République algérienne démocratique et populaire

Ministère de l'enseignement supérieur et de la recherche scientifique

Université Saad Dahleb Blida 1

Département de physique

Mémoire de fin d'étude

Pour l'obtention du diplôme de Master en Physique

Option : physique des matériaux

Thème :

Etude de l'effet des contraintes mécaniques intrinsèques sur les propriétés vibrationnelles des films minces SnO₂ polycristallin

Présenté par :

MAHIEDDINE AMIRA

Soutenu le 20 / 12 / 2020 devant le jury composé de :

M ^{me} S. Ouir	MCB	USB1	Présidente
M ^s A. Boumeddiene	MCB	USB1	Rapporteur
M ^{me} H. OULDARAB	MAA	UDBKM	Examinatrice

Blida 1- 2020/2021

Résumé

Dans ce travail, nous avons étudié l'effet des contraintes intrinsèques dans les films minces de SnO₂ déposés sur des substrats de verre par la méthode de déposition chimique en phase vapeur (CVD). Les contraintes intrinsèques sont simulées par une pression hydrostatique de tension entre 0 et 24 GPa externe appliquée sur la cellule élémentaire primitive (P) de volume V de SnO₂ rutile. L'étude est réalisée en utilisant la méthode de la fonctionnelle densité SCF-LCAO-DFT/PBE0 périodique. Nos résultats de calcul montrent que les paramètres structuraux et les modes de vibrations Raman et infrarouge des films minces de SnO₂ sont affectés par les contraintes intrinsèques. Cet effet est expliqué par l'approximation des vibrations anharmoniques en calculant les paramètres de Gruneissen.

Mots clés : propriétés optiques ; DFT ; vibration LO/TO ; Reflectance, Raman , Gruneissen parameters .

Abstract

In this work, we studied the effect of the intrinsic stresses presnt in SnO_2 thin filmsdeposited on glass substrate by chemical vapor deposition method (CVD). The intrinsic stresses have been simulate by tensile hydrostatic pressure in 0-24 GPa range .The calculation have been performed using the periodic functional density SCF-LCAO-DFT/PBE0. Our calculation results show that stuctural parameters and the vibrational Raman and infrared modes of SnO_2 thin film have been affected by the intrinsic stresses .This effect is explained from the anharmonic vibrational approximation by calculated the Gruneissen parameters .

Keyworlds: The optical properties ; DFT ; LO / TO vibration ; Reflectance , Raman. Gruneissen parameters

التلخيص

در سنا في هذا العمل تأثير الاجهاد الذاتي الموجود في الطبقات الرقيقة لثنا ئي اكسيد القصدير (SnO₂) الموضوعة على صفائح زجاجية باستعمال طريقة التفاعل الكيميائي في وسط غازي (CVD) . تم محاكاة الاجهاد من خلال تطبيق على خلية اولية بدائية (P) ذات حجم (V)للمركب البلوري (SnO₂) ضغط هيدر وستاتيكي قيمته من 0 إلى GPa.24 . انجز العمل باستخدام نظرية دالة الكثافة SCF-LCAO-DFT/PBE0 الدورية. بينا بان الثوابت البلورية وانماط الاهتزاز Raman وما فوق الحمراء تتاثر بالاجهاد الذاتي. يفسر ذات التاثير عبر تقريب الاهتزاز الغير التناسق بحساب ثوابت Gruneissen.

كلمات مفتاحية: الخصائص البصرية ؛ الاهتزاز DFT, LO / TO, الانعكاس، Raman , ثوابت Gruneissen.

Remerciements

A la fin de ce chemin orné d'un master en physique des matériaux, je tiens a exprimer tous mes reconnaissances au grand DIEU qui mon offre cette réussite.

J'exprime ensuite tous mes remerciements a monsieur le docteur **A. BOUMEDDIENE** qui m'a encadré durant ce travail et m'a enseigné pendant mes études et je reconnais tous ses efforts et ses conseils pleines de sagesses.

Je remercie Mme S. OUIR, pour avoir accepté de présider le jury de ce mémoire.

Je suis très honoré par la présence dans mon jury Mme H. OULDARAB Je tiens à lui exprimer mon respect

Je remercie aussi tous les autres membres de l'équipe de LASICOM : Mr **M. Derbal,** Mr **B. REKIK**, Mme **F.Bouamra** et Mr **B.Boutahraoui**.

À tous mes enseignants qui ont contribué de près ou de loin à ma formation depuis mes premiers pas à l'université

« Aucun rêveur n'est trop modeste, aucun rêve n'est trop grand »

Aujourd'hui, ici rassemblés auprès des jurys,

Nous prions Dieu que cette soutenance Fera signe de persévérance

Et que nous serions enchantés Par notre travail honoré

Je dédie ce mémoire a....

A mes parents, Pour l'éducation pour leur patience et leurs sacrifices.

A mes chers frères et sœurs

A tous mes amí(e)s;

A tous ceux que j'aime.

Tables des matières

RESUMES	
REMERCIMENTS	
TABLES DES MATIERES	
LISTE DES FIGURES	
LISTE DES TABLEAUX	
INTRODUCTION GENERALE	01
CHAPITRE 1 : ETAT DE L'ART	04
1. Introduction	04
2. Propriétés structurales de SnO ₂	04
3 Propriétés électroniques et optiques	05
4 Propriétés vibrationnelles	06
5. Contraintes et déformations dans les films minces	07
5.1 Contraintes résiduelles	07
5.2 Contraintes dans les films minces polycristallins	07
5.3 Méthodes de diffraction des rayons X (DRX) de détermination des contraintes	08
6. Effets de contraintes sur les propriétés physiques de films minces de SnO ₂	08
6.1 Propriétés structurales	08
6.2 Propriétés électroniques	09
6.3 Propriétés optiques	10
6.4 Propriétés élastiques	11

6.5 Propriétés vibrationnelles	11
6.5.1 Effet de la pression sur les modes de vibration	11
6.5.2 Paramètres de Gruneissen	12
CHAPITRE 2 : Méthodologie	14
1. Introduction	14
2. Dépôt de films minces de SnO2 par la technique CVD	14
3. Spectroscopie Infrarouge et Raman	14
3.1 Infrarouge	14
3.1.1 Dynamique du réseau cristallin	15
3.1.2 Origine des modes LO	16
3.1.3 Propriétés optiques	17
3.2 Raman	18
4. Théorie de la fonctionnelle de densité (DFT)	20
4.1Approche de Kohn-Sham	22
4.2Modèles de potentiel d'échange et de corrélation	23
4.3 Fonctions orbitales cristallines	23
5. Contraintes et déformations dans les cristaux	24
5.1 Déformations	24
5.2 Contraintes	24
5.3 Relation entre tenseurs de contraintes et de déformation	25
5.4 Tenseur de la constante d'élasticité et de contrainte soumis à une pression hydrostatique externe	26
6. Energies du système cristallin	26
6.1 Energie interne d'origine élastique	26
6.2 Dilatation (déformation) volumique et compressibilité	27
7. Equation d'état (EOS)	28

8. Dépendance des propriétés thermodynamiques et du nombre d'onde des phonons optiques de la température et de la pression	28
9. Code de calcul CRYSTAL	31
CHAPITRE 3 :	33
1. Introduction	33
2. Détails de calcul	34
2.1Methode, seuil de convergence de l'énergie totale et code de calcul	34
2.2 Bases de fonctions orbitales atomiques	34
2.3 Autres Paramètres de calcul	35
3. Résultats et discussions	35
3.1Propriétés structurales et coefficients de contraintes	35
3.2 Population Mulliken et analyse de la charge effective de Born sous pression	38
3.3. Fonction diélectrique et réflectance	39
3.4 Modes vibratoires Raman et infrarouge sous pression hydrostatique	42
3.5. Anharmonicité et méthode des paramètres modes de Grüneisen	46
3.6 Séparation LO/TO	47
3.7 Propriétés thermodynamiques	49
Conclusion générale	53
Bibliographie	54

Liste des figures

Fig.1.1 : Cellule unité de (a) l'oxyde stanneux et (b) l'oxyde stannic	05
Fig.1.2 : Morphologie de SnO2 en couches minces déposées sur des substrats verre avec un temps de déposition de 10 min, une température de dépôt de 400°C et une pression d'oxygène de 9ml/min	05
Fig.1.3 : courbes de dispersion de SnO ₂	06
Fig.1.4 : illustration de la distribution des contraintes à travers l'épaisseur de film mince déposé sur un substrat	07
Fig.1.5 : illustration de quelques processus cinétiques au voisinage des joints de grains (GB) qui influent sur les contraintes dans les films minces polycristallins : Déposition - Attachement des atomes aux Terrace « ledges » - Formation des joints de grains (GB) - Diffusion des atomes sur la surface- Diffusion des atomes dans les joints de grains (GB)	
	08
Fig.1.6 : Evolution du gap optique (Eg) de SnO ₂ soumis à une pression hydrostatique variable	10
Fig.1.7 : Spectre de réflectance et fonction diélectrique (partie imaginaire) en fonction d'énergie des photons incidents pour différentes pressions hydrostatiques	10
Fig.1.8 : Constantes élastiques de SnO ₂ rutile soumis à une pression hydrostatique variable dans l'intervalle 0-28 GPa	11
Fig.1.9 : Evolution de la fréquence des modes de vibration infrarouge et Raman de SnO2 en fonction de la pression hydrostatique appliquée	12

Fig.1.10 : Modes Raman actives en fonction de la pression	12
Fig.2.1 : Spectre (a) de vibration harmonique et (b) mécanismes de transitions vibrationnelles.	19
Fig.2.2 : Déformations élastiques du solide cristallin. et contraintes (σ)	24
Fig.3.1 Cellule unitaire de rutile SnO ₂	34
Fig. 3.2 : Paramètres du réseau cristallin (a, c) (Å), coordonnée atomique interne (u), le rapport de la cellule unité (c/a), volume de la cellule unité (V(Å ³) et l'expansion du volume	
de la cellule unité ($\Delta V/V_0$) en fonction de la pression hydrostatique (GPa) de tension appliquée à la cellule unité de SnO ₂ rutile	36
Fig.3.3 : Illustration des isothermes de compressibilité axiale de SnO ₂ rutile	36
Fig.3.4 : Densité d'état propjetée sur les orbitales atomiques (PDOS) au voisinage du gap	
de SnO2 rutile	40
Fig.3.5 : Réflectance R(w) de SnO2 rutile en fonction de la cellule unité	40
Fig.3.6 : Réflectance calculée R (ω) pour un axe a $$, partie réelle $\varepsilon 1$ (ω) et partie	
imaginaire $\epsilon 2 (\omega)$ de la fonction diélectrique complexe $\epsilon (\omega)$ du rutile SnO2 sous	<i>A</i> 1
pression	41
Fig.3.7 : Modes vibratoires Raman et infrarouge du rutile SnO2 sous pression hydrostatique	42
Fig.3.8 : Modèle de vibration harmonique de la cellule élémentaire de SnO2 rutile (a), (b) modes de vibration Raman et (c) modes de vibration IR actifs	43
Fig.3.9 : Dépendance des nombres d'onde logarithmiques des modes actifs Raman et de la	
pression hydrostatique	46
Fig.3.10 : Dépendance des nombres d'onde logarithmiques des modes actifs Raman et de la pression hydrostatique	48
Fig 3 11 • Entronie (S) et canacité calorifique (C) de SnO2 en fonction de la \mathbf{F}	
température	59

Liste des tableaux

Tableau 1.1 : Fréquences des modes Raman fondamentaux et infrarouges de SnO2 monocristallin	06
Tableau 1.2 : Paramètres de Gruneissen des modes Raman actives de SnO2 rutile	
calculés à partir de lafigure1.10	12
Tableau 3.1: Coefficients de contraintes axiales de SnO ₂ rutile soumis à la pression hydrostatique de tension	37
Tableau 3.2 : Longueur de liaison, population de Mulliken et charge effective deBorn de SnO_2 rutile soumis à la pression hydrostatique de tension	38
Tableau 3.3 : Evolution des vecteurs déplacements en fonction de la pression	
hydrostatique des modes Raman actives de SnO2 rutile45	
Table3.4: Paramètres du mode Gruneisen du rutile SnO2	47

Introduction générale

INTRODUCTION GENERALE

Le dioxyde d'étain (SnO₂) non dopé est un matériau semi-conducteur de type n (Eg= 3.6 eV) appartenant à la classe des oxydes transparents et conducteurs (TCO) qui combinent la conductivité électrique avec la transparence optique. Il est utilisé sous forme de couches minces, poudre ou nanostructure dans de multiples applications de détection, photovoltaïques et optoélectroniques [1-2]. Dans les années récentes, l'industrie de l'affichage subit un changement important des écrans rigides vers des écrans flexibles. Point de vue technologie, cela a généré une intense recherche et activité innovante liées à la mesure des contraintes résiduelles dans les films minces destinés à être utilisés dans de telles applications.

En général, tout film mince peut être considéré dans un état de contraintes (contraint) durant le processus de dépôt, lequel produit des propriétés physiques différentes. L'étude de la relation entre les contraintes dans le film et ses propriétés devient systématique. L'évolution des contraintes durant la croissance du film par la technique de déposition chimique en phase vapeur (CVD) ou par d'autres techniques de synthèses est le résultat de plusieurs facteurs reliés entre eux et de sources de contraintes. Comprendre le rôle de cette variété de contraintes par la mise en place de modèles qui prennent en compte une base de données très vaste de contraintes reste le principal challenge pour de nombreux chercheurs. La présence de contraintes dans les films mince a un niveau résiduel excessif affecte fortement la performance et la fiabilité des composants et dispositifs électronique, optiques, …, composés de films minces [3]. Durant la dernière décennie, d'intense activité de recherche s'est mise en place pour la mesure des contraintes intrinsèques émanant des conditions de dépôts de films minces. Les films déposés par la technique CVD peuvent développer des contraintes intrinsèques importantes au cours leur processus de croissance.

Le but de ce travail consiste à comprendre le rôle les contraintes intrinsèques dans les changements observés des propriétés structurales et vibrationnelles des films minces de SnO_2 polycristallin déposés sur des substrats de verre par la technique de déposition chimique en phase vapeur (CVD). Les contraintes sont supposées biaxiales et simulées par une pression hydrostatique externe appliquée à SnO_2 rutile. Les changements sont déterminés théoriquement par la méthode de la fonctionnelle densité (DFT) en prenant comme référence les paramètres structuraux de SnO_2 rutile monocristallin.

