République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE SAAD DAHLAB BLIDA 1

DEPARTEMENT DES ENERGIES RENOUVELABLES

MEMOIRE

Présenté pour l'obtention du diplôme de Master En : énergie renouvelable

Spécialité : Conversion Thermique

Par : HAMOUNI KHALED

Sujet

Etude d'une Installation solaire de production d'hydrogène par Électrolyse de la vapeur d'eau

Soutenu publiquement, 2017, devant le jury composé de :

M. H. ABDI Maitre-Assistant « MAA» à l'USDB Directeur

Directeur de mémoire

Remerciements

En premier lieu, nous remercions Dieu qui nous a procuré .ce succès

Promoteur "M. H. ABDI " pour ses conseils Précieux et pour toutes les commodités et aisances qui Nous a apportés durant l'étude et la réalisation de ce .document

Nos remerciements les plus vifs s'adressent aux messieurs Le président et les membres de jury d'avoir accepté .d'examiner et d'évaluer notre travail

Sans omettre bien sûr de remercier profondément tous Ceux qui ont contribué de près ou de loin à réalisation du

.présent travail

Et enfin,

L'expression de nos remerciement les Plus profonds Tous les gens qui mon donnée un Soutien et m'encouragement.

Dédicaces

Je dédie ce modeste travail à Mes très chers parents, pour leur sacrifice Mes très chères sœurs Mes très chers frères Toute ma famille Jous mes amis

Résumé

L'hydrogène est un combustible et un porteur potentiel d'énergie du futur, ce dernier peut être produit par l'utilisation des énergies renouvelables, particulièrement l'énergie solaire. Il est considère comme une solution pour la demande croissante en énergie.

L'Algérie bénéficie d'une situation géographique très favorable pour l'utilisation d'énergie solaire, elle dispose d'une durée d'ensoleillement et d'une quantité d'énergie incidente très importante, de ce fait, l'Algérie occupe une place de choix pour la production d'hydrogène solaire.

L'objectif de notre travail est d'étudier et dimensionner une installation de production d'hydrogène solaire. Pour ce faire, nous avons fixé les paramètres de fonctionnement de l'installation tel que le débit massique, la pression et la température d'électrolyseur afin de déterminer le besoin en hydrogéné.

Un modèle mathématique a été établi afin de dimensionner les éléments principaux de l'installation en introduisant les caractéristiques techniques nécessaires ainsi que les paramètres météorologiques du site. Ensuite, nous avons effectué une étude comparative de la production d'hydrogène pour les différents sites à savoir: Alger, Annaba, Djelfa et Tamanrasset. Les résultats obtenus montrent l'influence de quelques paramètres tels que l'éclairement solaire sur la production d'hydrogène et que la meilleure production d'hydrogène est obtenue par le site de Tamanrasset.

Abstract

Hydrogen is a fuel and is a potential energy of the future that is produced by the use of renewable energy, particularly solar energy. This last is considered as a solution for the rowing demand for energy

Algeria benefits from a geographical location wich is very favorable for the use of solar energy, it has a duration of sunning and a quality of very important incidental energy, thus Algeria occupies a choce place for the solar hydrogen production. This production will offer not only clean energy but more especially will make it possible to increase and diversify its energy resources.

The objective of our work is to study and dimension a solar hydrogen production. In order to do this, we fixed the paraméters of operation of the installation such as mass flow, pressure and the temperature of electrolyser in order to determine the requirement into hydrogenated.

A mathematical model was established in order to dimension the principal elements of the installation by introducing the necessary technical characteristics as well as the meteorological parameters of the site. then, we carried out a comparative study of the hydrogen production for the various sites namely: Algiers, Annaba, Djelfa and Tamanrasset. The results obtained in this work shows the influence of some parameters such as solar irradiance on the production of hydrogen and that the best production of hydrogen is obtained in the site of Tamanrasset.

مختصر

الهيدر وجين هو وقود وناقل لقوة الطاقة في المستقبل والتي تنتج عن طريق استخدام الطاقة المتجددة، خاصبة الطاقة الشمسية. ويعتبر هذا الأخير كحل للمطالب المتزايدة من الطاقة

للجزائر موقع ملائم لاستخدام الطاقة الشمسية، ولها مدة الاشعاع الشمسي وكمية الطاقة الساطعة مهمة جدا، لذلك، تحتل الجزائر المكان المفضل لإنتاج الهيدروجين الشمسي. و هذا الإنتاج ليس فقط توفير الطاقة النظيفة ولكن أيضا تسمح بزيادة وتتويع مصادر الطاقة لديها

والهدف من هذه الدراسة هو تصميم هيكل لإنتاج الهيدروجين الشمسي. للقيام بذلك، وضعنا معايير التشغيل الهيكل مثل التدفق الكتلي والضغط ودرجة الحرارة التحليل الكهربائي لتحديد مدى الحاجة للهيدروجين

تم إنشاء نموذج رياضي لتصميم العناصر الرئيسية للنظام عن طريق إدخال الخصائص التقنية اللازمة وعوامل الأرصاد الجوية للموقع بعد ذلك، أجرينا در اسة مقارنة لإنتاج الهيدروجين لمواقع مختلفة منها: الجزائر، عنابة، الجلفة وتمنر است وأظهرت النتائج التي تم الحصول عليها في هذه الدر اسة تأثير بعض العوامل مثل الإضاءة الشمسية لإنتاج .الهيدروجين وتم الحصول على أفضل إنتاج الهيدروجين من قبل الموقع تمنر است

SOMMAIRE

Chapitre I:	<u>Généralité</u>
I.1. Introduction	1
I.2. Énergie	1
I.2.1. Consommation énergétique selon le type d'énergie utilisé	1
I.2.2. Production annuelle énergétique mondiale	2
I.2.6. Impact des activités énergétiques	2
I.2.7. Evolution des rejets de CO ₂ dans l'atmosphère	2
I.3. Energie renouvelable	3
I.4. Hydrogène	3
I.4.1. Propriété physique	3
I.4.2. Production d'hydrogène	5
I.4.3. Production d'hydrogène à partir d'énergies renouvelables	5
I.4.3.1. Energie éolienne	6
I.4.3.2. Biomasse	6
I.4.3.3. Energie solaire	6
I.4.3.3.1. Energie Solaire Photovoltaïque	7
I.4.3.3.2. Energie Solaire Thermique	7
I.4.4. Modes de stockage hydrogène	8

Chapitre II: Modélisation et Procédure de Simulation

II.1. Description de l'installation	9
II.1.1. Principe de fonctionnement de l'installation	10
II.2. Dimensionnement de la centrale	10
II.2.1. Objectif	10
II.2.2. Présentation du système de production d'hydrogène proposé	10
II.2.3. Simulation de l'électrolyse de la vapeur d'eau	11
II.2.3.1. Principe	12
II.2.3.2. Energie minimale d'électrolyse	14
II.2.3.3. Caractéristique	14
II.2.3.4. Simulation de la production d'hydrogène	16
II.2.4. Simulation de l'unité de production de la vapeur	17
II.2.4.1. Le circuit d'eau	18

SOMMAIRE

II.2.4.2. Le circuit du fluide caloporteur	19
II.2.4.3. Concentrateurs solaires : procédure de modélisation	20
II.2.5. Simulation de la production d'électricité par les cellules photovoltaïques	21
II.2.5.1. Le dimensionnement de l'unité de production d'électricité réside en la	
détermination	22
II.2.5.1.1. Estimation du nombre des modules photovoltaïque	23
II.2.5.1.2. Estimation du nombre des modules photovoltaïque en série	23
II.2.5.1.3. Estimation du nombre des modules photovoltaïque en parallèle	24

Chapitre III:	Résultat et Discussion

III.1. Méthodologie de résolution	25
III.2. Calculs thermodynamiques aux différents points de l'installation	25
III.2.1.Calcul des puissances de l'installation	25
III.2.1.1.La puissance de la chaudière solaire Q ₁₂	25
III.2.2.1. Détermination les déférentes puissances en « kW »	28
III.3. Calculer la surface des concentrateurs cylindro parabolique	28
III.3.1. Détermination des surfaces A12, A45	29
III.3.1.1. Chaudière solaire	29
III.3.1.2. Réchauffeur solaire	29
III.4. Détermination la production d'électricité	29
III.4.1. Détermination des caractéristiques des cellules d'électrolyse	30
III.5. Dimensionnement des cellules photovoltaïques	30
III.6. Estimation du taux de production d'hydrogène	31
III.6.1. Irradiation solaire moyenne mensuelle sur plan horizontal	31
III.6.2 Puissance thermique moyenne mensuelle produite par les concentrateu	rs cylindro
paraboliques	32
III.6.3. Rayonnement global moyenne	33
III.6.4. Puissance électrique moyenne mensuelle fournie par les cellules Phot	ovoltaïques
« KW/mois »	35
III.6.5. Débit moyenne mensuelle d'hydrogène	36
III.6.6. Débit moyenne d'hydrogène	38

III.7. Estimation des émissions de CO2 pour une consommation électrique donnée, assuréepar différentes sources d'énergie40

NOMENCLATURE

 S_a : La surface d'absorbeur, m²; **k** : Constante de Boltzmann = $1.38 \ 10^{-23}$ **T** : Température, K ; J/K: e: La charge d'un électron = 1.062 10⁻¹⁹ **C** : Concentration géométrique ; **U** : Tension, V ; As: **E** : Charge d'un électron, C ; T : Température absolue de la cellule U_R : Tension minimum réversible photovoltaïque °K; d'électrolyse, V; A_c : La surface de concentrateurs, m²; Uthermo-neutre : Tension imposée à la cellule, Au: la surface unitaire de concentrateurs, V ; m^2 ; **F** : Constante de Far;aday, C/mole ; U_E : Tension appliquée aux bornes des V : Tension délivrée des cellules PV, V ; électrodes V ; $\Delta G_{T,p}$: l'enthalpie libre de réaction, J/mol; I : L'intensité du courant traversant les $\Delta H_{T,p}$: enthalpies de réaction, J/mol; électrodes A : $\Delta S_{T,p}$: l'entropie de réaction, J/mol; A_E : Surface des électrodes [cm²]; $\Delta H^{0}r$: enthalpies standards, J/mol; Z : nombre d'électrons mis en jeu ; ΔG^0 r: l'enthalpie libre standard, J/mol; **Ig** : rayonnement global, W/m²; $\Delta S^{0}r$: l'entropie standard, J/mol; **Z** : Nombre d'électrons mis en jeu ; T°: Température standard, 298 K ; Io : Intensité du courant d'obscurité ; **h** : Enthalpie, kJ/Kg ; Iph : Photo courant, A ; W : puissance nécessaire pour l'électrolyse, **J** : Densité de courant, A/m^2 ; W ; η_0 : Rendement optique du capteur % ; I : courant délivré par la cellule, A ; η_f : Rendement faradique, %; W₅₆: Travail de compression, KW ; **P** : Puissance délivrée par la cellule W ; **I**_b : rayonnement direct, W/m^2 ; **Qu** : Energie utile d'un convertisseur, KW ; **X** : Titre, % ; Q12 : Puissance de la chaudière sol, KW ; **m**: Débit massique, kg/s; Q45 : Puissance du réchauffeur sol, KW ; **R** : Constante des gaz parfait kJ/kmole °K ; **M** : Masse moléculaire, kg/kmole ; **J** : Densité de courant, A/cm² ; **S** : Entropie, $kJ/^{\circ}C$; W₂₃: Le travail fourni par la turbine, KW ; \mathbf{t} : Temps, s; m : Facteur d'idéalité de la diode ; I_{ph} : Photo courant.

INTRODUCTION GÉNÉRALE

Un très grand pourcentage de l'énergie nécessaire provient des ressources fossiles « hydrocarbures, charbon... ». L'utilisation de ces sources d'énergie engendre en outre des effets secondaires indésirables. Il devient aujourd'hui indispensable de réduire les émissions de gaz à effet de serre notamment de CO_2 pour limiter les changements climatiques. La recherche de sources alternatives d'énergie renouvelables est donc un secteur en plein progression. Non seulement ces sources doivent être renouvelables, mais il faut aussi que celles-ci soient non nuisibles pour l'environnement.

Dans ce contexte, l'hydrogène se confirme d'être un candidat très sérieux, même s'il ne constitue qu'un vecteur énergétique et non une ressource primaire. De plus, l'hydrogène peut apporter une réponse aux enjeux climatiques en permettant de rationaliser l'utilisation des énergies renouvelables par nature dispersées et aléatoires. L'hydrogène, qui n'existe pas à l'état naturel, peut en effet être synthétisé à partir des énergies renouvelables.

Les énergies renouvelables regroupent un certain nombre de filières technologiques selon la source d'énergie valorisée et l'énergie utile obtenue. La filière étudiée dans ce projet est l'énergie solaire thermique et photovoltaïque. Il s'agit alors de la transformation directe d'une partie du rayonnement solaire en énergie thermique et électrique.

Le but poursuivi dans le cadre de ce travail est d'évaluer la possibilité d'étudier l'une des solutions de production d'hydrogène par voie solaire sans émissions des gaz à effet de serre. En effet, cette énergie est soumise aux conditions météorologiques. Elle présente donc une fluctuation de production qui peut être importante en fonction du site d'installation, ce qui pose des problèmes sur les réseaux locaux qu'elle participe à alimenter.

Notre travail est subdivise en trois chapitres :

- 1. Le premier chapitre est consacré aux généralités, qui constitue dans un premier temps la situation énergétique mondiale et les émissions des gaz à effet de serre, en suit les différentes sources d'énergie renouvelable et en fin ce chapitre comporte la production d'hydrogène pour différentes sources d'énergie ;
- 2. Dans le deuxième chapitre nous avons donné une description de notre installation a fin de modéliser le système de production d'hydrogène ;
- 3. Le troisième chapitre est consacré à l'interprétation des résultats obtenus.

L'ÉTAT D'ART

Dans cette période de crise où les préoccupations environnementales prennent un intervalle considérable, et les ressources fossiles tendent à être insuffisantes, l'hydrogène est présenté comme la technologie apportant la solution la plus adéquate. Il peut rendre le vaste gisement solaire en Algérie beaucoup plus accessible. L'abondance de la matière première pour la production, la propreté et le recyclage naturel sont les propriétés qui feront que l'hydrogène sera amené à jouer un rôle de premier rang dans le futur.

L'Electrolyse de la vapeur d'eau à Haute Température (EHT) semble encourageant pour une production massive d'hydrogène plus respectueuse de l'environnement. Jusqu'à aujourd'hui, beaucoup de chercheur ont réalisé des études sur ce domaine. Les études effectuées ont concerné principalement la possibilité des procédés de couplage des sources d'énergie thermique renouvelable à Haute Température.

Parmi les études qui ont été faites sur le domaine de production d'hydrogène par voie solaire en utilisant l'électrolyse de la vapeur d'eau à très hautes températures, on cite :

Houcheng Zhang et all, ont présenté dans leur étude un nouveau système d'électrolyse de la vapeur d'eau à haute température pour la production d'hydrogéné par énergie solaire. Le système se compose d'un dispositif de concentration solaire de double faisceau, un SOSE «solid oxide steam electrolysis», deux échangeurs de chaleur et deux compresseurs. Ce dispositif permettre de convertir l'énergie solaire en électricité et en énergie thermique. L'énergie produit de ce dernier permettre de transmettre à l'électrolyseur « SOSE » qui est très sensible aux changements d'opérations à cause du rayonnement. Pour cela le dispositif est actionné à une irradiation solaire constante. Les résultats obtenu sont très motivée pour l'électrolyseur de la vapeur à haute température par vois solaire pour la production d'hydrogéné [1].

S. Koumi Ngoh et all, ont présenté dans leurs travail un système de production d'hydrogène par l'utilisation d'un système solaire hybride «photovoltaïque et thermique». Le système contienne un électrolyseur de vapeur à haute température qui est couplé a un rangée de panneau photovoltaïque dans le but d'assurer l'alimentation de l'électrolyseur en courant continu et un collecteur parabolique pour la production d'énergie thermique à haute température environ «850 – 900°C» et une pression d'environ 5 MPa. L'étude est réalisée dans des conditions tropicales locales. A la basse d'une simulation du système, les mesures théoriques d'hydrogène enregistrées sont 0.064 Kg/s et 1843.2 Kg/jour [2].

Le travail de **N. Monnerie et all**, a pour but de la production d'hydrogène par l'accouplement d'un électrolyseur à haute température qui fonction a des températures environne 750°C et 15 bar. Dans cette étude, la technologie qui a été utilisé est basée sur un

concentrateur solaire à tour qui a pour but d'assure une température constante, le type de fluide utilise sont des sels fondues d'une capacité de stockage élevée. Ce travail est composé de deux parties : la première concerne la production d'hydrogène à un débit de 400 Kg/jour ou la demande en énergie thermique est de 6 MW pour des petites stations ; alors que la deuxième est pour un débit de 4000 Kg/jour ou la demande en énergie thermique est de 50 MW pour usage industriel **[3].**

J. Padin et all, représente dans leurs étude un nouveau système de production d'hydrogéné par énergie solaire. Le système fonction a une température élevée où un capteur solaire hybride est intègre pour assure l'alimentation d'un électrolyseur à haute température. Les résultats montrent que le système solaire hybride de production d'hydrogène à haute température est plus efficace que celui d'un système classique. Pour différentes températures, la comparaison de ce système avec celle du système classique montre que l'efficacité de système hybride atteindre 27% pour une température de 200°C, 45% à 600°C et a 1000°C son efficacité atteindre les 63% **[4]**.

La particularité principale de notre travail concerne l'estimation de la production de l'hydrogène par voie solaire pour différents sites d'implantations à savoir, le nord, le sud et le moyen sud.

I.1.Introduction

Les prévisions de consommation d'énergie dans les décennies à venir sont en croissance significative et conduisent donc forcément à un fort développement des énergies renouvelables, compte tenu des limitations imposées par l'épuisement inévitable des ressources fossiles, de surcroit socialement mal acceptées dans de nombreux pays, même si les énergies nucléaires peuvent prétendre satisfaire une partie de la demande. Les énergies renouvelables seront de plus en plus sollicitées dans l'avenir [5]. Fethi Amri, a fait une étude économique en Algérie pour la consommation d'énergie par habitat entre année 1980 jusqu'à 2012, au il a comparé entre deux sources d'énergie «renouvelable et non renouvelable» [6].

I.2.Énergie

I.2.1. Consommation énergétique selon le type d'énergie utilisé

Le tableau suivant présente la consommation d'énergie pour les types d'énergie utilisé selon l'Agence Internationale d'énergie :

	Production Mtep '2006'	Consommation Mtep '2006'	Part dans la consommation
Pétrole	4 030	3 470	43%
Gaz Naturel	2 440	1 233	15%
Charbon	3 070	698	9%
Energie Nucléaire	728	-	-
Energie hydro-électrique	261	-	-
Electricité	-	1 350	17%
Combustible renouvelable et déchets	1 185	1 040	13%
Chaleur	10	293	3%
Total	11 724	8 084	100%

Tableau .I.1.Consommation d'énergie selon le type d'énergie utilisé [7].

De manière générale, Il est nécessaire de distinguer deux types de consommation d'énergie :

- ✓ La consommation primaire : concerne la quantité d'énergie totale potentielle de la ressource utilisée ;
- ✓ La consommation finale : correspond à ce qui achète l'utilisateur «essence».

I.2.2. Production annuelle énergétique mondiale

La production mondiale d'énergie primaire est estimée à environ douze milliards de tonnes équivalent pétrole par an. Avec le nucléaire, 93% de cette production reposent sur des ressources primaires non renouvelables. La répartition des énergies est ainsi mise en évidence dans le tableau ci-dessous.

	Production en 1998	Productio n en 2008	Productione n2008 « Mte p »	Augmentation 2008/1998	Part dans la production
Pétrole	73 538 000 Bl/j	81 820 00 0 Bl/j	3 928	11%	34.5%
Gaz Naturel	2273 Gm ³	2 945 Gm ³	2 768	35%	24.2%
Charbon	2 227 Mtep	3 325 Mtep	3 325	49%	29%
Nucléaire	550 Mtep	620 Mtep	620	13%	5.5%
Hydraulique	2 593 Twh	3 075 Twh	696	19%	6%
éolien	22 Twh	260 Twh	59	1 200%	0.5%
Solaire Photovoltaïqu e	4 Twh	35 Twh	8	8 750%	0.08%
Total			11 402	27.1%	100%

Tableau .I.2. Production énergétique mondiale commercialisée selon la source d'énergie [7].

I.2.3. Impact des activités énergétiques

Les manipulations énergétiques conduisent à l'épuisement de ressources naturelles ainsi une pollution dont les rejets de gaz à effet de serre. **Claude Lorius**, a parlé sur la dégradation de l'environnement ou elle est inévitable qui est liée aux activités humaines et aux conditions de vie de nos sociétés, la croissance économique. Le réchauffement de la planète et les émissions de gaz à effet de serre, notamment du CO₂, sont essentiellement liées à la combustion des carburants fossiles **[8]**.

I.2.4. Evolution des rejets de CO2 dans l'atmosphère

Les résultats des modèles climatiques prévoient pour la fin du 21^{éme} siècle, avec une probabilité de 90%, une hausse des températures comprise entre environ1, 5 et 6 °C.

Une corrélation entre la consommation de carburants fossiles et la concentration de CO_2 dans l'atmosphère est montrée sur la Figure .I.1, qui constitue l'une des indices les plus justes de l'impact des activités humaines. Fateh Bélaïd et all, ont fait une étude sur les

émissions de CO_2 et la production d'électricité en Algérie sur une période de 1980 jusqu'à 2012 entre deux différent énergie «renouvelable et non renouvelable» **[9].**

La figure .I.1 représente la corrélation de la consommation du carburant fossile et concentration de CO_2 .

