UNIVERSITE DE BLIDA 1

Faculté de Technologie

Département de Génie Mécanique

THESE DE DOCTORAT

En Génie Mécanique

Spécialité : Energétique

EFFET DU GAZ A HAUTE TEMPERATURE SUR L'ECOULEMENT DANS LES TUYERES SUPERSONIQUES

Mohamed BOUN-JAD

devant le jury composé de :

ROUDANE Mohamed,	Maitre de Conférences A,	U. de Blida 1,	Président
SALAH Boualam	Professeur,	ENSH Blida,	Examinateur
ZAARAOUI Abdelkader	Maitre de Conférences A,	U. Khemis Miliana,	Examinateur
NOURA Belkheir	Maitre de Conférences A,	U. Khemis Miliana,	Examinateur
Yahiaoui Toufik	Professeur,	U. de Blida 1,	Rapporteur

Blida, Septembre 2018

- A mes parents
- A mes enfants
- A ma femme
- A mes sœurs et frères,

Vous vous êtes dépensés pour moi sans compter. En reconnaissance de tous les sacrifices consentis par tous en chacun pour me permettre d'atteindre cette étape de ma vie.

Je dédie ce travail

RESUME

Le but de ce travail consiste à élaborer un nouveau programme de calcul numérique permettant de déterminer l'effet d'utilisation des gaz de propulsion de la chambre de combustion à haute température sur les paramètres thermodynamiques et géométriques supersoniques, sur la fonction de Prandtl Meyer et de faire une application dans un divergent d'une tuyère supersonique, ainsi que sur la forme et la conception de la tuyère de type détente centrée de géométrie bidimensionnelle et axisymétrique, donnant un écoulement uniforme et parallèle à la section de sortie en utilisant la méthode des caractéristiques.

Les gaz choisis pour les applications sont les molécules H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air. Tous les paramètres dépendent de la température génératrice, de nombre de Mach et le gaz utilisé. La chaleur spécifique à pression constante varie avec la température et le gaz choisi. Le gaz est toujours considéré comme parfait. Il est calorifiquement imparfait et thermiquement parfait inférieur au seuil de dissociation des molécules. La convergence des résultats de conception dépend de la convergence du rapport des sections calculé numériquement avec celui donné par la théorie. Dans ce cas, tous les paramètres convergent d'une façon automatique vers la solution désirée.

La deuxième étape consiste à faire des applications sur le choix d'un gaz permettant de donner une possibilité d'amélioration des performances des paramètres de conception des tuyères supersoniques par rapport à l'air. Trois principaux problèmes peuvent êtres résolus dans ce cas sur la base de fixer soit nombre de Mach de sortie ou masse de la tuyère ou coefficient de poussée par rapport à l'air.

Un calcul de l'écart entre les paramètres thermodynamiques et de conception de la tuyère des différents gaz avec l'air est fait pour but de comparaison.

Mots clés

Tuyère à détente centrée, Gaz parfait, Haute température, calorifiquement imparfait, Méthode des caractéristiques, Fonction de Prandtl Meyer, Chaleur spécifique à pression constante, Poussée, Masse.

ABSTRACT

The aim of this work is to develop a new numerical calculation program for determining the effect of the use of the propulsion gases of the combustion chamber at high temperature, on the thermodynamic and geometric parameters supersonic, the Prandtl Meyer function, and make an application in a supersonic nozzle divergent, and on the form and design of the Two-dimensional 2D and axisymetric Minimum Length Nozzle giving a uniform and parallel flow at the exit section using the Method Of Characteristics.

The selected gas for the applications are the molecules H_2 , O_2 , N_2 , CO, CO_2 , H_2O , NH_3 , CH_4 and air. All parameters depend on the stagnation temperature and Mach number of the used gas. The specific heat at constant pressure varies with the temperature and the selected gas. Gas is still considered perfect. It is calorically imperfect, and thermally perfect, less than the molecules dissociation threshold. The convergence of the design results depends on the convergence of the critical area ratio calculated numerically with that given by the theory. In this case all parameters converge in an automatic manner to the desired solution.

The second step consists in making applications on the choice of a gas allowing giving a possibility of improving the performance parameters of the supersonic nozzles with respect to the air. Three main problems can be solved in this case on the basis of fixing either the exit Mach number or mass of the nozzle or the thrust coefficient with respect to the air.

A calculation of the difference between the thermodynamic parameters and design parameters of the nozzle of the various gases with the air is carried out for comparison purposes.

KEYS WORD

Minimum Length Nozzle, Perfect Gas, High temperature, Calorically imperfect, Method Of Characteristics, Prandtl Meyer function, Specific heat at constant, Thrust, Mass.

ملخص

الهدف من هذا العمل هو تطوير برنامج الحساب العددي جديد لتحديد تأثير استخدام غازات الدفع غرفة الاحتراق في فرضية درجات الحرارة المرتفعة على المعلمات الحرارية والهندسية الأسرع من الصوت، على دالة برنتل ماير بوضع تطبيق داخل ألأبواق ما فوق الصوتية، وكدا على شكل وتصميم الأبواق ما فوق الصوتية من النوع ذات الاسترخاء المركزي ثنائية الأبعاد ; ذات محور دائري التي تعطي تدفق مواز و منتظم عند مقطع الخروج للبوق وهدا باستخدام طريقة الخصائص.

H2، O2، N2، CO، CO2، H2O، NH3، تعتمد على جزيئات H2، O2، N2، CO، CO2، H2O، NH3، الغازات التي تم اختيارها لتطبيقات هي جزيئات CH4 والهواء. جميع المعلمات تعتمد على درجة الحرارة الركود، عدد ماخ و الغاز المستخدم. الحرارة النوعية عند ضغط ثابت تختلف مع درجة الحرارة والغاز المحدد. لا يزال يعتبر الغاز كاملا. و غير كامل بالوحدات الحرارية، وحراريا يعتبر كاملا، أي أقل من عتبة الجزيئات التفكك. تقارب نتائج تصميم يعتمد على تقارب نسبة المقاطع الحرجة محسوبة عدديا مع تلك الحي من قبل الغازي أعطيت من قبل النظرية. في هذه الحالة جميع المعلمات في طريقة تلقائية تتقارب إلى الحل المنشود.

والخطوة الثانية هي جعل التطبيقات على اختيار الغاز المناسب لإعطاء فرصة لتحسين أداء المعلمات تصميم البوق مافوق الصوتية, يتم حل ثلاث مشاكل رئيسية في هذه الحالة على أساس تثبيت عدد ماخ أو الوزن البوق أو معامل الدفع مقارنة مع الهواء.

يتم احتساب الفرق بين المعلمات الحرارية، وتصميم فوهة من الغازات المختلفة مع الهواء لأغراض المقارنة.

كلمات المفاتيح

الأبواق ذات الأطوال القصيرة، غاز مثالي، در اجة الحرارة المرتفعة، الوحدات الحرارية غير مثالية، طريقة الخصائص، دالة برنتل ماير، الحرارة النوعية عند ضغط ثابت، معامل قوة الدفع، كتلة البوق.

REMERCIEMENTS

Je tiens tout d'abord à remercier infiniment mon dieu tout puissant pour l'aide qu'il m'a apporté pour la réalisation de ce modeste travail. Je remercie mes très chers parent pour leurs aide et leur soutient durant cette période de réalisation de ce travail.

Le seul moyen de se délivrer d'une tentation, c'est d'y céder paraît-il ! Alors j'y cède en disant en grand Merci aux personnes qui ont cru en moi et qui m'ont permis d'arriver au bout de cette thèse.

Je tiens à donner notre gratitude remerciement à notre directeur de thèse, monsieur **Toufik YAHIAOUI**, Professeur à l'Institut d'Aéronautique et des Etudes Spatiales de l'Université de Blida 1 pour avoir assuré la direction de mon travail, et pour m'avoir apporté la rigueur scientifique nécessaire à son bon déroulement. Je le remercie encore pour sa disponibilité et son total dévouement de tous les jours malgré ces empêchements.

Monsieur **Mohamed ROUDANE**, Maitre de Conférences A au Département de Génie Mécanique de la Faculté de Technologie de l'Université de Blida 1, m'a fait l'honneur d'accepter la présidence de jury. Qu'il trouve ici l'expression de ma profonde reconnaissance.

A monsieur **Boualam SALAH**, Professeur à l'Ecole Nationale Supérieure d'Hydraulique de Blida, j'exprime ma profonde gratitude pour son apports scientifiques et d'avoir accepté d'honorer par sa présence notre jury d'examen.

La présence de Monsieur **Belkheir NOURA**, Maitre de Conférences A au Département de Génie Mécanique de la Faculté des Sciences et de la Technologie de l'Université Djillali Bounaama de Khemis Miliana, dans mon jury, constitue un gage de confiance.

Mes remerciements s'adressent aussi à monsieur **Abdelkader ZAARAOUI**, Maitre de Conférences A au Département de Génie Mécanique de la Faculté des Sciences et de la Technologie de l'Université Djillali Bounaama de Khemis Miliana pour sa confiance et d'avoir accepté être examinateur de mon travail.

Mes remerciements vont enfin à toute personne ayant contribué de près ou de loin pour la réalisation de ce travail.

TABLE DES MATIERES

DED	DICACES		1
RES	SUME		2
REN	IERCIEM	ENTS	5
TAB	LE DES N	MATIERES	6
LIST	TE DES IL	LUSTRATIONS, GRAPHIQUES ET TABLEAUX	10
INTE	RODUCT	ION	. 23
1.	ETUDE B	BIBLIOGRAPHIQUE ET PROBLEMATIQUES	27
			~-
1.1.	Introdu		. 27
1.2.	Etude I	bibliographique	27
1.3.	Positio	n du problème par rapport à la littérature	32
1.4.	Objecti	ifs de l'étude	. 33
1.5.	Motiva	tion	. 33
-			
2.	PROPRIE	TES THERMODYNAMIQUES DES GAZ	. 35
21	Introdu	uction	35
2.1.	Chaleu	r snécifique à pression constante	35
2.3	Autre i	nterpolation de la chaleur spécifique à pression constante	. 00
2.0.	Pronrié	atés thermodynamiques de différentes substances	38
2.4.	Δυτερία	nternolation de $C_{2}(T)$	40
2.5.	Chaleu	in exploration de $O_P(T)$. 4 0
2.0.	Interno	lations polynomiales	i 43
2.7.	271	Internolation polynomiale de Vandermonde	. - 5 <i>ΔΔ</i>
	2.7.1.	Interpolation polynomiale de Lagrange	45
	2.7.2.	Interpolation polynomiale par morceaux	45
	2.7.J. 27 A	Interpolation d'Hermite	46
	2.7.4.	Interpolation par splines cubiques	. 46
	2.7.0.		40
3.	PARAME	TRES D'UN ECOULEMENT SUPERSONIQUE	
	A HAUTE		. 47
~ .			
3.1	Formul	ation Mathématique du problème	. 47
	3.1.1.	Equation de la vitesse du son	48
	3.1.2.	Relation entre la vitesse et la température	48
	3.1.3.	Relation entre le nombre de Mach et la température	. 48
	3.1.4.	Relation entre la masse volumique et la température	49
	3.1.5.	Relation entre la pression et la température	49
	3.1.6.	Relation entre la section et la température	. 49
	3.1.7.	Débit massique critique	. 50
	3.1.8.	Rapport des vitesses du son	. 50
	3.1.9.	Coefficient de poussée	. 51

3.2.	Procéo	dure du calcul	51
	3.2.1.	Calcul numérique des rapports thermodynamiques	51
	3.2.2.	Paramètres critiques au col correspondant à T ₀	52
	3.2.3.	Paramètres Supersoniques correspondant à T ₀	53
3.3.	Applica	ations	54
3.4.	Foncti	on de Prandtl Meyer	54
	3.4.1.	Procédure de calcul par la méthode de Simpson	55
3.5.	Compa	araison avec l'air	57
3.6.	Choix	de gaz donnant même rapport A _S /A₁ de la tuyère 1D que l'air …	58
3.7.	Choix	de gaz donnant même C_F de la tuyère que l'air	59
3.8.	Choix	de gaz donnant même nombre de Mach de sortie	
	de la t	uyère 1D que l'air	60
4.	TUYEI	RE A DETENTE CENTREE A HAUTE TEMERATURE	61
4.1	Formu	lation mathématique	62
	4.1.1	Equation et procédure pour un point interne	64
	4.1.2	Point interne particulier	66
	4.1.3.	Equations pour un point sur l'axe de symétrie	67
	4.1.4	Autres paramètres	67
4.2	Procéo	dure de calcul dans la tuyère	67
	4.2.1	Région de Kernel	67
	4.2.2	Région de Transition et contour de la tuyère axisymétrique	70
	4.2.3.	Contour de la paroi de la tuyère 2D	74
4.3.	Courb	es isoMach et isodirections	75
4.4.	Masse	de la structure de la tuyère	76
4.5.	Force	de pression exercée sur la paroi du divergent	76
4.6.	Choix	de gaz donnant meilleurs performances par rapport à l'air	77
4.7.	Erreur	du modèle du gaz parfait	81
4.8.	Compa	araison avec l'air	81
4.9.	Effet d	u gaz sur la zone uniforme de la tuyère	81
5.	RESU	LTATS ET COMMENTAIRES	83
51	Résult	ats de l'effet du gaz sur les paramètres supersoniques	84
0.1.	511	Paramètres critiques	84
	512	Paramètres supersoniques	90
	513	Choix de gaz donnant même forme de la tuvère que l'air	98
	514	Choix de gaz donnant même M_s de sortie de la tuvère	
	0.1.1.	que l'air	102
	5.1.5.	Résultats sur le choix de gaz donnant même C _F que l'air	103
5.2.	Résult	ats de l'effet du gaz sur la fonction de Prandtl Mever	103
	5.2.1.	Variation de v en fonction de nombre de Mach	104
	5.2.2.	Variation de v en fonction de T_0	108
	5.2.3.	Variation de l'imperfection en fonction de nombre de Mach	109

	5.2.4.	Inverse de la fonction de Prandtl Meyer 112
	5.2.5.	Ecart en v entre les gaz et l'air 114
5.3.	Résulta	ts sur l'effet du gaz sur la conception de la tuyère à détente
	centrée	bidimensionnelle 116
	5.3.1.	Maillages en caractéristiques pour la tuyère 2D 116
	5.3.2.	Effet du gaz sur la forme de la tuyère 2D 117
	5.3.3.	Effet de T_0 sur la forme de tuyère <i>MLN</i> 2D 119
	5.3.4.	Effet des gaz sur la variation des paramètres
		de conception en fonction de M_s pour T_0 fixée pour
		la tuyère <i>MLN</i> 2D 123
	5.3.5.	Effet des gaz sur la variation des paramètres de conception
		en fonction de T_0 pour M_s fixé pour la tuyère <i>MLN</i> 2D 131
	5.3.6.	Effet du gaz sur la variation des paramètres
		Thermodynamiques à travers la paroi de la tuyère <i>MLN</i> 2D 137
	5.3.7.	Effet du gaz sur la variation de nombre de Mach à travers
		l'axe de la tuyère <i>MLN</i> 2D 140
	5.3.8.	Choix du gaz sur la forme des tuyères MLN 2D ayant
		même d'un seule paramètre de conception
	5.3.9.	Choix du gaz sur la forme des tuyères MLN 2D ayant
		même masse <i>C_{Masse}</i> de la tuyère que le cas de l'air
	5.3.10.	Choix du gaz sur la forme des tuyères MLN 2D ayant même
		coefficient de poussé C_F que le cas de l'air
	5.3.11.	Effet du gaz sur l'écoulement à travers la tuyère MLN 2D ayant
		même forme que le cas de l'air 153
	5.3.12.	Courbes isoMach et isodirection pou la tuyère <i>MLN</i> 2D 153
	5.3.13.	Troncature de la tuyère 154
	5.3.14.	Effet du gaz sur la zone uniforme de la tuyère 156
5.4.	Résulta	its sur l'effet du gaz sur la conception de la tuyère MLN
	Axisym	étrique
	5.4.1.	Maillages en caractéristiques de la tuyère axisymétrique 158
	5.4.2.	Effet du gaz sur la forme de la tuyère axisymétrique 159
	5.4.3.	Effet de T_0 sur la forme de tuyère axisymétrique
	5.4.4.	Effet des gaz sur la variation des paramètres de conception
		en fonction de M_s pour T_0 fixée pour la tuyère axisymétrique165
	5.4.5.	Effet des gaz sur la variation des paramètres de conception
		en fonction de T_0 pour M_s fixé pour la tuyère axisymétrique 175
	5.4.6.	Effet du gaz sur la variation des paramètres thermodynamiques
		à travers la paroi de la tuyère <i>MLN</i> axisymétrique
	5.4.7.	Effet du gaz sur la variation de nombre de Mach à travers l'axe
		de la tuyère <i>MLN</i> axisymétrique 185
	5.4.8.	Effet du gaz sur la forme des tuyères MLN axisymétrique
		ayant même d'un seule paramètre de conception 186
	F 4 0	
	5.4.9.	Choix du gaz sur la forme des tuyères <i>MLN</i> axisymétrique
		Ayant même masse C_{Masse} de la tuyère que le cas de l'air 189

	5.4.10.	Choix du gaz sur la forme des tuyères MLN axisymétrique	
		Ayant même coefficient de poussé C _F que le cas de l'air	194
	5.4.11.	Effet du gaz sur l'écoulement à travers la tuyère MLN	
		Axisymétrique dans une même forme de tuyère avec l'air .	199
	5.4.12.	Courbes isoMach et isodirection de la tuyère MLN	
		Axisymétrique	199
	5.4.13.	Troncature de la tuyère	200
	5.3.14.	Effet de gaz sur la zone uniforme de la tuyère	203
COI	NCLUSIC	N	205
APF	PENDICE	S	210
A.	Liste d	les symboles	210
В.	Organ	igramme de programme sur l'effet de gaz sur les rapports	
	thermo	odynamiques et la fonction de Prandtl Meyer	212
С	Organ	igramme de programme sur l'effet de gaz sur	
	le dime	ensionnement de la tuyère à détente centré	214
D	Métho	de des caractéristiques	219
Е	Effet d	e gaz à haute température sur la conception de la tuyère	
	à corp	s central types à bouchon et à détente déflexion	226
			000
KE	ERENCE	29	239

LISTE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX

Figure 3.1 :	Présentation de la condensation des nœuds	51
Figure 3.2 :	Variation de la fonction $F_v(T)$ dans l'intervalle $[T_S, T_*]$	56
Figure 3.3 :	Condensation des nœuds vers les deux extrémités	
	de l'intervalle [<i>T</i> _S , <i>T</i> *]	. 57
Figure 4.1 :	Différentes géométries des tuyères à détente centrée	62
Figure 4.2 :	Présentation du champ de l'écoulement dans la tuyère MLN	62
Figure 4.3 :	Illustration les lignes de Mach Montante et descendante	63
Figure 4.4 :	Différents points de calcul	67
Figure 4.5 :	Processus du calcul des caractéristiques dans	
-	la région de Kernel	68
Figure 4.6 :	Détection de la dernière C descendante de la zone	
	de Kernel	69
Figure 4.7 :	Processus de calcul des caractéristiques dans la région	
-	de transition	. 72
Figure 4.8 :	Différents cas possible de l'intersection de la paroi avec	
-	les caractéristiques	73
Figure 4.9 :	Passage d'une caractéristique à l'autre dans la région	
-	de transition	. 73
Figure 4.10 :	Processus de détermination des points de la paroi	75
Figure 4.11 :	Présentation les paramètres de calcul du point <i>P_i</i> de la paroi	. 75
Figure 4.12 :	Présentation d'un tronçon de la tuyère	76
Figure 5.1 :	Variation de γ en fonction de T_0 pour différents gaz	
C	de propulsion	85
Figure 5.2 :	Variation de T_*/T_0 en fonction de T_0 pour différents gaz	
C	de propulsion	85
Figure 5.3 :	Variation de ρ_*/ρ_0 en fonction de T_0 pour différents gaz	
C	de propulsion	86
Figure 5.4 :	Variation de débit critique en fonction de T_0 pour différents gaz	87
Figure 5.5 :	Variation de P_*/P_0 en fonction de T_0 pour différents gaz	
C	de propulsion	88
Figure 5.6 :	Variation de a_*/a_0 en fonction de T_0 pour différents gaz	
C	de propulsion	89
Figure 5.7 :	Variation de T/T_0 en fonction de <i>M</i> pour différents gaz	
C	de propulsion	91
Figure 5.8 :	Variation de ρ/ρ_0 en fonction de <i>M</i> pour différents gaz	
C	de propulsion	. 92
Figure 5.9 :	Variation de P/P_0 en fonction de <i>M</i> pour différents gaz	
U	de propulsion	94
Figure 5.10 :	Variation de a/a_0 en fonction de <i>M</i> pour différents gaz	
J	de propulsion	. 94
Figure 5.11 :	Variation de A/A∗ en fonction de M pour différents gaz	
-	de propulsion	98

Figure 5.12 : V	ariation de C_F en fonction de M pour différents gaz	
de	e propulsion	. 98
Figure 5.13 : E	ffet du gaz sur la variation de nombre de Mach	
à	travers la tuyère	. 99
Figure 5.14 : E	ffet du gaz sur la correction de $M_{ m S}$ donnant meme	
fc	orme de la tuyère que le cas de l'air	. 99
Figure 5.15 : E	ffet de gaz sur l'écart sur C_{F} par rapport à l'air	
e	n fonction de <i>M</i>	101
Figure 5.16 : E	ffet du gaz sur la forme de la tuyère donnants meme	
di	istribution de nombre de Mach que l'air à travers la tuyère	102
Figure 5.17 : E	ffet du gaz sur la variation de $v(M)$	104
Figure 5.18 : E	ffet du gaz sur la variation de v avec T_0	108
Figure 5.19 : E	ffet de l'imperfection calorique sur v en fonction	
d	e <i>M</i> pour le H ₂	109
Figure 5.20 : E	ffet de l'imperfection calorique sur v en fonction	
de	e M pour le O_2	109
Figure 5 21 · F	ffet de l'imperfection calorique sur v en fonction	
de	e M pour le N ₂	110
Figure 5 22 · F	ffet de l'imperfection calorique sur v en fonction	
de	e M pour le CO	110
Figure 5 23 · E	ffet de l'imperfection calorique sur v en fonction	
di	e M pour le CO ₂	111
Figure 5 24 · E	ffet de l'imperfection calorique sur v en fonction	
di	e M pour le H ₂ O	111
Figure 5 25 · E	iffet de l'imperfection calorique sur v en fonction	
di	e <i>M</i> pour le NH ₂	112
Figure 5 26 · E	ffet de l'imperfection calorique sur v en fonction	
di	e M pour le CH4	112
Figure 5 27 · E	ffet de l'imperfection calorique sur v en fonction	
di	e <i>M</i> pour le l'air	112
Figure 5 28 · V	α riation ϵ (%) de différents daz par rapport à l'air	112
ngure 0.20 . v	n fonction de M	115
Figure 5 20 · M	laillages en caractéristiques nour la géométrie 2D	117
Figure 5.29 : M	iffet du daz sur la forme des tuvères <i>MI</i> N 2D	117
ngure 5.50 . L	onpant M_{2} = 2.00	117
Figure 5 31 · E	iffet du gaz sur la forme des tuvères $M N 2D$	117
ngure 5.51. L	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	110
Eigure 5 32 · E	iffet du daz sur la forme des tuvères $M N 2D$	110
ngure 5.52 . L	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	110
Eigure 5 33 · E	iffet du daz sur la forme des tuvères $M N 2D$	110
י יצטי ב יוארי אי	onpant $M_2 = 5.00$	110
	iffet de Te sur la forme de la tuvère $M(N)$ Dissur la caz H	110
$\frac{1}{2} \frac{1}{2} \frac{1}$	iffet de T_0 sur la forme de la tuyère <i>MLN</i> 2D pour le gaz Π_2	119 100
Figure 5.35 : E	iner de T_0 sur la forme de la tuyère MLN 2D pour le gaz O_2	120
Figure 5.36 : E	Thet de T_0 sur la forme de la tuyere <i>MLN</i> 2D pour le gaz N ₂	120