Le présent mémoire comprend trois chapitres. Le premier chapitre est dédié à l'état de l'art sur les contraintes dans les films minces et les propriétés structurales et physiques de SnO₂ rutile. Le second chapitre et consacré aux méthodes de calcul DFT, relations utiles des propriétés vibrationnelles et thermodynamiques de systèmes contraints. Dans Le chapitre 3, nous avons présenté les résultats obtenus. En premier, nous avons calculé et analysé l'évolution des paramètres structuraux en fonction de la pression hydrostatique. Dans la section suivante, nous avons étudié la dépendance des modes de vibrations au centre de la première zone de Brillouin à la pression hydrostatique. Enfin nous terminons par une conclusion générale dans laquelle sont rappelés les résultats remarquables de notre travail et perspectives.

CHAPITRE 1 : ETAT DE L'ART

CHAPITRE 1 : ETAT DE L'ART

1. Introduction

Dans la dernière décennie, de nombreux chercheurs ont étudié les effets des contraintes sur les propriétés physiques des oxydes de métaux [4]. Parmi lesquels on trouve les oxydes de métaux transparents et conducteurs (TCO) tels que SnO₂, ZnO, ect... en films minces contraints déposés sur divers types de substrats par la technique de déposition chimique en phase vapeur CVD [5]. La synthèse des travaux de la littérature sur les contraintes dans les films minces montre deux sortes de contraintes : les contraintes intrinsèques, dues au processus de croissance, et les contraintes extrinsèques qui sont générées par l'environnement dans lequel se trouvent les films minces, plus particulièrement la température et la pression auxquelles ils sont soumis. Comme le montre la littérature, les deux sortes de contraintes résultent de mécanismes complexes et variés. Dans le présent chapitre, après avoir cité l'essentiel de ces mécanismes, nous avons présenté l'effet des contraintes générées par l'application d'une pression hydrostatique sur les propriétés physiques, en particulier vibrationnelles de films minces de SnO₂.

2.1 Propriétés structurales de SnO₂

IL existe deux phases stables de l'oxyde d'étain [6]: L'oxyde stannique de formule SnO₂ et l'oxyde stanneux SnO (fig.1.1). La forme la plus importante de SnO₂ naturelle est la cassitérite, une phase de SnO₂ avec la structure rutile tétragonale appartenant au groupe de symétrie d'espace D_{4h}^{14} ($P_{42/mnm}$). Le cation de métal Sn est entouré de six anions d'oxygène dans un octaèdre légèrement déformé, tandis les angles de liaison sont quelque peu faussés de 120°. Les paramètres du réseau cristallin tétragonal sont a = b = 4.737 Å et c = 3.1864 Å. La cellule élémentaire contient six atomes : deux atomes d'étain (Sn) {(0,0,0) ; (1/2,1/2,1/2)} et quatre d'oxygène (O) {(u,u,0) ; (1-u,1-u,0) ; (1/2+u, 1/2-u, 1/2) ; (1/2-u, 1/2+u, 1/2) avec u=0.31} (fig.1.1)..

SnO₂ existe sous forme de poudre, films minces ou nanostructures déposés sur des substrats. Plusieurs méthodes sont utilisées pour produire SnO₂ en films minces. Parmi ces méthodes, on peut citer le dépôt atomique de la couche [7], le dépôt par laser pulsé [8], l'épitaxie par faisceau moléculaire (MBE) [9], spray pyrolyse [10], oxydation électrolytique plasma [11], pulvérisation de faisceau ionique [12], dépôt chimique en phase vapeur organométallique (MOCVD) [13], sol-gel [14], le dépôt chimique en phase vapeur (CVD) [2], etc...

Fig. 1.1 : Cellule unité de (a) l'oxyde stanneux et (b) l'oxyde stannic

Beaucoup de ces techniques souffrent d'un ou plusieurs inconvénients tels que le faible taux de dépôt, le cout, le traitement thermique, précurseurs et appareils complexes. La CVD, caractérisée par un taux de croissance élevé, permet de produire des films minces d'épaisseur homogène et stœchiométrique sur des substrats complexes appropriés pour l'exploitation commerciale. La figure 1.2 illustre la structure polycristalline de films minces de SnO₂ déposé sur des substrats de verre par la technique CVD au laboratoire LASICOM.

Fig.1.2 : Morphologie de SnO₂ en couches minces déposées sur des substrats verre avec un temps de déposition de 10 min, une température de dépôt de 400°C et une pression d'oxygène de 9ml/min [15]

3. Propriétés électroniques et optiques

L'oxyde d'étain SnO_2 cassitérite avec une conductivité électrique intrinsèque faible de type n due au déficit en oxygène. IL présente un large gap optique (Eg= 3,6 eV), une transparence optique élevée (90%) dans le domaine de la lumière visible et une bonne stabilité chimique.

 SnO_2 non dopé peut avoir une densité de porteurs de charge libres (supérieure à 10^{20} cm⁻³) comparable à celle des semi-métaux.

4. Propriétés vibrationnelles

La figure 1.3 illustre un exemple de la courbe de dispersion théorique des phonons de SnO_2 rutile [16]. Les Fréquences des modes infrarouges et Raman de SnO_2 monocristallin sont dues aux travaux de R. S. Katiyar [17] (tableau.1.1) :

Wave vector

Le spectre de dispersion est composé de 18 branches (3 branches acoustiques et 15 branches optiques). Les 3 branches acoustiques passant par le centre Γ de la première zone de Brillouin correspondent à 3 modes de vibration acoustiques (1LA + 3TA). Les 15 branches restantes décrivent les modes de vibration infrarouge et Raman des 6 atomes de la cellule élémentaire de SnO₂ rutile.

Tableau 1.1 Fréquences des modes Raman fondamentaux et infrarouges de SnO ₂ monocristall

Modes	B _{2g}	A _{1g}	Eg	A _{2u} (TO)	$E_{u}^{(1)}(T0)$	$E_{u}^{(2)}(T0)$	$E_{u}^{(3)}(TO)$
Fréquences	782	638	476	477	618	293	244
(Cm ⁻¹)							

5. Contraintes et déformations dans les films minces

5.1 Contraintes résiduelles

Les films minces développent de larges contraintes internes durant leur croissance [18] (fig.1.4). Ces contraintes internes ou contraintes résiduelles regroupent deux sortes de contraintes :

Fig.1.4 : Illustration de la distribution des contraintes à travers l'épaisseur de film mince déposé sur un substrat

$$\sigma_{resid} = \sigma_{intr..} + \sigma_{ext.} \tag{1.1}$$

a- Contraintes intrinsèques ($\sigma_{intr.}$). Elles sont attribuées au processus de croissance du film et sont générés par une multitude de mécanismes : Contraintes de surfaces / interfaces, réduction de la surface par coalescence de cluster, croissance de grain et joint de grain, relaxation des joints de grain, incorporation d'impuretés, transformation de phase et précipitation, épitaxie, Effets dues aux défauts structuraux tels que les dislocations, non stœchiométrie, déficit en oxygène,

b. Contraintes extrinsèques ($\sigma_{ext.}$). Elles proviennent des changements physiques de l'environnement du film après sa croissance : variation de la température, coefficients de dilatation thermique différents entre film et substrat, forces électrostatiques, forces d'inertie, électromigration, réactions chimiques, transformations de phases, déformations plastiques, ...

5.2 Contraintes dans les films minces polycristallins

Dans les matériaux polycristallins, les contraintes résiduelles se manifestent sous forme de contraintes résiduelles élastiques lesquelles dépendent des propriétés élastiques et plastiques du matériau et sont exprimées par des tenseurs. Dans le régime élastique, tenseur de contraintes et tenseur de déformations sont reliées l'un à l'autre par la loi généralisée de Hooke en utilisant le tenseur de la constante élastique (chapitre2).

De nombreux processus cinétiques différents se produisent simultanément durant la croissance des films pouvant influencer les contraintes. La figure 1.5 illustre quelques-uns de ces processus.

Fig1.5 : illustration de quelques processus cinétiques au voisinage des joints de grains (GB) qui influent sur les contraintes dans les films minces polycristallins : Déposition - Attachement des atomes aux Terrace « ledges » - Formation des joints de grains (GB) - Diffusion des atomes sur la surface - Diffusion des atomes dans les joints de grains (GB)

5.3 Méthodes de diffraction des rayons X (DRX) de détermination des contraintes

La mesure des déformations élastiques (\in) et donc des contraintes résiduelles (σ) par la méthode DRX est basée sur la comparaison de la distance inter réticulaire (d_{hkl}) mesurée dans une (ou plusieurs) direction par rapport à une distance inter réticulaire de référence d_{hkl}^0

$$[19]: \qquad \qquad \in_{hkl} = \frac{d_{hkl} - d_{hkl}^{\circ}}{d_{hkl}^{\circ}} \tag{1.2}$$

6. Effets de contraintes sur les propriétés physiques de films minces de SnO₂

6.1 Propriétés structurales

Les propriétés des systèmes physiques de faibles dimensions telles que les nanostructures dépendent de leur rapport surface/volume en raison de la différence entre les propriétés physiques et chimiques des atomes en surface et ceux de l'intérieur du matériau. Dans les systèmes macroscopiques, la fraction du nombre des atomes en surface comparée au nombre total des atomes est insignifiante et les effets de taille finie sont négligeables. Par conséquent, toutes les propriétés de ces systèmes sont dominées par les propriétés en volume. A l'inverse,

le rapport surface/volume des nanostructures est important faisant de leurs propriétés dépendantes fortement de l'effet de taille.

Il a été reporté dans la littérature que les paramètres du réseau cristallin varient en fonction de la taille des cristallites [20]. La corrélation entre les paramètres du réseau et la taille des cristallites est établies dans nombre de modèles se basant sur l'énergie de surface [21], la rupture des liaisons entre les atomes de la surface et la pression intra cristalline [22]

Les forces mécaniques résultantes des contraintes de surfaces sont l'une des conséquences de l'effet de la taille finie. Ces forces produisent un changement significatif des paramètres du réseau des nanostructures par rapport à ceux d'une structure identique large [23]. A titre d'exemple, il a été montré que la surface de films minces multicouches et de nanocristaux de formes variées, de contrainte σ_s produit une déformation uniforme [24]:

$$\frac{\Delta a}{a_0} = \frac{a - a_0}{a_0} = C \frac{\sigma_s}{B} \tag{1.3}$$

Ou a et a_0 sont les paramètres du réseau contraint et non contraint. B est le coefficient de compressibilité et C une constante dépendante de la nature de la nanostructure.

Le tenseur de contrainte de surface diagonale d'ordre 2 est donné par la relation :

$$\sigma_{\alpha\beta} = \frac{\partial \gamma_{\rm L}}{\partial \varepsilon_{\alpha\beta}} \tag{1.4}$$

Ou γ_L est l'énergie par unité de surface dans un état non contraint et $\varepsilon_{\alpha\beta}$ est le tenseur de deformation d'ordre 2.

6.2. Propriétés électroniques

Les contraintes de tension dans les films SnO_2 favorisent davantage le recouvrement entre les orbitales s des cations, facilitant ainsi la mobilité des porteurs de charges [25].

Fig.1.6 : Evolution du gap optique (Eg) de SnO₂ soumis à une pression hydrostatique variable Dans le même temps, il a été montré que ces mêmes contraintes, on accentuant la répulsion entre les orbitales O(2p) localisées dans le haut de la bande de valence (VBM) et les orbitales 5s (Sn) localisées bans le bas de la bande de conduction (CBM), provoquent une augmentation du gap optique (Eg). La figure 1.6 illustre le changement du gap optique (Eg) de SnO₂ soumis à une pression hydrostatique positif représentant les contraintes de tension [25].

6.3 Propriétés optiques

Fig.1.7 : Spectre de réflectance et fonction diélectrique (partie imaginaire) en fonction de l'énergie des photons incidents pour différentes pressions hydrostatiques [26]

La figure1.7 montre que la pression hydrostatique affecte très peu le spectre de réflectance et la fonction diélectrique. La transparence du matériau est préservée même si le volume de la cellule unité est réduit par la pression. L'effet remarquable est le déplacement des spectres vers les énergies élevées due à l'augmentation de la pression hydrostatique.

6.4 Propriétés élastiques

Fig.1.8 : Constantes élastiques de SnO_2 rutile soumis à une pression hydrostatique variable dans l'intervalle 0-100 GPa [27].

Le tenseur de la constante élastique $C_{\alpha\beta}$ de SnO₂ rutile, symétrique d'ordre 4 est caractérisé par 6 constantes élastiques (C_{11} , C_{12} , C_{13} , C_{33} , C_{44} , C_{66}) non nulles (chap.2). La figure 1.8 montre que les constantes C_{11} , C_{33} , C_{66} , C_{12} et C_{13} sont susceptibles que la constante C_{44} à la pression hydrostatique appliquée à SnO₂. Comme on peut le voir aussi, la constante C_{33} reste supérieure à C_{11} dans tout l'intervalle de pression compris entre 0 et 100 GPa.

6.5 Propriétés vibrationnelles

6.5.1 Effet de la pression sur les modes de vibration

La figure 1.9 illustre l'évolution des modes infrarouges et Raman de SnO2 soumis à une pression hydrostatique croissante entre 0 et 20 GPa. On peut observer sur cette figure qu'à l'exception des fréquences des modes Raman B1g et infrarouge A2u(TO) qui s'annulent ou deviennent négatives à partir d'une pression égale ou supérieure à 10 GPa, toutes les autres fréquences augmentent avec l'augmentation de la pression hydrostatique. La fréquence négative de B1g peut être attribuée à l'instabilité de SnO₂ à haute fréquence indiquant une possible transition de phase de SnO₂ vers la phase CaCl₂.

Fig1.9 : Evolution de la fréquence des modes de vibration infrarouge et Raman de SnO₂ en fonction de la pression hydrostatique appliquée.[28]

6.5.2 Paramètres de Gruneissen

Modes	ω (cm^{-1})	Υ
Raman		
B1g	123	-10.44
Eg	475	3.20
A1g	634	3.64
B2g	776	2.58

Tableau 1.2 : Paramètres de Gruneissen desmodes Raman actives de SnO2 rutile calculés àpartir de la figure 1.10

Fig.1.10 : Modes Raman actives en fonction de la pression [29]

CHAPITRE 2 : METHODOLOGIE

CHAPITRE 2 : METHODOLOGIE

1. Introduction

Le présent chapitre est consacré à la description de la technique de dépôt de SnO₂ en couches mince, les méthodes de caractérisation optique infrarouge et Raman sont présentés brièvement dans la première partie de ce chapitre, tandis que la deuxième partie fait appel aux relations utiles des propriétés vibrationnelles et thermodynamiques de systèmes contraints et les méthodes de calcul ab-initio périodiques que nous avons utilisé dans la réalisation de ce travail.