I.3. Energie renouvelable

On parle de nos jours d'énergies renouvelables pour désigner en fait des sources anciennes, dont la mise en œuvre est optimisée avec des technologies modernes, ou bien d'énergies dont le principe est entièrement nouveau.

Parfois, le terme "énergies renouvelables" recouvre des réalités différentes pour désigner toute source d'énergie alternative utilisée plus ou moins récemment ou elle remplace les énergies fossiles. Une source d'énergie renouvelable se régénère ou se renouvelle naturellement selon un cycle relativement court [11]. Jean-Louis Bal et all, ont cité les différentes sources d'énergie tel que : le solaire, l'éolien et l'hydraulique, pour la production d'électricité ou il a donné un exemple sur la France qui a augmenté la partie des énergies renouvelables de 15 à 21% [12]. Petra Luňáčková et all, ont montré l'impact des énergies renouvelables dans la république de tchèque dans le domaine de photovoltaïque [13].

Les différentes sources des énergies renouvelables selon leurs origines sont : L'hydraulique, l'éolien, la biomasse, la géothermie et l'énergie solaire.

I.4. Hydrogène

L'hydrogène c'est l'élément le plus abondant dans l'univers, 75% de la masse des étoiles et les galaxies. C'est le carburant du soleil «chaque seconde, 620 millions de tonnes d'hydrogène sont converties en 615,7 millions de tonnes d'hélium».

I.4.1. Propriété physique

Les propriétés physiques de l'hydrogène sont récapitulées dans le tableau.I.3 :

Poids molécula	2.016		
Electronégati	ive	2.1	
Densité (Gaz	z)	0.0838 Kg/m ³	
Densité (Liqui	ide)	70.8 Kg/m ³	
Température d'éb	ullition	20.3 °K	
Température de	13.8 °K		
Chaleur de fus	58.23 KJ/Kg		
Chaleur de Vaporisation		445.59 KJ/Kg	
Chaleur de sublin	nation	507.39 KJ/Kg	
	Gaz	14.89 KJ/Kg °K	
Capacite calorinque	Liquide	9.69 KJ/Kg °K	
	Supérieur	140 MJ/Kg	
Pouvoir calorilique	Inferieur	120 MJ/Kg	
	Température	32.94 °K	
Point critique	Pression	12.84 bars	
-	Densité	31.4 Kg/m ³	

Tableau.I.3. Propriétés thermo physiques de l'hydrogène [14].

D'un point de vue énergétique, l'hydrogène présente plusieurs avantages [15] :

✓ Tenant compte des impacts environnementaux, l'hydrogène solaire est un carburant propre [4]. Le tableau .I.4 qui présente les polluants produits par différents carburants.

Tableau .I.4. Polluants émis par différents carburants [15].

Polluant Hydrocarbure « Kg/GJ »		Charbon « Kg/GJ »	Hydrogéné « Kg/GJ »		
CO ₂	72.4	100	0		
CO	0.8	0.65	0		
S O ₂	0.38	0.5	0		
NOx	0.34	0.32	0.1		

✓ Les propriétés liées aux risques d'utilisation de certains carburants indiquent dans tableau I.5. L'hydrogène est le carburant qui présente le moins de risque [15].

Tableau .I.5. Propriétés d'inflammation et de toxicité de certains carburants [15].

Propriété	Essence	Gaz naturel	Hydrogéné
Coefficient de diffusion dans l'air (cm²/s)	0.05	0.16	0.61
Température d'inflammation (°C)	228 - 471	540	585
Limites d'inflammation dans l'air (Vol %)	1-7.6	5.3 - 15	4 – 75
Energie d'allumage dans l'air (mJ)	0.24	0.29	0.02
Température de la flamme dans l'air (°C)	2197	1875	2045
Vitesse maximale de la flamme (m/s)		0.43	3.46
Energie d'explosion (G TNT/KJ)	0.25	0.19	0.17
Toxicité du carburant	haute	moyenne	faible
Toxicité de la combustion du carburant	haute	moyenne	moyenne

I.4.2. Production d'hydrogène

Pour produire de l'hydrogène, plusieurs possibilités sont étudiées, certaines sont déjà arrivées à effectuer sa technologique et d'autres sont encore au stade du développement **[14]**.

I.4.3 Production d'hydrogène à partir d'énergies renouvelables

La production d'hydrogène à partir d'énergies renouvelables englobe l'énergie éolienne, l'énergie hydraulique, l'énergie solaire, l'énergie géothermique, l'énergie mare motrice et hydrolienne, la biomasse et l'énergie solaire photovoltaïque.

I.4.3.1. Energie éolienne

L'activité solaire est la principale cause des phénomènes météorologiques. Ces derniers sont notamment caractérisés par des déplacements de masse d'air à l'intérieur de l'atmosphère. Un aérogénérateur, plus communément appelé éolienne, est un dispositif électromécanique qui transforme une partie de l'énergie cinétique du vent en énergie mécanique disponible sur un arbre de transmission puis en énergie électrique par l'intermédiaire d'une génératrice. Il existe plusieurs configurations d'aérogénérateur [16].

La production d'hydrogène à partir d'énergie éolienne est souvent présentée comme un moyen d'augmenter la part de l'éolien dans le mix énergétique. La production d'électricité d'une éolienne, peut être exclusivement dédiée à la production d'hydrogène, sans raccordement au réseau électrique **[17]**.

Plusieurs travaux réalisées sur ce type d'énergie ; **S. Bousalem et al** qui ont travaillé sur l'étude d'un procédé de production d'hydrogène par énergie éolienne [**18**]. Ainsi, l'étude de **L. Aîche-Hamane et al**, qui ont effectué une estimation de la production d'hydrogène à partir de différentes tailles d'éoliennes dans le sud de l'Algérie [**17**]. Une étude d'évaluation de ressource de vent en Algérie est effectuée par **Sidi Mohammed Boudia et all** qui sont utilisé une analyse statistique basée sur les données de mesure du vent à partir de 63 stations métrologique pour différent région Algérienne. L'étude de **Sidi Mohammed Boudia et all** à pour but d'actualise la carte de vent en Algérie [**19**].

I.4.3.2. Biomasse

Depuis une dizaine d'années, il existe un regain d'intérêt pour l'utilisation de la biomasse comme source d'énergie **[20].** La production de l'hydrogène par la Biomasse et très prometteuse de sa valorisation énergétique. Cette valorisation, bien qu'elle soit techniquement et technologiquement complexe, donne un défi dans notre contexte énergétique **[21].** Amine Akbi et all, Dans son travail a cité le potentiel important de la bioénergie en Algérie et lui intègre dans un programme national. Ils ont prouves que les déchets urbaine peuvent produire 1685 GWh par mois par le procédé de digestion anaérobie **[22].**

I.4.3.3. Energie solaire

L'énergie solaire, à l'origine de la vie sur terre, est exploitée depuis la nuit des temps par l'homme ; le plus souvent de façon indirecte (pétrole, gaz, charbon et bois), moins de façon directe. Il existe pourtant de nombreuses technologies permettant de produire de la chaleur et ou d'électricité en utilisant directement l'énergie solaire thermique et photovoltaïque.

La production d'hydrogène à partir de l'énergie solaire, est une méthode simple à partir de l'électricité produit par les panneaux photovoltaïques.

Jean-Louis Bouvier et al, ont travaillé sur l'énergie solaire pour une étude expérimentale d'un concentrateur solaire parabolique à génération directe de vapeur alimentant une centrale de micro-cogénération, ils ont fait chauffer de l'eau déminéralisée par des concentrateurs jusqu'à arriver à la surchauffée où saturée à une température comprise entre 180 et 250°C. En suit, ils ont fait une simulation sur la charge thermique d'un bâtiment pour chauffage et production d'eau chaud sanitaire. **Jean-Louis Bouvier et al** ont trouvé une puissance thermique produite est de l'ordre de 20 kW pour 3 kW électrique **[23].**

Nasreddine CHENNOUF et al, ont travaillé sur l'étude d'une installation de production d'hydrogène solaire par électrolyse de l'eau dans la région d'Ouargla. La réalisation d'une installation photovoltaïque a pour but de la production d'hydrogène par électrolyse d'eau; ils ont utilisé un électrolyseur de type alcalin avec Na-OH comme électrolyte dans le site d'Ouargla [24].

On peut trouver deux types d'énergie solaire à savoir : Energie Solaire Photovoltaïque et Energie Solaire Thermique.

I.4.3.3.1. Energie Solaire Photovoltaïque

L'énergie solaire photovoltaïque désigne l'énergie récupérée et transformée directement en électricité à partir de la lumière du soleil par des panneaux photovoltaïques, Elle résulte de la conversion directe dans un semi-conducteur d'un photon en électron. Celui-ci permet de créer un courant électrique continu à partir d'un rayonnement électromagnétique. Le soleil émettant ce type de rayonnement a donc l'avantage d'être inépuisable et utilisable en tout point d'un territoire. Cette ressource a toutefois deux inconvénients, en concernant la production qui est invariablement liée aux conditions climatiques et d'autre part concernant la surface considérable qui est nécessaire pour produire de grande quantité d'énergie puisque le rendement des panneaux PV est relativement faible (typiquement entre 10 et 18%) [25]. Amira Balaska et all, ont établi une étude d'évaluation de la performance pour but de comparer la différence d'efficacité des modules photovoltaïque [26] et ainsi le travail de R. Eke et all montre l'influence des spectres solaire pour diffèrent saisons sur plusieurs modules photovoltaïques [27].

I.4.3.3.2. Energie Solaire Thermique

L'énergie solaire thermique est la transformation du rayonnement solaire. Cette transformation peut être utilisée directement pour chauffer un bâtiment par exemple ou indirectement comme la production de vapeur d'eau pour entraîner des turboalternateurs et ainsi d'obtenir l'énergie électrique [25].

Muhammed Arslan Omar et all, ont présents dans leurs étude, un système de production d'hydrogène par simulation mathématique. Ils ont utilisé un capteur solaire hybride et un électrolyseur dans trois villes différentes en Turquie. La simulation de cette étude ce fait en deux étape, en gardant la température constante à 373°K et en augmentant la

pression à 0.1 MPa et à 0.5 MPa. Les résultats montre que a la pression 0.1 MPa la température augment jusqu'à 573°K **[28].**

I.4.4. Modes de stockage hydrogène

Le problème majeur de l'implantation de la technologie pile à combustible dans les différents domaines est l'approvisionnement en hydrogène et son stockage. De nombreuses recherches se sont alors penchées sur le problème afin d'y remédier et développer des systèmes de stockage fiables. Il existe trois types de stockage d'hydrogène soit sous forme liquide, sous forme solide ou bien sous forme comprimée

Conclusion

L'hydrogène est un vecteur énergétique d'avenir, il répond aux principaux défis énergétiques actuels. Il y a plusieurs façons de produire de l'hydrogène, actuellement le procédé le plus répondu est la production à partir d'énergie fossiles ; mais pour rester toujours dans les principaux défis énergétique et environnementaux il est impératif de produire l'Hydrogène à partir de sources d'énergies largement renouvelables et non polluantes sans émissions de gaz à effet de serre.

Nous en concluants qu'à long terme nous ne pouvons qu'envisager une production d'hydrogène à partir d'énergies renouvelables tel que l'énergie solaire ou l'éolienne. L'une des technologies les plus prometteuses pour la production d'hydrogène en matière de respect de l'environnement est l'électrolyse de la vapeur d'eau à haute température en utilisant une source d'énergie renouvelable.

De plus notre pays (spécialement le sud Algérien) est situé dans la zone la plus ensoleillé du monde (ceinture solaire) ce qui lui offre un potentiel énorme en rayonnement solaire. Dans notre mémoire, nous présentons l'étude de production d'hydrogène par électrolyse de vapeur d'eau en utilisant l'énergie solaire comme source d'énergie.

Chapitre II:

II.1. Description de l'installation

L'énergie solaire disponible dépend principalement de l'emplacement géographique, de la position du soleil dans le ciel, des conditions météorologiques, de la technologie utilisée et de l'application «chauffage, refroidissement, production d'énergie électrique». L'énergie solaire n'émet aucun gaz à effet de serre, elle est disponible partout, gratuite, inépuisable, non polluante et facile à transformer. On utilise généralement la chaleur transmise par le rayonnement, plutôt que le rayonnement lui-même. La technologie qui nous permet l'exploitation de l'énergie solaire utilise des systèmes appelés capteurs solaires «sans ou avec concentration».

Notre étude est basée sur la modélisation d'une installation de production d'hydrogène par l'énergie solaire. Cette étude est effectuée pour différent condition climatique en Algérie telle que «Alger, Annaba, Djelfa, Tamanrasset». L'installation étudiée est une combinaison entre deux options d'énergie renouvelable «thermique et photovoltaïque». Cette dernière est composée d'un électrolyseur à vapeur d'eau à très haute température qui est alimenté en électricité par un générateur photovoltaïque ; l'alimentation en vapeur d'eau est assurée par une centrale solaire à concentration.

L'installation de production d'hydrogène est composée principalement de trois parties :

- ✓ L'électrolyseur à vapeur d'eau à très haute température ;
- ✓ Des panneaux photovoltaïques afin de capter et convertir l'énergie solaire en énergie électrique requise par l'électrolyseur pour la décomposition de la vapeur d'eau en hydrogène et oxygène.
- ✓ Une centrale solaire à concentration qui sert a chauffée l'eau dans le but d'avoir de la vapeur qui alimente l'électrolyseur. L'unité d'alimentation en vapeur d'eau est composée d'un réchauffeur solaire et d'un compresseur dont la puissance mécanique est générée par une turbine à vapeur, l'échange thermique au niveau du réchauffeur se fait avec le fluide caloporteur qui circule à travers les concentrateurs cylindro-paraboliques.

II.1.1. Principe de fonctionnement de l'installation

L'eau entre dans la chaudière solaire à l'état 1 et un débit (m& 1) et elle en sort à haute pression et à haute température (état 2) où elle est reçue et détendue par la turbine qui va produire le travail W nécessaire au compresseur. A la sortie de la turbine, un mélange liquide vapeur est récupéré : Le liquide, à l'état 3' et avec un débit ($m_{3'}$) est recyclé vers le réservoir d'eau et la vapeur d'eau, à l'état 3, avec un débit (m_3) est devisée, grâce à un séparateur, en deux quantités :

- ✓ la première (état 4) avec un débit (m₄) sert, une fois traitée (réchauffée et comprimée) aux conditions désirées (état 5), à alimenter les cellules d'électrolyse ;
- ✓ la seconde (état 4') avec un débit ($m_{4'}$) est recyclée vers le réservoir d'eau.

L'installation de production de vapeur d'eau possède deux générateurs de chaleur à savoir : le premier alimente la chaudière solaire ; et le second alimente le réchauffeur solaire. Chaque générateur de chaleur est alimenté par le fluide caloporteur provenant d'un groupe de concentrateurs solaires. La chaleur cédée par le fluide caloporteur du circuit primaire est absorbée par l'eau.

II.2. Dimensionnement de la centrale

Dans ce chapitre, nous proposons le couplage du procédé d'Electrolyse Haute Température à deux sources solaire une source d'énergie thermique à haute température (centrale solaire thermique a concentrateurs cylinro-paraboliques) afin de fournir de l'énergie au procédé pour la vaporisation de l'eau et un champ photovoltaïque pour produire d'électricité. Nous considérons que l'installation ou l'énergie thermique et l'énergie électrique sont dans ce cas sont séparé, groupée à l'unité de production d'hydrogène.

Nous précisons dans un premier temps les hypothèses concernant les conditions opératoires de l'installation qui aliment l'électrolyseur et celle d'électrolyseur par :

- > Un débit massique de l'installation et d' 1 Kg/s ;
- La température et la pression à la sortie de chaudière solaire et de 300 °C et 30 bars ;
- L'électrolyseur travaille à un débit d' 1 Kg/s une température de 900°C et une pression de 30 bars.

II.2.1. Objectif

Le but du dimensionnement consiste alors à choisir et fixer les paramètres internes et externes de fonctionnement du cycle pour l'obtention des puissances électriques et thermiques nécessaires à l'électrolyse :

- A. Débits, pressions et températures de fonctionnement nécessaires pour la production électrique et thermiques nécessaires à l'électrolyse.
- B. Les puissances des différents organes de l'installation (compresseur, turbine).

II.2.2. Présentation du système de production d'hydrogène proposé

L'installation de production d'hydrogène est composée principalement de trois parties en basant sur les éléments présentés dans la figure .II.1. Ces composées de l'installation sont :

Chapitre II:

- ✓ L'électrolyseur à vapeur d'eau à très haute température ;
- ✓ Un champ des modules photovoltaïques pour alimenter l'électrolyseur en électricité ;
- ✓ Une centrale solaire à concentration pour alimenter l'électrolyseur en vapeur d'eau.

II.2.3. Simulation de l'électrolyse de la vapeur d'eau :

La conception de l'électrolyseur EHT repose sur un ensemble de composants. La cellule électrochimique comprend trois couches céramiques : anode, électrolyte, cathode. L'électrolyseur EHT fonctionne dans une gamme de températures comprise entre 700°C et 1000°C et à des pressions de l'ordre de 10 à 30 bars, une compression est nécessaire pour élever la pression et la température de la vapeur d'eau. La vapeur d'eau sort du compresseur aux conditions désirées et entre en quantité réglable dans l'électrolyseur.

II.2.3.1. Principe

La figure suivante illustre le schéma de principe du processus électrochimique.

Une paroi étanche d'oxyde électrolyte solide (OES) conducteur par ions O^{2-} est recouverte de deux conducteurs électroniques (électrodes métalliques) assurant respectivement la fonction d'anode et de cathode.

Cette paroi sépare deux atmosphères en circulation contenant un mélange H_2 - H_2O d'une part et de l'oxygène pur d'autre part. Sous la tension appliquée U, les molécules de vapeur d'eau sont dissociées à la cathode en ions O^{2-} et en hydrogène selon la réaction :

H₂O (gaz) + 2 e⁻ \rightarrow O⁻² +H₂ (gaz)

Les ions O^{2-} migrent au travers de la paroi d'OES. A l'anode se produit l'oxydation des ions O^{2-} en oxygène selon la réaction :

$$O^{-2} \rightarrow 1/2 O_2 (gaz) + 2 e^{-2}$$

La réaction globale de cette décomposition est :

$H_2O~(gaz) \rightarrow H_2~(gaz) + 1/2~O_2~(gaz).$

Figure .II.2. Principe de fonctionnement de l'électrolyseur à vapeur d'eau.

L'énergie globale nécessaire pour effectuer cette réaction est égale à la variation d'enthalpie ΔH de cette réaction qui est équivalente à la somme de la variation d'énergie libre ΔG et la variation de l'entropie de la réaction ΔS :

$$\Delta H_{T,p} = \Delta G_{T,p} + T \Delta S_{T,p}$$
(II-1)

La tension notée par U_R correspond à l'enthalpie libre de Gibbs nécessaire pour que la réaction d'électrolyse s'effectue aux conditions opératoires de la cellule. Nous calculons

l'enthalpie libre de réaction ΔG_r à partir des enthalpies de réaction ΔH_r et de l'entropie de réaction ΔS_r aux conditions opératoires de la cellule en considérant uniquement l'influence de la température sur l'équilibre thermodynamique de la réaction (nous négligeons l'influence de la pression sur l'enthalpie de réaction). Les deux derniers termes ΔH_r , ΔS_r sont déterminés à partir des valeurs d'enthalpie et d'entropie de formation standard, des chaleurs spécifiques des gaz qui réagissent dans la cellule et de leurs coefficients stœchiométriques dans la réaction chimique [29].

La détermination de l'enthalpie de réaction d'électrolyse à partir des enthalpies standards ce faite Dans un premier temps, l'enthalpie de réaction, l'enthalpie libre de Gibbs et l'entropie de réaction dans des conditions standard sont estimées à l'aide des équations suivantes :

 $\Delta H^{0}_{r} = \Delta H^{0}_{f-H2} + \frac{1}{2} \Delta H^{0}_{f-O2} - \Delta H^{0}_{f-H2}$ (II-2)

$$\Delta G^{0}_{r} = \Delta G^{0}_{f-H2} + \frac{1}{2} \Delta G^{0}_{f-O2} - \Delta G^{0}_{f-H2}$$
(II-3)

$$\Delta S^{0}_{r} = (\Delta H^{0}_{r} - \Delta G^{0}_{r})/T^{0}$$
(II-4)

Ensuite, en faisant appel aux coefficients des chaleurs spécifiques des gaz qui réagissent dans la cellule d'électrolyse, exprimés par les équations (VI-5) - (VI-8) [29].

$$\Delta A_{CP} = A_{CP-H2} + \frac{1}{2} A_{CP-O2} - A_{CP-H2O}$$
(II-5)

$$\Delta B_{CP} = B_{CP-H2} + \frac{1}{2} B_{CP-O2} - B_{CP-H2O}$$
(II-6)

$$\Delta C_{CP} = C_{CP-H2} + \frac{1}{2} C_{CP-O2} - C_{CP-H2O}$$
(II-7)

$$\Delta D_{CP} = D_{CP-H2} + \frac{1}{2} D_{CP-O2} - D_{CP-H2O}$$
(II-8)

À partir des données du Tableau .II.1. Les valeurs des enthalpies, enthalpies libres de Gibbs standard et coefficients de chaleur spécifique des gaz qui réagissent dans une cellule d'électrolyse ou nous pouvons déterminer l'enthalpie de réaction (VI-9) et l'entropie (VI-10) aux conditions opératoires fixées dans la cellule **[29].**

$$\Delta H_{r} = \Delta H_{r}^{0} + R \left[\Delta A_{CP} \left(T - T^{\circ} \right) + \left(\Delta B_{CP} / 2 \right)^{*} (T^{2} - T^{02}) + \left(\Delta C_{CP} / 2 \right)^{*} (T^{3} - T^{03}) - \Delta D_{CP} / (T - T^{0}) \right]$$
(II-9)

$$\Delta S_{r} = \Delta S_{r}^{0} + R \left[\Delta A_{CP} \log(T / T^{\circ}) + (\Delta B_{CP}) * (T - T^{0}) + (\Delta C_{CP} / 2) * (T^{2} - T^{02}) - \Delta D_{CP} / (T^{2} - T^{02}) \right]$$
(II-10)

Où **R** : Constante des gaz parfait (**R**= 8.3144 J/mole °K).

