UNIVERSITE DE BLIDA-1

Faculté de Technologie

Département de Génie mécanique

THESE DE DOCTORAT

Spécialité: Construction mécanique

CONTRIBUTION A LA MODELISATION DES FISSURES DANS LES SOUDURES AVEC LES MODELES DE FORCES COHESIVES

Par

Amine BRICK CHAOUCHE

Devant le jury composé de :

M. TEMMAR	Maître de Conférence, U. de Blida	Président
M. OUALI	Professeur, U. de Blida	Examinateur
N. TOUAT	Professeur, USTHB	Examinateur
H. FERDJANI	Professeur, U. de Blida	Directeur de thèse
A. MAHIEDDINE	Maitre de conférence, U de Khemis	Rapporteur
A. MAY	Maitre de conférence, EMP	Rapporteur

Blida-1, 24 Novembre 2020

الملخص:

تمت معالجة مشكلة شق من نوع DugDALE-BARENBLATT المراجعة باستعمال مبدأ الحد الأدنى للطاقة الأطروحة. تستند نمذجة المشكلة إلى نظرية GRIFFITH REVISITE المراجعة باستعمال مبدأ الحد الأدنى للطاقة الذي تم صياغته وفقًا لمعادلة تكاملية مفردة (SIE) يتعين حلها. الموديل المستخدم لدر اسة اللحام يتمثل في هيكل من ثلاثة مواد مختلفة: المنطقة المنصهرة (WM)، المعدن الأساسي (BM) و المنطقة المتغيرة حراريا (HAZ). تم نمذجة TAZ كوسط غير متجانس بحيث نعتبر معامل مرونتها متغير بدالة أسية. بعد النمذجة، يتم تقليص المشكلة إلى معادلة تكاملية مفردة (MZ)، المعدن الأساسي (BM) و المنطقة المتغيرة حراريا (HAZ). تم نمذجة TAZ كوسط غير متجانس بحيث نعتبر معامل مرونتها متغير بدالة أسية. بعد النمذجة، يتم تقليص المشكلة إلى معادلة تكاملية مفردة (SIE) بتطبيق المخطط التحويلي المقترح من طرف TCHEBYCHEY وباستخدام محولات معادلة تكاملية مفردة (IAZ) بتطبيق المخطط التحويلي المقترح من طرف TCHEBYCHEY وباستخدام محولات الهامة (سمك المنطقة المتأثرة TCHEBYCHEY والنسبة بين معامل مرونة معتمد على كثير ات حدود Partet التكاملية بين معامل مرونة معتمد على كثير ات حدود والاسبة بين معامل مرونة معدن الهامة (سمك المنطقة المتأثرة TCHEBYCHEY) والنسبة بين معامل مرونة معتمد على كثير ات حدود Partet التحويلي المقترح من طرف TCHEBY والنسبة بين معامل مرونة معدن والهامة (سمك المنطقة المتأثرة TCHEBY والنسبة والنوبة بين معامل مرونة معدن والهامة (سمك المنطقة المتأثرة MA) و DugDALE على الإجهاد المطبق و الإجهاد المسبب لبدئ وانتشار الشق وي وسط الدر اسة غير المتجانسة. يتم إبراز تأثير قيم خصائص موديل DugDALE على الإجهاد المطبق و الإجهاد المسبب لبدئ وانتشار الشق وي وسط الدر اسة غير المتجانسة. يتم إبراز تأثير قيم خصائص موديل DugDALE على تقارب نتائجها مع تلك التي تم المنطقة يقارب نتائجها مع تلك التي والتشار الشق المنطقة والد المسبب لبدئ وانتشار الشق وي وسط الدر اسة غير المتجانسة. يتم إبراز تأثير قيم خصائص موديل DugDALE على تقارب نتائجها مع تلك التي تم المنطقة وسط الدر اسة غير المتجانسة. يتم إبراز تأثير قيم خصائص موديل DugDALE على تقارب نتائجها مع تلك التي تم الحصول عليها باستخدام موديل GRIFFITH مركما موديل DugDALE موديل DugDALE معي المحاول وليها الدر المة عبر المتجانسة. يتم إبراز تأثير م محصائص موديل D

RESUME:

Le problème élasto-statique anti-plan d'une fissure de DUGDALE-BARENBLATT dans une bande infinie est traité dans le cadre de ce travail de thèse. La bande infinie est constituée d'une zone fondue (WM), du métal de base (BM) et d'une zone affectée thermiquement (HAZ) ; la fissure est située dans la zone fondue. La WM et la BM sont considérés homogènes. La HAZ est modélisée comme un milieu non-homogène avec un module de cisaillement variant exponentiellement. Le cadre théorique est la théorie de GRIFFITH revisitée basée sur un principe de minimisation de l'énergie totale de la structure. Le problème élastique est réduit à une équation intégrale singulière (SIE) en utilisant les transformées de FOURIER. L'équation SIE est résolue numériquement par la méthode de quadrature basée sur les polynômes de TCHEBYCHEV. Les effets des paramètres du problème : épaisseurs de la HAZ, et de la WM, l'elasticmismatch (rapport entre les modules de cisaillement des zones WM et BM), ainsi que les propriétés du modèle de DUGDALE, sur l'évolution de la charge de rupture et sur la propagation de la fissure dans le milieu d'étude, est présenté. Une comparaison entre les résultats obtenus avec le modèle de GRIFFITH, est également effectuée.

ABSTRACT:

The elasto-static anti-plane problem of a DUGDALE-BARENBLATT crack in a welded infinite strip was treated in this thesis work. The modeling of the problem is based on a revisited Griffith's theory using the principle of energy minimization that is formulated in terms of a singular integral equation (SIE) to be resolved. The welded joint was modeled as a threematerial structure: Welded Metal WM, Base Metal BM, and Heat Affected Zone HAZ. The HAZ was modeled as a non-homogeneous medium with a shear modulus that vary exponentially. After modeling, the problem was reduced to a singular integral equation (SIE) according to the transformation scheme proposed by ERDOGAN using the FOURIER transforms. The SIE equation was solved numerically by the quadrature method based on TCHEBYCHEV polynomials. The effect of the most important parameters (thickness of the HAZ zone, thickness of the WM zone, elasticmismatch (ratio between the shear modulus of the WM and BM zones) and the property of the DUGDALE model) on the evolution of the rupture load and on the crack propagation in the studied heterogeneous medium, was presented. The influence of DUGDALE's model property values δ_c on the convergence of its results to those obtained using the GRIFFITH model is highlighted.

REMERCIEMENT

Louange à Allah seigneur de l'univers;

Un grand merci à mes parents, ma petite famille et ma grande famille;

Un grand merci aussi à mon directeur de thèse, mes collègues et tout ceux qui m'ont aidé et soutenue et un merci spécial à mon ami Khelifi pour son aide particulière.

الملخص 1
RESUME
ABSTRACT
REMERCIEMENTS
TABLE DES MATIERES 5
INTRODUCTION
1. CHAPITRE 1 : MODELISATION DES FISSURES DANS LES JOINTS DE SOUDURES
1.1. Modèle bi-matériaux11
1.2. Modèle tri-matériaux11
1.3. Phénomènes du mismatching12
1.3.1. Strengthmismatch12
1.3.2. Elasticmismatch
1.3.2. Evenmatch, overmatch et undermatch
1.4. Méthodes utilisées dans la modélisation des fissures dans les joints de soudure13
1.4.1. Méthode "slip line field"
1.4.2. Méthode des éléments finis FEM14
1.4.3. Méthode intégrale
1.4.4. Méthode intégrale et les modèles cohésives dans le cadre de la théorie de GRIFFITH revisitée
2. CHAPITRE: MODELES DES FORCES COHESIVES
2.1. Modèles des forces cohésives
2.1.1. Loi d'interface
2.1.2. Modèle de Dugdale (Dugdale DS., 1960)

TABLE DES MATIERES

2.1.3. Modèle de Needleman (Needleman A., 1987)	3
2.1.4. Modèle de Tvergaard (Tvergaard A., 1990)	4
3. CHAPITRE 3: PRESENTATION DU PROBLEME ETUDIE ET EQUATIONS INTEGRALES	5
3.1. Modèle de DUGDALE en élasticité anti-plane	5
3.2. Phases et critères d'évolution de la fissure	2
3.2.1. Phase cohésive	2
3.2.2. Phase de propagation	3
3.3. Problèmes avec modèle de DUGDALE (chargement discontinu)	3
3.3.1. Description du problème avec la HAZ	3
3.3.2. Position du problème et dérivation de l'équation intégrale	5
3.4. Le problème sans la zone affecté thermiquement HAZ	9
3.4.1. Description du problème sans la HAZ:	9
3.4.2. Position du problème et dérivation de l'équation intégrale40	0
3.5. Problème avec modèle de GRIFFITH (chargement continue)	3
3.5.1. Critère d'évolution de la fissure avec le modèle de GRIFFITH	4
4. CHAPITRE 4 : RESOLUTION DE L'EQUATION INTEGRALE SINGULIERE 40	5
4.1. Résolution de l'équation intégrale singulière avec discontinuité du chargement46	5
4.2. Résolution de l'équation intégrale singulière avec chargement continu	0
5. CHAPITRE 5: RESULTATS ET DISCUSSIONS	3
5.1. Influence du rapport <i>elasticmismatch M</i> sur la contrainte appliqué τ_{∞}	3
5.1.1. Cas 1	4
5.1.2. Cas 2	4
5.2. Influence du rapport <i>elasticmismatch M</i> sur la contrainte de rupture τ_r	5
5.2.1. Influence du facteur <i>elastic-overmatch</i> $(1 \le M \le 10)$	5
5.2.2. Influence du facteur <i>elastic-undermatch</i> $(0,1 \le M \le 1)$	5

5.3. Influence de l'épaisseur h_2 de la zone affectée thermiquement HAZ
5.4. Influence de l'épaisseur h_1 de la zone fondue WM
5.5. Influence du saut critique δ_c sur la charge de rupture et la propagation de la fissure
5.6. Convergence entre le modèle de GRIFFITH et DUGDALE quand δ_c tend vers zéro 62
6. CONCLUSION GENERALE
LISTE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX 67
LISTE DES SYMBOLES ET DES ABREVIATIONS70
REFERENCES
ANNEXE A78
ANNEXE B 79
ANNEXE C 83
ANNEXE D 85
ANNEXE E
ANNEXE F91
ANNEXE G93
ANNEXE H95
ANNEXE I

Les procèdes d'assemblage par soudage sont de plus en plus utilisés dans les différents secteurs de l'industrie. Les avantages qu'ils renferment favorisent et facilitent leur intégration dans les processus industriels. Ces procèdes, bien qu'ils restent les meilleurs candidats parmi toutes les techniques d'assemblage dans la vie industrielle et économique, sont généralement accompagnés d'un nombre de défauts inévitables.

Les défauts qui apparaissent dans les soudures pendant et après la réalisation, rendent importante l'analyse de leur influence sur le comportement des structures et installations soudées. Ces défauts sont classés par leur formes, tailles, orientations et positions dans les joints soudées (ZERBEST et al., 2014).

Les joints de soudures sont considérés comme des structures non-homogènes dans le domaine de la modélisation en mécanique de la rupture. Cette non-homogénéité est due à la variation des propriétés mécaniques et élastiques à travers le joint de soudure. Plusieurs modèles ont été proposés pour analyser les structures soudées contenants des fissures:

• Le modèle bi-matériaux est le plus simple. Il suppose que le joint est seulement constitué de la zone fondue (WM) et du métal de base (BM) (HAO et al., 1997; ZHANG et al., 1997a; BURSTOW et al., 1997; RAKIN et al., 2008; DONATO et al., 2009).

• Le modèle tri-matériaux contient une troisième zone appelée zone affectée thermiquement (HAZ) en plus des deux zones existantes WM et BM (ZHANG et al., 1997; RANESTAD et al., 1997; HAO et al., 2000; NEGRE et al., 2004).

Le modèle bi-matériaux est caractérisé par une discontinuité des propriétés mécaniques et élastiques à travers l'interface entre les différentes zones. Le modèle tri-matériaux corrige cette discontinuité en introduisant une zone intermédiaire HAZ dont les propriétés varient continument entre celles de WM et BM.

D'après la littérature, les travaux de modélisation de deux phénomènes ont été particulièrement étudiés: le strengthmismatch (différence entre les résistances de WM et BM) et l'elasticmismatch (différence entre les propriétés élastiques de WM et BM). Divers travaux peuvent être cités :

8

• Basé sur une analyse par éléments finis, HAO et al. (1997) ont étudié l'effet du strengthmismatch sur la charge limite de rupture. DONATO et al. (2009) ont étudié son effet sur les paramètres influant sur la propagation de la fissure (intégrale de RICE J et le déplacement d'ouverture à la pointe de la fissure CTOD). L'effet de ce phénomène sur le champ de contraintes et de déformations au voisinage de la pointe de la fissure a également été étudié (BURSTOW et al., 1997 ;ZHANG et al., 1997a ; HAO et al., 2000 ; RAKIN et al., 2008).

• NEGRE et al. (2004) ont utilisé la méthode "slip-line field" et la méthode des éléments finis pour étudier l'influence du strengthmismatch sur les courbes de charge/CTOD.

• En utilisant une méthode basée sur la solution des équations intégrales, LI et al. (2008) ont examiné l'effet de l'elasticmismatch sur les valeurs calculées du facteur d'intensité de contraintes d'une fissure dans un joint soudé.

Dans tous les travaux cités, le modèle de fissure utilisé est le modèle de GRIFFITH. Dans ce modèle, les lèvres de la fissure sont libres de contraintes. Autrement dit, il n'existe pas de forces cohésives entre les lèvres. Ce modèle, bien que simple, est très largement utilisé. Son principal défaut est la présence, dans le cas élastique, de contraintes singulières en pointe de fissure.

Le modèle des forces cohésives, suppose l'existence de forces d'interaction entre les lèvres de la fissure dont l'intensité dépend de l'ouverture. LAVERNE (2004) a présenté une recherche bibliographique complète sur ces modèles. Dans notre travail, le modèle de forces cohésives utilisé est celui de DUGDALE (DUGDALE, 1960).Les critères de propagation de la fissure ont été établies en utilisant le principe de minimisation de l'énergie avec une densité d'énergie de surface de type BARENBLATT (FERDJANI et MARIGO, 2015).

La propagation d'une fissure de type DUGDALE a été étudiée pour différentes structures et chargements :

• En mode I, FERDJANI et al. (2007) étudièrent une fissure dans un milieu infini et isotrope sous chargement uniforme.

• En mode III, FERDJANI (2008, 2013) et FERDJANI et al.(2009) ont considéré, respectivement, le cas d'une fissure dans un milieu isotrope semi-infini, dans une bande isotrope infinie, et à l'interface entre une bande et un demi-plan constitués de matériaux isotropes différents.

9

• En mode mixte, FERDJANI et MARIGO (2015) ont étudié une fissure à l'interface entre une bande et un demi-plan constitué d'un même matériau isotrope et sous un chargement de traction uniforme.

Dans la continuité des travaux de modélisation cités ci-dessus, ce travail consiste en la modélisation d'un joint de soudure contenant une fissure de DUGDALE en mode III (voir : BRICK CHAOUCHE et al., 2019) . Le modèle tri-matériaux avec trois zones WM, BM et HAZ, est utilisé. Une étude paramétrique sur la propagation de la fissure est effectuée. L'influence de deux paramètres: l'elasticmismatch et la largeur de la HAZ, est étudiée. Le présent mémoire est organisé comme suit :

➢ Une introduction générale, suivie d'un premier chapitre consacré à une étude bibliographique sur les méthodes utilisées pour la modélisation des joints de soudures.

➤ Un deuxième chapitre présente les modèles de forces cohésives et les lois d'interface correspondantes.

➢ Un troisième chapitre présente la formulation variationnelle du problème, et les critères de propagation déduits à l'aide d'un principe de minimisation de l'énergie totale, en utilisant une fonction densité d'énergie de surface de type DUDGALE-BARENBLATT. Il présente également les problèmes étudiés, ainsi que le schéma de transformation des problèmes en une équation intégrale singulière.

➢ Un quatrième chapitre présente la solution des équations intégrales singulières des problèmes décrits dans le précédent chapitre, où un soin particulier est donné à la résolution du cas de l'équation avec chargement discontinu.

→ Un cinquième chapitre est réservé à la présentation des résultats. Ils consistent en l'étude de l'influence du rapport elasticmismatch M et des épaisseurs des différentes zones sur : l'évolution de la charge appliquée τ_{∞} en fonction de la longueur de la fissure, et de la charge de rupture τ_{r} . En dernier, une comparaison entre les contraintes de rupture obtenue par les modèles de DUGDALE et de GRIFFITH.

Une conclusion générale, les références bibliographiques ainsi que neuf annexes.

10

CHAPITRE 1: MODELISATION DES FISSURES DANS LES JOINTS DE SOUDURES

Dans la littérature, il existe de nombreux travaux sur la modélisation des fissures dans les joints de soudures. Les auteurs ont étudié des problèmes utilisant différents modèles (généralement le modèle bi-matériaux et le modèle tri-matériaux), différentes configurations, différents types de sollicitations et différentes positions de fissures. Les auteurs utilisent différentes formulations et méthodes d'analyse, les plus importantes sont la méthode "slip line field", la méthode des éléments finis et la méthode intégrale.

1.1. Modèle bi-matériaux :

Ce modèle est constituer de deux zones à savoir la zone fondue (noté par la suite WM) et le métal de base (noté BM), ces zones sont caractérisés par des propriétés mécaniques différentes (voir figure 1.1).

Figure 1.1. Modèle bi-matériaux : a) HAO et al., 1999, b) HAO et al., 1997, c) BURSTOW et al., 1997 et d) RAKIN et al., 2008.

1.2. Modèle tri-matériaux:

Le modèle tri-matériaux est constitué en plus des deux zones WM et BM, d'une troisième zone, appelée *zone affecté thermiquement* (HAZ). Ce modèle est utilisé surtout

pour étudier les cas où la fissure se situe dans la HAZ, à l'interface entre la HAZ et le BM ou entre la HAZ et la WM, des exemples sont données sur la figure 1.2.

Figure 1.2. Modèle tri-matériaux: a) ZHANG et al., 1997b, b) RANESTAD et al., 1997 et c) NEGRE et al., 2004.

1.3. Phénomènes du mismatching:

Les joints de soudures sont caractérisés par un *mismatch* dans les propriétés élastiques (*elasticmismatch*) et mécaniques (*strengthmismatch*), ces deux phénomènes sont dus à la différence entre les propriétés élastiques et mécaniques des différentes zones du joint de soudure.

1.3.1. Strengthmismatch:

Le *stenrgthmismatch* est la différence entre les résistances de la zone fondu WM et le métal de base BM ou de la zone fondu WM et la zone affectée thermiquement HAZ. Dans la littérature le *strengthmismatch* est dénommé par le facteur de *mismatch* (noté M), c'est le rapport entre les résistances des différentes zones, i.e.:

- En terme de la limite élastique $\sigma_e: M = \sigma_{eWM}/\sigma_{eBM}$
- En terme de la contrainte de rupture $R_m: M = R_{mWM}/R_{mBM}$

1.3.2. Elasticmismatch:

L'*elasticmismatch* est la différence entre le module d'élasticité de la zone fondu WM et le métal de base BM ou de la zone fondu WM et la zone affecté thermiquement HAZ. Dans la littérature l'*elasticmismatch* est dénommé par le facteur de *mismatch* M, c'est le rapport entre le module de Young E (ou le module de cisaillement μ) des différentes zones, i.e.: $M=E_{WM}/E_{BM}$ ou μ_{WM}/μ_{BM} .

1.3.3. Evenmatch, overmatch et undermatch:

Dans l'étude du phénomène du *mismatch* il faut toujours distinguer trois cas principaux:

• <u>Cas evenmatch</u>: Il correspond au cas où toutes les zones ont les mêmes propriétés élastiques et mécaniques, M=1.

• <u>Cas overmatch</u>: Il correspond au cas où les propriétés élastiques et mécaniques la zone WM sont supérieures, M>1.

• <u>Cas undermatch</u>: Il correspond au cas où les propriétés élastiques et mécaniques de la zone WM sont inférieures, M<1.

1.4. Méthodes utilisées dans la modélisation des fissures dans les joints de soudure:

Dans la littérature il y a principalement trois méthodes utilisées dans la modélisation des fissures dans les joints soudés, les plus utilisée sont la méthode "slip line field", la méthode des éléments finis FEM et la méthode intégrale.

1.4.1. Méthode "slip line field":

La méthode "slip line field" permet de donner des solutions exactes à une large classe de problèmes de valeurs aux limites des solides élasto-plastiques en déformation plane (J. R. RICE 1968 et ALLAN F. COWER 2010). Cette méthode consiste à simplifier les équations gouvernantes en faisant plusieurs hypothèses comme l'état des déformations planes, les contraintes de cisaillement aux interfaces sont constantes, le matériaux et plastique rigide, ...etc. L'application de cette méthode se fait en plusieurs étapes:

CHAPITRE 1: MODELISATION DES FISSURES DANS LES JOINTS DE SOUDURES

- Les équations d'équilibres doivent être formulées en termes de la contrainte principale, déviatorique et en déformation plane puis résolues.
- Le champ "slip line field" et construit graphiquement à partir des lignes de cisaillement maximum et minimum orthogonaux (voir exemple sur la figure 1.3).
- A partir d'une contrainte à une position connue, des constantes intégrales sont déterminées et puis le chargement correspondant et déduit.

Figure 1.3. Champ "slip line field" a) Indentation d'un solide plastique rigide (ALLAN F. COWER 2010) et b) La région déforme entourent la pointe d'une fissure dans un matériau incompressible parfaitement plastique.

