqr also known to be NP-hard.

3. Motivation

The SWA problem can be found in the resource constrained scheduling when the
resources are non-sharable. The interest to this problem initially comes from the
following problem: in a workshop there are n jobs Ji, /5, ...,J, to be executed by m
workers. Each job J; requires a time p; for its treatment and a subset of resources R;
from the set of the available resources R = {resy,res,,...,res;}. The objective is to
execute these jobs in a minimum time. If we consider the workers as machines and
associate the agreement graph G = (V,E) in which | = {J4,], ..., Jn} is the jobs set and
that two jobs agree if they use no resources in common, one can verify that this
problem can be modeled as the problem of scheduling with agreements in which the

agreement graph is ¢ = (V, E).

23

Chapter 3 State of the Art and Mathematical Model

Another motivation of this problem is the school exam planning: at school, there are
n exams Ej, ..., E;, to be scheduled at the end of the half year. Each exam has to be
taken by a set of students and lasts either one or two hours. The exams are taken in
classrooms whose number is m. Also we suppose that the capacity of a classroom is
big enough so that any exam can be taken in any classroom. We seek a schedule which
minimizes the length of the examination period. This problem can be modelized as
follows: to each exam E; corresponds a job J; such that the processing time of J; equals
the time taken by its corresponding exam E;. We regard the classrooms as being the
machines. The agreement graph G = (V,E) is such that V = {J;,/,,...,J,} and a pair
{i,]j} is an edge if and only if there are no students who take both exams E; and E; at
a time. This problem can be formulated as the SWA problem in which the agreement

graph is G = (V,E) with processing times in {1,2}.

4. State of the art

When restricted to unit processing times, the SWA problem is equivalent to finding
a partition of a given graph into a minimum number of cliques, each with size at most
m. This problem is equivalent to the mutual exclusion scheduling problem introduced
by Baker and Coffman (1996), by considering the complement of the agreement
graph, called the conflict graph. Many results concerning this problem can be found
in the literature (see, e.g. Bendraouche and Boudhar 2012[3]; Bodlaender and Jansen
1995[9]; Gardi 2009[17]; Hansen, Hertz, and Kuplinski 1993[24]).

Scheduling with agreement graphs or scheduling with agreements (SWA) is
equivalent to scheduling with conflict graphs (the complement of the agreement
graphs). The latter is known as scheduling with conflicts, which was first studied by
Irani and Leung (1996)[24] and then by Chrobak et al. (2001). Even et al. (2009)[4]
have also worked with conflict graphs and have considered the SWA problem for fixed
m under the name: scheduling with conflicts (SWC in short).

In the case of two machines Even et al. (2009)[14] have proposed a polynomial time
algorithm when the processing times are equal to 1 or 2 and have proved that it is
APX-hard when p; € {1, 2, 3, 4}. Bendraouche and Boudhar (2012)[3] have established
that the SWA problem is strongly NP-hard in the case of two machines when p; €
{1, 2,3}, even for arbitrary bipartite agreement graphs.

In a recent paper (Bendraouche, Boudhar and Oulamara 2015[5]), the authors have
thoroughly closed the complexity status of SWA on two machines with two fixed
processing times.

Example: We consider the SWA problem with 5 jobs and 2 machines.

Jobs processing times and agreement between jobs are depicted respectively in table

3.1 and figure 3.1 below.

24

Chapter 3 State of the Art and Mathematical Model
() (J2)

S | B | B | | s

Processing times p; ’ 2 ’ 4 } 1 ‘ 8 ‘ 2 ‘ Js

Table 3.1 — Processing times of the example

J2

Fig. 3.1 - Agreement graph of the example

The Gantt chart of a feasible schedule of this problem is given in the figure 3.2 below.

Machine M, J2 Ja
Machine M, N1 Js I3
| | T | | T —> time
0 1 2 3 4 5 6 7
Fig. 3.2 - Gantt chart of the example
5. Some previous known results
Problem Complexity Reference

P|AgreeG = (V,E)|Cinay NP-hard Garey & Johnson (1975) [19]

P2|AgreeG = (V,E),p; € {1,2}|Cax Polynomial |[Even et al. (2006) [15]

P2|AgreeG = (V,E), 7, p; = 1|Cmax NP-hard |Boudhar & Finke (2000) [18]
P2|AgreeG = (V,E),1; € {0,r},p; € {1,2}|Cinax NP-hard Bendraouche & Boudhar (2012) [3]
P2|AgreeG = (S1,55; E), pi € {1,2,3H Cnax NP-hard Bendraouche & Boudhar (2012) [3]
P2|AgreeG = (S1,52; E),1: € {0,7} p; € {1,2}|Cpnax |NP-hard Bendraouche & Boudhar (2012) [3]
P2|AgreeG = (81,52 E), ps, = 1|Cnax Polynomial |Bendraouche & Boudhar (2012) [3]
P2|AgreeG = (S1,52; E), p; € {a,2a + b}|Cppay,b# 0| NP-hard Bendraouche et al. 2015 [5]
P2|AgreeG = (S1,S,; tree)|Crnax Open

P2|AgreeG = (S1,S5; binary tree)|Cpax Open

Table 3.2 — Some previous known results

25

Chapter 3 State of the Art and Mathematical Model

6. Mathematical model
A. Case of general agreement graph

We recall the scheduling with agreements problem P|AgreeG = (V, E)|Crpax-

V ={1.J2 -, Jn} is a set of n jobs with processing times p4, p,, ..., P, to be processed on
m identical parallel machines M;,M,,...,M,,. Let G = (V,E) be a graph, called
agreement graph, with vertex set V and edge set E. Each edge in E models a pair of
jobs mutually agreeing that may be scheduled concurrently on different machines.
Let A= (aU), i =1,n,j=1,n, be the adjacency matrix associated with the graph G.
We define the two matrices of bivalent variables as follows.

LetX = (xjk), j=1,n, k=1, m, be the jobs affectation matrix.

Lete = (eij), i,j =1,n,i+j, be the jobs precedence matrix.

The decision variables are:

Xjp = {1 if job J; is processed on machine M,

0 otherwise
t;, i = 1,n, is the start time of job J;
{1 if t; < tj
€ij = :
0 otherwise

Since each job J; is processed on exactly one machine, we have

Yk=1 %k =1

Let M = Y, p; be the sum of the processing times of all jobs.

The equation involving e;; can be given as

tj—t; < M.ey, Lj=1mi#]j

If job J; and job J; are processed on the same machine M, and J; is processed before
Jj, then the processing time intervals of the two jobs do not overlap. This can be
expressed as t; = t; +p;, i,j =Ln, i #j

In other words, if x;; = 1 and xj, = 1, then t; = t; + p;

The constraints guaranteeing that the jobs intervals do not overlap are given by
titp—t <M1 —e;+2—xy—x) Li=Lni#jk=1m

For all pair of jobs {j;, j;} which are not linked in the agreement graph, we have the

agreement constraints

tj'—tiSpi or fi—thpj, Vl,]l(_]l,jj)ﬁE,l-'f:]
And using the adjacency matrix, these constraints would be
tj = ti = (1 = aij).pi or ti = tj > (1 = aij).pj, l.,j = ﬁ, [-‘/:j

These disjunctive equations could be expressed in a conjunctive form as follows
ti—t; > [1—a;(2—xpe —x)lpi+(e; — 1M Lj=Tni#jk=1m
t; = tj = [1 = ai]-(Z — Xix — Xjk)]pj = e[]'M iI,j= ﬁ:l :'tj:k =1m

Finally, the problem can be formulated as follows.

26

Chapter 3 State of the Art and Mathematical Model

Formulation (F1)
(MinZ = Cpoy

m -
Z fp = 1 i=1n 1)
k=1
tj—t; = [1— a;;(2 — %y — x50) |pi + (e — 1)M Lji=Tni#jk=1m (2)
Jti—t = [1—a;(2 — xy — x) |p; — €M Lj=Tni#jk=1m (3)
ti + pi < Cax i=1n (4)
xi, € {0,1} i=Lnk=1Tm ()
ey; €{0,1} i =Tl] (6)
t; =0 i=1n (7)
\Crnax =0 (3)

B. Case of bipartite agreement graph and two machines
Let G = (S1,S,; E) be a bipartite graph. Let p and g be respectively the cardinality of

its two partitions S; and S,. We have
_[C B
A= [D]’ where

B=(b;),i€8,jES;C=0,i€S,jES;;D=0,i€S,jESy;E=B"1ES5,j€ES;.

A is the adjacency matrix of the general graph formulation (F1).

The formulation in the case of bipartite graph is based essentially on the reduced

adjacency p X q —matrix B = (bij), i=1p, j=1,q, withp+q=n.

Replacing the matrix 4 by respectively B, C and D in the equations (2) and (3) in the

general graph formulation (F1), we obtain the new formulation of the problem (F2)
Formulation (F2)

MinZ = Cpax
Xip+ %z =1 i=Tn €Y)
tj—t; = [1— by; (2 — 2 — x50) |pi + M(ez; — 1) i €54,j €5,k €{1,2} (2)
t;—t; = [1— bij(2 — e — %) [pj — M. ey i €8,,j €Sy k€ (1,2} (3)
ti—t; > p;+M(e;; — 1) i,j ES,i+] (4)
ti—tj =pj—M.eg; I,jESLL#] (5)
<tj—ti2pi+M(eU—1) i,j €Syi+#]j (6)
ti—tj = p;— M.e; i,j €S8yi#] (7)
ti + pi < Cmay i= E (8
xi € {0,1} i=T1mnke {12} (9)
e;; € {0,1} Lj=Tni+j (10)
t;=0 i=1n (11)
Cmax 2 0 (12)

27

Chapter 4 Lower Bounds

Chapter 4

Lower Bounds

Maximum weight stable set problem (MWS)

An independent set S in a graph (called also a stable set) is a subset of vertices no
two of which are adjacent. (For example, both subsets S; and S, of the node partitions
of a bipartite graph are stable sets). The maximum weight stable set problem, also
known as the vertex packing problem, deals with graphs whose vertices are weighted
with positive integers, the problem being to find a stable set of maximum total weight.
Given a weight function ¢ :V — Ry, we seek to maximize the total weight c(5) =
Yies p; over the collection of independent sets S.
We consider the following scheduling with agreements problem

P|AgreeG = (V,E)|Crnax
If we regard the processing times p; of the jobs J; as the node weights in the agreement
graph G = (V,E), G will be a weighted graph noted ¢ = (V, E, p),
where p = (p1, P2, -, Pn) 18 the processing times vector.
Since the nodes of an independent set are not adjacent mutually, the corresponding
jobs cannot be processed simultaneously on different machines in any feasible
schedule. Thus, the total weight of an independent set would be a lower bound for the

makespan.

28

Chapter 4 Lower Bounds

A. Case of general agreement graph

The problem of maximum weight stable (MWS) is well known to be NP-Hard in a
general graph type. Sakai et al. [30] have provided 2 simple algorithms WGMIN and
WGMINZ2 based on Greedy strategies to determine a near-optimal solution of the
problem. However, this problem can be solved in a polynomial time for some special
classes of graphs.

It should be noted that, if p; = p, = ... = p, = 1, we meet the Maximum Independent
Set (MIS) problem which is also known to be NP-Hard.

1. Algorithm: GWMIN

Algorithm: GWMIN
Input: Weighted graph G = (V, E,p)
Output: Approximation of MWS § in G
1. setS:=0;H:= G;
. for each vertex u in H, set c(u):==p(w)/[dy(u) + 1];

2

3. select avertexvinH|c(v) = max c(w);

u

4. set S:=8SU{v} H:= H[V(H) — N} (v)];

5. if V(H) #+ 0, return to step 2;
otherwise, STOP: return §S.

dy(u) denote the degree of vertex u in the graph H and N; (v) the close neighborhood
of the vertex v in the graph H.
Example: Consider the following weighted graph G

Node i ll‘ ‘3}4'5‘6

O

Weight p(i) ’3}4‘5‘1‘1!4

Table 4.1 — Node weights of the example Fig. 4.1 — Graph of the example

Initialization: §: = @; H: = G;

Iteration 1:

Step 2: for each vertex u in H, calculate
c(1) = p(1)/[du(1D) +1]1 =3/(4+1) =3/5
c(2)=4/(4+1)=4/5

e¢(8) =5/(2+1) =5/3

29

Chapter 4

Lower Bounds

c4)=1/4+1)=1/5
c(5)=1/3+1)=1/4

c(6) =4/(1+1) =2

e(v) = max (E’E'E‘E’Z’Z) = 2: v =16;
H=HV -1{6,2)) =H({1,3,4,5}); S = {6}
Iteration 2:

for each vertex u in H, calculate

c() = p()/[dx(D) +1] =3/(3+1) =3/4
c(3)=5/(2+1)=5/3
c(4)=1/3+1)=1/4
c(5)=1/2+1)=1/3

c(v) = max(z,g,%,g) =5/3,;v=3;
H=HWV -{3,4,1}) = H({5}); § = {6,3}
Iteration 3:

The graph H is reduced to 1 vertex, that is vertex 5, so we add 1t to §.