Tableau .II.1. Valeurs des enthalpies, enthalpies libres de Gibbs standard et Coefficients de chaleur spécifique des gaz qui réagissent dans une cellule d'électrolyse **[29].**

Enthalpie de Gaz formation standard J/mo	Enthalpie de	Enthalpie libre	Coeffic C	ients de la cha p/R = A+BT+	aleu CT ²	r spécifique ² +DT ⁻²
	standard J/mol	standard J/mol	Α	В	C	D
Eau "état gazeux"	-241 808	-228 572	3.470	1.45*10 ⁻³	0	0.121*10 ⁵
Hydrogén e	0	0	3.249	0.422*10 ⁻³	0	0.083*10 ⁵
Oxygéne	0	0	3.639	0.56*10 ⁻³	0	-0.227*10 ⁵

II.2.3.2. Energie minimale d'électrolyse

Dans les conditions réversibles, il existe une relation d'équivalence entre l'énergie électrique W absorbée par la cellule d'électrolyse et la variation d'énergie libre ΔG :

L'énergie électrique W est liée à la tension minimale réversible d'électrolyse U_R par la relation :

$$\mathbf{W} = \mathbf{Z} * \mathbf{F} * \mathbf{U}_{\mathbf{R}} = -\Delta \mathbf{G} \tag{II-11}$$

Z : nombre d'électrons mis en jeu égale à 2 ;

 \mathbf{F} : constante de Faraday égale à 96487 C/ mole = 26.8A.h/mole.

L'enthalpie libre ΔG permet d'écrire :

$$-\Delta \mathbf{G} = \mathbf{Z} * \mathbf{F} * \mathbf{U}_{\mathbf{R}}$$
(II-12)

Finalement, pour produire une mole d'hydrogène, la quantité d'énergie apportée sous forme électrique **U**_R correspondant à l'enthalpie libre de Gibbs est déterminée sous forme de tension (Volts).Ce qui donne l'expression de la tension minimale réversible exprimée comme suit :

$$\mathbf{U}_{\mathbf{R}} = -\Delta \mathbf{G}/\left(\mathbf{Z} * \mathbf{F}\right) \tag{II-13}$$

II.2.3.3. Caractéristique

La cinétique d'électrolyse à haute température peut être modélisée par l'emploi de relations empiriques courant tension. Faisant partie d'une nouvelle technologie, la documentation sur la modélisation des électrolyseurs à vapeur à haute température est difficilement accessible ; nous avons cependant trouvé dans la littérature différentes courbes caractéristiques U= f (I) en fonction de la température du service, par exemple la courbe présentée ci-dessous est proposée par P. Aujollet:

Caractéristiques pour un électrolyseur à vapeur d'eau (900 C°)

Figure.II.3. Variation de la tension en fonction de la densité du courant pour un électrolyseur à vapeur d'eau.

D'où nous pouvons tirer l'expression suivante :

$$U_E = f (I)$$
$$U_E = a I/A_E + b$$
(II-14)

A partir de la Figure. II.3. les valeurs des constantes trouvées sont : a = 0.32 et b = 1.025

Ce qui nous permet d'écrire :

$$U_{\rm E} = 0.32 \, \text{I} / \, A_{\rm E} + 1.025 \tag{II-15}$$

 U_E : Tension appliquée aux bornes des électrodes [V]; I : L'intensité du courant traversant les électrodes [A]; A_E : Surface des électrodes [cm²].

La tension réversible (minimale) à appliquer aux bornes des électrodes est égale à **1.025V**. Cette valeur peut être vérifiée en utilisant l'équation (II-13).

Comme nous la montre la figure II.3. Une tension plus importante doit être appliquée pour pouvoir générer l'hydrogène. Aussi, la tension thermo-neutre d'une valeur de $U_{thermoneutre} = 1.3 \text{ V}$ correspond au fonctionnement de l'électrolyseur. Elle est donnée par $\Delta H/(n^*F)$.

Chapitre II:

Cette tension est appliquée dans le but de réaliser un procédé d'électrolyse dans des conditions adiabatiques sans changement de température de l'électrolyte, Uthermo-neutre étant la tension imposée à la cellule.

II.2.3.4. Simulation de la production d'hydrogène

La masse m [kg] du gaz d'hydrogène produit à la cathode (dans le cas idéal) est, quant à lui, proportionnelle à la quantité de courant ayant traversé la cellule, à la masse atomique M de l'hydrogène et inversement proportionnelle à la valence n de celui-ci :

$$m_{H2} = (1/F) * (M/n) * I * t$$
 (II-16)

t : est le temps en (s).

La production réelle étant inférieure, le rapport entre la production réelle et idéale est appelé rendement de courant ou rendement faradique η_f , qui dépend exclusivement de l'importance des réactions secondaires ou parasites et non des surtensions. L'expression de la **masse d'hydrogène** produite m devient alors :

$$m_{H2} = (1/F) * (M/n) * I * t * \eta_f$$
 (II-17)

En termes de débit, cette dernière expression s'écrit :

$$m_{H2} = (m_{H2}/t) = (1/F) * (M/n) * I * \eta_f$$
 (II-18)

En posant : $\mathbf{K} = \mathbf{F} * (\mathbf{n}/\mathbf{M}) = 96487000$ ($\mathbf{M} = 10^{-3}$ Kg/mole, $\mathbf{n} = 1$) pour un débit d'hydrogène donné, l'intensité du courant nécessaire à sa production devient :

$$I = (96487000* m_{H2})/\eta_f$$
 (II-19)

A partir de l'abaque des caractéristiques de l'électrolyseur, nous pouvons déterminer la valeur de la densité de courant J (A/cm²) correspondant à la tension thermo neutre. Ainsi, la surface des électrodes A_E sera calculée comme suit :

$$\mathbf{A}\mathbf{E} = \mathbf{I} / \mathbf{J} \tag{II-20}$$

L'énergie globale d'électrolyse W (en W) s'exprime en fonction de la tension réelle U (en V) et de l'intensité I (en A) par l'expression suivante :

$$\mathbf{W} = \mathbf{U} * \mathbf{I} \tag{II-21}$$

La puissance nécessaire pour l'électrolyse de l'eau est donnée par la relation :

$$W = U_{thermo-neutre} * I$$
 (II-22)

Chapitre II:

En remplaçant la valeur de I issue de la relation (II-19) dans l'équation précédente, l'expression de la puissance W devient alors :

$$W = (96487000 * U_{thermo-neutre} * m_{H2}) / \eta_f$$
 (II-23)

Si les cellules d'électrolyses sont alimentées par un débit de vapeur **m**_{H20} en (kg/s), la quantité d'hydrogène produite est donnée par la relation suivante :

$$m_{H2} = m_{H2O} / 9$$
 (II-24)

La puissance nécessaire [W] pour l'électrolyse d'un débit de vapeur d'eau mH20 est donc :

$$W = (10720778 * U_{thermo-neutre} * m_{H2O}) / \eta_f$$
 (II-25)

II.2.4. Simulation de l'unité de production de la vapeur

Nous avons élaboré le schéma suivant afin de détailler le positionnement et le fonctionnement des différents éléments qui constituent cette installation :

Le principe de fonctionnement de l'unité est le suivant :

Les capteurs sont orientés automatiquement vers le soleil à l'aide d'un système de poursuite. Dans le circuit primaire le fluide caloporteur circule grâce à une pompe entre les capteurs et le réservoir de stockage. Entre temps, la pompe du circuit secondaire fait circuler l'eau depuis le réservoir jusqu'à l'échangeur de chaleur (générateur de vapeur) ou elle emprunte la chaleur au fluide caloporteur HTF. La vapeur d'eau peut atteindre au maximum 400°C.

On supposera que l'alimentation de l'installation en eau se fait à l'aide d'un réservoir d'appoint à l'état '0' avec un débit nominal $m_0=1kg/s$ et à température et pression atmosphérique.

L'eau sort du réservoir avec un débit **m**₁ puis rentre dans une chaudière solaire ou il subit un échange de chaleur avec le fluide caloporteur qui traverse le concentrateur solaire (sa température augmente), nous obtenons la vapeur surchauffée (30 bars, 300 °C) avec un débit **m**₂.

La détente de la vapeur surchauffée de débit m_2 traverse la turbine va créer une puissance mécanique (un travail W); qui va être utilisée pour faire fonctionner le compresseur qui fournit de la vapeur d'eau a l'électrolyseur.

A la sortie de la turbine après détente on obtient un mélange de liquide saturé + vapeur saturé, on les regroupe pour former un débit \mathbf{m}_{2} , (1atm, 100°C).

On sépare le liquide de la vapeur ; le liquide saturé avec un débit $\mathbf{m}_{3'}$ est recyclé vers le réservoir d'appoint.

Il nous reste donc de la vapeur saturée avec un débit m_3 , on sélectionne un débit $m_6=1$ kg/s qui va alimente le compresseur par la suite, et le reste va vers le réservoir d'appoint après condensation.

Notre vapeur saturée de débit \mathbf{m}_3 va rentrer dans un réchauffeur solaire où il subit un échange de chaleur avec le fluide caloporteur qui circule à travers les concentrateurs solaires (il va être surchauffé).

Il en sort de la vapeur surchauffée (300°C) avec un débit de **m**s qui sera comprimée dans le compresseur. Cette vapeur surchauffée sera comprimée pour atteindre les propriétés thermodynamique (P=30bar, T=900°C) nécessaires à l'alimentation de l'électrolyseur.

L'électrolyseur alimenté en électricité, fournie par les modules photovoltaïques pour produit de l'hydrogène à partir de cette vapeur d'eau.

II.2.4.1. Le circuit d'eau

Les évolutions que subit l'eau depuis sa sortie du réservoir (état1) jusqu'à l'entrée en électrolyseur (état 9) sont représentées sur les diagrammes élémentaires (PH) donnés plus bas dans ce chapitre. **Annexe 1.**

L'évolution $1 \rightarrow 2$: Génération de la vapeur d'eau à travers la chaudière solaire ; l'eau passe de l'état liquide (1) à l'état vapeur surchauffée (2).

- 1) L'état 1 de l'eau dans le réservoir, mêmes propriétés que l'état 0 ;
- 2) L'état 2 vapeurs surchauffées jusqu'à la pression P_2 et la température T_2 .

Etats thermodynamiques de l'état 1 à 2. La chaleur nécessaire Q_{12} [kW] pour passer de l'état (1) à l'état (2) est :

$$Q_{12} = m_1 (h_2 - h_1)$$
 (II-32)

m₁: Le débit d'eau à la sortie du réservoir [kg/s] ;

- **h1** : l'enthalpie de l'eau à la sortie du réservoir [kJ/kg] ;
- h2 : l'enthalpie de la vapeur d'eau surchauffée à l'état 2 [kJ/kg].

L'évolution $2\rightarrow 2'$: représente la **détente supposée isentropique** $(2\rightarrow 2'S)$, de la vapeur d'eau à travers la turbine. L'eau, à **l'état 2'**, est un mélange de vapeur (état 3) et de liquide (état 3').

- ✓ Point 2 vapeur surchauffée a $P_2 = 30bar$ et $T_2=300c^\circ$
- ✓ Point 2'un mélange liquide + vapeur a pression et température constantes (à déterminer les propriétés de ce point).

Le travail fourni par la turbine (groupe de turbines) est :

$$W_{23} = m_2 (h_2 - h_3)$$
 (II-33)

m₂: Le débit de la vapeur d'eau à l'état 2 [kg/s] ;

h2' : l'enthalpie du mélange liquide +vapeur à l'état 2' [kJ/kg].

La détente isentropique de notre turbine ce fera jusqu'à atteindre la température et pression atmosphérique (T=100°C ; P=1.0132bars), on aura ainsi : S2's = S2 (connue).

Cette relation nous permet de calculer le débit m_2 : $m_2 = m_{2'}$

L'évolution $4\rightarrow 5$: Réchauffeur solaire (sur chauffage) de la vapeur d'eau à travers un réchauffeur solaire qui travaille sous des conditions états 4 et 5 déterminées. La chaleur nécessaire **Q45** [**kW**] au réchauffage est égale :

$$Q_{45} = m_4 (h_5 - h_4)$$
 (II-34)

m₄ : Le débit de la vapeur d'eau à l'état 4 [kg/s] ;

 h_4 : l'enthalpie de la vapeur d'eau à l'état 4 [kJ/kg];

hs : l'enthalpie de la vapeur d'eau surchauffée à l'état 5 [kJ/kg].

L'évolution $5\rightarrow 6$: Compression supposé isentropique, de la vapeur d'eau de l'état 5 à l'état 6 qui désigne les conditions de fonctionnement des cellules d'électrolyses (conditions imposées).

Le travail nécessaire pour assurer cette compression est :

$$W_{56} = m_5 (h_6 - h_5)$$
 (II-35)

Où :

m₅ : Le débit de la vapeur surchauffée à l'état 5 [kg/s] ;

h₆: représente l'enthalpie de la vapeur d'eau surchauffée aux conditions T₆ et P₆ (conditions de fonctionnement des cellules d'électrolyses) [kJ/kg].

h₅: représente l'enthalpie de la vapeur d'eau surchauffée. Elle est limitée par le type de l'échangeur solaire utilisé [kJ/kg].

II.2.4.2. Le circuit du fluide caloporteur

L'installation de production de vapeur et d'électricité possède deux générateurs de chaleur (la chaudière solaire et le réchauffeur solaire), ce qui nécessite deux circuits des fluides caloporteurs :

- \checkmark Le premier alimente la chaudière solaire de puissance Q₁₂.
- \checkmark Le second alimente le réchauffeur solaire de puissance Q45.
Chaque générateur est alimenté par le fluide caloporteur provenant d'un groupe des concentrateurs solaire. La chaleur cédée par le fluide caloporteur du circuit primaire est absorbée par l'eau qui est donc pour la chaudière solaire la puissance débitée est de Q_{12} . Cette chaleur est correspond à la puissance utile qui doit être délivrée par la chaudière solaire.

Dans notre cas, c'est un ensemble de concentrateurs cylindro Paraboliques. L'expression de cette puissance est donnée par :

$$Q_U = \eta_0 I_b A_c - U_c (T_c - T_a) a$$
 (II-36)

 η_0 : le rendement optique du capteur, il est donné par la figure.

Le terme « U_c (T_c - T_a) **a** » représente les pertes thermiques de l'absorbeur par conduction, convection et rayonnement. Donc, la puissance utile devient :

 $\mathbf{Q}_{\mathbf{U}} = \mathbf{\eta}_0 \mathbf{I}_{\mathbf{b}} \mathbf{A}_{\mathbf{c}} - \mathbf{q}_{\mathbf{perte}}$

II.2.4.3. Concentrateurs solaires : procédure de modélisation

Dans notre installation, nous prévoyons l'utilisation de concentrateurs cylindroparaboliques qui possèdent des absorbeurs sous vide. Ce qui nous permet de négliger les pertes thermiques par conduction et par convection.

Dans le cas d'un dimensionnement théorique de notre installation et en prenant en considération l'effet de serre produit par l'enveloppe vitrée de l'absorbeur sous vide, opaque aux rayonnement infrarouges de grandes longueurs d'ondes émis par l'absorbeur, les pertes thermiques par rayonnement peuvent être aussi négligées. Ce qui permet d'écrire la relation sous la forme :

$$\mathbf{Q}_{\mathrm{U}} = \mathbf{\eta}_{0} \mathbf{I}_{\mathrm{b}} \mathbf{A}_{\mathrm{c}} \tag{II-38}$$

Suivant le même raisonnement, la chaleur nécessaire au réchauffage de l'eau est donnée par la relation suivante :

$$W_{45} = m_4 (h_5 - h_4) = \eta_0 I_b Ac_{45}$$
(II-39)

La surface totale (m²) des concentrateurs cylindro paraboliques de l'installation est donc :

$$\mathbf{A}_{\mathbf{c}} = \mathbf{A}_{\mathbf{c}12} + \mathbf{A}_{\mathbf{c}45} \tag{II-40}$$

Selon la surface unitaire A_U choisie, il est possible de déterminer le nombre de concentrateur approprié (N) :

(**II-37**)

$$\mathbf{N} = \mathbf{A}\mathbf{C} / \mathbf{A}\mathbf{U} \tag{II-41}$$

La surface de chaque absorbeur (Sa) (m²) est donnée par la relation :

$$Sa = A_U / C$$
 (II-42)

C : est la concentration du rayonnement solaire (figure), choisie en fonction de la température imposée du fluide de travail et du rendement de conversion désiré.

La figure II.4. Nous donne la variation du rendement de conversion rendement, en fonction de la température de l'absorbeur, pour certaines valeurs de Concentration :

Figure. II.4. Variation de rendement en fonction de Température (°C) et la Concentration.

II.2.5. Simulation de la production d'électricité par les cellules photovoltaïques

Le schéma électrique équivalent à une cellule photovoltaïque est représenté par la Figure.II.5. Ce circuit est constitué d'une source de courant et d'une diode montée en parallèle. La source de courant délivre un courant I_{ph} , directement proportionnel à l'intensité de la lumière. La diode représente la jonction P-N de la cellule solaire.

Figure.II.5. Schéma électrique équivalent d'un panneau photovoltaïque

Le courant I, délivré par la cellule photovoltaïque s'écrit comme suit :

$$\mathbf{I} = \mathbf{I}_{\text{ph}} - \mathbf{I}_0 \left(\left(\mathbf{e}^{\frac{\mathbf{e}\mathbf{V}}{\mathbf{m}\mathbf{k}\mathrm{T}}} \right) -1 \right)$$
(II-43)

I : courant délivré par la cellule ;

I_{ph}: Photo courant ;

 I_0 : Courant obscurité « de saturation » de la diode ;

m : Facteur d'idéalité de la diode ;

k : Constante de Boltzmann = $1.38 * 10^{-23} \text{ J/K}$;

e : La charge d'un électron = $1.062*10^{-19}$ As ;

T : Température absolue de la cellule photovoltaïque °K.

La puissance étant le produit de la tension par le courant, son expression dans le cas de Notre système est donc :

$$P = V * [I_{ph} - I_0 ((e^{\frac{eV}{mkT}}) - 1]$$
(II-44)

L'organigramme pour tracer la caractéristique « I - V ». Annexe 2.

II.2.5.1. Le dimensionnement de l'unité de production d'électricité réside en la détermination

Le dimensionnement de l'unité de production d'électricité réside en la détermination du nombre des panneaux photovoltaïques, ainsi que leurs connections. Il dépend des caractéristiques de l'appareil consommateur d'électricité qui est dans notre cas l'électrolyseur de la vapeur d'eau à très haute température.

Le générateur photovoltaïque est constitué de plusieurs modules qui peuvent être reliés en série et / ou en parallèle selon la puissance requise. Le module solaires utilise dans notre système sont de type black module monocristalline **ET-M572190BB**. Et qui possèdent les caractéristiques présentées dans le Tableau .II.2.

Tableau .II.2. Représente les caractéristiques de module

Puissance maximale	190	W
Tension maximale	36.68	V
Courant maximale	5.18	Α
Courant de cours circuit	5.56	Α
Tension de cours circuit	45.21	V
NOTC	44.4	°C
Rendement de module	14.88	%
Coefficient de température de courant	0.02	A/°C
Coefficient de température de Tension	-0.31	V/°C
Coefficient de température de puissance max	-0.44	
Nombres de cellules	72	

Les caractéristiques de l'électrolyseur sont données principalement par ce qui suit :

- ✓ La puissance nécessaire pour l'électrolyse de l'eau W, en watt ;
- \checkmark La tension à appliquer aux bornes de la cellule U_{thermo-neutre}, en volt ;
- ✓ Le courant délivré I, en ampère.

II.2.5.1.1. Estimation du nombre des modules photovoltaïque

Le nombre des modules nécessaire N_m pour le générateur photovoltaïque est le rapport entre la puissance du champ requis et la puissance unitaire du module.

$$N_{\rm m} = \frac{W}{P{\rm max}} \tag{II-46}$$

II.2.5.1.2. Estimation du nombre des modules photovoltaïque en série

Elle consiste à évaluer le nombre des modules en série dans chaque branche N_{m} -série. Cette configuration est déterminée en fonction de la tension de travaille du système et la puissance optimale.

$$N_{m-s\acute{e}rie} = \frac{Vt}{Vm}$$
(II-47)

V_m: La tension des modules au point de la puissance maximale ;

Vt : Tension de travaille du système photovoltaïque ;

N_m-série : nombre de modules en série dans chaque branche.