HAO et al., 1997, ont étudier le problème d'une fissure centrale dans un joint de soudure sous chargement de traction (figure 1.1b), la solution exacte de la charge de rupture à été obtenu par la méthode "slip line field", les auteurs ont étudies la variation de la charge de rupture pour les deux cas de *stengthovermatch* extrême, *stengthundermatch* extrême, la taille de la fissure a, l'épaisseur de la zone WM *H* et la largeur du panneau *W*.

HAO et al., 1999, ont étudier le problème de fissure débouchant centrale et à l'interface dans un joint de soudure en flexion pure (figure 1.1a), la solution exacte de la charge de rupture à été obtenu par la méthode "slip line field", les auteurs ont étudie la variation de la charge de rupture pour les deux cas de *stengthoveramtch* extrême, *stengthundermatch* extrême, la taille de la fissure a, l'épaisseur de la zone WM H et la largeur du panneau W. Sur la figure 1.3 on représente quelques résultats obtenus par les auteurs suscités.

1.4.2. Méthode des éléments finis FEM:

Plusieurs auteurs utilisent la FEM pour l'analyse des fissures dans les joints de soudures, des modèles éléments finis en élasto-plasticité et en déformation plane sont utilisés (figure 1.4), les forces motrices de la fissures (J-intégrale, ouverture de la fissure CTOD,...etc) sont calculés sur des codes de calculs basés sur la méthode des éléments finis.

Figure 1.4. Charge limite obtenu par la méthode "slip line field": a) Charge limite F_Y pour les deux cas *strength-undermatch* et *strength-overmatch* (HAO et al., 1997), b) Charge de rupture MF_{YM} pour les cas *strength-undermatch* et *strength-overmatch* et comparaison avec les résultats de la MEF (HAO et al., 1999).

ZHANG et al., 1997b, ont etudiés la sensitivité du J-intégrale en fonction du *strengthmismatch* en terme de la limite elastique σ_y (figure 1.5a) et en terme de l'exposant d'ecruissage *n* (figure 1.5b).

Figure 1.5. Modèles éléments finis. Fissure centrale sous tension: a) ZHANG et al., 1997b.b) RAKIN et al., 2008, fissure centrale en flexion pure et c) RANESTAD et al., 1997.

CHAPITRE 1: MODELISATION DES FISSURES DANS LES JOINTS DE SOUDURES

Figure 1.6. J-intégrale vs chargement pour différent cas de *strengthmismatch*: a) En terme de la limite élastique et b) En terme de l'exposant d'écrouissage *n*.

Afin de valider des résultats expérimentaux, RAKIN et al. (2008) ont effectué une analyse numérique et ils ont utilisé un modèle éléments finis en élasto-plasticité couplé avec le modèle d'endommagement GTN (TVERGARD. V, NEEDLEMAN. 1984). Les résultats sont données en terme de la courbe de charge/CTOD et J-intégrale/CMOD pour les deux cas de *strengthundermatch* et *strengthovermatch* (figure 1.6), le *strengthmismatch* est exprimé en terme de la limite élastique σ_e et la contrainte de rupture R_m . Une légère *elasticmismatch* en termes de module de Young *E* a été considéré aussi.

Figure 1.7. Courbes de a) Charge/CTOD et b) J-intégrale, J₀/CMOD.

CHAPITRE 1: MODELISATION DES FISSURES DANS LES JOINTS DE SOUDURES

RANESTAD et al. 1997, ont utilisé un modèle éléments finis tridimensionnel pour modélisé un joint de soudure contenant une fissure. Deux configurations ont été étudiées, la première dont la fissure est situé au centre de la zone fondu WM et la seconde à l'interface entre la HAZ et la WM. Les auteurs ont étudié l'influence des propriétés plastiques de la zone fondue WM et l'épaisseur de la HAZ sur le champ de contrainte à la pointe de la fissure. Ils ont constaté que l'épaisseur de la HAZ a une petite influence sur le champ de contraintes et la résistance de la zone fondue WM influence énormément la distribution des contraintes à la pointe de la fissure. Quelques résultats sont donnés sur la figure 1.7.

Figure 1.8. Champ de contraintes à la pointe de la fissure: a1) Propriétés mécaniques, a2) Épaisseur de la HAZ, b1) Influence de la limite élastique du WM (fissure dans WM), b2) Influence du facteur d'écrouissage n (fissure dans WM), b3) Influence de l'épaisseur de la HAZ (fissure dans WM), c1) Influence de la limite élastique du WM (fissure à l'interfaces WM/HAZ), c2) Influence du facteur d'écrouissage n (fissure à l'interfaces WM/HAZ), c2) Influence du facteur d'écrouissage n (fissure à l'interfaces WM/HAZ), c2) Influence du facteur d'écrouissage n (fissure à l'interfaces WM/HAZ), c2) Influence du la HAZ (fissure à l'interfaces WM/HAZ).

1.4.3. Méthode Intégrale:

La méthode intégrale consiste à transformer le problème étudié selon un schéma de transformation et à l'aide des transformées de FOURIER, en une équation intégrale, puis résoudre numériquement l'équation intégrale obtenue avec la méthode de quadrature adéquate. Ensuite, la solution obtenue est utilisée pour calculer les forces motrices de la fissure (facteur d'intensité de contrainte K, taux de restitution d'énergie G, charge de rupture, ...).

LI et al. (2008), ont considéré le matériau de la zone affectée thermiquement HAZ comme une zone non-homogènes (figure 1.8), les propriétés élastique de cette zone varies exponentiellement. Le problème est réduit à une équation intégrale singulière dont la solution est utilisée pour calculer le facteur d'intensité de contrainte K_{III} en mode antiplane.

Figure 1.9. Modèle utilisé par LI et al. (2008). a) Géométrie du modèle, b) Variation du module de cisaillement G_{ij} à travers le joint.

A travers une étude paramétrique, les auteurs ont étudié l'influence de l'*élasticmismatch* sur les valeurs du K_{III} . Un exemple des résultats obtenus par les auteurs est représenté sur la figure 1.10.

CHAPITRE 1: MODELISATION DES FISSURES DANS LES JOINTS DE SOUDURES

Figure 1.10. Sensitivité des valeurs normalisé de K_{III} au facteur M (*elasticmismatch*) pour les deux positions de la fissure (dans le WM et dans la HAZ).

Pour le cas ou la fissure est dans la zone fondu WM, les auteurs affirment que $K_{IIInormalisé} < 1$ dans le cas ou M<1 (c'est-à-dire *elasticundermatch*) est $K_{IIInormalisé} > 1$ dans le cas inverse (c'est-à-dire *elasticovermatch*).

1.4.4. Méthode intégrale et les modèles cohésives dans le cadre de la théorie de Griffith revisitée:

Dans le cadre de la théorie de GRIFFITH revisitée (Voir chapitre II) pour la rupture fragile, FERDJANI et al. (2007-2015) ont étudié l'initiation et la propagation d'une fissure de type DUGDALE-BARENBLATT (DUGDALE DS. 1960 et BARENBLATT G. 1962) dans des structures de différentes géométries, différents types de chargements et différentes positions de la fissure.

Les critères d'initiation et de propagation ont été établis en utilisant un principe de minimisation d'énergie et la densité d'énergie de surface de type BARRENBLATT (FERDJANI et MARIGO, 2015). Dans le cas de chargement en mode I, FERDJANI et al (2007) ont considéré le problème d'un milieu isotrope infini contenant un défaut elliptique (figure 1.11a) et soumis à un chargement de traction. Pour le cas de chargement en mode III, FERDJANI (2008, 2013) et FERDJANI et al, (2009) ont considéré le cas d'une fissure dans une bande infinie constituée d'un matériau isotrope (figure 1.11b), dans un milieu isotrope

semi-infini (figure 1.11c) et à l'interface d'une bande et un demi-plan constitué de matériaux isotrope différents (figure 1.11d).

Figure 1.11. Fissure de type DUGDALE pour différentes configurations.

Dans les travaux précédemment mentionnés les auteurs utilisent le schéma de transformation proposé par ERDOGAN et al. (1973) qui transforment les équations d'équilibres et les conditions aux limites en une équation intégrale singulière. A cause de la discontinuité du chargement le long de la fissure, l'équation intégrale singulière est résolue avec une méthode de quadrature modifiée basée sur les polynômes de Tchebychev du premier et second type, la solution est ensuite utilisée pour calculer différents facteurs tels que le facteur d'intensité de contrainte, l'ouverture de la fissure et la contrainte de rupture.

FERDJANI H. (2013), présentent les résultats en terme de la contrainte de rupture en fonction de la taille de la fissure, une étude paramétrique a été réalisé pour étudier l'effet de l'*elasticmismatch* sur la contrainte de rupture (figure 1.12).

CHAPITRE 1: MODELISATION DES FISSURES DANS LES JOINTS DE SOUDURES

Figure 1.12. Relation entre la contrainte de rupture et la position de la pointe de la fissure pour différente valeur du rapport *elasticmismatch* μ_1/μ_2 .

Dans notre travail de modélisation d'un joint de soudure contenant une fissure, la méthode intégrale, la fonction de densité d'énergie de surface de type BARENBLATT et les critères d'initiations et de propagations établies par FERDJANI et MARIGO en 2015 dans le cadre de la théorie de GRIFFITH revisité, seront utilisées. L'équation intégrale singulière obtenue est résolu avec la même méthode. Le prochain chapitre sera consacré à la présentation détaillée de la théorie de Griffith revisité, les modèles de forces cohésives et les critères d'initiation et de propagation d'une fissure de type DUGDALE-BARENBLATT établis dans le cadre du principe de minimisation d'énergie.

La rédaction de ce chapitre est très largement inspirée de LAVERNE(2004).

2.1. Modèles de forces cohésives:

2.1.1. Loi d'interface:

Dans les modèles de forces cohésives une loi d'interface est une relation entre le déplacement relatif et les forces d'interaction entre les lèvres de la fissure. Nous allons par la suite présenter quelques une d'entre elles basés sur la notion de forces cohésives. Cette dernière est suggéré par les observations expérimentales de la pointe de la fissure qui révèle l'existence de microfissure, zones plastifiés et cavités en croissance dans les matériaux devant et au voisinage de la pointe. Cela correspond à une zone de transition entre le matériau sain et une vraie fissure (voir figure 2.1).

Figure 2.1. Schéma de la fissure et la zone cohésive (LAVERNE, 2004).

Dans le cas de petite déformation (zone cohésive très petite devant l'échelle de la structure), les lois de la mécanique de la rupture linéaire peuvent être appliquées. Dans le cas inverse (zone cohésive large) cette zone doit être prise en compte. Les premiers modèles proposés dans la littérature remontent à DUGDALE (DUGDALE, DS. 1960), et BARENBLATT (BARENBLATT, G. 1962), ces derniers pensent que la contrainte infinie au voisinage de la fissure prédite par l'élasticité linéaire est physiquement inacceptable, ils émettent l'hypothèse de l'existence d'une zone cohésive (*Fracture process zone* dans la littérature) dans laquelle des forces s'exercent entre les lèvres de la fissure. Dans les années soixante-dix HILLERBORG et al. (1976) ont introduit le concept d'énergie de rupture dans les

modèles de force cohésive et proposé quelques relations de comportement entre la traction et le saut de déplacement pour le béton. De nombreux modèles ont été développés depuis, citons en quelques uns:

2.1.2. Modèle de DUGDALE (DUGDALE DS., 1960):

Dans ce modèle les forces de tractions σ_n évolue en fonction du saut de déplacement normal δ_n . Le saut reste nul tant que la force n'atteint pas une valeur critique σ_c puis le comportement correspond à celui d'un solide rigide parfait jusqu'à un seuil d'ouverture δ_c au-delà duquel l'interaction entre les lèvres devient nulle (voir figure 2.2).

Figure 2.2. Loi d'interface dans le modèle de DUGDALE en mode I.

2.1.3. Modèle de NEEDLEMAN (NEEDLEMAN A., 1987):

Ce modèle d'écrit l'évolution des forces cohésives normales σ_n et tangentielle σ_t en fonction des composantes normale et tangentielle du saut de déplacement δ_n et δ_t . On représente sur la figure 2.3 l'évolution de la force normale en fonction du saut normal quand le saut tangent est nul.

Les forces dérivent d'un potentiel ψ :

$$\sigma_n = \frac{\partial \psi}{\partial \delta_n}, \sigma_t = \frac{\partial \psi}{\partial \delta_t}$$
 2.1

Figure 2.3. Loi d'interface de NEEDLEMAN dans la direction normale.

Ce dernier est choisi comme une fonction polynomiale faisant intervenir les paramètres σ_c contrainte critique du matériau en ouverture, δ_c saut critique au-delà duquel l'interaction entre les lèvres de fissure devient nulle ainsi que la part de résistance au glissement par rapport à la résistance normale.

Notons que ce modèle fut repris et modifié par de nombreux auteurs. Citons par exemple RICE et WANG(RICE J. R. et WANG J.- S., 1989) qui ont proposé une expression exponentielle du potentiel. La différence avec le modèle précédent tient au fait que la force tend asymptotiquement vers zéro quand le saut de déplacement augmente. Ce modèle ne fait donc pas intervenir le paramètre δ_c .

2.1.4. Modèle de TVERGAARD (TVERGAARD A., 1990):

Ce modèle reprend le modèle de NEEDLEMAN(1987) et introduit une notion d'irréversibilité du comportement, la décharge s'effectue linéairement, ainsi qu'un frottement de Coulomb post décohésion. L'allure de la force tangentielle en fonction du saut tangentiel (lorsque le saut normal est nul) est représentée sur la figure 2.4.

Notons que le modèle formulé initialement par l'auteur s'appuie sur un indicateur de décohésion variant de 0 à 1, faisant intervenir le saut normé par le saut critique et qui fait office de variable d'endommagement dont dépendent les forces d'interactions.

Figure 2.4. Évolution de la force tangentielle en fonction du saut tangent.

D'autres modèles ont été développés en s'inspirant de celui-ci. Par exemple, CHABOCHE et al (1997), pour modéliser la décohésion interfaciale dans les composites à matrice métalliques, proposant d'activer le frottement de Coulomb dès le début de la décohésion. Citons par ailleurs CHABOCHE et al, 2001, qui reprennent ce dernier modèle et introduisent une régularisation visqueuse afin de lisser les instabilités intervenant dans l'ouverture brutale de fissure.

Dans ce chapitre nous avons présenté la théorie de GRIFFITH, la théorie de GRIFFITH revisitée et ces avantages par rapport à la première, nous avons introduits aussi les modèles cohésives avec la fonction de densité d'énergie et la loi d'interface correspondante. Dans le chapitre suivant nous allons présenter la théorie de GRIFFITH revisitée, et a l'aide d'un principe de minimisation d'énergie et l'introduction du modèle cohésive de type DUGDALE en mode anti-plan, le problème générale est formulé et les critères d'évolution de la fissure déduits. Nous présentant aussi la méthode de détermination des équations intégrales correspondantes aux différents problèmes étudiés dans ce travail de thèse.

CHAPITRE 3: PRESENTATION DU PROBLEME ETUDIE ET EQUATIONS INTEGRALES

Dans ce chapitre le problème étudié est présenté. Le chargement est continu dans le cas du modèle de GRIFFITH, mais dans le cas où on utilise le modèle de DUGDALE il présente des discontinuités. Les problèmes avec et sans la zone affectée thermiquement HAZ sont considérés dans les deux cas de chargement.

Le schéma de transformation proposé par F. ERDOGAN et al. (F. ERDOGAN et al. 1973), les transformées de Fourier et les conditions aux limites sont utilisées pour réduire les problèmes étudiés en une équation intégrale singulière.

Puisque les problèmes traités entre dans le cadre de l'élasticité anti-plane, le modèle de DUGDALE sera détaillé.

3.1. Modèle de DUGDALE en élasticité antiplane:

Considérons un domaine Ω de frontières $\partial \Omega$, la partie de la frontière ou les déplacements sont imposés est notée $\partial \Omega_D$, la partie ou les forces *F* sont imposées est notée $\partial \Omega_F$, les forces de volumes sont notées *f*. On suppose que la fissure ne peut se développer que sur un trajet prédéfini Γ (Figure 3.1).

Figure 3.1. Schéma du domaine fissuré avec les conditions aux limites et le chargement.

Un champ de déplacement v est un champ cinématiquement admissible, s'il respecte les conditions aux limites sur $\partial \Omega_D$, et s'il ne peut y avoir de discontinuité que sur Γ , c'est-àdire : $v \in C = \{v \text{ tel que: } v = U \text{ sur } \partial \Omega_D, [v] \ge 0 \text{ sur } \Gamma\}$ 3.1

Ou $\llbracket v \rrbracket = v^+ - v^-$ représente le saut de déplacement à travers la fissure, les indices + et - correspondent aux lèvres supérieure et inférieure de la fissure.

On se place dans le cas ou la fissure Γ est sollicitée en mode anti-plan, et donc la seule composante non-nul du vecteur déplacement v sur la fissure est la z-composante, c'est-à-dire :

$$v = \{0, 0, w\}$$
 3.2

Dans ce cas la discontinuité de déplacement à travers la fissure est donnée par le saut de déplacement tangentiel, c'est-à-dire :

$$[v] = [w] = w^+ - w^-$$
3.3

On se met dans l'hypothèse de l'énergie de surface de type BARENBLATT (BARENBLATT, G. 1962). Plus particulièrement, on suppose que l'énergie de surface \emptyset est de type DUGDALE (DUGDALE, DS. 1960). Dans le cas ou l'ouverture de la fissure se fait en mode III (mode anti-plan), la densité d'énergie de surface s'écrit comme suit (figure 3.2) :

$$\phi(\llbracket w \rrbracket) = \begin{cases} G_c \frac{\llbracket w \rrbracket}{\delta_c} & si \llbracket w \rrbracket \le \delta_c, \\ G_c & si \llbracket w \rrbracket \ge \delta_c, \end{cases}$$
3.4

Figure 3.2. Fonction de densité d'énergie de surface de type DUGDALE et GRIFFITH.

Sur la figure 3.2, G_c est le taux de restitution d'énergie critique de la théorie de GRIFFITH. δ_c c'est l'ouverture critique caractéristique des modèles de DUGDALE. Le rapport G_c/δ_c a la dimension d'une contrainte notée τ_c :

CHAPITRE 3: PRESENTATION DU PROBLEME ETUDIE ET EQUATIONS INTEGRALES

$$\tau_c = \frac{G_c}{\delta_c},$$
 3.5

L'énergie totale du solide est la somme de son énergie potentielle élastique et de l'énergie de surface. Elle est donnée par :

$$E_T(v) = \int_{\Omega/\Gamma} E_e(v) dx + \int_{\Gamma} \phi(\llbracket w \rrbracket) ds - \int_{\partial \Omega_F} Fv ds - \int_{\Omega} fv dx$$
 3.6

Le premier terme dans l'équation 3.6 représente l'énergie de déformation élastique emmagasiné dans la structure Ω due au chargement F ou E_e représente la densité d'énergie élastique (potentielle élastique). Le second terme représente l'énergie de surface totale du à la fissure Γ ou \emptyset est la densité d'énergie de surface (figure 3.2), les deux termes restant sont respectivement le travail des forces imposées F et le travail des forces de volumes f.

D'après la théorie de GRIFFITH revisitée dans le cas d'une énergie de surface de type BARENBLATT, le champ de déplacement solution u correspond à un minimum local de l'énergie totale (MOFID et al, 2012, LIMING et al, 2014), c'est-a-dire :

$$\forall u^* \in C, \exists \bar{h} > 0, tel que: \forall h \in \left[0, \bar{h}\right] E_T(u) \le E_T\left(u + h(u^* - u)\right)$$

$$3.7$$

 u^* est un champ de déplacement cinématiquement admissible.

En divisant l'inégalité ci-dessous par h et en passant à la limite lorsque h tend vers zéro, on obtient :

$$\frac{d}{dh}\left(E_T\left(u+h(u^*-u)\right)\right)(h=0) \ge 0$$
3.8

En remplaçant 3.6 dans 3.8, et en mettant $v=u^*-u$ et utilisant la linéarité du problème élastique, on obtient :

$$\int_{\Omega/\Gamma} \sigma \varepsilon(v) dx + \int_{\Gamma} \frac{\partial \phi(\llbracket v \rrbracket}{\partial \llbracket v \rrbracket} \llbracket v \rrbracket ds - \int_{\partial \Omega_F} F v ds - \int_{\Omega} f v dx \ge 0 \quad \forall v \in C_0$$

$$3.9$$

La forme 3.8 est obtenue grâce au l'égalité suivante :

$$E_e(u + h(u^* - u)) = E_e(u) + hE_e(u^* - u)$$
3.10

En utilisant la forme de la densité d'énergie de surface \emptyset donnée par 3.4 on peut écrire :

$$\phi(\llbracket v \rrbracket) = \frac{\partial \phi(\llbracket v \rrbracket)}{\partial \llbracket v \rrbracket} \llbracket v \rrbracket$$

$$3.11$$

L'ensemble C_{θ} est défini par :

$$C_0 = \{ v \text{ tel que: } v = 0 \text{ sur } \partial \Omega_D, [\![v]\!] \ge 0 \text{ sur } \Gamma \}$$

$$3.12$$

Ou [v] = [w] représente le saut de déplacement tangentiel à travers les lèvres de la fissure.