We obtain then the stable set S = {6, 3,5} of total weight c(S) = 10.

2. Algorithm: GWMIN2

Algorithm: GWMINZ2

Input: Weighted graph G

Output: Approximation of MWS § in G
1, Si=0;H:=6;

. for each vertex u in H, set c(W):=pW)/ Lweniw) p(w);

. select a vertex vinH|c(v) = max c(uw);
u

2
3
4. set S:=8U{v}y; H:=H[V(H) — Ng ()];
5

. ifV(H) # @, return to step 2;
otherwise, STOP: return S.

Example

Let’s apply GWMIN2 algorithm to the same example as for GWMIN algorithm, and

compare the 2 lower bounds obtained.
S§:=0;H:= G;
Iteration 1:

Step 2: for each vertex u in H, calculate c(u):=p(w)/ Zwewﬁ(u) p(w)

c(D) = p(L/(pD) + p(2) + pB3) + p(H) +p(5)) =3/B+4+5+1+1+4) =

3/15 = 1/5

c(2) = p(2)/(p(1) + p(2) + p(4) + p(5) +p(6) = 4/13

c(3) = p3)/((p(V) + p(3) + p(4)) =1/3

30

Chapter 4 Lower Bounds

c(4) = pB)/ (P ++p(2) + pB) + p(4) +p(5)) = 1/14
c(5) = p(5)/((p(D) + +p(2) + p(4) +p(5)) =1/9

c(6) =4/(4+4)=1/2

c(v) = max

H=HWV—-{6,2)) = H{1,3,4,5}; S = {6}

Iteration 2:

c(1) = p)/(p(1) + p(3) + p(4) +p(5)) = c(3) =3/10
c(3) = p3)/(p(1) + p(3) + p(4)) =5/9

c(4) = p(4)/(p(1) + p(3) + p(4) +p(5)) = 1/10

c(5) = p(5)/(p(1) +p(4) +p(5)) =1/5

3511, 5
W5) =5 7=
H=HWV -{3,4,1}) = H{5)); S = {6,3}

Iteration 3:

c(v) =max (

The graph H is reduced to 1 vertex, that is vertex 5, we add it then to S.
So we obtain the stable set § = {6, 3, 5} of total weight ¢(S) = 10.

Note that the two algorithms give the same value of the maximum weight stable set.

3. Lower bounds for a general agreement graph
Let LB, be the classical lower bound of the makespan for the parallel machines
problem P||Cpqy, that is

LBy = [max (Z}Ll pi/m, max pi)],

1<isn

where m denotes the machines number.

Since P|AgreeG = (V,E)|Cpqr contains the P||Cpqr problem (complete agreement
graph), then LB, could be considered as a lower bound for our problem.

Let LB, and LB, be the lower bounds yielded respectively by WGMIN and WGMIN2

algorithms. The overall lower bound would be
LB = max{LBgy,LB4, LB,};

Continuing with the example above, we have
GWMIN algorithm gives the first lower bound LB; = 10.
GWMIN2 algorithm gives the second lower bound LB, = 10.

Now, let’s compute the classical lower bound of P||Cy, 4y Problem

LBy = [max(~.pi/n, max pi>] = [max(18/2, 5)] =09.

1<isn

Hence, the overall lower bound is

LB = max(LBy, LB, LB;) = max(9,10,10) = 10.

31

Chapter 4 Lower Bounds

B. Case of bipartite agreement graph and two machines

Faigle et al. [15] have provided a combinatorial algorithm to solve the problem of
maximum weight stable set in a bipartite graph in polynomial time. They proved that
the complexity of the algorithm 1s 0(n*) (where n denotes the nodes number of the
graph). In this chapter, we present the algorithm remodeled in an explicit and
structured way, and give an example of SWA problem, with 2 machines and a
bipartite agreement graph, where the resolution of the problem of maximum weight

stable set is considered to compute a lower bound for the SWA problem.

1. Maximum weight stable set problem in bipartite graphs

The algorithm we present in this chapter for the resolution of the maximum weight
stable set problem in bipartite graphs is a combinatorial algorithm [15]. It proceeds
as follows. We consider a spanning tree in the graph and determine a maximal stable
set relative to this tree. If this solution 1s not stable in the original graph, we find a
restricting edge which has not yet been considered during the computation, add 1t to
the tree, delete another edge to obtain a new tree and compute a solution in the
modified tree. The algorithm will end with a solution that is optimal.

Two algorithms considered as subroutines will be used in the main algorithm: the
one for finding a spanning tree in a graph, and the other for determining a maximum

weight stable set in a tree.

2. Spanning tree algorithm

Algorithm: ST (Spanning Tree)
Input: Graph G = (V,E)
Output: Spanning tree T = (V', E')
1. fix an arbitrary node, say 1;
2. setS:={1},V' ={1}, E:=0;
3. for each x in S, in order
for each y in V\V’
if (x,y) € E, then E":= E" U (x,¥), V:=V'U{yh
next y
if no edges were added, STOP: return T;
next x
4. S:= children of S; return to step 3.

A spanning tree is a tree covering all nodes. There are 2 methods for determining a
spanning tree in a connected graph: Breadth-First Search and Depth-First search.

The Breadth-First Search algorithm proceeds as follows. Start with arbitrarily
chosen vertex of the graph as the root, add all edges incident to the vertex along with

the other vertex connected to each edge. The new vertices added become the vertices

32

Chapter 4 Lower Bounds

at level 1 in the spanning tree. For each vertex at level 1, visited in order, add each
edge incident to this vertex and the other vertex connected to the edge to the tree as
long as it does not produce a simple circuit. The new vertices added become the new
vertices at level 2 in the spanning tree. Repeat the procedure until all vertices in the

graph have been added.

3. MWST Algorithm (maximum weight stable set in trees).
MWST algorithm uses a dynamic programming approach to determine a maximum
weight stable set in a tree T. It proceeds as follows.
We fix an arbitrary node r in T. Then, for each v € T and the subtree T, rooted at v,
we compute:
e w(v): Total weight c(S,) of a maximum weight stable set S, in T,,.
o ™ (v): Total weight c(S,) of a maximum weight stable set §; in T, under the
restrictionv € §,,.
e w"(v): Total weight ¢(S,) of a maximum weight stable set S} inT, under the
restriction v € §,.
A maximum weight stable set §, either contains v or does not contain v, Therefore,
w(w) = max{w* @), v~ (v)} (1)
A maximum weight stable set S, in T, under the restriction v ¢ S, decomposes into
maximum weight stable sets in the subtrees of the sons of v. Let S(v) be the set of the
sons of v in the tree T. So we have
w”™ (V) = Ywesw) w(W) (2)
A maximum weight stable set S, in T, under the restriction v € §,, decomposes into v
itself and maximum weight stable sets in the subtrees of the sons of v under the
restriction that the sons themselves are not part of the set. Hence
0¥ (©) = p(0) + Tesy @™ (W) 3)
Using recursively the equations 1, 2 and 3, we can compute the values w(v), w*(v)
and w™(v) for all nodes form the leaves to the root.
To construct the solution S in T, we first initialize S: = @ and proceed from the root to
the leaves as follows. For each node v, we perform the test:
If w*(v) < @™ (v), there is no optimal solution containing the node v. Then we do not
add v to §S.
If w*(v) > w™(v), the optimal solution must include the node v. So we add v to S.
If w*(v) = w™ (v), there are some maximum weight solutions which contain the node
v and some which do not. So we can equally add it to § or not.
In the situation where we have added the node v to S, its sons cannot belong to S. So

we continue the construction of the optimal stable set § with the grandchildren of v.

33

Chapter 4 v Lower Bounds

In the algorithm, the Boolean variable ¢(v) guarantee that for a node v belonging to
a stable set S, its sons cannot be part of this stable set. For that it takes the false

value. ¢ is initialized to true for all nodes.

Algorithm: MWST (Maximum weight stable set in a tree)
Input: Tree T
Output: Maximum weight stable set §
a. fix an arbitrary node r as the root of the tree T;
b. for each node v in T, set @ (v): = true;
set §:= 0, c(8):=0;
c. from the leaves up to the root, and for each node v, set
wt():=pW) + Lwespy @~ W);
w™(v):= zwes(u) w (w);
w): = max{w* (), v~ (¥)};
d. from the root down to the leaves, and for each node v, do
if p(v) = true and w*(v) = w™(v) then
S:=SU{v}, c(8) =c(S) +p);
for each w € S(v),set o(w): = false;
end if
e. end. Return S.

4. Maximum weight stable set algorithm in arbitrary bipartite graphs
Let G = (S1,5; E) be a bipartite graph.
Let S(v) denote the set of the sons of node v in a tree.
We assume that the bipartite graph G is connected (as otherwise the problem
decomposes naturally into subproblems on the respective connected components).
The algorithm proceeds conceptually as follows:
1. compute a spanning tree T in G using ST algorithm;
2. find a maximum weight stable set § in T using MWST algorithm;
3. find an edge e from E having its two ends in §. If there 1s no such an edge,
Stop: S is feasible in G and hence optimal;
4. add the edge e to T and create (exactly one) circuit C in T U {e};
5. delete another edge f having its two endpoints in T \ § from the circuit C and
obtain again a spanning tree T;
6. return to step 2.
During the algorithm, the rule of choosing a leaving edge avoid a spanning tree to be
considered twice. This property guarantees that the algorithm does not cycle and
terminates after a finite number of steps (since the number of spanning trees 18

finite).

34

Chapter 4 Lower Bounds

Algorithm: MWSB (Maximum weight stable set in a bipartite graph)
Input: bipartite graph G = (S;,5,; E)
Output: maximum weight stable set § of weight c¢(S)
1. compute a spanning tree 7' in G using ST algorithm;
2. find a maximum weight stable set § in T using MWST algorithm;
3. findanedgee = (x,y) EE|lx € Sandy € S;
if there is no such an edge, STOP: return S;
4. set T:=T U {e},
let C be the circuit created in T U {e} by adding e to T;
5. find anedge f =(a,b) € Cla g Sandb ¢ S;
set T: = T\{f}, return to step 2.

Example: Let G = (51,5 E) be the following weighted bipartite graph.

51 52
S S

7 ‘ 8 (5)3'§W7. T
Weightp(i)’5‘3‘5'6}5'4’4‘1 (5)1‘/%%?6(4)
(6) 404 e 55

Table 4.2 — Node weights of the example M
(1) 8 % N 2 (3)

—_ /N

Sy}
[~
[o
e

Node '1‘2‘

Fig. 4.2 — Graph of the example
Iteration 1
Step 1. Use the ST algorithm to compute a spanning tree T (fig. 4.1).
Step 2. In The MWST Algorithm:
Step a. Fix the node 1 as the root of the spanning tree;
Step b. p(1) = @(2) = -+ = ¢(8) = true; §:=@; c(5):=0;
Step c. level 4 node is 2 (note that, in a tree, a leaf has no sons);
wt(2) = 3w~ (2) =0 w(2) = mae(3,0) = 3;
Level 3 nodes are 1, 3, and 4;
wtr@) =pB)+w (2)=1+0=1;
(8} = w(Zy = B
w(8) = max(3,1) = 3;
w*(3) =5 w (3) = 0,w(3) = max(5,0) = 5;
wt(4) = 6,w™(4) = 0,w(4) = max(6,0) = 6;

35

Chapter 4 Lower Bounds

Level 2 nodes are 5, 6 and 7;

wtrG)=pB)+w B)+w @) +w (8)=5+0+0+3=28;
w” (5)=wB) +w(@) + w(@) =5+6+3 =14;

w(5) = max(8,14) = 14;

wt(6) =4, w (6) =0,w(6) =4;

wt(7) =4 0w (7)) =0,w(7) =4

Level 1 node is 1;

ot =pW)+0 B)+w () +w (7)) =5+14+0+0=19;
w (1) =w)+w6)+w(?) =14+ 4+ 4 =22;

w(1) = max(22,19) = 22;

Node i 1 2 3 4 5 6 7 8
w* (@) 191 3 B) 6 8 4 4 1
w” (1) 22 | 0 0 0 [14| 0 0 3
w(Q) 22 1 3 5 6 | 141 4 4 3

Table 4.3 — Summary of iteration 1

Step d: for the root (level 1), node 1, we have:

since @(1) = true and w*(1) = 19 < w™(1) = 22, then ignore node 1;

and pass to the next level (level 2, nodes 5, 6 and 7);

@ = true, for all nodes of level 2;

w*(5) < w™(5), node 5 cannot belong to §;

wt(6) > w(6), S ={6}, c(S) =4;

(7)) >w (7)), ={67},c(S) =4+4=28;

Now, we pass to level 3 (nodes 3, 4 and 8);

We have ¢(3) = @(4) = ¢(8) = true;

wt(3) > w=(3), S = {6,7,3}, c(§) =8+ 5 = 13;

w*(7) > w=(7), § = {6,7,3,4}, c(§) =13+ 6 = 19;

w*(8) < w™(8), node 8 is ignored;

Level 4, node 2;

w+(2) > w (2), § = {67,342}, c(§) =19 +3 = 22;

At the end of step d, a stable set § = (6,7,3,4,2) in the tree T is constructed (fig. 4.3),
but S may not be stable in the original graph G. So, we proceed with adding and
deleting edges from the spanning tree;

Iteration 2

Step 3: Edge (6,3) € E, but (6,3) € 5, so we add it to T. The circuit € = (1,5,3,6) 1s
created.