II.2.5.1.3. Estimation du nombre des modules photovoltaïque en parallèle

Le nombre des modules photovoltaïque qui est on parallèle $N_{\mbox{paralleles}}$ et donné par la relation Suivante :

 $N_{m-paralleles} = N_m / N_{m-serie}$ (II-48)

III.1. Méthodologie de résolution

Une fois les équations fondamentales nécessaires à la simulation des différentes parties de l'installation de production de l'hydrogène par voie solaire (centrale de production de vapeur à haute température, le champ des modules photovoltaïques, l'électrolyseur de vapeur à haute température), sont établies, on procède aux applications numériques qui nous permettent de déterminer les performances de notre installation. Cette étape sera consacrée aux :

- ✓ dimensionnement de l'installation de production d'hydrogène par énergie solaire.
- ✓ Faire une estimation du taux de production d'hydrogène par cette installation sur quelque site en Algérie dans le but de connaitre les conditions les plus favorables pour une meilleure production

III.2. Calculs thermodynamiques aux différents points de l'installation

III.2.1.Calcul des puissances de l'installation

- ✓ La puissance nécessaire à la compression W_{56} [kW]
- ✓ La puissance du réchauffeur solaire Q₄5 [kW]
- ✓ La puissance de la chaudière solaire Q_{12} [kW]

III.2.1.1.La puissance de la chaudière solaire Q₁₂

Elle est donnée par l'équation

$$Q_{12} = m_1 (h_2 - h_1)$$

m1: Le débit d'eau à la sortie du réservoir [kg/s] ;

<u>**Remarque**</u> : $m_1 = m_2$

$$W_{22'} = W_{56}$$

De la relation suivante qui est tirée de l'équation :

$$m_2 (h_2 - h_{2'}) = m_4 (h_6 - h_5)$$

m₂: Le débit de la vapeur d'eau qui alimente la turbine [kg/s] ;

m4 : Le débit de la vapeur d'eau qui alimente le réchauffeur [kg/s] ;

 h_6 : l'enthalpie de la vapeur d'eau surchauffée à l'état 6 [kJ/kg];

h₅ : l'enthalpie de la vapeur d'eau surchauffée à l'état 5 [kJ/kg] ;

h₂ : l'enthalpie de la vapeur d'eau surchauffée à l'état 2 [kJ/kg] ;

 $\mathbf{h}_{2'}$: l'enthalpie de l'eau (mélange liquide + vapeur) à la sortie des turbines [kJ/kg].

A. <u>Calculer h₂':</u>

L'enthalpie de l'eau (mélange liquide + vapeur) à la sortie des turbines [kJ/kg], elle est donnée par la relation :

$$h_{2'} = x h_3 + (1-x) h_{3'}$$

 $\mathbf{h}_{2'}$: l'enthalpie de l'eau (mélange liquide + vapeur) à la sortie des turbines [kJ/kg] ;

 $h_3\colon$ l'enthalpie de la vapeur saturée à la sortie de la turbine ;

 $h_{\mathfrak{Z}'}$: l'enthalpie du liquide saturée à la sortie de la turbine.

$$S_{2'} = x S_3 + (1-x) S_{3'}$$

 $S_{2'} = S_2 = x S_3 + (1-x) S_{3'}$ _____ x = 0.87

S₂[•] : l'entropie de l'eau (mélange liquide + vapeur) à la sortie des turbines [KJ/Kg °C]. **S**₃ : l'entropie de la vapeur saturée à la sortie de la turbine [KJ/Kg °C] ; **S**₃[•]: l'entropie du liquide saturée à la sortie de la turbine [KJ/Kg °C] ; **x** : Le titre à la sortie de la turbine, il est déterminé à partir de la relation.

B. <u>Calculer m₁</u>:

Le débit d'eau à la sortie du réservoir [kg/s] ; il est calculé à partir du bilan thermique du groupe turbines et séparateur :

$$\mathbf{m}_1 = \mathbf{m}_2 = [\mathbf{m}_4 (\mathbf{h}_6 - \mathbf{h}_5)] / (\mathbf{h}_2 - \mathbf{h}_{2'})$$

m4: Débit de vapeur qui alimente l'électrolyse ;

 h_6 : l'enthalpie de la vapeur d'eau surchauffée à l'état 6 [kJ/kg].

hs : l'enthalpie de la vapeur d'eau surchauffée à l'état 5 [kJ/kg].

h₂ : l'enthalpie de la vapeur d'eau surchauffée à l'état 2 [kJ/kg].

 $\mathbf{h}_{2'}$: l'enthalpie de l'eau (mélange liquide + vapeur) à la sortie des turbines [kJ/kg].

C. Calculer h₁:

L'enthalpie h1 de l'eau à la sortie du réservoir [kJ/kg], est donnée par la relation : Bilan du réservoir :

$m_1 \ h_1 = m_0 \ h_0 + m_3' \ h_3' \ + m_4' \ h_4'$

 $m_1 = m_0 + m_{3'} + m_{4'}$

m1: Débit d'eau qui rentre à la chaudière solaire ;

 m_0 : Débit d'eau qui rentre au réservoir d'eau ;

m₃[,]: Débit de liquide saturée qui rentre au réservoir d'eau ;

m4^{*}: Débit de la vapeur sature qui rentre au réservoir d'eau.

Figure .III.1. Diagramme T-S de la vapeur d'eau à travers l'unité de production de vapeur.

Les résultats des calculs permettant de déterminer les caractéristiques de l'eau, aux différents points du système, Ces derniers sont résumés dans le Tableau .III.1:

Tableau .III.	1. Paramètres thermodynamiques du fluide aux différents points de	е
	l'installation.	

Etat	Phase	Τ (° C)	P (bar)	h (kJ/kg)	S (KJ/Kg K)	m (Kg/s)
0	Liquide	30	1	125.08	-	1
1	Liquide	-	-	1189.44	-	2.14
2	Vapeur surchauffée	300	30	2993.5	6.5390	2.14
2`	Liquide Vapeur	100	1	2382.68	6.5390	2.14
3	Vapeur Sature	100	1	2676.1	7.28	1.86
3`	Liquide Saturé	100	1	419.04	1.24	0.278
4	Vapeur Sature	100	1	2676.1	7.28	1
4`	Vapeur Sature	100	1	2676.1	7.28	0.86
5	Vapeur surchauffée	300	1	3076.5	9.2813	1
6	Vapeur surchauffée	900	30	4385.9	8.1999	1

III.2.2.1. Détermination les déférentes puissances en « kW »

Tableau .III.2. Montre la déférence de puissance en « kW ».

La puissance da la chaudière solaire Q ₁₂	La puissance da la chaudière solaire Q45	La puissance nécessaire à la compression W ₅₆
3860.69	400.4	1309.4

III.3. Calculer la surface des concentrateurs cylindro parabolique

Apres une fois la fourniture de chaleur assurée par la chaudière et pour le réchauffeur par les concentrateurs solaire, ainsi que la vapeur d'eau à haute température et à haute pression sera disponible pour alimenter les cellules d'électrolyses.

III.3.1. Détermination des surfaces A12, A45

Les valeurs des surfaces des concentrateurs ne varient plus selon le site choisi car la valeur du rayonnement solaire moyenne direct par ciel clair incident sur les concentrateurs solaires $I_b = 500 (W/m^2)$ est fixe sur le territoire national. Les calculs sont faits comme suit :

Nous pouvons constater que le rendement optique (qui a un lien direct avec la production, donc au taux d'exploitation de l'installation) des concentrateurs cylindro paraboliques varie entre **0.80** et **0.90** a une concentration de 100. Dans notre étude, nous choisissons un rendement optique moyen de **85%** avec une concentration de **100**. Elle est détermine par la figure.II.4.

Pour les concentrateurs, on prend comme surface unitaire A_u de 128.82 m². D'une longueur de 12 m et d'une largeur de 5.77 m et c'est des concentrateurs type « eurotrough ». Son des concentrateurs avec une bonne concentration optique ou elle est étudié par Michael Geyer, Eckhard Lüpfert et all.

III.3.1.1. Chaudière solaire

La surface totale des concentrateurs A_{C12} , nécessaire pour produire une puissance de Q_{12} est égale à :

 $A_{C12} = Q_{12} / (\eta_0 I_b)$ \longrightarrow $A_{C12} = 9083.97 m^2$

Le nombre de concentrateurs nécessaire pour la chaudière solaire et définie selon l'équation (II-40).Qui égale à **50 concentrateurs**

III.3.1.2. Réchauffeur solaire

La surface totale des concentrateurs A_{C45} , nécessaire pour produire une puissance de Q_{45} est égale à :

$$A_{C45} = Q_{45} / (\eta_0 I_b)$$
 $\Box = Q_{45} - A_{C45} = 942.11 \text{ m}^2$

Le nombre de concentrateurs nécessaire pour le réchauffeur solaire qui et définie selon l'équation (II-40).Qui égale à **8 concentrateurs**

La surface de chaque absorbeur pour une concentration de 100qui est calculée par la relation :

 $C = A_U / A_{abs}$ \longrightarrow $A_{abs} = 1.28 m^2$

III.4. Détermination la production d'électricité

La détermination consiste au dimensionnement du circuit des cellules photovoltaïques qui dépend essentiellement des caractéristiques des cellules d'électrolyse (courant-tension)

III.4.1. Détermination des caractéristiques des cellules d'électrolyse

L'intensité du courant qui traverse les cellules d'électrolyse dépend uniquement du débit d'hydrogène à produire. Ce dernier dépend directement du débit de vapeur d'eau d'alimentation produit par la centrale solaire.

En utilisant les équations (II-19 et II-24), nous obtenons :

$I = 10720778 \, * \, m_{H2O} \, / \, \eta_{f}$

Pour un débit d'eau de **1kg/s** et un rendement faradique de **0.93%**, l'intensité du courant qui doit traverser les cellules d'électrolyses pour produire **0.11kg** d'hydrogène (équation .II-24) est égale à :

La tension à appliquer aux bornes des cellules d'électrolyses la tension thermo neutre donnée par la figure. II.3 est de :

U = 1.3V

Nous allons prendre une valeur du débit $m_{H20} = 1 \text{kg/s}$. Toujours à l'aide de la figure. II.3, la valeur de la densité du courant qui correspond à la valeur thermo-neutre est de 1 A/m².Nous savons que la puissance nécessaire pour l'électrolyse se calculer par la formule suivant :

D'après l'équation, la puissance nécessaire à l'électrolyse de la vapeur d'eau a pour valeur :

W= 14.98 MW

A partir des valeurs de I et U et en utilisant l'abaque de l'électrolyse, figure.II.3, la surface des électrodes doit être logiquement égale à :

$A_E = 11.52 \ 10^6 \ cm^2$

III.5. Dimensionnement des panneaux photovoltaïques

Le nombre des panneaux photovoltaïque nécessaires Le module solaires utilise dans notre système sont de type black module monocristalline **ET-M572190BB** est égale à :

$$N_m = 7.88 \ 10^4$$

Le nombre des cellules dans une guirlande (en série) est :

Le nombre de guirlandes montées en parallèle est :

$$N_{m-parallèle} = 7.88 \ 10^4$$

La surface nécessaire des panneaux photovoltaïques est approximativement de 100599,23 m².

III.6. Estimation du taux de production d'hydrogène

III.6.1. Irradiation solaire moyenne mensuelle sur plan horizontal

Les valeurs d'irradiation solaire moyenne captée par la surface entière des champs solaire est présentées dans le **Tableau III.3** qui nous permettre d'avoir une idée sur le gisement solaire moyenne mensuel en KWh/m²/mois pour quelques sites en Algérie. Les valeurs moyennes d'irradiation les plus importantes sont constatées au sud algérien, au mois de juin dans la wilaya de Tamanrasset.

Tableau .III.3: Irradiation solaire moyenne mensuelle sur l'horizontal « KWh/m² /mois».

Le mois	Alger	Annaba	Djelfa	Tamanrasset
Latitude	36,45	36,55	34,43	20,51
Longitude	3,00	7,46	3,17	4,01
Altitude	25	0	823	665
Janvier	67	45	51	99
Février	87	105	141	171
Mars	108	139	172	187
Avril	135	150	131	198
Mai	156	189	168	192
Juin	168	205	180	257
Juillet	205	211	234	233
Aout	164	203	148	201
Septembre	139	168	135	181
Octobre	101	193	127	200
Novembre	75	89	82	67
Décembre	84	117	75	61

Figure .III.2. Irradiation solaire moyenne mensuelle incident pour différent sites « KWh/m²/mois».

III.6.2 Puissance thermique moyenne mensuelle produite par les concentrateurs cylindro paraboliques

Les valeurs de la puissance thermique moyenne mensuelle qui est délivre par le champ solaire sont présentées dans le **Tableau III.4.** Les puissances thermiques fournies par les concentrateurs cylindro paraboliques qui ont pour but de produire de la vapeur d'eau au niveau de la chaudière et du réchauffeur solaire.

Les valeurs maximales sont enregistrées pendant le mois de Juin. Le site le plus intéressant pour l'installation des centrales solaires à concentrateurs cylindro paraboliques doivent être implantés au sud algérien dans la wilaya de Tamanrasset.

 Tableau .III.4. Puissance thermique moyenne mensuelle produite par les concentrateurs cylindro paraboliques pour déférent sites « KW/mois».

Le mois	Alger	Annaba	Djelfa	Tamanrasset
Janvier	1917,49	1278,33	1470,08	2833,63
Février	2769,71	3323,65	4474,15	5411,59
Mars	3110,6	3962,81	4942,87	5347,67
Avril	4005,43	4452,84	3877,59	5859
Mai	4452,84	5411,59	4793,73	5496,81
Juin	4964,17	6072,05	5326,36	7584,74
Juillet	5880,31	6029,44	6711,22	6668,61
Aout	4687,2	5816,39	4239,79	5752,47
Septembre	4111,95	4964,17	4005,43	5347,67
Octobre	2876,24	5539,42	3621,93	5731,17
Novembre	2215,77	2620,57	2450,13	1981,41
Décembre	2407,52	3366,26	2151,85	1768,35

Figure .III.3. Les puissances thermiques moyenne mensuelle fournies par les concentrateurs cylindro paraboliques pour différent sites « KW/mois».

III.6.3. Rayonnement global moyenne

Les valeurs de rayonnement global moyen sur le plan inclinent à l'altitude de lieu qui est captée par la surface entière des panneaux photovoltaïques est présentées dans le **Tableau**

.III.5 qui donne une idée sur le rayonnement global moyenne en W/m^2 dans quelques sites en Algérie.

Le mois	Alger	Annaba	Djelfa	Tamanrasset
Janvier	134	102	113	178
Février	178	200	237	270
Mars	207	233	262	275
Avril	236	247	225	289
Mai	249	264	248	270
Juin	255	278	258	299
Juillet	282	278	279	290
Aout	264	278	246	289
Septembre	247	266	232	284
Octobre	190	272	217	288
Novembre	146	161	156	150
Décembre	147	178	133	139

Tableau .III.5. Les valeurs rayonnement global moyennent pour différent sites «W/m²».

Figure .III.4. Eclairement global moyenne pour différent sites

III.6.4. Puissance électrique moyenne mensuelle fournie par les cellules Photovoltaïques « KW/mois »

Les valeurs présentées dans le **Tableau III.6** donnent les puissances maximales moyennes mensuelles fournies par les panneaux Photovoltaïques pour quelques sites en Algérie. Nous avons constaté que ces valeurs évoluent proportionnellement au rayonnement moyen solaire capté par les modules photovoltaïques pour chaque mois. Les valeurs maximales sont obtenues pendant le mois de juin dans la wilaya de Tamanrasset.

Le mois	Alger	Annaba	Djelfa	Tamanrasset
Janvier	1964,48	1475,92	1642,98	2627,19
Février	2643,74	2992,03	3573,58	4062,92
Mars	3094,476	3509,75	3967,58	4128,33
Avril	3546	3725,66	3374,216	4330,06
Mai	3741,42	3984,91	3726,452	4014,86
Juin	3824,95	4191,37	3865,928	4456,92
Juillet	4239,44	3390,764	4182,704	4321,39
Aout	3953,39	4177,18	3666,56	4315,87
Septembre	3694,93	4003,82	3462,47	4233,92
Octobre	2814,73	4113,36	3242,62	4311,14
Novembre	2140,99	2378,18	2300,17	2178,03
Décembre	2162,27	2647,68	1948,72	2021,22

 Tableau .III.6: Puissance électrique moyenne mensuelle fournie par les cellules

 Photovoltaïques « KW/mois ».

Figure .III.5. Puissances électriques moyenne mensuelle fournie par les cellules Photovoltaïques

III.6.5. Débit moyenne mensuelle d'hydrogène

Les valeurs indiquées dans le **Tableau III.7**, présentent les productions moyennes mensuelles d'hydrogènes en **Kg/mois** pour quelques sites en Algérie. Ces valeurs ne sont pas proportionnelles au rayonnement solaire ou la production est maximale à Alger pour le mois de juin.

Nous constatons dans ce tableau, l'influence de durée de jours et celle de rayonnement moyenne solaire qui ne varie pas beaucoup entre le nord et le sud. Ces résultats permettre d'avoir une estimation du débit moyenne mensuelle d'hydrogène produit par année au nord de pays.

Tableau .III.7. Débit moyenne mensuelle d'hydrogène produit « Kg/mois ».

Le mois	Alger	Annaba	Djelfa	Tamanrasset
Janvier	15931,26	11968,1	13458,68	23694,81
Février	21143,38	23926,65	28844,21	34615,87
Mars	30216,53	34268,37	38738,49	40649,63
Avril	36916,21	38783,02	34854,36	44034,41
Mai	43345,15	46161,74	42550,98	43186,57
Juin	44414,94	48665,23	44267,43	47465,91
Juillet	50167,22	40120,71	48799,03	46841,41
Aout	43837,99	46315,23	40350,22	45353,17
Septembre	36395,41	39434,38	34102,48	41022,58
Octobre	25854,5	37779,37	30050,32	41022,84
Novembre	17145,53	19043,2	18786,9	19184,54
Décembre	16998,45	20812,49	15640,73	17895,03

Figure .III.6. Débit mensuelle d'hydrogène produit pour différent sites « Kg/mois ».

III.6.6. Débit moyenne d'hydrogène

Les valeurs présentées dans le **Tableau .III.8**, montrent les productions d'hydrogènes pour quelques sites en Algérie en **Kg/h**. Les valeurs sont proportionnelles au rayonnement solaire.

Le débit d'hydrogéné maximale est enregistrées pendant le mois de Juin. En effet, le site le plus intéressant pour l'installation de cette centrale doit être implanté au sud Algérien dans la wilaya de Tamanrasset.

Le mois	Alger	Annaba	Djelfa	Tamanrasset
Janvier	52,44	39,39	43,85	70,12
Février	70,57	79,86	95,38	108,45
Mars	82,6	93,68	105,9	110,19
Avril	94,66	99,44	90,06	115,58
Mai	99,87	106,36	99,46	107,16
Juin	102,1	111,87	103,19	118,96
Juillet	113,17	90,5	111,64	115,34
Aout	105,53	111,5	97,87	115,2
Septembre	98,63	106,87	92,42	113,01
Octobre	75,14	109,79	86,55	115,07
Novembre	57,15	63,48	61,4	58,13
Décembre	57,72	70,67	52,01	53,95

Tableau .III.8. Débit mensuelle d'hydrogène produit pour différent sites « Kg/h ».

Figure .VII.7 : Débit mensuelle d'hydrogène produit pour différent sites « Kg/h ».

D'après les **Tableau .III.6.** Et **Tableau .III.4**, les puissances électrique et thermique générées par notre installation sont directement proportionnelles au rayonnement solaire dont l'intensité est maximale au sud algérien. Les valeurs de la production d'hydrogène les plus importantes sont évidemment détectées à Tamanrasset avec une quantité de production d'hydrogène au sud sont plus importantes. L'estimation de la production annuelle d'hydrogène au sud elle est d'ordre de **444966,77 Kg/an**.

Figure .VII.8. Potentiel d'hydrogéné par solaire

III.7. Estimation des émissions de CO₂ pour une consommation électrique donnée, assurée par différentes sources d'énergie

Toutes les ressources d'énergies renouvelables et non-renouvelables sont envisagées pour permettre la production de l'hydrogène afin de satisfaire la demande en énergie sans estimer dans le futur environnemental de notre planète. Le Tableau ci-dessous indique les émissions de CO_2 en **KWh** d'énergie électrique produite pour différente source d'énergie [**30**]. Annexe 3.

Dans notre étude ou nous avons traité un électrolyseur à haute température pour la production d'hydrogéné d'une consommation moyenne d'énergie électrique est de **41681,53 KWh**, pour cette dernier la détermination des émissions de CO_2 qui est en fonction de chaque consommation, est indiqué au Tableau III.9.

Technologie Capacité/ Configuration / Carburant		Estimation emission « gr CO2/ KWh »	Emission de CO ₂ en "gr" pour une énergie de 41681,53 KWh
Eolien	2.5 MW « en mer »	9	375133,77
Hydroélectrique	3.1 MW « Réservoir »	10	416815,3
Eolien	1.5 MW « Terrestre »	10	416815,3
Biogaz	Méthanisation « Digestion Anaérobique »	11	458496,83
Hydroélectrique 300 KW « Courant du Fleuve »		13	541859,89
Solaire Thermique80 MW « Cylindro Parabolique »		13	541859,89
Biomasse Co-combustion « Bois Forestière avec le Charbon »		14	583541,42
Biomasse Turbine à Vapeur « Bois Forestier »		22	916993,66
Biomasse Court de Tailis a Rotation Co- combustion/ Charbon		23	958675,19
Biomasse Moteur Réciproque / Bois Forest		27	1125401,31
Biomasse Turbine à Vapeur « Déchets de Bois »		31	1292127,43
Solaire PV	Le Silicium Poly Cristallin	32	1333808,96

Tableau III.9. Estimation des émissions de CO₂ pour une consommation de 41681,53 KWh.