En intégrant par parties, la première intégrale de 3.9, on obtient :

$$-\int_{\Omega/\Gamma} (div\sigma + f)vdx + \int_{\Gamma} \frac{\partial \phi(\llbracket v \rrbracket)}{\partial \llbracket v \rrbracket} \llbracket v \rrbracket ds + \int_{\partial \Omega_{F}} (\sigma n - F)vds - \int_{\Gamma} \tau \llbracket v \rrbracket ds \ge 0$$
$$\forall v \in C_{0} \qquad 3.13$$

Ou τ représente la contrainte tangentielle appliquée sur les lèvres de la fissure puisque cette dernière est sollicitée en mode anti-plan (Mode III).

Choisissant v tel que $\llbracket v \rrbracket = \llbracket w \rrbracket = 0$ sur Γ . Les intégrales de surface sur Γ dans 3.13 s'annulent et il reste :

$$-\int_{\Omega/\Gamma} (div\sigma + f)vdx + \int_{\partial\Omega_F} (\sigma n - F)vds \ge 0$$
3.14

Choisissant *v* tel que *v*=0 sur $\partial \Omega_F$, il vient :

$$-\int_{\Omega/\Gamma} (div\sigma + f)vdx \ge 0 \tag{3.15}$$

De 3.15, le signe de v est quelconque. Par conséquent, on doit avoir :

$$div\sigma + f = 0, dans \,\Omega/\Gamma \tag{3.16}$$

En considérant les équations 3.14 et 3.16, on peut écrire ce qui suit :

$$\sigma n = F, \operatorname{sur} \partial \Omega_F$$
3.17

En considérant les équations 3.16 et 3.17, l'équation 3.13 donne :

$$\int_{\Gamma} \frac{\partial \phi\left(\llbracket v \rrbracket\right)}{\partial \llbracket v \rrbracket} \llbracket v \rrbracket ds - \int_{\Gamma} \tau \llbracket v \rrbracket ds \ge 0 \ \forall v \in C_0$$

$$3.18$$

En considérant le champ de déplacement u solution de l'équation 3.7, on peut décomposant la fissure Γ en deux parties, on obtient:

 Γ_0 : c'est la partie de la fissure ou le glissement anti-plan $\llbracket u \rrbracket = 0$.

 Γ_c : c'est la partie de la fissure ou le glissement anti-plan $\llbracket u \rrbracket > 0$.

$$\int_{\Gamma_0} \left(\frac{\partial \phi\left(\llbracket v \rrbracket \right)}{\partial \llbracket v \rrbracket} - \tau \right) \llbracket u^* \rrbracket ds + \int_{\Gamma_c} \left(\frac{\partial \phi\left(\llbracket v \rrbracket \right)}{\partial \llbracket v \rrbracket} - \tau \right) \llbracket u^* - u \rrbracket ds \ge 0 \quad \forall u^* \in C_0$$

$$3.19$$

Choisissant dans l'équation 3.19 u^* tel que $\llbracket u^* \rrbracket = 0$ sur Γ_0 , il vient :

$$\int_{\Gamma_c} \left(\frac{\partial \phi\left(\left[v \right] \right]}{\partial \left[v \right]} - \tau \right) \left[\left[u^* - u \right] \right] ds \ge 0$$

$$3.20$$

Dans 3.20 le signe de $\llbracket u^* - u \rrbracket$ est quelconque. Par conséquent, on doit avoir :

$$\frac{\partial \phi\left(\llbracket v \rrbracket\right)}{\partial \llbracket v \rrbracket} = \tau \operatorname{sur} \Gamma_c$$
3.21

Si on remplace 3.21 dans 3.20 on obtient :

$$\int_{\Gamma_0} \left(\frac{\partial \phi\left(\llbracket v \rrbracket \right)}{\partial \llbracket v \rrbracket} - \tau \right) \llbracket u^* \rrbracket ds \ge 0 \quad \forall u^* \in C_0.$$

$$3.22$$

Dans l'équation 3.22 le signe du saut de glissement $[\![u^*]\!]$ est toujours positif, donc on obtient la condition suivante :

$$\tau \leq \frac{\partial \phi\left(\llbracket v \rrbracket\right)}{\partial \llbracket v \rrbracket} sur \Gamma_0$$
3.23

Finalement, à partir du postulat d'un minimum de l'énergie total que donne le champ de déplacement solution *u*, nous avons extrait les différentes conditions nécessaires suivantes :

$$\begin{cases} div\sigma + f = 0, dans \frac{\Omega}{\Gamma}, \\ \sigma n = F, \operatorname{sur} \partial \Omega_{F}, \\ \frac{\partial \phi \left(\llbracket w \rrbracket \right)}{\partial \llbracket w \rrbracket} = \tau \operatorname{sur} \Gamma_{c}, \\ \tau \leq \frac{\partial \phi \left(\llbracket w \rrbracket \right)}{\partial \llbracket w \rrbracket} \operatorname{sur} \Gamma_{0}, \end{cases}$$

$$3.24$$

CHAPITRE 3: PRESENTATION DU PROBLEME ETUDIE ET EQUATIONS INTEGRALES

Nous avons remplacé $\llbracket v \rrbracket$ par $\llbracket w \rrbracket$ dans l'équation 3.24.

Il faut noter que dans le système 3.24:

• La première équation représente les équations d'équilibre valables dans le domaine sans fissure Ω/Γ .

• La seconde équation donne la condition aux limites en forces imposées.

• La troisième équation représente la loi qui lie les forces cohésives à la discontinuité du déplacement à travers les lèvres de la fissure nouvellement créée. Dans le cas ou la densité d'énergie de surface est de type DUGDALE (équation 3.4), la loi prend la forme suivante :

$$\tau(\llbracket w \rrbracket) = \begin{cases} \tau_c \ si \quad 0 < \llbracket w \rrbracket < \delta_c, \\ 0 \ si \qquad \llbracket w \rrbracket > \delta_c, \end{cases}$$

$$3.25$$

• Sur la figure 3.3 on donne une représentation de la loi donnée par 3.25.

Figure 3.3. Loi cohésive de type DUGDALE.

On peut montrer qu'à partir de la loi cohésive donnée par 3.25, la fissure dans sa nouvelle configuration (après propagation) est subdivisée en deux parties :

- Une partie dite cohésive le long de laquelle le déplacement en glissement anti-plan est inférieur a la valeur critique δ_c . Cette partie est soumise à l'action de forces d'interaction d'intensité constantes et égale à la valeur critique τ_c .
- Une partie dite non-cohésive le long de laquelle le déplacement en glissement antiplan est supérieur à la valeur critique δ_c . Dans cette partie les lèvres de la fissure son libre de chargement.

CHAPITRE 3: PRESENTATION DU PROBLEME ETUDIE ET EQUATIONS INTEGRALES

• La dernière équation dans le système 3.24 donne la condition d'amorçage d'une nouvelle fissure. Pour qu'une nouvelle fissure puisse apparaître, il faut que la contrainte (c'est la contrainte tangentielle dans le problème anti-plan) atteigne la valeur critique τ_c .

3.2. Phases et critères d'évolution de la fissure:

Les critères d'initiation et de propagation ont été établies en utilisant le principe de minimisation d'énergie et la densité d'énergie de surface de type BARENBLATT (FERDJANI et MARIGO, 2015). La fissure dans son évolution passe par deux phases:

3.2.1. Phase cohésive :

Dans cette phase la zone cohésive s'amorce pour un chargement fini et atteint sa taille max quand le saut de glissement atteint la valeur critique δ_c . On note par l_0 la position de la pointe non-cohésive de la fissure initiale ($\Gamma_0 = [-l_0, l_0]$) sur l'axe des x et par l_a position de la pointe cohésive de la fissure ($\Gamma_c = [-l_a, -l_0] \cup \{l_0, l_a\}$) sur l'axe des x. La taille de la fissure cohésive Γ_c est égale à l_a - l_0 (voir figure 3.4-a). Les lois qui gouvernent le développement de la fissure cohésive sont donnée par :

$$k_{III}(\mp l_a) = 0 \tag{3.26}$$

$$\llbracket w(\mp l_0) \rrbracket = \delta_c \tag{3.27}$$

 k_{III} représente le facteur d'intensité de contrainte en mode anti-plan.

Figure 3.4. Phases d'évolution de la fissure: a) Phase cohésive, b) Phase de propagation. La contrainte de rupture notée τ_r est donnée par :

$$\tau_r = \{ sup(\tau_{\infty}) : [[w(\mp l_0)]] = \delta_c et \ k_{III}(\mp l_a) = 0 \}$$
3.28

3.2.2. Phase de propagation :

Après la phase d'initiation une nouvelle fissure apparais ($\Gamma = [-l_c, l_c]$), la position de sa nouvelle pointe est donnée sur l'axe des x par $l_c > l_0$ (voir figure 3.4-b), la partie de la fissure cohésive est donnée par $\Gamma_c = [-l_a, -l_c] \cup \{l_c, l_a\}$. L'évolution de la pointe l_c est gouvernée par les lois suivantes :

$$k_{III}(\mp l_a) = 0 \tag{3.29}$$

$$\llbracket w(\mp l_c) \rrbracket = \delta_c \tag{3.30}$$

La contrainte τ_r correspondante à la nouvelle fissure l_c est donnée par :

$$\tau_r = \{ sup(\tau_{\infty}) \colon \llbracket w(\mp l_c) \rrbracket = \delta_c et \ k_{III}(\mp l_a) = 0 \}$$

$$3.31$$

Les équations 3.26-3.31 vont être utilisées dans les procédures du calcul de la contrainte de rupture τ_r et étudié la propagation de la fissure.

3.3. Problèmes avec modèle de Dugdale (chargement discontinu):

3.3.1. Description du problème avec la HAZ:

La structure étudiée est constituée d'une bande infinie $\Omega = (-\infty, +\infty)\mathbf{x}(-h, h)$ contenant une fissure initiale centrale $D = [-l_0, l_0]\mathbf{x}\{0\}$ de longueur $2l_0$, parallèle à ces limites supérieur et inférieur (figure 3.6). La couche non-homogène Ω_2 représente la zone affectée thermiquement (HAZ). Les couches homogènes Ω_1 et Ω_3 représentent la zone fondue (WM) et le métal de base (BM), respectivement. A cause de la symétrie par rapport à l'axe des x, seulement la moitie supérieure de la structure sera modélisée. Une contrainte de cisaillement anti-plane τ_{∞} est appliqué aux lèvres de la fissure, cette dernière est prescrite à partir de zéro pendent le chargement, et les forces de volumes sont négligés. μ_1 et μ_3 sont, respectivement, le module de cisaillement des couches homogènes Ω_1 et Ω_3 . Le module de cisaillement de la couche non-homogène Ω_2 est noté $\mu_2(y)$, c'est une fonction exponentielle de la variable y, les propriétés élastiques sont continus à travers les interfaces. La fonction $\mu_2(y)$ est donnée par (Voir les détails de l'obtention de $\mu_2(y)$ à l'ANNEXE A):

$$\mu_2(y) = Ae^{\beta y}, \text{ ou: } \beta = \frac{1}{h_2} \ln\left(\frac{1}{M}\right), A = \mu_1 \left(\frac{1}{M}\right)^{-\frac{h_1}{h_2}} et M = \frac{\mu_1}{\mu_3},$$
3.32

Ou β est appelé le paramètre de non-homogénéité et *M* est le facteur *elasticmismatch* qui caractérise le joint de soudure, c'est le rapport entre le module de cisaillement de la zone fondue (WM) μ_1 et celui du métal de base (BM) μ_3 .

Considérant le facteur *elasticmismatch M*, on distingue trois cas:

- Cas 01: appelé *elastic-overmatch*, c'est-à-dire M>1 ($\mu_1 > \mu_3$).
- Cas 02: appelé *elastic-evenmatch*, c'est-à-dire M=1 ($\mu_1=\mu_3$).
- Cas 03: appelé *elastic-undermatch*, c'est-à-dire M < 1 ($\mu_1 < \mu_3$).

Figure 3.5. Principe de superposition, (a) problème initial, (b) problème avec FIC nul et (c) problème avec FIC non nul (FIC: Facteur Intensité de Contraintes).

Les valeurs de M sont très importantes pour l'étude du comportement de la fissure à travers les trois cas cité en haut.

Figure 3.6. Géométrie du problème élastique, propriétés élastiques et chargements.

CHAPITRE 3: PRESENTATION DU PROBLEME ETUDIE ET EQUATIONS INTEGRALES

3.3.2. Position du problème et dérivation de l'équation intégrale:

Le schéma de transformation proposé par F. ERDOGAN et al (F. ERDOGAN et al. 1973) est utilisé pour réduire le problème élastique à une équation intégrale. Premièrement, les conditions aux limites et les conditions de transmission du problème à y=0, $y=h_1+h_2+h_3$ et aux interfaces ($y=h_1$ et $y=h_1+h_2$) sont présentées dans la suite:

$$\tau_{yz}^{1}(x,0) = \tau(x), |x| \le l_{a}$$
3.33

$$w_1(x,0) = 0, |x| > l_a \tag{3.34}$$

$$w_1(x, h_1) = w_2(x, h_1), |x| < +\infty$$
3.35

$$\tau_{yz}^{1}(x,h_{1}) = \tau_{yz}^{2}(x,h_{1}), |x| < +\infty$$
3.36

$$\tau_{yz}^{3}(x,h) = 0, |x| < +\infty, y = h$$
3.37

$$w_2(x, h_1 + h_2) = w_3(x, h_1 + h_2), |x| < +\infty$$
3.38

$$\tau_{yz}^2(x, h_1 + h_2) = \tau_{yz}^3(x, h_1 + h_2), \ |x| < +\infty$$
3.39

Ou $w_i(x,y)$ et τ_{yz}^{i} sont respectivement la z-composante des champs de déplacement et du contrainte dans les domaines Ω_i (*i*=1,...,3). Le chargement $\tau(x)$ est donné par:

$$\tau(x) = \begin{cases} \tau_{\infty}, & \text{pour } |x| \le \alpha \\ \tau_{\infty} - \tau_c & \text{pour } \alpha \le |x| \le l_a \end{cases}$$
3.40

Ou $\alpha = l_0$ dans la phase cohésive et $\alpha = l_c$ dans la phase de propagation.

A cause de la symétrie du problème $w_i(x, y) = w_i(-x, y)$ (*i*=1,...,3), la transformée de Fourier en cosinus est appliquée et les expressions suivantes sont obtenus (voir ANNEXE B):

$$w_i(x,y) = 2 \int_0^{+\infty} \left(C_1^i(\lambda) e^{n_1 y} + C_2^i(\lambda) e^{n_2 y} \right) \cos(\lambda x) d\lambda, (i = 1,3)$$
 3.41

$$w_2(x,y) = 2 \int_0^{+\infty} (C_1^2(\lambda)e^{r_1y} + C_2^2(\lambda)e^{r_2y})\cos(\lambda x)d\lambda$$
 3.42
Ou C_k^j (k=1,2 et j=1,3) sont les fonctions inconnus de la variable λ qui doivent être déterminées à partir des conditions aux limites du problème (Équations 3.33-39). Les Coefficients n_m et r_m (m=1,2) sont les racines des polynômes caractéristiques associés avec l'opérateur Laplacian. Ils sont donnés par (Voir ANNEXE B):

$$n_1 = \lambda, n_2 = -\lambda \tag{3.43}$$

$$r_1 = -\frac{1}{2}\beta - \frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}, r_2 = -\frac{1}{2}\beta + \frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}$$
3.44

La z-composante du champ de contraintes dans les domaines homogènes Ω_i (*i*=1,3) et le domaine non-homogène Ω_2 sont respectivement données par (Voir ANNEXE B):

$$\tau_{yz}^{i}(x,y) = 2\mu_{i} \int_{0}^{+\infty} \left(n_{1}C_{1}^{i}(\lambda)e^{n_{1}y} + n_{2}C_{2}^{i}(\lambda)e^{n_{2}y} \right) \cos(\lambda x) d\lambda, i = 1,3$$
3.45

$$\tau_{yz}^{2}(x,y) = 2\mu_{2}(y)\int_{0}^{+\infty} (r_{1}C_{1}^{2}(\lambda)e^{r_{1}y} + r_{2}C_{2}^{2}(\lambda)e^{r_{2}y})\cos(\lambda x)d\lambda$$
3.46

Dans le but de déterminer l'équation intégrale, on a besoin d'introduire la fonction densité ψ suivante:

$$\psi(x) = \frac{\partial}{\partial x} [w_1(x, 0^+) - w_1(x, 0^-)] = \frac{\partial}{\partial x} [2w_1(x, 0^+)]$$
3.47

Il est clair que la condition 3.34 soit vérifiée si on exige ce qui suit:

$$\int_{-l_a}^{+l_a} \psi(x) dt = 0 \text{ et } \psi(x) = 0 \text{ pour } |x| \ge l_a$$
3.48

En substituant l'équation 3.41 dans l'équation 3.47 et en tenant compte de la transformée de Fourier inverse, on obtient:

$$C_1^1(\lambda) + C_2^1(\lambda) = -\frac{1}{2\pi\lambda} \int_0^{+l_a} \psi(t) \sin(\lambda t) \, dt = F$$
 3.49

Les équations 3.35 et 3.38 résultent à, respectivement:

$$C_1^1(\lambda)e^{n_1h_1} + C_2^1(\lambda)e^{n_2h_1} = C_1^2(\lambda)e^{r_1h_1} + C_2^2(\lambda)e^{r_2h_1}$$
3.50a

$$C_1^3(\lambda)e^{n_1(h_1+h_2)} + C_2^3(\lambda)e^{n_2(h_1+h_2)} = C_1^2(\lambda)e^{r_1(h_1+h_2)} + C_2^2(\lambda)e^{r_2(h_1+h_2)}$$
3.50b

Les équations 3.36, 37 et 38 donnent respectivement:

$$n_1 C_1^1(\lambda) e^{n_1 h_1} + n_2 C_2^1(\lambda) e^{n_2 h_1} = r_1 C_1^2(\lambda) e^{r_1 h_1} + r_2 C_2^2(\lambda) e^{r_2 h_1}$$
3.50c

$$n_1 C_1^3(\lambda) e^{n_1 h} + n_2 C_2^3(\lambda) e^{n_2 h} = 0$$
3.50d

$$r_1 C_1^2(\lambda) e^{r_1(h_1+h_2)} + r_2 C_2^2(\lambda) e^{r_2(h_1+h_2)} = n_1 C_1^3(\lambda) e^{n_1(h_1+h_2)} + n_2 C_2^3(\lambda) e^{n_2(h_1+h_2)}$$
3.50e

Résoudre le système d'équations algébriques 3.49 et 3.50a-e, donne les deux fonctions inconnus $C_1^{\ I}(\lambda)$ et $C_2^{\ I}(\lambda)$:

$$C_{1}^{1}(\lambda) = \frac{Fe^{-\lambda h_{1}} \left[e^{\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3}} (-2\lambda + \sqrt{\beta^{2} + 4\lambda^{2}}) + e^{-\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3}} (2\lambda + \sqrt{\beta^{2} + 4\lambda^{2}}) + \beta \left(e^{-\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} + \lambda h_{3}} - e^{\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} + \lambda h_{3}} \right) \right]}_{Den} 3.51$$

$$C_{2}^{1}(\lambda) = \frac{Fe^{\lambda h_{1}} \left[e^{\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} + \lambda h_{3}} (2\lambda + \sqrt{\beta^{2} + 4\lambda^{2}}) + e^{-\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} + \lambda h_{3}} (-2\lambda + \sqrt{\beta^{2} + 4\lambda^{2}}) + \beta \left(e^{-\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3}} - e^{\frac{1}{2} \sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3}} \right) \right]}_{Den} 3.52$$

Ou le dénominateur Den est donné par:

$$Den = \left(2\lambda + \sqrt{\beta^{2} + 4\lambda^{2}}\right) \left(e^{\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} + \lambda h_{3} + \lambda h_{1}} + e^{-\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3} - \lambda h_{1}}\right) + \left(-2\lambda + \sqrt{\beta^{2} + 4\lambda^{2}}\right) \left(e^{\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3} - \lambda h_{1}} + e^{-\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} + \lambda h_{3} + \lambda h_{1}}\right) + \beta \left(-e^{\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3} + \lambda h_{1}} - e^{\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} + \lambda h_{3} - \lambda h_{1}} + e^{-\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3} + \lambda h_{1}} + e^{-\frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}h_{2} - \lambda h_{3} + \lambda h_{1}}\right) + 3.53$$

Utilisant la condition aux limites 3.33 on obtient:

$$\int_{0}^{+l_{a}} K(x,t)\psi(t)dt = -\pi \frac{\tau(x)}{\mu_{1}} \text{ for } |x| \le l_{a}$$
3.54

Ou:

$$K(x,t) = \lim_{y \to 0^+} \int_0^{+\infty} N(y,\lambda) \sin(\lambda t) \cos(\lambda t) d\lambda$$
 3.55

 $N(y,\lambda)$ est donné par:

$$N(y,\lambda) = \left\{ e^{\lambda(y-h_1)} \left[e^{\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 - \lambda h_3} \left(-2\lambda + \sqrt{\beta^2 + 4\lambda^2} \right) + e^{-\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 - \lambda h_3} \left(2\lambda + \sqrt{\beta^2 + 4\lambda^2} \right) + \beta \left(e^{-\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 + \lambda h_3} - e^{\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 + \lambda h_3} \right) \right] - e^{\lambda(-y+h_1)} \left[e^{\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 + \lambda h_3} \left(2\lambda + \sqrt{\beta^2 + 4\lambda^2} \right) + e^{-\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 - \lambda h_3} \left(-2\lambda + \sqrt{\beta^2 + 4\lambda^2} \right) + \beta \left(e^{-\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 - \lambda h_3} - e^{\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 - \lambda h_3} - e^{\frac{1}{2}\sqrt{\beta^2 + 4\lambda^2}h_2 - \lambda h_3} \right) \right] \right\} / Den \qquad 3.56$$

Une analyse asymptotique a été effectué sur N(y, λ) pour $\lambda \rightarrow +\infty$. (Voir ANNEXE C), on a obtenu:

$$N^{\infty}(y,\lambda) \cong -e^{-\lambda y} \tag{3.57}$$

K(x,t) (équation 3.55) peut être écrit sous la forme suivante:

$$K(x,t) = \lim_{y \to 0^+} \int_0^{+\infty} N^{\infty}(y,\lambda) \sin(\lambda t) \cos(\lambda t) d\lambda + \lim_{y \to 0^+} \int_0^{+\infty} \left(N(y,\lambda) - N^{\infty}(y,\lambda) \right) \sin(\lambda t) \cos(\lambda t) d\lambda$$
$$= \lim_{y \to 0^+} -\int_0^{+\infty} e^{-\lambda y} \sin(\lambda t) \cos(\lambda t) d\lambda + \int_0^{+\infty} (N(0,\lambda) + 1) \sin(\lambda t) \cos(\lambda t) d\lambda \quad 3.58$$

La première intégrale est donnée sous la forme suivante:

$$\lim_{y \to 0^+} \int_0^{+\infty} e^{-\lambda y} \sin(\lambda t) \cos(\lambda t) d\lambda = \frac{t}{(t-x)(t+x)}$$
3.59

A cause de la convergence uniforme, la limite dans le second intégrale (Équation 3.58) a été mis sous l'intégral.

$$k(x,t) = -\int_0^{\lambda_{\text{limit}}} (N(0,\lambda) + 1)\sin(\lambda t)\cos(\lambda x)d\lambda$$
3.60

 λ_{limit} est la valeur de la variable λ pour laquelle l'intégrale 3.60 converge (i.e. l'intégrant dans 3.60 tend vers zéro). Une étude paramétrique a été effectuée pour déterminer λ_{limit} (voir détails à l'ANNEXE D).