Figure 5.37	: Effet de T_0 sur la forme de la tuyère <i>MLN</i> 2D pour le gaz CO	120
Figure 5.38	: Effet de T_0 sur la forme de la tuyère <i>MLN</i> 2D pour le gaz CO ₂	121
Figure 5.39	: Effet de T_0 sur la forme de la tuyère <i>MLN</i> 2D pour le gaz H ₂ O	121
Figure 5.40	: Effet de T_0 sur la forme de la tuyère <i>MLN</i> 2D pour le gaz NH ₃	122
Figure 5.41	: Effet de T_0 sur la forme de la tuyère <i>MLN</i> 2D pour le gaz CH ₄	122
Figure 5.42	: Effet de T_0 sur la forme de la tuyère <i>MLN</i> 2D pour l'air	122
Figure 5.43	: Effet du gaz sur θ_{1}^{*} du col des tuyères <i>MLN</i> 2D	124
Figure 5.44	: Effet du gaz sur M^{*} du col des tuyères <i>MLN</i> 2D	124
Figure 5.45	: Effet du gaz sur la longueur de détente <i>L_d/y</i> ∗	
	des tuyères <i>MLN</i> 2D	125
Figure 5.46	: Effet du gaz sur la longueur <i>L/y</i> * de la tuyère <i>MLN</i> 2D	125
Figure 5.47	: Effet du gaz sur le coefficient C_{Masse} pour la tuyère MLN 2D	126
Figure 5.48	: Effet du gaz sur le coefficient C_F pour la tuyère <i>MLN</i> 2D	130
Figure 5.49	: Effet du gaz sur y_{S}/y_{*} pour la tuyère <i>MLN</i> 2D	130
Figure 5.50	: Effet du gaz sur θ des tuyères <i>MLN</i> 2D en fonction de T_0	131
Figure 5.51	: Effet du gaz sur M des tuyères MLN 2D en fonction de T_0	131
Figure 5.52	: Effet du gaz sur la longueur <i>L_d/y</i> ∗ des tuyères <i>MLN</i> 2D	
	en fonction de T_0	132
Figure 5.53	: Effet du gaz sur la longueur <i>L∖y</i> ₊ des tuyères <i>MLN</i> 2D	
	en fonction de T_0	132
Figure 5.54	: Effet du gaz sur le coefficient <i>C_{Masse}</i> des tuyères <i>MLN</i> 2D	
	en fonction de T_0	132
Figure 5.55	: Effet du gaz sur le coefficient C_F des tuyères <i>MLN</i> 2D	
	en fonction de T_0	133
Figure 5.56	: Effet du gaz sur y _S /y∗ des tuyères <i>MLN</i> 2D	
	en fonction de T_0	133
Figure 5.57	: Effet du gaz sur la variation de <i>M</i> à travers la paroi	
	de <i>MLN</i> 2D	138
Figure 5.58	: Effet du gaz sur la variation de I/I_0 à travers la paroi	
	de <i>MLN</i> 2D	138
Figure 5.59	: Effet du gaz sur la variation de P/P_0 a travers la paroi	400
E. E 00	de <i>MLN</i> 2D	139
Figure 5.60	: Effet du gaz sur la variation de ρ/ρ_0 a travers la paroi	400
E: E 04		139
Figure 5.61	Effet du gaz sur la variation de 6 a travers la parol	400
F :		139
Figure 5.62	: Effet du gaz sur la variation de <i>M</i> le long l'axe	110
E :	de symetrie de MLN 2D	140
Figure 5.63	Eller du gaz sur la forme des tuyeres MLIN 2D ayant meme	1 1 4
Figure 5 C4	section de sortie pour $M_{S}(Air)=3.00$ lorsque $I_{0}=2000$ K	141
rigure 5.64	Liner ou gaz sur la lorme des tuyeres MLN 2D ayant meme	
	iongueurs que le cas de l'air pour $M_{\rm S}({\rm Air})=3.00$	111
	$\text{IOISQUE } I_0 = 2000 \text{ K} \dots$	141

Figure 5.65 :	Effet du gaz sur la forme des tuyères <i>MLN</i> 2D ayant même θ^* comme le cas de l'air pour <i>M</i> _S (Air)=3.00 lorsque <i>T</i> ₀ =2000 K 1	42
Figure 5.66 :	Effet du gaz sur la forme des tuyères <i>MLN</i> 2D ayant même L_d/y_* comme le cas de l'air pour M_S (Air)=3.00	
	lorsque <i>T</i> ₀ =2000 K 1	43
Figure 5.67 :	Effet du gaz sur la forme des tuyères <i>MLN</i> 2D ayant même masse de la structure que le cas de l'air pour M_S (Air)=3.00	
	Iorsque / ₀ =2000 K	43
Figure 5.68 :	Effet du gaz sur le nombre de Mach de sortie de la tuyére	
	MLN 2D ayant même masse que le cas de l'air lorsque T_0 =2000 K 1	45
Figure 5.69 :	Effet du gaz sur le coefficient de poussée C_F de la tuyère	
	MLN 2D ayant même masse que le cas de l'air lorsque	
	<i>T</i> ₀ =2000 K 1	45
Figure 5.70 :	Effet du gaz sur la valeur de C_{Masse} de la tuyère MLN 2D	
	ayant même masse que le cas de l'air lorsque T_0 =2000 K	145
Figure 5.71 :	Effet du gaz sur la forme des tuyères <i>MLN</i> 2D ayant même	
	C_F comme le cas de l'air pour M_S =3.00 lorsque T_0 =2000 K	148
Figure 5.72 :	Effet du gaz sur le nombre de Mach de sortie de la tuyère	
	<i>MLN</i> 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K \uparrow	149
Figure 5.73 :	Effet du gaz sur la masse de la tuyère <i>MLN</i> 2D ayant même	
	C_F que le cas de l'air lorsque T_0 =2000 K 1	150
Figure 5.74 :	Effet du gaz sur le coefficient de poussée <i>C_F</i> de la tuyère	
	MLN 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K T_0	150
Figure 5.75 :	Courbes iso-valeurs de la tuyère MLN 2D	154
Figure 5.76 :	Effet du gaz sur la variation de C_{Masse} à travers la paroi de	
	<i>MLN</i> 2D 1	55
Figure 5.77 :	Effet du gaz sur la variation de C_F à travers la paroi de	
	<i>MLN</i> 2D 1	55
Figure 5.78 :	Effet du gaz sur la variation de gain en C_{Masse} et en perte	
	de C_F à travers la troncature en (%) par rapport au col	
	de la tuyère <i>MLN</i> 2D 1	56
Figure 5.79 :	Effet du gaz sur la variation de volume de la zone uniforme	
	dans la tuyère MLN 2D 1	57
Figure 5.80 :	Effet du gaz sur la variation en pourcentage d'apparition	
	des trois zones dans la tuyère MLN 2D 1	57
Figure 5.81 :	Maillages en caractéristiques pour la tuyère axisymétrique 1	59
Figure 5.82 :	Effet du gaz sur la forme des tuyères axisymétriques	
	donnant <i>M</i> _S =2.001	59
Figure 5.83 :	Effet du gaz sur la forme des tuyères axisymétriques	
	donnant <i>M</i> _S =3.001	60
Figure 5.84 :	Effet du gaz sur la forme des tuyères axisymétriques	
	donnant <i>M_s</i> =4.001	60

Figure 5.85 :	Effet du gaz sur la forme des tuyères axisymétriques	161
Figure 5 96	$\int \mathbf{F}_{S}^{\text{form}} d\mathbf{r} = 5.00$	101
Figure 5.86	Effet de 7 ₀ sur la forme de la tuyere <i>MLN</i> axisymetrique	160
Figure 5 97	$ \begin{array}{c} \text{pour le gaz} \Pi_2 \\ \text{Effet de } T \\ \text{eur le ferme de le tuyère } M \\ \text{Nevieumétrique} \end{array} $	102
Figure 5.67.	Effet de 7 ₀ sur la forme de la tuyere <i>MLN</i> axisymetrique	160
Eiguro 5 00 ·	Effet de T_{out} le forme de la tuvère M N evievmétrique	102
Figure 5.00.	Ellet de 7 ₀ sul la forme de la tuyere <i>MEN</i> axisymetrique	162
Eiguro 5 90 ·	Effet de T_{out} le forme de la tuvère M N evievmétrique	103
Figure 5.69.	Ellet de 7 ₀ sul la forme de la tuyere <i>MLN</i> axisymetrique	162
Figure 5 00 ·	Effet de T aur le forme de le tuvère MI N avieumétrique	103
Figure 5.90.	Effet de 7 ₀ sur la forme de la tuyere <i>MLN</i> axisymetrique	160
	pour le gaz CO_2	163
Figure 5.91 :	Effet de 7 ₀ sur la forme de la tuyere <i>MLI</i> V axisymetrique	404
	pour le gaz H_2O	164
Figure 5.92 :	Effet de <i>l</i> ₀ sur la forme de la tuyere <i>MLI</i> V axisymetrique	101
E: E 00		164
Figure 5.93 :	Effet de <i>I</i> ₀ sur la forme de la tuyere <i>MLI</i> V axisymetrique	404
	pour le gaz CH ₄	164
Figure 5.94 :	Effet de <i>I</i> ₀ sur la forme de la tuyère <i>MLN</i> axisymétrique	405
	pour l'air	165
Figure 5.95 :	Effet du gaz sur θ du col des tuyères axisymétriques	166
Figure 5.96 :	Effet du gaz sur θ_{Max} du col des tuyères axisymétriques	167
Figure 5.97 :	Effet du gaz sur <i>M</i> du col des tuyères axisymétriques	168
Figure 5.98 :	Effet du gaz sur la longueur de détente <i>L_d/y</i> * des tuyères	
	<i>MLN</i> axisymétrique	168
Figure 5.99 :	Effet du gaz sur la longueur L/y_* pour la tuyère axisymétrique	169
Figure 5.100	: Effet du gaz sur le coefficient <i>C_{Masse}</i> pour la tuyère	
	MLN axisymétrique	171
Figure 5.101	: Effet du gaz sur le coefficient C_F pour la tuyère	
	MLN axisymétrique	172
Figure 5.102	: Effet du gaz sur y _s /y∗ des tuyères <i>MLN</i> axisymétriques	172
Figure 5.103	: Effet du gaz sur θ des tuyères <i>MLN</i> axisymétriques	
	en fonction de T_0	175
Figure 5.104	: Effet du gaz sur $ heta_{ ext{Max}}$ des tuyères MLN axisymétriques	
	en fonction de T_0	176
Figure 5.105	: Effet du gaz sur <i>M</i> [*] des tuyères <i>MLN</i> axisymétriques	
	en fonction de T_0	176
Figure 5.106	: Effet du gaz sur <i>L_d/y</i> ∗ de <i>MLN</i> axisymétriques	
	en fonction de <i>T</i> ₀	178
Figure 5.107	: Effet du gaz sur <i>L/y</i> ∗ de <i>MLN</i> axisymétriques	
	en fonction de T_0	178
Figure 5.108	: Effet du gaz sur <i>C_{Masse} de MLN</i> axisymétriques	
	en fonction de T_0	179

Figure 5.109	: Effet du gaz sur <i>C_F</i> de <i>MLN</i> axisymétriques	
	en fonction de T_0	181
Figure 5.110	: Effet du gaz sur y _S /y∗ de <i>MLN</i> axisymétriques	
	en fonction de T_0	181
Figure 5.111	: Effet du gaz sur la variation de <i>M</i> à travers la paroi	
	de <i>MLN</i> axisymétrique	183
Figure 5.112	: Effet du gaz sur la variation de T/T_0 à travers la paroi	
-	de <i>MLN</i> axisymétrique	184
Figure 5.113	: Effet du gaz sur la variation de P/P_0 à travers la paroi	
-	de <i>MLN</i> axisymétrique	184
Figure 5.114	: Effet du gaz sur la variation de ρ/ρ_0 à travers la paroi	
C	de <i>MLN</i> axisymétrique	184
Figure 5.115	: Effet du gaz sur la variation de θ à travers la paroi	
C	de <i>MLN</i> axisymétrique	185
Figure 5.116	: Effet du gaz sur la variation de <i>M</i> le long l'axe de symétrie	
C	de <i>MLN</i> axisymétrique	185
Figure 5.117	: Effet du gaz sur la forme des tuyères <i>MLN</i> axisymétriques	
C	ayant même section de sortie lorsque T_0 =2000 K	187
Figure 5.118	: Effet du gaz sur la forme des tuyères <i>MLN</i> axisymétrique	
C	ayant même longueurs que le cas de l'air lorsque T_0 =2000 K	187
Figure 5.119	: Effet du gaz sur la forme des tuyères <i>MLN</i> axisymétrique	
0	avant même θ^* comme le cas de l'air lorsque $T_0=2000$ K	188
Figure 5.120	: Effet du gaz sur la forme des tuyères <i>MLN</i> axisymétrique	
5	avant même L_d/v_* comme le cas de l'air lorsque $T_0=2000$ K	188
Figure 5.121	: Effet du gaz sur la forme des tuvères <i>MLN</i> axisvmétrique	
5	avant même θ_{Max} comme le cas de l'air lorsque $T_0=2000$ K	189
Figure 5.122	: Effet du gaz sur la forme des tuvères <i>MLN</i> axisvmétrique	
	avant même masse de la structure que le cas de l'air lorsque	
	<i>T</i> ₀ =2000 K	190
Figure 5.123	: Effet du gaz sur le nombre de Mach de sortie de la tuvère	
5	<i>MLN</i> axisymétrique avant même masse que le cas de l'air	
	lorsque 7 ₀ =2000 K	191
Figure 5.124	: Effet du gaz sur le coefficient de poussée C_{F} de la tuvère	
	<i>MLN</i> axisymétrique avant même masse que le cas de l'air	
	lorsque $T_0=2000$ K	192
Figure 5 125	· Effet du daz sur la masse de la tuvère <i>MI N</i> axisymétrique	
1 igure 0. 120	avant même masse que le cas de l'air lorsque $T_0=2000$ K	192
Figure 5 126	· Effet du gaz sur la forme des tuvères <i>MI N</i> axisymétrique	
1 19010 0.120	avant même C∈ comme le cas de l'air	195
Figure 5 127	· Effet du gaz sur le nombre de Mach de sortie de la tuvère	100
. 19410 0.127	MIN axisymétrique avant même C_{ϵ} que le cas de l'air	
	lorsque $T_0=2000$ K	196
Figure 5 128	· Effet du gaz sur la masse de la tuvère <i>MI N</i> axisymétrique	100
1.19010 0.120	avant même C_{E} que le cas de l'air lorsque T_{2} =2000 K	196

Figure 5.129 :	Effet du gaz sur le coefficient <i>C</i> de la tuyère <i>MLN</i>	
	axisymétrique ayant même C _F que le cas de l'air	
	lorsque <i>T</i> ₀ =2000 K	197
Figure 5.130 :	Courbes iso-valeurs de la tuyère MLN axisymétrique	200
Figure 5.131 :	Effet du gaz sur la variation de <i>C_{Masse}</i> à travers la paroi	
	de MLN axisymétrique	201
Figure 5.132 :	Effet du gaz sur la variation de C_F à travers la paroi	
	de <i>MLN</i> axisymétrique	201
Figure 5.133 :	Effet du gaz sur la variation de gain en <i>C_{Masse}</i> et en perte	
	de C_F en fonction de la position de la troncature en (%)	
	par rapport au col pour <i>MLN</i> axisymétrique	202
Figure 5.134 :	Effet du gaz sur la variation de volume de la zone uniforme	
	dans la tuyère <i>MLN</i> axisymétrique	204
Figure 5.135 :	Effet du gaz sur la variation en pourcentage d'apparition	
	des trois zones dans la tuyère <i>MLN</i> axisymétrique	204
Figure D.1 :	Les caractéristiques C^+ et C^- et les lignes de Mach η et ξ	225
Figure D.2 :	Relation entre les lignes de Mach et les coordonnées	
-	Cartésiennes	225
Figure E.1 :	Champ d'écoulement dans la tuyère à corps central	226
Figure E.2 :	Angles de Mach au col et à la sortie	227
Figure E.3 :	Paramètres d'une ligne de Mach intermédiaire reliant	
	les points A et i	228
Figure E.4 :	Effet du gaz à <i>HT</i> sur le corps central <i>PN 2D</i> et sur	
	la forme externe de la paroi <i>EDN</i> donnant M_S =2.00	232
Figure E.5 :	Effet du gaz à <i>HT</i> sur le corps central <i>PN 2D</i> et sur	
-	la forme externe de la paroi EDN donnant M_S =3.00	232
Figure E.6 :	Effet du gaz à <i>HT</i> sur le corps central <i>PN 2D</i> et sur	
	la forme externe de la paroi EDN donnant $M_{\rm S}$ =4.00	233
Figure E.7 :	Effet du gaz à <i>HT</i> sur le corps central <i>PN 2D</i> et sur	
	la forme externe de la paroi <i>EDN</i> donnant $M_{\rm S}$ =5.00	233
Figure E.8 :	Effet du gaz à HT sur θ^* du col de la tuyère à corps central	234
Figure E.9 :	Effet du gaz à <i>HT</i> sur la longueur L/λ_B de la tuyère	
	à corps central	235
Figure E.10 :	Effet du gaz à HT sur C_{Mass} de la tuyère à corps central	235
Figure E.11 :	Effet du gaz à HT sur C_F de la tuyère à corps central	235
Figure E.12 :	Effet du gaz à <i>HT</i> sur y_S/λ_B de la tuyère à corps central	236
Figure E.13 :	Effet du gaz à <i>HT</i> sur x_{Plug}/λ_B de la tuyère à corps central	236
Figure E.14 :	Effet du gaz à <i>HT</i> sur la variation du nombre de Mach à	
	travers la paroi de la tuyère à corps central	237
Figure E.15 :	Effet du gaz à <i>HT</i> sur la variation de θ à travers la paroi	
	de la tuyère à corps central	237
Figure E.16 :	Effet du gaz à HT sur la variation de T/T_0 à travers la paroi	
	de la tuyère à corps central	238

Figure E.17 :	Effet du gaz à <i>HT</i> sur la variation de $ ho/ ho_0$ à travers la paroi	
	de la tuyère à corps central	238
Figure E.18 :	Effet du gaz à HT sur la variation de P/P_0 à travers la paroi	
	de la tuyère à corps central	238
Tableau 2.1 :	Coefficients de $C_P(T)$ des gaz sélectionnés selon	
	la relation (2.1)	. 36
Tableau 2.2 :	Coefficients du polynôme $C_P(T)$ pour l'air selon	
	la relation (2.2)	. 36
Tableau 2.3 :	Variation de $C_P(T)$ avec la température pour l'air	. 36
Tableau 2.4 :	Valeurs de C_P et γ à T =298.15 K et R pour les gaz choisis	. 37
Tableau 2.5 :	Coefficients de $C_P(T)$ des gaz sélectionnés selon	
	la relation (2.7)	. 38
Tableau 2.6 :	Coefficients de $C_P(T)$ de quelques gaz selon	
	la relation (2.7)	. 38
Tableau 2.7 :	Valeurs de C_P et y à T=298.15 K et la constante R pour	
	quelques gaz	. 40
Tableau 2.8 :	Coefficients de la fonction $C_P(T)$ selon l'interpolation (2.8)	. 41
Tableau 2.9 :	Valeurs expérimentales de C_P en J/(Kg K) des gaz choisis	
	en fonction de la température	. 41
Tableau 2.10	: Coefficients de la fonction $C_P(T)$ selon l'interpolation (2.9)	. 43
Tableau 3.1 :	Organigramme de calcul $M_{S}(Gaz)$ donnant même	
	$A_{\rm S}/A_{\star}$ que de l'air	. 58
Tableau 3.2 :	Instructions à modifiées de l'organigramme de tableau 3.1	
	conçues pour de calcul de $M_{\rm S}({\rm Gaz})$ donnant même C_F	
	que de l'air	. 60
Tableau 4.1 :	Instructions à modifiées de l'organigramme de tableau 3.1	
	conçues pour de calcul de $M_{\rm S}({\rm Gaz})$ donnant même C_{Masse}	
	que de l'air	. 79
Tableau 4.2 :	Instructions à modifiées de l'organigramme de tableau 3.1	
	conçues pour de calcul de $M_{\rm S}({\rm Gaz})$ donnant même C_F	
	que de l'air	. 80
Tableau 4.3 :	Instructions à modifiées de l'organigramme de tableau 3.1	
	conçues pour de calcul de $M_{S}(Gaz)$ donnant même rapport	
	des rayons $v_{\rm s}/v_{\rm t}$ que de l'air	. 80
Tableau 4.4 :	Instructions à modifiées de l'organigramme de tableau 3.1	
	concues pour de calcul de $M_{S}(Gaz)$ donnant même longueur	
	de la tuyère L/v_* que de l'air	80
Tableau 5.1 :	Rapport T_*/T_0 des gaz pour différente valeurs de T_0	. 85
Tableau 5.2 :	Rapport ρ_*/ρ_0 des daz pour différente valeurs de T_0	. 86
Tableau 5.3 :	Débit massique critique des gaz pour différente valeurs de T_0	87
Tableau 5.4	Rapport P_*/P_0 des gaz pour différente valeurs de T_0	. 88
Tableau 5.5	Rapport a_*/a_0 des gaz pour différente valeurs de T_0	. 89
Tableau 5.6	Rapport T/T_0 des gaz en guelques valeurs de M	
	lorsque $T_0=2000$ K	. 92