Biomasse	Turbine à Vapeur Coute Rotation Forestière	35	1458853,55
Géothermie	80 MW	38	1583898,14
Biomasse	Court Moteur Alternatif a la Foresterie de Rotation	41	1708942,73
Nucléaire	Divers Types de Réacteur	66	2750980,98
Gaz Naturel	Diverses Turbines à Cycle Combiné	433	18048102,5
Pile à Combustible	Hydrogéné à Partir de Gaz de Reformage	664	27676535,9
Diesel	Divers Types de Générateur et Turbine	778	32428230,3
Le Pétrole Lourd	Divers Types de Générateurs et Turbine	778	32428230,3
Charbon	Différents Types de Générateur à Récurer « avec Frottement »	960	40014268,8
Charbon	Différent Type de Générateur Sans Frotter	1050	43765606,5

Toutes les sources de production d'énergie, renouvelables ou non, ont un impact sur l'environnement souvent visible, comme pour central à charbon. Toutefois les énergies fossiles – charbon, pétrole et gaz naturel ont un impact plus important sur les émissions de CO_2 que les sources de production renouvelables.

Nous constatons, qu'il est plus intéressant d'utiliser des sources d'énergie d'origine renouvelable pour la production d'énergie électrique afin de minimiser les émissions de CO₂.

Conclusion

D'après les résultats obtenus, la production maximale d'hydrogène gazeux est d'ordre **400 kg/h** pour une électrolyse de l'eau à très haute température «900 °C, 30 bars ». L'alimentation énergétique des cellules d'électrolyses est assurée par conversion de l'énergie solaire hybride : thermique et photovoltaïque.

La conversion thermique est utilisée pour alimenter les cellules d'électrolyses par un débit de **1 kg/s** de vapeur d'eau à très hautes températures et de pression. Une centrale thermique est conçue par des concentrateurs solaires cylindro-paraboliques pour produire la vapeur d'eau à 1 bar et à 300 °C. Cette vapeur d'eau est ensuite comprimée grâce à un compresseur pour atteindre les conditions désirées de « 900 °C, 30 bars ». La puissance nécessaire pour la compression, est égale à 1.309 MW est fournie par un alternateur entraîné

par une turbine alimentée par la vapeur d'eau provenant des concentrateurs solaires. La puissance délivrée par cette centrale solaire thermique, est de l'ordre de 5.5 MW. Les concentrateurs cylindro paraboliques nécessaires sont au nombre de 78 concentrateurs et ils occupent approximativement une superficie de 1,0026 hectares.

La conversion photovoltaïque est utilisée pour alimenter les cellules d'électrolyses par la puissance électrique nécessaire qui est de l'ordre de 15 MW grâce à une centrale électrique à base de convertisseurs solaires photovoltaïques. Le champ des cellules solaires nécessite une superficie égale à 10,09 hectares. Les valeurs maximales de production annuelle d'hydrogène elle est d'ordre de **444966,77 Kg/an** (Tamanrasset).

Il est évident que le fonctionnement optimal de notre installation est étroitement lié aux conditions climatiques. L'installation doit être placée dans une localité à forte irradiation solaire de sorte qu'elle peut extraire le maximum de puissance.

CONCLUSION GÉNÉRALE

Les problèmes écologiques qui sont lie aux énergies fossiles et nucléaires ainsi que la limitation des ressources, risquent le développement économique d'avenir de notre planète. Le système d'énergie basé sur l'hydrogéné d'origine solaire a été proposé comme solution devant ces problèmes. Ce système permettrait de stopper l'effet de serre et favoriser une restitution de la qualité de l'atmosphère.

Nos raisonnements pour le mode de production d'hydrogène à partir de l'énergie solaire sont très optimistes, car nous considérons qu'il mérite tout à fait sa place parmi les différents systèmes énergétiques existants. En effet, l'énergie solaire présente des avantages qui pourraient participé à sa généralisation dans un contexte de remise le réchauffement climatique.

L'étude du procédé électrolytique utilisé dans notre travail, a permis de bien comprendre le principe de l'électrolyse à haute température qui a pour avantage d'une moindre consommation électrique avec un rendement plus appréciable comparé aux autres dispositifs électrolytiques pour la même production d'hydrogène. Le procédé électrolytique sera peut-être considérer comme solution dans la recherche des nouvelles énergies renouvelables.

Nous constatons d'après les résultats obtenus, que la centrale solaire thermique à concentrateurs cylindro-paraboliques d'une puissance d'ordre **5.5** MW pour produire **1 Kg/s** de vapeur d'eau à une température **900** °C et une pression de **30 bars,** afin d'assure les besoins en énergie thermique de l'électrolyseur,

La conversion photovoltaïque est utilisée pour alimenter les cellules d'électrolyses par la puissance électrique nécessaire qui est de l'ordre de **15 MW** grâce à une centrale électrique à base de convertisseurs solaires photovoltaïques. Les valeurs annuelles de production d'hydrogène est d'ordre de **444966,77 Kg/an** (Tamanrasset).

Le fonctionnement optimal de notre installation est étroitement lié aux conditions climatiques. L'installation doit être placée dans une localité à forte irradiation solaire de sorte qu'elle peut extraire le maximum de puissance.

Il faut noter à la fin que la filière d'hydrogène est certainement incontournable. Cependant, un travail important reste à faire au niveau des développements techniques, afin de pouvoir la confronter aux filières parallèles notamment celles qui prédominent les systèmes énergétiques actuels.

RÉFÉRENCE BIBLIOGRAPHIE

- 1. Houcheng Zhang, Shanhe Su, Xiaohang Chen, Guoxing Lin, Jincan Chen, Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production, 38 (4298-4307), 2013.
- 2. S. Koumi Ngoh, L.M. Ayina Ohandja, Alexis Kemajou, Louis Monkam, Design and simulation of hybrid solar high-temperature hydrogen production system using both solar photovoltaic and thermal energy, 2014.
- 3. N. Monnerie, H. von Storch, A. Houaijia, M. Roeb, C. Sattler, Hydrogen production by coupling pressurized high temperature electrolyser with solar tower technology, 2016.
- 4. J. Padin, T.N. Veziroglu, A. Shahin, Hybrid solar high-temperature hydrogen production system, 295-317, 2000.
- 5. Bouziane khadidja, «Etude d'une installation photovoltaïque de production d'hydrogène parélectrolyse de l'eau», 2011.
- 6. Fethi Amri, The relationship amongst energy consumption (renewable and nonrenewable), and GDP in Algeria, Renewable and Sustainable Energy Reviews 76 (62–71), 2017.
- 7. A Réserves minières d'uranium prouvées. Ne tiennent pas compte des réserves secondaires (stocks civils et militaires, uranium appauvri,...) qui comptent pour plus d'1/3 de la consommation actuelle.
- 8. Claude Lorius, Énergies et climat : quels enseignements pour le futur ?, 841-843, 2001.
- 9. Fateh Bélaïd, Meriem Youssef, Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria, Energy Policy 102 (277–287), 2017.
- 10. Bernard Multon, Gael Robin, Marie Ruellan, Hamid Ben Ahmed, Situation énergétique mondiale à l'aube du 3eme millénaire. Perspectives offertes par les ressources Renouvelables, 2012.
- 11. El Mezouar Farah, « Contribution à la Production D'Hydrogène par le Solaire Thermique », 2012.
- 12. Jean-Louis Bal, Bernard Chabot, Les énergies renouvelables. État de l'art et perspectives de développement, 827–834, 2001.
- 13. Petra Luňáčková, Jan Průša, Karel Janda, The merit order effect of Czech photovoltaic plants, Energy Policy 106 (138–147), 2017.
- 14. Rafika Boudriès, « Etude Technico-économique de la Production de l'Hydrogène Solaire en Algérie », 2009.
- 15. R. Boudries-Khellaf, Etude d'un Système de Production d'Hydrogène Solaire en Algérie, Rev. Energ. Ren. : Zones Arides 17-29, 2002.
- 16. Madjid si Brahim, Etude d'un système de conversion de l'énergie éolienne à base de la machine asynchrone, 2015.
- L. Aîche-Hamane, M. Hamane and M. Belhamel, «Estimation of hydrogen production from different wind turbine sizes in the south of Algeria», Revue des Energies Renouvelables ICRESD-07 Tlemcen (129 – 134), 2007.
- 18. S.Bousalem, L.Aici, B.Benyoucef, «Etude d'un procédé de production d'hydrogène par énergie éolienne».
- 19. Sidi Mohammed Boudia, Abdelhalim Benmansour, Mohammed Abdellatif Tabet Hellal, Wind resource assessment in Algeria, 171–183, 2016.

RÉFÉRENCE BIBLIOGRAPHIE

- 20. Faradji née Kherbouche Djamila, Contribution à la valorisation énergétique de la Biomasse, 2011.
- 21. Noureddine Hajjaji, analyse de cycle de vie exégétique de systèmes de production d'hydrogène, 2011.
- Amine Akbi, Meryem Saber, Majda Aziza, Noureddine Yassaa, An overview of sustainable bioenergy potential in Algeria, Renewable and Sustainable Energy Reviews 72 (240–245), 2017.
- 23. Jean-Louis Bouvier, «Étude expérimentale d'un concentrateur solaire parabolique à génération directe de vapeur alimentant une centrale de micro-cogénération».
- 24. Nasreddine CHENNOUF, étude d'une installation de production d'hydrogène Solaire par électrolyse de l'eau dans la région d'Ouargla, Vol. 5, N° 1, 2013.
- 25. Kheridla Youcef et Khineche Kaddour, «Modélisation Et Simulation D'un Système De Production D'hydrogène Par Voie Photovoltaïque», 2014.
- 26. Amira Balaska, Ali Tahri, Fatima Tahri, Amine Boudghene Stambouli, Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria, RENE 8496, 2016.
- 27. R. Eke, T.R. Betts, R., Gottschalg, Spectral irradiance effects on the outdoor performance of photovoltaic Modules, Renewable and Sustainable Energy Reviews 69 (429–434), 2017.
- 28. Muhammed Arslan Omar, Kemal Altinisik, Simulation of hydrogen production system with hybrid solar collector, 2016.
- 29. Rodrigo Rivera-Tinoco, « Etude technico-économique de la production d'hydrogène à partir de l'électrolyse haute température pour différentes sources d'énergie thermique », 2009.
- 30. Benjamin K. Sovacool, Valuing the greenhouse gas emissions from nuclear power: A critical survey, Energy Policy 36 (2940–2953), 2008.

Vapeur saturée: table de la température

		Volume massique m ³ /kg		Energ k	gie intern ⟨J/kg	e	I	Enthalpie kJ/kg		Entropie kJ/kg•K			
Temp. °C	Pres. kPa	Liquide sat.	Vapeur sat.	Liquide sat.	Évap.	Vapeur sat.	Liquide sat.	Évap.	Vapeur sat.	Liquide sat.	Évap.	Vapeu sat.	
T	Р	v_f	v_g	u_f	u_{fg}	ug	h_f	h_{fg}	h_g	s_f	Sfg	s_{g}	
0.01	0.6113	0.001 000	206.14	.00	2375.3	2375.3	.01	2501.3	2501.4	.0000	9.1562	9.1562	
5	0.8721	0.001 000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	.0761	8.9496	9.0257	
10	1.2276	0.001 000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	.1510	8.7498	8.9008	
15	1.7051	0.001 001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	.2245	8.5569	8.7814	
20	2.339	0.001 002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	.2966	8.3706	8.6672	
25	3.169	0.001.003	43.30	104.88	2304.9	2409.8	104.89	2442.3	2556.3	.30/4	8.1905	8.5580	
35	5 628	0.001.004	25.22	146 67	22767	2410.0	146.68	2418.6	25653	5053	7 8478	8 3 5 3 1	
40	7.384	0.001 008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	.5725	7:6845	8.2570	
45	9.593	0.001 010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	.6387	7.5261	8.1648	
50	12.349	0.001 012	12.03	209:32	2234.2	2443.5	209.33	2382.7	2592.1	.7038	7.3725	8.0763	
55	15.758	0.001 015	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	.7679	7.2234	7.991	
60	19.940	0.001 017	7.671	251.11	2205.5	2456.6	251.13	2358.5	2609.6	.8312	7.0784	7.909	
65	25.03	0.001.020	6.197	272.02	2191.1	2463.1	272.06	2346.2	2618.3	.8935	6.9375	7.8310	
70	38.58	0.001.023	5.042 4.131	292.95	21/0.0	2409.0	292.98	2333.8	2635.3	.9349	0.8004 6.6669	7 682	
80	47 39	0.001.029	3 407	334.86	2102.0	2482.2	334.91	2308.8	2643.7	1.0753	6 5369	7.612	
85	57.83	0.001 033	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.544	
90	70.14	0.001 036	2.361	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.479	
95	84.55	0.001 040	1.982	397.88	2102.7	2500.6	397.96	2270.2	2668.1	1.2500	6.1659	7.415	
100 N	Ipa 0.101 35	0.001 044	1,6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.354	
105	0.120 82	0.001 048	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.295	
110	0.143 27	0.001 052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.238	
115	0.169 06	0.001 056	1.0366	482.30	2041.4	2523.7	482.48	2216.5	2699.0	1.4734	5.7100	7.183	
120	0.198 53	0.001 060	0.8919	503.50	2025.8	2529.3	503.71	2202.6	2706.3	1.52/0	5.6020	7.129	
125	0.2321	0.001.065	0.7706	546.02	2009.9	2534.0	546 31	2188.5	2715.5	1.3613	5 3925	7.077	
130	0.2701	0.001.075	0.0085	567.35	1993.9	2535.5	567.69	2179.2	2727.3	1.6370	5.2907	6.977	
140	0.3613	0.001.080	0.5089	588.74	1961.3	2550.0	589.13	2144.7	2733.9	1.7391	5.1908	6.929	
145	0.4154	0.001 085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2740.3	1.7907	5.0926	6.883	
150	0.4758	0.001 091	0.3928	631.68	1927.9	2559.5	632.20	2114.3	2746.5	1.8418	4.9960	6.837	
155	0.5431	0.001 096	0.3468	653.24	1910.8	2564.1	653.84	2098.6	2752.4	1.8925	4.9010	6.793	
160	0.6178	0.001 102	0.3071	674.87	1893.5	2568.4	675.55	2082.6	2758.1	1.9427	4.8075	6.750	
165	0.7005	0.001 108	0.2727	696.56	1876.0	2572:5	697.34	2066.2	2763.5	1.9925	4.7153	6.707	
170	0.7917	0.001 114	0.2428	718.33	1838.1	23/0.3	749.21	2049.5	2108.1	2.0419	4.0244	6.625	
190	0.8920	0.001 121	0.2168	762.09	1821.6	2583.7	763.22	2032.4	2778.2	2.0909	4.5347	6 585	
185	1 1227	0.001 127	0.174.09	784.10	1802.9	2585.7	785.37	1997.1	2782.4	2.1370	4.3586	6.546	
190	1.2544	0.001 141	0.156 54	806.19	1783.8	2590.0	807.62	1978.8	2786.4	2.2359	4.2720	6.507	
195	1.3978	0.001 149	0.141 05	828.37	1764.4	2592.8	829.98	1960.0	2790.0	2.2835	4.1863	6.469	
200	1.5538	0.001 157	0.127 36	850.65	1744.7	2595.3	852.45	1940.7	2793.2	2.3309	4.1014	6.432	
205	1.7230	0.001 164	0.115 21	873.04	1724.5	2597.5	875.04	1921.0	2796.0	2.3780	4.0172	6.395	
210	1.9062	0.001 173	0.104 41	895.53	1703.9	2599.5	897.76	1900.7	2798.5	2.4248	3.9337	6.358	
215	2.104	0.001 181	0.094 79	918.14	1682.9	2601.1	920.62	1879.9	2800.5	2.4/14	3.8507	6.322	
220	2.318	0.001 190	0.086 19	940.87	1639.6	2602.4	945.02	1836.5	2802.1	2.5178	3.7063	6 2 5(
225	2.340	0.001 199	0.078 49	986 74	1617.2	2603.9	990.12	1813.8	2804.0	2.6099	3.6047	6.214	
235	3.060	0.001 209	0.065 37	1009.89	1594.2	2604.1	1013.62	1790.5	2804.2	2.6558	3.5233	6.179	
240	3.344	0.001 229	0.059 76	1033.21	1570.8	2604.0	1037.32	1766.5	2803.8	2.7015	3.4422	6.143	
245	3.648	0.001 240	0.054 71	1056.71	1546.7	2603.4	1061.23	1741.7	2803.0	2.7472	3.3612	6.108	
250	3.973	0.001 251	0.050 13	1080.39	1522.0	2602.4	1085.36	1716.2	2801.5	2.7927	3.2802	6.07.	
255	4.319	0.001 263	0.045 98	1104.28	1496.7	2600.9	1109.73	1689.8	2799.5	2.8383	3.1992	6.03	
260	4.688	0.001 276	0.042 21	1128.39	1470.6	2599.0	1134.37	1662.5	2796.9	2.8838	3.1181	6.00	
265	5.081	0.001 289	0.038 77	1152.74	1443.9	2596.0	1109.28	1605.2	2793.0	2.9294	2 9551	5.90	
270	5.499	0.001 302	0.033 64	1202.25	1387.9	2595.7	1210.07	1574.9	2785.0	3 0208	2.9551	5.89	
275	6.412	0.001 332	0.030.17	1202.25	1358.7	2586.1	1235.99	1543.6	2779.6	3.0668	2.7903	5.85	
285	6.909	0.001 348	0.027 77	1253.00	1328.4	2581.4	1262.31	1511.0	2773.3	3.1130	2.7070	5.81	
290	7.436	0.001 366	0.025 57	1278.92	1297.1	2576.0	1289.07	1477.1	2766.2	3,1594	2.6227	5.78	
295	7.993	0.001 384	0.023 54	1305.2	1264.7	2569.9	1316.3	1441.8	2758.1	3.2062	2.5375	5.74	
300	8.581	0.001 404	0.021 67	1332.0	1231.0	2563.0	1344.0	1404.9	2749.0	3.2534	2.4511	5.70	
305	9.202	0.001 425	0.019 948	1359.3	1195.9	2555.2	1372.4	1366.4	2738.7	3.3010	2.3633	5.66	
310	9.856	0.001 447	0.018 350	1387.1	1159.4	2546.4	1401.3	1326.0	2727.3	3.3493	2.2737	5.62	
315	10.547	0.001 472	0.016 867	1415.5	1121.1	2036.6	1431.0	1283.3	2714.5	3.3982	2.1821	3.38 5.52	
320 220	11.2/4	0.001 499	0.013 488	1444.0	1080.9 002.7	2323.3	1401.3	1238.0 1120 K	2700.1	3.4400	1.8000	5.55	
330 340	12.840	0.001.301	0.012 990	15703	894 R	2-+20.9 2464 6	1594.2	1027.9	2622.0	3,6594	1.6763	5.33	
350	16 513	0.001 038	0.008.813	1641 9	776.6	2418.4	1670.6	893.4	2563.9	3.7777	1.4335	5.21	
360	18.651	0.001 893	0.006 945	1725.2	626.3	2351.5	1760.5	720.5	2481.0	3.9147	1.1379	5.05	
370	21.03	0.002 213	0.004 925	1844.0	384.5	2228.5	1890.5	441.6	2332.1	4.1106	.6865	4.79	
374.14	1 22.09	0.003 155	0.003 155	2029.6	0	2029.6	2099.3	0	2099.3	4.4298	0	4.429	