L'équation intégrale singulière est donnée par:

$$\frac{\mu_1}{\pi} \int_0^{l_a} \left(\frac{t}{(t-x)(t+x)} + k(x,t) \right) \psi(t) dt = \tau(x), |x| < l_a$$
3.61

La distribution de chargement est discontinue le long de la fissure et est donnée par:

$$\tau(x) = \begin{cases} -\tau_{\infty}, & \text{pour } |x| \le \alpha \\ -\tau_{\infty} + \tau_c & \text{pour } \alpha \le |x| \le l_a \end{cases}$$
3.62

 $\alpha = l_0$ dans la phase initiation (l_0 est la pointe initiale de la fissure) et $\alpha = l_c$ dans la phase de propagations (après amorçage on note par l_c la nouvelle pointe de la fissure).

A cause de la parité de intégrant dans 3.61, on peut l'exprimer sous la forme suivante: $\frac{\mu_1}{2\pi} \int_{-l_a}^{l_a} \left(\frac{1}{t-x} + k(x,t)\right) \psi(t) dt = \tau(x), |x| < l_a \qquad 3.63$

Avec la condition :

$$\int_{-l_a}^{l_a} \psi(t)dt = 0 \tag{3.64}$$

Dans l'équation 3.63, L'équation intégrale singulière est définie au sens de la valeur principale de Cauchy.

3.4. Problème sans la zone affecté thermiquement HAZ:

3.4.1. Description du problème sans la HAZ:

La structure est modélisée par un modèle bi-matériaux constitué d'une bande infinie $\Omega = (-\infty, +\infty)x(-h, h)$ contenant une fissure initiale centrale $D = [-l_0, l_0]x\{0\}$ de longueur $2l_0$, parallèle à ces limites supérieur et inférieur (Voir Figure 3.7). Les couches homogènes Ω_1 et Ω_3 représentent la zone fondue (WM) et le métal de base (BM), respectivement. A cause de la symétrie par rapport à l'axe des x, seulement la moitie supérieure de la structure sera modélisée.

Figure 3.7. Géométrie du problème bi-matériaux (sans la zone affectée thermiquement).

Une contrainte de cisaillement anti-plane τ_{∞} est appliqué aux lèvres de la fissure, cette dernière est prescrite à partir de zéro pendent le chargement, et les forces de volumes sont négligés. μ_1 et μ_3 sont, respectivement, le module de cisaillement des couches homogènes Ω_1 et Ω_3 . Les propriétés élastiques sont discontinues à travers les interfaces.

3.4.2. Position du problème et dérivation de l'équation intégrale:

On utilise le schéma de transformation proposé par F. ERDOGAN (F. ERDOGAN et al. 1973) pour réduire le problème à une équation intégrale. Premièrement, les conditions aux limites et les conditions de transmission du problème à y=0, $y=h_1+h_3$ et à l'interface $y=h_1$ sont présentées dans la suite:

$$\tau_{yz}^{1}(x,0) = \tau(x), |x| \le l_{a}$$
3.65

$$w_1(x,0) = 0, |x| > l_a \tag{3.66}$$

$$w_1(x, h_1) = w_3(x, h_1), |x| < +\infty$$
3.67

$$\tau_{yz}^{1}(x,h_{1}) = \tau_{yz}^{3}(x,h_{1}), |x| < +\infty$$
3.68

$$\tau_{yz}^{3}(x, h_{1} + h_{3}) = 0, |x| < +\infty, y = h_{1} + h_{3}$$
3.69

Ou $w_i(x,y)$ et τ_{yz}^{i} sont respectivement la z-composante des champs de déplacement et du contrainte dans les domaines Ω_i (*i*=1,3). Le chargement $\tau(x)$ est donné par l'équation 3.40.

La composante du déplacement dans la direction z pour les zones Ω_i (*i*=1,3) est donnée par l'équation 3.41.

Ou C_k^j (k=1,2 et j=1,3) sont les fonctions inconnus de la variable λ qui doivent être déterminées à partir des conditions aux limites du problème (Equations 3.65-69). Les Coefficients n_m (m=1,2) sont les racines des polynômes caractéristiques associés avec l'operateur Laplacian, ils sont donnés par l'équation 3.43.

La z-composante du champ de contraintes dans les domaines homogènes Ω_i (*i*=1,3) sont respectivement données par 3.45.

Dans le but de déterminer l'équation intégrale, on a besoin d'introduire la fonction densité ψ donnée par l'équation 3.47.

En substituant l'équation 3.41 dans l'équation 3.47 et en tenant compte de la transformée de Fourier inverse, on obtient:

$$C_1^1(\lambda) + C_2^1(\lambda) = -\frac{1}{2\pi\lambda} \int_0^{+l_a} \psi(t) \sin(\lambda t) \, dt = F$$
 3.69

L'équation 3.67 résulte à:

$$C_1^1(\lambda)e^{\lambda h_1} + C_2^1(\lambda)e^{-\lambda h_1} = C_1^3(\lambda)e^{\lambda h_1} + C_2^3(\lambda)e^{-\lambda h_1}$$
 3.70a

L'équation 3.68 et 3.69 donnent respectivement:

$$\mu_1 (C_1^1(\lambda) e^{\lambda h_1} - C_2^1(\lambda) e^{-\lambda h_1}) = \mu_3 (C_1^3(\lambda) e^{\lambda h_1} - C_2^3(\lambda) e^{-\lambda h_1})$$
 3.70b

$$C_1^3(\lambda)e^{\lambda(h_1+h_3)} - C_2^3(\lambda)e^{-\lambda(h_1+h_3)} = 0$$
3.70c

Résoudre le système d'équations algébriques 3.69 et 3.70a-c, donne les deux fonctions inconnues $C_1^{\ l}(\lambda)$ et $C_2^{\ l}(\lambda)$

$$C_1^1(\lambda) = F \frac{(\mu_1 + \mu_3)e^{-\lambda(h_1 + h_3)} + (\mu_1 - \mu_3)e^{-\lambda(h_1 - h_3)}}{(\mu_1 - \mu_3)(e^{-\lambda(h_3 - h_1)} + e^{\lambda(h_3 - h_1)}) + (\mu_1 + \mu_3)(e^{\lambda(h_3 + h_1)} + e^{-\lambda(h_3 + h_1)})}$$
3.71

$$C_{2}^{1}(\lambda) = F \frac{(\mu_{1} - \mu_{3})e^{\lambda(h_{1} - h_{3})} + (\mu_{1} + \mu_{3})e^{\lambda(h_{1} + h_{3})}}{(\mu_{1} - \mu_{3})(e^{-\lambda(h_{3} - h_{1})} + e^{\lambda(h_{3} - h_{1})}) + (\mu_{1} + \mu_{3})(e^{\lambda(h_{3} + h_{1})} + e^{-\lambda(h_{3} + h_{1})})}$$
3.72

Suivant la même méthode qu'on a utilisée à la section 3.3, l'équation intégrale singulière est obtenue comme suit:

Utilisant la condition aux limites 3.65 on obtient:

$$\int_{0}^{+l_{a}} K'(x,t)\psi(t)dt = -\pi \frac{\tau(x)}{\mu_{1}} \text{ for } |x| \le l_{a}$$
3.73

Ou:

$$K'(x,t) = \lim_{y \to 0^+} \int_0^{+\infty} N'(y,\lambda) \sin(\lambda t) \cos(\lambda x) \, d\lambda$$
 3.74

 $N'(y, \lambda)$ est donné par:

$$N'(y,\lambda) = \frac{(\mu_1 + \mu_3)(e^{-\lambda(h_1 + h_3 - y)} - e^{\lambda(h_1 + h_3 - y)}) + (\mu_1 - \mu_3)(e^{-\lambda(h_1 - h_3 - y)} - e^{\lambda(h_1 - h_3 - y)})}{(\mu_1 - \mu_3)(e^{-\lambda(h_3 - h_1)} + e^{\lambda(h_3 - h_1)}) + (\mu_1 + \mu_3)(e^{\lambda(h_3 + h_1)} + e^{-\lambda(h_3 + h_1)})}$$

$$3.75$$

Une analyse asymptotique a été effectué sur $N(y, \lambda)$ pour $\lambda \rightarrow +\infty$. (Voir ANNEXE H), on a obtenu:

$$N^{\prime \infty}(y,\lambda) \cong -e^{-\lambda y} \tag{3.76}$$

K'(x,t) (équation 3.74) peut être écrit sous la forme suivante:

$$K'(x,t) = \lim_{y \to 0^+} \int_0^{+\infty} N'^{\infty}(y,\lambda) \sin(\lambda t) \cos(\lambda x) \, d\lambda + \lim_{y \to 0^+} \int_0^{+\infty} \left(N'(y,\lambda) - N'^{\infty}(y,\lambda) \right) \sin(\lambda t) \cos(\lambda x) \, d\lambda$$

$$= \lim_{y \to 0^+} -\int_0^{+\infty} e^{-\lambda y} \sin(\lambda t) \cos(\lambda t) d\lambda + \int_0^{+\infty} (N'(0,\lambda) + 1) \sin(\lambda t) \cos(\lambda t) d\lambda \quad 3.77$$

La première intégrale est donnée sous la forme suivante:

$$\lim_{y \to 0^+} \int_0^{+\infty} e^{-\lambda y} \sin(\lambda t) \cos(\lambda t) d\lambda = \frac{t}{(t-x)(t+x)}$$
3.78

A cause de la convergence uniforme, la limite dans le second intégrale (Équation 3.78) a été mis sous l'intégral.

$$k'(x,t) = -\int_0^{\lambda_limit} (N'(0,\lambda) + 1)\sin(\lambda t)\cos(\lambda x)d\lambda$$
3.79

 λ_{limit} est la valeur de la variable λ pour laquelle l'intégrale 3.79 converge (i.e. l'intégrant dans 3.79 tend vers zéro). Une étude paramétrique a été effectuée pour déterminer λ_{limit} (voir détails à l'ANNEXE H).

L'équation intégrale singulière, dans laquelle la seul inconnu est la fonction ψ , et est donnée pour les deux cas suivant:

$$\frac{\mu_1}{2\pi} \int_{-l_a}^{l_a} \left(\frac{1}{t-x} + k'(x,t) \right) \psi(t) dt = \tau(x), |x| < l_a$$
3.80

Avec la condition :

$$\int_{-l_a}^{l_a} \psi(t) dt = 0$$
 3.81

Ou k'(x,t) est donnée par:

$$k'(x,t) = -\int_0^{+\infty} f(\lambda) \sin(\lambda t) \cos(\lambda t) d\lambda \qquad 3.82$$

Avec:

$$f(\lambda) = 2 \frac{(\mu_1 - \mu_3)e^{\lambda(h_3 - h_1)} + (\mu_1 + \mu_3)e^{-\lambda(h_3 + h_1)}}{(\mu_1 - \mu_3)[e^{-\lambda(h_3 - h_1)} + e^{\lambda(h_3 - h_1)}] + (\mu_1 + \mu_3)[e^{\lambda(h_3 + h_1)} + e^{-\lambda(h_3 + h_1)}]}$$

$$3.83$$

L'étude du problème bi-matériaux (sans la zone affectée thermiquement HAZ) sert pour comparaison avec le problème avec la zone HAZ dans le cas ou l'épaisseur de cette dernière est très petite.

Dans le prochain chapitre nous allons présenter la solution de l'équation intégrale singulière.

3.5. Problème avec modèle de GRIFFITH (chargement continu):

Dans ce paragraphe nous allons présenter le problème avec zone affectée thermiquement (figure 3.6) et avec le modèle de GRIFFITH (le chargement est continu a cause de l'absence des forces cohésives). En utilisant le même schéma de transformation (voir paragraphe 3.3.2), en gardent les même conditions aux limites et les conditions de transmissions du problème à y=0, $y=h_1+h_2+h_3$ et aux interfaces a $y=h_1$, $y=h_1+h_2$ (équations 3.33-39), et utilisant la distribution du chargement suivante:

$$\tau(x) = -\tau_{\infty} \text{pour } |x| \le l, \qquad 3.84$$

Ou *l* est la taille de la fissure, l'équation intégrale singulière est donnée par:

$$\frac{\mu_1}{2\pi} \int_{-l}^{l} \left(\frac{1}{t-x} + k(x,t) \right) \psi(t) dt = -\tau_{\infty} , |x| < l,$$
3.85

Avec la condition:

.

$$\int_{-1}^{1} \psi(t) dt = 0,$$
 3.86

k(x,t) est donnée par les équations 3.56 et 3.60.

La méthode de résolution de l'équation intégrale singulière 3.85 sera présentée dans le chapitre suivant.

3.5.1. Critère d'évolution de la fissure avec le modèle de Griffith:

La formule d'Irwin (Irwin, 1957) donne la relation entre le facteur d'intensité de contrainte k_{III} et le taux de restitution d'énergie *G*, la formule est donné sous la forme suivante:

$$G = \frac{k_{III}^2}{2\mu_1}$$
 3.87

Ou μ_1 est le module de cisaillement du matériau de la zone fissuré (i.e. la zone fondu WM).

A partir de l'équation 3.87 on en déduit le facteur d'intensité de contraintes en mode anti-plan k_{III} , il est donné par:

$$k_{III} = \sqrt{2\mu_1 G} \tag{3.88}$$

Avec l'équation 3.87 on peut calculer le facteur d'intensité de contrainte critique K_{IIIc} correspondant, il est donné par:

$$k_{IIIc} = \sqrt{2\mu_1 G_c}$$
 5.89

Ou G_c est le taux de restitution d'énergie critique et τ_r est la charge de rupture.

Dans la suite nous allons présenter la procédure numérique utilisé pour détermine τ_r pour une valeur donnée à la taille de la fissure *l*. La procédure numérique est la suivante:

1. On donne une valeur initiale à la longueur de la fissure $l=l_0$.

2. On pose $\tau_{\infty}=1$, on résout l'équation intégrale singulière (3.85 et 3.86) et on calcul k_{III} .

3. En utilisant la linéarité du problème élastique, on peut déterminer la formule permettant le calcule de la charge de rupture τ_r :

$$\tau_r = \frac{k_{IIIc}}{k_{III}}$$
 5.90

Ou k_{III} et K_{IIIc} sont donnés par les équations 3.88 et 3.89, respectivement.

4. On incrémente sur la valeur de la tille de la fissure *l* et on revient a l'étape 2.

Ce présent chapitre a été dédié à la présentation de la méthode de détermination de l'équation intégrale, plusieurs problèmes ont été considéré, les problèmes avec ou sans la zones affectées thermiquement et avec ou sans discontinuités dans la distribution du chargement.

Le prochain chapitre sera consacré à la présentation des méthodes de résolution des équations intégrales singulières obtenues. Dans le cas ou la distribution du chargement présente des discontinuités, une méthode de quadrature numérique modifiée est utilisée.

Ce chapitre est consacré à la résolution des équations intégrales singulières obtenues (voir chapitre 3), et dans le cas ou le chargement présente des discontinuités une méthode de quadrature numérique modifié est utilisée.

4.1. Résolution de l'équation intégrale singulière avec discontinuité de chargement:

Cette section présente la méthode de résolution de l'équation intégrale avec chargement discontinu. La méthode est appliquée aux deux problèmes traités dans le chapitre 3 c'est-à-dire le problème avec zone affectée thermiquement (équations 3.63 et 3.64) et problème sans la zone affectée thermiquement (équations 3.80 et 3.81).

Dans le cas ou l'on utilise le modèle de DUGDALE, la répartition du chargement le long de la fissure présente des discontinuités au point $\pm l_c$ (voir chapitre 3, équation 3.62) et l'équation intégrale singulière du problème avec le chargement correspondant sont donnés sous la forme suivante:

$$\frac{1}{\pi} \int_{-l_a}^{l_a} \left(\frac{1}{t-x} + k(x,t) \right) \psi(t) dt = \frac{2}{\mu_1} \tau(x), |x| < l_a$$

$$4.1$$

Avec la condition :

$$\int_{-l_a}^{l_a} \psi(t) dt = 0 \tag{4.2}$$

Le chargement est donnée par:

$$\tau(x) = \begin{cases} -\tau_{\infty}, & \text{pour } |x| \le \alpha \\ -\tau_{\infty} + \tau_c & \text{pour } \alpha \le |x| \le l_a \end{cases}$$

$$4.3$$

 $\alpha = l_0$ dans la phase cohésive et $\alpha = l_c$ dans la phase de propagations (voir chapitre 3 et figure 3.4). L'intervalle d'intégration et les différents variables de l'équation 4.1 doivent être normalisés avant de passer à l'implémentation de la méthode de résolution, et pour cela il faut introduire les quantités normalisées suivantes:

$$r = \frac{x}{l_0}, s = \frac{t}{l_0}, \eta = \frac{l_c}{l_a}, \psi(t) = f(s), k(x, t) = L(r, s)$$
4.4

L'équation 4.1 avec la condition correspondante 4.2 prend les formes suivantes, respectivement:

$$\frac{1}{\pi} \int_{-1}^{1} \left(\frac{1}{s-r} + l_a L(r,s) \right) f(s) \, ds = \frac{2}{\mu_1} \tau(r), |r| < 1$$

$$4.5$$

Avec la condition:
$$\int_{-1}^{1} f(s) ds = 0$$
 4.6

Dans l'équation 4.5, le chargement $\tau(r)$ est donné par:

$$\tau(r) = \begin{cases} -\tau_{\infty}, & \text{for } |r| \le \eta, \\ -\tau_{\infty} + \tau_c, & \text{for } \eta \le |r| \le 1, \end{cases}$$

$$4.7$$

La distribution du chargement 4.7 présente des sauts de discontinuités aux points $\pm \eta$. Suivant une méthode proposée par IOAKIMIDIS (N. I. IOAKIMIDIS, 1980), la fonction inconnue f(s) est réécrive comme suit :

$$f(s) = h(s) + \phi(s) \tag{4.8}$$

Ou h(s) est la solution de l'équation intégrale suivante:

$$\frac{1}{\pi} \int_{-1}^{+1} \frac{1}{s-r} h(s) ds = \frac{2}{\mu_1} \tau(r), \quad |r| \le 1$$

$$4.9$$

Et la condition supplémentaire suivante: $\int_{-1}^{+1} h(s) ds = 0$ 4.10

La nouvelle fonction inconnue $\mathcal{O}(s)$ doit satisfaire l'équation suivante:

$$\frac{1}{\pi} \int_{-1}^{+1} \left[\frac{1}{s-r} + l_a L(r,s) \right] \phi(s) ds = g(r), |r| \le 1$$

$$4.11$$

Ou:
$$g(r) = -\frac{1}{\pi} \int_{-1}^{+1} l_a L(r, s) h(s) ds$$
 4.12

Avec la condition: $\int_{-1}^{+1} \phi(s) ds = 0$ 4.13

Il est clair de l'équation 4.12 que, puisque L(r,s) a un comportement régulier, le même doit être vrai pour g(r) et la technique numérique pour résoudre les équations intégrales singulières peut être appliquée pour résoudre les équations 4.11 et 4.13 sans aucune modifications (F. ERDOGAN et al., 1973).