Tableau 5.7 : F	Rapport $ ho / ho_0$ des gaz en quelques valeurs de M	
I	orsque <i>T</i> ₀ =2000 K	93
Tableau 5.8 : I	Rapport <i>P</i> / <i>P</i> ₀ des gaz en quelques valeurs de <i>M</i>	
I	orsque <i>T</i> ₀ =2000 K	94
Tableau 5.9 : I	Rapport <i>a/a</i> ₀ des gaz pour quelques valeurs de <i>M</i>	
Ĩ	bour <i>T</i> ₀ =2000 K	95
Tableau 5.10 :	Rapport A_S/A_* des gaz en fonction de <i>M</i> lorsque T_0 =2000 K	96
Tableau 5.11 :	Effet de gaz sur <i>C_F</i> pour différente valeurs de <i>M</i>	
I	orsque <i>T</i> ₀ =2000 K	97
Tableau 5.12 :	Effet du gaz sur la correction de $M_{\rm S}$ lorsque T_0 =2000 K	
C	de la tuyère donnant même forme que le cas de l'air	00
Tableau 5.13 :	Ecart relatif en (%) de C_F entre les gaz et l'air lorsque	
-	<i>T</i> ₀ =2000 K	101
Tableau 5.14 :	Effet du gaz sur la fonction v en fonction de <i>M</i> lorsque	
-	<i>Т</i> ₀ =1000 К 1	04
Tableau 5.15 :	Effet du gaz sur la fonction v en fonction de <i>M</i> lorsque	
-	<i>T</i> ₀ =2000 K 1	05
Tableau 5.16 :	Effet du gaz sur la fonction v en fonction de <i>M</i> lorsque	
-	<i>T</i> ₀ =3000 K 1	06
Tableau 5.17 :	Effet du gaz sur la fonction v en fonction de <i>M</i> pour	
I	e modèle <i>GP</i> 1	07
Tableau 5.18 :	Valeurs de v des gaz pour différents T_0 lorsque M_S =3.00 1	08
Tableau 5.19 :	Effet du gaz sur <i>M</i> lorsque v est donnée pour T_0 =1000 K 1	113
Tableau 5.20 :	Effet du gaz sur <i>M</i> lorsque v est donnée pour T_0 =2000 K 1	113
Tableau 5.21 :	Effet du gaz sur <i>M</i> lorsque v est donnée pour T_0 =3000 K 1	114
Tableau 5.22 :	Effet du gaz sur <i>M</i> lorsque v est donnée pour	
	le modèle GP 1	14
Tableau 5.23 :	Résultats de dimensionnement des tuyères	
C	de la figure 5.30 1	18
Tableau 5.24 :	Résultats de dimensionnement des tuyères	
C	de la figure 5.311	18
Tableau 5.25 :	Résultats de dimensionnement des tuyères	
C	de la figure 5.32 1	18
Tableau 5.26 :	Résultats de dimensionnement des tuyères	
(de la figure 5.33 1	19
Tableau 5.27 :	Résultats de dimensionnement des tuyères	
C	de la figure 5.34 1	19
Tableau 5.28 :	Résultats de dimensionnement des tuyères	
(de la figure 5.35 1	20
I ableau 5.29 :	Résultats de dimensionnement des tuyères	
(de la figure 5.36 1	20
I ableau 5.30 :	Résultats de dimensionnement des tuyères	·
(de la figure 5.37 1	21

Tableau 5.31	: Résultats de dimensionnement des tuyères	
	de la figure 5.38	121
Tableau 5.32	: Résultats de dimensionnement des tuyères	
	de la figure 5.39	121
Tableau 5.33	: Résultats de dimensionnement des tuyères	
	de la figure 5.40	122
Tableau 5.34	: Résultats de dimensionnement des tuyères	
	de la figure 5.41	122
Tableau 5.35	: Résultats de dimensionnement des tuyères	
	de la figure 5.42	122
Tableau 5.36	: Effet du gaz sur l'angle θ^{*} au col de la tuyère <i>MLN</i> 2D	
	pour <i>T</i> ₀ =2000 K	124
Tableau 5.37	: Effet du gaz sur l'angle M^{i} au col de la tuyère	
	<i>MLN</i> 2D pour <i>T</i> ₀ =2000 K	126
Tableau 5.38	: Valeurs sur L_d/y_* de la tuyère <i>MLN</i> 2D pour T_0 =2000 K	127
Tableau 5.39	: Valeurs sur L/y_* de la tuyère <i>MLN</i> 2D pour T_0 =2000 K	127
Tableau 5.40	: Valeurs sur C_{Masse} de la tuyère <i>MLN</i> 2D pour T_0 =2000 K	128
Tableau 5.41	: Valeurs sur C_F de la tuyère <i>MLN</i> 2D pour T_0 =2000 K	129
Tableau 5.42	: Valeurs sur ε_{CF} de la tuyère <i>MLN</i> 2D pour <i>T</i> ₀ =2000 K	130
Tableau 5.43	: Valeurs sur ϵ_{CMasse} de la tuyère <i>MLN</i> 2D pour T_0 =2000 K	131
Tableau 5.44	: Valeurs de θ^* de <i>MLN</i> 2D en fonction de T_0	
	lorsque <i>M</i> _S =3.00	133
Tableau 5.45	Valeurs de M^* de <i>MLN</i> 2D en fonction de T_0	
	lorsque <i>M</i> _S =3.00	134
Tableau 5.46	: Valeurs de L_{d}/y_{*} de <i>MLN</i> 2D en fonction de T_{0}	
	lorsque <i>M</i> _S =3.00	134
Tableau 5.47	: Valeurs de <i>L/y</i> ∗ de <i>MLN</i> 2D en fonction de <i>T</i> ₀	
	lorsque <i>M</i> _S =3.00	135
Tableau 5.48	: Valeurs de C_{Masse} de <i>MLN</i> 2D en fonction de T_0	
	lorsque <i>M</i> _S =3.00	136
Tableau 5.49	: Valeurs de C_F de <i>MLN</i> 2D en fonction de T_0	
	lorsque <i>M</i> _S =3.00	136
Tableau 5.50	: Valeurs de y_{s}/y_{*} de <i>MLN</i> 2D en fonction de T_0	
	lorsque $M_{\rm S}$ =3.00	137
Tableau 5.51	: Valeurs numériques des tuyères de la figure 5.63	141
Tableau 5.52	: Valeurs numériques des tuyères de la figure 5.64	141
Tableau 5.53	: Valeurs numériques des tuyères de la figure 5.65	142
Tableau 5.54	: Valeurs numériques des tuyères de la figure 5.66	143
Tableau 5.55	: Valeurs numériques des tuyères de la figure 5.67	144
Tableau 5.56	: Valeurs de <i>Ms</i> des gaz pour la tuyère <i>MLN</i> 2D ayant	
	même masse que le cas de l'air lorsque T_0 =2000 K	146
Tableau 5.57	: Valeurs de <i>C</i> _F des gaz pour la tuyère <i>MLN</i> 2D ayant	
	même masse que le cas de l'air lorsque T_0 =2000 K	146

Tableau 5.58 :	Effet de gaz sur $\epsilon(M_S)$ (%) pour la tuyère <i>MLN</i> 2D ayant
	même masse que le cas de l'air lorsque T_0 =2000 K 147
Tableau 5.59 :	Effet de gaz sur l'écart relative en coefficient
	de poussée ε(C _F) (%) pour la tuyère <i>MLN</i> 2D ayant même
	masse que le cas de l'air lorsque T_0 =2000 K
Tableau 5.60 :	Résultats numériques des tuyères de la figure 5.71 148
Tableau 5.61 :	Valeurs de <i>Ms</i> des gaz pour la tuyère <i>MLN</i> 2D ayant
	même C_{F} que le cas de l'air lorsque $T_0=2000$ K
Tableau 5.62 :	Valeurs de C_{Masse} des gaz pour la tuvère <i>MLN</i> 2D avant
	même C_{E} que le cas de l'air lorsque T_{0} =2000 K 151
Tableau 5 63 ·	Effet de gaz sur l'écart relative en nombre de Mach
	de sortie $\epsilon(M_s)$ (%) pour la tuyère <i>MLN</i> 2D avant même
	$C_{\rm c}$ que le cas de l'air lorsque $T_{\rm c}$ =2000 K 152
Tableau 5.64 ·	Effet de daz sur l'écart relative $\varepsilon(C_{4,222})$ (%) en C ₄₄₂₂₂
	pour la tuyère $MIN2D$ avant même C_c que le cas de l'air
	$\int \frac{1}{2} \int $
Tableau 5.65 ·	Gain relative en Cy nour différent gaz en fonction de
Tableau 5.05.	Call relative en \mathcal{O}_{Masse} pour different gaz en fonction de
	$\int \frac{1}{2} \int $
Tablaau 5 66 .	Disque $M_{\rm S}$ = 5.00 et T_0 = 2000 K
Tableau 5.00.	Perte relative en C_F pour different gaz en fonction de
	Ta position de coupure en % par rapport au coi de MLN 2D
T.I. 507	Iorsque $M_{\rm S}$ =3.00 et T_0 =2000 K
Tableau 5.67 :	Resultats numeriques des tuyeres de la figure 5.82
Tableau 5.68 :	Resultats numeriques des tuyeres de la figure 5.83
Tableau 5.69 :	Résultats numériques des tuyères de la figure 5.84
Tableau 5.70 :	Résultats numériques des tuyères de la figure 5.85 161
Tableau 5.71 :	Résultats numériques des tuyères de la figure 5.86 162
Tableau 5.72 :	Résultats numériques des tuyères de la figure 5.87 162
Tableau 5.73 :	Résultats numériques des tuyères de la figure 5.88 163
Tableau 5.74 :	Résultats numériques des tuyères de la figure 5.89 163
Tableau 5.75 :	Résultats numériques des tuyères de la figure 5.90 163
Tableau 5.76 :	Résultats numériques des tuyères de la figure 5.91 164
Tableau 5.77 :	Résultats numériques des tuyères de la figure 5.92 164
Tableau 5.78 :	Résultats numériques des tuyères de la figure 5.93 164
Tableau 5.79 :	Résultats numériques des tuyères de la figure 5.94 164
Tableau 5.80 :	Effet du gaz sur l'angle ${m heta}^{^*}$ au col de la tuyère axisymétrique
	pour <i>T</i> ₀ =2000 K
Tableau 5.81 :	Effet du gaz sur l'angle $ heta_{ ext{Max}}$ de la tuyère axisymétrique
	pour <i>T</i> ₀ =2000 K
Tableau 5.82 :	Effet du gaz sur l'angle M^{*} au col de la tuyère <i>MLN</i>
	axisymétrique pour T_0 =2000 K
Tableau 5.83 :	Valeurs de L_d/y_* pour la tuyère <i>MLN</i> axisymétrique
_	pour <i>T</i> ₀ =2000 K

Tableau 5.84 : Valeurs sur L/y_* pour la tuyère <i>MLN</i> axisymétrique pour $T_0=2000$ K	170
Tableau 5.85 : Valeurs de C _{Masse} pour <i>MLN</i> axisymétrique lorsque	
<i>T</i> ₀ =2000 K	172
Tableau 5.86 : Valeurs de C_F pour <i>MLN</i> axisymétrique lorsque T_0 =2000 K	173
Tableau 5.87 : Valeurs de y_S/y_* pour <i>MLN</i> axisymétrique lorsque $T_0=2000$ K	174
Tableau 5.88 : Valeurs sur ε_{CF} de la tuyère <i>MLN</i> axisymétrique pour T_0 =2000 K	174
Tableau 5.89 : Valeurs sur ε_{CMasse} de la tuyère <i>MLN</i> axisymétrique pour $T_0=2000$ K	175
Tableau 5.90 : Valeurs de θ^* de <i>MLN</i> axisymétrique en fonction de T_0	176
Tableau 5.91 : Valeurs de θ_{Max} de <i>MLN</i> axisymétrique en fonction de T_0	177
Tableau 5.92 : Valeurs de M^* pour <i>MLN</i> axisymétrique en fonction de T_0	177
Tableau 5.93 : Valeurs de $L_{d'}/y_*$ de <i>MLN</i> axisymétrique en fonction de T_0	170
Tableau 5.94 : Valeurs de L/y_* de <i>MLN</i> axisymétrique en fonction de T_0	179
Tableau 5.95 : Valeurs de C_{Masse} de <i>MLN</i> axisymétrique en fonction de T_0 lorsque $M_s=3.00$	180
Tableau 5.96 : Valeurs de C_F de <i>MLN</i> axisymétrique en fonction de T_0 lorsque M_S =3.00	181
Tableau 5.97 : Valeurs de y_S/y_* de <i>MLN</i> axisymétrique en fonction de T_0 lorsque M_S =3.00	182
Tableau 5.98 : Résultats numériques des tuyères de la figure 5.117	187
Tableau 5.99 : Résultats numériques des tuyères de la figure 5.118	187
Tableau 5.100 : Résultats numériques des tuyères de la figure 5.119	188
Tableau 5.101 : Résultats numériques des tuyères de la figure 5.120	188
Tableau 5.102 : Résultats numériques des tuyères de la figure 5.121	189
Tableau 5.103 : Résultats numériques des tuyères de la figure 5.122	191
Tableau 5.104 : Valeurs de <i>Ms</i> pour <i>MLN</i> axisymétrique ayant même masse que le cas de l'air lorsque $T_0=2000$ K	192
Tableau 5.105 : Valeurs de C_F pour la tuyère <i>MLN</i> axisymétrique ayant même masse que le cas de l'air lorsque $T_0=2000$ K	193
Tableau 5.106 : Effet de gaz sur $\epsilon(M_s)$ (%) pour la tuyère <i>MLN</i> axisymétrique	100
Tableau 5.107 : Effet de gaz sur $\epsilon(C_F)$ (%) pour la tuyère <i>MLN</i> axisymétrique	194
ayant même masse que le cas de l'air lorsque T_0 =2000 K Tableau 5.108 : Résultats numériques des tuyères de la figure 5.126	194 195

Tableau 5.109	: Valeurs de <i>Ms</i> des gaz pour la tuyère <i>MLN</i> axisymétrique	
	ayant même C_F que le cas de l'air lorsque T_0 =2000 K	. 197
Tableau 5.110	: Valeurs de C _{Masse} des gaz pour la tuyère MLN axisymétrique	
	ayant même C_F que le cas de l'air lorsque T_0 =2000 K	. 198
Tableau 5.111	: Effet de gaz sur $\epsilon(M_S)$ (%) pour la tuyère <i>MLN</i> axisymétrique	
	ayant même C_F que le cas de l'air lorsque T_0 =2000 K	. 199
Tableau 5.112	: Effet de gaz sur l'écart relative en C _{Masse} ε(C _{Masse}) (%)	
	pour la tuyère <i>MLN</i> axisymétrique ayant même C_F que	
	le cas de l'air lorsque <i>T</i> ₀ =2000 K	199
Tableau 5.113	: Gain relative en <i>C_{Masse}</i> pour différent gaz en fonction de	
	la position de coupure en % par rapport au col de <i>MLN</i>	
	axisymétrique lorsque M_S =3.00 et T_0 =2000 K	. 202
Tableau 5.114	: Perte relative en <i>C_F</i> pour différent gaz en fonction de	
	la position de coupure en % par rapport au col de <i>MLN</i>	
	axisymétrique lorsque M_S =3.00 et T_0 =2000 K	. 203
Tableau E.1 :	Valeurs de calcul numériques pour la figure E.4	. 232
Tableau E.2 :	Valeurs de calcul numériques pour la figure E.5	. 232
Tableau E.3 :	Valeurs de calcul numériques pour la figure E.6	. 233
Tableau E.4 :	Valeurs de calcul numériques pour la figure E.7	. 233

INTRODUCTION

Les tuyères supersoniques jouent un rôle très important pour la conception des engins aérospatiaux. Elles interviennent dans beaucoup de structures telles que les missiles les moteurs d'avions et dans la fabrication des souffleries supersoniques pour la modélisation et la réalisation expérimentale des écoulements supersoniques réels. Dans l'application aérospatiale on s'intéresse généralement à des tuyères axisymétriques et pour les souffleries on utilise des géométries bidimensionnelles, vu les performances données pour chaque géométrie.

Les gaz ont un grand intérêt dans la propulsion des engins aérospatiaux. L'utilisation d'un tel gaz de propulsion influe essentiellement sur le comportement des écoulements supersoniques et en particulier sur tous les paramètres physiques, thermodynamiques ou géométriques de conception. On parle sur les rapports des pressions P/P_0 , des températures T/T_0 et des masses volumiques ρ/ρ_0 , des sections critiques A/A_* , de variation de nombre de Mach, le coefficient de poussée C_F , débit massique critique caractérisant les écoulements. Alors ils influent sur le devis d'une telle construction aérospatiale.

Le choix d'un tel gaz dans la propulsion des engins aérospatiaux est fait sur la base de besoin en paramètres thermodynamiques de conception et le devis de construction. Par exemple, pour les tuyères supersoniques utilisées en propulsion des moteurs fusées, missiles et avions supersoniques, on souhaite d'avoir des longueurs petites des tuyères pour avoir une masse réduite de l'engin. Tandis que par exemple pour la construction des souffleries supersoniques, on souhaite d'avoir des d'avoir des tuyères ayant dans certain cas une distribution faible de température et une section de sortie assez grande pour permettre de placer le prototype d'avion, ou missiles ainsi que les instruments et les appareils de mesures et pour bien modéliser l'effet de la condition à l'infini (effet de la paroi).

Dans les applications antérieures, l'air fait partie importante de la construction aérospatiale vu son existante en quantité dans la nature et son devis qui n'est pas cher et répond d'une façon ou l'autre au besoin d'une construction aérospatiale.

Le problème d'amélioration des performances des tuyères supersoniques par la possibilité de changer l'air par un autre gaz répondant favorablement à l'amélioration des performances des tuyères supersoniques représente un problème d'actualité et jouent un rôle très important dans le domaine de la propulsion aérospatiale qui se traduit par la résolution de trois grands problèmes différents.

Le premier problème consiste à concevoir des nouvelles formes des tuyères *MLN* sur la base de choix d'un tel gaz de propulsion en conservant le même nombre de Mach de sortie que le cas de l'air qui se traduit par la même autonomie de vol.

Le deuxième problème rencontré c'est de concevoir des nouvelles formes de tuyère toujours sur la base de choisir un gaz de propulsion afin d'améliorer le coefficient de poussée en gardant la même masse de la tuyère et même l'aire de la section au col que le cas de l'air. C'est à dire même débit traversant la tuyère.

Le troisième problème consiste à développer une nouvelle forme de tuyère *MLN* sur la base de choisir un tel gaz de propulsion permettant de diminuer la masse de la tuyère en gardant la même force de poussée délivrée par la tuyère que le cas de l'air et même l'aire de la section au col que le cas de l'air.

En réalité nous avons plusieurs problèmes à résoudre mais ils ne sont pas assez intéressants par rapport aux trois problèmes indiqués.

Pour arriver à obtenir des meilleures performances il faut en premier lieu déterminer pour différent gaz de propulsion ces paramètres de conception pour une tuyère ayant un nombre de Mach de sortie donné et conçue pour une température génératrice donnée, ce qui nécessite le développement d'un nouveau programme de calcul numérique répondant à notre besoin. Sans connaitre la thermodynamique d'un tel gaz de propulsion, on ne peut pas entamer le problème d'amélioration des performances des tuyères supersoniques. On parle ici surtout sur les données expérimentales de C_P , R en fonction de la température.

Pour arriver à notre but, on a divisé le travail en trois parties :

Le but de la première partie de ce travail consiste à élaborer un nouveau programme de calcul numérique, dont l'organigramme est présenté dans l'annexe B, permettant d'étudier l'effet de l'utilisation des gaz de propulsion de la chambre de combustion à haute température sur les différents paramètres physique, thermodynamique et géométrique de conception P/P_0 , T/T_0 , ρ/ρ_0 , A/A_* , m, C_F , etc avec application dans une tuyère pour permettre de faire un choix convenable de gaz selon le besoin en paramètres comme le coefficient C_F de propulsion, Mach de sortie, forme de la tuyère, correction sur le nombre de Mach de sortie et C_F , choix de matériau de construction, contrainte appliquée sur la paroi. Toujours, cette étude est nécessaire pour arriver à la conception des tuyères supersoniques.

Connaissant très bien que la fonction de Prandtl Meyer présente l'étude de base de tous écoulement supersoniques et en particulier. Sans connaitre l'effet de gaz sur la fonction de Prandtl Meyer on ne peut pas entamer encor le problème de la conception des tuyères supersoniques. Alors, le but de la deuxième partie consiste à élaborer un nouveau programme de calcul numérique, dont l'organigramme est présenté dans l'annexe B, permettant d'étudier l'effet d'utilisation des gaz de propulsion à *HT* sur la fonction la fonction de Prandtl Meyer qui représente la base des équations de conception des tuyères supersoniques.

Le but de la troisième partie consiste à élaborer un nouveau programme de calcul numérique, dont l'organigramme est présenté dans l'annexe C, permettant d'étudier l'effet de l'utilisation des gaz de propulsion de la chambre de combustion à *HT* sur la conception et le dimensionnement de la tuyère type Minimum Length Nozzle bidimensionnelle et axisymétrique donnant à la section de sortie un écoulement uniforme et parallèle à la section de sortie, pour permettre de faire un choix convenable de gaz selon le besoin en paramètres comme le coefficient C_F de propulsion, Mach de sortie, forme de la tuyère, correction sur le nombre de Mach de sortie et C_F , choix de matériau de construction, contrainte appliquée sur la paroi, etc.... La recherche de ce type de tuyère respectant cette condition c'est pour éliminer les pertes de poussée considérable donnée par l'inclinaison de la paroi de la tuyère à la section de sortie et pour avoir par conséquent une détente complète à travers la tuyère.

Disposition des chapitres (plan du travail)

Le travail présenté est composé de 5 chapitres.

Le premier chapitre est consacré à faire une étude bibliographique en présentant les principaux recherches effectuées sur les paramètres thermodynamiques, la fonction de Prandtl Meyer et sur les paramètres de conception des tuyères supersoniques en particulier sur la tuyère à détente centrée et les études réalisées sur l'effet des gaz de propulsion surtout de l'air sur les dits paramètres [1-11, 14-16, 19, 22, 24-27, 30-33, 35-37, 43-44, 46-47, 49-52, 55-56, 62-64, 69-70, 72, 74, 76-77, 79, 83, 85-87, 91, 93-104].