		Volume massique m ³ /kg		Énergie interne kJ/kg			J	Enthalpie kJ/kg		Entropie kJ/kg•K			
Pres. kPa	Temp. °C	Liquide sat.	Vapeur sat.	Liquide sat.	Évap.	Vapeur sat,	Liquide sat.	Évap.	Vapeur sat.	Liquide sat.	Évan.	Vapeur sat.	
Р	Т	v_f	v_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S _f	Sfg	Sg	
0.6113	0.01	0.001 000	206.14	.00	2375.3	2375.3	.01	2501.3	2501.4	.0000	9.1562	9.1562	
1.0	6.98	0.001 000	129.21	29.30	2355.7	2385.0	29.30	2484.9	2514.2	.1059	8.8697	8.9756	
1.5	13.03	0.001 001	87.98	54.71	2338.6	2393.3	54.71	2470.6	2525.3	.1957	8.6322	8.8279	
2.0	17.50	0.001 001	67.00	73.48	2326.0	2399.5	73.48	2460.0	2533.5	.2607	8.4629	8.7237	
2.5	21.08	0.001 002	54.25	88.48	2315.9	2404.4	88.49	2451.6	2540.0	.3120	8.3311	8.6432	
3.0 4.0	24.08	0.001.005	43.67	101.04	2307.5	2408.5	101.05	2444.5	2040.0 2552.4	.3545	8.0520	8.3770 8.4746	
5.0	32.88	0.001 004	28.19	137.81	2282.7	2420.5	137.82	2423.7	2561.5	.4764	7.9187	8.3951	
7.5	40.29	0.001 008	19.24	168.78	2261.7	2430.5	168.79	2406.0	2574.8	.5764	7.6750	8.2515	
10	45.81	0.001 010	14.67	191.82	2246.1	2437.9	191.83	2392.8	2584.7	.6493	7.5009	8.1502	
15	53.97	0.001 014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	.7549	7.2536	8.0085	
20	64.07	0.001.017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	.8320	7.0766	7.9085	
30	69.10	0.001 020	5.229	271.90	2191.2	2463.1	271.93	2340.5	2625.3	9439	6 8247	7.7686	
40	75.87	0.001 027	3.993	317.53	2159.5	2477.0	317.58	2319.2	2636.8	1.0259	6.6441	7.6700	
50	81.33	0.001 030	3.240	340.44	2143.4	2483.9	340.49	2305.4	2645.9	1.0910	6.5029	7.5939	
75	91.78	0.001 037	2.217	384.31	2112.4	2496.7	384.39	2278.6	2663.0	1.2130	6.2434	7.4564	
MPa													
0.100	99.63	0.001 043	1.6940	417.36	2088.7	2506.1	417.46	2258.0	2675.5	1.3026	6.0568	7.3594	
0.125	105.99	0.001.048	1.3749	444.19	2069.3	2513.5	444.32	2241.0	2685.4	1.3740	5.9104	7.2844	
0.175	116.06	0.001.055	1.0036	486.80	2038.1	2519.7	486.99	2220.5	2700.6	1 4849	5 6868	7.1717	
0.200	120.23	0.001 061	0.8857	504.49	2025.0	2529.5	504.70	2201.9	2706.7	1.5301	5.5970	7.1271	
0.225	124.00	0.001 064	0.7933	520.47	2013.1	2533.6	520.72	2191.3	2712.1	1.5706	5.5173	7.0878	
0.250	127.44	0.001 067	0.7187	535.10	2002.1	2537.2	535.37	2181.5	2716.9	1.6072	5.4455	7.0527	
0.275	130.60	0.001 070	0.6573	548.59	1991.9	2540.5	548.89	2172.4	2721.3	1.6408	5.3801	7.0209	
0.300	133.55	0.001 073	0.6058	561.15	1982.4	2543.6	561.47	2163.8	2725.3	1.6718	5.3201	6.9919	
0.323	138.88	0.001.076	0.5620	572.90	1973.5	2546.4 2548.9	584 33	2155.8	2729.0 2732 A	1.7006	5.2646	6.9652	
0.375	141.32	0.001 075	0.4914	594.40	1956.9	2551.3	594.81	2140.8	2735.6	1.7528	5 1647	6 9175	
0.40	143.63	0.001 084	0.4625	604.31	1949.3	2553.6	604.74	2133.8	2738.6	1.7766	5.1193	6.8959	
0.45	147.93	0.001 088	0.4140	622.77	1934.9	2557.6	623.25	2120.7	2743.9	1.8207	5.0359	6.8565	
0.50	151.86	0.001 093	0.3749	639.68	1921.6	2561.2	640.23	2108.5	2748.7	1.8607	4.9606	6.8213	
0.55	155.48	0.001.097	0.3427	655.32	1909.2	2564.5	655.93	2097.0	2753.0	1.8973	4.8920	6.7893	
0.65	162.01	0.001 101	0.2927	683.56	1886 5	2570.1	684.28	2080.5	2750.8	1.9312	4.8288	6.7000 6.7331	
0.70	164.97	0.001 108	0.2729	696.44	1876.1	2572.5	697.22	2066.3	2763.5	1.9922	4.7158	6.7080	
0.75	167.78	0.001 112	0.2556	708.64	1866.1	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.6847	
0.80	170.43	0.001 115	0.2404	720.22	1856.6	2576.8	721.11	2048.0	2769.1	2.0462	4.6166	6.6628	
0.85	172.96	0.001 118	0.2270	731.27	1847.4	2578.7	732.22	2039.4	2771.6	2.0710	4.5711	6.6421	
0.90	175.56	0.001 121	0.2130	751.05	1838.0	2580.5	753.02	2031.1	2773.9	2.0946	4.5280	6.6226	
1.00	179.91	0.001 127	0.194 44	761.68	1822.0	2583.6	762.81	2025.1	2778.1	2.1172	4.4809	6.5865	
1.10	184.09	0.001 133	0.177 53	780.09	1806.3	2586.4	781.34	2000.4	2781.7	2.1792	4.3744	6.5536	
1.20	187.99	0.001 139	0.163 33	797.29	1791.5	2588.8	798.65	1986.2	2784.8	2.2166	4.3067	6.5233	
1.30	191.64	0.001 144	0.151 25	813.44	1777.5	2591.0	814.93	1972.7	2787.6	2.2515	4.2438	6.4953	
1.40	195.07	0.001 149	0.140 84	828.70	1764.1	2592.8	830.30	1959.7	2790.0	2.2842	4.1850	6.4693	
1.75	205.76	0.001 154	0.113 49	876.46	1721.4	2594.5	878 50	1947.3	2792.2	2.3150	4.1298	6.4448 6.3896	
2.00	212.42	0.001 177	0.099 63	906.44	1693.8	2600.3	908.79	1890.7	2799.5	2.4474	3.8935	6.3409	
2.25	218.45	0.001 187	0.088 75	933.83	1668.2	2602.0	936.49	1865.2	2801.7	2.5035	3.7937	6.2972	
2.5	223.99	0.001 197	0.079 98	959.11	1644.0	2603.1	962.11	1841.0	2803.1	2.5547	3.7028	6.2575	
3.0	233.90	0.001 217	0.066.68	1004.78	1599.3	2604.1	1008.42	1795.7	2804.2	2.6457	3.5412	6.1869	
4	242.00	0.001 255	0.03707	1045.45	1520.0	2603.7	1049.75	1753.7	2803.4	2.7253	3.4000	6.1253	
5	263.99	0.001 286	0.039 44	1147.81	1449.3	2597.1	1154.23	1640.1	2801.4	2,904	3.0532	5.0701 5.0734	
6	275.64	0.001 319	0.032 44	1205.44	1384.3	2589.7	1213.35	1571.0	2784.3	3.0267	2.8625	5.8892	
7	285.88	0.001 351	0.027 37	1257.55	1323.0	2580.5	1267.00	1505.1	2772.1	3.1211	2.6922	5.8133	
8	295.06	0.001 384	0.023 52	1305.57	1264.2	2569.8	1316.64	1441.3	2758.0	3.2068	2.5364	5.7432	
9	303.40	0.001 418	0.020 48	1350.51	1207.3	2557.8	1363.26	1378.9	2742.1	3.2858	2.3915	5.6772	
11	318.15	0.001 452	0.015 987	1433.7	1096.0	∠544:4 2529.8	1407.30	1255.5	2724.7	3.3396 3.4795	2.2544	5.6141 5.5527	
12	324.75	0.001 527	0.014 263	1473.0	1040.7	2513.7	1491.3	1193.6	2684.9	3.4962	1.9962	5.4924	
13	330.93	0.001 567	0.012 780	1511.1	985.0	2496.1	1531.5	1130.7	2662.2	3.5606	1.8718	5.4323	
14	336.75	0.001 611	0.011 485	1548.6	928.2	2476.8	1571.1	1066.5	2637.6	3.6232	1.7485	5.3717	
15 16	342.24 347 44	0.001 711	0.010 337	1585.6	869.8	2455.5	1610.5	1000.0	2610.5	3.6848	1.6249	5.3098	
17	352.37	0.001 711	0.009.306	1022.7	809.0 711 s	2431.7 2405.0	1600.2	930.6 856.0	2580.6	3.7461	1.4994	5.2455	
18	357.06	0.001 840	0.007 489	1698.9	675.4	2374.3	1732.0	030.9 777 1	2509.1	3.8715	1,2320	5.1777 5.1044	
19	361.54	0.001 924	0.006 657	1739.9	598.1	2338.1	1776.5	688.0	2464.5	3.9388	1.0839	5.0228	
20	365.81	0.002 036	0.005 834	1785.6	507.5	2293.0	1826.3	583.4	2409.7	4.0139	.9130	4.9269	
21	369.89	0.002 207	0.004 952	1842.1	388.5	2230.6	1888.4	446.2	2334.6	4.1075	.6938	4.8013	
22 22 09	374.14 374.14	0.002/42	0.003 568	1961.9	125.2	2087.1	2022.2	143.4	2165.6	4.3110	.2216	4.5327	
22.09	J / 7.19	0.003 133	0.003 155	2027.0	U	2029.0	2099.3	U	2099.3	4.4298	U	4.4298	

Vapeur	surchauff	ée											
T	11	11	h	s	11	u	h	5	υ		и	h	\$
	0							-			10.35	D (00 (2	
	P	= .010 M	IPa (45.81	.)	, i	P = .050 I	MPa (81.3	53)		P	= .10 M	Pa (99.03	»)
Sat	14.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939	1.694	10	2506.1	2675.5	7.3594
50	14 960	2442.0	2502.6	8 1740									
· 50	14.809	2445.9	2392.0	0.1749	2 (10	0544.6	0.000 5	7 (017	1.70	-0	2506 7	2676.2	72614
100	17.196	2515.5	2687.5	8.4479	3.418	2511.6	2682.5	/.094/	1.09.	10	2300.7	2070.2	7.3014
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401	1.93	54	2582.8	2776.4	7.6134
200	21 825	2661.3	2879.5	8 9038	4.356	2659.9	2877.7	8.1580	2.17	2	2658.1	2875.3	7.8343
200	21.025	2001.5	2077.5	0.1000	4.820	2725.0	2076.0	9 2556	2.40		77227	20743	8 0333
250	24.136	2/36.0	2977.3	9.1002	4.820	2755.0	2970.0	8.5550	2.40	,	2133.1	2974.3	0.0535
300	26.445	2812.1	3076.5	9.2813	5.284	2811.3	3075.5	8.5373	2.63)	2810.4	3074.3	8.2158
400	31.063	2968.9	3279.6	9.6077	6.209	2968.5	3278.9	8.8642	3.10	3	2967.9	3278.2	8.5435
500	25.000	2122.2	2490 1	0.0079	7 134	3132.0	3488 7	0 1546	3 56	5	3131.6	3488 1	8 8342
500	33.079	3132.3	5469.1	9.0970	7.154	5152.0	5466.7	9.1.540	5.50	,	2001.0	3400.1	0.0072
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178	4.02	5	3301.9	3704.7	9.0976
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599	4.49)	3479.2	3928.2	9.3398
000	40.526	2662.8	4150.0	10.6281	9 904	3663.6	4158.9	9.8852	4 9 5	,	3663 5	4158.6	9 5652
800	49.320	3003.8	4139.0	10.0201	10.000	2054.0	4100.0	10.0002	5.41	- -	2054.0	4206.1	0 7767
900	54.141	3855.0	4396.4	10.8396	10.828	3854.9	4396.3	10.0967	5.41	÷	3834.8	4390.1	9.7707
1000	58,757	4053.0	4640.6	11.0393	11.751	4052.9	4640.5	10.2964	5.87	5	4052.8	4640.3	9.9764
1100	63 372	4257.5	4891 2	11 2287	12.674	42.57.4	4891.1	10.4859	6.33	7	4257.3	4891.0	10.1659
1200	(3.007	4467.0	5147.0	11 4001	12 507	1167.8	51477	10,6662	6 70	à	11677	5147.6	10 3463
1200	67.987	4407.9	5147.8	11.4091	13.397	4407.8	5147.7	10.0002	0.79	,	4407.7	5147.0	10.5405
1300	72:602	4683.7	5409.7	11.5811	14.521	4683.6	5409.6	10.8382	7.26	3	4683.5	5409.5	10.5183
	Р	= .20 M	Pa (120.2)	3)		P = .30 N	IPa (133.	55)		- P -	= .40 M	Pa (143.6	53)
				- 1070		2542.6	0705.0	6 0010		25	25527	2729 6	(9050
Sat.	.8857	2529.5	2706.7	7.1272	.6058	2543.0	2125.3	6.9919	.40	25	2555.0	27.38.0	0.8939
150	.9596	2576.9	2768.8	7.2795	.6339	2570.8	2761.0	7.0778	.47	98	2564.5	2752.8	6.9299
200	1 0803	2654.4	2870.5	7 5066	7163	26507	2865.6	7.3115	.53	42	2646.8	2860.5	7.1706
200	1.0005	2004.4	2070.5	7.5000	70(4	2720.7	20(7(7 5166	50	£1	2726 1	2064.2	7 2790
250	1.1988	2731.2	2971.0	7.7086	./904	2728.7	2967.0	7.5100	.39	51	2720.1	2904.2	1.3769
300	1.3162	2808.6	3071.8	7.8926	.8753	2806.7	3069.3	7.7022	.65	48	2804.8	3066.8	7.5662
400	1 5403	2966.7	3276.6	8 2218	1.0315	2965.6	3275.0	8.0330	.77	26	2964.4	3273.4	7.8985
-00	1.7014	2120.0	24974	9 5122	1 1967	3130.0	3496.0	8 3 2 5 1	89	03	3129.2	3484.9	8 1013
500	1.7814	3130.8	5467.1	0.5155	1.1607	3130.0	3480.0	0.5251	1.00	55	3129.2	2702.4	0.1913
600	2.013	3301.4	3704.0	8.7770	1.3414	3300.8	3703.2	8.5892	1.00	22	3300.2	3702.4	8.4558
700	2.244	3478.8	3927.6	9.0194	1.4957	3478.4	3927.1	8.8319	1.12	15	3477.9	3926.5	8.6987
800	2 475	3663.1	4158.2	9.2449	1.6499	3662.9	4157.8	9.0576	1.23	72	3662.4	4157.3	8.9244
000	2 706	20545	1205.8	9 4566	1 8041	3854.2	4305 A	9 2692	134	29	3853.9	43951	9 1362
900	2.700	3654.5	4393.0	0.4500	1.0041	4057.2	4620.7	0.4600	1.00	05	4052.0	4620.4	0.2260
1000	2.937	4052.5	4640.0	9.0003	1.9581	4052.5	4639.7	9.4690	1.40	65	4032.0	4039.4	9.5500
1100	3.168	4257.0	4890.7	9.8458	2.1121	4256.8	4890.4	9.6585	1.58	.40	4256.5	4890.2	9.5256
1200	3.399	4467.5	5147.3	10.0262	2.2661	4467.2	5147.1	9.8389	1.69	96	4467.0	5146.8	9.7060
1300	3 630	4683.2	5409.3	10.1982	2.4201	4683.0	5409.0	10.0110	1.81	51	4682.8	5408.8	9.8780
1500	5.650	4005.2	5105.5	10.17 01									
	P	= .50 MI	Pa (151.86)			$P \simeq .60 N$	1Pa (158.8	35)		-	$P \simeq .80$ M	APa (170.	43)
a .	27.40	25(1.2	0740.7	6 0 0 1 0				6 7 6 0 0					
Sat.	.3749	2561.2	2/48./	6.8213	.315	2567.4	2756.8	6.7600		2404	2576.8	2769.1	6.6628
200	.4249	2642.9	2855.4	7.0592	.3520) 2638.9	2850.1	6.9665		2608	2630.6	2839.3	6.8158
2.50	.4744	2723.5	2960.7	7.2709	.3938	3 2720.9	2957.2	7.1816		2931	2715.5	2950.0	7.0384
300	.5226	2802.9	3064.2	7.4599	4344	4 2801.0	3061.6	7.3724		3241	2797.2	3056.5	7 2328
250	5701	10016	21677	7 (220		2001.0	21657	7.5121		2644	2078.2	21(17	7.4000
550	.5701	2002.0	5107.7	7.0329	.4/4.	2 2881.2	3105.7	/.5464		3544	28/8.2	3101.7	7.4089
400	.6173	2963.2	3271.9	7.7938	.513	7 2962.1	3270.3	7.7079		3843	2959.7	3267.1	7.5716
500	.7109	3128.4	3483.9	8.0873	.5920	3127.6	3482.8	8.0021		.4433	3126.0	3480.6	7.8673
600	8041	3299.6	3701.7	8 3522	660	7 32001	3700.9	8 2674		5018	3297.9	3600 4	8 1333
700	.0041	2477 5	2025.0	0.5522	.009	3233.1	2025.2	0.2074		5010	3476.2	2024.2	0.1333
700	.8909	5477.5	3923.9	8.3932	.147.	2 3477.0	3925.3	8.5107		2001	3476.2	3924.2	8.3770
800	.9896	3662.1	4156.9	8.8211	.824:	5 3661.8	4156.5	8.7367		.6181	3661.1	4155.6	8.6033
900	1.0822	3853.6	4394.7	9.0329	.901	7 3853.4	4394.4	8.9486		.6761	3852.8	4393.7	8.8153
1000	1.1747	4051.8	4639.1	9.2328	.978	8 4051.5	4638.8	9.1485		7340	4051.0	4638.2	9.0153
1100	1 2(72	1056.2	4990.0	0 4224	1.0559	42561	1889.6	0 3381		7010	105110	4880.1	0.2050
1100	1.2072	4230.3	4009.9	9.4224	1.055	4250.1	4009.0	0.6106		.7919	4235.0	4009.1	9.2030
1200	1.3596	4466.8	5146.6	9.6029	1.1330) 4466.5	5140.5	9.5185		.8497	4466.1	5145.9	9.3855
1300	1.4521	4682.5	5408.6	9.7749	1.210	1 4682.3	5408.3	9.6906		.9076	4681.8	5407.9	9.5575
	1	P = 1.00 I	APa (179.9	91)		P = 1.20 l	MPa (187.	99)		ł	r = 1.40	MPa (195	.07)
Sat	104.44	25926	2779 1	6 5965	163 3	3 2588.8	2784.8	6 5233	.1	10 84	2592.8	2790.0	6.4693
5at.	.194 44	2383.0	2770.1	0.5805	160 2	0 2612.0	29150	6.5200	1	13.02	2603.1	2803.3	6 4975
200	.2060	2621.9	2827.9	6.6940	.109.3	2012.8	2013.9	0.3898	.1	13 02	2003.1	2005.5	0.4975
250	.2327	2709.9	2942.6	6.9247	.192 3	4 2704.2	2935.0	6.8294	1.	33 20	2698.3	2927.2	6.7467
300	.2579	2793.2	3051.2	7.1229	.2138	2789.2	3045.8	7.0317	.1	s2 28	2785.2	3040.4	6.9534
350	2825	2875 2	31577	7,3011	.2345	2872.2	3153.6	7.2121	.2)03	2869.2	3149.5	7.1360
400	3066	20.0.2	3263.0	7 4651	2548	2954.9	3260.7	7,3774	.2	178	2952.5	3257.5	7.3026
+00		2124 -	3470 C	7.7031	2016	3122.9	3476 2	76750	2	521	3121.1	3474 1	7 6027
500	.5341	3124.4	34/6.3	1.1022	.4340	-2205 (2606 2	7.0137	.2	860	3204 4	3604.0	7 0710
600	.4011	3296.8	3697.9	8.0290	.3339	3293.0	3090.3	7.9433	.2	300	3294.4	3094.0	7.8710
700	.4478	3475,3	3923.1	8.2731	.3729	3474.4	3922.0	8.1881	.3	195	3473.6	3920.8	8.1160
800	.4943	3660.4	4154.7	8.4996	.4118	3659.7	4153.8	8.4148	.3	528	3659.0	4153.0	8.3431
000	5407	2052.2	4202.0	9 7119	4505	3851.6	4392.2	8 6272	.3	861	3851.1	4391.5	8.5556
900	.5407	3832.2	4372.7	0.7110	4900	4050.0	4627.0	0.0272		102	4040.5	1676.1	9 7550
1000	.58/1	4050.5	4657.6	8.9119	.4092	4050.0	4037.0	0.0274	.4	192	4049.5	40.00.4	0.7,559
1100	.6335	4255.1	4888.6	9.1017	.5278	4254.6	4888.0	9.0172	.4	524	4254.1	4887.5	8.9457
1200	.6798	4465.6	5145.4	9.2822	.5665	4465.1	5144.9	9.1977	.4	855	4464.7	5144.4	9.1262
1300	7261	4681 3	54074	9 4 5 4 3	.6051	4680.9	5407.0	9,3698	.5	186	4680.4	5406.5	9.2984
1500	.7201	.501.5	2.07.4	2									
	i i	P = 1.60	MPa (201.4	41)		P = 1.80	MPa (207.	.15)		P	$^{2} = 2.00$	MPa (212	.42)
e	122.00	2507.0	2704.0	6 4210	110 4	2 2508 /	2797 1	6 3704	0	9 63	2600 3	2799 5	6.3409
Sat.	.123 80	2090.0	2/94.0	0.4218	.110 4	- 2070.4	2010	6 1000	.0.	13 77	7670 2	79350	6 4147
225	.132 87	2644.7	2857.3	6.5518	.110	2030.6	2040./	0.4808	.10	11 61	2028.3	2000.0	0.4147
250	.141 84	2692.3	2919.2	6.6732	.124 9	2686.0	2911.0	6.6066	.1	1 4 4	26/9.6	2902.5	0.5453
300	.158 62	2781.1	3034.8	6.8844	.140 2	21 2776.9	3029.2	6.8226	.1	!5 47	2772.6	3023.5	6.7664
350	174 56	28661	31454	7,0694	.154 5	57 2863.0	3141.2	7.0100	.1	38 57	2859.8	3137.0	6.9563
400	100.05	2000.1	2764.7	7 7774	169 /	7 20477	3250.0	7 1794	1	51 20	2945 2	3247.6	7.1271
400	.190.05	2950.1	5254.2	1.23/4	100-	0 21170	24/00	7.1174	.1.	15 60	2114 0	3167 6	7 4217
500	.2203	3119.5	3472.0	7.5390	.195 3	5117.9	5469.8	7.4825	1.	508	5110.2	J40/.0	7.4317
600	.2500	3293.3	3693.2	7.8080	.2220	3292.1	3691.7	7.7523	.1	<i>1</i> 9 60	5290.9	3690.1	1.7024
700	.2794	3472.7	3919.7	8.0535	.2482	3471.8	3918.5	7.9983	.2	132	3470.9	3917.4	7.9487
	2007	2/20 -	4100 1	0 0000	7747	26576	4151 2	8 2250	2	467	3657.0	41503	8 1765
800	.3086	3658.3	4152.1	8.2808	.2/42		4700	0.2236	.2	700	20100	. 4200.4	9 2005
900	.3377	3850.5	4390.8	8.4935	.3001	3849.9	4390.1	8.4386	.2	/00	3849,3	4589.4	0.3893
1000	.3668	4049.0	4635.8	8.6938	.3260	4048.5	4635.2	8.6391	.2	933	4048.0	4634.6	8.5901
1100	3958	42537	4887.0	8,8837	.3518	4253.2	4886.4	8.8290	.3	166	4252.7	4885.9	8.7800
1200	1740	AA6A 7	51/20	0.0007	3776	44637	51434	9.0096	3	398	4463.3	5142.9	8,9607
1200	.4248	4404.2	5143.9	9.0043	.5770	1270 -	5105/	0.1010	 1	631	4670 0	5405 1	0 1270
1300	.4538	4679.9	5406.0	9.2364	.4034	40/9.5	2403.6	2.1818		201	-10/9.0	5405.1	2.1349