2. Dépôt de films minces de SnO₂ par la technique CVD

La technique CVD « déposition chimique a phase vapeur » est un procédé de dépôt chimique à partir d'une phase gazeuse qui consiste à mettre en contact un ou plusieurs composés du matériau à déposer avec la surface à recouvrir de façon à provoquer sur un substrat une réaction chimique donnant un produit solide et stable. C'est une méthode chimique conventionnelle de la croissance cristalline de films minces de SnO₂ d'épaisseur de l'ordre du micromètre et nanomètre à partir de réactifs gazeux provenant de l'évaporation de d'un précurseur suite à la réaction chimique de base (SnCl₂ +O₂ \rightarrow SnO₂ +Cl₂). La description détaillée du processus de dépôt dans cette technique est donnée en réf. [30].

Les films minces de SnO₂ déposés sur des substrats de verre par la CVD sont polycristallins et présentes des paramètres du réseau cristallins qui devient de ceux de SnO₂ standard monocristallin [31]. L'origine des déviations entre paramètres des réseaux cristallins des dépôts de SnO₂ obtenus par la CVD et de SnO₂ standard peuvent être expliquer par la présence dans les dépôts de SnO₂ de contraintes intrinsèques qui proviennent du processus de dépôt, ceux s'exerçant entre les grains de la structure polycristalline du dépôt et ceux entre le dépôt et le substrat.

3. Spectroscopie Infrarouge et Raman

3.1 Infrarouge

La spectroscopie optique infrarouge est infiniment liée à la thermodynamique de vibration des matériaux à basse et haute températures. A basses température, Le couplage entre phonons dans la thermodynamique de vibration est négligeable et la vibration du réseau cristallin est traitée dans l'hypothèse de l'oscillateur harmonique indépendant. Dans la

thermodynamique à haute température, la vibration du réseau cristallin est traitée en tenant compte des vibrations anharmoniques en raison des interactions importantes entre phonons. La spectroscopie infrarouge est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle peut être employée pour l'identification des composés ou la détermination de la composition chimique d'un échantillon. La région du spectre électromagnétique située entre 4000 et 400 cm⁻¹ est la plus utile d'un point de vue analyse physico – chimique des matériaux solides.

3.1.1 Dynamique du réseau

Dans l'hypothèse du champ électrique macroscopique nul dans le solide cristallin, le mouvement vibratoire harmonique des atomes de la cellule élémentaire est décrit par les équations de mouvement [32] :

$$M_l \ddot{u}_{\alpha}(m,l) + \sum_{n,s,\beta} \Phi_{\alpha\beta}^{ls}(m-n)u_{\beta}(n,s) = 0$$
(2.1)

 α et β désignent les projections en coordonnées cartésiennes x, y et z des vecteurs déplacements $\vec{u}(m, l)$ et $\vec{u}(n, s)$. $\Phi_{\alpha\beta}^{ls}(m, n)$ est la composante ($\alpha\beta$) de la constante d'élasticité du ressort reliant l'atome d'ordre l de la cellule m à l'atome d'ordre s de la cellule n. Lorsque m = n, ($\Phi_{\alpha\beta}^{ls}(m, m)$ désigne la composante ($\alpha\beta$) de la constante d'élasticité du ressort reliant deux atomes d'une même cellule.

La solution générale des équations de mouvement (2.1) s'écrit sous la forme d'une série de Fourier d'ondes planes [33] :

$$u_{\alpha}(m,l,t) = \frac{1}{\sqrt{NM_l}} \frac{1}{2\pi} \int d\omega \sum_{\vec{k}} u_{l,\alpha}(\vec{k}) e^{i(\vec{k}\cdot\vec{R}_m - \omega t)}$$
(2.2)

En substituant la forme (2.2) dans l'équation de mouvement (2.1), on obtient une équation (2.3) dont la variable est le vecteur d'onde \vec{k} :

$$\omega^2 u_{l,\alpha}(\vec{k}) - \sum_{s,\beta} D^{ls}_{\alpha\beta}(\vec{k}). u_{s,\beta}(\vec{k}) = 0$$
(2.3)

Dans laquelle

$$D_{\alpha\beta}^{ls}(\vec{k}) = \frac{1}{\sqrt{M_l M_s}} \sum_m \Phi_{\alpha\beta}^{ls}(m) e^{-i\vec{k}.\vec{R}_m}$$
(2.4)

 $D_{\alpha\beta}^{ls}(\vec{k})$ est la matrice dynamique. Le système d'équation (2.4) possède une solution non triviale quand le déterminant :

$$\det \left(D^{ls}_{\alpha\beta}(\vec{k}) - \omega^2 \delta_{\alpha\beta} \delta_{ls} \right) = 0$$
(2.5)

Les valeurs (fréquences) des modes de vibration sont calculées en résolvant le système d'équation (2.5)

3.1.2 Origine des modes LO

Les déplacements d'atomes de la forme $u_{l,\alpha}(\vec{k})e^{j\vec{k}\vec{r}}$ de certains modes optiques de très grande longueur d'onde $(\vec{k} \to \vec{0})$ engendre un champ de polarisation $(\vec{P} = \vec{P_0}e^{j\vec{k}\vec{r}})$ laquelle fait apparaître un champ électrique macroscopique $(\vec{E} = \vec{E_0}e^{j\vec{k}\vec{r}})$ et un vecteur déplacement électriques $(\vec{D} = \vec{D_0}e^{j\vec{k}\vec{r}})$ Les équations de mouvement (2.1) sont alors réécrites en y ajoutant la contribution de la force électrique $(\vec{F} = q\vec{E})$

$$M_l \ddot{u}_{\alpha}(m,l) = -\sum_{n,s,\beta} \Phi_{\alpha\beta}^{ls} (m-n) u_{\beta}(n,s) + \sum_{\beta} Z_{l,\beta,\alpha}^* E_{\beta}$$
(2.6)

ou $Z_{k,\beta,\alpha}^*$ est le tenseur de la charge de Born. Elle est définie comme le changement dans la polarisation $(\delta \vec{P})$ divisée la valeur du déplacement $(\delta u_j(n, s))$ d'un ion, ou la force induite $(\delta \vec{F})$ sur un ion divisé par un champ électrique $(\delta \vec{E})$ uniforme faible :

$$Z_{ij}^* = \frac{\Omega}{e} \frac{\delta P_i}{\delta \delta u_j(n,s)} = -e \frac{\delta F_i}{\delta E_j}$$
(2.7)

ou Ω et *e* sont respectivement le volume de la cellule élémentaire de la structure cristalline et la charge de l'éléctron

Le champ électrique \vec{E} , orienté dans la direction \vec{K} (direction par laquelle on approche le point $\vec{K} = \vec{0}$, donc de la polarisation de \vec{E}) est d'amplitude inconnue. Dans le cas de la structure tétragonale, la direction transversale est définie par le vecteur \vec{K} // \vec{c} tandis que la direction longitudinale est prise dans le plan perpendiculaire est parallèle à la direction réticulaire[1 $\overline{10}$]

L'amplitude de \vec{E} peut être déterminée si l'on tient compte de la relation entre le champ de déplacement et le champ macroscopique $(D_{\alpha} = E_{\alpha} + 4\pi P_{\alpha})$, la polarisabilité due aux électrons à hautes fréquences ($\vec{P} = (\varepsilon_r(\infty) - 1)\varepsilon_0\vec{E}$) ainsi que les équations de Maxwell en absence de charges libres et de champ magnétique $(j\vec{K}.\vec{D} = 0, j\vec{K} \wedge \vec{E} = \vec{0})$. Elle est donnée en fonction de la charge de Born (Z_{ij}^*) et le tenseur de la constante diélectrique à haute fréquence $(\varepsilon_{ij}(\infty)$ par :

$$\left|\vec{E}\right| = -\frac{4\pi}{\Omega} \frac{\sum_{b,k'} \sum_{\alpha',\beta} \Delta \tau_{b,k',\beta} Z_{k',\beta\alpha'}^{*} K_{\alpha'}}{\sum_{\alpha',\beta'} K_{\alpha'} \varepsilon_{\alpha',\beta'}^{\infty} K_{\beta'}}$$
(2.8)

En remplaçant l'expression (2.8) dans l'équation (2.6), on obtient l'équation de mouvement :

$$M_{k} \frac{\partial^{2}(\Delta_{a,k,\alpha})}{\partial t^{2}} = -\sum_{b,k',\beta} C_{k\alpha,k'\beta} (R_{b} - R_{a}) \Delta \tau_{b,k',\beta} + \sum_{\beta} Z_{k,\beta,\alpha}^{*} E_{\beta} - \sum_{b,k',\beta} \Delta \tau_{b,k',\beta} \left(C_{k\alpha,k'\beta}(0,b) + \frac{4\pi}{\Omega} \frac{\sum_{\beta'} Z_{k,\beta'\alpha}^{*} q_{\beta'} \sum_{\alpha'\beta'} q_{\alpha'} Z_{k,\beta'\alpha}^{*} q_{\beta'}}{\sum_{\alpha'\beta'} q_{\alpha'} \varepsilon_{\alpha'\beta'}^{\infty} q_{\beta'}} \right)$$
(2.9)

La matrice des constantes de forces contient alors une contribution complémentaire à l'origine de la présence des modes LO au centre de la première zone de Brillouin :

$$C_{k\alpha,k'\beta}\left(\vec{K} \to 0\right) = \frac{4\pi}{\Omega} \frac{\sum_{\beta'} Z_{k,\beta'\alpha}^* q_{\beta'} \sum_{\alpha'\beta'} Z_{k,\beta'\alpha'\beta}^* q_{\alpha'}}{\sum_{\alpha'\beta'} q_{\alpha'} \varepsilon_{\alpha'\beta'}^{\infty} q_{\beta'}}$$
(2.10)

3.1.3 Propriétés optiques

La fonction diélectrique complexe $\varepsilon(w)$ est représentée par un tenseur diagonal $\varepsilon_{ii}(w)$. Elle est définie dans l'hypothèse de l'oscillateur harmonique amorti pour les systèmes cristallins orthorhombiques par l'expression [34] :

$$\varepsilon_{ii}(w) = \varepsilon_{\infty,ii} + \frac{4\pi}{\Omega} \sum_{n} \frac{\bar{Z}^{*2}_{n,i}}{\omega_n^2 - \omega^2 - j\gamma_n \omega}$$
(2.11)

 $\varepsilon_{\infty,ii}$ est le tenseur de la constante diélectrique à haute fréquence, Z^{*} est le tenseur de la charge effective de Born. ω_n et γ_n sont respectivement la position des pics TO et le coefficient d'amortissement de l'oscillateur n.

La partie imaginaire $\varepsilon_2(\omega)$ de la fonction diélectrique complexe $\varepsilon(\omega)$ est à la base des propriétés optiques de tout matériau. Elle est obtenue à partir des éléments de la matrice du moment \vec{k} entre les fonctions d'onde des états occupés (bandes de valence) et non-occupés. (Bandes de conduction) :

$$\varepsilon_2(\omega) = \frac{2e^2}{V} \varepsilon_0 \sum_{\vec{k}, \nu, c} \left| \left\langle \psi_{\vec{k}}^c \right| \vec{u}. \vec{r} \left| \psi_{\vec{k}}^\nu \right\rangle \right|^2 \delta(E_k^c - E_k^\nu - E)$$
(2.12)

ou e, V et ε_0 sont dans l'ordre la charge de l'électron, le volume et la constante diélectrique statique. \vec{u} et \vec{r} désignent respectivement le vecteur de polarisation du champ électrique

incident et le vecteur position. $\psi_{\vec{k}}^c$ et $\psi_{\vec{k}}^v$ sont respectivement les fonction d'onde de vecteur d'onde \vec{k} dans la bande de conduction (c) et de valence (v).

Quant à la partie réelle $\varepsilon_1(\omega)$ de la fonction diélectrique complexe, elle est évaluée à partir de $\varepsilon_2(\omega)$ en utilisant les relations de Kramer-Kronig [35] :

$$\varepsilon_1(\omega) = 1 + \left(\frac{2}{\pi}\right) \int_0^\infty \frac{\omega'^2 \varepsilon_2(\omega')}{\omega'^2 - \omega^2} d\omega'$$
(2.13)

Les autres propriétés optiques telles que la reflectance $R(\omega)$, le coefficient d'absorption $\alpha(\omega)$, la partie réelle de l'indice de réfraction $n(\omega)$, la partie imaginaire de l'indice de réfraction $k(\omega)$ et le spectre de la perte d'énergie $L(\omega)$ sont déterminés à partir de $\varepsilon_2(\omega)$ et $\varepsilon_1(\omega)$ [36-37] :

$$\alpha(\omega) = \sqrt{2}\omega \left(\sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)} - \varepsilon_1(\omega)\right)^{\frac{1}{2}}$$
(2.14)

$$n(\omega) = \frac{1}{\sqrt{2}} \left(\sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)} + \varepsilon_1(\omega) \right)^{\frac{1}{2}}$$
(2.15)

$$L(\omega) = \frac{\varepsilon_2(\omega)}{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)}$$
(2.16)

L'intensité du spectre infrarouge est déduite à partir du spectre de réflectance R(w) défini par la fonction diélectrique ($\varepsilon(w) = \varepsilon(w)' - j \varepsilon(w)''$) et de la direction d'incidence α par [38]:

$$R(\omega) = \left| \frac{\cos \alpha - \sqrt{\sin^2 \alpha - (\frac{\varepsilon(\omega)}{2k})^2}}{\cos \alpha + \sqrt{\sin^2 \alpha - (\frac{\varepsilon(\omega)}{2k})^2}} \right|^2$$
(2.17)

3.2 Raman

La spectroscopie de diffusion Raman étudie les transitions entre les niveaux d'énergie vibrationnelles des molécules d'un matériau porté à un niveau énergétique virtuel par une source lumineuse puissante monochromatique [39]. Les mécanismes de transition entre les niveaux d'énergie vibrationnelle et niveaux d'énergie virtuels dans la diffusion Raman sont illustrés en fig2.1 La spectroscopie Raman permet l'identification de phases, la composition chimique, la structure moléculaire, la cristallinité des solides amorphes et cristallins. La position des raies renseigne sur les espèces chimiques en présence dans l'échantillon, la

largeur des pics à mi-hauteur fournie des informations sur la structure de l'échantillon, l'intensité d'un pic peut être reliée à la concentration de l'espèce et le déplacement des pics est fonction de l'état de contrainte et/ou de la température.