Step 4: Vertices 1 and 5 € §, we remove then the edge (1,5) from T.

36

Chapter 4

Lower Bounds

(5)5
6(4) 74
8 (1
3(5) 4(6))
O2@3)

Fig. 4.3 - Stable set of
iteration 1

Steps a, b and ¢ in the MWST algorithm give these results.

1(5)

Fig. 4.4 - Siable set of
iteration 2

Node i 1 2 3 4 5 6 7 8
w* (@) 19| 3 |14] 6 8 |13 | 4 1
w” (i) 18 | O 9 0 9 |14 | 0 3
w(i) 191 3 [14] 6 9 | 14| 4 3

Table 4.4— Summary of iteration 2

Step d:

1(5)

8 (1) (6) 4

Fig. 4.5 Stable set of
iteration 3

p(1) = true and w* (1) = w=(1),8 = {1}, c(S) =5, @(6) = ©(7) = false;

We pass to node 3;

w*(3) > w™(3),8 ={1,3}, c(§) =5+ 5 =10, ¢(2) = ¢(5) = false;
wt(4) > w (4),S = {1,34}, ¢(5) =10+ 6= 16;

w?(8) < w™(8), we ignore node 8;
wt(2) > w™(2),5 ={1,3,4,2}, c(8§) = 16 + 3 = 19 (fig. 4.4).

Iteration 3

Step 3: Edge (3,2) € E, but € S, so we add it to T. The circuit C = (3,2,8,5) is created.
Step 4: The vertices 8 and 5 € S, we remove then the edge (8,5) from T;

Steps a, b and ¢ give the results summarized in the table below.

Node i 1 2 3 4 5 6 7 8
wt (@) 17 3 12 6 5 13 4 1
w (i) 17 1 9 0 6 12 0 0
w (i) 17 3 12 6 6 13 4 1

Table 4.5 - Summary of iteration 3

Step d:

p(1) = true and w* (1) = w™(1),8 = {1},c(S) =5, ¢(6) = @(7) = false;

We pass to node 3;

wt(1) > w (1), S ={1,3}, c(§) =5+ 5 = 10, ¢(5) = false;

wt(4) > w (4), S ={1,3,4}, c(5) =10 + 6 = 16;

37

Chapter 4 Lower Bounds

w(5) < w™(5), we ignore node 5;
wt(8)>w™(8), 5 ={1,3,48}, c(S) =16+1=17;
Step 3: there is no edge verifying the condition, then § = {1,3,4,8} is optimal(fig. 4.5).

5. MWSC Algorithm (Maximum weight stable set in a chain)

A chain is a tree with one root and one leaf. All other nodes have exactly one son
(successor) and one parent (predecessor) each.

Let € = (uy,uy,, ..., uy) be a chain.

The algorithm for determining a maximum weight stable set in a chain uses the

following recursive formula:
w(i) = }Qgﬁ{w(i —2)+ p;,0(i—1)}
Where w(i) is the maximum weight stable set in the sub-chain (i, uy,, ..., U;).
6. Algorithm yielding an optimal schedule in a chain
Let € = (uq,uy,, ..., uy) be a chain.
Let S = {s1,52, ..., Sy} be the maximum weight stable set obtained by MWSC, where

jobs are in the order of C. Let c(§) be the weight of the stable set S.
Let § = C\S = {51, 5, ..., 84}, in order, be the complement of § in C.

Algorithm: OSC

Input: Chain C, stable set S in C

Output: Optimal schedule

1. schedule all jobs of the set § on machine M; without idle times and in order;

2. for all jobs §; € 8, in order, do
find the earliest time t such that job §; is in agreement with all jobs being
processed on machine M; in the time interval [t,t + p;], schedule job §; on
machine M, at time t;

3. end.

Theorem

The OSC algorithm is polynomial and yields an optimal schedule of

makespan Cpq = €(5).

Proof:

o The algorithm is polynomial since it is a list algorithm.

e We shall prove that C(s,) = C (§q)

Let C be a chain, § a maximum weight stable set in ¢ and § the complement of § in
C.

38

Chapter 4 Lower Bounds

Let S(u;), C(u;) and p(u;) denote respectively the start time, the completion time and
the processing time of job u;, so

CQu) = S(w) = p(wy).

The chain ¢ may take one of the following forms:

1. Case C = (5158152582..5p-15p)

e’ Uz Uz Uy Un-3 Up-2 Un—1 Un
’r o - § o e o ®
S1 §1 So §2 Sp—Z Sp—l Sp—l Sp

Fig. 4.6 -Type 1 chain

We have p(5;) < p(s;) + p(si+1), i = 1,p — 1, (otherwise, S U {5§;}\{s;, si+1} would be a
stable set of higher weight, contradiction with the fact that § is a maximum weight
stable set),

Also from the maximum weight stable set properties, one can generalize as follows

TP S Tasip(s)i=Tp—1,j=1p—1.
Consider the first idle time on machine M,, say after job 5;. We have
- S5(5) =S(s1) =0,
p(51) < p(s1) +p(sz) = C(51) < C(s7),
p(51) + p(82) < p(s1) +p(sy) +p(s3) = C(8,) < C(s3),

p(51) +p(8) + - +p@E) < p(s) +p(s2) +ps3) + - +pls) =
= C(51) =< C(si41)
Suppose that the second idle time is inserted just after job 5;. We have
- S(i41) = S(5i14)
P(8ir1) S 0(Si1) + 0(Six2) = CGipr) — SGir1) < C(542) — S(si41) = C(ipn) <
C(sit2)
p(Bir1) + p(Givz) < p(Siv1) + 0(siv2) + P(Sin3)
= C(5i12) — SGir1) < C(Sir3) — S(sir1) = C(Gir2) < C(Six3)

PGis1) +pGie) + -+ 0(5) < p(sip) +0(5i42) + -+ (8j41) =
= C(5;) — SGis1) < C(5j41) — S(s141) = C(57) < C(5741)
And so on until the last idle time, say after job [. We have then
S(B141) = S(s141)
p(Gir1) < p(si41) + (S142) =
- = C1) — SGra1) < C(sp42) — S(s141) = C(8141) < C(5p42)

P(B141) + pGraz) + -+ p(gp—l) < p(sp41) +0(Sp42) + 0 + P(Sp) =

39

Chapter 4 Lower Bounds

= C(8p-1) — SGuea) < C(5p) — S(514)

= C(5,-1) < C(sp)

2. Case € = (8151582 ...5, $pSp+1)

Uq Uz * - Un
® @ il — e ©& o
S1 S1 52 5,1 Sp—1 Sp Sp Spi1
Fig. 4.7 —Type 2 chain

From the maximum weight stable set properties

The1P(31) < Thmr P50, i =T — 1, &)

Yieis1PGr) S Lpeyp (s, i=Tp—-1,j=1+1p—-1 2)

SRl p(3) < Thp(s), i=1p 3)

SREIp(S) < Ty P(si) 4

We consider the first idle time on machine M,, say after job §;. From (1) we have
p(51) < p(sz) = C(51) < C(s2),
p(51) + p(5;) < p(sy) +p(s2) = C(52) < C(s2),

p(51) + p(32) + -+ p(8) < p(s1) +p(s) + -+ +p(s) = CG) < C(s0)

Suppose now that the second idle time is inserted just after the job 3;. We have
S$(8i+1) = S(s;). From (2), we have

p(Si41) T+ PFs) + ~+ P(gj) <p(s)+ p(Speq) + =+ p(sj)

= C(5) = SGiry) < C(s5) = S(s) = ¢(3) < ¢(s))

And so on until the last idle time, say after the job 5;. We have S(5,11) = S(s1)-
From (2), we have p(§41) < p(s) + p(s41) = C(E141) — SGraa) < Cs144) — S(sp)
= C(8141) < C(sp41)

p(5e1) + (B1a) + -+ 2(5p) < p(s) + plsir) + -+ p(sp)

= C(5,) = SG1) < C(sp) = S(s) = €(5) < C(sp)

And from (3), p(5141) + p(842) + -+ P(§p+1) <p(s)+ p(Sz+1) t e ik P(Sp)
= C(8p+1) = SGra) < C(sp) = S(s1)

= C(5p41) < C(sp)

3. Case € = (51 Sq 52 §p Sp)
This case is obtained from the case 2 by removing the last vertex $,,4 and the

equations (3) and (4).

40

Chapter 4 Lower Bounds

4. Case C=(515(5258;,..5,5,)
This case 1s obtained by considering the reversal of the chain of type 3.

5. Case C = (...5;5j 8j11Si41)
We consider the sub-chains C; = (...s; §;) and C; = (841 Si41 -.)-
It is clear that §; is in agreement only with s;, and §j; is in agreement only with s;,4,
so 1t must occur an idle time after 5, then §;,; and s;,; would start processing at the
same time.
Hence, the proof, for this case, can be performed separately for both sub-chains ¢,
and C, using the corresponding case for each sub-chain.
Claim 1: € may contain a series of at most 2 vertices of S.
Proof: Suppose that € contains a series of 3 vertices of §, say §;_,, § and §;,1. S U {5;}
1s also a stable set since the 2 adjacent vertices of the vertex §; are not part of the
stable set S, and this stable set has a higher weight than §. Contradiction with the
fact that § is a maximum weight stable set. B
Claim 2: C may not begin or end with more than 1 vertex of S.
Proof: Suppose that C is of the form (8, 5; ...), respectively of the form (...§,_1 8),

§ U {81}, respectively § U {§,}, would be a stable set of higher weight. Contradiction. =

41

Chapter 5 Near-Optimal Methods

Chapter 5
Near-Optimal Methods

In this chapter, some heuristics, local search methods and metaheuristics are used
to deal with the SWA problem, all based on lists.

I. Heuristics

1. Definitions

The agreement number of a job J;, noted Dg(J;), is the number of jobs in agreement
with job J;. It is also the degree of the node J; in the agreement graph.

The iterative agreement number of a job J;, noted dg(J;), is the number of non-
scheduled jobs in agreement with job J;. It is also the degree of the node J; in the

modified agreement graph obtained by removing iteratively nodes corresponding to

scheduled jobs.

2. Notations

Let LPT denote the sort order based on “Longest Processing Time first”.

Let SPT denote the sort order based on “Shortest Processing Time first”.

Let RAND be the random sort.

Let p denote, as usually, the processing time.

Let Dg + and Dg — denote the sort order of the jobs list based respectively on
increasing and decreasing agreement number of jobs.

Let dg+ and dg — denote the sort order of the jobs list based respectively on
increasing and decreasing iterative agreement number of jobs.

The lists introduced in this chapter, are sorted according to 1 or 2 criteria. Thus, jobs

are sorted according to a first criterion, and then, those with the same value are

42

Chapter 5 Near-Optimal Methods

eventually ordered according to a second sort criterion. For example, “LPT|Dg +"
means that the selection is based first on the LPT rule and then jobs with the same
processing time are sorted according to increasing node degree of the corresponding

job. According to these notations, we give the list of the 14 heuristics.