Le but de deuxième chapitre est de présenter les propriétés thermodynamiques des différents gaz de propulsion. On s'intéresse sur la variation de chaleurs spécifiques à pression constante avec la température et la constante thermodynamique des gaz dans une marge de température bien précises généralement pour la majorité des gaz. Pour même gaz, plusieurs interpolations sont trouvées dans la littérature, ou l'erreur entre elle est petite qui varie jusqu'à 12%. On s'intéresse à 9 substances qui sont H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air dans le travail, avec une présentation des interpolations de $C_P(T)$ pour une trentaine de gaz les plus connues dans la nature. La liste reste ouverte pour n'importe qu'el gaz avec une signalisation d'une série de références bibliographique dans ce contexte [12-13, 17-21, 23, 28, 31, 38-42, 45, 48, 54, 57, 60-61, 64, 65, 68, 82, 89-90].

Le troisième chapitre est consacré à la présentation des relations thermodynamiques et géométrique ainsi que la fonction de Prandtl Meyer lorsque l'on tient compte de la température génératrice et le gaz de propulsion (C_P et R). Nous présentons aussi les techniques numériques de calcul de chaque paramètre

avec une application dans une tuyère quasi unidirectionnelle [6, 10-11, 16, 19, 24, 29, 31-32, 48, 50, 55-56, 58-59, 64, 66-67, 71, 73, 84, 88, 93, 97, 98, 102-104].

Dans le quatrième chapitre on présente la méthode de calcul et de conception de la tuyère à détente centrée 2D et axisymétrique, par la méthode des caractéristiques à haute température et les manières de calcul de l'écoulement dans la tuyère avec quelques nomenclatures utilisées. L'intégration des équations de compatibilité et des caractéristiques est faite par la méthode des différences finies. Ensuite le calcul de la masse de la tuyère ainsi que la force de pression exercée sur la paroi de la tuyère sont présentées par des formules d'interpolations approchées [1, 5-11, 14-16, 22, 24-25, 27, 30-34, 35-37, 43-44, 46, 49-53, 55-56, 58-59, 62-63, 67, 69-72, 74-83, 85-88, 91-92, 94-96, 99-101].

Le cinquième chapitre présente divers résultats obtenus sous forme de graphes et tableaux sur l'effet de gaz de propulsion sur les paramètres thermodynamiques, géométriques, la fonction de Prandtl Meyer et les paramètres de conception et le dimensionnement des tuyères *MLN* 2D et axisymétrique, ensuite quelques résultats sur le choix de gaz convenable répondant à l'amélioration des performances des tuyères supersoniques pour le domaine de la propulsion spatiale et pour la conception des souffleries supersoniques selon le besoin. Le calcul de l'erreur donnée par les paramètres de l'écoulement supersoniques et les paramètres de conception du gaz considéré par rapport à l'air est présenté dans ce cas, vu que l'air se trouve en quantité dans la nature et il est utilisé intensivement dans les applications.

Enfin on présente une conclusion générale sur le travail élaboré suivie par la proposition de quelques travaux de futur.

CHAPITRE 1

ETUDE BIBLIOGRAPHIQUE ET PROBLEMATIQUES

1.1. Introduction

La conception des tuyères supersoniques joue un rôle très important dans le domaine de la dynamique des gaz. Tous les engins aérospatiaux utilisent la tuyère comme un organe de propulsion [1-2, 9, 11, 16, 24, 31, 37, 43-44, 50, 52, 56, 63, 70, 77, 86-87, 91, 94-96, 99-101]. Les paramètres de conception d'une telle tuyère influent sur le rendement et le fonctionnement de l'engin. Les propriétés thermodynamiques des gaz de propulsion possèdent aussi une grande influence sur les caractéristiques de l'écoulement à travers la tuyère. Les paramètres théoriques de l'écoulement à travers la tuyère dépendent des hypothèses optées pour le calcul. Pour la conception généralement la forme de la paroi est inconnue et elle doit être déterminée pour justifier une certaine condition. La majore condition à vérifiée est que la poussée délivrée par la tuyère doit être complètement utilisée pour la propulsion, c'est à dire sans perte. On peut trouver dans la littérature plusieurs types de tuyères sur une durée de recherches de 70 ans environ et cela depuis 1935. On trouve les tuyères coniques, zone d'expansion, de longueur minimale, de Laval, à corps central, double galbe etc...[1, 2, 7, 9, 27, 35, 37, 43-44, 52, 56, 70, 79, 86-, 87, 91, 94-96, 99-101]. Le profil de la tuyère est trouvé numériquement par la méthode des caractéristiques vu que l'écoulement est purement supersonique [6-7, 14-15, 22, 25, 30, 32, 35-36, 47, 49-52, 66, 72, 74, 77, 81, 83, 85, 95-96, 100-101].

1.2. Etude bibliographique

Les premières études sur la conception des tuyères supersoniques remontent aux années 1935. A cette époque, toutes les études étaient basées sur les expériences [32, 37, 44, 70, 86-87]. C'était le seul moyen pour la détermination les caractéristiques d'un écoulement. Les premières études sont basées sur la tuyère conique, vu sa simplicité en géométrie. Le développement par ordinateur n'avait pas encore commencé. Après quelques années, en parallèle avec les développements expérimentaux et numériques, les concepteurs ont pensé à améliorer les performances des tuyères de propulsion. Ils ont remarqué que les tuyères coniques délivrent certes une poussée, mais avec une perte considérable, vu l'inclinaison de la portion supersonique qui peut arriver à 15° [70, 86-87]. Si l'inclinaison de la tuyère à la section de sortie est nulle, la poussée délivrée par le moteur sera donc complètement utilisée pour la propulsion et sera par conséquent maximale. Ce problème sera donc réglé par la recherche d'une forme de tuyère donnant à la sortie un écoulement horizontale et uniforme [1, 6-7, 15, 30, 35-36, 94-96, 99-101].

Pour les applications aérospatiales, la conception est basée sur deux facteurs essentiels qui sont ; l'obtention d'une poussée maximale avec un poids le plus petit possible de la tuyère (longueur minimale). Il est connu que la masse de la tuyère est considérée comme une grande portion de la masse totale des missiles. En jouant sur ces facteurs, plusieurs formes de tuyères ont étés trouvées [1, 2, 7, 15, 27, 30, 35-37, 43-44, 51-52, 70, 86-87] parmi les quelles la tuyère à détente centrée (*MLN*) dont elle est le but de ce présent travail.

Plusieurs auteurs sont intéressés par la conception des tuyères supersoniques depuis 70 ans études et recherches jusqu'à présent. Ces études sont développées en parallèle avec des problèmes rencontrés, le moyen disponible en calcul et la capacité des chercheurs pour entamer des problèmes sérieux. Connaissant très bien que chaque problème nécessite une modélisation et par conséquent des hypothèses à optées pour réaliser cette étude. Pour les tuyères supersoniques, le besoin pour les premières études était la conception pour des nombres de Mach supersoniques faible jusqu'à 2.0 environ et une température de la chambre de combustion qui ne dépasse pas les 1000 K, vu qu'il n'est ya pas un développement convenable en sciences des matériaux pour permettre de découvrir des matériaux réfractaires qui peuvent résister à des températures élevées comme les 1000 K. Dans ce cas les hypothèses convenables à optées pour faire une telle conception sont celles d'un gaz parfait, calorifiquement parfait et thermiquement parfait [2, 6-7, 11, 14-16, 18-19, 24, 27, 32, 35-37, 43-44, 50-52, 55-56, 63, 66, 70, 72, 74, 76, 79, 82, 86-88]. Dans ce cas le modèle mathématique adéquat devient assez simple, qui est basé sur l'utilisation de la méthode des caractéristiques. Plusieurs formes des tuyères ont étaient développées au fur et à mesure avec le temps. Citons une quinzaine de formes connues dans la littérature [70, 86-87]. Chacune à des avantages et des inconvénients et domaines d'applications qui ne se trouvent pas dans l'autre forme. Citons des applications pour l'aérospatiale et pour les souffleries. La méthode des caractéristiques en 2D, axisymétrique et 3D c'est la seule méthode utilisée pour la conception des tuyères supersoniques, vu que le problème posé est indirect, c'est-à-dire que le domaine de calcul est inconnu (limitation de la paroi qui est inconnue). Le problème de calcul est purement numérique après qu'il était expérimental. Dans ce cas, les constructeurs fait un choix sur la forme de la paroi. Ils prennent généralement une forme circulaire raccordée avec une zone de redressement ayant une allure d'un polynôme de 2^{ème} ou 3^{ème} degré [6, 9, 15, 16, 32, 37, 43-44, 52]. Ces formes ne donnent pas des bonnes performes vu que la poussée n'est pas utilisée complètement dans la propulsion, sans parler sur le poids obtenu de la tuyère. Dans ce cas le problème rencontré est de type direct.

Plusieurs travaux ont étés réalisés en changeant la forme de la zone de redressement, la zone de détente et chaque fois on obtient une nouvelle forme avec ces performances. Il est à noter que tous ces travaux de conception sont réalisés sur l'hypothèse d'un écoulement non visqueux. Autrement dit le calcul de la correction de la paroi en utilisant les équations de la couche limite est fait plut tard par plusieurs auteurs.

Concernant les tuyères de forme 3D, les auteurs utilisaient toujours la méthode des caractéristiques avant le développement de la tuyère basé sur l'utilisation de la fonction de courant dans l'espace. Citons le premier travail [14] qui est fait pour le modèle de gaz parfait avant qui sera réalisé à haute température par Abada et al [1]. Chaque auteur qui développe un calcul donne des performances meilleurs et autre domaine d'utilisation différent à celui réalisé avant. Actuellement d'autre considérations sont ajoutés à la liste des performances c'est celui de l'adaptation de la tuyère en deux régimes de vol (deux altitudes différentes). Les tuyères répondant à ce critère sont appelées tuyères double galbes ou double corps.

En parallèle avec le développement de la science des matériaux et le besoin en construction aérospatiales, les auteurs commencent à corrigés le modèle du gaz parfait par le développement de nouveau modèle appelé modèle à haute température dont le but de voir des formes de tuyères répondant aux exigences d'avoir des températures très élevée de la fin de combustion et le besoin en nombre de Mach de sortie [1, 5, 94-96, 99-101]. Le domaine supersonique généralement est limité jusqu'à nombre de Mach 5.00. En plus de M=5.00 on entre dans un autre régime appelé hypersonique [5] et d'autres considération et vision doivent êtres prises en compte pour trouver des formes corrigées aux tuyères supersoniques.

Le premier travail effectué sur la conception des moteurs fusés c'était en 1940 par Malina [56]. L'auteur a utilisé le modèle basé sur la théorie d'un gaz parfait pour déterminer les caractéristiques et les performances d'un moteurs fusé. Dans ce cas les équations seront considérablement simplifiées, où on obtient des équations algébriques. La tuyère de cet engin a été considérée comme conique et l'écoulement à travers cette tuyère est considéré complètement unidirectionnel. Dans ce cas aucune information n'est donnée sur la forme de la tuyère. C'est l'inconvénient de cette étude. Pour résoudre ce problème l'auteur a opté une forme conique pour simplification. Coburn et Dolph en 1949 [25], ont développés la méthode des caractéristiques pour les écoulements supersoniques tridimensionnelles. Ici le calcul est limité pour les problèmes axisymétriques. Le calcul en 3D quelconques n'a pas été encore développé. A titre information, la géométrie axisymétrique et considéré comme une géométrie 3D. C'est vrai mais plus précisément c'est une géométrie quasi tridimensionnelle. C'est-à-dire elle représente une présentation en 3D mais le calcul peut être considéré uniquement en 2D. En 1947, Sauer [80-81] a développé une technique de calcul pour les écoulements transsoniques au voisinage de col d'une tuyère supersonique pour déterminer la limite entre l'écoulement subsonique et supersonique, basée sur la méthode des caractéristiques précisément pour les problèmes axisymétriques. Les hypothèses optées sont toujours basées sur l'utilisation d'un gaz parfait .On peut dire c'est la première étape de considération numérique pour aborder des écoulements supersoniques malgré qu'il n'est ya pas un développement convenable en domaine d'évolution de computer. Les auteurs dans les références [51, 83] ont appliqués la théorie d'un gaz parfait calorifiquement parfait pour déterminer les performances des souffleries supersoniques. On peut dire que ce travail est similaire a celui de Malina [56] de bien de vu performances des tuyères utilisées en Aerospace et en souffleries. Après développement en domaine de l'ordinateur, Beckwith et al [14] et Rizkalla [76] ont développés encore un calcul pour les tuyères axisymétriques appliqué pour un test de géométrie carré. Le premier développement pour la recherche du contour d'une tuyère supersonique en 2D en vue d'optimiser les performances de Malina est réalisé par Beckwith and Moore [14]. Ici les auteurs ont choisis la tuyère dite coquetier c'est-à-dire un raccordement entre une petite zone circulaire et autre de redressement de forme polynomiale. Les performances de la tuyère sont trouvées à cette époque.

Le premier calcul sur l'utilisation de la méthode des caractéristiques en écoulement supersonique 3D pour une géométrie arbitraire c'est en 1967 par Rakich [72] ensuite par Chushkin en 1968 [22] et par suite par Ranson et al 1970 [74]. Les auteurs ont développés une méthode purement numérique. Notons ici que la seule méthode connue pour le développement des écoulements supersoniques c'était la méthode des caractéristiques. Chaque auteur a choisi une géométrie 3D, mais pas une tuyère supersonique. C'est-à-dire ils sont utilisés les calculs pour l'aérodynamique externe. A cette époque on remarque un petit développement en puissance des calculateurs numériques. Le premier calcul utilisant la méthode des caractéristiques pour la conception des tuyères supersoniques 2D et axisymétriques c'était en 1978 par Sivells [83]. La tuyère développée dans ce travail c'est de type coquetier et le modèle de calcul utilisé c'est-à-dire les hypothèses sont toujours basées sur le gaz calorifiquement et thermiquement parfait. Une variété de forme des tuyères supersoniques utilisées en Aéronautique sont présentées par Sutton en 1992 [86-87]. On trouve dans cette références une dizaine de forme de tuyère supersoniques citons notre tuyère de longueur minimale MLN appliquée dans notre étude ou tous simplement la tuyère à détente centrée. Plusieurs travaux sont réalisés pour ce type de tuyère citons celui de Argrow et al 1988 [7]. La géométrie opté dans cette étude est le 2D et l'axisymétrique. Les auteurs dans cette références ont fait la comparaison des performances obtenues suivant le choix de la ligne sonigue de départ de calcul dans le divergent de la tuyère. A titre information plusieurs considération sur la ligne sonique au col de la tuyère peuvent êtres prisent en comptes. Toujours dans cette étude, les auteurs ont utilisés le modèle du gaz parfait malgré que les résultats obtenus sont élargis jusqu'à nombre de Mach 5.00 mais sans considération de la température de la chambre de combustion. Des applications pour d'autres types de tuyères sont présentées dans la référence [37] par Gerald et al. Citons la tuyère à cors central et d'autre de type annulaire. La première étude de conception des tuyères 3D de géométrie quelconque c'est réalisée par Abada et al. [1]. La tuyère choisie dans cette référence c'est de type coquetier avec utilisation toujours de modèle de gaz parfait. Entre 1970 et 2006 presque tous les travaux sur la conception des tuyères sont basés sur l'utilisation de modèle d'un gaz parfait. Ce problème est considérablement simplifié. Il considère que les chaleurs spécifiques sont constantes et ne varie pas avec la température. Cette hypothèse est valable uniquement à basse température et à faible nombre de Mach. La première correction des performances d'utilisation du modèle du gaz parfait par l'utilisation du modèle à haute température c'était réalisé par Zebbiche et al en 2007 [95] pour la tuyère MLN en 2D ensuite en 2010 par Zebbiche [95-96. 100-101] en géométrie axisymétrique. Les auteurs ont utilisés la méthode des caractéristiques et l'application est faite pour l'air à température élevée de la chambre de combustion. Ils ont trouvés que l'erreur trouvée sur les performances par le modèle GP à nombre de Mach élevé peut arriver à 60 %. Une question à été posée sur la possibilité d'amélioration et correction encore les performances trouvées par Zebbiche [95-96, 100-101] à été répondu par Abada et al. [1].

Les résultats obtenus d'un écoulement supersonique d'un gaz parfait discutées auparavant et présentés dans les références [7, 9, 11, 14-16, 24, 27, 30, 35-36] sont valables sous la base de quelques hypothèses. Parmi ces hypothèses, le gaz est considéré comme calorifiquement parfait, c'est à dire, les chaleurs spécifiques C_P et C_V sont constantes et ne dépendent pas de la température.

Les études sur les tuyères supersoniques pour le modèle haute température *HT* sur le dimensionnement de ces dernières, ont été principalement menées par les auteurs Zebbiche et Youbi [95-96]. Dans ces références, des études à *HT* sur la conception des tuyères supersoniques uniquement pour air sont présentées.

Les paramètres thermodynamiques à *HT* d'un écoulement supersonique pour la substance air avec application dans une tuyère supersonique sont présentés dans les références [97-98].

Les Réfs [95-96, 100-101] présentent des études en *HT* pour l'air sur la conception des tuyères supersoniques par la méthode des caractéristiques. Cette

méthode est basée sur la fonction *PM*. Cette fonction, pour l'air en *HT* est présentée dans [93 102].

Le gaz de propulsion utilisé dans les applications expérimentales ou dans le calcul était toujours l'air vu qu'il existe en quantité dans la nature et les propriétés thermodynamiques de l'air sont déjà trouvées. On s'intéresse dans la conception des tuyères supersoniques à haute température sans dissociation des molécules, généralement à la variation de la chaleur spécifique à pression constante avec la température.

En parallèle avec le développement en matière de conception, les chercheurs commençaient à faire étudier la thermodynamique des différents gaz possible qu'on peut les trouver dans la nature. Chaque gaz possède ces propriétés qui diffèrent d'un gaz à l'autre. Mais on peut dire que tous se convergent vers une même variation mathématique de $C_P(T)$. Dans ce cas, les chercheurs sacrifient leurs temps pour faire des expériences à fin de déterminer les valeurs de C_P et γ en quelques valeurs de températures. Les résultats à trouvées sont donc des valeurs tabulées ; Dans les références de la thermodynamique, ces tables sont disponibles. Ici une interpolation polynomiale ou fonctionnelle est faite par pas mal d'auteurs, où chacun trouve sa propre fonction de variation de $C_P(T)$. Toutes ces interpolations se ressemblent avec une erreur très petite et une marge de température utilisée. On trouve des interpolations sous la forme d'une seule expression analytique, l'autre préfère deux expressions analytiques possédant un passage à une température donnée, généralement à *T*=1000 K.

Les études sur l'utilisation d'autres gaz de propulsion au lieu de l'air sur la conception des tuyères supersoniques et les paramètres thermodynamiques et géométriques est généralement pauvre, où les études sont limitées pour le cas d'un gaz calorifiquement parfait et thermiquement parfait ou la chaleur spécifique $C_P(T)$ et le rapport γ sont constantes. Ces études sont limitées pour des gaz chaud et l'autre froid à faible M_S <2.00 et T_0 <1000 K.

1.3. Position du problème par rapport à la littérature

Après une recherche bibliographique assez poussée dans différents documents et maisons d'éditions, on a remarqué que la majorité des auteurs dans le domaine de la conception des tuyères s'intéressent sur l'utilisation l'air comme gaz de propulsion sous l'hypothèse du gaz parfait à chaleur spécifique C_P constante [1, 2, 4-10, 14-15, 19, 27, 30, 32, 35, 44, 50-52, 56, 70, 76-77, 79, 83, 94-96, 99-101]. Le choix de l'air pour les applications vu son existence en quantité dans la nature et que tous les écoulements externe et interne des engins aérospatiaux se fait en contact avec l'air. La supposition d'un gaz parfait ne tient pas compte du comportement réel du gaz lorsque la température génératrice est élevée, dépassons les 1000 K. Dans ce cas, le modèle mathématique du calcul

est à revoir complètement. Le nouveau modèle sera appelé modèle du gaz parfait à Haute Température. La différence entre les deux modèles réside au niveau de l'équation de conservation de l'énergie. On n'a pas un problème au niveau de la conservation de la masse et de la quantité du mouvement. Donc le changement de l'équation de l'énergie par une nouvelle qui tient compte de la variation des chaleurs spécifiques à haute température donne un nouveau modèle à résoudre dont la philosophie de la résolution ne change pas complètement, sauf quelque modification. Il est à noter que pour résoudre un tel problème, il suffit généralement de choisir deux variables d'état pour déterminer le reste des paramètres. Alors le modèle mathématique du gaz parfait devient un cas particulier de notre modèle à Haute Température. Le but de changer l'air par un autre gaz de propulsion c'est l'amélioration des performances des tuyères supersoniques notamment la diminution la masse de la tuyère et l'augmentation de coefficient de poussée par rapport aux même paramètres de conception de l'air.

1.4. Objectifs de l'étude

Notre présent travail à pour objectif d'améliorer les performances des engins aérospatiaux qui ont utilisées l'air comme un gaz de propulsion par le développement des nouvelles formes des tuyères supersoniques en utilisant des différents gaz de propulsion dans le cadre d'un gaz à haute température inférieure au seuil de dissociation des molécules. L'application sera faite pour la tuyère à détente centrée. Neuf gaz ont été utilisés qui sont H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air. Toute une liste des gaz est présentée par une trentaine de gaz que nous comptons de donner des meilleurs performances. Une comparaison a été faite uniquement entre ces neuf substances et particulièrement avec l'air en vu de choisir le meilleur gaz qui donne des meilleures performances par rapport aux autres selon le besoin en paramètres de conception. L'étude reste valable pour n'importe quel autre gaz. L'essentielle c'est de trouver les propriétés thermodynamiques de gaz et à incorporer dans le programme de calcul numérique et de voir s'il donne des meilleurs performances ou non. Le choix de ces gaz est faite sur la base de voir une variété différentes et considérable sur les propriétés thermodynamiques (C_P , R et γ) entre eux et par rapport à l'air.

1.5. Motivation

Les premiers calculs sur l'utilisation des autres gaz de propulsion pour le calcul des paramètres thermodynamiques et géométriques au lieu de l'air et l'application pour le calcul de l'écoulement monodirectionnel ont prouvés l'effet positif de gaz sur le rapport des sections et la variation de tous les paramètres à travers la tuyère et en particulier le nombre de Mach. Le rapport des sections critiques qui représente la dimension de la tuyère varie avec le choix de gaz, c'est-à-dire avec la chaleur spécifiques à pression constante et bien sur la température T_0 et le nombre de Mach M_S de la tuyère. Alors les propriétés thermodynamiques de gaz considéré influent essentiellement sur tous les paramètres sans exception. On a remarqué que certains gaz améliorent les performances des tuyères et d'autre dégradent les performances en comparaison avec l'air. La plus part des études réalisées dans ce contexte sont effectués pour le cas de l'air. Aucun travail effectué pour le cas d'autre gaz de propulsion. Pour cette raison, notre intérêt s'oriente vers le développement d'un programme de calcul numérique permettant d'étudier l'effet d'utilisation des gaz de propulsion sur la résolution de trois problèmes indiqués et qui tombent dans un même axe de recherche et avec les essais effectués.