Fig.2.1 : Spectre (a) de vibration harmonique et (b) mécanismes de transitions vibrationnelles

La diffusion élastique et inélastique dans le phénomène Raman est due à l'apparition de moment dipolaire induit dans le matériau solide, suite à la déformation du nuage électronique, provoquée par le champ électrique \vec{E} du rayonnement monochromatique incident :

$$\vec{\mu} = [\alpha] \times \vec{E}_0 \cos(\omega_0 t) \tag{2.10}$$

ou \vec{E}_0 et ω_0 sont l'amplitude et la fréquence du champ incident. [α] est le tenseur de polarisabilité d'ordre 2 du matériau :

$$[\alpha] = \begin{bmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{bmatrix}$$
(2.19)

Les composantes du moment dipolaires sont alors données par :

$$\mu_{x} = \alpha_{xx}E_{x} + \alpha_{xy}E_{y} + \alpha_{xz}E_{z}$$

$$\mu_{y} = \alpha_{yx}E_{x} + \alpha_{yy}E_{y} + \alpha_{yz}E_{z}$$

$$\mu_{z} = \alpha_{zx}E_{x} + \alpha_{zy}E_{y} + \alpha_{zz}E_{z}$$
(2.20)

Au voisinage de la position d'équilibre la polarisabilité au premier ordre s'écrit :

$$\alpha_{ij} = \left(\alpha_{ij}\right)_0 + \left(\frac{\partial \alpha_{ij}}{\partial Q}\right)_0 Q \tag{2.21}$$

Avec la coordonnée normale $Q = Q_0 cos \omega_{vib} t$

$$\mu = (\alpha_{ij})_{0} E_{0} \cos \omega_{0} t + \frac{1}{2} \left(\frac{\partial \alpha_{ij}}{\partial Q}\right)_{0} Q_{0} E_{0} \left[\cos(\omega_{0} + \omega_{vib})t + \cos(\omega_{0} - \omega_{vib})t\right]$$
(2.22)

Par ailleurs, l'intensité élémentaire du rayonnement émis par le moment dipolaire de $\vec{\mu}$ dans l'angle solide $d\Omega = \sin\theta d\theta d\phi$ est donnée par :

$$dI = \frac{d\Omega}{4\pi c^3} \sin^2 \theta \left| \ddot{\vec{\mu}} \right|^2 \tag{2.23}$$

L'intégration des relations (2.21) et (2.22) donne l'intensité de la lumière diffusée par unité d'angle solide :

$$I = (\alpha_{ij})_{0}^{2} \omega_{0}^{4} E_{0}^{2} \cos^{2} \omega_{0} t + \frac{1}{4} E_{0}^{2} \left(\frac{\partial \alpha_{ij}}{\partial Q}\right)_{0}^{2} Q_{0}^{2} [(\omega_{0} - \omega_{vib})^{4} \cos^{2}(\omega_{0} - \omega_{vib})t + (\omega_{0} + \omega_{vib})^{4} \cos^{2}(\omega_{0} + \omega_{vib})t]$$
(2.24)

Dont le premier terme en $cos \omega_0 t$ correspond à une diffusion sans changement de fréquence (ω_0), donc une diffusion élastique appelée diffusion de Rayleigh. Le second et le troisième terme indiquent la diffusion de deux ondes électromagnétiques de fréquences $\omega_0 - \omega_{vib}$ et $\omega_0 + \omega_{vib}$ différentes de la fréquence ω_0 de l'onde électromagnétique incidente. Il s'agit de diffusion inélastique ou diffusion Raman anti-Stockes et Stockes. Notons que les transitions vibrationnelles obéissent à des règles de sélection. Dans lesquelles, seules les transitions Δv $= \pm 1$ sont autorisées dans le cas de l'approximation harmonique. La transition de v = 0 vers v = 1 ($\Delta v = +1$) est appelée transition fondamentale. Les autres transitions sont appelées overtone (terme anglais).

4. Théorie de la fonctionnelle de densité (DFT) :

Les calculs ab-initio utilisent divers formalismes mathématiques afin de résoudre les équations fondamentales de la mécanique quantique. Ces formalismes reposent sur un certain nombre d'approximations qui sont plus ou moins bien contrôlées selon les différents cas. La résolution de l'équation de Schrödinger non relativiste est la base des études des systèmes à N noyaux en interaction colombienne, elle s'écrit comme suites :

$$H\Psi_n(\vec{r_i}, \vec{R_n}) = E_n \Psi_n(\vec{r_i}, \vec{R_n})$$
(2.25)

H est l'Hamiltonien du système :

$$H = T_{e} + T_{N} + V_{Ne} + V_{ee} + V_{NN}$$

$$= -\frac{1}{2} \left(\sum_{i} \nabla_{i}^{2} + \sum_{A} \frac{\nabla_{A}^{2}}{M_{A}} \right) - \sum_{i} \sum_{A} \frac{Z_{A}}{R_{Ai}} + \sum_{i < j} \frac{1}{r_{ij}} + \sum_{A < B} \frac{Z_{A}Z_{B}}{R_{AB}}$$
(2.26)

i et *j* indicent les électrons, *A* et *B* indicent les noyaux, M_A et Z_A sont respectivement la masse et la charge du noyau considéré, R_{Ai} , r_{ij} et R_{AB} sont respectivement les distances (noyau-électron), (électron-électron), (noyau-noyau).

 $T_e = -\frac{1}{2} \sum_i \nabla_i^2$ est l'énergie cinétique des électrons, $T_N = -\frac{1}{2} \sum_A \frac{\nabla_A^2}{M_A}$ est l'énergie cinétique des noyaux,

 $V_{Ne} = \sum_{i} \sum_{A} \frac{Z_A}{R_{Ai}}$ est l'énergie d'attraction noyaux-électrons,

 $V_{ee} = \sum_{i < j} \frac{1}{r_{ii}}$ est l'énergie de répulsion électrons-électrons,

$$V_{NN} = \sum_{A < B} \frac{Z_A Z_B}{R_{AB}}$$
 est l'énergie de répulsion noyaux-noyaux.

 $\Psi_n(\vec{r_i}, \vec{R_n})$: est la fonction d'onde totale de système, elle dépend des variables de l'espace ou l'ensemble $(\vec{r_i})$ décrit les variables des électrons et $(\vec{R_n})$ décrit les variables des noyaux, et au nombre quantique n associé au niveau d'énergie E_n .

Puisque la résolution de l'équation de Schrödinger analytiquement n'est possible que pour des systèmes à un seul électron. Pour les solides contenant un nombre n d'électrons elle dépend de 3n coordonnées d'espace et de n coordonnées de spin. La solution n'est possible qu'on faisant appel aux approximations suivantes :

La théorie de la fonctionnelle de la densité électronique (DFT) a été développée en deux temps en 1964 par Hohemberg et Kohn puis en 1965 par Kohn et Sham [40]. Elle permet de ramener la résolution du problème a plusieurs corps à celui d'un seul corps en introduisant un champ effectif qui prend en compte les différentes sortes d'interactions présentes dans le système à étudier. La fonction d'onde inconnue Ψ (x₁, x₂. xn) des n électrons est remplacée par la fonction densité de charge $\rho(r)$. Laquelle est positive, dépendante uniquement des trois coordonnées spatiales (x, y, z), s'annulant à l'infini ($\rho(r \to \infty) = 0$) et d'intégrale :

$$\int \rho(r)dr = n \tag{2.27}$$

4.1 Approche de Kohn-Sham :

Kohn et sham ont proposé en 1965 de reproduire la densité de l'état fondamental d'un système de N particules en interaction par un système auxiliaire constitué de particules indépendantes. Lesquelles possèdent une densité électronique par une densité de charge électronique $\rho(\vec{r})$ similaires à celle d'un système réel :

$$\rho(\vec{r}) = \sum_{i=1}^{n} |\Phi_i|^2$$
(2.28)

L'énergie totale d'un système est exprimée en fonction de la variable densité de charge électronique $\rho(\vec{r})$:

$$E[\rho(\vec{r})] = F_{HK}[\rho(\vec{r})] + V_{ext}[\rho(\vec{r})]$$
(2.29)

ou $F_{HK}[\rho(\vec{r})] = T[\rho(\vec{r})] + V_{ee}[\rho(\vec{r})]$ est la fonctionnelle de Hohemberg et Kohn [41] indépendante du potentiel extérieur V_{ext} dont la forme explicite n'est pas connue. $V_{ext}[\rho(\vec{r})] = \int \rho(\vec{r}) V_{ext}(\vec{r}) d\vec{r}$ est le potentiel d'interaction entre la densité électronique $\rho(r)$ et les noyaux de système.

Les interactions entre les N corps sont contenues dans une fonctionnelle d'échange et de corrélation $Vxc(\rho)$ dépendante elle aussi de la densité électronique est ajoutée L'énergie totale qui s'écrit alors sous la forme :

$$E(\rho) = T(\rho) + V_{ee}(\rho) + V_{ext} + V_{xc}(\rho)$$
 (2.30)

Comme dans l'équation de Hatrée – Fock, l'électron est décrit une l'équation monoélectronique appelée équation de Khon-Sham :

$$\hat{h}_{KS}\Phi_i = \varepsilon_i \Phi_i \tag{2.31}$$

 $\hat{h}_{KS} = \left[-\frac{1}{2}\nabla^2 + V_{eff}(\vec{r})\right]$ est l'Hamiltonien mono-électronique de Kohn -Sham. Φ_i et ε_i sont respectivement la fonction d'onde et l'énergie d'un électron i.

L'Hamiltonien Kohn -Sham du système à n électrons est alors donné par la somme :

$$\widehat{H}_{KS} = \sum_{i=1}^{n} \widehat{h}_{KS} = \sum_{i=1}^{n} \left[-\frac{1}{2} \nabla^2 + V_{eff}(\vec{r}) \right]$$
(2.32)

dans lequel $V_{eff}(\vec{r}) = V_{ee}(\vec{r}) + V_{ext}(\vec{r}) + V_{xc}(\vec{r})$

Quant à la fonction d'onde et l'énergie totale du système à l'état fondamental, elles sont définies par les formes suivantes :

$$\Psi_{KS} = \frac{1}{\sqrt{n!}} det[\Phi_1, \Phi_2, \dots, \Phi_n]$$

et

$$E[\rho(\vec{r})] = T_{KS}[\rho(\vec{r})] + J[\rho(\vec{r})] + E_{xc}[\rho(\vec{r})] + \int V_{ext}(\vec{r})\,\rho(\vec{r})d\vec{r}$$
(2.33)

ou l'interaction colombienne est donnée par :

$$J[\rho(\vec{r})] = \frac{1}{2} \int \int \frac{1}{r_{12}} \rho(\vec{r}_1) \rho(\vec{r}_2) d\vec{r}_1 d\vec{r}_2$$
(2.34)

L'équation de Kohn-Sham est résolue par la méthode dite auto-cohérente. Laquelle est formellement exacte, mais pour le calcul pratique, l'énergie d'échange et de corrélation, qui est une fonctionnelle de la densité, nécessite certains ajustements.

4.2 Modèles de potentiel d'échange et de corrélation

La description des propriétés d'un système physique par la méthode DFT repose sur l'emploi de modèle de potentiel d'échange et de corrélation disponible dans les codes de calcul. Dans la pratique, il s'agit de sélectionner parmi ces modèles de potentiel celui qui décrit le mieux ces propriétés. A titre d'exemple, les fonctionnelles du gradient généralisé (GGA : Generalized Gradient Approximations) proposées par Perdew-Wang (PW91) [42], Perdew-Burke- Ernzerhof (PBE) [43], Becke - Lee-Yang-Parr (BLYP) [44] et Becke 3-parameters Lee-Yang-Parr (B3LYP) [45] donnent une bonne description des propriétés électroniques et vibrationnales qui nous interéssent dans le présent travail.

4.3 Fonctions orbitales cristallines

Les fonctions d'ondes sont définies sous forme de combinaisons linéaires des bases de fonctions orbitales atomiques (LCAO). Celles-ci sont fournies par la littérature dans laquelle les orbitales atomiques sont représentées par les fonctions de type Slater [46] ou des gaussiennes [47]. Le choix d'une base donnée est déterminé par la qualité du résultat obtenu.

5. Contraintes et déformations dans les cristaux

5.1 Déformations

Le tenseur de déformation décrit les déformations élastiques du solide cristallin par rapport à un état de référence de déformations nulles (fig.2.2). En réponse aux distorsions du réseau cristallin correspondant causées par des forces externes, des contraintes vont se manifester on s'y opposant aux déformations ainsi crées dans le solide crystallin afin de ramener celui-ci à sa position d'équilibre initiale.

Fig.2.2 : Déformations élastiques du solide cristallin. et contraintes (σ)

Le tenseur de déformation appliquée à la cellule unité de la structure cristalline est :

$$\begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_x}{\partial x} & \frac{\partial u_x}{\partial y} & \frac{\partial u_x}{\partial z} \\ \frac{\partial u_y}{\partial x} & \frac{\partial u_y}{\partial y} & \frac{\partial u_y}{\partial z} \\ \frac{\partial u_z}{\partial x} & \frac{\partial u_z}{\partial y} & \frac{\partial u_z}{\partial z} \end{bmatrix}$$
(2.35)

ou u_x , u_y et u_z sont les composantes du vecteur $\vec{u}(\vec{r})$ représentant le déplacement d'un atome de vecteur position \vec{r} .