Heur. HL1 HL2 HL3 HL4 HL5 HL6 HL7
Descr. LPT SPT LPT|Dg + |LPT|dg +| Dg + Dg = dg +
Heur. HLS HL9 HL10 HL11 HL12 HL13 HL14

Descr. | dg— | Dg+|LPT |dg +|LPT| Dg/p+ | dg/p+ | Dg.dg/p + | RAND

Table 5.1 — Heuristics list
3. List-algorithm
Let V be the set of jobs and U the set of unscheduled jobs. A non-scheduled job J; is
said to be available at time t if there exists a free machine at this time, and if jobs yet
scheduled and having a part of their processing in the interval [t,t + p;] are all in

agreement with J;. This algorithm is of complexity O(n).

Algorithm: LS (list algorithm)
Input: jobs list (for example, LPT list)
Output: feasible schedule
1. setU:=V, t: = 0;
2. find the earliest time t at which a job from U becomes available;
let U be the set of jobs of U available at time t;
3. choose a job J; from U of higher priority, schedule it on a machine at time ¢;
set U == U\{]j};
4. if U = @, stop: all jobs are scheduled;

Otherwise return to step 2.

Example: We retake the same example of chapter 3 (m = 2,n = 5.

Job J; 1]1‘]2']3’]4‘]5{
Proc. times| 2| 4 | 1| 3| 2 ‘

Table 5.2 — Processing times of the
example

Fig. 5.1 — Agreement graph of
the example
43

Chapter 5 Near-Optimal Methods

Iteration 1:

We sort the jobs list according to any rule, say LPT rule, we obtain
U={zJululs sk ti=0;

At time zero, all jobs are available, U = U.

Since all jobs are available and all machines are free at time t = 0, schedule the job
of higher priority that is J, on any machine, say machine M; (fig. 5.2).
U=U-{}={Jal1]s]}

»

| 1 | 1 | | |] - e | | | | | >
0 1 2 3 4 5 6 7 time 1 2 3 4 5 6 7 time

Fig. 5.2 - Gantt chart of iteration 1 Fig 5.3 - Gantt chart of iteration 2

Iteration 2: Since the machine M, is free at time zero and the job J; agrees with job
J», then the earliest time ist = 0.

U :={];} (J; is the only job available at time zero).

Schedule job J; on machine M, (fig. 5.3).

U:={JaJsJs};

Iteration 3: In the interval [2,4], a part of the job J, is being scheduled, and none of
the non-scheduled jobs is in agreement with J,. The earliest time at which a job
becomes available should be after the completion of J,, t = 4. At this time, all jobs are
available. We choose the one of higher priority, J,, and schedule it on M; (fig. 5.4).
U={JsJs}

Iterations 4 and 5: Both jobs J; and Js agree with job J,, and there is a free machine

M, at time t = 4. So we schedule /5 and then J; in the priority order on M, at times 4
and 6. U = @. Stop: all jobs are scheduled (fig. 5.5).

M, | J2 a) M, | J2 Ja

: ,ml, l : : : : o i v;..l._,A,. l : IAW‘ s I_., R .,,l | >
0 1 2 3 4 5 6 7 time 1 2 3 4 5 6 7 time

Fig 5.4 - Gantt chart of iteration 3 Fig 5.5 - Gantt chart of iteration 5

44

Chapter 5 Near-Optimal Methods

II. Local search methods
1. Pairwise Interchange (PI)

The pairwise interchange (PI) is a permutation-based method used to generate a
near-optimal solution of a scheduling problem, and is considered as a local search
method. It operates by job interchanging on a pre-defined list. It proceeds as follows.
CGet an initial permutation, and consequently an initial schedule (using LPT
heuristic, for example) giving an initial value of the makespan. Select randomly a
pair of jobs from the initial permutation, operate interchange between them to move
from the initial permutation to a new permutation to obtain a new schedule.

If the new schedule yields a better value of the makespan, the new permutation is
accepted and replace the initial one for the next iteration. Otherwise, it is rejected,
and a new pair of jobs will be generated. This operation is repeated until a lower

bound is hit or after a fixed number of iterations without improvement is reached.

Algorithm: PI (Pairwise Interchange)
Input: Initial Jobs list
Output: Jobs list yielding better or equal schedule
1. get an initial job permutation i; (use LPT heuristic, for example), run
the List algorithm on m;,; to obtain an initial feasible schedule m;,; of
makespan Ciy;;
set ki =0, Tyese'= Mini> Cpest: = Cinis
2. if k = limit, stop: return mpesr, Cpest;
set k:=k+1;

g2

4. generate 2 random discrete numbers in [1,7n], say i,j and get a new
permutation 7, by interchanging Tpest (1) and Tpest(J); |

5. run the List algorithm on 7., to obtain a new feasible schedule of |
makespan Cpew; |

6. if Cpew = LB, stop: Tope: = Tnew: Copt = Cnews

7. if (Crow > Chest) OF (Cnew = Cpest and rand[0,1] < 0.5),
set Mpest: = Mnews Chest = Cnew> k= 0;

8. go to step 2.

2. Adjacent Pairwise Interchange (API)
The adjacent pairwise interchange (API) method is the same as PI except that the

jobs to be interchanged must be adjacent in the current permutation.

45

Chapter 5 Near-Optimal Methods

Algorithm: API (Adjacent Pairwise Interchange)
Input: Initial Jobs list
Output: Jobs list yielding better or equal schedule
1. get an initial job permutation m;,; (use LPT heuristic, for example), run
the List algorithm on m;,; to obtain an initial feasible schedule m;y; of
makespan Ciyi;
set ki =0, Tpese'= Tini, Cpest: = Cinis
2. if k = limit, stop: return mpese, Chests
3. setki=k+1;
4. generate a random discrete number in [1,n—1], say i, and get a new
permutation s by interchanging positions of m,; (i) and i, (i + 1);
5. run the List algorithm on 7., to a obtain a new feasible schedule of |
makespan Cpey; ‘
6. if Crew = LB, stop: Mopt: = Tnews Copt = Cnew;
7. if (Chew > Chest) O (Crew = Cpest and rand[0,1] < 0.5),
set Mpest: = Tnews Coest = Cnew k: = 0;

8. go to step 2.

3. Insertion Method
Insertion Method is a variable neighborhood search method proceeding by inserting
a randomly chosen position of a job in front (or back) of another randomly chosen job

position.

Algorithm: IM (Insertion Method)
Input: Initial Jobs list
Output: Jobs list yielding better or equal schedule
1. get an initial job permutation m;,; (use LPT heuristic, for example), run the
List algorithm on m;,,; to obtain an initial feasible schedule m;,; of makespan
Cinis
set k:= 0, Tpese:= Tini> Cpest: = Cini
2. if k > limit, stop: return myegt, Cpests
setk:=k+1;
4. generate 2 random discrete numbers in [1,n], say i,j and get a new

=

permutation s by inserting mi,; (i) in front of m; (7).
5. run the LS on 7, to a obtain a new feasible schedule of makespan Cpew;
6. if Cpew = LB, stop: Tops: = Tnew Copt = Coonss
7. if (Coew > Cpest) OF (Crew = Cpest and rand[0,1] < 0.5),
set Tpese’ = Mnew> Chest = Cnew» k:=0;

8. go to step 2.

46

Chapter 5 Near-Optimal Methods

II1. Metaheuristics
1. Simulated Annealing (SA)
The algorithm SA proposed proceeds as follows.

First, choose an initial permutation by any heuristic. Choose randomly 2 _]Ob
positions. A new permutation in the neighborhood is obtained by interchanging the
positions of the 2 selected jobs (a permutation reachable by only one move is called a
neighbor).

In SA, solutions are accepted according to the magnitude of increase in the objective
function and the temperature. Thus, P(accept) = exp(—A.AL/L), where Mis a control
parameter (temperature) and AL is the change in the objective function (makespan).
If the makespan increases after the random pairwise interchange, the new
permutation is accepted if P(accept) >r, where r 1s a uniform random number
between 0 and 1[27].

Algorithm: SA (Simulated Annealing)
Input: Initial jobs list
Output: Jobs list yielding better or equal schedule
1. get an initial job permutation m;,; (use LPT heuristic, for example);
run the List algorithm on 7;,; to obtain an initial feasible schedule of
makespan Ciyi;
initialize B, limit; set Tpese = Tini» Torg = Mini> k1= 0, t:=0;
2. if k > limit, stop: return myese, Cpests
3. setki=k+1;t:=t+1; 1=p.t;
4. generate 2 random discrete numbers in [1,n], say i,j and get a new
permutation 7,,,, by interchanging the positions of my4(1) and my1a(7);
5. run the List algorithm on m,., to obtain a new feasible schedule of
makespan Cpey;
if Crew = LB, StOD, Tope: = Tnews Copt: = Cnews
if Crow < Corar St Mpest: = Tnew> Motd: = Mnew, k1 =0, go to step 2
set P = exp(—1.(Cnew — Cota)/Cota);
if P < rand[0,1], set g4t = Tnew;
10. go to step 2

© ® N o

2. Harmony Search (HS)
The steps of HS are described below.

Step 1. Initialize algorithm parameters
The HS parameters are initialized in this step, including harmony memory size
(HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR),

47

Chapter 5 Near-Optimal Methods

distance bandwidth (bw) and the number of improvisations (NI). Here, HMS is the
number of solutions in the harmony memory. HMCR and PAR are parameters used to
search for globally and locally improved solutions, respectively.

Step 2. Initialize the harmony memory

The initial HM matrix, shown below, is filled with HMS number of harmonies. Each
harmony, represented as an n-dimensional real-valued vector, is randomly generated
by using a uniform distribution.

Step 3. Improvise a new harmony

Let Hyew = {hnew (1), hrew(2), ., hnew(n)} be a new harmony, which is generated by
using three rules: memory consideration, pitch adjustment and random selection.

In the memory consideration, each decision variable hye, (f),j = 1,71, is chosen
randomly from the jt* column of the HM matrix with the probability of HMCR. And is
generated randomly in the range [LBj, UB;] as follows: hye, (j) = LB; + r.(UB; — LB))
with probability 1 — HMCR, where 7 is a [0,1] —uniformly generated random number.
Furthermore, every component obtained by the memory consideration is adjusted by

the pitch adjustment rule with the proportion of PAR.

hnew (/) = hold (]) +r.bw

Step 4. Update the harmony memory

If the fitness value of the new harmony is better than that of the worst one in the HM,
the new generated harmony is included into the HM and the worst harmony is
excluded from the HM.

Due to the continuous nature of Harmony Search, it cannot be used in its original
form for the scheduling problem. Thus, in the discrete case, a convenient mapping
must be found which convert harmonies to solutions. We adopt then a permutation-
based encoding method, and a list scheduling rule is used to convert the harmony
vectors to a solution of the problem. More specifically, a harmony is represented as a
permutation of integers m = (74, 72,...,Ty), Where n 1s the number of jobs and m;
denotes the order of the i job to be scheduled.

To initialize HM, some of the HMS harmonies may be chosen from the heuristic lists
as initial sequences and others randomly. Next, a novel improvisation process 1s used
to generate a new harmony.

Each component of the harmony vector is chosen randomly from the j th column of the
HM matrix with the probability of HMCR, and then, with a probability of PAR, 18
adjusted by this pitch adjustment

hnew () = hoia) £ b, b=0,bw
And each component of the harmony vector is chosen randomly in the range [0,n]

with a probability 1 — HMCR, and won't be adjusted.

48

Chapter 5 Near-Optimal Methods

But the new harmony obtained may not be a permutation of job sequences since it
contains eventually duplicate elements. Thus, it should be repaired to be a feasible

solution. A repair process is used by replacing each duplicate integer by an integer
that has not been assigned to any job.

Algorithm: HS (Harmony Search)
Input: Initial jobs list
Output: Jobs list yielding better or equal schedule
Let C () denote the makespan of the sequence .
1. initialize HMS, HMCR, PAR, bw, NI; set k = 0;
2. get HMS number of harmonies (sequences 1y, Ty, ..., THms) from heuristic
lists and/or randomly;
3. set K=K+ 1;
4. fori=1tondo
if rand[0,1] < HMCR then
r = Int rand[1, HMS], © (i) = m-(i);
if rand[0,1] < PAR, then b = Int rand[0, bw], (i) = n(i) * b;
else m(i) = Int rand[1,n];
next i
5. fori=11ton
forj=i+1ton
if (i) = mw(j) then

find k in [1,n] | k does not appear in 7 sequence;

set t(j):=k;
next j
next i
6. run the List algorithm on 7 to obtain a feasible schedule of makespan C(m);
7. find the sequence Tyin | C(Tmin) = 15?21“1\456 (my);
8. Find the sequence gy | C(Tmax) = 151}1;3},);456(7'[0;
9. if C(m) < C(Mmayx), S€t Mgyt = T0;

10. if C (fTymin) = LB, STOP: set mopsi = Mimin, Yeturn mope;
11.if K = NI, STOP: return mpy;
12. return to step 4.