- Le premier problème c'est d'étudier l'effet du gaz de propulsion à haute température sur les paramètres thermodynamiques et géométriques et faire une application de calcul de l'écoulement dans une tuyère monodirectionnel avec une comparaison avec les résultats de l'air. Les résultats sont fruités par la présentation d'une publication internationale.
- Le deuxième problème c'est d'étudier l'effet de gaz de propulsion à haute température sur la variation de la fonction de Prandtl Meyer et la préparation de modèle des équations sur la méthode des caractéristiques. Un programme de calcul numérique est réalisé dans ce cas. Les résultats sont enrichis par la présentation d'une publication internationale.
- Le troisième problème consiste à développer un nouveau programme de calcul numérique permettant de déterminer l'effet d'utilisation des gaz de propulsion à l'exception de l'air sur les paramètres de conception d'une tuyère supersonique type à détente centrée (*MLN*) de géométrie 2D et l'axisymétrique par la méthode des caractéristiques. Le profil de ce type de tuyère est déterminé de telle manière que l'écoulement sera uniforme et parallèle à la section de sortie pour raison de ne pas avoir des pertes de poussée.

CHAPITRE 2

PROPRIETES THERMODYNAMIQUES DES GAZ

2.1. Introduction

Les gaz considérés sont choisies parmi l'ensemble des gaz qui se trouvent dans la nature, possédants des propriétés thermodynamique différentes. On s'intéresse à la chaleur spécifique à pression constante $C_P(T)$ à haute température et à la constante thermodynamique *R* des gaz ainsi que l'intervalle de variation de la température pour ne pas avoir de dissociation des molécules au rapport des chaleurs spécifiques des gaz à basse température. La fonction $C_P(T)$ est disponible en fonction de la température dans plusieurs références bibliographiques et sous plusieurs formes d'interpolations et valeurs tabulées [12-13, 16-18, 20-21, 23-24, 28, 31, 38-42, 45, 54, 57, 60-61, 65, 68, 70, 89, 90, 92, 97-98]. Il est à noter que ces fonctions contiennent toutes les sources et modes d'énergies qui peuvent êtres existés lorsque la température croit. Citons l'énergie de translation, de rotation et de vibration moléculaires ; Cette dernière commence à exister lorsque la température commence à dépasser les 2000 K selon les références [12-13, 16-18, 20-21, 23-24, 28, 31, 38-42, 45, 54, 57, 60-61, 65, 68, 70, 60-61, 65, 68, 70, 89, 90, 92, 97-98].

Les molécules de ces gaz possèdent une ou deux type d'atomes qui sont H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air. Pour que les substances restent toujours des gaz il faut que la température se trouve dans un intervalle précis pour ne pas avoir une dissociation des molécules. Les limites de ces intervalles se trouvent dans les références [12-13, 16-18, 20-21, 23-24, 28, 31, 38-42, 45, 54, 57, 60-61, 65, 68, 70, 89, 90, 92, 97-98]. Le gaz est considéré comme parfait. Notamment l'équation d'état ($P=\rho RT$) reste toujours valable, sauf il sera considéré comme calorifiquement imparfait vu l'utilisation à température élevée. Dans ce cas, la chaleur spécifique varie avec la température. Le gaz est considéré encore come thermiquement parfait vu que la température de dissociation des molécules n'est pas atteinte.

2.2. Chaleur spécifique à pression constante

Dans la littérature [12-13, 16-18, 20-21, 23-24, 28, 31, 38-42, 45, 54, 57, 60-61, 65, 68, 70, 89, 90, 92, 97-98], on trouve pour les substances choisies une variation suivant la relation (2.1) de la chaleur spécifique $C_P(T)$. Les constantes de cette fonction sont présentées dans le tableau 2.1.

$$C_P(T) = a' + b' T + \frac{c'}{T^2}$$
 (2.1)

Concernant l'air, la loi de variation de $C_P(T)$ est choisie comme un polynôme de 9^{ème} degré. Elle est présentée dans les références [97-98], récapitulé par :

$$C_{p}(T) = a_{1} + T(a_{2} + T(a_{3} + T(a_{4} + T(a_{5} + T(a_{6} + T(a_{7} + T(a_{8} + T(a_{9} + T(a_{10})))))))))$$
(2.2)
Les coefficients a_i (*i*=1, 2, ..., 10) sont présentés dans le tableau 2.2. Dans la formule (2.2) on a préféré d'écrire la formule en utilisant le schéma de Horner pour raison de baisser la taille des valeurs manipulées intermédiaires lors de calcul de la valeur de C_P pour une température donnée.

Ν	Gaz	a' (J/(K mol))	<i>b</i> ' (J/(K ² mol))	c' (J K / mol)
1	H ₂	27.28	3.26	0.50
2	O ₂	29.96	4.18	-1.67
3	N ₂	28.58	3.76	-0.50
4	CO	28.41	4.10	-0.46
5	CO ₂	44.22	8.79	-8.62
6	H ₂ O	30.54	10.29	0.08
7	NH ₃	29.75	25.10	-1.55
8	CH ₄	23.64	47.86	-1.92

Tableau 2.1 : Coefficients de $C_P(T)$ des gaz sélectionnés selon la relation (2.1).

Tableau 2.2 : Coefficients du polynôme $C_P(T)$ pour l'air selon la relation (2.2).

i	a _i	i	a _i	i	a _i	i	a _i	i	a _i
1	1001.1058	3	-6.3376 10 ⁻⁴	5	-4.0338 10 ⁻⁹	7	-1.3509 10 ⁻¹⁵	9	-4.846 10 ⁻²³
2	4.066128 10 ⁻²	4	2.7474 10 ⁻⁶	6	3.0697 10 ⁻¹²	8	3.47222 10 ⁻¹⁹	10	2.8411 10 ⁻²⁷

Un petit problème se pose durant l'interpolation par la formule (2.2). Après une présentation graphique du polynôme de $C_P(T)$ et une comparaison avec les valeurs tabulées données par la référence [8], présentées dans le tableau 2.3, on remarque une variation ondulée à basse température jusqu'à environ 240 K, au lieu d'avoir une fonction constante dans cette portion conformément aux valeurs tabulées dans cet intervalle. A cet effet, une correction est faite à cette fonction pour rapprocher les valeurs interpolées aux valeurs du tableau 2.3. Alors, si $T=\overline{T}=240 K$, la relation (2.2) donne la valeur suivante:

$$\overline{C}_{P} = C_{p}(\overline{T}) = 100115868 \ J/(Kg K)$$
 (2.3)

Donc, la correction est faite de la manière suivante

• Si
$$T \leq \overline{T}$$
, on opte la correction suivante: $C_P(T) = \overline{C}_P$

• Si $T > \overline{T}$, on utilise la formule (2.2).

Tableau 2.3 : Variation	de $C_P(T)$) avec la tem	pérature	pour l'air.
	1 1	/		

T (K)	C_P		T (K)	$T(K)$ C_P		T (K)	C_P
, (1)	(J/(Kg K)		<i>i</i> (i()	(J/(Kg K)		· (IX)	(J/(Kg K)
55.538	1001.104		833.316	1107.192		2111.094	1256.813
			888.872	1119.078		2222.205	1263.410
222.205	1001.101		944.427	1131.314		2333.316	1270.097
277.761	1002.885		999.983	1141.365		2444.427	1273.476
305.538	1004.675		1055.538	1151.658		2555.538	1276.877
333.316	1006.473		1111.094	1162.202		2666.650	1283.751
361.094	1008.281		1166.650	1170.280		2777.761	1287.224
388.872	1011.923		1222.205	1178.509		2888.872	1290.721
416.650	1015.603		1277.761	1186.893		2999.983	1294.242
444.427	1019.320		1333.316	1192.570		3111.094	1297.789
499.983	1028.781		1444.427	1204.142		3222.205	1301.360
555.538	1054.563		1555.538	1216.014		3333.316	1304.957
611.094	1054.563		1666.650	1225.121		3444.427	1304.957
666.650	1067.077		1777.761	1234.409		3555.538	1308.580
722.205	1080.005		1888.872	1243.883			
777.761	1093.370		1999.983	1250.305			

La fonction $C_P(T)$ dans la relation (2.1) est trouvée par Joule/(mol K). Alors dans nos calculs on a besoin de la-convertir en Joule/(kg K). Pour cela on utilise la relation (2.4) suivante.

$$C_{P}\left(\frac{Joule}{kg\ K}\right) = C_{P}\left(\frac{Joule}{mol\ K}\right) \times \frac{R}{8.314510}$$
(2.4)

Les valeurs de C_P et γ à basse température sous l'hypothèse d'un gaz parfait, calorifiquement et thermiquement parfait pour les 9 substances choisies présentées dans le tableau 2.1, ainsi que la constante *R* sont présentés dans le tableau 2.4 [12-13, 16-18, 20-21, 23-24, 28, 31, 38-42, 45, 54, 57, 60-61, 65, 68, 70, 89, 90, 92, 97-98]. Elles sont déterminées pour une température *T*=298.15 K. Les valeurs de *R* dans le tableau 2.4 peuvent être déterminées par :

$$R\left(\frac{J}{kg K}\right) = \frac{8.314510}{Masse Moléculaire} \times 1000$$
(2.5)

Tableau 2.4 : Valeurs de C_P et γ à T=298.15 K et R pour les gaz choisis

-					
Ν	Gaz	Masse moléculaire (g)	C _P [J/(kg K)]	Ŷ	R [J/(kg K)]
1	H_2	2.01588	14304.594	1.4051	4124.506
2	O ₂	31.99880	918.1079	1.3947	259.8381
3	N ₂	28.01348	1039.6548	1.3995	296.8038
4	CO	28.01040	1040.3705	1.3992	296.8385
5	CO ₂	44.00980	844.22714	1.2883	188.9240
6	H ₂ O	18.01528	1864.4012	1.3289	461.5254
7	NH_3	17.03056	2092.1466	1.3043	488.2111
8	CH ₄	16.04276	2224.7529	1.3037	518.2717
9	Air	28.96003	1001.2893	1.4020	287.1029

Le rapport des chaleurs spécifiques peut être calculé par la relation suivante [9] :

$$\gamma(T) = \frac{C_P(T)}{C_P(T) - R}$$
(2.6)

2.3. Autre interpolation de la chaleur spécifique à pression constante

Dans certaines références [12-13, 23-24, 31, 45, 60-61] on trouve des représentations sous la forme des valeurs tabulées ou même polynomiales différentes à celles optés pour notre étude. Après un traçage des différentes fonctions $C_P(T)$ et le calcul de l'erreur commises entre elles, on a remarqué que la différence entre les diverses interpolations est très petites qui nous donne la possibilité d'utiliser n'importe quelles interpolations. Parmi elles on présente l'interpolation suivante :

$$C_{P}(T) = R\left(a_{1} + a_{2}T + a_{3}T^{2} + a_{4}T^{3} + a_{5}T^{4}\right)$$
(2.7)

La fonction $C_P(T)$ est divisée en deux expressions analytiques. L'une pour *T*<1000 K et l'autre pour *T*>1000 K. Cependant, la fonction est continue au point *T*=1000 K. Les valeurs données par la relation (2.7) sont exprimés en J/(Kg K). Pour les gaz du tableau 2.1, les constantes de la fonction d'interpolation (2.7) sont présentées dans le tableau (2.5).

N	Gaz	<i>T</i> (K)	a 1	$a_2\left(\frac{1}{K}\right) \times 10^4$	$a_3\left(\frac{1}{K^2}\right) \times 10^7$	$a_4\left(\frac{l}{K^3}\right) \times 10^{11}$	$a_5\left(\frac{1}{K^3}\right) \times 10^{15}$
1		$T \le 1000 \text{ K}$	2.344331112	79.8052075	-194.781510	2015.72094	-7376.11761
	112	<i>T</i> ≥ 1000 K	2.932865790	8.26607967	-1.46402335	1.54100359	-6.88804432
2	0	$T \le 1000 \text{ K}$	3.782456360	-29.9673415	984.730200	-968.129508	3243.72836
2	O_2	<i>T</i> ≥ 1000 K	3.660960830	6.56365523	-1.41149485	2.05797658	-1.29913248
2	N	$T \le 1000 \text{ K}$	3.53100528	-1.23660987	-5.02999437	243.530612	-1408.81235
5	IN ₂	<i>T</i> ≥ 1000 K	2.95257626	13.9690057	-4.92631691	7.86010367	-4.60755321
1	со	<i>T</i> ≤ 1000 K	3.57953347	-6.10353680	101.681433	90.7005884	-904.424499
4		<i>T</i> ≥ 1000 K	3.04848583	13.5172818	-4.85794075	7.88536486	-4.69807489
5	<u> </u>	<i>T</i> ≤ 1000 K	2.35677352	89.8459677	-712.356269	245.919022	-143.699548
5	CO_2	<i>T</i> ≥ 1000 K	4.63659493	27.4131991	-9.95828531	16.0373011	-9.16103468
6		<i>T</i> ≤ 1000 K	4.19864056	-20.36434	65.2040211	-548.797062	1771.97817
0		<i>T</i> ≥ 1000 K	2.67703787	29.7318329	-7.73769690	9.44336689	-4.26900959
7		<i>T</i> ≤ 1000 K	4.30177808	-47.7127330	219.341619	-2298.56489	8289.92268
1		<i>T</i> ≥ 1000 K	2.71709692	55.6856338	-176.886396	26.7417260	-15.2731419
0		<i>T</i> ≤ 1000 K	5.14987613	-136.709788	491.800599	-4847.43026	16669.3956
8	CH_4	<i>T</i> ≥ 1000 K	1.63552643	100.842795	-336.916254	53.4958667	-31.5518833

Tableau 2.5 : Coefficients de $C_P(T)$ des gaz sélectionnés selon la relation (2.7).

2.4. Propriétés thermodynamiques de différentes substances

Dans ce paragraphe, on va présenter les coefficients de la relation (2.7) pour une trentaine d'autres gaz de la nature selon le tableau 2.6 [12-13, 16-18, 20-21, 23-24, 28, 31, 38-42, 45, 54, 57, 60-61, 65, 68, 70, 89, 90, 92, 97-98]. Pour ces gaz on n'a pas les utilisés pour la conception des tuyères supersoniques. C'est juste une présentation pour une intéressant et futur applications. Notons que si on veut appliquer un tel gaz parmi la liste de tableau 2.6, il suffit qu'à utiliser sa fonction $C_P(T)$ selon la relation (2.7) dont leurs coefficients sont présentés dans le tableau 2.6. Les valeurs de C_P , γ ainsi que la constante R à basse température pour T=298.15 K sont présentées dans le tableau 2.7.

Gaz	Т (К)	a ₁	$a_2\left(\frac{l}{K}\right) \times 10^4$	$a_3\left(\frac{l}{K^2}\right) \times 10^7$	$a_4\left(\frac{l}{K^3}\right) \times 10^{11}$	$a_5\left(\frac{l}{K^3}\right) \times 10^{15}$
C	T ≤ 1000 K	2.55423955	-3.21537724	7.33792245	-73.2234889	266.521446
C	T ≥ 1000 K	2.60558298	-19.5934335	1.06737219	-1.6423939	81.8706752
<u>сц</u>	T ≤ 1000 K	3.48981665	3.23835541	-16.8899065	316.217327	-1406.09067
CIT	T ≥ 1000 K	2.52090627	17.6537235	-4.61476705	5.92885472	-3.34731962
сц	T ≤ 1000 K	3.74484879	11.7960823	19.4502264	-252.932506	1124.47631
	T ≥ 1000 K	2.77723166	38.3663476	-13.4853220	21.1641255	-12.3445662
CH ₃	T ≤ 1000 K	3.67359040	20.1095175	57.3021856	-687.117425	2543.85734

Tableau 2.6 : Coefficients de $C_P(T)$ de quelques gaz selon la relation (2.7).

	T ≥ 1000 K	2.96866033	58.0717546	-19.7778534	30.7278752	-17.8853897
CH.O	T ≤ 1000 K	3.26524894	33.0300117	170.493964	-2271.04476	8807.56520
01130	T ≥ 1000 K	4.26676538	78.5380110	-28.3739943	45.9039659	-27.4426084
C	T ≤ 1000 K	-1.96258641	576.81531	-1580.37735	17246.0636	-65790.5286
\mathbf{U}_2	T ≥ 1000 K	4.12487314	1.08346618	1.57250890	853430.72787523964-2271.044763964-2271.04476394345.90396593773517246.06360890-4.2404210239502947.91045221826.0556663718152801.524372877524.697422619412-3576.578471458642.128590619976-1718.8367450282-3.857874910628248.167403355657.8349442551301-593.0698764145813.03182847902015.74772933049-934.055507226465.944814632650-2815.618544583117.23140726441-3865.016281186648.14496908463-5007.091822905846.727841810350968.1620982605815.99912962136-1014.784061758217.534072019336-189.4040110457524.629577406396-612.806624029520.49548184503841-388.113333149784.2052424736052-2233.1154241278-177.19455235701-2157.708137947919.728171045020346.3921800.47163571045020346.392180	3.25055714
C.H	T ≤ 1000 K	2.88965733	134.099611	-284.76950	2947.91045	10933.1511
0211	T ≥ 1000 K	3.36118395	43.8989724	-162.772218	26.0556663	-15.2939305
C.H.	T ≤ 1000 K	0.808681094	233.615629	-355.171815	2801.52437	-8500.72974
02112	T ≥ 1000 K	4.65878504	488.396547	-16.0828775	24.6974226	-13.8605680
C ₂ H ₃	T ≤ 1000 K	3.21246645	15.1479162	259.209412	-3576.57847	14715.0873
	T ≥ 1000 K	4.35105055	749.330091	-26.4314586	42.1285906	-24.9896119
HNO	T ≤ 1000 K	4.53525882	-56.8546910	185.199976	-1718.83674	5558.33090
	T ≥ 1000 K	3.16554762	30.0005132	-3.94350282	-3.85787491	7.08091931
ΝШ	T ≤ 1000 K	3.49295037	3.11795722	-14.8906628	248.167403	-1035.70916
	T ≥ 1000 K	2.78372645	13.2985886	-4.24785565	7.83494425	-5.50451298
NH.	T ≤ 1000 K	4.20556857	-21.3561363	72.6851301	-593.069876	1806.90978
11112	T ≥ 1000 K	2.84768992	31.4280035	-8.98641458	13.0318284	-7.48812926
NO	T ≤ 1000 K	3.94403907	-15.8547444	166.578984	-2047.54478	7835.03265
NO ₂	T ≥ 1000 K	4.88474429	1.083466181.57250890134.099611-284.7695043.8989724-162.772218233.615629-355.171815488.396547-16.082877515.1479162259.209412749.330091-26.4314586-56.8546910185.19997630.0005132-3.943502823.11795722-14.890662813.2985886-4.24785565-21.356136372.685130131.4280035-8.98641458-15.8547444166.57898421.7241639-8.28079020-46.3988124110.44304911.9101135-4.29122646104.902697110.47265025.7772041-10.0945831-107.791866386.51644190.0187272-31.4911866-5.49129555376.84846387.5017187-29.9399058113.046338-136.71035026.685279-9.5842605842.488354951.457213627.6960700-10.491758294.4343451-38.791933643.0561265-15.2704575-32.793188466.4306396-0.273162486-0.041902955	-8.28079020	15.7477293	-10.5110549
NO	T ≤ 1000 K	4.21859896	-46.3988124	110.443049	-934.055507	2805.54874
	T ≥ 1000 K	3.26071234	11.9101135	-4.29122646	5.94481463	-4.03295681
NO ₃	T ≤ 1000 K	2.17359310	104.902697	110.472650	-2815.61854	13658.3958
NO3	T ≥ 1000 K	7.48347734	25.7772041	-10.0945831	-2271.04476 45.9039659 17246.0636 -4.24042102 2947.91045 26.0556663 2801.52437 24.6974226 -3576.57847 42.1285906 -1718.83674 -3.85787491 248.167403 7.83494425 -593.069876 13.0318284 -2047.54478 15.7477293 -934.055507 5.94481463 -2815.61854 17.2314072 -3865.01628 48.1449690 -5007.09182 46.7278418 968.162098 15.9991296 -1014.78406 17.5340720 -189.404011 24.6295774 -612.806624 0.495481845 -388.113333 4.20524247 -2233.11542 -177.194552 -2157.70813 19.7281710 346.392180 0.471635710	-10.7154015
NO ₃ N ₂ H ₂	T ≤ 1000 K	4.91066016	-107.791866	386.516441	-3865.01628	13485.2100
112112	T ≥ 1000 K	1.31115086	90.0187272	-31.4911866	48.1449690	-27.1897983
N ₂ H ₂	T ≤ 1000 K	3.83472149	-5.49129555	376.848463	-5007.09182	20336.2064
19214	T ≥ 1000 K	4.93957357	87.5017187	-29.9399058	46.7278418	-27.3068599
HNO NH NH2 NO2 NO NO3 N2H2 N2H4 N2H4 N2O N3 N3H O OH -	T ≤ 1000 K	2.25716860	113.046338	-136.710350	968.162098	-2930.55583
1420	T ≥ 1000 K	4.82318873	26.685279	-9.58426058	Image: 1000000000000000000000000000000000000	-9.77416939
Na	T ≤ 1000 K	2.86063038	42.4883549	51.4572136	-1014.78406	4418.78398
113	T ≥ 1000 K	4.64110696	27.6960700	-10.4917582	30.7278752 -2271.04476 45.9039659 17246.0636 -4.24042102 2947.91045 26.0556663 2801.52437 24.6974226 -3576.57847 42.1285906 -1718.83674 -3.85787491 248.167403 7.83494425 -593.069876 13.0318284 -2047.54478 15.7477293 -934.055507 5.94481463 -2815.61854 17.2314072 -3865.01628 48.1449690 -5007.09182 46.7278418 968.162098 15.9991296 -1014.78406 17.5340720 -189.404011 24.6295774 -612.806624 0.495481845 -388.113333 4.20524247 -2233.11542 -177.194552 -2157.70813 19.7281710 346.392180 0.471635710 <td>-10.7482704</td>	-10.7482704
NaH	T ≤ 1000 K	2.88510881	94.4343451	-38.7919336	30.7278732 64 -2271.04476 943 45.9039659 735 17246.0636 90 -4.24042102 50 2947.91045 218 26.0556663 815 2801.52437 775 24.6974226 112 -3576.57847 586 42.1285906 976 -1718.83674 282 -3.85787491 508 248.167403 505 7.83494425 301 -593.069876 458 13.0318284 984 -2047.54478 920 15.7477293 949 -934.055507 546 5.94481463 950 -2815.61854 331 17.2314072 441 -3865.01628 366 48.1449690 46.7278418 350 350 968.162098 958 15.9991296 136 -1014.78406 582 17.5340720	1601.84132
1311	T ≥ 1000 K	5.14700291	43.0561265	-15.2704575		-14.7144164
NH2 NO2 NO NO3 N2H2 N2H4 N2O N3 N3H O OH O3	T ≤ 1000 K	3.16826710	-32.7931884	66.4306396	-612.806624	2112.65971
0	T ≥ 1000 K	2.54363697	-0.273162486	-0.041902952	0.495481845	-0.47955369
ОН	T ≤ 1000 K	3.99201543	-24.0131752	46.1793841	-388.113333	1364.11470
011	T ≥ 1000 K	2.83864607	11.0725586	-2.93914978	4.20524247	2.42169092
0.	T ≤ 1000 K	3.40738221	20.5379053	138.486052	-2233.11542	9760.73226
O_3	T ≥ 1000 K	1.23302914	-119.324783	79.8741278	-177.194552	126.075824
H-O-	T ≤ 1000 K	4.27611269	-5.42822417	167.335701	-2157.70813	8624.54363
1202	T ≥ 1000 K	4.57333537	40.4984070	-12.9479479	19.7281710	-11.3402846
NaCI	T ≤ 1000 K	3.70322860	31.9976080	-48.9245020	346.392180	-913.575210
NAUL	T ≥ 1000 K	4.42829310	1.56272410	-0.281083830	0.471635710	0.288325570