La solution des équations intégrales 4.9 et 4.10, a été déterminé par (F.D. GAKHOV., 1966) comme suit:

$$h(s) = -\frac{2}{\pi\mu_1} (1 - s^2)^{-1/2} \int_{-1}^{+1} (1 - r^2)^{1/2} \frac{\tau(r)}{r - s} dr, |s| \le 1$$

$$4.14$$

En effectuant l'intégration dans 4.14, on obtient:

$$h(s) = h_1(s) + h_2(s)$$
4.15

Où:

$$h_1(s) = \frac{2s}{\pi\mu_1} (1 - s^2)^{-1/2} (-\pi\tau_\infty + 2\tau_c \arccos\eta)$$

$$4.16$$

$$h_2(s) = \frac{2\tau_c}{\pi\mu_1} \ln \left| \frac{\eta\sqrt{1-s^2} - s\sqrt{1-\eta^2}}{\eta\sqrt{1-s^2} + s\sqrt{1-\eta^2}} \right|$$

$$4.17$$

On remarque que $h_2(s)$ présente des singularités logarithmiques quant $s \to \pm \eta$. L'équation intégrale singulière 4.11 a l'indice 1 car la fonction inconnue $\mathcal{O}(s)$ présentes des singularités intégrables aux points ± 1 (F. ERDOGAN et al. 1973). La solution peut être exprimée par $\mathcal{O}(s)=w(s).\phi(s)$ et $w(s)=(1-s^2)^{-1/2}$ est les fonctions poids associés avec les polynômes de Tchebytchev de premier type $T_n(s)=\cos(n(\arccos(s)))$ et $\phi(s)$ est la fonction continue et bornée sur l'intervalle [-1,1] qui peut s'exprimé par une série tronquée des polynômes de Tchebytchev de premier type. Il est clair qu'avec la symétrie que $\mathcal{O}(s)=-\mathcal{O}(s)$. Donc, la solution de 4.11 peut être exprimé par:

$$\phi(s) = (1 - s^2)^{-1/2} \sum_{i=1}^N A_i T_{2i-1}(s)$$
4.18

Si on substitue 4.18 dans 4.11 en utilisant les relations suivantes:

$$\frac{1}{\pi} \int_{-1}^{+1} \frac{T_i(s)(1-s^2)^{-1/2}}{s-r} ds = \begin{cases} U_{i-1}(r), & i > 0\\ 0, & i = 0 \end{cases}$$

$$4.19$$

Ou $U_i(r) = (\sin((i+1)\arccos(r)))/(1-s^2)^{-1/2}$ désigne les polynômes de Tchebytchev du second type, on trouve:

$$\sum_{i=1}^{N} A_i [U_{2i-2}(r) + H_i(r)] = g(r), \text{ for } |r| < 1$$
4.20

Ou:
$$H_i(r) = \frac{1}{\pi} \int_{-1}^{1} (1 - s^2)^{-1/2} l_a L(r, s) T_{2i-1}(s) ds$$
 4.21

L'équation 4.20 peut être résolue en sélectionnant les N points de collocation, données par:

$$r_j = \cos\frac{(2j-1)\pi}{2(2N-1)},$$
4.22

En utilisant les point de collocation données par 4.22, l'équation 4.20 se réduit à un système de N équations algébriques linéaires à N inconnus A_i (i=1,..,N). Le système est donné par:

$$\sum_{i=1}^{N} A_i [U_{2i-2}(r_j) + H_i(r_j)] = g(r_j), \text{ for } j = 1, \dots, N$$
4.23

Les valeurs de $H_i(r_j)$ sur le côté droit de l'équation 4.23 sont calculées avec l'équation 4.21. Ces intégrales sont évalués avec la formule d'intégration numérique de Gauss-Tchebychev donnée par ABRAMOWITZ and STEGUN (M. ABRAMOWITZ et al 1964), la formule est donnée par:

$$\frac{1}{\pi} \int_{-1}^{1} \frac{f(t)dt}{\sqrt{1-t^2}} \approx \sum_{k=1}^{n} \frac{f(t_k)}{n}, \text{ and } t_k = \cos\left(\frac{(2k-1)\pi}{2n}\right)$$
 4.24

Les valeurs de $g(r_j)$ du côté droit de l'équation 4.23 sont évalués à l'aide de l'équation 4.12, et en utilisant les équations 4.15-17 il peut s'écrire sous la forme suivante:

$$g(r_j) = -\frac{1}{\pi} \left(\int_{-1}^1 l_a L(r_j, s) h_1(s) ds + \int_{-1}^1 l_a L(r_j, s) h_2(s) ds \right), pour \ j = 1, \dots, N$$
4.25

La première partie de l'équation 4.25 est évaluée numériquement avec la formule de Gauss-Tchebytchev donnée par l'équation 4.24. La seconde partie de l'équation 4.25 contient $h_2(s)$ donnée par l'équation 4.17 qui présente des singularités logarithmiques aux points $\pm \eta$, $h_2(s)$ doit être divisé en trois parties comme suit:

$$\int_{-1}^{1} l_a L(r_j, s) h_2(s) ds = \int_{-1}^{-\eta} l_a L(r_j, s) h_2(s) ds + \int_{-\eta}^{\eta} l_a L(r_j, s) h_2(s) ds + \int_{\eta}^{1} l_a L(r_j, s) h_2(s) ds$$

$$4.26$$

Les trois intégrales dans 4.26 peuvent être évalués numériquement par la formule d'intégration numérique de Gauss-Tchebytchev donnée par 4.24, les intervalles d'intégration dans 4.26 doivent être normalisés (voir les détails à l'ANNEXE G).

Le facteur d'intensité de contrainte est donnée par la formule suivante (l'ANNEXE F):

$$K_{III}(\mp l_a) = \sqrt{l_a} \left(\tau_{\infty} - \frac{2}{\pi} \tau_c \arccos\left(\frac{l_c}{l_a}\right) - \frac{\mu_1}{2} \sum_{i=1}^N A_i \right)$$

$$4.27$$

Le glissement à $x=\pm l_c$ est donné par (l'ANNEXE F):

$$\delta(\pm l_c) = \frac{2l_a}{\pi\mu_1} \Big[\pi \sqrt{1 - \eta^2} \left(\tau_{\infty} - \frac{2\tau_c}{\pi} \arccos \frac{l_c}{l_a} \right) - 2\tau_c \eta \ln \eta \Big] - l_a \sqrt{1 - \eta^2} \sum_{i=1}^{N} \frac{A_i U_{2i-2}(\pm \eta)}{2i-1}$$
 4.28

4.2. Résolution de l'équation intégrale singulière avec chargement continu:

Dans le cas ou l'on utilise le modèle de Griffith (absence de la zone cohésive), la répartition du chargement le long de la fissure ne présente pas de discontinuité.

La méthode de quadrature utilisée pour résoudre ce type d'équation intégrale singulière est présentée dans la suite:

Dans le cas ou l'on utilise le modèle de Griffith, l'équation intégrale singulière du problème est donnée sous la forme suivante (voir Chapitre 3, équations 3.85 et 3.86):

$$\frac{1}{\pi} \int_{-l}^{l} \left(\frac{1}{t-x} + k(x,t) \right) \psi(t) dt = -\frac{2}{\mu_1} \tau_{\infty}, |x| < l,$$
4.29

Avec la condition:

$$\int_{-1}^{1} \psi(t) dt = 0,$$
 4.30

Le premier terme dans la parti gauche de l'équation 4.29 est le noyau généralisé de type Cauchy, le second terme k(x,t) et donnée par l'équation 3.60 (voir chapitre 3).

L'intervalle d'intégration et les différentes variables de l'équation 4.29 doivent être normalisé avant de passer à l'implémentation de la méthode de résolution, et pour cela il faut introduire les quantités normalisées donnée par les équations 4.4.

L'équation 4.29 prend la forme suivante:

$$\frac{1}{\pi} \int_{-1}^{1} \left(\frac{1}{s-r} + lL(r,s) \right) \phi(s) ds = \frac{2}{\mu_1} \tau_{\infty}, |r| < 1,$$

$$4.31$$

Avec la condition:

$$\int_{-1}^{1} \phi(s) ds = 0$$
 4.32

Le noyau de Fredholm k(x,t) de l'équation 4.29 est constitué d'une intégrale qui doit être normalisé (voir détails à l'ANNEXE E). Après normalisation on obtient le noyau suivant:

$$L(r,s) = -\frac{\lambda_{\text{limit}}}{2} \int_{-1}^{1} (N'(0,\lambda) + 1) \sin\left(\frac{\lambda_{\text{limit}}}{2} (\lambda + 1)s\right) \cos\left[\frac{\lambda_{\text{limit}}}{2} (\lambda + 1)r\right] d\lambda, \quad 4.33$$

L'indice de l'équation intégrale singulière 4.29 κ =1 car la fonction inconnu \emptyset possède des singularités intégrables à ±1, la méthode numérique de résolution de ce type d'équation intégrale est basé sur les polynômes de Gauss-Tchebytchev du premier et second type.

La fonction fondamentale (ou poids) pour l'équation 4.31 est $w(s)=(1-s^2)^{-1/2}$. Donc, les polynômes orthogonaux correspondant sont les polynômes de Tchebytchev de premier type $T_n(s)=\cos(n(\arccos(s)))$. A cause de la symétrie, il est clair que $\emptyset(s)=-\emptyset(-s)$.

La fonction inconnue peut être exprimée sous la forme suivante:

$$\phi(s) = (1 - t^2)^{-\frac{1}{2}} \sum_{i=1}^{N} A_i T_{2i-1}(s), \qquad 4.34$$

Substituant 4.34 dans 4.31 et utilisant les relations suivantes:

$$\frac{1}{\pi} \int_{-1}^{+1} \frac{T_i(s)(1-s^2)^{-\frac{1}{2}}}{s-r} ds = \begin{cases} U_{i-1}(r), & i > 0\\ 0, & i = 0 \end{cases}$$

$$4.35$$

Ou $U_i(r) = (\sin((i+1)\arccos(r)))/(1-s^2)^{-1/2}$ désigne les polynômes de Tchebytchev de second type.

On trouve:

$$\sum_{i=1}^{N} A_i [U_{2i-2}(r) + H_i(r)] = \frac{2}{\mu_1} \tau_{\infty},$$
4.36

Ou:

$$H_i(r) = \frac{1}{\pi} \int_{-1}^{1} (1 - s^2)^{-1/2} lL(r, s) T_{2i-1}(s) ds, \qquad 4.37$$

L'équation 4.36 peut être résolue en sélectionnant N points de collocation, données par:

$$r_j = \cos\left(\frac{(2j-1)\pi}{2(2N-1)}\right)$$
 for $j = 1, ..., N$, 4.38

Les points de collocations sont r_j sont les racines des polynômes de Tchebytchev de premier type:

$$T_{2j-1}(r_j) = 0, (j = 1, ..., N)$$
 4.39

Utilisant les points de collocation 4.38 l'équation 4.36 se réduise a un système de N équations algébriques linéaires a N inconnus A_i .

$$\sum_{i=1}^{N} A_i \left[U_{2i-2}(r_j) + H_i(r_j) \right] = \frac{2}{\mu_1} \tau_{\infty}, \quad (j = 1, ..., N)$$
4.40

Les intégrales réguliers L(r,s) et H(r) donnés respectivement par les équations (4.33 et 4.37), peuvent être évalué numériquement à l'aide de la formule d'intégration de Gauss Tchebytchev (équation 4.24).

Le facteur d'intensité de contraintes en mode anti-plan est donné par (voir détails à l'ANNEXE F):

$$k_{\rm III}(\pm l) = \frac{\mu_1}{2} \sqrt{\pi l} \sum_{i=1}^{N} A_i, \qquad 4.41$$

Dans ce chapitre nous avons présenté les méthodes de quadrature numérique de résolution des équations intégrales singulières, les expressions qui donnent les paramètres a calculés ont été présenté aussi.

Le chapitre suivant est réservé à la présentation des résultats, les interprétations et les discussions.

Dans cette partie de l'étude sont présentés les résultats et leurs interprétations. Les données des problèmes étudiés sont résumées dans les tableaux suivants. Ces données concernent les valeurs du facteur *elasticmismatch M*, la valeur normalisée du module de cisaillement de la zone fondu WM (μ_l/τ_c) et celle du métal de base BM (μ_3/τ_c), les épaisseurs des différentes zones (la zone fondu WM h_l/l_0 , la zone affectée thermiquement HAZ h_2/l_0 et le métal de base BM h_3/l_0) et les propriétés du modèle cohésif de DUGDALE (l'ouverture critique δ_c/l_0). Ici τ_c est la contrainte de cisaillement critique qui caractérise le modèle de DUGDALE et l_0 est la taille initiale de la fissure. On distingue deux cas:

• Cas 1: on considère fixe le module de cisaillement μ_I/τ_c de la zone fondu WM et on fait varier le module de cisaillement μ_3/τ_c du métal de base BM.

• Cas 2: cas inverse.

Le rapport *M* est pris dans les intervalles suivant:

- \blacktriangleright Elastic-overmatch: $10 \ge M \ge 1$.
- \blacktriangleright Elastic-undermatch: $1 \ge M \ge 0.1$.

M=1 fait référence au cas *elastic-evenmatch* c'est-à-dire $\mu_1=\mu_3$ et la longueur initiale de la fissure l_0 est prise égale à 1.

5.1. Influence du rapport *elasticmismatch M* sur la contrainte appliquée τ_{∞} :

Les valeurs des paramètres utilisés sont résumées dans le tableau 5.1.

Cas 1: $\mu_1 / \tau_c = 100$ et $\mu_3 = \mu_1 / M$			Cas 2:	$u_3/\tau_c=100$ et	$\mu_1 = \mu_3.M$	
δ_c/l_0	M			h_{l}/l_{0}	h_2/l_0	h_{3}/l_{0}
0,001	0,1	1	10	3	4	7

Tableau 5.1. Valeurs des paramètres utilisés.

5.1.1. Cas 1:

Dans cette partie le module de cisaillement μ_l/τ_c est fixé, le rapport M est fixé selon les valeurs données sur le tableau 5.1. Les résultats sont obtenus en terme de la contrainte appliquée τ_{∞} en fonction de la taille de la fissure l_c . Les courbes représentant la variation de la contrainte appliquée τ_{∞} en fonction de la taille de la fissure l_c sont donnée sur la figure 5.1, chaque courbe correspond à une valeur du rapport de l'*elasticmismatch M*.

Figure 5.1. Influence du rapport *elasticmismatch* M sur la contrainte appliqué τ_{∞} (cas 1).

En analysant les courbes de la figures 5.1, on peut dire que dans le cas 1, le rapport de l'elasticmismatch M a une faible influence sur la contrainte appliquée τ_{∞} . Les valeurs maximums de la contrainte appliquée τ_{∞} correspondent au cas où M=0,1 (*elastic-undermatch*) tandis que les valeurs minimums enregistrées correspondent au cas où M=10 (*elastic-overmatch*).

5.1.2. Cas 2 :

Dans cette partie le module de cisaillement du métal de base MB μ_3/τ_c est fixé, le rapport *M* prend les valeurs données sur le tableau 5.1. Les résultats sont obtenus en terme de la contrainte appliquée τ_{∞} en fonction de la taille de la fissure l_c . Les courbes représentant la variation de la contrainte appliquée τ_{∞} en fonction de la taille de la fissure l_c les courbes sont donnée sur la figure 5.2, chaque courbe correspond à une valeur du rapport de l'*elasticmismatch M*.

Figure 5.2. Influence du rapport *elasticmismatch* M sur la contrainte appliqué τ_{∞} (cas 2).

En analysant les courbes de la figures 5.2, on peut dire que dans le cas 2, le rapport de l'*elasticmismatch* M a une influence importante sur la contrainte appliquée τ_{∞} . Les valeurs maximums de la contrainte appliqué τ_{∞} correspondent au cas M=10 (*elasticovermatch*) tandis que les valeurs minimums enregistrées correspondent au cas où M=0,1(*elastic-undermatch*).

5.2. Influence du rapport *elasticmismatch* M sur la contrainte de rupture τ_r :

5.2.1. Influence du facteur *elastic-overmatch* (1≤M≤10):

Il faut noter que la charge de rupture τ_r est la valeur de la contrainte appliquée τ_{∞} qui correspond à la taille initiale de la fissure c'est-à-dire $l_c=l_0$.

Les courbes de la figure 5.3 montrent l'influence du facteur M sur la charge de rupture τ_r pour le cas *elastic-overmatch* ($1 \le M \le 10$), la première courbe (en pointillé) correspond au cas 01 (μ_1 fixe) alors que la seconde (en trait plein) correspond au cas 02 (μ_3 fixe).

Figure 5.3. Influence du rapport *elastic-overmatch M* sur la charge de rupture τ_r pour les deux cas 1 et 2.

D'après la figure 5.3, dans le cas 02 la charge de rupture τ_r augmente avec le facteur *M* alors qu'elle demeure constante dans le cas 01.

5.2.2. Influence du facteur *elastic-undermatch* $(0, 1 \le M \le 1)$:

Les courbes de la figure 5.4 montrent l'influence du facteur *M* sur la charge de rupture τ_r pour le cas *elastic-undermatch* (0,1 \leq M \leq 1), la première courbe (en pointillé) correspond au cas 01 (μ_1 fixe) alors que la seconde (en trait plein) correspond au cas 02 (μ_3 fixe).

Selon la figure 5.4, dans le cas 02 la charge de rupture τ_r diminue avec la diminution de la valeur du facteur *M* alors qu'elle demeure constante dans le cas 01.

Moyennent les résultats des figures précédentes (Figure 5.1, 5.2, 5.3 et 5.4) on peut formuler les points suivants:

• La contraintes appliquées τ_{∞} diminuent progressivement avec la taille de la fissure dans tous les cas.

• Dans le cas 01 (μ_1 fixe) l'influence du facteur *M* sur la contrainte appliquée est faible. Par contre, dans le cas 02 (μ_3 fixe) le facteur *M* montre une influence notoire sur τ_{∞} .

On peut expliquer ce résultat par le fait que le comportement de la fissure dépend énormément de la rigidité de la zone fondue WM (le module de cisaillement) et présente une dépendance faible à la rigidité du métal de base BM μ_3 .

Figure 5.4. Influence du rapport *elastic-undermatch* M sur la charge de rupture τ_r pour les deux cas 1 et 2.

5.3. Influence de l'épaisseur h₂ de la zone affectée thermiquement HAZ:

Dans cette section nous présentons l'influence de l'épaisseur h_2 de la zone affectée thermiquement HAZ sur la contrainte appliquée τ_{∞} et la charge de rupture τ_r . Les résultats sont présentés en terme de la variation de la contrainte appliquée τ_{∞} en fonction de la taille de la fissure l_c , et en terme de la charge de rupture τ_r en fonction de l'épaisseur h_2 . Les valeurs des différents paramètres utilisés dans les calculs sont présentées dans le tableau 5.2.

Tableau 5.2. Valeurs des paramètres utilisés.

$M = \mu_1 / \mu_3$	$(h_2+h_3)/l_0$	h_{l}/l_{0}	δ_c/l_0	$h_2/(h_2+h_3)$
1/2	11	3	0,001	∈[0, 1]

La variation de la charge de rupture τ_r en fonction de l'épaisseur relative $h_2/(h_2+h_3)$ est représentée sur la figure 5.5.

Figure 5.5. Influence de l'épaisseur h_2 sur la charge de rupture τ_r .

En examinant les résultats représentés sur la figure 5.5, on constante que la charge de rupture τ_r diminue légèrement avec h_2 . Pour le cas ou $h_2=0$ (absence de la HAZ), la valeur normalisée de la charge de rupture est égale à 0,251, alors qu'elle est évaluée à 0,249 pour $h_2/(h_2+h_3) = 1$ (absence du métal de base BM), ce qui montre une différence de l'ordre de 0,8%.

Figure 5.6. Influence de l'épaisseur h_2 sur la contrainte appliquée τ_{∞} .

La variation de la contrainte de rupture τ_{∞} en fonction de la taille de la fissure l_c est représentée sur la figure 5.6. La première courbe (en trait plein) correspond au cas ou $h_2=0$ (absence de la HAZ) tandis que la deuxième (en trait discontinu) correspond au cas ou $h_2/(h_2+h_3)=1$ (absence du métal de base BM). La différence entre les deux courbes est faible ce qui confirme les résultats donnés par la figure 5.5.

5.4. Influence de l'épaisseur h_l de la zone fondue WM:

Dans cette section nous présentons l'influence de l'épaisseur h_1 de la zone fondue WM sur la contrainte appliquée τ_{∞} et la charge de rupture τ_r .

$M=\mu_1/\mu_3$	$(h_1+h_2)/l_0$	h_{3}/l_{0}	δ_c/l_0	$h_1/(h_1+h_2)$
1/2	7	7	0,001	∈[0, 1]

Tableau 5.3. Les valeurs des paramètres utilisés.

Les valeurs des différents paramètres utilisés dans les calculs sont présentées dans le tableau 5.3. Les résultats sont présentés en terme de la variation de la contrainte appliquée τ_{∞} en fonction de la taille de la fissure l_c , et en terme de la charge de rupture τ_r en fonction de l'épaisseur h_1 représenté par le rapport $h_1/(h_1+h_2)$.

Figure 5.7. Influence de l'épaisseur h_1 sur la charge de rupture τ_r .

La variation de la charge de rupture τ_r en fonction de l'épaisseur relative $h_1/(h_1+h_2)$ est représentée sur la figure 5.7. En examinant les résultats représentés sur la figure 5.7, on remarque que la charge de rupture τ_r diminue légèrement avec h_1 . Pour le cas ou $h_1=0$ (absence de la WM), la valeur normalisée de la charge de rupture est égale à 0,256, alors qu'elle est évaluée a 0,249 pour $h_1/(h_1+h_2) = 1$ (absence du la zone affectée thermiquement HAZ), ce qui montre une différence de l'ordre de 0,7%.

Figure 5.8. Influence de l'épaisseur h_1 sur la contrainte appliquée τ_{∞} .

La variation de la contrainte de rupture τ_{∞} en fonction de la taille de la fissure l_c est représentée sur la figure 5.8. La première courbe (en trait plein) correspond au cas ou $h_1=0$ (absence de la WM) tandis que la deuxième (en trait discontinu) correspond au cas ou $h_1/(h_1+h_2)=1$ (absence de la zone affectée thermiquement HAZ). La différence entre les deux courbes est faible, ceci confirme les résultats donnés par la figure 5.7.