Les composantes du vecteur \vec{r} , coordonnées de l'atome dans la cellule unité de référence sont définies dans un système d'axes $(\vec{x}, \vec{y}, \vec{z})$, le changement due à la déformation entraine une distorsion du système d'axes :

$$\begin{bmatrix} \vec{x}' \\ \vec{y}' \\ \vec{z}' \end{bmatrix} = \begin{bmatrix} 1 + \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & 1 + \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & 1 + \epsilon_{zz} \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{y} \\ \vec{z} \end{bmatrix}$$
(2.36)

5.2 Contraintes

Le tenseur de contrainte (σ) symétrique d'ordre 2 est défini par la variation de l'énergie totale (E) de la cellule unité sous l'effet de déformation symétrique infinitésimale (ϵ):

$$\sigma_{ij} = \left. \frac{1}{V} \frac{\partial E}{\partial \epsilon_{ij}} \right|_{\epsilon_{=0}}$$
(2.37)

Ou V = $\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)$ désigne le volume de la cellule unité de la structure cristalline de paramètres $|\vec{a}_1|, |\vec{a}_2|$ et $|\vec{a}_3|$

5.3 Relation entre tenseurs de contraintes et de déformation :

Dans l'hypothèse des petites déformations élastiques d'un solide cristallin non piézoélectrique, la relation entre les tenseurs de contraintes et de déformations et conforme à la loi de Hooke. Elle est décrite par le terme du premier ordre du développement de Taylor de la relation :

$$\sigma_{ij}(\epsilon_{kl}) = \sigma_{ij}(0) + \left(\frac{\partial\sigma_{ij}}{\partial\epsilon_{kl}}\right)_{\epsilon_{kl}=0} \epsilon_{kl} + \frac{1}{2!} \left(\frac{\partial^2\sigma_{ij}}{\partial\epsilon_{kl}\partial\epsilon_{mn}}\right)_{\epsilon_{kl}=0} \epsilon_{kl}\epsilon_{mn} + \cdots$$
(2.38)

et du fait qu'au repos, contraintes et déformation s'annulent simultanément. La relation précédente se réduit à :

$$\sigma_{ii} = C_{iikl} \epsilon_{kl} \tag{2.39}$$

Ou les coefficients $C_{ijkl} = \left(\frac{\partial \sigma_{ij}}{\partial \epsilon_{kl}}\right)_{\epsilon_{kl}=0}$ représentent le tenseur d'ordre 4 (i, j, k, l = 0)

1, 2, 3, 4) de la constante d'élasticité de la structure cristalline.

La notation de Voigt remplace $ij(kl) = 11 \rightarrow \alpha(\beta) = 1, ij(kl) = 22 \rightarrow \alpha(\beta) = 2, ij(kl) = 33 \rightarrow \alpha(\beta) = 3, ij(kl) = 23(32) \rightarrow \alpha(\beta) = 4, ij(kl) = 31(13) \rightarrow \alpha(\beta) = 5 et ij(kl) = 12(21) \rightarrow \alpha(\beta) = 6$. Avec cette notation, l'équation (2.x) s'écrit :

$$\sigma_{\alpha} = C_{\alpha\beta}\epsilon_{\beta} \quad (\alpha, \beta = 1, \dots, 6)$$
(2.40)

Le nombre de constantes non nulles du tenseur C_{ijkl} ($C_{\alpha\beta}$) est déterminé par la condition d'invariance de celui-ci par rapport aux transformations symétriques ponctuelles qui caractérisent un système cristallin donné. Les structures crystalline telle que les structures rutilent de symétrie tétragonal P qui nous intéressent dans le présent travail présentent 6 constantes élastiques indépendantes (C₁₁, C₁₂, C₁₃, C₃₃, C₄₄ et C₆₆).

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix}$$
(2.41)

5.3 Tenseur de la constante d'élasticité et de contrainte soumis à une pression hydrostatique externe.

La présence de contraintes isotropes provenant de l'application d'une pression hydrostatique (P) apporte une contribution supplémentaire aux tenseur de la constante élastique [48]:

$$C_{ijkl} = c_{ijkl} + P(2\delta_{ij}\delta_{kl} - \delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl})/2$$
ou $c_{ijkl} = \frac{1}{V(r')} \left(\frac{\partial^2 E((r'))}{\partial \epsilon_{ij}\partial \epsilon_{kl}}\right)_r$
(2.42)

La contribution de la pression hydrostatique apparait aussi dans le tenseur de contrainte :

$$\sigma_{ij}^{total} = \sigma_{ij}^{intrinseque} + \sigma_{ij}^{external}$$
(2.43)

ou $\sigma_{ij}^{external} = -P\delta_{ij}$ (δ_{ij} est le symbole de Kronecker)

6. Energies du système contraint

6.1 Energie interne d'origine élastique

La variation de l'énergie interne U due à la déformation de la structure cristalline par unité de volume (voir s'il s'agit du volume de la cellule unité dans le cas d'un solide cristallin) est :

$$dU = \delta W + \delta Q \tag{2.44}$$

Ou δW est le travail par unité de volume des forces extérieures au cours d'une variation des déformations $d \in_{ik}$:

Le travail δW des forces extérieures pendant la déformation est emmagasiné dans le corps (solide cristallin) sous forme d'énergie potentiel élastique par unité de volume :

$$\delta W = \sigma_{ik} d\epsilon_{ik} \tag{2.45}$$

Par ailleurs la quantité de chaleur δQ fournie dans une transformation réversible, selon le premier principe de la thermodynamique est :

$$\delta Q = T dS \tag{2.46}$$

Ou T est la température et S l'entropie par unité de volume du corps (solide cristallin) En remplaçant les expressions de δW et δQ dans celle de dU, celle-ci s'écrit :

$$dU = TdS + \sigma_{ik}d\epsilon_{ik} \tag{2.47}$$

D'où l'énergie interne d'un corps déformé est fonction de l'entropie et des déformations :

$$U = U(S, \epsilon_{ii}), \tag{2.48}$$

Il s'ensuit que : $\sigma_{ik} = \left(\frac{\partial U(S, \epsilon_{ik})}{\partial \epsilon_{ik}}\right)_{S}$

Le tenseur de la constante élastique est alors déterminé à partir de l'énergie interne :

$$C_{ijkl} = \left(\frac{\partial \sigma_{ij}}{\partial \epsilon_{kl}}\right)_{\epsilon_{kl}=0} = \left(\frac{\partial^2 U(S, \epsilon_{ik})}{\partial \epsilon_{ij} \partial \epsilon_{kl}}\right)_{s} = C_{klij} \quad \text{(Tenseur symétrique)}$$
(2.47)

L'énergie interne en fonction du tenseur de déformation s'écrit :

$$dU = TdS + \sigma_{ik}d\epsilon_{ik} = TdS + C_{ijkl} \in_{kl} d\epsilon_{ij}$$

$$= TdS + \frac{1}{2} (C_{ijkl} \in_{kl} d\epsilon_{ij} + C_{klij} \in_{ij} d\epsilon_{kl})$$

$$= TdS + \frac{1}{2} (C_{ijkl} d(\epsilon_{ij} \in_{kl}))$$
(2.48)

Après intégration, on obtient :

$$U(S,\epsilon_{ij}) = U(S,0) + \frac{1}{2}C_{ijkl}\epsilon_{ij}\epsilon_{kl} = U(S,0) + \frac{1}{2}C_{\alpha\beta}\epsilon_{\alpha}\epsilon_{\beta} \quad (\alpha(\beta):1,\dots,6)$$
(2.49)

Ou U(S, 0) est l'énergie interne du corps (solide cristallin) non déformé.

6.2 Dilatation (déformation) volumique et compressibilité

Soumis à une pression hydrostatique (P) ou à un gradient de température (T), le volume du réseau cristallin contraint subit une dilatation volumique $\delta = \Delta V$ (T) /V(T=0) ($\equiv \Delta V(P)/V(P=0)$). Le volume du réseau contraint en termes de volume non contraint V₀ est :

$$V = V_0 (1 + \mathcal{E}_{ii})$$
 avec i =1,2 et 3 (2.50)

Pour des variations infinitésimales du volume V, l'énergie interne du réseau cristallin d'origine élastique de volume V qui contribue dans l'énergie libre (2.46) s'écrit sous la forme de développement de Taylor :

$$U(V) = U(V_0) + \frac{1}{1!} \left(\frac{\partial U(V)}{\partial V} \right)_{V=V_0} dV + \frac{1}{2!} \left(\frac{\partial^2 U(V)}{\partial V^2} \right)_{V=V_0} dV^2 + \cdots$$
(2.51)

Au l'équilibre le deuxième terme s'annule. En remplaçant dans l'expression de $\Phi(V)$ dV par $V_0 (1 + \varepsilon_{ii})$, on obtient :

$$U(V) = U(V_0) + \frac{1}{2} \epsilon_{ii}^2 V_0^2 \left(\frac{\partial^2 U}{\partial V^2}\right)_{V=V_0} = \Phi(V_0) + \frac{1}{2} \epsilon_{ii}^2 V_0 B_0$$
(2.52)

 B_0 est le module de compressibilité volumique défini par la relation:

$$B_0 = -V_0 \left(\frac{\partial^2 U}{\partial V^2}\right)_{V=V_0}$$
(2.53)

Le module de compressibilité mesure la réponse de la structure cristalline à une extension ou une compression du réseau cristallin.

7. Equation d'état (EOS)

L'approche adoptée en physique et chimie quantiques de l'état solide pour décrire le comportement du matériau solide soumis à une pression externe de compression ou d'expansion à T = 0 K repose sur la relation pression (P) –volume (V), appelée équation d'état (EOS) [49] :

$$P(V) = 3B_0 \left(\frac{V}{V_0}\right)^{-\frac{2}{3}} \left(1 - \left(\frac{V}{V_0}\right)^{\frac{1}{3}}\right) e^{\left[\frac{3}{2}(B_0'-1)\left(1 - \left(\frac{V}{V_0}\right)^{\frac{1}{3}}\right)\right]}$$
(2.54)

Ou B_0 , V_0 et B'_0 sont le module de compressibilité volumique (2.53), le volume et la dérivée première du module de compressibilité ($B'_0 = -V_0 \left(\frac{\partial U}{\partial V}\right)_{V=V_0}$). Les trois quantités sont définies à T= 0K.

On notera que d'autres modèles d'équation d'état sont proposés dans les codes de calcul entre autres le code CRYSTAL.

8. Dépendance des propriétés thermodynamiques et du nombre d'onde des phonons optiques de la température et de la pression

L'énergie vibrationnelle d'un système de phonons assimilé à un système thermodynamique statistique dans l'approximation de l'oscillateur harmonique indépendant d'énergie ($\hbar\omega$) est donnée par :

$$E(V,T) = \sum_{\vec{q}j} \hbar \omega_{\vec{q}j}(V) \left(\frac{1}{2} + \frac{1}{e^{-\hbar \omega_{\vec{q}j}(V)}} \right)$$
(2.55)

La capacité calorifique à volume constant en fonction de la température est :

$$C_{\nu=} \left(\frac{\partial \mathrm{E}(\mathrm{V},\mathrm{T})}{\partial T}\right)_{\mathrm{V}} = \sum_{\vec{\mathbf{q}}j} K_B \left(\frac{\hbar\omega_{\vec{\mathbf{q}}j}(\mathrm{V})}{\mathrm{K}_{\mathrm{B}}\mathrm{T}}\right)^2 \frac{\mathrm{e}^{\frac{\hbar\omega_{\vec{\mathbf{q}}j}(\mathrm{V})}{\mathrm{K}_{\mathrm{B}}\mathrm{T}}}}{\left(\mathrm{e}^{\frac{\hbar\omega_{\vec{\mathbf{q}}j}(\mathrm{V})}{\mathrm{K}_{\mathrm{B}}\mathrm{T}}-1}\right)^2}$$
(2.56)

L'énergie libre (F) et l'entropie (S) du solide cristallin en absence de champs externes en fonction du volume V et de la température (T) sont :

$$F(V,T) = U - TS = U(V) + \frac{1}{2} \sum_{\vec{q}j} \hbar \omega_{\vec{q}j}(V) + KT \sum_{\vec{q}j} \ln(1 - e^{\frac{-\hbar \omega_{\vec{q}j}(V)}{K_B T}})$$
(2.57))
$$S(V,T) = \frac{1}{2T} \sum_{\vec{q}j} \hbar \omega_{\vec{q}j}(V) \coth\left(\frac{\hbar \omega_{\vec{q}j}(V)}{2K_B T}\right) - K_B \sum_{\vec{q}j} \hbar \omega_{\vec{q}j}(V) \ln\left[2\sinh\left(\frac{\hbar \omega_{\vec{q}j}(V)}{2K_B T}\right)\right]$$
(2.58)

ou U(V) est l'énergie interne ou énergie libre du réseau cristallin de volume V d'origine élastique établie précédemment (appelée aussi énergie potentiel). Les deux autres termes sont les contributions dues aux vibrations du réseau cristallin (phonons) dans l'approximation harmonique (2.58) à l'énergie libre. $\omega_{\vec{q}j}(V)$ est le nombre d'onde des modes normaux harmoniques du solide cristallin de volume V.

La dépendance du nombre d'onde (fréquence) $\omega_{\vec{q}j}$ des phonons optiques de la température et de la pression est définie par la fonction explicite de la température et du volume V:

$$\omega_{\vec{q}j} = \omega_{\vec{q}j} (T, V(T))$$
(2.59)

ou \vec{q} est un vecteur d'onde dans la zone de Brillouin et j désigne l'indice du mode normal.