49

Chapter 6 Numerical Experiments

Chapter 6

Numerical Experiments

In this chapter, various experiments on heuristics, metaheuristics and exacts
methods are performed on a computer equipped with Intel I5 CPU and 8 GB of RAM
using “Visual Basic 6.0” and “Cplex” development software. All instances are

uniformly generated.

I. Heuristics experiments

In the previous chapter, we have described 14 heuristics, all based on lists, to deal
with the SWA problem. In the present chapter, we carry out some experiments on
these heuristics and try to determine their performance for different problem
configurations. Pretests have shown that 4 heuristics (HL2, HL6, HL8 and HL14) give
very bad results in almost all cases, so we rule out this heuristics and keep only the
10 remaining.

Two types of agreement graph, general and bipartite, are considered, each with
different values of density (d): low (d; = 20%), medium (d, = 50%) and high (d; =
80%),).

In the general agreement graph case, jobs number (n) is chosen from the set
{20,100,500,1000}, machines number (m) from {2,3,5,10,20} and processing times
(p;) from {I; =[1,10],1, = [30,50]}. In the bipartite agreement graph case, jobs

numbers are from {20, 50,100} and processing times from {Iy, I,}.

50

Chapter 6 Numerical Experiments

A. Experiments in the general agreement graph case

All combinations of heuristics number, jobs number, machines number, graph density

and processing times range give a total of more than 100 tables of 10 columns and 4

rows, which is too big to take in this thesis. So we have considered only tables with

mean values (14 tables) detailed as follows.

for n = 20, we consider the average of the combination of 3 values of m (2,3,5),
two processing times intervals I;and I,, 3 graph densities d,, d, and d;, which
give a total of 3x2x3 = 18 combinations, and for each combination we have
generated 1000 instances (that is 18000 instances).

for n = 100, we consider the average of the combination of 4 values of m
(2,3,5,10), two processing times intervals I;, I, and 3 graph densities d,, d, and
ds, which give a total of 4x2x3 = 24 combinations, and for each combination we
have generated 500 instances (that is 12000 instances).

for n = 500, m is chosen from {2,3,5,10,20}, p; in I; or I, and d from {d4, d,, d3}.
The instances number is 5x2x3x100 = 3000.

for n = 1000, same parameters as for 500, except 50 instances are generated,
which give a total of 5x2x3x50 = 1500.

Total instances: 18000 + 12000 + 3000 + 1500 = 34500.

The 4 performance criteria considered are:

Best Cmax: The number of times where the heuristic gives the best value of
Cmax (in percentage);

Opt. Cmax, The number of times where the heuristic gives an optimal value of
Cmax (in percentage);

Mean. dev.: The average deviation of the heuristic compared with the lower
bound (in percentage, and calculated as 100x(Cmax — LB)/LB);

Max.dev.: The maximum deviation of the heuristic compared with the lower

bound (in percentage).

Note that the last column of each table refers to the best values among the heuristics.

1. Average performance by jobs number

n=20 | HL1 | HE3 | HL4 | HL5 | HL7 | ' HL9 | HL10 | HE11 | HL12 | HL13 | Best

Best Cmax|21.46(19.16|24.79|21.53|20.03|24.90|33.78|31.84|35.22|36.84

Opt.Cmax|10.21] 9.04 |12.59| 5.28 | 5.27 | 6.56 |15.45]|13.11|16.51|16.83|26.73

Mean Dev.|17.97|18.564|17.41|16.41|16.68|15.91|15.51|15.34|15.23|14.92/10.43

Max Dev. |50.68|52.83|50.62|50.13|48.56|49.29|48.4445.81|47.00|46.83 |35.68

n=100 | HL1 | HL3 | HL4 | HL5 | HL7 | HL9 |HL10 | HL11 | HL12 | HL13 | Best

Best Cmax| 14.78|11.59|22.80|10.44|12.44|12.13|28.65|20.63|29.03|31.75

Opt.Cmax|11.20| 9.06 |17.48] 1.93 | 3.51 | 2.21 |17.71]|10.58|16.76|16.99|25.92

Mean Dev.| 44.23|44.87|43.71|42.78|42.78|42.38|42.24|42.04|41.99 |41.32|37.35

Max Dev. |64.66|64.18|62.53|62.79|61.84|61.61|61.00|59.78|59.48|57.86|52.06

51

Chapter 6

Numerical Experiments

n =500

HL1

HL3

HL4

HL5

HL7T

HL9

HL10

HL11

HL12

HL13

Best

Best Cmax

17.00

13.91

38.84

4.52

11.52

5.05

34.61

20.15

35.17

38.03

Opt. Cmax

13.30

10.85

28.58

1.63

4.07

1.66

21.50

12.47

21.92

21.47

32.14

Mean Dev.

54.19

54.32

53.87

55.07

54.55

54.98

54.46

53.52

53.22

53.07

51.83

Max Dev.

60.14

59.85

59.44

61.70

60.34

61.50

60.36

59.53

59.15

58.54

56.30

n =1000

HL1

HL3

HL4

HL5S

HL7

HL9

HL10

HL11

HL12

HL13

Best

Best Cmax;

18.17

12.63

44.63

5.00

9.67

3.33

32.73

20.03

41.83

40.50

Opt. Cmax

13.77

11.20

33.83

1.00

4.27

1.23

23.90

13.40

25.33

25.83

36.90

Mean Dev.

48.45

48.61

48.23

49.69

49.39

49.69

49.24

48.14

47.89

417.80

47.12

Max Dev.

50.09

50.15

49.72

51.74

51.30

51.85

50.92

49.84

49.51

49.38

48.01

Remarks

Table 6.1, Average Performance by Jobs Number

For n less than 500, HL13 is the best heuristic for all performance criteria. But for a

bigger number, HL4 becomes better than all others according to all performance

criteria. Globally, the optimality is reached more often when n gets bigger (around
37% for n = 1000).

It should be noted that, for each heuristic or globally, the mean and max deviation

are inversely proportional to the best and optimal Cmax.

2. Average performance by graph density

d=20 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax| 7.52 4.97 | 19.19 | 10.43 | 13.59 | 10.34 | 19.79 | 16.44 | 29.33 | 31.46

Opt.Cmax| 1.60 1.05 8.54 1.10 3.23 1.29 7.69 2.48 9.30 9.46 | 14.24
Mean Dev.| 78.05 | 78.44 | 77.68 | 77.91 | 77.87 | 77.78 | 77.57 | 76.13 | 75.93 | 75.64 | 73.10
Max Dev. | 96.66 | 96.15 | 95.48 | 95.33 | 95.28 | 96.12 | 95.60 | 93.47 | 93.33 | 91.69 | 87.28
d=750 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax| 16.09 | 11.82 | 32.01 | 8.01 | 13.45 | 9.23 | 31.09 | 19.86 | 33.44 | 35.18

Opt.Cmax| 10.10 | 7.30 | 22.39 | 1.77 4.27 2.13 | 18.46 | 10.32 | 19.48 | 19.77 | 29.32
Mean Dev.| 41.89 | 42.21 | 41.51 | 42.01 | 41.74 | 41.71 | 41.56 | 40.70 | 40.58 | 40.24 | 37.48
Max Dev. | 55.18 | 55.42 | 54.30 | 56.21 | 55.01 | 55.38 | 54.80 | 52.98 | 53.19 | 52.84 | 47.91
d =80 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax| 28.75 | 24.57 | 49.77 | 8.96 | 10.99 | 9.97 | 46.01 | 30.30 | 43.21 | 43.69

Opt.Cmax| 25.29 | 22.09 | 41.94 | 3.58 5.01 4.11 | 34.18 | 24.13 | 32.81 | 32.76 | 48.94
Mean Dev.| 11.43 | 11.79 | 11.03 | 11.24 | 10.99 | 11.01 | 10.24 | 10.60 | 10.36 | 10.08 | 8.21
Max Dev. | 19.24 | 19.99 | 18.60 | 20.38 | 18.56 | 18.96 | 17.38 | 17.42 | 17.10 | 17.03 | 12.96

Table 6.2, Average Performance by graph density
Remarks

For a small or average graph density, HL13 and HL12 get by far ahead of all other

heuristics. But when the graph is getting thicker, HL4 gets ahead of them (around

50% best heuristic for a graph dense at 80%). The overall optimality increases with

the graph density to reach 49% for a graph density of 80%.

52

Chapter 6

Numerical Experiments

3. Average performance by machines Number

m=2 HEL | H13: | HL4 | HLS | HL7 |- HL9 | HL10 | HE1]1 |-HL12 | HL13 | Best
Best Cmax | 39.46 | 33.95 | 68.31 | 9.61 | 17.56 | 10.67 | 48.91 | 34.49 | 52.78 | 52.14
Opt.Cmax | 36.46 | 31.00 | 61.62 | 7.06 | 13.81 | 7.81 | 44.34 | 30.53 | 47.43 | 46.50 | 76.75
MeanDev. | 2.03 | 216 | 1.83 | 230 | 208 | 221 1.76 1.70 1.55 1.54 | 0.86
Max Dev. 6.69 | 676 | 6.43 | 7.84 | 692 | 763 | 595 | 6.13 586 | 5.63 | 3.99
m=3 HL1 HL3 HL4 | HLS HL7 HL9 | HL10. |- HL11-| HL12 | HI13 | Best
Best Cmax | 17.85 14.57 32.25 6.63 14.45 7.94 44.75 24.71 45.45 46.03
Opt.Cmax | 14.18 | 11.25 | 2456 | 1.35 | 3.64 | 2.15 | 26.83 | 17.73 | 26.31 | 27.43 | 31.81
Mean Dev. | 5.03 | 522 | 476 | 522 | 473 | 507 | 420 | 434 | 401 | 3.95 | 254
Max Dev. | 14.18 | 14.71 | 13.67 | 15.75 | 13.84 | 1548 | 13.49 | 12.79 | 12.29 | 11.58 | 8.37
m=5 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 |Best
Best Cmax | 10.12 | 7.31 | 30.73 | 11.11 | 12.10 | 11.60 | 30.49 | 20.14 | 32.01 | 33.48
Opt.Cmax | 485 | 341 | 1856 | 1.26 | 1.32 | 134 | 1406 | 7.08 | 14.05 | 14.47 |23.39
Mean Dev. | 21.00 | 21.42 | 20.53 | 19.70 | 19.56 | 19.41 | 18.98 | 18.87 | 18.68 | 18.35 | 15.75
Max Dev. | 37.87 | 39.35 | 37.75 | 37.03 | 35.39 | 36.02 | 36.06 | 34.27 | 34.71 | 35.10 |28.90
m =10 HL1 HL3 HL4 HLS HL7 HL9- [HL10. | -HL11 | HI12 | HL13 | Best
Best Cmax | 6.24 | 311 | 1574 | 865 | 808 | 7.93 | 21.02 | 11.42 | 2244 | 23.51
Opt.Cmax 0.02 0.00 6.09 0.00 0.00 0.00 7.00 0.07 6.14 6.13 9.07
Mean Dev. | 66.19 | 66.69 | 65.83 | 66.18 | 66.08 | 66.00 | 65.71 | 64.69 | 64.37 | 63.88 |60.82
Max Dev. | 78.84 | 77.78 | 77.42 | 78.09 | 78.00 | 79.05 | 76.54 | 75.34 | 75.73 | 74.52 | 69.31
m =20 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 878 | 511 | 11.17 | 833 | 7.83 | 972 | 6.06 | 16.17 | 1539 | 21.17
Opt.Cmax 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean Dev. | 156.78 | 157.52 | 156.14 | 157.82 | 157.92 | 157.39 | 157.69 | 154.82 | 154.97 | 154.11 |149.38
Max Dev. 180.98 | 180.32 | 178.40 | 181.39 | 180.95 | 179.64 | 181.11 | 177.38 | 177.43 | 175.23 |168.47
Table 6.3, Average Performance by machines number
Remarks

For 2 machines, HL4 is the best heuristic (best Cmax at 68% and Opt Cmax at 61%).
For 3 machines or more, HL13 and HL12 become the best (For HL13, the rate of best

Cmax is equal to 46%, for m = 3, and then it decreases to reach 21% for m = 20).

The global optimality starts at 76% for m = 2 and ends at zero for m = 20. The global

mean deviation is less than 1% for 2 machines, but it grows rapidly to attain 60% for

10 machines and around 150% for 20 machines.