vapeur T	surchaufi	fée	h					s		u	h	s
-	<i>P</i> =	= 2.50 M	Pa (223.99))		= 3.00 MI	Pa (233.96))))	P =	= 3 50 M	Pa (242.6	0)
at	070.08	2602.1	2802 1	6 2575	066.68	2604.1	2804.2	6 1860	057.07	2602.7	2802.4	6 1 2 5 2
ai. 225	.079 98	2605.6	2805.1	6.2639	.000 08	2604.1	2804.2	0.1809	.05707	2603.7	2803.4	6.1253
250	.087 00	2662.6	2880.1	6.4085	.070 58	2644.0	2855.8	6.2872	.058 72	2623.7	2829.2	6.1749
00	.098 90	2761.6	3008.8	6.6438	.081 14	2750.1	2993.5	6.5390	.068.42	2738.0	2977.5	6.4461
50	.109 76	2851.9	3126.3	6.8403	.090 53	2843.7	3115.3	6.7428	.076 78	2835.3	3104.0	6.6579
00	.120 10	2939.1	3239.3	7.0148	.099 36	2932.8	3230.9	6.9212	.084 53	2926.4	3222.3	6.8405
50	.130 14	3025.5	3350.8	7.1746	.107 87	3020.4	3344.0	7.0834	.091 96	3015.3	3337.2	7.0052
00	.139 98	3112.1	3462.1	7.3234	.116 19	3108.0	3456.5	7.2338	.099 18	3103.0	3450.9	7.1572
00	.159 30	3288.0	3686.3	7.5960	.132 43	3285.0	3682.3	7.5085	.113 24	3282.1	3678.4	7,4339
00	.178 32	3468.7	3914.5	7.8435	.148 38	3466.5	3911.7	7.7571	.126 99	3464.3	3908.8	7.6837
00	.197 16	3655.3	4148.2	8.0720	.164 14	3653.5	4145.9	7.9862	.140 56	3651.8	4143.7	7.9134
00	.215 90	3847.9	4387.6	8.2853	.179 80	3846.5	4385.9	8.1999	.154 02	3845.0	4384.1	8.1276
00	.2346	4046.7	4633.1	8.4861	.195 41	4045.4	4631.6	8.4009	.167.43	4044.1	4630.1	8.3288
00	.2532	4251.5	4884.6	8.6762	.210 98	4250.3	4883.3	8.5912	.180 80	4249.2	4881.9	8.5192
00	.2718	4462.1	5141.7	8.8569	.226 52	4460.9	5140.5	8.7720	.194 15	4459.8	5139.3	8.7000
00	.2905	4677.8	5404.0	9.0291	.242 06	4676.6	5402.8	8.9442	.207 49	4675.5	5401.7	8.8723
	р	- 4 0 MI	Pa (250-40)		р	- 4 5 MP	o (257 49)	р	= 5.0 M	Pa (263.9	0)
	040.79	2602.2	2201 4	6.0701	044.06	2600 1	2709 2	6.0108	039.44	2507.1	2704 3	5 973/
at.	.049 /8	2002.5	2001.4	6.0701	.044.00	2000.1	2190.5	6.1401	.039 44	2377.1	2134.5	6 0544
2/5	.054.57	2007.9	2880.2	6.2285	.047.30	2030.3	2003.2	6.1401	.041 41	2031.3	2020.2	6 2084
50	.038 84	2123.3	2900./ 2002.5	0.3013	.020 100	2/12.0	2743.1	0.2020	.043 32	2070.U	2724.J 3069 A	6 4401
JU 00	.006 45	2820.7	2092.2	0.3821	.058 40	2017.0	2004 7	6 7047	.031 94	2000.1	21057	6 6 4 4 7 3
00	.073 41	2919.9	3213.0	0.7090	.064 /5	2713.3	3204.1	0.1041	.03/ 81	2200,0	3193.1	6 0104
00 00	080 02	2000 5	2445 2	0.7303 7.0001	.07074	2005.0	2323.3 2420 C	0.0740	.003 30	2777.1	3422.0	6 0750
00	.080 43	30701	3443.5 3674 4	7.0901	.070 31	3073.3	3670-5	7 31 10	079 40	3071.0	3666.5	7 2500
00	110.05	21421	2005-0	7,5000	.00/00	3450.0	3002.0	7 5621	010 09	31576	3000.5	7 510
00	122.07	2402.1	3903.9 1111 F	7.0198	100 11	3610 7	2202.0 1120 2	7 70/2	000 49	3646.6	A127 1	7 741
00	.122 87	3030.0	4141.3	0647	.109 11	2040.3	4137.3 1290 C	1.794Z 8.0001	107 42	38/07	41.79.9	7 0 503
00	.134 09	3843.0	4382.3	0.0047	119 05	2042.2 1041 -	4380.0	0.0091	117 07	J040.7 A040.4	4510.0	1.759. Q 1611
00	.140 45	4042.9	4028.7	8.2002	.130.13	4041.0	4027.2	8.4015	.11/0/	4040.4	4023.7	8 3570
.00	.138 17	4240.0	4000.0	8.4307	.140.30	4240.0	51260	0.4015	120 40	4245.0	51257	0.552 9 522
200	.109 8/	4438.0	5138.1	8.0370	.150.98	4457.5	5200.4	0.3023	.155 67	4430.3	5208.2	8 705
00	.181 30	40/4.3	5400.5	8.8100	.101 39	4075.1	3399.4	0./349	.145 20	4072.0	3390.2	8.705.
	P	= 6.0 M	Pa (275.64))	P	= 7.0 MI	Pa (285.88	3)	P	= 8.0 M	Pa (295.0	6)
at.	.032 44	2589.7	2784.3	5.8892	.027 37	2580.5	2772.1	5.8133	.023 52	2569.8	2758.0	5.7432
00	.036 16	2667.2	2884.2	6.0674	.029 47	2632.2	2838.4	5.9305	.024 26	2590.9	2785.0	5.790
50	.042 23	2789.6	3043.0	6.3335	.035 24	2769.4	3016.0	6.2283	.029 95	2747.7	2987.3	6.130
00	.047 39	2892.9	3177.2	6.5408	.039 93	2878.6	3158.1	6.4478	.034 32	2863.8	3138.3	6.3634
150	.052 14	2988.9	3301.8	6.7193	.044 16	2978.0	3287.1	6.6327	.038 17	2966.7	3272.0	6.555
500	.056 65	3082.2	3422.2	6.8803	.048 14	3073.4	3410.3	6.7975	.041 75	3064.3	3398.3	6.7240
550	.061 01	3174.6	3540.6	7.0288	.051 95	3167.2	3530.9	6.9486	.045 16	3159.8	3521.0	6.877
500	.065 25	3266.9	3658.4	7.1677	.055 65	3260.7	3650.3	7.0894	.048 45	3254.4	3642.0	7.020
700	.073 52	3453.1	3894.2	7.4234	.062 83	3448.5	3888.3	7.3476	.054 81	3443.9	3882.4	7.281
800	.081 60	3643.1	4132.7	7.6566	.069 81	3639.5	4128.2	7.5822	.060 97	3636.0	4123.8	7.517
900	.089 58	3837.8	4375.3	7.8727	.076 69	3835.0	4371.8	7.7991	.067 02	3832.1	4368.3	7.735
000	.097 49	4037.8	4622.7	8.0751	.083 50	4035.3	4619.8	8.0020	.073 01	4032.8	4616.9	7.9384
100	.105 36	4243.3	4875.4	8.2661	.090 27	4240.9	4872.8	8.1933	.078 96	4238.6	4870.3	8.130
200	.113 21	4454.0	5133.3	8.4474	.097 03	4451.7	5130.9	8.3747	.084 89	4449.5	5128.5	8.311
300	.121 06	4669.6	5396.0	8.6199	.103 77	4667.3	5393.7	8.5473	.090 80	4665.0	5391.5	8.4842
	P	$= 9.0 \mathrm{M}$	Pa (303.40))	P	= 10.0 M	Pa (311.0	6)	Р	= 12.5 M	IPa (327.8	i9)
at.	.020 48	2557.8	2742.1	5.6772	.018 026	2544.4	2724.7	5.6141	.013 495	2505.1	2673.8	5.462
25	.023 27	2646.6	2856.0	5.8712	.0.19 861	2610.4	2809.1	5.7568				
50	.025 80	2724.4	2956.6	6.0361	.022 42	2699.2	2923.4	5.9443	.016 126	2624.6	2826.2	5.711
100	.029.93	2848.4	3117.8	6.2854	.026 41	2832.4	3096.5	6.2120	.020 00	2789.3	3039.3	6.041
50	.033 50	2955.2	3256.6	6.4844	.029 75	2943.4	3240.9	6.4190	.022 99	2912.5	3199.8	6.271
00	.036 77	3055.2	3386.1	6.6576	.032 79	3045.8	3373.7	6.5966	.025 60	3021.7	3341.8	6.461
50	.039 87	3152.2	3511.0	6.8142	.035 64	3144.6	3500.9	6.7561	.028 01	3125.0	3475.2	6.6290
600	.042 85	3248.1	3633.7	6.9589	.038 37	3241.7	3625.3	6.9029	.030 29	3225.4	3604.0	6.781
50	.045 74	3343.6	3755.3	7.0943	.041 01	3338.2	3748.2	7.0398	.032 48	3324.4	3730.4	6.921
00	.048 57	3439.3	3876.5	7.2221	.043 58	3434.7	3870.5	7.1687	.034 60	3422.9	3855.3	7.053
00	.054 09	3632.5	4119.3	7.4596	.048 59	3628.9	4114.8	7.4077	.038 69	3620.0	4103.6	7.296
00	.059 50	3829.2	4364.8	7.6783	.053 49	3826.3	4361.2	7.6272	.042 67	3819.1	4352.5	7.518
000	.064 85	4030.3	4614.0	7.8821	.058 32	4027.8	4611.0	7.8315	.046 58	4021.6	4603.8	7.723
100	.070 16	4236.3	4867.7	8.0740	.063 12	4234.0	4865.1	8.0237	.050 45	4228.2	4858.8	7.916
200	.075 44	4447.2	5126.2	8.2556	.067 89	4444.9	5123.8	8.2055	.054 30	4439.3	5118.0	8.098
00	.080 72	4662.7	5389.2	8.4284	.072 65	4460.5	5387.0	8.3783	.058 13	4654.8	5381.4	8.271
		_ 15 0 3	4Do (242 2	- -	- P	- 17 5 74	Do 1254	(5)	р	- 20.0 3	100 1225 4	21)
at	P	- 13.0 IV	2610.5	5 3009	007 020	2200.2	2528.9	5 1410	005 834	22020	2409.7	4 976
ai. 850	010 557	2400.0) 2520.4	2610.5	5.4421	.007 920	2390.2	2320.8	J.1417	.003 034	2293.0	2709.7	7.740
,50	015 470	, 2020.4	2072.4	5.0011	010.1	0/070	2002.2	5 7012	000 0 40	0610 0	2010 1	
150	.015 649	2/40.7	29/5.5	5.8811	.012 447	2685.0	2902.9	5.7215	.009 942	2019.3	2818.1	5.554
+3U	.018 445	2879.5	5156.2 2200 c	0.1404	.015 174	2844.2	3109.7	0.0184	.012 695	2806.2	3060.1	5.901
00	.020 80	2996.6	3308.6	0.3443	.017 358	2970.3	32/4.1	0.2383	.014 768	2942.9	3238.2	0.140
50	.022.93	3104.7	3448.6	0.5199	.019 288	3083.9	5421.4	0.4230	.016 555	3062.4	3393.5	6.334
00	.024 91	3208.6	3582.3	6.6776	.021 06	3191.5	3560.1	6.5866	.018 178	3174.0	3537.6	6.504
50	.026 80	3310.3	3712.3	6.8224	.022 74	3296.0	3693.9	6./357	.019 693	3281.4	3675.3	6.658
/00	.028 61	3410.9	3840.1	6.9572	.024 34	3398.7	3824.6	6.8736	.021 13	3386.4	3809.0	6.799
500	.032 10	3610.9	4092.4	7.2040	.027 38	3601.8	4081.1	7.1244	.023 85	3592.7	4069.7	7.054
00	.035 46	3811.9	4343.8	7.4279	.030 31	3804.7	4335.1	7.3507	.026 45	3797.5	4326.4	7.283
)00	.038 75	4015.4	4596.6	7.6348	.033 16	4009.3	4589.5	7.5589	.028 97	4003.1	4582.5	7.492
00	.042 00	4222.6	5 4852.6	7.8283	.035 97	4216.9	4846.4	7.7531	.031 45	4211.3	4840.2	7.687
200	.045 23	4433.8	5112.3	8.0108	.038 76	4428.3	5106.6	7.9360	.033 91	4422.8	5101.0	7.870
300	.048 45	4649.1	5376.0	8.1840	.041 54	4643.5	5370.5	8.1093	.036 36	4638.0	5365.1	8.044

T	υ	и	h	S	υ	u	h	\$	υ	и	h	S			
		P = 25.0	MPa	·		P = 30.0	MPa			P = 35	.0 MPa				
375	.001 973 1	1798.7	1848.0	4.0320	.001 789 2	1737.8	1791.5	3.9305	.001 700 3	1702.9	1762.4	3.8722			
400	.006 004	2430.1	2580.2	5.1418	.002 790	2067.4	2151.1	4.4728	.002 100	1914.1	1987.6	4.2126			
425	.007 881	2609.2	2806.3	5.4723	.005 303	2455.1	2614.2	5.1504	.003 428	2253.4	2373.4	4.7747			
450	.009 162	2720.7	2949.7	5.6744	.006 735	2619.3	2821.4	5.4424	.004 961	2498.7	2672.4	5.1962			
500	.011 123	2884.3	3162.4	5.9592	.008 678	2820.7	3081.1	5.7905	.006 927	2751.9	2994.4	5.6282			
550	.012 724	3017.5	3335.6	6.1765	.010 168	2970.3	3275.4	6.0342	.008 345	2921.0	3213.0	5.9026			
600	.014 137	3137.9	3491.4	6.3602	.011 446	3100.5	3443.9	6.2331	.009 527	3062.0	3395.5	6.1179			
650	.015 433	3251.6	3637.4	6.5229	.012 596	3221.0	3598.9	6.4058	.010 575	3189.8	3559.9	6.3010			
700	.016 646	3361.3	3777.5	6.6707	.013 661	3335.8	3745.6	6.5606	.011 533	3309.8	3713.5	6.4631			
800	.018 912	3574.3	4047.1	6.9345	.015 623	3555.5	4024.2	6.8332	.013 278	3536.7	4001.5	6.7450			
900	.021 045	3783.0	4309.1	7.1680	.017 448	3768.5	4291.9	7.0718	.014 883	3754.0	4274.9	6.9886			
1000	.023 10	3990.9	4568.5	7.3802	.019 196	3978.8	4554.7	7.2867	.016 410	3966.7	4541.1	7.2064			
1100	.025 12	4200.2	4828.2	7.5765	.020 903	4189.2	4816.3	7.4845	.017 895	4178.3	4804.6	7.4057			
1200	.027 11	4412.0	5089.9	7.7605	.022 589	4401.3	5079.0	7.6692	.019 360	4390.7	5068.3	7.5910			
1300	.029 10	4626.9	5354.4	7.9342	.024 266	4616.0	5344.0	7.8432	.020 815	4605,1	5333.6	7.7653			
		P = 40.	.0 MPa			P = 50.0 MPa					P = 60.0 MPa				
375	.001 640 7	1677.1	1742.8	3.8290	.001 559 4	1638.6	1716.6	3.7639	.001 502 8	1609.4	1699.5	3.7141			
400	.001 907 7	1854.6	1930.9	4.1135	.001 730 9	1788.1	1874.6	4.0031	.001 633 5	1745.4	1843.4	3.9318			
425	.002 532	2096.9	2198.1	4.5029	.002 007	1959.7	2060.0	4.2734	.001 816 5	1892.7	2001.7	4.1626			
450	.003 693	2365.1	2512.8	4.9459	.002 486	2159.6	2284.0	4.5884	.002 085	2053.9	2179.0	4.4121			
500	.005 622	2678.4	2903.3	5.4700	.003 892	2525.5	2720.1	5.1726	.002 956	2390.6	2567.9	4.9321			
550	.006 984	2869.7	3149.1	5.7785	.005 118	2763.6	3019.5	5.5485	.003 956	2658.8	2896.2	5.3441			
600	.008 094	3022.6	3346.4	6.0114	.006 112	2942.0	3247.6	5.8178	.004 834	2861.1	3151.2	5.6452			
650	.009 063	3158.0	3520.6	6.2054	.006 966	3093.5	3441.8	6.0342	.005 595	3028.8	3364.5	5.8829			
700	.009 941	3283.6	3681.2	6.3750	.007 727	3230.5	3616.8	6.2189	.006 272	3177.2	3553.5	6.0824			
800	.011 523	3517.8	3978.7	6.6662	.009 076	3479.8	3933.6	6.5290	.007 459	3441.5	3889.1	6.4109			
900	.012 962	3739.4	4257.9	6.9150	.010 283	3710.3	4224.4	6.7882	.008 508	3681.0	4191.5	6.6805			
1000	.014 324	3954.6	4527.6	7.1356	.011 411	3930.5	4501.1	7.0146	.009 480	3906,4	4475.2	6.9127			
1100	.015 642	4167.4	4793.1	7.3364	.012 496	4145.7	4770.5	7.2184	.010 409	4124.1	4748.6	7.1195			
1200	.016 940	4380.1	5057.7	7.5224	.013 561	4359.1	5037.2	7.4058	.011 317	4338.2	5017.2	7.3083			
1300	.018 229	4594.3	5323.5	7.6969	.014 616	4572.8	5303.6	7.5808	.012 215	4551.4	5284.3	7.4837			

Liq	uide	com	primé

-													
T	υ	и	h	S	υ	и	h	5	υ	и	h	\$	
	Р	= 5 MPa	n (263.99)		Р	= 10 MP	a (311.06)		P = 15 MPa (342.24)				
Sat.	.001 285 9	1147.8	1154.2	2.9202	.001 452 4	1393.0	1407.6	3.3596	.001 658 1	1585.6	1610.5	3.6848	
0	.000 997 7	.04	5.04	.0001	.000 995 2	.09	10.04	.0002	.000 992 8	.15	15.05	.0004	
20	.000 999 5	83.65	88.65	.2956	.000 997 2	83.36	93.33	.2945	.000 995 0	83.06	97.99	.2934	
40	.001 005 6	166.95	171.97	.5705	.001 003 4	166.35	176.38	.5686	.001 001 3	165.76	180.78	.5666	
60	.001 014 9	250.23	255.30	.8285	.001 012 7	249.36	259.49	.8258	.001 010 5	248.51	263.67	.8232	
80	.001 026 8	333.72	338.85	1.0720	.001 024 5	332.59	342.83	1.0688	.001 022 2	331.48	346.81	1.0656	
100	.001 041 0	417.52	422.72	1.3030	.001 038 5	416.12	426,50	1.2992	.001 036 1	414.74	430.28	1.2955	
120	.001 057 6	501.80	507.09	1.5233	.001 054 9	500.08	510.64	1.5189	.001 052 2	498.40	514.19	1.5145	
140	.001 076 8	586.76	592.15	1,7343	.001 073 7	584.68	595.42	1.7292	.001 070 7	582.66	598.72	1.7242	
160	.001 098 8	672.62	678.12	1.9375	.001 095 3	670.13	681.08	1.9317	.001 091 8	667.71	684.09	1.9260	
180	.001 124 0	. 759.63	765.25	2.1341	.001 119 9	756.65	767.84	2.1275	.001 115 9	753.76	770.50	2.1210	
200	.001 153 0	848.1	853.9	2.3255	.001 148 0	844.5	856.0	2.3178	.001 143 3	841.0	858.2	2.3104	
220	.001 186 6	938.4	944.4	2.5128	.001 180 5	934.1	945.9	2.5039	.001 174 8	929.9	947.5	2.4953	
240	.001 226 4	1031.4	1037.5	2.6979	.001 218 7	1026.0	1038.1	2.6872	.001 211 4	1020.8	1039.0	2.6771	
260	.001 274 9	1127.9	1134.3	2.8830	.001 264 5	1121.1	1133.7	2.8699	.001 255 0	1114.6	1133.4	2.8576	
280					.001 321 6	1220.9	1234.1	3.0548	.001 308 4	1212.5	1232.1	3.0393	
300					.001 397 2	1328.4	1342.3	3.2469	.001 377 0	1316.6	1337.3	3.2260	
320									.001 472 4	1431.1	1453.2	3.4247	
340									.001 631 1	1567.5	1591.9	3.6546	
	Р		P = 30	MPa			P = 50	MPa					
Sat.	.002 036	1785.6	1826.3	4.0139									
0	.000 990 4	.19	20.01	.0004	.000 985 6	.25	29.82	.0001	.000 976 6	.20	49.03	.0014	
20	.000 992 8	82.77	102.62	.2923	.000 988 6	82.17	111.84	.2899	.000 980 4	81.00	130.02	.2848	
40	.000 999 2	165.17	185.16	.5646	.000 995 1	164.04	193.89	.5607	$.000\ 987\ 2$	161.86	211.21	.5527	
60	.001 008 4	247.68	267.85	.8206	.001 004 2	246.06	276.19	.8154	.000 996 2	242.98	292.79	.8052	
80	.001 019 9	330.40	350.80	1.0624	.001 015 6	328.30	358.77	1.0561	.001 007 3	324.34	374.70	1.0440	
100	.001 033 7	413.39	434.06	1.2917	.001 029 0	410.78	441.66	1.2844	.001 020 1	405.88	456.89	1.2703	
120	.001 049 6	496.76	517.76	1.5102	.001 044 5	493.59	524.93	1.5018	.001 034 8	487.65	539.39	1.4857	
140	.001 067 8	580.69	602.04	1.7193	.001 062 1	576.88	608.75	1.7098	.001 051 5	569.77	622.35	1.6915	
160	.001 088 5	665.35	687.12	1.9204	.001 082 1	660.82	693.28	1.9096	.001 070 3	652.41	705.92	1.8891	
180	.001 112 0	750.95	773.20	2.1147	.001 104 7	745.59	778.73	2.1024	.001 091 2	735.69	790.25	2.0794	
200	.001 138 8	837.7	860.5	2.3031	.001 130 2	831.4	865.3	2.2893	.001 114 6	819.7	875.5	2.2634	
220	.001 169 3	925.9	949.3	2.4870	.001 159 0	918.3	953.1	2.4711	.001 140 8	904.7	961.7	2.4419	
240	.001 204 6	1016.0	1040.0	2.6674	.001 192 0	1006.9	1042.6	2.6490	.001 170 2	990.7	1049.2	2.6158	
260	.001 246 2	1108.6	1133.5	2.8459	.001 230 3	1097.4	1134.3	2.8243	.001 203 4	1078.1	1138.2	2.7860	
280	.001 296 5	1204.7	1230.6	3.0248	.001 275 5	1190.7	1229.0	2.9986	.001 241 5	1167.2	1229.3	2.9537	
300	.001 359 6	1306.1	1333.3	3.2071	.001 330 4	1287.9	1327.8	3.1741	.001 286 0	1258.7	1323.0	3.1200	
320	.001 443 7	1415.7	1444.6	3.3979	.001 399 7	1390.7	1432.7	3.3539	.001 338 8	1353.3	1420.2	3.2868	
240	001 560 1	15307	1571.0	3.6075	.001 492 0	1501.7	1546.5	3.5426	.001 403 2	1452.0	1522.1	3.4557	
340	.001 568 4	1337.1											
340 360	.001 568 4	1702.8	1739.3	3.8772	.001 626 5	1626.6	1675.4	3.7494	.001 483 8	1556.0	1630.2	3.6291	
L'organigramme pour tracer la caractéristique « I - V »

Tableau: Lifecycle estimation for electricity generators [45].