5.5. Influence de saut critique δ_c sur la charge de rupture et la propagation de la fissure:

Dans le but d'étudier l'influence des paramètres du modèle cohésive de DUGDALE, soit l'influence du saut critique δ_c sur la charge de rupture τ_r et la propagation de la fissure. Le tableau 5.4 contient les valeurs normalisées des différents paramètres utilisé dans les calculs.

$M=\mu_1/\mu_3$	h_1/l_0	h_2/l_0	h ₃ /l ₀	δ_c / l_0
1/2	3	4	7	[0,1; 1,0.10 ⁻⁶]

Tableau 5.4. Valeurs des paramètres utilisés.

L'influence du saut critique δ_c sur la charge de rupture τ_r est représentée sur la figure 5.9. Il est clair que pour une valeur donnée de δ_c , la charge de rupture τ_r est une fonction strictement croissante de la valeur de δ_c .

Dans le but de vérifier si cette tendance est la même pour la propagation de la fissure, l'évolution de la contrainte appliquée τ_{∞} en fonction de la taille de la fissure l_c est représenté sur la figure 5.10 pour différentes valeurs de δ_c . Ici aussi il est clair que τ_{∞} est plus faible dans le cas ou la valeur de δ_c est petite.

Figure 5.9. Influence du saut critique δ_c sur la charge de rupture τ_c .

Figure 5.10. Influence du saut critique δ_c sur la charge de rupture τ_c .

5.6. Convergence entre le modèle de GRIFFITH et DUGDALE quand δ_c tend vers zéro:

La densité d'énergie de surface dans le modèle de DUGDALE tend vers celle du modèle de GRIFFITH quand le saut critique δ_c caractéristique du modèle de DUGDALE tend vers zéro (figure 3.2, chapitre 3). Donc, on peut montrer que lorsque δ_c tend vers zero, il y a une convergence entre les résultats du problème avec le modèle de DUGDALE et celle du problème avec modèle de GRIFFITH. Les données utilisées dans les calculs sont résumées sur le tableau 5.5.

Figure 5.11. Comparaison entre GRIFFITH et DUGDALE pour $\delta_c/l_0=0,1$.

Figure 5.12. Comparaison entre GRIFFITH et DUGDALE pour $\delta_c/l_0=0,01$.

CHAPITRE 5: RESULTATS ET DISCUSSIONS

$M=\mu_1/\mu_3$	h_{1}/l_{0}	h_2/l_0	h ₃ /l ₀			δ_c / l_0	
1/2	3	4	7	0.1	1,0.10-2	1,0.10-4	1,0.10-6

Tableau 5.5. Valeurs des paramètres utilisés.

Figure 5.13. Comparaison entre GRIFFITH et DUGDALE pour $\delta_c/l_0=1, 0.10^{-4}$.

CHAPITRE 5: RESULTATS ET DISCUSSIONS

La convergence entre le modèle de GRIFFITH et le modèle de DUGDALE et représenté sur les figures 5.11, 5.12, 5.13 et 5.14 en terme de la contrainte de propagation versus la taille de la fissure.

On remarque que plus le saut critique δ_c et petit plus les résultats obtenus en utilisant les deux modèles converge.

Dans la suite nous allons présenter la conclusion générale.

Les principaux résultats obtenus sont résumés comme ceci :

- Le comportement de la fissure dépend énormément de la rigidité de la zone fondue WM (le module de cisaillement) et présente une dépendance faible de la rigidité du métal de base BM.
- L'influence de l'épaisseur de la HAZ sur la charge de rupture et la propagation de la fissure est négligeable, ceci a été confirmé à travers la comparaison des résultats du problème sans WM (tout le matériau de base est inclus dans la zone fondue) avec les résultats du problème sans HAZ. Ceci implique qu'on peut étudier le problème en éliminant la HAZ du modèle sans conséquences significatives.
- L'influence des paramètres du modèle de DUGDALE (le saut de glissement critique) sur la charge de rupture et la propagation de la fissure est mise en évidence et la charge de rupture est une fonction croissante du saut de glissement critique.

Toutefois, ces résultats ne peuvent pas être généralisés, car obtenus avec un certain nombre d'hypothèses simplificatrices :

- La structure est semi-infinie. Cette hypothèse a permis l'utilisation des transformées de Fourier pour réduire le problème en une équation intégrale singulière.
- La structure est symétrique. Cette hypothèse a permis de ne considérer, lors de l'établissement de l'équation intégrale singulière, que la moitié de la structure.
- La fissure est parallèle à l'axe de symétrie horizontal. Ceci a facilité l'établissement de l'équation intégrale singulière.
- La HAZ est modélisée comme un milieu non-homogène avec un module de cisaillement variant exponentiellement. Ceci a facilité le formalisme mathématique (dérivation simple pour l'exponentielle).
- Le chargement appliqué est anti-plan, et l'ouverture de la structure est en mode III. Ce cas n'est pas le plus courant en pratique, néanmoins il a permis de considérablement simplifier les calculs.

Dans le but de généraliser les résultats obtenus, il serait intéressant de considérer d'autres hypothèses. Nous présentons, en la discutant éventuellement, chacune d'elles :

- Une structure finie : Le modèle sera plus réaliste, mais plus difficile à mettre en œuvre que pour une structure infinie ou semi-infinie. On sera obligé d'utiliser d'autres méthodes telles que la méthode des éléments finis.
- Une structure non symétrique : Le modèle sera plus général, mais la dérivation de l'équation intégrale sera plus compliquée.
- Une fissure non parallèle à l'axe de symétrie.
- Une variation non exponentielle du module de cisaillement de la HAZ.
- Chargement en mode I : la modélisation sera nettement plus lourde (mathématiquement), mais c'est un cas intéressant car le mode I est le plus dangereux.

La prise en compte de ces nouvelles hypothèses fera l'objet de prochains travaux.

Titre	Page
Modèle bi-matériaux : a) HAO et al., 1999, b) HAO et al., 1997, c)	11
BURSTOW et al., 1997 et d) RAKIN et al., 2008.	11
Modèle tri-matériaux: a) ZHANG et al., 1997b, b) RANESTAD et al.,	12
1997 et c) NEGRE et al., 2004.	12
Champ "slip line field" a) Indentation d'un solide plastique rigide	
(ALLAN F. COWER 2010) et b) La région déforme entourent la pointe	14
d'une fissure dans un matériau incompressible parfaitement plastique.	
Charge limite obtenu par la méthode "slip line field": a) Charge limite	
F_Y pour les deux cas <i>strength-undermatch</i> et <i>strength-overmatch</i> (HAO	
et al., 1997), b) Charge de rupture MF_{YM} pour les cas <i>strength</i> -	15
undermatch et strength-overmatchet comparaison avec les résultats de	
la MEF (HAO et al., 1999).	
Modèles éléments finis. Fissure centrale sous tension: a) ZHANG et al.,	
1997b. b) RAKIN et al., 2008, fissure centrale en flexion pure et c)	15
RANESTAD et al., 1997.	
J-intégrale vs chargement pour différent cas de strengthmismatch: a)	
En terme de la limite élastique et b) En terme de l'exposant	16
d'écrouissage n.	
Courbes de a) Charge vs CTOD et b) J-intégrale, J_0 vs CMOD.	16
Champ de contraintes à la pointe de la fissure: a1) Propriétés	
mécaniques, a2) Epaisseur de la HAZ, b1) Influence de la limite	
élastique du WM (fissure dans WM), b2) Influence du facteur	
d'écrouissage n (fissure dans WM), b3) Influence de l'épaisseur de la	17
HAZ (fissure dans WM), c1) Influence de la limite élastique du WM	17
(fissure à l'interfaces WM/HAZ), c2) Influence du facteur	
d'écrouissage n (fissure à l'interfaces WM/HAZ) et c3) Influence de	
l'épaisseur de la HAZ (fissure à l'interfaces WM/HAZ).	
Modèle utilisé par LI et al. (2008). a) Géométrie du modèle, b)	18
Variation du module de cisaillement G_{ij} à travers le joint.	10
	Tirre Modèle bi-matériaux : a) HAO et al., 1999, b) HAO et al., 1997, c) BURSTOW et al., 1997 et d) RAKIN et al., 2008. Modèle tri-matériaux: a) ZHANG et al., 1997b, b) RANESTAD et al., 1997 et c) NEGRE et al., 2004. Champ "slip line field" a) Indentation d'un solide plastique rigide (ALLAN F. COWER 2010) et b) La région déforme entourent la pointe d'une fissure dans un matériau incompressible parfaitement plastique. Charge limite obtenu par la méthode "slip line field": a) Charge limite F_Y pour les deux cas strength-undermatch et strength-overmatch (HAO et al., 1997), b) Charge de rupture MF_{YM} pour les cas strength- undermatch et strength-overmatchet comparaison avec les résultats de la MEF (HAO et al., 1999). Modèles éléments finis. Fissure centrale sous tension: a) ZHANG et al., 1997b. b) RAKIN et al., 2008, fissure centrale en flexion pure et c) RANESTAD et al., 1997. J-intégrale vs chargement pour différent cas de strengthmismatch: a) En terme de la limite élastique et b) En terme de l'exposant d'écrouissage n. Courbes de a) Charge vs CTOD et b) J-intégrale, J ₀ vs CMOD. Champ de contraintes à la pointe de la fissure: al) Propriétés mécaniques, a2) Epaisseur de la HAZ, b1) Influence du la limite élastique du WM (fissure dans WM), b2) Influence du facteur d'écrouissage n (fissure dans WM), b3) Influence du facteur d'écrouissage n (fissure dans WM), b3) Influence du facteur d'écrouissage n (fissure à l'interfaces WM/HAZ), et c3) Influence de la HAZ (fissure à l'interfaces WM/HAZ), et c3) Influence de l'épaisseur de la HAZ (fissure à l'interfaces WM/HAZ). Modèle utilisé par L1 et al. (2008). a) Géométrie du modèle, b) Variation du module de cisaillement G _{ij} à travers le joint.

Sensitivité des valeurs normalisé de K_{III} au facteur M

Figure 1.10	(elasticmismatch) pour les deux positions de la fissure (dans le WM et	19
	dans la HAZ).	
Figure 1.11	Fissure de type DUGDALE dans différentes configurations.	20
Eigung 1 10	Relation entre la contrainte de rupture et la position de la pointe de la	01
Figure 1.12	fissure pour différente valeur du rapport <i>elasticmismatch</i> μ_1/μ_2 .	21
Figure 2.1	Schéma de la fissure et la zone cohésive (LAVERNE, 2004).	22
Figure 2.2	Loi d'interface dans le modèle de DUGDALE en mode I.	23
Figure 2.3	Loi d'interface de NEEDLEMAN dans la direction normale.	24
Figure2.4	Évolution de la force tangentielle en fonction du saut tangent.	25
Figure 3.1	Schéma du domaine fissuré avec les conditions aux limites et le chargement.	26
Figure 3.2	Fonction de densité d'énergie de surface de type DUGDALE et GRIFFITH.	27
Figure 3.3	Loi cohésive de type DUGDALE.	31
F: 0.4	Phases d'évolution de la fissure: a) Phase cohésive, b) Phase de	
Figure 3.4	propagation.	
	Le principe de superposition, (a) problème initial, (b) problème avec	
Figure 3.5	FIC nul et (c) problème avec FIC non nul (FIC: facteur d'intensité de	34
	contraintes).	
Figuro 3.6	Géométrie du problème élastique, propriétés élastiques et	34
Figure 5.0	chargements.	
Figure 37	Géométrie du problème bi-matériaux (sans la zone affectée	30
Figure 5.7	thermiquement).	39
Figure 5.1	Influence du rapport <i>elasticmismatch</i> M sur la contrainte appliqué $ au_{\infty}$	54
Tiguie 5.1	(cas 1).	54
Figure 5.2	Influence du rapport <i>elasticmismatch</i> M sur la contrainte appliqué $ au_{\infty}$	55
Tiguie 5.2	(cas 2).	55
Figure 5.3	Influence du rapport de l' <i>elastic-overmatch M</i> sur la charge de rupture	56
I Iguie 5.5	τ_r pour le deux cas 1 et 2.	50
Figure 5 Λ	Influence du rapport de l' <i>elastic-undermatch M</i> sur la charge de	57
1 15010 J.4	rupture τ_r pour le deux cas 1 et 2.	
Figure 5.5	Influence de l'épaisseur h_2 sur la charge de rupture τ_r .	58
Figure 5.6	Influence de l'épaisseur h_2 sur la contrainte appliquée τ_{∞} .	58

Figure 5.7	Influence de l'épaisseur h_1 sur la charge de rupture τ_r .	59		
Figure 5.8	Influence de l'épaisseur h_I sur la contrainte appliquée $ au_{\infty}$.	60		
Figure 5.9	Influence du saut critique δ_c sur la charge de rupture τ_c .	61		
Figure 5.10	Influence du saut critique δ_c sur la charge de rupture τ_c .	61		
Figure 5.11	Comparaison entre GRIFFITH et DUGDALE pour $\delta_c/l_0=0, 1$.	62		
Figure 5.12	Comparaison entre GRIFFITH et DUGDALE pour $\delta_c/l_0=0,01$.	62		
Figure 5.13	Comparaison entre GRIFFITH et DUGDALE pour $\delta_c/l_0=1, 0.10^{-4}$.	63		
Figure 5.14	Comparaison entre GRIFFITH et DUGDALE pour $\delta_c/l_0=1, 0.10^{-6}$.	63		
Figure D.1	Variation du Kernel pour les différentes valeurs de M.	85		
Eiguna D 2	Variation du Kernel pour les différentes valeurs de l'épaisseur h_1 , a)			
Figure D.2	Overmatch $M=100$, b) Evenmatch $M=1$ et c) Undermatch $M=0,01$.	·. 00		
	Variation du <i>Kernel</i> pour les différentes valeurs de l'épaisseur h_2 , a)			
Figure D.3	Overmatch $M=100$, b) Evenmatch $M=1$ et c) Undermatch $M=0,01$.	. 8/		
Eigunga I 1	Étude de convergence ($n=100$, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5,			
Figures J.1	$l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus N, b) $\delta(l_c)$ versus N.	91		
Eigenees I 2	Étude de convergence ($N=20$, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5,	07		
Figures J.2	$l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus n , b) $\delta(l_c)$ versus n .	97		
Eigenees I 2	Étude de convergence $(h_1/l_0=3, h_2/l_0=4, h_3/l_0=7, M=0, 5, l/l_0=1.5)$ a) k_{III}	00		
Figures J.5	versus N ($n=100$), b) k_{III} versus n ($N=100$).	98		
Eiguraa I 4	Étude de convergence ($n=100$, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5,	00		
rigules J.4	$l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus N, b) $\delta(l_c)$ versus N.			
Eigunga I 5	Étude de convergence ($N=20$, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5,	00		
Figures J.5	$l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus n , b) $\delta(l_c)$ versus n .	99		

Tableau 5.1	Valeurs des paramètres utilisés.	53
Tableau 5.2	Valeurs des paramètres utilisés.	57
Tableau 5.3	Valeurs des paramètres utilisés.	59
Tableau 5.4	Valeurs des paramètres utilisés.	60
Tableau 5.5	Valeurs des paramètres utilisés.	63
Tableau J.1	Résultats de la convergence.	100

LISTE DES SYMBOLES ET DES ABREVIATIONS

WM DM at UA7	Zone fondue (Weld Metal), métal de base (Base Metal) et zone
WM, BM et HAZ	affectée thermiquement (Heat Affected Zone).
SIE	Équation Intégrale Singulière (Singular Intégrale Equation).
М	Facteur de mismatch.
J	Intégrale de RICE.
СТОР	Déplacement d'ouverture à la pointe de la fissure (Crack Tip
CIOD	Opening Displacement).
CMOD	Déplacement d'ouverture de la fissure (Crack Mouth Opening
CMOD	Displacement).
Κ	Facteur d'intensité de contrainte.
K _{III}	Facteur d'intensité de contrainte en mode antiplan.
G	Taux de restitution d'énergie.
G_c	Taux de restitution d'énergie critique ou ténacité du matériau.
l	Taille de la fissure.
l_0	Taille initiale de la fissure.
σ_e	Limite élastique.
R_m	Contrainte de rupture.
σ_{eWM}	Limite élastique de la zone fondue.
σ_{eBM}	Limite élastique du métal de base.
R_{mWM}	Contrainte de rupture de la zone fondue.
R_{mBM}	Contrainte de rupture du métal de base.
Ε	Module de Young.
E_{WM}	Module de Young de la zone fondue.
E_{BM}	Module de Young du métal de base.
μ	Module de cisaillement.
μ_1	Module de la zone fondue.
μ_3	Module de cisaillement du métal de base.
$\mu_2(y)$	Module de cisaillement de la zone affectée thermiquement HAZ.
[u]	Saut d'ouverture de la fissure.
[v]	Saut de glissement plan.

[w]	Saut de glissement antiplan.		
δ_n	Composante normale du saut de déplacement.		
δ_t	Composante tangentielle du saut de déplacement		
δ_c	Saut de glissement critique caractéristique du modèle de Dugdale		
-	Contrainte de normale agissante entre les lèvres de la fissure dans le		
o_n	modèle cohésive.		
-	Contrainte tangentielle agissants entre les lèvres de la fissure dans le		
O_t	modèle cohésive.		
-	Contrainte de cisaillement critique caractéristique du modèle		
ι_c	cohésive de DUGDALE.		
ψ	Fonction de densité dont les forces cohésives dérivent.		
Ω	Domaine de la structure		
$\partial \Omega$	Frontière du domaine de la structure.		
$\partial\Omega_D$	Frontière ou les déplacements sont imposés.		
$\partial\Omega_F$	Frontières ou les forces F sont imposées.		
F	Forces imposées aux frontières.		
f	Forces de volumes.		
Г	Trajet prédéfini de la propagation de la fissure.		
ν	Champ de déplacement cinématiquement admissible.		
W	Composante du vecteur déplacement dans la direction de l'axe Z.		
Ø	Fonction densité d'énergie de surface		
\boldsymbol{E}	Énergie de déformation élastique emmagasinée dans le domaine $arOmega$		
\boldsymbol{L}_T	due au chargement F.		
E_e	Densité d'énergie élastique (potentielle élastique).		
Г	Trajet prédéfini de la propagation de la fissure.		
Γ_c	Partie de la fissure cohésive.		
Γ_0	Partie non-cohésive.		
$ au_r$	Charge ou contrainte de rupture.		
$ au_\infty$	Contrainte appliqué aux lèvres de la fissure.		
l_a	Pointe de la fissure cohésive.		
l_c	Pointe non-cohésive.		
$O_1 O_2$ et O_2	Parties de la structure représentant: la zone fondue WM, la zone		
527,522 CL 523	affectée thermiquement HAZ et le métal de base BM.		
h_1 , h_2 et h_3	Épaisseurs de: la zone fondue WM, de la zone affectée		
---	--	--	--
	thermiquement HAZ et du métal de base BM.		
β	Paramètre de non-homogénéité.		
UM	Undermatch.		
OM	Overmatch.		
x, y, z	Coordonnées dans le repère cartésien.		
$ au_{yz}$	Contrainte de cisaillement sur le plan yz.		
$\tau(x)$	Distribution du chargement le long de la fissure.		
λ	Variable de Fourier.		
$n_i, r_i (i=1,2)$	Racines des polynômes caractéristiques associés avec l'operateur		
	Laplacian.		
C_i^j (<i>i</i> =1,2 et <i>j</i> =1,3)	Fonctions de la variable λ		
<i>k</i> (<i>x</i> , <i>t</i>	Noyau de l'équation intégrale singulière		
t	Variable qui définie la position sur la fissure		
<i>r</i> , <i>s</i>	Variables définis sur l'intervalle [-1, 1].		
f(s)	Fonction de densité d'énergie définie sur l'intervalle [-1, 1].		
T_i	Polynômes de Tchebychev de premier type.		
U_i	Polynômes de Tchebychev de second type.		
r_i (<i>i</i> =1,,N)	Points de collocation.		
Ν	Nombre de point de collocation.		
$A_i(i=1,,N)$	N inconnus du système d'équations algébriques linéaires issues de		
	l'équation intégrale singulière.		
$t_{i}(i-1, n)$	Points d'intégration de la formule d'intégration numérique de Gauss-		
$l_{i}(i-1,,n)$	Tchebychev.		
n	Nombre des points d'intégration de la formule d'intégration		
n	numérique de Gauss-Tchebychev.		

Amine Brick Chaouche, Hicheme Ferdjani, Nacer Tala-Ighil. Study of the anti-plane problem of a Dugdale-Barenblatt crack in a welded strip using the integral equation method. Journal of Theoretical and Applied Mechanics 2019; 57(2):475–487.

A. F. Bower. Applied mechanics of solids. CRC press. 2009.

Abramowitz, M., Stegun, I.A., 1964. Handbook of Mathematical Functions. Appl.Math. Series, vol. 55. National Bureau of Standards.

Burstow M.C., Howard I.C., Ainsworth R.A., 1998. The effects of material strength mismat-ching on constraint at the limit load of welded three-point bend specimens, International Journal of Fracture, 89, 2, 117-142.

Barenblatt G. The mathematical theory of equilibrium cracks in brittle fracture. AdvApplMech 1962;7:55–129.

BOURDIN B., Une méthode variationnelle en mécanique de la rupture. Théorie et applications numériques. Thèse de doctorat de l'Université Paris-Nord (1998).

BILTERYST F., Une approche énergétique de la décohésion et de la multifissuration dans les composites. Thèse de doctorat de l'Université Pierre et Marie Curie, Paris (2000).

CHARLOTTE M., Modèles discrets de rupture. Thèse de doctorat de l'Université Pierre et Marie Curie, Paris (2001).