4. Average performance by processing times range

p€E([1,10] | HL1 HL3 HL4 HL5S HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 25.63 | 19.43 | 47.84 | 8.48 | 11.96 | 10.10 | 44.48 | 34.67 | 53.84 | 57.28

Opt.Cmax | 18.91 | 15.68 | 36.15 | 3.75 7.48 | 4.49 | 37.57 | 22.99 | 38.72 | 39.56 | 44.89
Mean Dev. | 40.59 | 41.12 | 40.10 | 42.08 | 41.76 | 41.77 | 41.14 | 39.47 | 39.49 | 39.13 | 37.16
Max Dev. 54.07 | 54.76 | 53.17 | 56.82 | 55.22 | 55.99 | 54.73 | 52.18 | 52.39 | 51.73 | 48.28
p €[30,50]| HL1 HL3 HL4 HLS5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 8.68 7.72 | 17.88 | 9.73 | 13.21 | 9.56 | 19.88 | 9.66 | 16.62 | 16.10

Opt.Cmax | 5.18 4.26 | 11.06 | 0.49 0.69 | 0.49 | 2.42 1.57 2.18 1.62 | 16.15
Mean Dev. | 46.99 | 47.17 | 46.71 | 45.36 | 45.31 | 45.22 | 45.11 | 45.47 | 45.08 | 44.83 | 42.04
Max Dev. 59.98 | 59.60 | 59.09 | 57.79 | 57.34 | 57.63 | 57.12 | 57.06 | 56.68 | 55.98 | 50.49

Table 6.4 — Average performance by processing times range

53

Chapter 6

Numerical Experiments

Remarks
HL13 is the best heuristic for small values of processing times, p; € I; , and HL10 is

the best for bigger values of p;, from I,.

5. Overall average performance

General | HL1 HL3 HL4 HL5 HL7 HLS | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 17.18 | 13.56 | 32.57 | 9.39 | 12.63 | 10.18 | 31.59 | 22.18 | 34.70 | 36.23
Opt.Cmax 11.79 | 9.73 | 23.10 | 2.16 4.04 2.563 | 19.36 | 11.89 | 19.78 | 19.92 | 29.66
Mean Dev. | 45.34 | 45.72 | 44.95 | 45.27 | 45.10 | 45.04 | 44.67 | 43.99 | 43.81 | 43.49 | 41.00
Max Dev. 59.23 | 59.42 | 58.33 | 59.50 | 58.47 | 59.01 | 58.11 | 56.71 | 56.70 | 56.00 | 51.29

Table 6.5 — Heuristics Overall Performance for general graph
Remarks

From the table 6.5, one can observe that HL13 is globally the best heuristic with
regard of the 4 criteria: Best Cmax (36%), optimal Cmax (20%), mean deviation (43%)

and maximum deviation (56%). The overall optimal Cmax is around 30%, mean

deviation 41% and maximum deviation 51%. On the graphs below, we can observe

the variation of all 4 criteria of HL13 with regard to jobs number, machines number

and graph density.

e

At Best Cmax
/,,,»»-""’”
5 “\N’\‘\ / -

B “"«.\kw\ -
ar vt
® 30
g

% Opt. Cmax e

.«»’"‘M’
f"/
20 e
,:—/
.._‘-.———_..M...__..W_.‘/"
20 100 500 1000
Johs number
Graph 6.1a— Var. of HL13 Cmax/n

60

50 \\

40 \ \
: |\
@30 b S
TN T et

\ L.

20 \
"

M\

W

5 & 7 8 9 10 11 1z 13 14 15

-
W,
e ———

Opt. Cmax

.

Machines number

.

16 17 1

8 19 20

Graph 6.2a - Var. of HL13 Cmax/m

54

00

80

Rate (%)

60

a0

20

ol
/7 Mean dev.

jobs number

1000

Graph 6.1b — Var. of HL13 dev./n

G e

7 8

Max dev.

9 10 11 12

“ Mean dev.

1314 15

Machines number

16 17 18 12 20

Graph 6.2b — Var. of HL13. dev./m

Chapter 6 Numerical Experiments

ARSI

Opt. Cmax

Rate {%)
o el
(=]
\\
Rate {(%6)
~

88 /// 5 Max dev.
84 / ‘

82 1
80 . e Mean dev.
20 50 80 %0 5
Graph density Graph density
Graph 6.3a - Var. of HL13 Cmax/d Graph 6.3b - Var. of HL13 dev./d

B. Experiments in the bipartite agreement graph case (m = 2)

1. Heuristics performance by jobs number

m =20 HL1 HL3 HL4 HL5 HL7 HL9 HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 71.00 | 69.12 | 73.10 | 92.32 | 90.28 | 94.07 | 93.00 | 91.57 | 91.83 | 92.92
Opt. Cmax 70.77 | 68.95 | 72.92 | 91.70 | 89.72 | 93.37 | 92.35 | 90.88 | 91.23 | 92.30 | 98.67
Mean Dev. 1.62 1.82 1.42 0.30 0.37 0.22 0.25 0.28 0.27 0.27 0.02
Max Dev. 16.567 | 16.73 | 17.13 | 9.37 8.82 8.73 7.18 9.85 7.73 8.62 2.43
m =50 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 67.17 | 64.50 | 68.00 | 85.50 | 87.17 | 88.00 | 85.67 | 84.67 | 86.83 | 91.00
Opt.Cmax 66.83 | 64.33 | 67.83 | 84.67 | 86.17 | 85.83 | 84.67 | 83.33 | 85.67 | 89.17 | 94.50
Mean Dev. 1.47 1.70 1.35 0.45 0.43 0.40 0.43 0.38 0.37 0.28 0.10
Max Dev. 6.88 7.90 6.17 5.98 2.92 4.15 2.82 3.80 2.60 2.25 1.40
m =100 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 78.00 | 77.00 | 82.33 | 92.17 | 98.83 | 90.83 | 98.67 | 91.67 | 98.83 | 98.67
Opt.Cmax 77.83 | 76.83 | 82.17 | 92.00 | 98.33 | 90.67 | 98.00 | 91.50 | 98.33 | 98.17 | 99.33
Mean Dev. 0.40 0.43 0.30 0.10 0.02 0.08 0.02 0.07 0.02 0.02 0.00
Max Dev. 2.87 3.48 2.12 2.03 0.67 1.53 0.57 1.20 0.38 0.22 0.12
Table 6.6 — Heuristics Per formance by jobs number

100

9%

. e
o 9
é
e —— Best Cmax Opt. Cmax
—

\M\ ?) Max dev.

90 S

Rate (%5)

Mean dev.

8 ¢ ot
20 50 10 ‘ -

, lohs number
Jobs number

Graph 6.4a— Var. of HL13 Cmax/n Graph 6.4b — Var. of HL13 dev./n

55

Chapter 6 | Numerical Experiments

Remarks

We can see that HL13 is the best heuristic regardless of jobs number. Best Cmax rate
exceeds 90%. The optimality of Cmax is almost always reached either for a small
number of jobs or bigger. It happens lightly less often for an average number of jobs
(around 50). Globally, the optimality is attained in more than 98% of instances for a
small and big value of n (n = 20 and n = 100), and around 95% for a medium value of
n (n = 50).

2. Heuristics performance by graph density

d=20 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 35.57 | 33.62 | 39.83 | 75.32 | 77.97 | 78.63 | 78.85 | 74.63 | 79.85 | 84.18
Opt.Cmax | 35.02 | 33.30 | 39.48 | 73.90 | 76.30 | 75.80 | 76.92 | 72.65 | 77.92 | 81.60 | 92.93
Mean Dev. | 2.78 3.15 2.48 0.70 0.73 0.58 0.63 0.62 0.58 0.50 0.12
Max Dev. 1450 | 15.63 | 13.63 | 9.07 7.62 7.15 6.90 7.97 6.87 6.65 3.30
d =50 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 83.08 | 80.23 | 85.42 | 95.07 | 98.32 | 94.28 | 98.48 | 94.38 | 97.67 | 98.40
Opt.Cmax | 82.90 | 80.05 | 85.25 | 94.87 | 97.92 | 94.08 | 98.10 | 94.18 | 97.33 | 98.03 | 99.57
Mean Dev. | 0.65 0.73 0.55 0.15 0.08 0.12 | 0.07 0.12 0.07 0.07 0.00
Max Dev. 8.25 8.63 8.35 6.02 4.78 6.23 3.67 4.73 3.58 4.43 0.65
d=80 HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 97.52 | 96.77 | 98.18 | 99.60 |100.00| 99.98 [100.00| 98.88 | 99.98 [100.00
Opt.Cmax | 97.52 | 96.77 | 98.18 | 99.60 [100.00| 99.98 [100.00| 98.88 | 99.98 |100.00|100.00
Mean Dev. | 0.05 0.07 0.03 0.00 | 0.00 0.00 | 0.00 | 0.00 0.00 0.00 0.00
Max Dev. 3.57 3.85 3.43 2.30 0.00 1.03 0.00 2.15 0.27 0.00 0.00
Table 6.7 — Heuristics perforamnce by graph density

Remarks

HL13 is again the best heuristic. All the heuristics give better solutions when the
graph is thicker. For HL13, Best Cmax, Opt Cmax , mean deviation and max deviation
are, respectively, 84%, 81%, 0.5% and 6 %. The global opt Cmax rate is about 92%
for a graph of 20% of density, it exceeds 99.5% for a graph moderately dense and hit
the 100% for 80% of density and beyond.

3. Heuristics performance by processing times range

p€E([1,10] | HL1 HL3 HL4 HL5S HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 75.46 | 72.93 | 78.97 | 88.19 | 91.11 | 90.02 | 90.90 | 87.87 | 91.32 | 92.92
Opt.Cmax | 75.01 | 72.63 | 78.67 | 87.51 | 90.30 | 88.73 | 89.74 | 86.81 | 90.20 | 91.78 | 96.63
Mean Dev. | 0.96 1.13 0.77 0.38 | 0.36 | 0.30 0.31 0.30 0.28 0.24 | 0.06
Max Dev. 8.41 8.89 7.90 6.53 498 | 484 | 3.89 | 4.74 | 424 | 4.54 1.62
p €[30,50]| HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 68.66 | 67.48 | 69.99 | 91.80 | 93.08 | 91.91 | 93.99 | 90.73 | 93.68 | 95.47
Opt.Cmax | 68.61 | 67.44 | 69.94 | 91.40 | 92.51 | 91.18 | 93.60 | 90.33 | 93.29 | 94.64 | 98.37
Mean Dev. | 1.37 1.50 1.28 0.19 0.19 0.17 0.16 0.19 0.16 0.13 0.02
Max Dev. 9.13 9.86 9.04 5.06 3.29 4.77 3.16 5.16 2.90 2.84 1.01
Table 6.8 — Heuristics Performance by processing times range

56

Chapter 6 Numerical Experiments

Remarks

HL13 is the best heuristic for both processing times intervals, and is better for big

values. The global optimality is met more often for big values of p;.

4. Bipartite overall heuristics performance

Bipartite HL1 HL3 HL4 HL5 HL7 HL9 | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 72.06 | 70.21 | 74.48 | 89.99 | 92.09 | 90.97 | 92.44 | 89.30 92.50 | 94.19
Opt.Cmax | 71.81 | 70.04 | 74.31 | 89.46 | 91.41 | 89.96 | 91.67 | 88.57 | 91.74 93.21 | 97.50
Mean Dev. 1.16 1.32 1.02 0.28 0.27 0.23 0.23 0.24 0.22 0.19 0.04
Max Dev. 8.77 9.37 8.47 5.79 4.13 4.81 3.52 4.95 3.57 3.69 1.32

Table 6.9 — Heuristics bipartite overall Performance

Remarks

As in the general agreement graph case, HL13 is also the best heuristic regarding of
all 4 criteria. The global Cmax is optimal at a rate of 97 %.

Asin the general graph, we can observe graphically the behavior of HL13 through the

4 criteria compared with the jobs number, machines number and graph density.