La variation du nombre d'onde des phonons optiques due à la température et à pression constante se compose de deux contributions :

$$\left(\frac{\partial \omega_{\vec{q}j}}{\partial T}\right)_{P} = \left(\frac{\partial \omega_{\vec{q}j}}{\partial T}\right)_{V} + \left(\frac{\partial \omega_{\vec{q}j}}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P}$$
(2.60)

ou le premier terme du second membre est la contribution explicite de la température à volume constant, il est associé au terme explicit anharmonique de l'énergie potentiel de la structure cristalline. The second terme, lequel est due à la dépendance du nombre d'onde au volume, est une fonction implicite de la température. Il s'écrit aussi sous la forme :

$$\left(\frac{\partial \operatorname{Ln}\omega_{\vec{q}j}}{\partial T}\right)_{P} = \left(\frac{\partial \operatorname{Ln}\omega_{\vec{q}j}}{\partial T}\right)_{V} + \left(\frac{\partial \operatorname{Ln}\omega_{\vec{q}j}}{\partial \operatorname{Ln}V}\right)_{T} \left(\frac{\partial \operatorname{Ln}V}{\partial T}\right)_{P}$$
(2.61)

Le volume V peut être compressé aussi s'il est soumis à une pression hydrostatique P, il serait alors intéressant de réécrire la relation (2.61) afin que celle-ci contient en plus de l'effet de la variation de la température, celui de la variation de la pression. Celle-ci est donc réécrite sous la forme :

$$\left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial T}\right)_{P} = \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial T}\right)_{V} + \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial P}\right)_{T} \left(\frac{\partial P}{\partial \ln V}\right)_{T} \left(\frac{\partial \ln V}{\partial T}\right)_{P}$$
(2.62)

On remplaçant dans la relation précédente les coefficients de dilatation volumique ($\beta = \left(\frac{\partial \ln V}{\partial T}\right)_p = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_T$) et de compressibilité isothermique ($\kappa = -\left(\frac{\partial \ln V}{\partial P}\right)_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_T$) on obtient : $\left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial T}\right)_p = -\frac{\beta}{\kappa} \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial P}\right)_T + \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial T}\right)_V$ (2.63)

Les paramètres mode Grüneisen $\gamma_{\vec{q}j}$ sont définis par :

$$\gamma_{\vec{q}j} = \frac{1}{\kappa} \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial P} \right)_{T} = - \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial \ln V} \right)_{T}$$
(2.64)

La variation du nombre d'onde des phonons optiques due à la température est déterminée à partir de l'équation (2.26) réécrite sous la forme :

$$\frac{\partial \omega_{\vec{q}j}}{\omega_{ni}} = -\gamma_{\vec{q}j}\beta \ \partial T \tag{2.65}$$

a- Contraintes axiales

Dans l'hypothèse ou γ_{qj} est indépendant de la température, l'intégration de l'équation (2.65) entre 0 et T donne la variation relative implicite du nombre d'onde :

$$\left(\frac{\Delta \omega_{\vec{q}j}}{\omega_{\vec{q}j}}\right)_{im} = e^{-\gamma_{\vec{q}j}V(T)} - 1$$
(2.66)

Ou V(T) = $\int_0^T \beta dT$ est la dilatation thermique du volume.

Les relations établies montrent que le calcul de la variation du nombre d'onde des phonons nécessite le calcul préalable des paramètres du mode Grüneisen $\gamma_{\vec{q}j}$ et la dilatation thermique du volume V(T). Pour le calcul de la dilatation thermique du volume en absence de champ externe, nous aurons besoin de l'expression de l'énergie libre du système en fonction du volume et de la température.

b- Contraintes anisotropes :

Les paramètres mode Grüneisen $\gamma_{\vec{q}j}$ sont définis par la dérivée de la matrice dynamiques par rapport au volume [50] :

$$\gamma_{\vec{q}j}(V) = \frac{V}{2\left(\omega_{\vec{q}j}\right)^2} \sum_{\alpha,\beta,k,k'} e_{\vec{q}j}^{\alpha k^*} \frac{\partial D_{kk'}^{\alpha\beta}(V,\vec{q})}{\partial V} e_{\vec{q}j}^{\beta k'}$$
(2.67)

Ou $e_{\vec{q}j}^{\alpha k}$ composante du vecteur de polarisation du mode de phonon

9. Code de calcul CRYSTAL

Le code CRYSTAL [51-52] permet de réaliser des calculs SCF-HF-LCAO et SCF-DFT-LCAO sur des systèmes 0d, 1d, 2d et 3d isolés et soumis à une pression hydrostatique ou température variables. Les systèmes 1d, 2d et 3d sont représentés par des cellules unités ou des supercellules. Le code est muni aussi d'interfaces graphiques telles que Xcrysden (X- Window Crystalline Structure and Densities) et DLV.

CHAPITRE 3 : RESULTATS ET DISCUSSIONS

CHAPITRE 3 : RESULTATS ET DISCUSSIONS

1. Introduction

Les travaux expérimentaux et théoriques accessibles dans la littérature se sont focalisés en grande partie sur le comportement de SnO₂ soumis à la pression hydrostatique. Les contraintes intrinsèques internes axiales affectant séparément les paramètres du réseau cristallin et les contraintes intrinsèques internes isotropes sont alors simulées par la pression hydrostatique externe appliquée ($\sigma_{ij} = -P\delta_{ij}$).

Cette approche basée sur la simulation des contraintes internes dans le matériau par la pression hydrostatique appliquée à ce même matériau est valable lorsqu'on veut simuler des contraintes isotropes, uniaxiales de tension (pression positif) et uniaxiales de compression (pression négative). Elle permet seulement de cibler certains types de contraintes. Comme exemple, elle peut convenir dans le traitement des films minces déposés sur des substrats ou subsiste souvent dans le film des contraintes supposées biaxiales induites par le substrat [53]. Toutefois, ce traitement sélectif des contraintes ne répond que partiellement aux problèmes liés aux effets des contraintes dans les films minces. En général les contraintes internes générées dans les films minces durant leur processus de croissance sont anisotropes et non homogènes. Elles sont souvent à l'origine du désaccord entre paramètres des réseaux cristallins juxtaposés des hétérostructures dans les dispositifs électroniques flexibles ou dans les matériaux présentant des défauts intrinsèques.

Les paramètres du réseau cristallin tétragonal de films minces de SnO₂ rutile polycristallin déposés sur des substrats de verre par la technique CVD déterminés dans un travail précédent par la méthode DRX sont a = b = 4.7382 Å et c = 3.2058Å [54]. Les valeurs des deux paramètres a et c sont plus grandes que celles des paramètres standards (SnO₂ JCPDS Card no. 41-1445 : a = b = 4.734 Å et c = 3.186 Å) de SnO₂ monocristallin [55]. Les écarts respectifs entre les deux valeurs ($\Delta a = \Delta b = 0.0044$ Å et $\Delta c = 0.0198$ Å) peuvent être attribué à la présence de contraintes intrinsèques dans les films minces. D'autre part, la différence dans l'amplitude des écarts ($\Delta a \neq \Delta c$) indique que la relaxation de ces contraintes n'est pas uniaxial ($\sigma_{xx} = \sigma_{yy} \neq \sigma_{zz}$) entrainant des déformations d'amplitudes différentes ($\epsilon_{xx} = \epsilon_{yy} \neq \epsilon_{zz}$) le long des directions parallèles à \vec{a} (*i. e.* \vec{b}) et \vec{c} . Le volume de la cellule unité ayant subi ces déformations est V= V₀ (1 + ϵ). Ils en résultent qu'en plus des propriétés structurales, toutes les propriétés physiques volumiques telles que les propriétés vibrationnelles et thermodynamiques qui nous intéressent dans les présents travails subissent l'effet de la relaxation des contraintes intrinsèques.

Le présent chapitre est consacré à l'étude théorique de l'effet des contraintes intrinsèques sur les propriétés structurales, vibrationnelles et thermodynamiques de SnO_2 . Nous avons pris en considération dans notre étude à reproduire les paramètres du réseau cristallin a et c de nos films

minces de SnO₂ polycristallin à partir des deux paramètres a et c expérimentaux de SnO₂ rutile monocristallin standard. Les contraintes intrinsèques (σ_{ij}), à l'origine des modifications structurales sont supposées dans cette première partie de notre travail comme étant isotropes. Ils sont simulés par l'application de pression hydrostatique de tension.

2. Détails de calcul

2.1 Méthode, seuil de convergence de l'énergie totale et code de calcul

Les effets de la pression hydrostatique sur les propriétés structurales, la distribution de charge, les modes de vibration et les propriétés thermodynamiques sont déterminés par la méthode de la fonctionnelle densité (DFT) périodique avec le potentiel d'échange et de corrélation PBEO [43]. Les calculs sont réalisés avec le code CRYSTAL09 [51-52]. La structure géométrique d'équilibre de SnO₂ est obtenue en optimisant les deux paramètres a et c du réseau cristallin, la coordonnée interne u de la cellule unité (fig.3.1) de SnO₂ monocristallin standard [56]. Une fois la structure d'équilibre optimisée, les fréquences des modes de vibration fondamentaux sont calculées en appliquant une pression hydrostatique de tension (P > 0). L'optimisation géométrique est réalisée en fixant le seuil de convergence de l'énergie totale de l'optimisation géométrique (TOLDEE) et de convergence SCF de l'énergie totale (TOLDEE SCF) à 10^{-8} a.u.

Fig.3.1 Cellule unitaire de rutile SnO₂

2.2 Bases de fonctions orbitales atomiques

Il s'agit de choisir les bases de fonctions orbitales atomiques qui engendrent la description la plus exacte possible de la fonction d'onde électronique. On trouve dans la littérature et dans la bibliothèque des codes de calcul la plupart des bases dont on a besoin. Dans nos calculs, les bases des atomes Sn et O sont sélectionnées à partir de la littérature : Sn {3-21G} et O {m-6-311G(d)_Heyd_2005}

2.3 Autres Paramètres de calcul

Comme pour les bases, les paramètres de calcul ont été déterminés en effectuant des tests d'optimisation de l'énergie totale et des fréquences des modes acoustiques de la cellule unité Sn₂O₄. Après plusieurs tests, nous avons retenu les paramètres suivants :

- Coefficients de Monkhost (SHRINK) : 3 6
- Tolérance de calcul des intégrales d'interactions de Coulomb et d'échange mono et bi électroniques (TOLINTEG : 7 7 7 7 14)
- LEVSHIFT 3 1
- Pression Hydrostatique de tension [0 24] GPa

3. Résultats et discussions

3.1 Propriétés structurales et coefficients de contraintes

Dans le but de décrire le comportement des modes de vibration de SnO2 rutile et leur dépendance de la pression hydrostatique à laquelle est soumis SnO₂, nous avons en premier étudié l'effet de cette pression sur les paramètres structuraux de SnO₂. Pour cela, nous avons procédé en minimisant l'énergie cristalline totale au calcul des valeurs initiales de ces paramètres, ceux de la cellule unité non contrainte soumise à une pression nulle. L'optimisation est réalisée en considérant comme paramètres de départ ceux du réseau tétragonal et la coordonnée atomique interne de SnO_2 rutile monocristallin ((a = 4.734 Å, c= 3.186 Å et u = 0.31). Les valeurs optimales calculées sont a= 4.7696 Å, c= 3.2527 Å et u = 0.306, lesquelles sont légèrement surestimés en comparaison avec ceux du potentiel LDA [57]. Il est connu que les potentiels GGA surestiment les paramètres du réseau cristallin. La figure 3.2 montre la dépendance des paramètres structuraux de la pression hydrostatique appliquée. Comme on peut le voir sur cette figure, la pression induit un changement presque linéaire des paramètres structuraux. A l'exception de la coordonnée interne (u), on observe une dépendance monotone des paramètres du réseau a et c, le volume (V) de la cellule unité, le rapport de la cellule unité (c/a) et la dilatation volumique ($\Delta V/V$) avec la pression hydrostatique de tension appliquée. Lorsque celle-ci augmente, le rapport (c/a) augmente tandis que l'ensemble des autres

Fig. 3.2 : Paramètres du réseau cristallin (a, c) (Å), coordonnée atomique interne (u), le rapport de la cellule unité (c/a), volume de la cellule unité (V(Å³) et l'expansion du volume de la cellule unité ($\Delta V/V_0$) en fonction de la pression hydrostatique (GPa) de tension appliquée à la cellule unité de SnO₂ rutile

Fig.3.3 : Illustration des isothermes de compressibilité axiale de SnO₂ rutile

Coefficient de stress		Travail			Exp.				
		present/ (PBE0)	[57]	[58]	[58]	[59]	[29]	[60]	
Compressibilité axiale	$K_a = \left(\frac{\partial a}{\partial p}\right)_T$	-0.726	-0.92						
(10 ⁻² Å/GPa)	$K_C = \left(\frac{\partial c}{\partial p}\right)_T$	-0.248	-0.28						
Compressibilité isotherme (10 ⁻³ /GPa)	$\mathbf{k}_{\mathbf{a}} = (-\frac{\partial Ln a}{\partial p})_{\mathrm{T}}$	1.543		1.51	1.89	1.389	1.3	1.86	
	$\mathbf{k}_{c} = (-\frac{\partial Ln c}{\partial p})_{\mathrm{T}}$	0.767		0.74		0.673	1.9	0.99	
	$k_{v} = \left(\frac{\partial Ln v}{\partial p}\right)_{T}$ $k_{v} = 2 k_{a} + k_{c}$	3.854					4.5		
Longueur des obligations (10 ⁻² Å/GPa)	$\left(\frac{\partial Sn_{(1)}O_{(3)}}{\partial p}\right)_T$	-0.327	-0.44						
	$\left(\frac{\partial Sn_{(1)}O_{(5)}}{\partial p}\right)_T$	-0.211	-0.22						
	$\left(\frac{\partial Sn_{(1)}Sn_{(2)}}{\partial p}\right)_T$	-0.516							
Valeurs expérime (Nos valeurs sont	Valeurs expérimentales calculées entre $0 - 3$ kbar (1kbar = 0.1GPa)(Nos valeurs sont calculées entre 0-18 GPa)								

Tableau 3.1 : Coefficients de contraintes axiales de SnO₂ rutile soumis à la pression hydrostatique de tension

Paramètres structuraux diminuent. Concernant la coordonnée atomique interne (u), on constate qu'elle décroit rapidement lorsqu'on augmente la pression de 0 à 5GPa, puis elle décroit lentement au-delà de 5GPa. Dans l'ensemble, ce comportement des paramètres structuraux de SnO₂ rutile s'accorde avec celui observé dans les mesures expérimentales et les calculs théoriques rapportés par la littérature [59, 61]. D'autre part, on peut lire sur la figure3.1 les valeurs de pressions remarquables de 4 et 19 GPa qui reproduisent chacune d'elle à partir de la cellule unité optimisée de SnO₂ monocristallin les paramètres expérimentaux a= 4.7382 Å et c = 3.2058Å du réseau tetragonal des films minces de SnO₂ polycristallin déposés sur les substrats de verre par la technique CVD.[54]. Ces deux pressions peuvent ainsi simulée les amplitudes des contraintes intrinsèques bi-axiales dans le film mince qui affectent les paramètres a et c. Le tableau 3.x résume les coefficients de contraintes calculés pour SnO₂ rutile et comparés avec d'autres résultats expérimentaux et

théorique de la littérature (tableau 3.1). On notera que le coefficient Kc est plus grand que Ka dans tout l'intervalle de pression utilisée. La comparaison montre que les coefficients calculés sont en bon accord avec la littérature accessible (tableau 3.1).