Technology	Capacity/ Configuration / Fuel	Estimate « g CO2/ KWh »		
Wind	2.5 MW « Offchore »	9		
Hydroelectric	3.1 MW « Reservoir »	10		
Wind	1.5 MW « Onchore »	10		
Biogas	Méthanisation « Anaerobic Digestion »	11		
Hydroelectric	300 KW « Run of River»	13		
Solar Thermal	80 MW « Parabolic trough »	13		
Biomass	Forest Wood Co-combustion With Hard Coal	14		
Biomass	Forest Wood Steam Turbine	22		
Biomass	Short Rotation Forestry Co-combustion With Hard Coal	23		
Biomass	Biomass Forest Wood Reciprocating enginet			
Biomass	Waste Wood Steam Turbine	31		
Solar PV	PolyCristalline Silicone	32		
Biomass	Short Rotation Forestry Steam Turbine	35		
Géothermal	80 MW, Hot Dry Rock	38		
Biomass	Short Rotation Forestry Reciprocating Engine	41		
Nuclear	Various Reactor Types	66		
Natural Gas	Various Combined Cycle Turbine	433		
Full Cell	Hydrogen From Gas Reforming	664		
Diesel	Various Generator and Turbine Types	778		
Heavy Oil	Various Generator and Turbine Types	778		
Coal	Various Generator Types With Scrubbing	960		
Coal	Various Generator Types Without Scrubbing	1050		

Calculs (heure)

METEONORM Version 5.1

Site: Situa Horiz Azim Caté	ation: zon: nut: egorie	ALC dég astr 0 Ville	GER AG Jagée ronomiq es	ue		Inclinaison: Format	36 Standard
Mois Janv. Fév. Mars Avr. Juin	H_Gh 65 85 127 161 196 204	H_Dh 37 41 65 73 88 85	H_Gk 99 119 154 170 185 183	H_Dk 48 51 73 77 87 82	H_Bn 67 87 108 135 156 168	Ta 9,6 10,7 12,4 14,8 18,0 21,6	
Juil. Août Sept. Oct. Nov. Déc.	227 193 153 107 71 65	81 82 66 55 36 33	210 196 178 141 105 110	82 86 76 65 45 45	205 164 139 101 75 84	24,6 24,9 22,4 18,4 14,1 10,6	

Légende:

H_Gh: Irradiation du rayonnement	global horizontal
----------------------------------	-------------------

- H_Dh: Irradiation du rayonnement diffus horizontal
- H_Gk: Irradiation du rayonnement global, plan incl.
- H_Dk: Irradiation du rayonnement diffus, plan incl.
- H_Bn: Irradiation du rayonnement direct normal
- Ta: Temp. de l'air

Rayonnement en [kWh/m³]

Température en ['C]

Ta:

Seulement 3 station(s) pour l'interpolation

Mois	s Ta	Tamin	Ta dmin	Ta dmax	Tamax	RH			
Janv. Fév. Mars	. 9,6 . 10,7 s 12,4	-1,8 -1,0 0,3	4,0 4,2 5,6	15,4 16,7 18,9	22,0 24,3 27,2	84 81 78			
Avr.	. 14,8	1,9	7,6	20,8	27,2	75			
Ma	i 18,0	5,5	11,7	23,5	29,9	74			
Juir	n 21,6	9,5	14,7	26,7	31,7	70			
Juil	. 24,6	13,6	18,0	30,4	37,9	69			
Hou S	t 24,9 22.4	14,5 10,0	10,5	30,5 27 e	30,2 24.4	75			
Det	. 22,4 18.4	10,0	12.2	27,0	34,4 316	(5 77			
Nov	. 10,4 14.1	16	84	19.5	28.0	80			
Déc	. 10,6	-0,3	4,7	16,4	22,9	84			
Année	e 16,8					76			
Mois	s H_Gh	SDm	SDd	SD astr.	RR	RD	FF	DD	
Jany	. 65	142	4,6	9,8	80	9	1,4	248	
Fév.	. 85	154	5,5	10,7	82	8	1,2	270	
Mars	5 127	195	6,3	11,8	73	7	1,1	270	
Avr.	. 161	221	7,4	13,0	61	6	1,7	270	
Ma	i 196	277	8,9	14,0	40	5	1,7	270	
Juin	1 204 227	303	10,1	14,5 14,2	11	3 2	2,U 19	60 60	
Jun Aoû	. 221 • 193	324	10,5	14,5	7	2	1.0	00 68	
Sept	153	254	85	12,3	34	3	17	68	
Oct	. 107	213	6,9	11.1	76	6	1.0	270	
Nov.	. 71	169	5,6	10,0	96	7	1,5	270	
Déc.	. 65	143	4,6	9,5	115	9	1,3	270	
Année	. 1651	2744	7,4		686	67	1,5	291	

Légende:

Ta:	Temp. de l'air	RH:	Humidité relative
Tamin:	10 a. minimum (approx.)	Ta max:	10 a. maximum (approx.)
Ta dmin:	Moyenne minimum journ. Ta	Ta dmax:	Moyenne maximum journ. Ta
SD:	Durée d'insolation	RR:	Précipitations
RD:	Jours avec precipitation	FF:	Vitesse du vent
SD astr.:	Durée d'insolation, astronomique	DD:	Direction du vent
H_Gh:	Irradiation du rayonnement global horizontal		

Température en [°C] Vitesse du vent en [m/s]

METEONORM Version 5.1

Site: Situa Horiz Azim	ition: :on: iut:	Ann mei asti 0	naba AG r/lac ronomiq	ue		Inclinaison:	36
Caté	gorie	jorie Villes				Format	Standard
Mois	нсь	ноь	нси	нпи	H Bo	Ta	
			1000	1000	10011	19	
Jany.	((35	127	49	101	11,6	
Tév. Mara	89 129	44 62	125	55	90	11,9	
Mars	133	62 77	174	(3	131	12,3	
AVI. Mai	207	11	199	90	167	14,3	
Juin	201	82	202	81	194	213	
duil	235	76	217	78	215	24.3	
Août	207	72	211	78	197	25,0	
Sept.	164	60	195	72	164	23.2	
Oct.	127	47	177	62	147	19,7	
Nov.	89	36	145	52	120	15,6	
Déc.	74	30	132	46	111	12,5	
Année	1792	710	2075	816	1768	17,6	

Légende:

Calculs (heure)

H_Gh:	Irradiatio	n du rayo	nnement glob	al ho	prizon	ita
1 I DI	1 1		. 147			

- H_Dh: H_Gk: Irradiation du rayonnement diffus horizontal
- Irradiation du rayonnement global, plan incl.
- H_Dk: H_Bn: Irradiation du rayonnement diffus, plan incl. Irradiation du rayonnement direct normal
- Ta: Temp. de l'air

Rayonnement en [kWh/m³]

Température en ['C]

Gh: Seulement 3 station(s) pour l'interpolation

Mois	Ta	Tamin	Ta dmin	Ta dmax	Tamax	RH			
Janv.	11,6	2,1	6,9	16,3	22,0	76			
Fév.	11,9	2,1	7,0	16,8	22,3	75			
Mars	12,9	3,2	7,3	18,2	24,4	75			
Avr.	14,9	3,8	8,9	20,1	28,1	72			
Mai	18,0	7,5	12,4	23,0	29,8	78			
Juin	21,3	12,0	15,6	25,9	33,3	76			
Juil.	24,3	14,8	18,5	29,8	37,8	71			
Août	25,0	15,6	19,5	30,1	36,2	74			
Sept.	23,2	13,5	17,6	27,9	34,8	72			
Oct.	19,7	9,5	14,3	25,1	31,7	74			
Nov.	15,6	5,2	10,3	20,5	27,4	73			
Déc.	12,5	2,4	7,6	17,5	22,6	76			
Année	17,6					74			
Mois	H_Gh	SDm	SDd	SD astr.	RR	RD	FF	DD	
Janv.	77	141	4,5	9,8	93	13	3,6	270	
Fév.	89	152	5,4	10,7	75	11	4,0	270	
Mars	139	194	6,3	11,8	68	14	3,7	270	
Avr.	164	220	7,3	13,0	50	13	3,9	270	
Mai	207	276	8,9	14,0	31	5	3,6	113	
Juin	224	302	10,1	14,5	15	3	4,0	90	
Juil.	235	348	11,2	14,3	3	2	4,2	90	
Août	207	322	10,4	13,4	8	2	4,0	90	
Sept.	164	253	8,4	12,3	30	2	3,7	270	
Oct.	127	212	6,8	11,1	72	3	3,5	270	
Nov.	89	167	5,6	10,0	(4	5	3,8	270	
Déc.	74	141	4,5	9,5	96	11	4,0	270	
Année	1792	2728	7,3		616	83	3,8	264	

Légende:

Ta:	Temp. de l'air	RH:	Humidité relative
Tamin:	10 a. minimum (approx.)	Ta max:	10 a. maximum (approx.)
Ta dmin:	Moyenne minimum journ. Ta	Ta dmax:	Moyenne maximum journ. Ta
SD:	Durée d'insolation	RR:	Précipitations
RD:	Jours avec precipitation	FF:	Vitesse du vent
SD astr.:	Durée d'insolation, astronomique	DD:	Direction du vent
H_Gh:	Irradiation du rayonnement global horizontal		

Température en ['C] Vitesse du vent en [m/s] Durée d'insolation en [h/jour] Rayonnement en [kWh/m²]

Calculs (heure)

METEONORM Version 5.1

Site: Situa Horiz Azim Caté	ition: con: iut: gorie	Djel dég astr 0 Site	lfa agée onomiq quelcoi	ue nque		Inclinaison: Format	34 Standard
Mois Janv. Fév. Mara	H_Gh 61 109	H_Dh 39 37	H_Gk 84 159	H_Dk 46 51	H_Bn 51 141	Ta 6,6 8,0	
Mars Avr. Juin Juil. Août	155 197 208 228 184	68 78 82 62 83	162 184 186 208 183	60 71 78 79 62 85	131 168 180 234 148	3,5 13,5 17,9 23,6 27,3 26,5	
Sept. Oct. Nov. Déc.	148 123 77 63	65 54 39 33	167 161 112 99	71 65 49 42	135 127 82 75	22,0 15,9 10,7 7,5	
Année	1711	695	1901	766	1646	15,8	

Légende:

H_G	h:	Irrad	diation	dura	yonnemen	tg	loba	al horizo	intal

- H_Dh: Irradiation du rayonnement diffus horizontal H_Gk:
- Irradiation du rayonnement global, plan incl. H_Dk: Irradiation du rayonnement diffus, plan incl.
- H_Bn: Irradiation du rayonnement direct normal

Temp. de l'air Ta:

Rayonnement en [kWh/m³] Température en ['C] Seulement 1 station(s) pour l'interpolation

Mois	Ta	Tamin	Ta dmin	Ta dmax	Tamax	RH			
Janv. Fév. Mars Avr. Juin Juil. Août Sept. Oct. Nov.	6,6 8,0 9,9 13,5 17,9 23,6 27,3 26,5 22,0 15,9 10,7	-2,4 -3,5 -2,5 -0,5 3,3 7,7 11,3 11,7 9,1 4,2 -0,3	1,9 1,9 3,1 6,1 10,0 14,5 18,3 18,2 14,5 9,7 5,2	11,2 13,7 16,4 19,7 24,9 30,7 35,2 34,1 28,0 21,9 15,8	18,5 20,2 24,6 27,3 34,4 39,9 42,6 38,9 36,9 27,1 24,6	80 65 62 51 49 41 36 41 55 69 73			
Déc.	7,5	-2,9	2,5	12,6	19,3	78			
Année	15,8					58			
Mois	H_Gh	SDm	SDd	SD astr.	RR	RD	FF	DD	
Janv. Fév. Mars Avr. Juin Juil. Août Sept.	61 109 159 155 197 208 228 184 184 122	146 160 198 225 282 309 357 329 258 217	4,7 5,7 6,4 7,5 9,1 10,3 11,5 10,6 8,6	9,9 10,8 11,8 12,9 13,8 14,3 14,1 13,3 12,3	33 32 38 31 36 30 9 19 26	3 3 1 0 0 0 0	4,5 4,7 4,4 5,9 5,7 4,9 4,7 4,2 4,6	248 270 270 270 270 68 68 68 68 68	
Uct. Nov.	123 77	217 174	7,0 5,8	10,2	25 37	2	4,0 4,5	270 270	
Dec. Année	63 1711	149 2804	4,8 7,5	9,7	31 347	ა 16	4,3 4,7	270 291	

Légende:

Ta:	Temp. de l'air	RH:	Humidité relative
Ta min:	10 a. minimum (approx.)	Ta max:	10 a. maximum (approx.)
Ta dmin:	Moyenne minimum journ. Ta	Ta dmax:	Moyenne maximum journ. Ta
SD:	Durée d'insolation	RR:	Précipitations
RD:	Jours avec precipitation	FF:	Vitesse du vent
SD astr.:	Durée d'insolation, astronomique	DD:	Direction du vent
H_Gh:	Irradiation du rayonnement global horizontal		

Température en ['C] Vitesse du vent en [m/s] Durée d'insolation en [h/jour] Rayonnement en [kWh/m²]

Calculs (heure)

METEONORM Version 5.1

Site: Situation: Horizon: Azimut: Catégorie		tan dég asti 0 Site	anraset agée ronomiq e quelcoi	:sw ue nque		Inclinaison: Format	20 Standard
Mois	H_Gh	H_Dh	H_Gk	H_Dk	H_Bn	Ta	
Janv. Fév. Mars Avr. Juin Juin Juil. Août	110 153 188 208 215 242 237 221	54 47 67 77 50 65 73	133 181 205 208 201 216 216 215	60 54 70 69 76 49 63 74	99 171 187 198 192 257 233 201	18,7 21,3 24,6 38,8 32,2 34,6 33,5 31,6	
Sept. Oct. Nov. Déc.	194 185 94 87	66 53 55 54	205 214 108 104	71 62 59 59	181 200 67 61	32,4 29,6 25,4 20,5	

Légende:

H_Gh:	Irradiation du rayonnement global horizontal
-------	--

- H_Dh: Irradiation du rayonnement diffus horizontal H_Gk: Irradiation du rayonnement global, plan incl.
- H_Dk: Irradiation du rayonnement global, plan incl.
- H_Bn: Irradiation du rayonnement dirrus, pian inc H_Bn: Irradiation du rayonnement direct normal
- Ta: Temp. de l'air

Rayonnement en [kWh/m²] Température en ['C] Seulement 1 station(s) pour l'interpolation

Calculs (heure)

METEONORM Version 5.1

Site: tamanraset s w Situation: dégagée							
Horiz	ion:	asti	ronomiq	ue			
Azimut:		0				Inclinaison:	20
Catégorie		Site	e quelco	nque		Format	Standard
Mois	H_Gh	H_Dh	H_Gk	H_Dk	H_Bn	Ta	
Jany.	110	54	133	60	99	18.7	
Fév.	153	47	181	54	171	21.3	
Mars	188	64	205	70	187	24,6	
Avr.	208	67	208	69	198	28,8	
Mai	215	77	201	76	192	32,2	
Juin	242	50	216	49	257	34,6	
Juil.	237	65	216	63	233	33,5	
Août	221	73	215	74	201	31,6	
Sept.	194	55	205	1	181	32,4 29.6	
Uct.	201	53 EE	214	52 E0	200	23,0 25.4	
Nov. Déc.	54 87	55 54	108	59	61	20,4 20,5	
Année	2135	723	2205	767	2046	27.8	

Légende:

H_Gh:	Irradiation du rayonnement global horizontal
H_Dh:	Irradiation du rayonnement diffus horizontal
H Gk:	Irradiation du ravonnement global, plan incl.

Irradiation du rayonnement giobal, pian inci. Irradiation du rayonnement diffus, plan incl. Irradiation du rayonnement direct normal

H_Dk: H_Bn:

Ta: Temp. de l'air

Rayonnement en [kWh/m³] Température en ['C] Seulement 1 station(s) pour l'interpolation

Mois	Ta	Tamin	Ta dmin	Ta dmax	Tamax	RH			
Janv.	18,7	4,7	11,0	26,2	32,0	21			
Fév.	21,3	8,1	13,4	29,0	34,1	18			
Mars	24,6	10,2	17,1	31,7	37,6	18			
Avr.	28,8	15,6	20,8	35,4	40,2	17			
Mai	32,2	18,6	25,3	38,4	42,4	17			
Juin	34,6	22,7	27,6	40,0	43,6	18			
Juil.	33,5	23,1	27,2	39,4	43,0	24			
Août	31,6	21,7	25,6	37,2	40,2	33			
Sept.	32,4	22,1	25,6	37,6	42,3	26			
Oct.	29,6	16,8	22,8	35,8	40,3	21			
Nov.	25,4	10,7	17,6	32,1	37,5	20			
Déc.	20,5	7,4	13,1	28,0	33,2	22			
Année	27,8					21			
Mois	H_Gh	SDm	SDd	SD astr.	RR	RD	FF	DD	
	110	220	74	10.9	-	1	25	100	
Jany. Eáu	153	230	7,4 8.4	10,5	1 0	1	2,5	130	
Marc	188	261	84	11.9	2	1	2,0	200	
Lur .	208	282	9.4	12.5	1	1	2,0	200	
Mai	215	322	10.4	13.0	4	Ó	2.6	179	
Juin	242	336	11.2	13.3	6	Ō	3.3	211	
Juil.	237	335	10.8	13.1	18	1	3.6	208	
Août	221	324	10.5	12.7	39	1	3.1	201	
Sept.	194	293	9,8	12,1	20	1	2,8	185	
Oct.	185	282	9,1	11,5	2	1	2,5	197	
Nov.	94	249	8,3	11,0	1	1	2,1	166	
Déc.	87	221	7,1	10,7	1	1	2,9	172	
Année	2135	3369	9,1		94	10	2,7	188	

Légende:

Ta:	Temp. de l'air	RH:	Humidité relative
Ta min:	10 a. minimum (approx.)	Ta max:	10 a. maximum (approx.)
Ta dmin:	Moyenne minimum journ. Ta	Ta dmax:	Moyenne maximum journ. Ta
SD:	Durée d'insolation	RR:	Précipitations
RD:	Jours avec precipitation	FF:	Vitesse du vent
SD astr.:	Durée d'insolation, astronomique	DD:	Direction du vent
H_Gh:	Irradiation du rayonnement global horizontal		

Température en ['C] Vitesse du vent en [m/s] Durée d'insolation en [h/jour] Rayonnement en [kWh/m²]