5. Overall heuristics performance

All HL1 HL3 HL4 HL5 HL7 HLS | HL10 | HL11 | HL12 | HL13 | Best
Best Cmax | 44.62 | 41.88 | 55.77 | 49.69 | 52.36 | 50.57 | 62.02 | 55.74 | 63.60 | 65.21
Opt.Cmax | 41.80 | 39.88 | 48.70 | 45.81 | 47.72 | 46.24 | 55.52 | 50.23 | 55.76 | 56.56 | 63.58
Mean Dev. | 23.25 | 23.52 | 22.99 | 22.78 | 22.69 | 22.64 | 22.45 | 22.12 | 22.01 | 21.84 | 20.52
Max Dev. 34.00 | 34.39 | 33.40 | 32.65 | 31.30 | 31.91 | 30.81 | 30.83 | 30.14 | 29.84 | 26.30

Table 6.10 — Heuristics overall per formance

Remarks

As a conclusion, HL13 is the best ever heuristic in average at 65% for best Cmax, 56%
for opt Cmax, 22% for mean deviation and 26% for maximum deviation. Globally, the
optimality is reached at 63%. The global mean and maximum deviation are
respectively 20% and 26%.

II. Metaheuristics and local search experiments

Local search methods and metaheuristics on which experiments have been performed
are: Pairwise Interchange (PI), Adjacent Pairwise Interchange (A4PI), Insertion
Method (IM), Simulated Annealing (SA) and Harmony Search (HS).
The parameters used for the configuration of the metaheuristics are:
e LB: Lower Bound (chap. 4 and 5)
e UB: Upper Bound, minimum value yielded by the heuristics (chap. 5)
o Avdev/LB : Average deviation of the heuristics compared with the lower bound
calculated as: 100x(H — LB)/LB
o Avdev/UB : Average deviation of the heuristics compared with the upper
bound calculated as: 100x(UB — H)/UB

57

Chapter 6 Numerical Experiments

o Av UB/LB: Average deviation of the upper bound compared with the lower
bound calculated as: 100x(UB — LB)/LB

e Inst: Instances number

e m,n: Respectively machines number and jobs number

e d: Graph density

o For the 4 first methods, we have set the maximum iterations number without
improvement as a stop criterion to 2000

e For the simulated annealing, the parameter beta is set to 2

e For the harmony search, the parameters are set as follows: harmony memory
size (HMS = 10), harmony memory considering rate (HMCR = 0.95), pitch
adjustment rate (PAR = 0.2), distance bandwidth (bw = 1) and the number of
improvisations (NI = 3000).

A. General agreement graph case
n = 20 (total of 50 instances x 8)
= 2 p; € [1,20] | AD UB/LB:1.90% p: €[30,50] | ADUB/LB:1.04%
d=30 Pl | ap1 | 1M | sa | Hs Pl | ap1 | M | sAa | HS
Avdev/LB | 0.024 0.024 0.024 0.024 0.024 | 0.099 0.099 0.099 0.104 0.099
Avdev/UB | 1.390 1.294 1.388 1.266 1.390 | 0.617 0.593 0.626 0.533 0.616
=3 p; € [1,20] | ADUB/LB:0.17% p: €[30,50] | ADUB/LB:0.31%
d=50 Pl | ap1 | M | sa | Hs Pl | Aap1 | M | sA | HS
Avdev/LB | 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000
Avdev/UB | 0.165 0.165 0.165 0.165 0.165 | 0.303 0.303 0.303 0.303 0.303
m=3 p; € [1,20] | AD UB/LB:8.02% p; €[30,50] | AD UB/LB:14.72%
d=30 Pl | ap1 | M | sa | Hs | p1 | ap1 | IMm | sa | Hs
Av dev/LB 0.00 000 000 000 000 042 042 035 042 042
Avdev/UB | 221 212 230 1.87 211| 410 359 375 3.63 4.05
m=3 p; € [1,20] | AD UB/LB:7.05% p; €[30,50] | AD UB/LB:531%
d=50 Pl | ap1 | 1M | sAa | Hs Pl | a1 | M | sa | Hs
Avdev/LB | 0.006 0.006 0.006 0.009 0.003| 0.066 0.073 0.051 0.044 0.044
Avdev/UB | 4412 3.853 4.171 4275 4570 | 3.544 3.053 3.225 3.021 3.463
Table 6.11 — General graph,n = 20
Remarks
e om=2,
o d=30%,

For 12, LB is very close to UB (av.dev.UB/LB = 1.04%) and all methods give the
same value except SA, but for I1, UB is less close to LB and all metaheuristics are
the same.

e d=50%,

All methods reach the optimality either for /1 or for /2.

m =3,

e d=30%,

For I2, the deviation of UB is 8% and IM is the best, but for /1, the deviation of UB
1s 14% and all metaheuristics are optimal.

58

Chapter 6 Numerical Experiments

e d=>50%,
HS 1s the best for I1 (0.003% of deviation) and both SA and HS are the best for 12
(0.044% of deviation).

n =100 (total of 30 instances x 10)

m=2 p; € [1,20] | ADUB/LB: 0% p; €[30,50] | AD UB/LB:0.08%
d =30 Pl | ap1 | 1M | sa | Hs Pl | ap1 | M | sa | Hs

Avdev/LB | 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000
Avdev/UB | 0.000 0.000 0.000 0.000 0.000 | 0.080 0.080 0.080 0.080 0.080

S p; € [1,20] | AD UB/LB:10.27% p €[30,50] | ADUB/LB:8.03%
d =30 PI_| apl | M | sa [Hs | p1 [ap1 [1M | sa | Hs

Avdev/LB | 0.174 0.235 0.220 0.240 0.275| 0.217 0.148 0.195 0.228 0.235
Avdev/UB | 4.027 3.772 3.552 3.097 1.172 | 3.246 2.987 3.068 2.436 1.248

E— p; € [1,20] | ADUB/LB:0.14% p; €[30,50] | ADUB/LB:0.46%
d =50 Pl | a1 | mm | sa [ws | pt [apt [1M | sa | Hs

Avdev/LB | 0.000 0.000 0.000 0.014 0.015| 0.000 0.004 0.000 0.011 0.001
Avdev/UB | 0.141 0.141 0.128 0.085 0.056 | 0.453 0.446 0.457 0.367 0.367

m=5 pi€[1,20] | ADUB/LB:4680% | p;€[30,50] | AD UB/LB:4321%
d=30 . | p1 | ap1 | M | sa | Hs | pt | ap1 | M | sa | Hs

Avdev/LB | 2.143 2313 2.034 2206 2.235| 1.322 1335 1.228 1.390 1.363
Avdev/UB | 4.918 4.799 4585 3.912 2.883 | 4748 5.106 4.579 4.877 3.591

m=5 pi€[1,20] | ADUB/LB:9.62% p €[3050] | AD UB/LB:8.20%
d =50 Pl | A1 | M | sa | Hs | pr [ap1 | M | sa | Hs

Avdev/LB | 0.376 0.265 0.290 0.384 0.431| 0.253 0.206 0.196 0.210 0.402

Avdev/UB | 3.708 3.378 3.653 2.834 1.157 | 3.731 3.718 3.455 2.946 1.912

Table 6.12 — General graph, n=100

Remarks

R
0'0

m=2,

e d=30%,

For 12, LB is very close to UB (av.dev.UB/LB = 0.08%) and all methods give the
optimal value. For I1, UB is optimal for all instances.

m=3,

e d=30%,

For 12, PI is the best metaheuristic, but for /1, API is the best

e d= 50%,

HS is the best for 11 (0.003% of deviation) and both SA and HS are the best for /2
(0.044 of deviation).

m =25,

o d=30%,

IM is the best metaheuristic (2.034% for 11 and 1.228% for 12), and the average
deviation of UB is 46% for I1 and 43% for 12.

e d=50%,

API is the best metaheuristic for I1 (2.265%) and IM for 12 (0.196%).

The average deviation of UB is 9.62 % for I1 and 8.2 % for 12.

59

Chapter 6

Numerical Experiments

n = 500 (total of 10 instances x 4)

mes d =30 | 4D UB/LB:9.81% d =50 | AD UB/LB:0.28%
pi€(1,20] | p1 | AP1 | IM | sa | Hs Pl | Aap1 | M | sa | HS
Avdev/LB | 0.899 0.907 0.934 0.897 0998 | 0.011 0.021 0.021 0.032 0.059
Avr dev/UB 1.743 1.790 1.773 1.456 0.025 0.179 0.161 0.161 0.028 0.000
m=10 d=30 | ADUB/LB:112.9% d =50 | AD UB/LB:41.59%
pi€[1,200 | pr | a1 | IM | sa | Hs Pl | A1 | M | sa | HS
Avdev/LB | 12.238 11.844 12.199 12.050 12462 | 4.314 4.240 4.211 4277 4.545
Avdev/UB | 2438 2349 1.729 1.826 0.062 | 1.750 2.089 1.555 1.662 0.277
Table 6.13 — General graph,n = 500
Remarks
% m=25,
e d=30%,
Best metaheuristic: SA (0.897%), Av dev UB/LB:9.81%
e d=50%,
Best metaheuristic: PI (0.011%), Av dev UB/LB: 0.28%
s m=10,
e d=30%,

Best metaheuristic: API (11.844%), Av dev UB/LB: 112%

o d=50%,

Best metaheuristic: IM (4.211%), Av dev UB/LB: 41%

B. Bipartite agreement graph case (m = 2)

n = 50 (30 instances x2)

e p; € [1,20]] | AD UB/LB:0.28% p; €30,50]11 | ADUB/LB:0.54%
P | ap1 | v [sa [Hs | pr | api | M | sa | Hs

Avdev/LB% | 0.00 000 000 000 000| 000 000 000 0.00 0.00

Avdev/UB%| 028 028 028 020 028| 052 051 050 042 0.50

Table 6.14 — Bipartite graph,n = 50

n =100 (30 instances x2)

- pi €[1,20]] | ADUB/LB:1.06% p €[30,50]1 | AD UB/LB:0.26%

Pl | a1 | M [sa | Hs | p1 | ap1 | M | sA | Hs
Avdev/LB% | 0.0 000 000 0.0l 000| 000 002 000 000 0.2
Avdev/UB%| 097 081 089 057 038| 026 021 025 014 0.05

Table 6.15 — Bipartite graph,n = 100

Remarks

In the bipartite agreement graph case, beyond 10% of graph density, the lower bound

is closely approached by the heuristics, even mostly reached. In case where the upper

bound don’t hit the lower one, all the metaheuristics reach rapidly the optimum. The

tables above show, for 10% of graph density, the average deviation of the

metaheuristics. It seems to be useless to consider the cases of a graph density which

are greater than 10% because there would be zeros everywhere in the results tables.

The same thing happens when the jobs number is less than 50 or greater than 100.

60

Chapter 6 Numerical Experiments

III. Exact method experiments, Cplex implementation

A. General agreement graph case

1. Performance depending on LB and UB

For the exact resolution of the SWA problem, we have adopted the Cplex 12.6
software. Pretests have shown that the resolution of a classic formulation cannot be
obtained in a reasonable time when the jobs number exceeds 16. So we introduce, in
the formulation, two new constraints involving the lower and the upper bound as
defined in chapter 4.

Beside the formulation F1 of chapter 4, we define 2 other formulations as follows.

F1 F1

Fla = { and F1b = {Cngx = LB
>
Cmax == LB C—;nax S UB

Where LB is the lower bound (chapter 4), and UB is the upper bound obtained by the
best of the 10 heuristics (Chapter 5).

We have generated 10 instances for a configuration of 2 machines, p; € [1,20] and a
general agreement graph of 50% of density. 3 formulations are used: F1, Fla and F1b.

The mean running times obtained are shown in the tables and graphs below.

Jobs number n ’ 10 ’ 11 | 12 ' 13 | 14
Mean time (sec.) ‘ 4.23’ 10.52’ 129.44‘ 297.27’ 1147.00

Table 6.16 — Formulation F1

Jobsnumbern | 12 | 16 | 20 | 24 | 28 | 32 | 386 | 40

g;:;mme 15.32\ 3.24 ‘ 6.88 ‘ 64.97 ‘36.35‘110.77)329.861990.49

Table 6.17 — Formulation Fla

Jobsnumbern| 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 47 |
Mean time ’ } ‘ ’ ‘ ’ ‘ ’
(sec.) 3.19 | 3.52 | 3.89 | 5.31 | 6.61 | 7.80 |20.76|60.28

279.3 1'574.59‘

Table 6.18 — Formulation F1b

61

Chapter 6 Numerical Experiments

1200

1600 /

600 /

400 /

10 11 12 13 14

Jobs number

Time (sec.)

Graph 6.5 - formulation F1

o0 1000

900

3
/
/
$%0 H /
805
JX f

400 !