3.2 Longueur de liaison, population de Mulliken et charge effective de Born de SnO₂ rutile soumis à la pression hydrostatique de tension

Tableau 3.2: Longueur de liaison, population de Mulliken et charge effective de Born de SnO₂ rutile soumis à la pression hydrostatique de tension

Longueur (Å) et population (e)	Pression hydrostatique (GPa)									
	0	2	4	5	10	14	18	19	20	24
Longueur Sn $_{(1)}$ –O $_{(3)}$	2.064	2.056	2.049	2.045	2.028	2.016	2.005	2.002	1.999	1.989
Longueur Sn $_{(1)}$ –O $_{(5)}$	2.087	2.083	2.078	2.076	2.065	2.057	2.049	2.047	2.046	2.039
Longueur $Sn_{(1)}$ – $Sn_{(2)}$	3.744	3.732	3.721	3.715	3.689	3.669	3.651	3.647	3.643	3.626
Sn (Pop.)	47.677	47.667	47.658	47.654	47.633	47.618	47.605	47.654	47.599	47.587
O (Pop.)	9.161	9.166	9.171	9.173	9.183	9.191	9.198	9.173	9.201	9.207
Sn (1) –O (3) (Pop.)	0.094	0.092	0.091	0.091	0.087	0.085	0.082	0.081	0.081	0.078
Sn (1) –O (5) (Pop.)	0.115	0.114	0.113	0.112	0.110	0.107	0.106	0.105	0.105	0.103
Sn (1) –Sn (2) (Pop.)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005

Le tableau 3.2 résume les résultats de calcul des longueurs de liaison, la population de Mulliken, la population de recouvrement de l'environnement immédiat de l'atome central Sn de la cellule unité de SnO2 rutile soumis à une variation de pression hydrostatique dans l'intervalle 0-24 GPa.

L'atome central Sn, les atomes d'oxygène équivalents qui l'entourent et l'atome Sn au sommet de la cellule unité sont identifiés respectivement par $Sn_{(1)}$, $O_{(3)}$, $O_{(5)}$ et $Sn_{(2)}$. La déformation géométrique de l'octaèdre ($Sn_{(1)}O_6$) est définie par le rapport des longueurs de liaison $Sn_{(1)}$ - $O_{(3)}$ et $Sn_{(1)}$ - $O_{(5)}$ ainsi que l'angle $O_{(3)}Sn_{(1)}O_{(5)}$.

Le tableau 3.2 montre qu'on augmentant la pression externe de 0 à 24 GPa, le transfert de charge de Sn vers O augmente de 1.161|e| à 1.207|e| et les deux types de longueur de liaison Sn-O sont compressée respectivement de 2.064 à1.989Å et de 2.087 to 2.039Å. Dans le même temps, la population de recouvrement de la liaison Sn-O de type I décroit de 0.094|e| à 0.078|e| tandis que celle du type II de 0.115|e| à 0.103|e|. Il en résulte que l'exercice de

pressions externes élevées sur SnO₂ rutile favorise le caractère ionique dans les liaisons Sn-O. On notera aussi que la population de recouvrement de la liaison Sn-Sn est constante (0.005|e|) dans l'intervalle de pression 0-24 GPa. Cela implique que la pression externe est sans effets sur les liaisons entre les ions Sn.

La charge effective de Born pour toutes les pressions appliquées est de même ordre que les charges formelles +4 et -2 respectives de Sn et O. Les valeurs calculées sont consistantes avec celle de la littérature [84, 85]. Quand on augmente la pression externe de 0 à 24 GPa, la charge de Born des atomes Sn et O décroit de 4.179 to 4.134 et de -2.092 to -2.059. Ainsi, l'évolution de la charge de Born en fonction de la pression externe renforce celle de l'analyse de la population de Mulliken.

3.3 Fonction diélectrique et réflectance

Les parties imaginaire $\varepsilon_2(\omega, P)$ et réelle $\varepsilon_1(\omega, P)$ de la fonction diélectrique $\varepsilon(\omega)$ et la réflectance R (ω , P) calculées le long de la direction \vec{a} de la cellule unité de la structure rutile SnO₂ soumis à différentes pressions de tension sont illustrées en figure 3. 6. On peut voir sur cette figure que ces fonctions exposant trois pics chacune dans l'intervalle de pression 0-24 GPa. Pour la pression ambiante (P = 0 GPa), les pics de la fonction $\varepsilon_2(\omega, P)$ émergent aux positions 289.6, 398.2 et 768.5 cm⁻¹.

L'apparition du premier pic à 289.6 cm⁻¹ provient de la transition électronique entre l'orbitale O2p localisées dans le haut de la bande de valence (VBM) et l'orbitale Sn 5s localisée dans le bas de la bande de conduction (CBM) tandis que les deux autres pics à 398.2 et 768.5 cm⁻¹ peuvent être attribué à la transition électronique de l'orbitale Sn 5p et O 2p de la bande de valence vers les orbitales respectives Sn 5s et Sn 5p de la bande de conduction (fig.3.6).

L'autre caractéristique remarquable de $\varepsilon_2(\omega, P)$ est son comportement en fonction de la pression. On constate que toutes les courbes $\varepsilon_2(\omega, P)$ se déplacent vers les fréquences élevées quand on augmente la pression de 0 et 24 GPa. Ce comportement peut être attribué à l'élargissement du gap Eg de SnO₂ rutile lorsque celui-ci est soumis à une pression hydrostatique croissante. Concernent $\varepsilon_1(\omega, P)$, son l'évolution en fonction de la pression de $\varepsilon_1(\omega, P)$ est similaire à celui de $\varepsilon_2(\omega, P)$. Elle exhibe un comportement diélectrique dans tout l'intervalle de pression 0-24 GPa.

D'autre part, la fig.3.4 montre que le spectre de reflectance de SnO₂ rutile excède les 80% pour toutes les pressions appliquées, y compris à l'ambiant (P = 0 GPa) indiquant une faible transparence optique de SnO₂. Ce pourcentage est en contradiction avec le caractère transparent de SnO₂ rutile (T% \approx 80%). Il est lié à la cellule unité de faible taille utilisée dans nos calculs. L'effet de la taille de la cellule unité sur la réflectance a été étudié ailleurs ou nous avons montré que des supercellules de structure stœchiométrique Sn₆₄O₁₂₈ sont plus appropriées à l'étude de la réflectance (fig.3.5) :

Fig.3.4 : Densité d'état propjetée sur les orbitales atomiques (PDOS) au voisinage du gap de SnO₂ rutile [62]

Fig.3.5 : Réflectance R(w) de SnO₂ rutile en fonction de la cellule unité [63]

Fig.3.6: Reflectance R (ω) dans la direction parallèle à axe \vec{a} , partie réelle $\varepsilon 1$ (ω) et partie imaginaire $\varepsilon 2$ (ω) de la fonction diélectrique complexe ε (ω) du rutile SnO2 sous pression

Fig.3.7: Modes vibratoires Raman et infrarouge du rutile SnO2 sous pression hydrostatique

3.4 Modes de vibration Raman et infrarouge sous pression hydrostatique

Les modes de vibration au centre Γ (k = 0) de la première zone de Brillouin de SnO₂ (symétrie d'espace D_{4h}^{14} sont établis par la théorie des groupes :

 $\Gamma_{\text{rutile}} = A_{1g} + A_{2g} + A_{2u} + B_{1g} + B_{2g} + 2B_u + E_g + 3E_u \quad (3.1)$

La répartition des 18 modes de vibration définis par la relation précédente en modes actifs et inactifs IR et Raman est la suivante :

- 2 modes actifs infrarouges : A_{2u} et E_u (dégénéré 3 fois : $E_u^{(1)}$; $E_u^{(2)}$; $E_u^{(3)}$)
- 4 modes actifs Raman : A_{1g} ; B_{1g} ; B_{2g} et E_g (dégénéré 2 fois : $E_g^{(1)}$; $E_g^{(2)}$)
- -2 modes inactifs Raman : A_{2g} et B_{1u}
- -3 mdes acoustiques : 1 mode oA_{2u} et 2 modes E_u

Fig.3.8 : Modèle de vibration harmonique de la cellule élémentaire de SnO₂ rutile (a), (b) modes de vibration Raman et (c) modes de vibration IR actifs

Les figure 3.8 illustre les déplacements des atomes Sn et O dans les différents modes de vibration. Dans les modes actifs Raman les atomes d'oxygène vibrent tandis que les atomes Sn sont au repos.

Le mode non dégénérée, A_{1g} , B_{1g} et B_{2g} vibrent dans le plan perpendiculaire à l'axe c, tandis que le mode doublement dégénérées E_g vibre dans la direction de l'axe c.

Le mode B_{1g} consiste en une rotation des atomes d'oxygène autour de l'axe c, avec les six atomes d'oxygène de l'octaèdre qui participent à la vibration. En mode infrarouge active A_{2g} , Sn et les atomes d'oxygène vibrent dans la direction de l'axe c, et dans le mode E_u , Sn et O vibrent dans le plan perpendiculaire à l'axe c. Les modes inactifs correspondent aux vibrations des atomes de Sn et O dans la direction de l'axe c (B_{1u}) ou dans le plan perpendiculaire à cette direction (A_{2g}) .

La figure 3.7 illustre l'évolution des modes infrarouges et Raman de SnO₂ soumis à une pression hydrostatique croissante de 0 à 20 GPa. On peut observer sur cette figure qu'à l'exception de la fréquence du mode Raman B1g qui décroit jusqu'à s'annuler et devenir par la suite négative à partir d'une pression égale à 12 GPa, toutes les autres fréquences augmentent avec l'augmentation de la pression hydrostatique. La fréquence négative de B1g peut signifier une instabilité ou une transition de la phase rutile SnO₂. La pression de transition d'environ de 12 GPa est compatible avec d'autres resultats de calcul GGA et expérimentaux qui proposent une valeur comprise entre 12 et 14.6 GPa [64-65].

Le comportement du mode B1g est conforme à l'hypothèse originale ou il est postulé que l'instabilité de la phase rutile à haute fréquence peut être reliée au ramollissement du mode Raman active B1g et du module de cisaillement lequel décrit le ramollissement du mode acoustique TA le long de la direction réticulaire [110] avec la symétrie B1g. Dans notre cas, nous nous ne sommes pas intéressés à l'étude l'effet de la pression hydrostatique sur les modes acoustiques. Par conséquent, ce postulat ne peut être vérifié tel qu'il est énoncé, cependant le ramollissement clair du mode B1g le confirme en partie, justifiant ainsi l'existence d'une transition de la phase rutile proposer dans notre analyse.

Le tableau 3.3 illustre les déplacements des atomes Sn et O dans les modes de vibration Raman actives

Pression (GPa)	Alg	B2g	B1g	Eg	
0					
2					
4					
5					
10					
14					
18					
19					
20					
24					

Tableau 3.3 : Evolution des vecteurs déplacements en fonction de la pression hydrostatique des modes Raman actives de SnO₂ rutile.

3.5 Anharmonicité et méthode des paramètres modes de Grüneisen

Les effets anharmoniques sont importants dans la compréhension de la stabilité thermodynamique et les propriétés de transport thermique des matériaux portés à hautes températures. Peercy et Morosin [29] ont rapporté dans leur travail que les modes Raman de SnO₂ changent de positions lorsque SnO₂ et porté des températures inférieures à 480K et soumis à des pressions hydrostatiques allant jusqu'à 4Kbar. Le changement des propriétés des phonons, entre autres la position des modes Raman et infrarouges s'explique par le changement du volume de la cellule unité du réseau cristallin provoqué par la température ou la pression hydrostatique émanent de l'environnement dans lequel se trouve le matériau. Le potentiel cristallin devient alors une fonction anharmonique de l'expansion du volume. Sato et Asari ont suggéré que l'anharmonicité dans le cas de SnO₂ est large [64].

Les modes paramètres de Grüneisen mesure l'anharmonicité des modes de vibration et sont reliés directement aux constantes de force de troisième ordre [65]. Ils sont calculés à partir de la relation (chap.2) :

$$\gamma_{\vec{q}j} = \frac{1}{\kappa} \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial P} \right)_{T} = - \left(\frac{\partial \ln \omega_{\vec{q}j}}{\partial \ln V} \right)_{T}$$
(3.2)

Fig.3.9: Dependence des nombres d'onde logarithmiques des modes actifs Raman et hydrostatique

La variation relative de la fréquence des phonons due à l'expansion isotrope du volume est calculée en utilisant la relation (chap.2) :

$$\frac{\Delta\omega}{\omega} = e^{\gamma_{\vec{q}j} \int_{P_0}^{P} \kappa(P)dP} - 1$$
 (3.3)

ou $\kappa(P)$ est la compressibilité isothermique.

Raman-	Travail présent.				Theor.	Exp.
modes	ω (cm ⁻¹)	Ϋ́qj	$\kappa_V(300K)$ (10 ⁻³ /GPa)	$\gamma_{\vec{q}j} * \kappa_V$ (10 ⁻³ /GPa)	Υ _{d̄j}	$\gamma_{\vec{q}j}$
A _{1g}	666.9	2.143	3.854	8,259	1.33 ^[66] 1.617 ^[60]	1.73 ^[67] 3.64 ^[29]
B _{1g}	138.4	-9.430		-36,343	-14.17 ^[66] -10.82 ^[60]	-8.56 ^[67] -10.44 ^[29]
B _{2g}	798.6	2.005		7,727	$\frac{1.49^{[66]}}{1.463^{[60]}}$	$\frac{1.56^{[29]}}{2.58^{[29]}}$
Eg	492.8	1.992		7,677	$\frac{1.29^{[66]}}{1.300^{[60]}}$	$\frac{1.52^{[67]}}{3.20^{[29]}}$

Table 3.4: Paramètres du mode Gruneisen du rutile SnO2

Dans notre cas, $\kappa(P)$ est constante dans l'intervalle [0 - 24] GPa et vaut 3.854.10⁻³/GPa (tableau 3.4). La relation (3.2) est alors réécrite sous la forme simplifiée :

$$\frac{\Delta\omega}{\omega} = e^{\gamma\kappa\Delta P} - 1$$
 (3.4)

Le tableau 3.4 résume les valeurs des modes paramètres de Gruneissen calculées pour les modes Raman actives avec d'autres résultats expérimentaux et théoriques de la littérature. On peut voir que notre valeur pour le mode B1g, comparés à celle de l'expérimentale, est meilleure que celle des autres calculs théoriques. Pour les autres modes, nos valeurs sont aussi comparables à celles des autres calculs théoriques de la littérature. Justifiant ainsi le choix raisonnable du potentiel PBE0 et des critères de calculs retenus pour réaliser nos calculs.