CHARLOTTE M., FRANCFORT G.A., MARIGO J. -J. and TRUSKINOVSKY L., Revisiting brittle fracture as an energy minimization problem : comparison of Griffith and Barenblatt surface energy models. Proceedings of the Symposium on "Continuous Damage and Fracture" The data science library, Elsevier, edited by A. BENALLAL, Paris , pp. 7-18, (2000).

CHABOCHE J. – L., GIRARD R. and Schaff A., Numerical analysis of composite system by using interphase/interface models. Computational Mechanics, 20, pp. 3-11 (1997).

CHABOCHE J. – L., FEYEL F. and MONERIE Y., Interface debonding models : a viscous regularization with a limited rate dependency. Int. J. Solids Struct., 38 pp. 3127-3160 (2001).

Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids 1960;8:100-8.

DEL PIERO G. One dimensional ductile-brittle transition, yielding, and structured deformations. In Proceedings of the IUTAM Symposium "Variations de domaines et frontières libres en mécanique", eds. P. ARGOUL and M. FRÉMOND, Paris, 1997, Kluwer, pp. 197-202 (1999).

Erdogan F., Gupta G.D., Cook T., 1973, Numerical solution of singular integral equation, In: Sih, G.C. (Ed.), Methods of Analysis and Solutions of Crack Problems. Noordhoff International Publishing, Leyden, pp. 368–425.

Ferdjani H ., 2008. Study of an infinite strip containing a Dugdale crack parallel to its boundaries under antiplane shear loading, European Journal of Mechanics, A/Solids, doi:10.1016/j.euromechsol.2008.07.001 6.

Ferdjani H ., 2013. Dugdale Crack at the interface of two different materials under antiplane shear loading, Key Engineering Materials, 550, 63-707.

Ferdjani H., Abdelmoula R., Marigo J.-J., 2007.Insensitivity to small defects of the fracture of materials governed by the Dugdale model, Continuum Mechanics and Thermodynamics, 19, 191-210 8.

Ferdjani H., Abdelmoula R., Marigo J.-J., El Borgi S., 2009. Study of size effects in the Dugdale model through the case of a crack in a semi-infinite plane under anti-plane shear loading, Continuum Mechanics and Thermodynamics, 21, 41-559.

Ferdjani H., Marigo J.-J., 2015. Application of the Dugdale's model to a mixed mode loading of a semi infinite cracked structure, European Journal of Mechanics, A/Solids, 53, 1-9.

Griffith AA. The phenomena of rupture and flow in solids. Philos Trans Roy Soc Lond, Ser A 1920;221:163–97.

REFERENCES

G. Francfort & J.-J. Marigo. Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998), no. 8, p. 1319-1342.

Gakhov, F.D., 1966. Boundary Value Problems. Pergamon Press and Addison-Wesley, Oxford.

Hao S., Cornec A., Schwalbe K.-H., 1997. Plastic stress-strain fields and limit loads of a plane strain cracked tensile panel with a mismatched welded joint, International Journal of Solids and Structures, 34, 3, 297-326 13.

Hao S., Schwalbe K.-H., Cornec A., 2000. The effect of yield strength mis-match on the fracture analysis of welded joints: slip-line field solutions for pure bending, International Journal of Solids and Structures, 37, 5385-5411.

Mémoire de magistère de Henni Chebra, ".....". Université de Blida (2010).

HILLERBORG A., MODEER M. and PETERSSON P. E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6(6):163-8, 1976.

Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 1957; 24:361–64.

J. R. Rice. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of applied mechanics, vol. 35. pp. 379-386, 1968.

Li Y.-D., Zhang H.-C., Tan W., Lee K.Y., 2008. Mechanical modeling and fracture analysis for a non-homogeneous weldment with a crack perpendicular to the interface, International Journal of Solids and Structures, 45, 5730-5743.

Liming Liu, Daxin Ren and Fei Liu. "A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys". Materials 2014, 7, 3735-3757.

Laverne, J., 2004. Formulation energétiques de la rupture par des modèles de forces cohésives: Considérations théoriques et implantations numériques. Ph.D. thesis, Université Paris XIII.

M.A. Mofid; A. Abdollah-zadeh; F. Malek Ghaini."The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy". Materials and Design, 36 (2012) 161-167.

Negre P., Steglich D., Brocks W, 2004. Crack extension in aluminum welds: a numerical approach using the Gurson-Tvergaard-Needleman model, Engineering Fracture Mechanics, 71, 2365-2383.

Nguyen, Q. S., 1987. Bifurcation and post-bifurcation analysis in plasticity and brittle fracture. Journal of Mechanics and Physics of Solids 35, 303-324.

NEEDLEMAN A., A continuum model for void nucleation by inclusion debonding. J. of Appl. Mechanics, 54, pp. 525-531, 1987.

N. I. Ioakimidis. The numerical solution of crack problems in plane elasticity in the case of loading discontinuities. Engineering Fracture Mechanics 13 (1980) 709-716.

Rakin M., Gubeljak N., Dobrojevic M, Sedmak A., 2008. Modelling of ductile fracture initiation in strength mismatched welded joint, Engineering Fracture Mechanics, 75, 3499-3510.

Ranestadø, Zhang Z.L., Thaulow C., 1997. Two-parameter (J-M) description of crack tip stress-fields for an idealized weldment in small scale yielding, International Journal of Fracture, 88, 315-333.

RICE J. R. and WANG J.- S. Embrittlement of interfaces by solute segregation. Materials Science and Engineering A. 107, pp. 23-40, 1989.

TRUSKINOVSKY L., Fracture as a phase transition. Contemporary Research in the Mechanics and Mathematics of Materials, ed. R. C. BATRA and M. F. BEATTY, CIMNE, Barcelona pp. 322-332 (1996).

TVERGAARD V., Effect of fibre debounding in a whisker-reinforced metal. Mater. Sci.Engng. 125, pp. 203-213 (1990).

U. Zerbst, R.A. Ainsworth, H.Th. Beier, H. Pisarski, Z.L. Zhang, K. Nikbin, T. Nitschke-Pagel, S. Munstermann, P. Kucharczyk, D. Klingbeil. Review on fracture and crack propagation in weldments - A fracture mechanics perspective. Engineering Fracture Mechanics 132 (2014) 200-276.

Zhang Z.L., Thaulow C., Hauge M, 1997b. Effects of crack size and weld metal mismatch on the HAZ cleavage toughness of wide plates, Engineering Fracture Mechanics, 57, 6, 653-664. Le module de cisaillement de la zone non homogène Ω_2 est donné sous la forme générale suivante:

$$\mu_2(y) = A e^{\beta y} \tag{A.1}$$

La continuité des propriétés élastiques à travers les interfaces donne:

$$y = h_1: \qquad \mu_2(h_1) = \mu_1 \Rightarrow Ae^{\beta h_1} = \mu_1 \quad (a)$$

$$y = h_1 + h_2: \quad \mu_2(h_1 + h_2) = \mu_3 \Rightarrow Ae^{\beta (h_1 + h_2)} = \mu_3 \quad (b)$$

A.2

En résolvant le système d'équations données en A.2, on obtient A et β sous la forme suivante:

$$\beta = \frac{1}{h_2} \ln\left(\frac{1}{R}\right), A = \mu_1 \left(\frac{1}{R}\right)^{-\frac{h_1}{h_2}} avec: R = \frac{\mu_1}{\mu_3},$$
 A.3

Les équations d'équilibres sont déterminées comme suit:

Dans les zones Ω_i (*i*=1,...,3) les équations d'équilibres en terme de contraintes sont données par:

$$\frac{\partial \tau_{yz}^i}{\partial y} + \frac{\partial \tau_{xz}^i}{\partial x} = 0, \quad i = 1, \dots, 3.$$
 B.1

La z-composante du champ de contraintes s'écrit en fonction du déplacement par:

$$\tau_{yz}^{i} = \mu_{i} \frac{\partial w_{i}}{\partial y}$$
$$\tau_{xz}^{i} = \mu_{i} \frac{\partial w_{i}}{\partial x}$$
B.2

En remplaçant B.2 dans B.1 on obtient:

$$\frac{\partial^2 w_i}{\partial y^2} + \frac{\partial^2 w_i}{\partial x^2} = 0$$
B.3

Dans la zone non-homogène Ω_2 :

La z-composante du champ des contraintes s'écrit en fonction du déplacement par:

$$\tau_{yz}^{2} = \mu_{2}(y) \frac{\partial w_{2}}{\partial y}$$

$$\tau_{xz}^{2} = \mu_{2}(y) \frac{\partial w_{2}}{\partial x}$$

B.4

Avec:

$$\frac{\partial \tau_{yz}^2}{\partial y} = \frac{\partial}{\partial y} \left(\mu_2(y) \frac{\partial w_2}{\partial y} \right) = \left(\frac{\partial}{\partial y} \mu_2(y) \right) \frac{\partial w_2}{\partial y} + \mu_2(y) \frac{\partial^2 w_2}{\partial y^2} = \left(\frac{\partial}{\partial y} \left(A e^{\beta y} \right) \right) \frac{\partial w_2}{\partial y} + A e^{\beta y} \frac{\partial^2 w_2}{\partial y^2} = \mu_2(y) \left(\beta \frac{\partial w_2}{\partial y} + \frac{\partial^2 w_2}{\partial y^2} \right)$$
B.5

$$\frac{\partial \tau_{xz}^2}{\partial x} = \frac{\partial}{\partial x} \left(\mu_2(y) \frac{\partial w_2}{\partial x} \right) = \mu_2(y) \frac{\partial^2 w_2}{\partial x^2}$$
B.6

En remplacent B.4, B.5 et B.6 dans B.1 on obtient:

$$\frac{\partial^2 w_2}{\partial y^2} + \frac{\partial^2 w_2}{\partial x^2} + \beta \frac{\partial w_2}{\partial y} = 0,$$
 B.7

Introduisant la transformé de Fourier (voir équations 3.10-11 à la page 37) et développant ce qui suit:

$$\frac{\partial^2 w_i}{\partial y^2} = \frac{2}{\pi} \int_0^\infty \frac{d^2 \widetilde{W}_i(\lambda, y)}{dy^2} \cos(\lambda x) \, d\lambda \,, i = 1, ..., 3.$$

$$\frac{\partial^2 w_i}{\partial x^2} = -\frac{2}{\pi} \int_0^\infty \lambda^2 \widetilde{W}_i(\lambda, y) \cos(\lambda x) \, d\lambda \,, i = 1, ..., 3$$

B.8

Remplaçant les expressions données par B.8 dans les équations d'équilibre comme suite:

Dans B.3, on obtient
$$\frac{2}{\pi} \int_0^\infty \frac{d^2 \widetilde{W}_i(\lambda, y)}{dy^2} \cos(\lambda x) d\lambda - \frac{2}{\pi} \int_0^\infty \lambda^2 \widetilde{W}_i(\lambda, y) \cos(\lambda x) d\lambda = 0$$

$$\frac{2}{\pi} \int_{0}^{\infty} \left(\frac{d^2 \widetilde{W}_i(\lambda, y)}{dy^2} - \lambda^2 \widetilde{W}_i(\lambda, y) \right) \cos(\lambda x) \, d\lambda = 0$$

$$\frac{d^2 \widetilde{W}_i(\lambda, y)}{dy^2} - \lambda^2 \widetilde{W}_i(\lambda, y) = 0.$$
 B.9

Dans B.7, on obtient
$$\frac{2}{\pi} \int_0^\infty \left(\frac{d^2 \widetilde{W}_2(\lambda, y)}{dy^2} + \beta \frac{d \widetilde{W}_2(\lambda, y)}{dy} - \lambda^2 \widetilde{W}_2(\lambda, y) \right) \cos(\lambda x) d\lambda = 0$$

$$\frac{\partial^2 \widetilde{W}_2(\lambda, y)}{\partial y^2} + \beta \frac{\partial \widetilde{W}_2(\lambda, y)}{\partial y} - \lambda^2 \widetilde{W}_2(\lambda, y) = 0.$$
 B.10

Trouvant les solutions des équations B.9 et B.10 :

Introduisant la solution générale suivante:

$$w_i(\lambda, y) = e^{ry}, i = 1, ..., 3.$$
 B.11

On obtient donc:

$$\frac{\partial^2 \widehat{W}_i(\lambda, y)}{\partial y^2} = r^2 e^{ry}, i = 1, \dots, 3.$$
 B.12

Remplaçant B.11 et B.12 dans B.9, l'équation caractéristique et obtenu comme suite :

$$n^2 - \lambda^2 = 0 \implies n_1 = \lambda, n_2 = -\lambda.$$
 B.13

Donc, la solution de l'équation B.9 et donnée sous la forme suivante:

$$\widetilde{w}_i(\lambda, y) = C_1^i(\lambda)e^{n_1y} + C_2^i(\lambda)e^{n_2y}, i = 1,3.$$
 B.14

La z-composante du champ de déplacement dans les zones homogènes Ω_i (*i*=1,3) est donnée sous la forme suivante:

$$w_i(x,y) = 2 \int_0^{+\infty} \left(C_1^i(\lambda) e^{n_1 y} + C_2^i(\lambda) e^{n_2 y} \right) \cos(\lambda x) d\lambda, (i = 1,3),$$
B.15

Remplaçant B.11 et B.12 dans B.10, l'équation caractéristique et obtenu comme suite :

$$r^2 + \beta r - \lambda^2 = 0 \tag{B.16}$$

Les racines de l'équation caractéristiques B.16 sont données par:

$$r_{1} = -\frac{1}{2}\beta - \frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}$$

$$r_{2} = -\frac{1}{2}\beta + \frac{1}{2}\sqrt{\beta^{2} + 4\lambda^{2}}$$

B.17

La solution de l'équation B.10 et donnée sous la forme suivante:

$$\widetilde{w}_2(\lambda, y) = C_1^2 e^{r_1 y} + C_2^2 e^{r_2 y}.$$
 B.18

La z-composante du champ de déplacement dans les zones non-homogène Ω_2 est donnée sous la forme suivante:

$$w_2(x, y) = 2 \int_0^{+\infty} (C_1^2(\lambda) e^{n_1 y} + C_2^2(\lambda) e^{n_2 y}) \cos(\lambda x) d\lambda, \qquad B.19$$

La z-composante du champ de contrainte dans les zones homogènes Ω_i (*i*=1,3) et donnée sous la forme suivante:

$$\tau_{yz}^{i}(x,y) = \mu_{i} \frac{\partial w_{i}}{\partial y} = 2\mu_{i} \int_{0}^{+\infty} \left(n_{1}C_{1}^{i}(\lambda)e^{n_{1}y} + n_{2}C_{2}^{i}(\lambda)e^{n_{2}y} \right) \cos(\lambda x) d\lambda.$$
B.20

La z-composante du champ de contrainte dans la zone non-homogène Ω_2 et donnée sous la forme suivante:

$$\tau_{yz}^{2} = \mu_{2}(y) \frac{\partial w_{2}}{\partial y} = 2\mu_{2}(y) \int_{0}^{+\infty} (n_{1}C_{1}^{2}(\lambda)e^{n_{1}y} + n_{2}C_{2}^{2}(\lambda)e^{n_{2}y}) \cos(\lambda x) d\lambda.$$
B.21

Une analyse asymptotique a été effectuée sur $N(y,\lambda)$ pour $\lambda \rightarrow +\infty$:

L'expression du dénominateur "*Den*" et de $N(y,\lambda)$ sont données au chapitre 3 à la page 39 et 40 par les équations 3.53 et 3.56, respectivement.

Noter que $Asympt(f(\lambda))$ est la forme asymptotique de la fonction $f(\lambda)$ pour $\lambda \rightarrow +\infty$.

Nous allons utiliser la forme asymptotique suivante:

Pour
$$\lambda \to +\infty$$
: Asympt $\left(\sqrt{\beta^2 + 4\lambda^2}\right) = Asympt \left(2\lambda\sqrt{1 + \frac{\beta^2}{4\lambda^2}}\right) = 2\lambda\left(1 + \frac{\beta^2}{8\lambda^2} + \cdots\right) = 2\lambda + \frac{\beta^2}{4\lambda} + \cdots = 2\lambda + o(1)$ C.1

On dénote par $Num_N(y,\lambda)$ le numérateur de $N(y,\lambda)$, donc la forme asymptotique de $Num_N(y,\lambda)$ peut être développé comme suite:

$$sympt(Num_N(y, \lambda))$$

$$\begin{split} &= e^{\lambda(y-h_1)} \left[e^{\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} (-2\lambda+2\lambda+o(1)) \right. \\ &+ e^{-\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} (2\lambda+2\lambda+o(1)) \\ &+ \beta \left(e^{-\frac{1}{2}(2\lambda+o(1))h_2+\lambda h_3} - e^{\frac{1}{2}(2\lambda+o(1))h_2+\lambda h_3} \right) \right] \\ &- e^{\lambda(-y+h_1)} \left[e^{\frac{1}{2}(2\lambda+o(1))h_2+\lambda h_3} (2\lambda+2\lambda+o(1)) \\ &+ e^{-\frac{1}{2}(2\lambda+o(1))h_2+\lambda h_3} (-2\lambda+2\lambda+o(1)) \\ &+ \beta \left(e^{-\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} - e^{\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} \right) \right] \\ &= e^{\lambda(y-h_1)} \left[e^{-\lambda(h_2+h_3)+o(1)} (4\lambda+o(1)) + \beta \left(e^{-\lambda(h_2-h_3)+o(1)} - e^{\lambda(h_2+h_3)+o(1)} \right) \right] \\ &- e^{\lambda(-y+h_1)} \left[e^{\lambda(h_2+h_3)+o(1)} (4\lambda+o(1)) \\ &+ \beta \left(e^{-\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} - e^{\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} \right) \right] \\ &= e^{\lambda(y-h_1)} \left[e^{-\lambda(h_2+h_3)+o(1)} (4\lambda+o(1)) \\ &+ \beta \left(e^{-\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} - e^{\frac{1}{2}(2\lambda+o(1))h_2-\lambda h_3} \right) \right] \\ &= e^{\lambda(y-h_1)} \left[e^{-\lambda(h_2+h_3)} (4\lambda+o(1)) e^{o(1)} + \beta \left(e^{-\lambda(h_2-h_3)} - e^{\lambda(h_2+h_3)} \right) e^{o(1)} \right] \\ &- e^{\lambda(-y+h_1)} \left[e^{\lambda(h_2+h_3)} (4\lambda+o(1)) e^{o(1)} + \beta \left(e^{-\lambda(h_2-h_3)} - e^{\lambda(h_2-h_3)} \right) e^{o(1)} \right] \end{split}$$

Noter que: $e^{o(1)} = 1$. Donc:

Asympt(Num_N(y, λ))

$$= e^{\lambda(y-h_1)} \Big[4\lambda e^{-\lambda(h_2+h_3)} + \beta \Big(e^{-\lambda(h_2-h_3)} - e^{\lambda(h_2+h_3)} \Big) \Big] \\ - e^{\lambda(-y+h_1)} \Big[4\lambda e^{\lambda(h_2+h_3)} + \beta \Big(e^{-\lambda(h_2+h_3)} - e^{\lambda(h_2-h_3)} \Big) \Big] + o(1) \\ = \Big[4\lambda e^{-\lambda(h_2+h_3)} e^{\lambda(y-h_1)} + \beta \Big(e^{-\lambda(h_2-h_3)} e^{\lambda(y-h_1)} - e^{\lambda(h_2+h_3)} e^{\lambda(y-h_1)} \Big) \Big] \\ - \Big[4\lambda e^{\lambda(h_2+h_3)} e^{\lambda(-y+h_1)} + \beta \Big(e^{-\lambda(h_2+h_3)} e^{\lambda(-y+h_1)} - e^{\lambda(h_2-h_3)} e^{\lambda(-y+h_1)} \Big) \Big] \\ + o(1) \\ = 4\lambda e^{-\lambda(-y+h_1+h_2+h_3)} + \beta \Big(e^{-\lambda(-y+h_1+h_2-h_3)} - e^{\lambda(y-h_1+h_2+h_3)} \Big) \\ - 4\lambda e^{\lambda(-y+h_1+h_2+h_3)} - \beta \Big(e^{-\lambda(y-h_1+h_2+h_3)} - e^{\lambda(-y+h_1+h_2-h_3)} \Big) + o(1)$$

Sachant que y est pris au voisinage de zéro et les valeurs de h_1 , h_2 et h_3 sont strictement positive, donc $Asympt(Num_N(y,\lambda))$ et donné par:

$$Asympt(Num_N(y,\lambda)) = -4\lambda e^{\lambda(-y+h_1+h_2+h_3)} + o(1)$$
C.2

La forme asymptotique du dénominateur de $N(y,\lambda)$ peut être développé comme suite:

$$\begin{aligned} \text{Asympt}(\text{Den}) &= \left(2\lambda + 2\lambda + o(1)\right) \left(e^{\frac{1}{2}(2\lambda + o(1))h_2 + \lambda h_3 + \lambda h_1} + e^{-\frac{1}{2}(2\lambda + o(1))h_2 - \lambda h_3 - \lambda h_1}\right) + \\ \left(-2\lambda + 2\lambda + o(1)\right) \left(e^{\frac{1}{2}(2\lambda + o(1))h_2 - \lambda h_3 - \lambda h_1} + e^{-\frac{1}{2}(2\lambda + o(1))h_2 + \lambda h_3 + \lambda h_1}\right) + \\ \beta \left(-e^{\frac{1}{2}(2\lambda + o(1))h_2 - \lambda h_3 + \lambda h_1} - e^{\frac{1}{2}(2\lambda + o(1))h_2 + \lambda h_3 - \lambda h_1} + e^{-\frac{1}{2}(2\lambda + o(1))h_2 - \lambda h_3 + \lambda h_1} + \\ e^{-\frac{1}{2}(2\lambda + o(1))h_2 + \lambda h_3 - \lambda h_1}\right) &= \left(4\lambda + o(1)\right) \left(e^{\lambda(h_2 + h_3 + h_1) + o(1)} + e^{-\lambda(h_2 + h_3 + h_1) + o(1)}\right) + \\ \beta \left(-e^{\lambda(h_2 - h_3 + h_1) + o(1)} - e^{\lambda(h_2 + h_3 - h_1) + o(1)} + e^{-\lambda(h_2 + h_3 - h_1) + o(1)} + e^{-\lambda(h_2 + h_3 - h_1) + o(1)}\right) + \\ \beta \left(e^{\lambda(h_2 + h_3 + h_1)} + e^{-\lambda(h_2 + h_3 + h_1)}\right) + \beta \left(-e^{\lambda(h_2 - h_3 + h_1)} - e^{\lambda(h_2 + h_3 - h_1)} + e^{-\lambda(h_2 + h_3 - h_1)}\right) + \\ e^{-\lambda(h_2 - h_3 + h_1)} + o(1) &= 4\lambda e^{\lambda(h_2 + h_3 + h_1)} + o(1) \end{aligned}$$

La forme asymptotique de $N(y,\lambda)$ et obtenu sous la forme suivante:

$$Asympt(N(y,\lambda)) = \frac{Asympt(Num_N(y,\lambda))}{Asympt(Den)} = \frac{-4\lambda e^{\lambda(-y+h_1+h_2+h_3)}+o(1)}{4\lambda e^{\lambda(h_2+h_3+h_1)}+o(1)} = -e^{-\lambda y} + o(1)$$
C.4

Dans le but de déterminer la valeur de λ_{limit} on considère le comportement du noyau dans l'équation 3.29 (page 40) et on écrit:

$$Kernel = N(0, \lambda) + 1$$
D.1

Ou λ est la variable de Fourier et $N(y, \lambda)$ est donné dans le chapitre III a la pages 40 par l'équations 3.56.