= o /
=i 2 50
E EL /
- 400 f
w 300 /}
200 /
100 : i /
10 o
o
0 DT PO S
12 16 pls) 24 78 kY] £l a0 A4 47 12 18 20 24 28 6 40
jobs number Axis Title
Graph 6.6 - formulation F1b Graph 6.7 - formulation Fla

Remarks

We can see that, for this configuration, the problem resolution in a reasonable time
is possible for a maximum of 14 jobs, but by inserting the constraint involving the
lower bound, the maximum number of jobs for which the system is solvable is 3 times
ereater, reaching 40. And this number is extended to 47 if, in addition, we insert the
constraint corresponding to the upper bound.

2. Performance depending on the graph density

To perform experiments depending of graph density, we use the following
configuration: m = 2,p; € [1,50] and d € {10%, 30%, 50%, 70%, 90%}. We produce
randomly 5 instances in each case corresponding to each density value. We obtain the
results shown in the table and graphs below.

62

Chapter 6 Numerical Experiments

Remarks

The maximum number of jobs for the original formulation F1 attains the maximum

of 17 jobs at around 30% of graph density. It decreases when the graph becomes more
or less dense.

b. Using formulation Fla

d=10% d=30%

Jobs number n ‘ 10 | 15 | 17 Jobs number n | 10| 15 ‘ 20
Mean time (sec.) | 3.06 | 49.75 | 168.67 Mean time (sec.) |2.42] 7.36 | 27.91
Table 6.20a- d = 10% Table 6.20b - d = 30%

d=50%
Jobs numbern | 10 | 15 | 20 | 25 | 28 | 29

Mean time (sec.) | 5.77 | 7.81 | 10.33 | 21.79 | 31.40 | 72.79
Table 6.20c - d = 50%
d=170%

Jobsnumbern | 10 | 15 | 18 | 2 | 25 | 30 | 35 | 38
Mean time (sec.) | 18.28 | 3.63 | 5.82 | 7.08 | 24.15 | 147.01 | 54.87 | 769.11

Table 6.20d - d = 70%

d=90%
Jobsnumbern | 10 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 44
Mean time (sec.) | 3.22 | 3.47 | 5.90 | 5.14 | 12.39 | 29.46 | 27.16 | 57.65 |85.76

Table 6.20e - d = 90%

280

_, 70%
V"/,‘
d "‘_,.-"”' .
10%
ae g
35 S]
I /} 150 [l
- g /
E 3 /./ 3 /
: 4 E 100 2
2 / - 90%
c '
20 g 50 - '
w#’/& s 0’/ /
15
10 30 50 70 90
K gty {obs number
Graph 6.10 — Max jobs/graph density Graph 6.11 - Run. time./n (all d) - Fla

64

Chapter 6

Numerical Experiments

B. Bipartite agreement graph case

Comparison between F1 and F2 depending on graph density

We consider the SWA problem where p; € [1,50] and the agreement graph is of

bipartite type (thus m = 2). The aim is to find the maximum jobs number for which

the system is solvable in a reasonable time, and compare the results for the two

formulations F1 (used for a general graphs) and F2 (used for bipartite graphs), so we

generate 5 instances and consider the average for each of 5 graph density values. We

obtain these results.

d=10% n=10 n=11 =12
Formulation F1 F2 F1 F2 F1 F2
Mean time (sec.) 8.28 10.58 196.69 186.73 777.50 791.10
Table 6.21a—d = 10%
d=30% n=10 n=11 n=12 n=13 n =14
Formulation F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
Mean time 2.35 | 2.28 9.14 7.72 5.14 6.36 173 169 121 157
Table 6.21b —d = 30%
d=50% n=10 |n=11 n=12 n=13 n =14 n=15 n=16
Formulation | F1 | F2 | F1 |F2| F1 F2 | F1 F2 F1 | F2 F1 F2 F1 F2
Mean time [3.03(3.16(2.64[2.61| 14.74 [8.59|30.44| 18.60 | 585 | 559 373 187 | 6806 | 1379
Table 6.21c —d = 50%
d=70% n =10 n=11 n=12 n=13 n=14 n =15
Formulation | F1 F2 | F1 F2 F1 F2 F1 F2 F1 F2 F1 | F2
Mean time 2.2012.16|7.62| 6.37 |8.17|11.13| 58 51 86 74 223 |266
Table 6.21d —d = 70%
d=90% n =10 n=11 n=12 n=13 n =14
Formulation F1 F2 F1 F2 F1 F2 F1 F2 F1 F2
Mean time 3.14 253 | 551 5.95 3.77 3.05 61 90 771 | 472
Table 6.21e — d = 90%
Remarks

1. The maximum jobs number for which the system is solvable in a reasonable

time is the same for the two formulations, and is at the maximum for a graph

of medium density. This number decreases when the graph becomes more or
less thick.

The formulation F2 is much more efficient than F1 for a graph of medium

density, and particularly for big values of jobs number. All this remarks are

illustrated in the graphs below.

65

Time (sec.)

Time (sec.)

300

250

200

150

100

i

iy

180 2
160 ‘.-‘--“'“"'-\u
140
- 10
Fl
2
(1]
Em
60
40
Py
) e
10 11 12 13 14
Jobs number Jobs number
Graph 6.12a — d=10% Graph 6.12b — d=30%
1000 -
F1
300 .
800
700
‘é}j 600 .
o M,
< 500 S
£ \
= 400
300
200
100
0
10 1t 12 13 14 15 16
Jobs number
Graph 6.12c — d=50%
200
F1
70
500
L S 7
g
40
Q
£ aw
200
100
5 i
10 11 12 13 14 15 10 11 12 13 14
Jobs number Jobs number

Graph 6.12d — d=70%

Graph 6.12e — d=90%

66

CONCLUSION

In this thesis, we have approached the scheduling with agreements problem,
where a graph, called agreement graph, models the agreement between jobs. We have
considered different types of agreement graph: general graphs, bipartite graphs,
trees and chains. This problem is NP-hard for the general agreement graph case.
However, it can be solved in a reasonable time for special classes of graphs. Indeed,
we have devised an algorithm solving in a polynomial time the problem in the case of
chain-type agreement graph. This algorithm is built on the maximum weight stable
set to determine a lower bound for the problem. An efficient algorithm to solve the

latter in a polynomial time is given for the bipartite agreement graph case.

A mathematical formulation has been proposed in both general and bipartite

graphs with and without insertion of constraints involving lower and upper bounds.

To approach the optimality and obtain an upper bound for the problem, 14
heuristics, based on lists, have been introduced whose one seems to stand out from
the rest. And, to be closer to the optimal solution, we have proposed 5 metaheuristics
and local search methods taking their initial solutions from the best heuristics.

All these methods have been widely experimented using uniformly-generated

instances. Empirical results are analyzed, compared and graphically represented.

67

10.

11.

12.

13.

14.

15.

16.

REFERENCES

Baker B.S., E.G. Coffman. Mutual Exclusion Scheduling. Theoretical
Computer Science 1996; 162: 225-243.

Bendraouche M. Ordonnancement sur Machines Identiques avec Graphe de
Concordance. Thése de Doctorat. USTHB. Décembre 2011. 02/2011 - D/MT.
Bendraouche M., M. Boudhar. Scheduling jobs on identical machines with
agreement graph. Computers and Operations Research 2012; 39 382—390.
Bendraouche Mohamed & Mourad Boudhar (2015): Scheduling with
agreements: new results, International Journal of Production Research,
DOI:10.1080/00207543.2015.1073860.

Bendraouche Mohamed, Mourad Boudhar, Ammar Oulamara. Scheduling:
Agreement graph vs resource constraints. European Journal of Operational
Research 240 (2015) 355-360.

Blazewicz J. Complexity of computer scheduling algorithms under resource
constraints. Proc. I Meeting AFCET-SMF on Applied Mathematics, Palais
eau (France) 1978; 169-178.

Blazewicz J., J.K Lenstra, A.H.G Rinnooy Kan. Scheduling subject to
resource constraints, classification and complexity. Discrete Applied
Mathematics 1983; 5 No 1:11-24. 92

Blazewicz Jacek. Moshe Dror. Jan Weglarz. Mathematical programming
formulations for machine scheduling: A survey. European Journal of
Operational Research 51 (1991) 283-300 North-Holland.

Bodlaender H.L., K. Jansen, and G.J.Woeginger. Scheduling with
incompatible jobs. Discrete Applied Mathematics 1994, 55: 219-232.
Brenda S. Baker, Edward G. Coffman, Jr. Mutual exclusion scheduling.
Theoretical Computer Science 162 (1996) 225-243

Brucker Peter. Sigrid Knust. Complex Scheduling. Cataloging-in-
Publication Data Library of Congress Control Number: 2005938499.

Chen Bo Chris N. Potts. Gerhard J. Woeginger. A Review of Machine
Scheduling: Complexity, Algorithms and Approximability. Handbook of
Combinatorial Optimization D.-Z. Du and P.M. Pardalos (Eds.) pp. 21-169
¢ 1998 Kluwer Academic Publishers.

Chen Jing, Liu Guang-Liang, LU Ran. Discrete Harmony Search Algorithm
for Identical Parallel Machine Scheduling Problem. Proceedings of the 30th
Chinese Control Conference July 22-24, 2011, Yantai, China.

Even G., M.M. Halldorson, L. Kaplan, D. Ron. Scheduling with conflicts:
online and offline algorithms. Journal of scheduling 2009; 12: 199-224.
Faigle Ulrich, Gereon Frahling. A combinatorial algorithm for weighted
stable sets in bipartite graphs. Discrete Applied Mathematics 154 (2006)
1380 — 1391.

Fatemi S. M. T. Ghomi & F. Jolai Ghazvini (1998). A pairwise interchange
algorithm for parallel machine scheduling, Production Planning & Control:
The Management of Operations, 9:7, 685-689, DOI:
10.1080/095372898233687

68

17.

18.

15

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Gardi F. Mutual exclusion scheduling with interval graphs or related
classes Part I. Discrete Applied Math 2009; 157: 19-35.

Garey M.R. and R.L. Graham. Bounds for multiprocessor scheduling with
resource constraints. STAM Journal on Computing 1975; 4: 187-200.
Garey M.R., D.S. Johnson. Complexity results for multiprocessing
scheduling under resource constraints. STAM J. on Computing 1975; 4: 397-
411.

Golumbic M.C. Algorithmic Graph Theory and Perfect Graphs. Computer
Science and Applied Mathematics Series, Academic Press, New York, NY
1980.

Graham R.E., E.L. Lawler, J K. Lenstra, A.H.G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling : a survey,
Ann. Discrete Math. 1979; 4, 287-326.

Graham R.L. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal 1966; 45:1563-1581.

Gupta J. N. D. & A. J. Ruiz-Torres (2001) A LISTFIT heuristic for
minimizing makespan on identical parallel machines, Production Planning
& Control: The Management of Operations, 12:1, 28-36, DOI:
10.1080/09537280150203951.

Hansen P., A. Hertz, J. Kuplinski. Bounded vertex colorings of graphs.
Discrete Math 1993; 111: 305-312.

IRANI S. and V. LEUNG. Scheduling with Conflicts on Bipartite and
Interval Graphs. Journal of Scheduling 6: 287-307, 2003.

Jiang Hua, Liping Zheng, Yun Bao, and Yanxiu Liu. Independent Task
Scheduling by Hybrid Algorithm of Harmony Search and Variable
Neighborhood Search. College of Computer Science, Liaocheng University,
Shandong Liaocheng, P. R. China 25205 China.

Kirkpatrick S., C. D. Gelatt, Jr., M. P. Vecchi. Optimization by Simulated
Annealing. Science. 13 May 1983, Volume 220, Number 4598

Lee Wen-Chiung. Chin-Chia Wu. Peter Chen. A simulated annealing
approach to makespan minimization on identical parallel machines. Int J
Adv Manuf Technol (2006) 31: 328-334.

Lenstra J.K., A.H.G. Rinnooy Kan and P. Brucker. Complexity of machine
scheduling problems. Studies in integer programming (Proc. Workshop,
Bonn, 1975). Ann. Of Discrete Math 1977; 1, 343-362, North Holland,
Amsterdam.

Sakai S., M. Togasaki, K. Yamazaki. A note on greedy algorithms for
maximum weighted independent set problem. Discrete Applied
Mathematics 2003; 126: 313- 322.

Sakarovitch M. Optimisation combinatoire: Théorie des graphes. Hermann,
Paris, 1984. 95

Sevkli Mehmet, Hatice Uysae. A Modified Variable Neighborhood Search
for Minimizing the Makespan on Identical Parallel Machines.

Wang Xiaolei. Xiao-Zhi Gao. Kai Zenger. An Introduction to Harmony
Search Optimization Method. Springer Briefs in Applied Sciences and
Technology. Computational Intel. T

\
\

1/ 9 \?\\
69 \< \”?/