3.6 Séparation LO/TO

Dans les matériaux cristallins polaires, la séparation entre les modes des phonons optiques est déterminée par deux paramètres, la charge effective de Born des ions du réseau cristallin

et l'interaction de Coulomb représentée par le champ électrique macroscopique. Les deux paramètres dépendent de la constante diélectrique à hautes fréquences. L'interaction des ions Sn^{4+} et O²⁻ avec le champ électrique macroscopique provoque au point $\Gamma(\vec{k} \to 0)$, centre de la première zone de Brillouin provoque la séparation des modes actives infrarouges transversaux (TO) et longitudinaux (LO). Dans le cas des matériaux semi-conducteurs partiellement covalents tel que SnO₂, on montre que dans l'approximation harmonique et adiabatique de la dynamique du réseau, les fréquences des modes LO et TO à la limite des grandes longueurs d'ondes sont reliées à la charge effective de Born par la relation [68] :

Fig.3.10 : Dépendance des nombres d'onde logarithmiques des modes actifs Raman et de la pression hydrostatique

$$\omega_{LO}^2 = \omega_{TO}^2 + \frac{4\pi}{\varepsilon_{\infty}V_0} \sum_k \frac{\left(Z_k^* e\right)^2}{M_k}$$
(3.5)

ou M_k est la masse ionique de l'atome k de la cellule unite, ε_{∞} la function diélectrique macroscopique et V₀ le volume de la cellule unité primitive.

Les forces d'interaction interatomique à courte distance génèrent un environnement anisotropique dans lequel les modes optiques infrarouges A_{2u} (TO, LO) et Eu (TO,LO) présentent des fréquences différentes au point Γ . La figure 3.10 illustre l'évolution de l'écart

entre les fréquences LO et TO des modes infrarouges de SnO₂ rutile soumis à une pression hydrostatique comprise entre 0 et 24 GPa. Comme on peut le voir sur la figure 3.10, tous les modes de vibration infrarouges TO et LO au point Γ sont séparés les uns des autres et diffèrent par la valeur de leur fréquence. De même, on constate que l'écart LO-TO en fonction de la pression hydrostatique n'évolue pas de la même façon pour tous les modes infrarouges avec deux intervalles de pression remarquables. Le premier se situe entre 10 et 18 GPa ou l'écart LO-TO des modes A2u et Eu (3) passe respectivement par un maximum et un minimum à la même pression d'environ 14 GPa. Quant au second, il est situé entre 14 et 18 GPa ou on observe une évolution abrupte de l'écart LO-TO des modes Eu (1) et Eu (2). L'inversion de l'écart du second montre que dans cet intervalle le mode Eu (2) (LO) devient plus important que le mode Eu(2)(TO). On notera que l'évolution de l'ensemble de ces modes infrarouges est régulière jusqu'à la pression de 10GPa. A partir de cette valeur, on observe une anomalie de l'évolution qui peut être attribuée à l'apparition d'une phase instable ou à une transition de phase de SnO₂ mentionnée dans les discussions précédentes.

3.7 Propriétés thermodynamiques

Fig.3.11 : Entropie (S) et capacité calorifique (C) de SnO_2 en fonction de la température Les propriétés thermodynamiques telles que l'entropie et la capacité calorifique à volume constant, évaluées dans l'hypothèse de l'approximation harmonique, sont illustrées en figure 3.11. La comparaison montre que la variation en fonction de la température de ces deux

propriétés est en bon accord avec d'autres résultats expérimentaux et théoriques de la littérature [69]. Ceci peut justifier le présent calcul des modes vibration avec l'hypothèse des phonons harmoniques dans un intervalle de température relativement large on y apportant des corrections qui sont dues à l'expansion thermique du volume de la cellule unité.

CONCLUSION GENERALE

CONCLUSION GENERALE

Dans ce travail, nous avons étudié théoriquement l'effet des contraintes résiduelles sur les propriétés physiques des films minces de SnO₂ polycristallin déposés sur des substrats de verre par la technique CVD. Le calcul des propriétés est du type ab-initio basé sur la fonctionnelle densité (DFT- PBE0) périodique et réalisé avec le code de calcul CRYSTAL09.

Nos calculs sont réalisés dans l'hypothèse des contraintes biaxiales le long des directions \vec{a} et \vec{c} de la cellule unité de SnO₂ rutile. De telles contraintes sont simulées en appliquant une pression hydrostatique de tension (P>0) au volume V₀ de la cellule unité au repos

Nous avons calculé l'effet des contraintes intrinsèques sur les deux paramètres a et c du réseau cristallin tétragonale, la coordonnée interne (u), le rapport de la cellule unité (a/c) et le volume (V) et l'expansion du volume de la cellule unité de SnO₂ rutile soumis à la pression hydrostatique de tension. Les courbes tracées montrent que le comportement de l'ensemble des paramètres structuraux en fonction de la pression hydrostatique est similaire à celui des autres résultats expérimentaux et théoriques de la littérature. D'autre part, Nos résultats de calcul montrent que des contraintes résiduelles d'amplitude équivalentes à ...GPa et ...GPa produisent des déformations Δa et Δc égales à celles qu'on obtient entre paramètres a et c de SnO₂ monocristallin et polycristallin en films minces avec la méthode DRX

Nos calculs PBE0 ont montré une dépendance de la fréquence des modes de vibration Raman et infrarouge de SnO₂ rutile à la variation de pression hydrostatique externe comprise entre 0 et 24 GPa. Le comportement du mode Raman B1g en fonction de la pression hydrostatique appliquée révèle l'existence d'une pression de transition ou d'instabilité d'environ 14 GPa de la phase SnO₂ rutile conforme à d'autres résultats de la littérature. Nos résultats de calcul des paramètres modes Gruessein confirme l'existence de déplacement (shift) anharmonique des modes Raman actives de SnO₂ rutile signalé dans la littérature en particulier celui du mode Raman active B1g.

Le travail réalisé nous a permis d'élucider par la simulation et le calcul DFT le comportement des propriétés physique de SnO₂ rutile due aux contraintes biaxiales. Il est intéressant de l'approfondir plus en introduisant d'autres paramètres tels que la pression hydrostatique de compression et la température. Et par la suite l'élargir aux effets des contraintes résiduelles anisotropes d'origines structurales telles que les lacunes d'oxygène et les espèces métalliques dopants.

Bibliographie

[1] J. Robertson, J. Phys. C : Solid State Phys. 12 (1979) 4767

[2] Ph. Barbarat, S. F. Matar, Comput. Mater. Sci. 10 (1998) 36(8)

[3] PIZZAGALLI, DEMENET, AND RABIER, PHYSICAL REVIEW B 79, 045203 _2009

[4] A. M. B. van Mol, Y. Chae, A. H. McDaniel, and M. D. Allendorf, 502 (1-2), 72–78 (April 2006).

[5] L. Bruno, C. Pijolat and R. Lalauze, Sensors and Actuators B, 18-19 (1994) 195-199

[6] Stroscio, M. A., & amp; Dutta, M. Phonons in nanostructures. Cambridge University Press.

[7] Hsyi-En Cheng et al ; Procedia Engineering 36 (2012) 510 – 515

[8] L. Wang et al ; Surface & Coatings Technology 206 (2012) 5091–5095

[9] M. Kroneld et al; Sensors and Actuators B 118 (2006) 110–114.

[10] Kenji Murakami, Kiyofumi Nakajima, ; Thin Solid Films Volume 515, Issue 24, 15October 2007, Pages 8632-8636

[11] J.He ;Q.Z.Cai ; Journal of Alloys and Compounds509 (2011) L11-L13

[12] Y.S Choe ,J.HChung ,D.-SKim ,H.KBaik ; Thin Solid Films Volume 341, Issues 1–2, 12 March 1999, Pages 230-233

[13] C. Luan et al ; Journal of Crystal Growth 318 (2011) 599-601

[14] P. Kumar et al. ; Materials Letters 278 (2020) 128451

[15] M. Didi « étude des proprietes structurales et morphologiques de SnO2 » UNIV. BLIDA

1. Mémoire de Master 2015.

[16] I. Erdem et al ; journal of Alloys and comppounds 633 (2015) 272–279

[17] R. S. Katiyar et al Journal of Physics C: Solid State Phys. Volume 4(1971)

[18] CARL V. THOMPSON and ROLAND CAREL ; J. Mech. Phys. Solids, Vol. 44, No.5, PP. 657473

[19] S. Izumi, S. Yip, J. Appl. Phys. 104 (2008) 033513.

[20] Sean R. Shieh, Atsushi Kubo and Thomas S. Duffy, Vitali B. Prakapenka and Guoyin Shen, ; PHYSICAL REVIEW B 73, 014105 (2006)

[21] I. Erdem et al ; Journal of Alloys and Compounds 587 (2014) 638–645.

[22] Tingting Shao, Fuchun Zhang, Weihu Zhang ; Advanced Materials Research Vol. 900 (2014) pp 203-208.

[23] E. CHANG, E. K. GRAHAM ; JOURNAL OF GEOPHYSICAL RESEARCHVOL.80, NO. 17

[24] H. Nielsen and R. M. Martin, Phys. Rev. Lett., 50, 697–700 (1983).

[25] K. Bakht et al ; Superlattices and Microstructures 90 (2016) 236e241.

[26] L.-G. Cai et al ; Physica B 408 (2013) 73–78.

[27] C.-M. Liu et al ; Computational Materials Science 50 (2011) 1571–1577.

[28] S. D. Gupta et al ; J. Raman Spectrosc. (2013).

[29] PEEHCY AND B. MOROSIN ; Sandia Laboratoires, Albuquerque, New Mexico 87115 (Received 25 September 1972)

[30] J. Geurts, S. Rau et al. Thin Solid Films, 121 (1984) 217-225

[31] Stroscio, M. A., & amp; Dutta, M. (2001). Phonons in nanostructures. Cambridge University Press.

[32] Jenő Sólyom; Fundamentals of the Physics of Solids Volume I Structure and Dynamics; Springer Berlin Heidelberg New York

[33] D. A. Kleinman and W. G. Spitzer; Phys. Rev. 125, 16 – Published 1 January 1962

[34] Grosse, P ; Appl. Phys. A 52, 138–144 (1991).

[35] A. S. Barker, Jr. Phys. Rev. 132, 1474-1484 (1963).

[36] E. V. Loewenstein, D. R. Smith, and R. L. Morgan ;Appl. Opt. 12, 398-406 (1973).

[37] Y.F. Li et al ; Journal of Alloys and Compounds 692 (2017) 713e719

[38] T. S. Itoh et al. / Sens. Actuators B 187 (2013) 135-141

[39] Di Zhou ; An Introduction of Density Functional Theory anditsApplication Physics ;Drexel. Edu, 2007

[40] Jean-Louis Bretonnet ; Universite de Lorraine ; Metz, F-57078, France

- [41] John P. Perdew, Kieron Burke ; Phys. Rev. Lett. 77, 3865
- [42] M. Ernzerhof and G. Scuseria ; J. Chem. Phys., Vol. 110, No. 11, 15 March 1999
- [43] E. A. McCullough ,E. Aprà, and J. Nichols ; J. Phys. Chem. A 1997, 101, 13, 2502– 2508
- [44] Ditchfield R, Hehre WJ, Pople JA ;J Chem Phys 1971; 54: 724-8
- [45] SeiichiroTen-no ;Chemical Physics Letters Volume 398, Issues 1–3
- [46] SIGERU HUZINAGA ; J. Chem. Phys. 42, 1293 (1965)
- [47] B. Zhu et al ; Physica B 406 (2011) 3508-3513
- [48] G. Faccanoni et al.; C. R. Acad. Sci. Paris, Ser. I 348 (2010) 473-478
- [49] Gregory Abadias et al. J. Vac. Sci. Technol. A 36(2), Mar/Apr 2018 994) 261-270

[50] N.N.L Vocadlo, price ; physique of the Earth and planetary Interiors 82(1994) 261–270994) 261–270. (1994) 261–270

[51] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, C. M. Zicovich Wilson.Z. Kristallogr. 2005, 220, 571.

[52] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale,K. Doll, N. M. Harrison, B. Civalleri, I. J. Bush, Ph. D'Arco, M. Llunell.CRYSTAL09User's Manual. Universit a di Torino, Torino, 2009.

[53] Gregory Abadias et al. J. Vac. Sci. Technol. A 36(2), Mar/Apr 2018

[54] S. Haireche a, A. Boumeddiene a, A. Guittoumb, A. El Hdiy c, A. Boufelfel Materials Chemistry and Physics 139 (2013) 871-876

- [55] R. Wyckoff, Crystal Structures, vol. 1, 2nd ed., Interscience, New York, 1964
- [56] A. Miglio et al. Optical Materials 38 (2014) 161–166
- [57] R A Casali et al. J. Phys. : Condens. Matter 25 (2013) 135404 (11pp)
- [58] Liu C M, et al. 2011 Comput. Mater. Sci. 50 1571
- [59] Haines J and Leger J M 1997 Phys. Rev. B 55 11144
- [60] Sanjay D. Gupta et al. J. Raman Spectrosc. 2013, 44, 926–933
- [61] Thèse Doctorat A. Boumeddiene (2014)
- [62] Mémoire Master A. Ihalouine (2016)

- [63] S.D. Gupta, et al. J. Raman Spectrosc. 44 (2013) 926–933.
- [64] I. Erdem et al. Journal of Alloys and Compounds 633 (2015) 272-279
- [65] T. Sato and T. Asari. J. Phys. Soc. Japan, 64:1193, 1995.
- [66] Atsushi Togo and Isao Tanaka Scripta Materialia 108 (2015) 1-5
- [67] K. Parlinski, Y. Kawazoe, Eur. Phys. J. B 2000, 13, 679.
- [68] Hellwig H, Goncharov et al. Phys. Rev. B 67 (2003) 174110

[69] V. B. POLYAKOV Geochimica et Cosmochimica Acta, Vol. 69, No. 5, pp. 1287–1300, 2005