CN	T ≤ 1000 K	3.61293502	-9.55513275	21.4429765	-31.5163270	-464.303546
CN	T ≥ 1000 K	3.74818333	0.391753271	2.99702996	-6.92704532	4.46137691
снсо	T ≤ 1000 K	2.76593971	141.741202	-232.600986	2157.28089	-7585.09308
	T ≥ 1000 K	4.26038110	48.2740500	-16.6618844	26.1405204	-15.3257963
	T ≤ 1000 K	2.30186735	154.157529	-313.262156	3088.16551	-11191.2353
TINC	T ≥ 1000 K	4.22248103	25.9458278	-8.58480969	13.0745002	-7.50339765
COOH	T ≤ 1000 K	2.92207915	76.2453820	32.9884683	-1071.35249	5115.87309
COON	T ≥ 1000 K	5.39206247	41.1221305	-14.8194817	23.9875278	-14.3902965
	T ≤ 1000 K	3.95920148	-75.7052247	570.990292	-6915.88753	26988.4373
	T ≥ 1000 K	3.99182761	104.833910	-37.1721385	59.4628514	-35.3630526

Tableau 2.7 : Valeurs de C_P et	∕ à <i>T</i> =298.15 K et la constante <i>R</i> ∣	pour quelques gaz.
-----------------------------------	---	--------------------

Gaz	Masse moléculaire (g)	C _P [J/(kg K)]	Ŷ	<i>R</i> [J/(kg K)]
С	12.01100	1734.96540	1.66387	692.24127
CH	13.01894	2240.96584	1.39857	638.64723
CH ₂	14.02688	2496.27009	1.31140	592.75548
CH₃	15.03482	2555.22876	1.27620	553.01693
CH ₃ O	31.03422	1402.11854	1.23621	267.91425
C ₂	24.02200	1812.83819	1.23598	346.12063
C ₂ H	25.02994	1735.36144	1.23673	332.18257
C_2H_2	26.03788	1689.86636	1.23299	319.32361
C_2H_3	27.04582	1579.12820	1.24174	307.42310
HNO	31.01408	1092.40891	1.32522	268.08823
NH	15.01468	1944.32056	1.39822	553.75872
NH ₂	16.02262	2113.08237	1.32551	518.92324
NO ₂	45.00554	826.05527	1.28807	184.74414
NO	30.00514	995.24145	1.38586	277.10285
NO ₃	52.00494	902.51599	1.21528	159.87923
N_2H_2	30.02936	1167.02319	1.31105	276.87936
N_2H_4	32.04524	1519.03692	1.20599	259.46162
N ₂ O	44.01288	877.64576	1.27428	188.91083
N ₃	42.02022	860.89053	1.29843	197.86926
N ₃ H	43.02816	1027.67583	1.23157	193.23415
0	15.99940	1369.52470	1.61149	519.67636
OH	17.00734	1757.26240	1.38543	488.87774
O ₃	47.99820	820.40336	1.26766	173.22545
H_2O_2	34.01468	1246.16310	1.24401	244.43887
NaCL	58.44247	612.73779	1.30239	142.26828
CN	26.01774	1120.62000	1.39894	319.57080
CHCO	41.02934	1101.61485	1.22542	202.64791
HNC	27.02568	1490.08887	1.26018	307.65220
COOH	45.01774	968.73150	1.23556	184.69407
C_2H_4	28.05376	1528.74148	1.24049	296.37774

2.5. Autre interpolation de $C_P(T)$

Dans certaines références [12-13, 16-18, 20-21], on a trouvé cette fonction pour les gaz choisis :

$$C_P(T) = a_1 + a_2 t + a_3 t^2 + a_4 t^3 + \frac{a_5}{t^2}$$
(2.8)

Dans la relation (2.8), la valeur de C_P est calculée en J/(K mol). Il suffit qu'à utiliser la relation (2.4) pour convertir en J/(kg K). Dans cette relation la variable t=T/1000.

Gaz	a 1	a ₂	a ₃	a 4	a_5
CO_2	58.16639	2.720074	-0.492289	0.038844	-6.447293
CO	35.15070	1.300095	-0.205921	0.013550	-3.282780
H_2O	41.96426	8.62253	-1.499780	0.098119	-11.15764
H ₂	43.413560	-4.293079	1.272428	-0.096876	-20.533862
Н	20.78603	4.850638x10 ⁻¹⁰	-1.582916x10 ⁻¹⁰	1.525102x10 ⁻¹¹	3.196347x10 ⁻¹¹
O ₂	20.91111	10.72071	-2.020498	0.146449	9.245722
0	22.18977	-1.318044	0.378308	-0.026069	0
OH	28.74701	4.714489	-0.814725	0.054748	-2.747829

Tableau 2.8 : Coefficients de la fonction $C_P(T)$ selon l'interpolation (2.8)

2.6. Chaleur spécifique C_P de quelque gaz sous forme des valeurs tabulées

Dans le tableau 2.9 on a présenté les valeurs de C_P pour quelques substances dans la marge de température [400 K, 3500 K] avec un pas de 50 K, selon les références [38-42, 54, 68]. On a limité le domaine d'application dans cet intervalle à cause de la limite de l'air dans cet intervalle pour ne pas avoir de dissociation. Pour les autres substances, et d'après les références [8, 15], la dissociation est atteinte à une température jusqu'à 5000 K. Bien sur elle varie d'une substance à l'autre. Ici il suffit de faire s'il est nécessaire une propre interpolation polynomiale qui passe par le maximum des points et qui donne une erreur acceptable. On peut dire que les résultats de conception ne dépendent pas de la forme de l'interpolation si elle donne une erreur très petite. On propose dans le paragraphe prochain quelques interpolations polynomiales utilisées dans la littérature.

T(K)	H_2	O ₂	N ₂	CO	CO_2	H ₂ O	NH_3	CH_4
400	14392	892	1001	1008	911	1892	2156	2485
450	14375	928	1023	1029	945	1911	2332	2717
500	14474	941	1035	1037	1009	1927	2425	2902
550	14575	952	1062	1048	1032	1994	2485	3017
600	14652	987	1078	1069	1058	2012	2592	3198
650	14113	1008	1098	1088	1077	2052	2614	3351
700	14741	1017	1112	1101	1098	2069	2748	3502
750	14887	1024	1116	1119	1117	2121	2835	3687
800	14973	1032	1125	1127	1131	2150	2911	3847
850	15051	1040	1131	1132	1139	2175	2992	4003
900	15137	1047	1139	1144	1160	2221	3084	4139
950	15198	1054	1142	1132	1168	2232	3113	4285
1000	15290	1061	1151	1141	1179	2257	3188	4421
1050	15368	1068	1158	1144	1191	2286	3241	4588
1100	15449	1075	1162	1141	1201	2317	3332	4702
1150	15528	1082	1168	1162	1212	2342	3420	4841

Tableau 2.9 : Valeurs expérimentales de C_P en J/(Kg K) des gaz choisis en fonction de la température

1200	15601	1089	1174	1174	1226	2370	3501	5011
1250	15682	1096	1181	1186	1232	2401	3542	5194
1300	15768	1103	1188	1197	1245	2429	3632	5312
1350	15848	1109	1198	1202	1254	2454	3702	5465
1400	15921	1116	1201	1211	1262	2484	3784	5602
1450	16001	1123	1210	1219	1274	2512	3832	5769
1500	16088	1129	1217	1229	1284	2532	3941	5918
1550	16172	1136	1221	1232	1298	2566	4001	6077
1600	16253	1143	1229	1239	1311	2594	4084	6187
1650	16330	1149	1238	1248	1319	2610	4154	6302
1700	16412	1156	1242	1257	1328	2641	4232	6513
1750	16491	1163	1250	1261	1337	2672	4312	6614
1800	16578	1169	1255	1269	1347	2711	4391	6817
1850	16657	1176	1261	1280	1354	2731	4434	6902
1900	16738	1183	1268	1288	1365	2751	4523	7114
1950	16819	1189	1278	1291	1374	2794	4601	7294
2000	16891	1196	1284	1301	1388	2811	4684	7423
2050	16981	1202	1290	1310	1401	2835	4736	7594
2100	17062	1209	1298	1312	1415	2874	4812	7701
2150	17143	1216	1301	1321	1421	2901	4857	7844
2100	17061	1209	1303	1328	1424	2871	4879	7866
2150	17140	1216	1309	1332	1428	2902	4901	7894
2200	17225	1222	1315	1337	1438	2931	4962	8002
2250	17306	1229	1320	1342	1447	2962	5042	8174
2300	17386	1235	1329	1349	1455	3002	5112	8285
2350	17470	1242	1334	1352	1469	3021	5194	8456
2400	17549	1248	1342	1359	1475	3051	5242	8523
2450	17631	1255	1349	1368	1486	3074	5312	8684
2500	17702	1262	1352	1374	1497	3101	5402	8781
2550	17789	1268	1362	1381	1503	3132	5495	9002
2600	17874	1275	1367	1387	1517	3154	5541	9194
2650	17958	1281	1371	1392	1526	3184	5613	9203
2700	18035	1288	1380	1400	1535	3210	5702	9388
2750	18101	1294	1384	1411	1542	3241	5794	9542
2800	18198	1301	1391	1421	1555	3275	5865	9625
2850	18271	1307	1400	1428	1563	3301	5931	9875
2900	18359	1314	1402	1437	1575	3323	6012	10023
2950	18423	1321	1411	1441	1584	3365	6134	10125
3000	18511	1327	1420	1449	1597	3398	6149	10256
3050	18614	1334	1428	1457	1610	3412	6267	10325
3100	18687	1340	1432	1462	1617	3441	6301	10512
3150	18758	1347	1439	1470	1628	3464	6387	10723
3200	18836	1353	1448	1478	1636	3501	6446	10987
3250	18922	1360	1452	1485	1647	3525	6512	11021
3300	19001	1366	1459	1491	1654	3554	6588	11145
3350	19094	1373	1467	1501	1666	3598	6641	11258
3400	19172	1379	1471	1511	1671	3621	6738	11423
3450	19256	1386	14/9	1514	1681	3642	6821	11507
3500	19341	1393	1484	1522	1692	3656	6884	11745

Entre une interpolation et autre on essayant de choisir toujours celle qui donne une erreur la plus petite possible pour permettre de calculer les valeurs thermodynamiques et de conception avec une erreur minimale entre les valeurs numériques et expérimentales. Pour deux ou plusieurs interpolations donnant le même ordre de grandeur de l'erreur, on choisi en deuxième étape, l'interpolation qui donne le nombre d'opérations mathématiques le plus petit possible pour accélérer le processus de calcul par ordinateur puisque la fonction C_P intervient dans beaucoup de calcul intermédiaires de conception. Par exemple interpolation (2.1) demande de faire 5 opérations mathématiques au lieu de 11 opérations mathématiques si on utilise les interpolations (2.7) ou (2.8) qui va influer considérablement sur le temps de calcul par ordinateur.

On a essayé de faire une propre interpolation polynomiale aux valeurs de tableau 2.9. Plusieurs essais on été effectués en choisissant un polynôme d'ordre 2, 3, 4 et autres jusqu'à degré 9 et chaque fois on interpole afin de trouver les coefficients du polynôme à recherché. Ces interpolations sont trouvées en utilisant un logiciel informatique. A près un traçage du polynôme et la comparaison avec les valeurs tabulées en calculons l'erreur relative maximale commise entre la valeur donnée par l'interpolation et la valeur tabulée et surtout de voir l'allure de l'interpolation sur tout l'intervalle on a remarqué qu'il existe des oscillations et des fluctuations de quelques interpolations par exemple des interpolations d'ordre 2, 3 et 4 de même d'ordre 7 et 8. On a remarqué que l'interpolation d'ordre 5 dont les coefficients sont présentés dans le tableau 2.10 donne des bons résultats sans oscillations (c'est-à-dire que la fonction est lisse aux passages des valeurs tabulées). Elle donne une erreur maximale très petite d'ordre 0.01 %. On n'a pas aimé de faire des interpolations d'ordre supérieur à 9 ou 10 degrés à cause de nombre d'opérations mathématiques élevé pour calculer la valeur de $C_P(T)$ pour une température donnée.

L'interpolation proposée possède la forme polynomiale suivante [23-24, 28, 45, 70], dont les coefficients sont présentés dans le tableau 2.10:

$$C_{P}(T) = a_{0} + a_{1}T + a_{2}T^{2} + a_{3}T^{3} + a_{4}T^{4} + a_{5}T^{5}$$
(2.9)

Gaz	a_0	a 1	<i>a</i> _{2 x} 10 ⁴	<i>a</i> _{3 x} 10 ⁷	$a_{4 x} 10^{11}$	<i>a</i> _{5 x} 10 ¹⁵
	J/(kg K)	$J/(kg K^2)$	J/(kg K ³)	J/(kg K ⁴)	J/(kg K ⁵)	J/(kg K ⁶)
H ₂	14020,7043	0,75979	7,89678	-3,44878	7,21071	-5,78652
O ₂	855,58415	0,31411	-1,66758	0.728317	-1,52126	1,21887
N ₂	992,87397	0,19719	-0.573065	0.250775	-0.0524977	0.421787
CO	988,90616	0,20335	-0.511379	0.221764	-0.46088	0.367554
CO ₂	705,37353	0,88438	-6,22908	2,7264	-5,70901	4,58529
H ₂ O	1701,89977	0,56105	0.0710523	-0.0199992	0.0200514	-0.01268
NH ₃	1648,01333	1,65561	-1,15962	0.318556	-0.313216	0.01480
CH ₄	1344,11258	3,2249	-1,50662	0.412581	-0.404693	0.0625
Air	918,49494	0,19248	1,30551	-1,42339	4,47697	-4,7736

Tableau 2.10 : Coefficients de la fonction $C_P(T)$ selon l'interpolation (2.9)

2.7. Interpolations polynomiales

Considérons le relevé expérimental de la chaleur spécifique à pression constante en fonction de la température à des températures discrètes T_1 , T_2 , ...,

 T_N . La théorie prévoit que la fonction C_P dépend de la température suivant la loi $C_P(T)$. Pour savoir si l'expérience a été effectuée dans de bonnes conditions, il faut pouvoir comparer C_{Pi} à $C_P(T_i)$. Parfois $C_P(T)$ n'est pas connue explicitement mais seulement des valeurs tabulée et il est important de disposer de valeurs intermédiaires. L'approximation de C_P vue comme une fonction, en utilisant les données expérimentales (T_i ; C_{Pi}) s'impose naturellement.

L'approximation d'une fonction C_P par un polynôme est une démarche naturelle que l'on rencontre dans divers contexte en analyse. Lorsque la fonction C_P est assez régulière, elle permet d'analyser le comportement local (développements de Taylor) mais aussi dans certain cas de décrire globalement la fonction comme somme infinie de fonctions analytiques. Dans ces deux situations la précision avec laquelle on peut approcher C_P par un polynôme dépend de la régularité de la fonction.

A l'inverse, avec une hypothèse de régularité relativement faible, le théorème de Stone-Weierstrass nous assure que l'on peut approcher uniformément toute fonction continue sur un intervalle compact, d'aussi près que l'on veut, par un polynôme. Les polynômes sont les fonctions les plus simples que l'on puisse construire à l'aide des 3 opérations +; -; x. La façon la plus simple de représenter un polynôme $C_P(T)$ de degré inférieur ou égal à *N* est de l'exprimer dans la base {1, *T*, *T*², ..., *T*^N} par:

$$C_P(T) = \sum_{k=0}^{k=N} a_k T^k$$
 (2.10)

On propose un aperçu sur diverses interpolations connues dans la littérature [29, 58, 59, 60, 62, 71, 73].

2.7.1. Interpolation polynomiale de Vandermonde

On veut trouver un polynôme $C_P(T)$ de degré N > 0, qui, pour des valeurs T_0 , T_1, \ldots, T_n données, distinctes, prenne les valeurs $C_{P0}, C_{P1}, \ldots, C_{PN}$, respectivement, c'est-à-dire

$$C_P(T_j) = C_{Pj}$$
 pour $0 \le j \le N$. (N+1 points) (2.11)

Une manière directe et simple de résoudre ce problème est d'écrire

$$C_P(T) = a_0 + a_1 T + a_2 T^2 + \dots + a_N T^N$$
(2.12)

Où a_0 , a_1 , a_2 , ..., a_N sont des coefficients à déterminer.

Si ces coefficients sont connus, le polynôme $C_P(T)$ l'est aussi. On a :

$$C_{Pj} = a_0 + a_1 T_j + a_2 T_j^2 + \ldots + a_N T_j^N \qquad 0 \le j \le N$$
(2.13)

Puisque les valeurs T_j et C_{Pj} sont connues, les dernières relations constituent un système de *N*+1 équations à *N*+1 inconnues a_0 , a_1 , ..., a_N . Ce système peut être écrit sous la forme matricielle suivante :

$$\begin{vmatrix} 1 & T_0 & T_0^2 & T_0^3 & \cdots & T_0^N \\ 1 & T_1 & T_1^2 & T_1^3 & \cdots & T_1^N \\ 1 & T_2 & T_2^2 & T_2^3 & \cdots & T_2^N \\ 1 & T_3 & T_3^2 & T_3^3 & \cdots & T_3^N \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & T_N & T_N^2 & T_N^3 & \cdots & T_N^N \end{vmatrix} \begin{vmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_N \end{vmatrix} = \begin{cases} C_{P_0} \\ C_{P_1} \\ C_{P_2} \\ C_{P_3} \\ \vdots \\ C_{P_N} \end{cases}$$
(2.14)

Bien que la méthode ci-dessus soit particulièrement simple et évidente dans son principe, et qu'elle conduise à la résolution d'un système linéaire de N+1 équations à N+1 inconnues, toujours compatible, elle n'est pas à conseiller en raison des problèmes numériques qu'elle peut poser, par exemple le mélange des tailles des éléments de la matrice de Vandermonde devant l'unité vu les valeurs élevées de température.

2.7.2. Interpolation polynomiale de Lagrange

Soit les fonctions $L_k(T)$ définies par :

$$L_{k}(T) = \frac{(T - T_{0})(T - T_{1})...(T - T_{k-1})(T - T_{k+1})...(T - T_{N})}{(T_{k} - T_{0})(T_{k} - T_{1})...(T_{k} - T_{k-1})(T_{k} - T_{k+1})...(T_{k} - T_{N})}$$
(2.15)

Elles satisfont aux propriétés suivantes :

$$\begin{cases} L_k(T_j) = 0 \text{ si } j \neq k, & 0 \le j \le N \\ L_k(T_k) = 1 \end{cases}$$
(2.16)

A chaque point T_k , nous avons donc associé un polynôme L_k de degré N valant un en T_k et zéro aux autres points T_j , $j \neq k$. Ces polynômes, linéairement indépendants, forment, comme la base canonique 1, T, T^2 , ..., T^N . Le polynôme qui interpole les valeurs C_{Pi} aux points T_i s'écrit :

$$C_P(T) = \sum_{i=0}^{i=N} C_{P_i} L_i(T)$$
(2.17)

2.7.3. Interpolation polynomiale par morceaux

L'interpolation par des polynômes de degré trop élevé conduit à des instabilités numériques vu des oscillations de la fonction et des manipulations des valeurs de très grandes tailles devant l'unité, et est d'une utilisation délicate.

En pratique, on lui préfère l'interpolation polynomiale par morceaux. On divise l'intervalle sur lequel il faut procéder à l'interpolation en sous-intervalles présentant un petit nombre de points d'interpolation par lesquels on fait passer un polynôme de faible degré, 1, 2 ou 3, par exemple.

2.7.4. Interpolation d'Hermite

Pour assurer la continuité des fonctions d'interpolations on impose des conditions de raccordement à leurs représentations sur les sous-intervalles. On exige, par exemple, la continuité de la dérivée première ou des dérivées d'ordres supérieures.