D.1. Comportement du Kernel en fonction du rapport du facteur del'elasticmismatchM:

Dans cette partie les différentes épaisseurs sont fixés a ces valeurs: $h_1/l_0=3$, $h_2/l_0=4$ et $h_3/l_0=5$. La variation de *Kernel* en fonction de λ pour les différentes valeurs de M est donnée sur la figure D.1.

Figure D.1. Variation du Kernel pour les différentes valeurs de M.

D.2. Comportement du Kernel en fonction de l'épaisseur h₁:

Dans cette partie les autres épaisseurs sont fixés a ces valeurs: $h_2/l_0=4$ et $h_3/l_0=5$. La variation du *Kernel* en fonction de λ pour les différentes valeurs de h₁ est donnée sur la figure D.2.

Figure D.2. Variation du *Kernel* pour les différentes valeurs de l'épaisseur h_1 , a) Overmatch M=100, b) Evenmatch M=1 et c) Undermatch M=0,01.

D.3. Comportement du Kernel en fonction de l'épaisseur h₂:

Dans cette partie les autres épaisseurs sont fixés a ces valeurs: $h_1/l_0=3$ et $h_3/l_0=5$. La variation du *Kernel* en fonction de λ pour les différentes valeurs de h_2 est donnée sur la figure D.3.

Figure D.3. Variation du *Kernel* pour les différentes valeurs de l'épaisseur h_2 , a) Overmatch M=100, b) Evenmatch M=1 et c) Undermatch M=0,01.

Dans les calculs on prend la valeur la plus grande de λ donné par les figures D.1, D.2 et D.3, donc λ_{limite} doit être choisie dans l'intervalle [40,50] (selon la figure D.2-a), pour cette valeur l'intégrale donné par l'équation 4.29 (voir chapitre 4, page 65) converge. L'intervalle d'intégration dans le noyau de type Fredholm L(x,t) donnée par l'équation 3.29 (page 40) doit être normalisée (pour passer de l'intervalle [0, λ_{limit}] vers [-1,1]), ceci permet d'applique la méthode d'intégration de Gauss-Tchebychev pour évaluer numériquement L(x,t).

Le noyau est donné par:

$$L(r,s) = -\int_0^{\lambda_{limit}} (N(0,\lambda) + 1)\sin(\lambda s)\cos(\lambda r) d\lambda$$
 E.1

Introduisant le changement de variable suivant:

$$\lambda = A\lambda' + B$$
 E.2

Avec:

$$\begin{array}{l} \lambda \in [0, \lambda_{limit}] \\ \lambda^{'} \in [-1, 1] \end{array}$$
 E.3

Donc:

$$\lambda' = -1 \Longrightarrow \lambda = 0 \Longrightarrow -A + B = 0$$
 E.4

$$\lambda' = 1 \Longrightarrow \lambda = \lambda_{limit} \Longrightarrow \lambda_{limit} = A + B$$
 E.5

La solution du système d'équations E.4 et E.5 donne:

$$A = B = \frac{\lambda_{limit}}{2}$$
E.6

Les équations E.2 et E.6 donnent:

$$\lambda = \frac{\lambda_{_limit}}{2} (\lambda' + 1)$$
E.7

La dérivée de λ est donné par:

$$d\lambda = \frac{\lambda_{-limit}}{2} d\lambda'$$
 E.8

En remplaçant de E.7 et E.8 dans E.1, on obtient:

$$L(r,s) = -\frac{\lambda_{\text{limit}}}{2} \int_{-1}^{1} (N'(0,\lambda') + 1) \sin\left(\frac{\lambda_{\text{limit}}}{2} (\lambda + 1)s\right) \cos\left(\frac{\lambda_{\text{limit}}}{2} (\lambda + 1)r\right) d\lambda \qquad \text{E.9}$$

 λ' et par la suite remplacée par λ dans l'équation E.9 pour alléger les écritures sachant que λ est défini sur l'intervalle [-1,1].

Le terme $N'(0,\lambda)$ est obtenu à partir de l'expression de $N(0,\lambda)$ donnée par l'équation 3.25 (page 39) en remplaçant λ par λ' donnée par l'équation.

Le facteur d'intensité de contraintes en mode anti-plan k_{III} est donné par la formule suivante (chargement continue):

$$k_{III}(\pm l) = \frac{\sqrt{\pi}\mu_1}{2\sqrt{l}} \lim_{x \to \pm l} \sqrt{l^2 - x^2} \psi(x)$$
 F.1

Introduisant les quantités normalisées donnée par l'équation 4.4 (page 46), l'expression qui donne k_{III} prend la forme suivante:

$$k_{III}(\pm l) = \frac{\mu_1}{2} \sqrt{\pi l} \left(\lim_{s \to \pm 1} \sqrt{1 - s^2} f(s) \right)$$
 F.2

Introduisant l'expression discrétisé de la fonction densité f(s) donnée par l'équation 4.18 (page 48), on obtient:

$$k_{III}(\pm l) = \frac{\mu_1}{2} \sqrt{\pi l} \left(\lim_{s \to \pm 1} \sum_{i=1}^{N} A_i T_{2i-1}(s) \right) = \frac{\mu_1}{2} \sqrt{\pi l} \left(\sum_{i=1}^{N} A_i T_{2i-1}(\pm 1) \right)$$
F.3

Les polynômes de Tchebychev de premier type $T_{2i-I}(s)$ sont égales à l'unité aux points limites $\pm I$.

$$T_{2i-1}(\pm 1) = 1$$
 F.4

*k*_{III} peut être calculé par la formule suivante:

$$k_{III}(\pm l) = \frac{\mu_1}{2} \sqrt{\pi l} \sum_{i=1}^{N} A_i$$
 F.5

Le facteur d'intensité de contraintes en mode anti-plan k_{III} est donné par la formule suivante (chargement discontinue):

$$k_{III}(\mp l_a) = \sqrt{l_a} \frac{\mu_1}{2} \lim_{x \to \pm l_a} \sqrt{l_a^2 - x^2} \psi(x) = \sqrt{l_a} \frac{\mu_1}{2} \lim_{s \to \pm 1} \sqrt{1 - s^2} f(s)$$
 F.6

En développant, on obtient le résultat suivant:

$$k_{III}(\mp l_a) = \sqrt{l_a} \left(\tau_{\infty} - \frac{2}{\pi} \tau_c \arccos\left(\frac{l_c}{l_a}\right) - \frac{\mu_1}{2} \sum_{i=1}^{N} A_i \right)$$
F.7

Le glissement relative de la fissure au point x dans l'intervalle $[-l_a, l_a]$ est définie par:

$$\delta(x) = w(x, 0^{+}) - w(x, 0^{-}) = \int_{-l_a}^{x} \psi(t) dt$$
 F.8

Utilisant les équations 4.4, 4.8, 4.15, 4.16 et 4.17 dans F.8, on obtient:

$$\delta(x) = \frac{2}{\pi\mu_1} \left[\pi\tau_{\infty} \sqrt{l_a^2 - x^2} + \tau_c \left(x \ln \left| \frac{x \sqrt{l_a^2 - l_c^2} - l_c \sqrt{l_a^2 - x^2}}{x \sqrt{l_a^2 - l_c^2} + l_c \sqrt{l_a^2 - x^2}} \right| + l_c \ln \left| \frac{\left(\sqrt{l_a^2 - x^2} + \sqrt{l_a^2 - l_c^2}}{x^2 - l_c^2} \right)^2 \right| \right) - 2\sqrt{l_a^2 - x^2} \operatorname{arccos} \frac{l_c}{l_a} - \sqrt{l_a^2 - x^2} \sum_{i=1}^{N} \frac{A_i U_{2i-2}(x/l_a)}{2i-1} \right]$$
F.9

F.9 est obtenus en utilisant la relation suivante:

$$\int_{-1}^{s} \frac{T_i(x)}{\sqrt{1-x^2}} dx = -\frac{1}{i} U_{i-1}(s) \sqrt{1-s^2}$$
 F.10

A partir de l'équation F.9, le glissement à $x=\pm l_c$ est donné par:

$$\delta(\pm l_c) = \frac{2l_a}{\pi\mu_1} \left[\pi \sqrt{1 - \eta^2} \left(\tau_{\infty} - \frac{2\tau_c}{\pi} \arccos \frac{l_c}{l_a} \right) - 2\tau_c \eta \ln \eta \right] - l_a \sqrt{1 - \eta^2} \sum_{i=1}^{N} \frac{A_i U_{2i-2}(\pm \eta)}{2i-1}$$
F.11

Les intervalles d'intégration dans la seconde partie $g(r_i)$ données par les équations 4.25 et 4.26 (page 49) doivent être normalisés (i.e. passer de $[-1,-\eta]$, $[-\eta, \eta]$ et $[\eta, 1]$, vers [-1, 1]), ceci permet d'applique la méthode d'intégration de Gauss-Tchebychev pour évaluer numériquement $g(r_i)$.

L'intégrale est donnée par:

$$\int_{-1}^{-\eta} l_a L(r_j, s) h_2(s) ds + \int_{-\eta}^{\eta} l_a L(r_j, s) h_2(s) ds + \int_{\eta}^{1} l_a L(r_j, s) h_2(s) ds \qquad G.1$$

Introduisant le changement de variable suivant:

$$s = As' + B \tag{G.2}$$

• L'intervalle [-*1*, -η]:

$$s \in [-1, -\eta]ets' \in [-1, 1]$$
 G.3

$$\begin{cases} s' = -1, s = -1: & -1 = -A + B \\ s' = 1, s = -\eta: -\eta = A + B \end{cases} \Rightarrow \begin{cases} B = -\left(\frac{\eta + 1}{2}\right) \\ A = \frac{1 - \eta}{2} \end{cases}$$
G.4

En remplaçant G.4 dans G.2 on obtient:

$$s = \frac{1}{2} ((1 - \eta)s' - (\eta + 1))$$

$$ds = \frac{1}{2} (1 - \eta)ds'$$

G.5

• L'intervalle $[-\eta, \eta]$:

$$s \in [-\eta, \eta] et s' \in [-1, 1]$$
 G.6

$$\begin{cases} s' = -1, s = -\eta; & -\eta = -A + B \\ s' = 1, s = \eta; & \eta = A + B \end{cases} \Rightarrow \begin{cases} B = 0 \\ A = 2 \eta \end{cases}$$
G.7

En remplaçant G.7 dans G.2 on obtient:

$$s = 2\eta s'$$

$$ds = 2\eta ds'$$

G.8

• L'intervalle [- η , 1]:

$$s \in [\eta, 1] et s' \in [-1, 1]$$
 G.9

$$\begin{cases} s' = -1, s = \eta; \ \eta = -A + B \\ s' = 1, s = 1; \end{cases} \Rightarrow \begin{cases} B = \frac{\eta + 1}{2} \\ A = \frac{1 - \eta}{2} \end{cases}$$
G.10

En remplaçant G.10 dans G.2 on obtient:

$$s = \left(\frac{1-\eta}{2}\right)s' + \frac{\eta+1}{2}$$

$$ds = \left(\frac{1-\eta}{2}\right)ds'$$

G.11

Donc:

$$\int_{-1}^{-\eta} l_a L(r_j, s) h_2(s) ds = \frac{1}{2} (1 - \eta) l_a \int_{-1}^{1} L(r_j, s) h_2(s) ds', avec: s = \frac{1}{2} ((1 - \eta)s' - (\eta + 1))$$

$$G.12$$

$$\int_{-\eta}^{\eta} l_a L(r_j, s) h_2(s) ds = 2\eta l_a \int_{-1}^{1} L(r_j, s) h_2(s) ds', \text{ avec: } s = 2\eta s', \qquad G.13$$

$$\int_{\eta}^{1} l_{a} L(r_{j}, s) h_{2}(s) ds = \left(\frac{1-\eta}{2}\right) l_{a} \int_{-1}^{1} L(r_{j}, s) h_{2}(s) ds', \text{ avec: } s = \left(\frac{1-\eta}{2}\right) s' + \frac{\eta+1}{2}, \qquad \text{G.14}$$

Les intégrales données par les équations G.12, G.13 et G.14 sont évalués numériquement à l'aide de la formule intégration numérique de Gauss-Tchebychev donnée par l'équation 4.24 (page 49).

L'analyse asymptotique est effectuée sur $N'(y,\lambda)$ pour $\lambda \rightarrow +\infty$:

L'expression de $N(y,\lambda)$ est donnée par (page 43):

$$N'(y,\lambda) = \frac{(\mu_1 + \mu_3)(e^{-\lambda(h_1 + h_3 - y)} - e^{\lambda(h_1 + h_3 - y)}) + (\mu_1 - \mu_3)(e^{-\lambda(h_1 - h_3 - y)} - e^{\lambda(h_1 - h_3 - y)})}{(\mu_1 - \mu_3)(e^{-\lambda(h_3 - h_1)} + e^{\lambda(h_3 - h_1)}) + (\mu_1 + \mu_3)(e^{\lambda(h_3 + h_1)} + e^{-\lambda(h_3 + h_1)})}$$
H.1

Noter que $Asympt(f(\lambda))$ est la forme asymptotique de la fonction $f(\lambda)$ pour $\lambda \rightarrow +\infty$.

On dénote par $Num_N(y,\lambda)$ le numérateur de $N(y,\lambda)$ et par $Dinom_N(y,\lambda)$ le dénominateur et on écrit:

$$Num_N'(y,\lambda) = (\mu_1 + \mu_3) \left(e^{-\lambda(h_1 + h_3 - y)} - e^{\lambda(h_1 + h_3 - y)} \right) + (\mu_1 - \mu_3) \left(e^{-\lambda(h_1 - h_3 - y)} - e^{\lambda(h_1 - h_3 - y)} \right)$$
H.1

$$Dinom_N'(y,\lambda) = (\mu_1 - \mu_3) \left(e^{-\lambda(h_3 - h_1)} + e^{\lambda(h_3 - h_1)} \right) + (\mu_1 + \mu_3) \left(e^{\lambda(h_3 + h_1)} + e^{-\lambda(h_3 + h_1)} \right) \quad H.2$$

Sachant que y est pris au voisinage de zéro et les valeurs de h_1 , h_2 et h_3 sont strictement positives, donc $Asympt(Num_N(y,\lambda))$ et donné par:

Asympt
$$(Num_N'(y, \lambda)) = -(\mu_1 + \mu_3)e^{\lambda(h_1 + h_3 - y)} + o(1)$$
 H.3

Asympt(Dinom_ $N'(y,\lambda)$) et donné par:

Asympt
$$\left(\text{Dinom}_N'(\mathbf{y},\lambda)\right) = \left(\mu_1 + \mu_3\right)e^{\lambda(h_3 + h_1)} + o(1)$$
 H.4

La forme asymptotique du dénominateur de $N'(y,\lambda)$ peut être développé comme suite:

Asympt
$$(N'(y,\lambda)) = \frac{Asympt (Num_N'(y,\lambda))}{Asympt (Dinom_N'(y,\lambda))} = \frac{-(\mu_1 + \mu_3)e^{\lambda(h_1 + h_3 - y)} + o(1)}{(\mu_1 + \mu_3)e^{\lambda(h_3 + h_1)} + o(1)} = -e^{-\lambda y} + o(1)$$
 H.4

Dans cette partie nous allons présenter l'étude de convergence relative aux trois problèmes étudiés, c'est-a-dire:

- Le problème avec la zone HAZ (DUGDALE).
- Le problème avec la zone HAZ (GRIFFITH).
- Le problème sans la zone HAZ (DUGDALE)

La convergence dépond de la valeur de N (nombre de points de collocation) et n (nombre de point d'intégration de la formule d'intégration de Gauss-Tchebychev).

Pour déterminer les valeurs de N et n qui donnent la convergence on adopte le plan suivant:

1. Pour déterminer la valeur de *n*, on fixe la valeur de N a une valeur assez grande puis on incrémente la valeur de n et pour chaque valeur on calcul les valeurs de l'ouverture $\delta(l_c)$ et le facteur d'intensité de contrainte K_{III} .

2. Pour déterminer la valeur de *N*, on fixe la valeur de n a une valeur assez grande puis on incrémente la valeur de N et pour chaque valeur on calcul les valeurs de l'ouverture $\delta(l_c)$ et le facteur d'intensité de contrainte K_{III} .

La convergence correspond au valeurs de N et n pour lesquelles $\delta(l_c)$ et K_{III} convergent vers des valeurs constantes.

Les calculs sont fait pour des valeurs données à la taille de la fissure l_c (l dans le modèle de GRIFFITH), la pointe cohésive l_a , les épaisseurs h_i (i=1,..,2) et le facteur de l'*elasticmismatch* M, ces valeurs sont donnée dans des tableaux pour chaque cas.

J.1. Le problème avec la zone affectée thermiquement HAZ (modèle de DUGDALE):

Ce problème est détaillé au chapitre 3 (section 3.1). Les figures J.1a et J.1b présentent respectivement la convergence du facteur d'intensité de contrainte K_{III} , la convergence du saut de déplacement $\delta(l_c)$ en fonction de N.

Figures J.1. Étude de convergence (n=100, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5, $l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus N, b) $\delta(l_c)$ versus N.

Selon les courbes données sur la figure J.1, la convergence est obtenue pour $N \ge 5$.

Les figures J.2a et J.2b présentent respectivement la convergence du facteur d'intensité de contrainte K_{III} , la convergence du saut de déplacement $\delta(l_c)$ en fonction de n.

Figures J.2. Étude de convergence (N=20, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5, $l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus n, b) $\delta(l_c)$ versus n.

Selon les courbes données sur la figure J.2, la convergence est obtenue pour n≥40.

J.2. Le problème avec la zone affectée thermiquement HAZ (modèle de GRIFFITH):

Ce cas correspond au problème détaillé au chapitre 3 (section 3.1.1.) avec le modèle de Griffith. Les figures J.3a et J.1b présentent la convergence du facteur d'intensité de contrainte K_{III} en fonction de N, et en fonction de n, respectivement.

Figures J.3. Étude de convergence $(h_1/l_0=3, h_2/l_0=4, h_3/l_0=7, M=0,5, l/l_0=1.5)$ a) k_{III} versus N (n=100), b) k_{III} versus n (N=100).

Selon les courbes données sur la figure J.3, la convergence est obtenue pour $N \ge 4$ et $n \ge 40$.

J.3. Le problème sans la zone affectée thermiquement HAZ (modèle de DUGDALE):

Ce problème est détaillé au chapitre 3 (section 3.2). Les figures J.5 et J.4b présentent respectivement la convergence du facteur d'intensité de contrainte K_{III} , la convergence du saut de déplacement $\delta(l_c)$ en fonction de N.

Selon les courbes données sur les figures J.4 et J.5, la convergence est obtenue pour $N \ge 5$ et $n \ge 40$.

Figures J.4. Étude de convergence (n=100, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5, $l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus N, b) $\delta(l_c)$ versus N.

Figures J.5. Étude de convergence (N=20, $h_1/l_0=3$, $h_2/l_0=4$, $h_3/l_0=7$, M=0,5, $l_c/l_0=1.5$ et $l_a/l_0=6$). a) k_{III} versus n, b) $\delta(l_c)$ versus n.

Les résultats de cette étude de convergence sont présentés sur le tableau J.1.

	Modèle de DUGDALE +	Modèle de Griffith +	Modèle de DUGDALE +
	HAZ	HAZ	<u>sans HAZ</u>
N	≥ 5	≥ 4	≥ 5
n	≥ 40	≥ 40	≥ 40

Tableau J.1. Résultats de la convergence.

La valeur de N et n est déterminée par majoration des valeurs données par l'étude de convergence présentée sur le tableau J.1. Dans nos calculs nous avant pris N=7 et n=100.