2.7.5. Interpolation par splines cubiques

Supposons que l'on veuille interpoler par morceaux une fonction y(x) sur un intervalle $[x_0, x_N]$ que l'on a partitionné en sous-intervalles $[x_{i-1}, x_i]$, i=1, 2, ..., N. L'interpolation par splines cubiques consiste à remplacer, sur chaque sous-intervalle, la fonction y par un polynôme du troisième degré, de sorte que la fonction interpolée soit continue ainsi que ses dérivées première et seconde sur tout l'intervalle $[x_0, x_N]$. Les cubiques d'interpolation s'écrivent :

$$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i , \qquad x_{i-1} \le x \le x_i , \qquad i = 1, 2, ..., N$$
(2.18)

CHAPITRE 3

PARAMETRES D'UN ECOULEMENT SUPERSONIQUE A HAUTE TEMERATURE

Les résultats obtenus d'un écoulement supersonique d'un gaz parfait présentés dans les références [3-4, 6-7, 9, 11, 14-16, 24, 27, 30, 32-33, 35-37, 43-44, 50-52, 56, 74, 76, 79] sont valables sous la base de quelques hypothèses. Parmi ces hypothèses, le gaz est considéré comme calorifiquement parfait, c'est à dire, les chaleurs spécifiques C_P et C_V sont constantes et ne dépendent pas de la température, ce qui n'est pas valable dans le cas réel lorsque la température croît [22] et [23]. Le but de ce chapitre c'est de présenter le modèle mathématique en ajoutant l'effet de variation de C_P pour permettre de modéliser le comportement physique de l'écoulement proche de la réalité lorsque la température soit élevée.. Dans ce cas, le gaz sera nommé par gaz calorifiquement imparfait ou gaz à Haute Température. On trouve dans la référence [12-13, 16-18, 20-21, 23-24, 28, 31, 38-42, 45, 54, 57, 60-61, 65, 68, 70, 89, 90, 92, 97-98], les lois de variation de $C_P(T)$ pour une majorité de substances qui peuvent être trouvées dans la nature. Les relations mathématiques présentées sont valables dans le cas général indépendamment de la forme d'interpolation et de la substance. Les relations mathématiques développées sont sous la forme des équations algébriques non linéaire, et l'intégrale des fonctions analytiques complexes où la procédure analytique est impossible. Alors, notre intérêt s'oriente vers la détermination des solutions numériques approchées. La méthode de dichotomie est utilisée pour la résolution des équations algébriques non linéaires trouvées, et l'algorithme de Simpson est utilisé pour l'intégration numérique des fonctions présentées [29, 73, 84]. Les fonctions à intégrer possèdent des gradients élevés aux extrémités de l'intervalle d'intégration. Alors, la quadrature de Simpson à pas constant demande une discrétisation très élevée pour avoir une précision convenable. La solution de ce problème sera faite par introduction d'une procédure de condensation des nœuds afin de raffiner les points à l'endroit où il y a un gradient élevé [34]. Les fonctions possèdent un gradient élevé au point supersonique. L'application sera pour les substances H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air, dans le domaine supersonique inférieur au seuil de dissociation des molécules, qui sera applicable si le nombre de Mach reste inférieur à 5.00 environ.

3.1 Formulation Mathématique du problème

Le développement des relations thermodynamiques est basé sur l'utilisation des équations de conservations sous forme différentielle [4, 6, 10, 32, 34, 66, 70, 78, 103-104].

On rappelle que l'équation d'état d'un gaz parfait reste valable et elle est donnée par:

$$P = \rho R T \tag{3.1}$$

3.1.1. Equation de la vitesse du son

La vitesse du son, par définition, est donnée par [4, 6, 10, 32, 34, 66, 70, 78, 103-104]:

$$a^{2} = \left(\frac{dP}{d\rho}\right)_{s=constante}$$
(3.2)

Après faire des transformations mathématiques, on aboutit au résultat suivant :

$$a^{2}(T) = \gamma(T) \mathsf{R} T \tag{3.3}$$

L'équation (3.3) prouve l'invariance de la relation de la vitesse du son, qui reste toujours valable pour le modèle à Haute Température, sauf, qu'il faut tenir en compte la variation du rapport des chaleurs spécifiques $\gamma(T)$ avec la température.

3.1.2. Relation entre la vitesse et la température

L'équation de conservation de l'énergie sous forme différentielle s'écrit[4, 6, 10, 32, 34, 66, 70, 78, 103-104]:

$$C_P \ dT + V \ dV = 0 \tag{3.4}$$

Intégrant la relation (3.4), entre l'état générateur donné, qui est la chambre de combustion pour notre étude, par ($V_0 \approx 0$, T_0) et un état quelconque donné par (V, T). On obtient:

$$\int_{V_0}^{V} V \, dV = - \int_{T_0}^{T} C_P(T) \, dT$$
(3.5)

A la sortie de la chambre de combustion on a $V_0 \approx 0$ et T_0 donnée, donc on peut trouver la vitesse à un point supersonique à partir de la relation suivante

$$V^{2} = -2 \int_{T_{0}}^{T} C_{P}(T) dT$$
 (3.6)

On pose

$$H(T) = \int_{T}^{T_0} C_{P}(T) dT$$
 (3.7)

Donc

$$V^2 = 2 H(T)$$
 (3.8)

3.1.3. Relation entre le nombre de Mach et la température

Par définition, le nombre de Mach est défini par [4, 6, 10, 32, 34, 66, 70, 78, 103-104] :

$$M = \frac{V}{a} \tag{3.9}$$

Remplaçons l'expression (3.3) dans (3.9) et élevant la relation au carré, ensuite substituons la relation (3.8), on obtient:

$$M(T) = \frac{\sqrt{2} H(T)}{a(T)}$$
(3.10)

La relation (3.10) montre la variation du nombre de Mach en fonction de la température pour un gaz calorifiquement imparfait.

3.1.4. Relation entre la masse volumique et la température

L'équation de la conservation de la quantité de mouvement connue par l'équation de Bernoulli sous forme différentielle s'écrit [4, 6, 10, 32, 34, 66, 70, 78, 103-104] :

$$V \, dV + \frac{dP}{\rho} = 0 \tag{3.11}$$

En figurant le nombre de Mach, en remplaçant la relation (3.9), ensuite remplaçant les relations (3.8) et (3.10) on aura

$$\frac{d\rho}{\rho} = F_{\rho}(T) \ dT \tag{3.12}$$

Avec

$$F_{\rho}(T) = \frac{C_{P}(T)}{a^{2}(T)}$$
(3.13)

Le rapport des masses volumiques correspondant à la température T peut être obtenu en intégrant l'équation (3.12) entre l'état générateur (ρ_0 , T_0) et l'état concerné donné par (ρ , T), on obtient

$$\frac{\rho}{\rho_0} = Exp\left(-\int_T^{T_0} F_{\rho}(T) dT\right)$$
(3.14)

3.1.5. Relation entre la pression et la température

Le rapport des pressions est donné, en utilisant la relation suivante une fois les rapports des masses volumiques et des températures seront connus.

$$\frac{P}{P_0} = \left(\frac{\rho}{\rho_0}\right) \left(\frac{T}{T_0}\right) \tag{3.15}$$

3.1.6. Relation entre la section et la température

L'équation de conservation de la masse s'écrit [4, 6, 10, 32, 34, 66, 70, 78, 103-104] :

$$\rho V A = constante$$
 (3.16)

La différentielle de la relation (3.16)

$$\frac{dA}{A} = F_A(T) \ dT \tag{3.17}$$

Avec

$$F_A(T) = C_P(T) \left[\frac{1}{a^2(T)} - \frac{1}{2 H(T)} \right]$$
 (3.18)

L'intégration de l'équation (3.17), entre l'état du col (A_* , T_*) et un état quelconque (A, T) du divergent, détermine le rapport des sections supersonique par

$$\frac{A}{A_*} = Exp\left(\int_T^{T_*} F_A(T) dT\right)$$
(3.19)

Nous remarquons que pour calculer les paramètres ρ et A, nous avons besoin de calculer l'intégrale d'une certaine fonction où la procédure analytique est impossible vu la complexité des fonctions à intégrer. Donc, notre intérêt s'oriente vers le calcul numérique. *Tous les paramètres M,* ρ *et A sont fonctions de la température.*

3.1.7. Débit massique critique

Le débit massique traversant une section *A* est donné par [4, 6, 10, 32, 34, 66, 70, 78, 103-104] :

$$\dot{m} = \int_{A} \rho \ V \cos \theta \ dA \tag{3.20}$$

Sachant que le débit critique est constant, on peut le calculer au niveau du col de la tuyère. A cette section on $\rho = \rho_*$, $A = A_*$ et $a = a_*$, M = 1 et $\theta = 0$ (écoulement horizontal). Donc, la relation (3.20) se réduit à une relation plus simple:

$$\frac{\dot{m}}{A_{*} \rho_{0} a_{0}} = \left(\frac{\rho_{*}}{\rho_{0}}\right) \left(\frac{a_{*}}{a_{0}}\right)$$
(3.21)

Le calcul de débit critique est nécessaire dans notre étude pour avoir un écoulement supersonique dans le divergent, il faut avoir un débit critique à travers le divergent selon la relation (3.21). Si cette condition n'est pas vérifiée, on aura par conséquent un écoulement subsonique dans le divergent et cette situation n'est pas intéressé dans notre étude. A titre information, on aura une infinité d'écoulement subsonique à travers le divergent si la condition (3.21) n'est pas vérifiée.

3.1.8. Rapport des vitesses du son

La détermination du rapport des vitesses du son, à une température T, se fait par l'utilisation de la relation (3.3). On obtient

$$\frac{a}{a_0} = \left[\frac{\gamma(T)}{\gamma(T_0)}\right]^{1/2} \left[\frac{T}{T_0}\right]^{1/2}$$
(3.22)

La relation (3.22) montre qu'il faut tenir en compte de la variation du rapport $\gamma(T)$ pour la détermination du rapport des vitesses du son, ce qui n'est pas le cas pour un gaz parfait où le rapport contient que le rapport des températures.

3.1.9. Coefficient de poussée

Le coefficient de poussée d'une tuyère supersonique peut être calculé par :

$$C_F = \gamma(T_0) M_s \left[\frac{a_s}{a_0} \right] \left[\frac{\rho_*}{\rho_0} \right] \left[\frac{a_*}{a_0} \right]$$
(3.23)

La relation (3.23) donne le coefficient C_F pour un écoulement 1D. Pour l'écoulement 2D, ou axisymétrique, le résultat (3.23) doit être corrigée.

3.2. Procédure du calcul

3.2.1. Calcul numérique des rapports thermodynamiques

La détermination des rapports des masses volumiques et des sections donnés par les formules (3.14) et (3.19), respectivement, demande l'intégration numérique des fonctions $F_{\rho}(T)$ et $F_{A}(T)$ dans les intervalles $[T,T_{0}]$ et $[T,T_{*}]$ respectivement. Notons que la fonction $F_{A}(T)$ dépend du paramètre T_{0} .

Une condensation des nœuds est alors nécessaire au voisinage de la température T_S pour les deux fonctions. Le but de cette condensation est de calculer la valeur de l'intégrale avec une précision très élevée dans un temps réduit en minimisant le nombre de nœuds de la quadrature.

Figure 3.1 : Présentation de la condensation des nœuds

La quadrature d'intégration choisie est celle de *Simpson*, pour le calcul numérique des intégrales (3.14) et (3.19). La fonction de condensation utilisée est celle de *Robert* ensuite modifiée par *Eiseman* [8] et [12]. Elle est donnée par :

$$s_{i} = b_{1} z_{i} + (1 - b_{1}) \left[1 - \frac{\tanh[b_{2} \cdot (1 - z_{i})]}{\tanh(b_{2})} \right]$$
(3.24)

Avec

$$z_i = \frac{i-1}{N-1}$$
 $1 \le i \le N$ (3.25)

Après la détermination de la fonction de condensation *s*, on peut déterminer la distribution des températures par:

$$T_i = s_i (T_D - T_G) + T_G$$
 (3.26)

La température T_D égale à T_0 pour la fonction $F_\rho(T)$, et égale à T_* pour la fonction $F_A(T)$. La température T_G égale à T_* pour le paramètre critique, et égale à T_S pour le paramètre à une section supersonique. Si on prend une valeur de b_1 proche de zéro (b_1 =0.1) et b_2 =2.0, on peut condenser les nœuds vers l'extrémité gauche T_S de l'intervalle. Si on prend des valeurs de b_1 proche de 2 (par exemple b_1 =1,9), on peut condenser les nœuds vers l'extrémité droite. Pour des sous intervalles de même longueurs, on peut prendre b_1 =1.0. La figure 3.1 présente la distribution des nœuds suivant le choix de la valeur de b_1 . Il faut noter que notre intérêt est de condenser les nœuds vers l'extrémité gauche T_S vu la variation des fonctions $F_\rho(T)$ et $F_A(T)$.

3.2.2. Paramètres critiques au col correspondant à T₀

L'état générateur est donné par le nombre de Mach nul (M=0). Alors, les paramètres critiques (T_* , P_* , ρ_* et a_*) correspondant à la température T_0 et au nombre de Mach M=1 (ce qui est le cas au col de la tuyère), peuvent être déterminés. Si nous remplaçons, dans la relation (3.10), les paramètres M et T par les conditions critiques du col (M_* =1.00, T= T_*), on obtient :

$$F(T_*) = 2 H(T_*) - a^2(T_*) = 0$$
(3.27)

La détermination de la racine T_* de l'équation (3.28) se fait en utilisant l'algorithme de dichotomie. Sachant que $T_* < T_0$, on peut choisir facilement un intervalle $[T_1, T_2]$ contenant la température T_* et qui doit vérifier la condition $F(T_1)$ $F(T_2) \le 0$. On peut prendre $T_1=0$ K et $T_2=T_0$. Une fois que cet intervalle est déterminé, on peut calculer T_1 avec une précision ε , et par suite le rapport T_* / T_0 correspondant à la température T_0 . La valeur T_* obtenue dépend de la précision ε . Le nombre d'itération N_{iter} minimum pour trouver la solution dépend de la précision ε par la relation suivante :

$$N_{iter} = 1.4426 \operatorname{Log}\left[\frac{T_2 - T_1}{\varepsilon}\right] + 1$$
(3.28)

Pour les applications, on a pris $\varepsilon = 10^{-5}$, dans ce cas le nombre d'itération minimum $N_{iter} = 24$.

Si nous remplaçons $T=T_*$ dans la relation (3.14) et nous intégrons la fonction, dans l'intervalle [T_* , T_0] et en utilisant la quadrature de Simpson avec condensation des nœuds vers l'extrémité gauche ($T=T_*$), nous obtenons le rapport critique des masses volumiques suivant:

$$\frac{\rho_{*}}{\rho_{0}} = Exp\left(-\int_{T_{*}}^{T_{0}} F_{\rho}(T) \ dT\right)$$
(3.29)

Le rapport critique des pressions P_*/P_0 peut être déterminé en remplaçant ceux des températures critiques $T=T_*$ et des masses volumiques ($\rho=\rho_*$) dans la relation (3.15).

Le rapport des vitesses critiques du son a_*/a_0 peut être obtenu encore en substituant la valeur de T_* dans la relation (3.22).

Pour trouver la valeur non-dimensionnelle du débit massique critique, il suffit tout simplement remplacer l'expression du rapport critique des masses volumiques (3.29), et celle des vitesses du son, dans l'expression (3.21).

3.2.3. Paramètres supersoniques correspondant à To

On procède maintenant à la détermination des rapports thermodynamiques et géométrique à une section quelconque du divergent de la tuyère correspondant à un nombre de Mach supersonique M_S >1.00. Cette section est caractérisée par $\rho=\rho_S$, $P=P_S$, $A=A_S$ et $T=T_S$.

L'obtention du rapport des températures se fait en premier lieu par le remplacement de $T=T_s$ et $M=M_s$ dans la relation (3.10), on obtient:

$$F(T_s) = 2 H(T_s) - M_s^2 a^2(T_s) = 0$$
(3.30)

La détermination de la racine T_S de l'équation (3.30), se fait de la même manière que celle de T_* et avec la même démarche en utilisant l'algorithme de dichotomie. Sauf ici, nous avons $T_S < T_*$. Une fois l'intervalle [T_1 , T_2] est déterminé, on peut facilement déterminer T_S avec une précision ε et par suite le rapport T_S/T_0 correspondant à la température T_0 . On peut prendre dans ce cas $T_1 = 0$ K et $T_2 =$ T_* . La valeur obtenue de T_* dépend de la précision ε .

Remplaçons $T=T_S$ dans la relation (3.14) et intégrons la fonction $F_{\rho}(T)$ dans [T_S , T_0], en utilisant la quadrature de Simpson avec condensation des nœuds vers l'extrémité gauche, nous obtenons le rapport des masses volumiques ρ_S/ρ_0 .

Le rapport des pressions a un état supersonique ($M=M_S>1.00$) peut être déterminé en remplaçant ceux des températures $T=T_S$ et des masses volumiques $\rho=\rho_S$ dans la relation (3.15).

Le rapport des vitesses du son a_S/a_0 peut être obtenu encore en remplaçant T par T_S dans la relation (3.22).

L'obtention du rapport géométrique des sections se fait par la substitution de T par T_s dans la relation (3.19), ensuite l'intégration de la relation obtenue dans

l'intervalle [T_S , T_*] en utilisant la quadrature de Simpson avec condensation des nœuds vers l'extrémité gauche T_S . On obtient:

$$\frac{A_S}{A_*} = Exp\left(\int_{T_S}^{T_*} F_A(T) dT\right)$$
(3.31)

A titre d'information, on peut calculer le débit à cette section en introduisant les paramètres nécessaires dans la relation (3.20) puis en intégrant, on obtient le résultat suivant:

.

$$\frac{m}{A_* \rho_0 a_0} = \frac{\rho_s}{\rho_0} \cdot \frac{a_s}{a_0} \cdot M_s \cdot \frac{A_s}{A_*}$$
(3.32)

Puisque le débit est constant à travers la tuyère, les relations (3.21) et (3.32) donnent le même résultat.

La précision du résultat de l'intégration de (3.29) et (3.31) dépend essentiellement des valeurs de *N*, b_1 et b_2 .

3.3. Applications

Le cas d'une tuyère supersonique de propulsion peut être pris comme un bon exemple d'application. Deux situations peuvent être présentées.

La première situation consiste à considérer une forme de tuyère supersonique donnant un écoulement uniforme et parallèle à la section de sortie, déterminée par l'utilisation de l'air comme gaz. On s'intéresse par la distribution de nombre de Mach à travers la tuyère. Le problème consiste à changer l'air par les autres gaz choisis comme gaz de propulsion sans changer la forme de la tuyère et on voit le changement s'il y a lieu sur la variation de nombre de Mach à travers la tuyère. Un excès ou dégradation en nombre de Mach sera discutée dans la première partie du chapitre des résultats.

La deuxième situation consiste à conserver la même variation de nombre de Mach donnée par l'air à travers la tuyère et on détermine la correction sur la forme de paroi de la tuyère qui sera donné par les autres gaz et qui va supporter cette variation. Une augmentation ou diminution de volume sera discutée dans la première partie du chapitre des résultats.

3.4. Fonction de Prandtl Meyer

La fonction de Prandtl Meyer joue un rôle très important dans le calcul des écoulements supersoniques. Si on veut concevoir une tuyère supersonique donnant un écoulement uniforme et parallèle à la section de sortie, il est nécessaire de connaître l'angle de détente initiale au col qu'il faut donner pour avoir le nombre de Mach de sortie voulue. La conception de ce type de tuyère est basée sur l'application de la méthode des caractéristiques. Cette dernière est formulée sur la base de la fonction de Prandtl Meyer. Une deuxième application pour l'aérodynamique externe, c'est de calculer l'écoulement supersonique autour d'un dièdre dans un milieu ambiant chaud, notamment le calcul de l'écoulement autour d'un profil d'aile pointu.

La fonction *v* est définie purement dans le régime supersonique. Lorsque M=1.0, on prend *v*=0.0, puisque le calcul se fait par une intégration définie. Alors la fonction *v* représente la déviation du vecteur vitesse de l'écoulement correspondant au nombre de Mach *M*>1.00 par rapport au vecteur vitesse de *M*=1.00. La valeur de *v* pour un nombre de Mach supersonique *M*>1.0 [dans ce cas la température est inférieure à la température critique (*T*<*T*_{*})] est donnée par [93, 102]:

$$v = \int_{T}^{T_{*}} F_{v}(T) dT$$
 (3.33)

Avec

$$F_{\nu}(T) = \frac{C_P(T)}{2 H(T)} \sqrt{2 H(T)/a^2(T) - 1}$$
(3.34)

On remarque que le calcul de la valeur de v a besoin d'intégrer la fonction (3.34) où la procédure analytique est impossible vu la complexité de cette fonction à intégrer. Donc, notre intérêt s'oriente vers le calcul numérique. Les paramètres M et v sont reliés avec la température T de l'écoulement. A une température $T=T_S$ on prend $v=v_S$.

La valeur de v_S pour la température T_S correspondant à T_0 peut être obtenue par intégration de la fonction $F_v(T)$ dans l'intervalle $[T_S, T_*]$ en utilisant la quadrature de Simpson avec condensation des nœuds vers les deux extrémités.

3.4.1. Procédure de calcul par la méthode de Simpson

La détermination de la valeur de v_S correspondant au nombre de Mach M_S $(T=T_S)$ demande l'intégration numérique de la fonction $F_v(T)$ dans l'intervalle $[T_S, T_*]$, vu la complexité de la fonction $F_v(T)$ à intégrer ou la procédure analytique est impossible. Notons ici que l'intégration dépend du paramètre T_0 . Dans la figure 3.2 on a présenté la variation de cette fonction pour voir une idée sur la forme exacte avant de prendre décision sur le choix de la quadrature d'intégration. On peut conclure que les quadratures d'intégrations à pas constant demandent une discrétisation très élevée pour avoir une bonne précision vu la variation très rapide de $F_v(T)$ aux extrémités de l'intervalle. Le traçage de la fonction est choisi pour $T_0=500$ K (basse température) et $M_S=5.00$ (extrême supersonique) pour une bonne présentation aux extrémités. La fonction présente une dérivée très grande au voisinage de la température T_* et infini à $T=T_*$ et moins au voisinage de T_S .

Une condensation des nœuds est alors indispensable et nécessaire aux voisinages des températures T_* et T_s . Le but de cette condensation est de calculer la valeur de l'intégrale avec une précision élevée dans un temps réduit en minimisant le nombre de nœuds de la quadrature. La quadrature d'intégration choisie est celle de Simpson [6] pour le calcul numérique de l'intégrale donnée par (3.34). La forme de condensation optée dans notre calcul est présentée par la relation (3.24). Après avoir obtenu *s*, on peut facilement déterminer la distribution des valeurs *T*, par:

$$\frac{T-T_s}{T_s-T_s} = f(s) \tag{3.35}$$

La fonction f(s) de la relation (3.35) est arbitraire. Pour notre calcul, on opte la forme suivante:

$$f(s)=s$$
 (3.36)

Alors, la distribution des nœuds se fait de la manière suivante:

$$T_i = s_i (T_* - T_S) + T_S$$
 (3.37)

Figure 3.2 : Variation de la fonction $F_v(T)$ dans l'intervalle $[T_S, T_*]$

La fonction de condensation (3.24) permet uniquement de faire condenser les nœuds vers une seule extrémité gauche ou droite. Comme notre fonction présente une variation très rapide aux deux extrémités, il est nécessaire de condenser les nœuds vers les deux aux mêmes temps, il est alors nécessaire de diviser l'intervalle [T_S , T_*] en deux parties, (égales par exemple) [T_S , T_M] et [T_M , T_*] telle que:

$$T_M = \frac{T_S + T_*}{2}$$
(3.38)

Alors, pour l'intervalle [T_S , T_M] gauche, on prend b_1 proche de zéro (exemple $b_1=0,1$) et $b_2=2.00$ et pour l'intervalle [T_M , T_*] de droite, on doit prendre des valeurs de b_1 proche de 2.00 (exemple $b_1=1.9$) et $b_2=2.00$ pour condenser respectivement les nœuds vers l'extrémité gauche T_S et droite T_* . On divise encore le nombre N

en deux parties. Alors, la subdivision de l'intervalle [T_S , T_*] possède la forme présentée sur la figure 3.3.

Figure 3.3 : Condensation des nœuds vers les deux extrémités de l'intervalle $[T_S, T_*]$

Les deux problèmes qui se posent généralement au niveau de calcul des paramètres de l'écoulement supersoniques sont présentés dans les paragraphes suivants:

3.4.1.1. Calcul de la valeur de vs d'un nombre de Mach Ms

La valeur de v_s pour la température T_s correspondant à T_0 peut être obtenue par intégration de la fonction $F_v(T)$ dans l'intervalle $[T_s, T_*]$ en utilisant la quadrature de Simpson avec condensation des nœuds vers les deux extrémités.

3.4.1.2. Problème inverse

Un problème se pose dans les applications du calcul des écoulements supersonique externe et interne connu par problème inverse est représenté par la détermination de la température T lorsque la valeur de la fonction de Prandtl Meyer v de cette température est connue. Le problème se pose par la détermination de T_S en connaissons v_S . A partir de la relation (3.34), on peut écrire:

$$F(T_S) = v_S - \int_{T_S}^{T_*} F_v(T) \ dT = 0 \tag{3.39}$$

Nous avons $T_S < T_*$. La fonction v est toujours positive dans le régime supersonique. Pour déterminer T_S , racine de (3.39), on utilise l'algorithme de dichotomie combiné avec la quadrature de Simpson pour l'évaluation à chaque fois l'intégrale de (3.39). En premier lieu, on définit un intervalle fermé $[T_G, T_D]$ contenant la température T_S qui vérifié la condition $F(T_G) \cdot F(T_D) \le 0$. On peut prendre $T_D = T_*$ et $T_G = 0$. En raccourcissons $[T_G, T_D]$, on a besoin chaque fois le calcul de la valeur $F(T_M)$ avec T_M est milieu de $]T_G, T_D[$. Dans ce cas on est obligé de calculer $v = v_M$, résultat de l'intégrale (3.34) lorsque $T = T_M$.

3.5. Comparaison avec l'air

L'air généralement est utilisé comme un gaz de propulsion dans la plus part des applications aéronautiques vu qu'il existe avec quantité dans la nature. De même, les études présentées dans les références [95-96, 100-101] sur les paramètres de conception et de dimensionnement des tuyères supersoniques sont faites uniquement pour l'air.

Pour présenter l'intérêt d'un tel gaz, on détermine l'écart entre les paramètres de l'air et les paramètres des autre gaz par la relation suivante :

$$\varepsilon(\%) = \left| 1 - \frac{Paramètre_{Gaz}}{Paramètre_{Air}} \right| \times 100$$
(3.40)

3.6. Choix de gaz donnant même rapport A_S/A_* de la tuyère 1D que l'air

Dans le cadre de la théorie unidirectionnelle, on détermine dans ce paragraphe, la procédure pour déterminer un gaz de propulsion qui peut remplacer l'air dont le but d'améliorer les performances telle que le coefficient de poussée. Alors la forme de la tuyère de l'air et conservée et le but c'est la détermination de la variation de nombre de Mach à travers la tuyère. Alors, le problème devient la recherche de nombre de Mach au niveau de chaque section de la tuyère, vu que l'écoulement est 1D, qui va donner le même rapport de sections critiques du cas de l'air. La forme de la tuyère pour le cas de l'air est donnée qui sera le même rapport des sections pour le gaz choisi. Alors le rapport des sections en chaque station longitudinale de la tuyère est connu. Alors on peut écrire :

$$\frac{A}{A_*}(\text{Gaz}) = \frac{A}{A_*}(\text{Air}) = \text{donné}$$
(3.41)

Pour déterminer le nombre de Mach M_S d'un tel gaz à cette même station de la tuyère correspondant au rapport des sections de l'air donné par la relation (3.41), il faut déterminer en premier lieu déterminer la température critique T_* du gaz considéré ensuite la température T_S correspondante au nombre de Mach M_S par l'inversion de la relation (3.19) lorsque le rapport des sections est donné par la relation (3.41). Le nombre de Mach M_S peut être déterminé par suite en remplaçons la température T_S trouvée dans la relation (3.10). On propose l'organigramme suivant permettant de déterminer le nombre de Mach MS donnant même rapport des sections que le cas de l'air :

Tableau 3.1 : Organigramme de calcul $M_S(Gaz)$ donnant même A_S/A_* que de l'air.

- Début
- Lire R(Air), $C_P(Air)$, $M_S(Air)$, T_0 , ε
- <u>Calcul A_S/A_{*}(Air)</u>
- Lire *R*(Gaz), *C_P*(Gaz)
- On fixe A_S/A_{*}(Gaz)=A_S/A_{*}(Air)
- Pour *M*_{S_Gauche}=1.00 ; *F*_{_Gauche}=1.00

10 $M_{S \text{ Droite}} = M_{S \text{ Gauche}} + 1.00$ • M_S=M_{S Droite} • <u>Calcul de A_S/A_{*}(Gaz) correspondant a M_S(Gaz) de gaz choisi.</u> <u>Calcul de F Droite = As/A*(Gaz) - As/A*(Air)</u> • Prod=F_Gauche X F_Droite • Si Prod<0.0 Allez à 20 $M_{S \text{ Gauche}} = M_{S \text{ Droite}}; F_{\text{ Gauche}} = F_{\text{ Droite}}; \text{ Allez à 10}$ • Iter = INT(1.4426 x Log (1.0 / ε)) + 1 20 Do I=1,Iter • M_{S Milieu}=(M_{S Gauche}+M_{S Droite})/2 • $M_{\rm S}=M_{\rm S~Milieu}$ <u>Calcul de A_S/A_{*}(Gaz) correspondant à M_S de gaz choisi.</u> <u>F</u> Milieu = A_S/A_{*}(Gaz) - A_S/A_{*}(Air) • Prod=F Gauche x F Milieu Si Prod< 0.0) Alors • $M_{\rm S Droite} = M_{\rm S Milieu}$; $F_{\rm Droite} = F_{\rm Milieu}$ Sinon • $M_{S \text{ Gauche}} = M_{S \text{ Milieu}}$; $F_{\text{ Gauche}} = F_{\text{ Milieu}}$ FinSi EndDo $M_{S}(Gaz)=M_{S Milieu}$ <u>Calcul de $A_S/A_{+}(Gaz)$ correspondant a $M_S(Gaz)$ de gaz choisi.</u> Fin •

3.7. Choix de gaz donnant même C_F de la tuyère que l'air

Dans le cadre de la théorie 1D toujours, il est possible de choisir un gaz de propulsion à la place de l'air donnant le même C_F de propulsion que le cas de l'air. Le nombre de Mach M_S de l'air donnant le C_F est donné. On peut facilement déterminer le coefficient C_F correspondant par la relation (3.23). Alors à ce niveau le C_F de l'air est donné par la relation (3.42) qui sera le même pour le gaz choisi.

$$C_F(\text{Gaz})=C_F(\text{Air})=\text{donné}$$
 (3.42)

Le problème devient la détermination de nombre de Mach M_S correspondant par inversion de la relation (3.23). La température T_* est déterminé auparavant et qui correspondant au gaz lui-même et de T_0 .

Pour déterminer le nombre de Mach de gaz choisi, on peut utiliser le même algorithme précédent présenté dans le tableau 3.1. en changeant uniquement les

sept instructions en gras et soulignées respectivement par les sept instructions présentées dans le tableau 3.2 suivant:

Tableau 3.2 : Instructions à modifiées de l'organigramme de tableau 3.1 conçues pour de calcul de M_S (Gaz) donnant même C_F que de l'air.

- Calcul C_F(Air)
- <u>On fixe C_F(Gaz)=C_F(Air)</u>
- <u>Calcul de C_F(Gaz) correspondant a M_S(Gaz) de gaz choisi.</u>
- <u>Calcul de F_{Droite}= C_F(Gaz) C_F(Air)</u>
- <u>Calcul de C_F(Gaz) correspondant à M_S de gaz choisi.</u>
- <u>F</u>_{Milieu} = C_F(Gaz) C_F(Air)
- <u>Calcul de C_F(Gaz) correspondant a M_S(Gaz) de gaz choisi.</u>
- 3.8. <u>Choix de gaz donnant même nombre de Mach de sortie de la tuyère 1D</u> <u>que l'air</u>

Le problème dans ce cas est très simple, compte tenu que le nombre de Mach de gaz est le même que le nombre de Mach de l'air. Dans ce cas on exécute le programme élaboré directement pour trouver le rapport des sections qui se traduit par la forme de la tuyère à cette station de nombre de Mach ensuite on peut déterminer facilement le coefficient de poussée C_F correspondant.

CHAPITRE 4

TUYERE A DETENTE CENTREE A HAUTE TEMPERATURE

Parmi un nombre important de forme de tuyère, on s'intéresse à ceux présentant des performances élevées comme un poids minimum avec un nombre de Mach à la sortie le maximum possible et un coefficient de poussée maximum. Dans cette étude, notre intérêt est limité pour les tuyères délivrant un écoulement uniforme et parallèle à la section de sortie. Alors, il faut chercher un profil d'une tuyère vérifiant cette condition. Il est à noter ici qu'il existe une infinité de forme de tuyère donnant toutes un écoulement uniforme et parallèle, chacune possédant ces propres performances. La détermination de la forme de la tuyère soit suivant son utilisation. Si la tuyère est utilisée pour la construction d'une soufflerie supersonique, notre souhait est que la propulsion du gaz donne un écoulement froid à la sortie pour raison de mesure et la conservation des outils de l'expérience, sans baser sur son poids minimum ou non. Mais si la tuyère est conçue pour l'application des missiles et avions supersoniques, on s'intéresse dans ce cas, d'avoir une forme délivrant le nombre de Mach souhaité, ayant une longueur et poids le plus petit possible avec une poussée le maximum élevée.

On peut deviser les tuyères suivants plusieurs considérations. Toutes respectent la condition à la section de sortie. On peut même choisir un écoulement sonique mais pas horizontal au col, ce qui est le cas pour les tuyères à corps central. Dans ce modeste travail, on s'intéresse à une tuyère supersonique ayant une entrée et une sortie horizontale.

La figure 4.1 représente les différentes géométries d'une tuyère supersonique. On peut avoir des géométries bidimensionnelle, axisymétrique et tridimensionnelle d'après cette figure.

Traditionnellement, la tuyère supersonique est devisée en deux parties. Cependant, la portion supersonique est indépendante des conditions amont de la ligne sonique. On peut étudier cette partie indépendamment de la portion subsonique. Cette dernière est utilisée pour donner un écoulement sonique au col de la tuyère. Dans cette classe, on va étudier un type de tuyère donnant à la sortie un écoulement uniforme et parallèle à la section de sortie. Elle est nommée tuyère à détente centrée qui donne la longueur minimale (*MLN*) de la tuyère par rapport aux autres types existants. Il existe deux catégories pour ce type de tuyère suivant la ligne sonique. Si la ligne sonique est une ligne de droite, la paroi au col, génère des ondes de détente centrées et divergentes. La deuxième catégorie possède une ligne sonique courbée, dans ce cas l'écoulement à l'intérieur de la tuyère possède des lignes de Mach non centrée. Ce type de tuyère est nommé par Tuyère de longueur minimale avec ligne sonique courbée. Chaque type existe

(a) : Tuyère bi-dimensionnelle

Figure 4.1 : Différentes géométries des tuyères à détente centrée

La figure 4.2 illustre le schéma général de la tuyère de longueur minimale bidimensionnelle et axisymétrique avec ligne sonique droite. L'écoulement entre le col OA et la région uniforme BES est devisé en deux régions. Pour les écoulements plan et axisymétrique, la région OAB, nommée par région de Kernel est une région d'ondes non simple. La région de transition ABE est une région d'onde simple si l'écoulement est plan et la solution peut être obtenue analytiquement [2]. Cependant est une région d'ondes non simple si l'écoulement est axisymétrique et dans ce cas la solution numérique est nécessaire.

La région triangulaire BSE est une région d'écoulement uniforme à nombre de Mach M_S de sortie. Dans ce conteste, la paroi, au col, est inclinée d'un angle θ .

4.1 Formulation mathématique

Pour un écoulement supersonique, irrotationnel, plan et axisymétrique d'un gaz parfait, la méthode des caractéristiques dont son principe est présenté dans l'appendice D, donne les équations suivantes [95-96, 100-101]

Suivant ξ (1–3):

$$\begin{cases} d(v+\theta) = \delta \frac{\sin\theta \sin\mu}{y} d\xi \\ \frac{dy}{dx} = tg(\theta - \mu) \end{cases}$$
(4.1)

$$\begin{cases} d(v-\theta) = \delta \frac{\sin\theta \sin\mu}{y} \, d\eta \\ \frac{dy}{dx} = tg(\theta+\mu) \end{cases}$$
(4.2)

L'axe de révolution est nommé par *y* pour différentier avec la constante *R* du gaz. Les équations (4.1) et (4.2) sont valables sur les caractéristiques *C*⁻ et *C*⁺ respectivement comme le montre la figure 4.3. Dans le cas réel, les caractéristiques sont courbes et si le maillage est fin de sorte que les points soient proches l'un de l'autre, on approche la courbure par une ligne de droite, le travail sera sur les lignes de Mach nommée ξ sur la caractéristique *C*⁻ et par η sur la caractéristique *C*⁺ comme le montre la figure 4.3.

Figure 4.3 : Illustration les lignes de Mach Montante et descendante.

Dans les relations (4.1) et (4.2), la fonction de Prandtl Meyer de notre modèle à haute température est donnée par la relation suivante [93, 102]:

$$dv = F_{\nu}(T) = -\frac{C_{P}(T)}{2 H(T)} \sqrt{M^{2}(T) - 1} dT$$
(4.3)

Avec M(T), H(T) et a(T) sont présentées respectivement par les relations (3.10), (3.7) et (3.3) du chapitre 3. L'angle de Mach dans la figure 4.3 est donné par :

$$\mu(T) = \arcsin(1/M) \tag{4.4}$$

On peut exprimer les directions ξ et η des lignes de Mach en fonctions des coordonnées cartésiennes *x* et *y* par les relations suivantes [2]:

$$d\xi = \frac{dx}{\cos(\theta - \mu)} \tag{4.5}$$

$$d\eta = \frac{dy}{\sin(\theta + \mu)} \tag{4.6}$$

Remplaçant les relations (4.5) et (4.6) dans le système (4.1) et (4.2) on obtient, le *modèle mathématique suivant, valable dans le cas à haute température de la méthode des caractéristiques*:

<u>Suivant ξ</u>

$$-\frac{C_P(T)}{2H(T)}\sqrt{M^2(T)-1} \ dT + d\theta = \delta \frac{\sin\theta \sin\mu}{y\cos(\theta-\mu)} \ dx$$
(4.7)

$$\frac{dy}{dx} = tg(\theta - \mu) \tag{4.8}$$

<u>Suivant n</u>

$$-\frac{C_P(T)}{2H(T)}\sqrt{M^2(T)-1} \ dT - d\theta = \delta \frac{\sin\theta \sin\mu}{y\sin(\theta+\mu)} \ dy$$
(4.9)

$$\frac{dy}{dx} = tg(\theta + \mu) \tag{4.10}$$

Notre modèle mathématique dépend essentiellement de la température génératrice T_0 de la chambre de combustion.

Le modèle mathématique développé est un système d'équations différentielles de quatre inconnues (x, y, T, θ). On remarque la différence entre notre modèle est celui du gaz parfait, où il est basé sur les variables x, y, M et θ , a cause de l'équation implicite (4.4) reliant M et T dont l'expression analytique inverse n'existe pas, on a considéré la variable T au lieu de M.

Comme les caractéristiques C^+ et C^- sont courbes, l'application de la méthode des caractéristiques nous oblige à introduire un maillage fin, afin d'approximer chaque caractéristique entre deux points par des segments de ligne de droite. Les propriétés (*x*, *y*, *T*, θ , ρ , *P*) au point 3 de la figure 4.3 peuvent être déterminées à partir de celles des points 1 et 2 qui le reliés. On approche dans ce cas la variation des paramètres *y*, θ et *T* le long les segments reliant les points 1 et 2 et les points 2 et 3 par les expressions suivantes:

$$\theta_{13}=C_{\theta}$$
 $\theta_1+(1-C_{\theta})$ θ_3 , $\theta_{23}=C_{\theta}$ $\theta_2+(1-C_{\theta})$ θ_3 (4.11)

$$T_{13}=C_T$$
 $T_1+(1-C_T)$ T_3 , $T_{23}=C_T$ $T_2+(1-C_T)$ T_3 (4.12)

$$y_{13}=C_y \quad y_1+(1-C_y) \quad y_3 \quad , \quad y_{23}=C_y \quad y_2+(1-C_y) \quad y_3 \quad (4.13)$$

Si les coefficients C_y , C_θ et C_T sont égaux à 0.5, on obtient la valeur moyenne des paramètres, nommé par le schéma de Cranck Nicolson.

4.1.1 Equation et procédure pour un point interne

Le schéma d'un point interne du champ d'écoulement est illustré dans la figure 4.4b. L'intégration des équations (4.1) et (4.2) pour ce type de point donnent:

<u>Suivant ξ (1 – 3):</u>

$$A_{13} (T_3 - T_1) + (\theta_3 - \theta_1) = \delta B_{13} (x_3 - x_1)$$
(4.14)

$$y_3 - y_1 = C_{13} (x_3 - x_1)$$
 (4.15)

<u>Suivant η (2 – 3):</u>

$$A_{23} (T_3 - T_2) - (\theta_3 - \theta_2) = \delta B_{23} (y_3 - y_2)$$
(4.16)

$$y_3 - y_2 = C_{23} (x_3 - x_2) \tag{4.17}$$

Avec

$$A_{13} = A_{13}(T_{13}) = -\frac{C_P(T_{13})}{2 H(T_{13})} \sqrt{M^2(T_{13}) - 1} \quad , \quad A_{23} = A_{23}(T_{23}) = -\frac{C_P(T_{23})}{2 H(T_{23})} \sqrt{M^2(T_{23}) - 1}$$
(4.18)

$$B_{13} = \frac{\sin(\theta_{13})\sin(\mu_{13})}{y_{13}\cos(\theta_{13} - \mu_{13})} , \qquad B_{23} = \frac{\sin(\theta_{23})\sin(\mu_{23})}{y_{23}\sin(\theta_{23} + \mu_{23})}$$
(4.19)

$$C_{13} = C_{13}(T_{13}) = tg(\theta_{13} - \mu_{13}) , \qquad C_{23} = C_{23}(T_{23}) = tg(\theta_{23} + \mu_{23})$$
(4.20)

$$\mu_{13} = \arcsin(1/M_{13})$$
, $\mu_{23} = \arcsin(1/M_{23})$ (4.21)

$$M_{13} = \frac{\sqrt{2 H(T_{13})}}{a(T_{13})}$$
, $M_{23} = \frac{\sqrt{2 H(T_{23})}}{a(T_{23})}$ (4.22)

$$a(T_{13}) = \sqrt{\gamma(T_{13}) R T_{13}}$$
, $a(T_{13}) = \sqrt{\gamma(T_{23}) R T_{23}}$ (4.23)

Les équations (4.14), (4.15), (4.16) et (4.17) constituent un système d'équations algébriques non linéaires à quatre inconnues (x_3 , y_3 , T_3 , θ_3). L'algorithme par itération successive s'écrit:

$$x_3 = \frac{E_2 - E_1}{C_{13} - C_{23}} \tag{4.24}$$

$$y_3 = E_1 + C_{13} x_3 \tag{4.25}$$

$$T_3 = \frac{D_1 + D_2 + \delta B_{23} y_3 + \delta B_{13} x_3}{A_{13} + A_{23}}$$
(4.26)

$$\theta_3 = D_1 + B_{13} x_3 - A_{13} T_3 \tag{4.27}$$

Avec:

$$E_1 = y_1 - C_{13} x_1$$
 , $E_2 = y_2 - C_{23} x_2$ (4.28)

$$D_1 = \theta_1 + A_{13} T_1 - \delta B_{13} x_1 , \qquad D_2 = -\theta_2 - \delta B_{23} y_2 + A_{23} T_2$$
(4.29)

Les relations (4.24), (4.25), (4.26) et (4.27) constituent un système d'équations de calcul par itérations pour un écoulement supersonique bidimensionnel et axisymétrique permanent et irrotationnel pour notre *modèle du gaz à haute température*.

La résolution du système se fait par la procédure d'intégration numérique de prédicteur correcteur par différences finies [73]. Pour l'algorithme de prédicteur d'Euler, les valeurs initiales de y_{i3} , T_{i3} et θ_{i3} (*i*=1,2) à l'itération, *K*=0, sont données par:

$$T_{13}=T_1$$
 , $\theta_{13}=\theta_1$, $y_{13}=y_1$ (4.30)

$$T_{23}=T_2$$
 , $\theta_{23}=\theta_2$, $y_{23}=y_2$ (4.31)

Substituons les expressions (4.30) et (4.31) dans les relations (4.18), (4.19), (4.20), (4.21), (4.22) et (4.23) ainsi que dans les relations (4.28) et (4.29) ensuite

et

remplaçant les résultats obtenus dans les relations (4.24), (4.25), (4.26) et (4.27) pour obtenir les valeurs prédictées des paramètres (x_3^0 , y_3^0 , T_3^0 , θ_3^0) au point 3.

Pour l'algorithme de correcteur d'Euler, les valeurs des relations (4.11), (4.12) et (4.13) sont utilisées et substituées dans les équations (4.24), (4.25), (4.26) et (4.27) pour obtenir les nouvelles valeurs des paramètres au point 3. Les valeurs corrigées sont $(x_3^1, y_3^1, T_3^1, \theta_3^1)$.

L'algorithme de correcteur d'Euler sera répété jusqu'à arriver à la précision ε voulue. Autrement dit, pour *K* itérations, il faut satisfaire la condition suivante pour assurer la convergence:

$$Max\left[\left|y_{3}^{K}-y_{3}^{K-1}\right|,\left|\theta_{3}^{K}-\theta_{3}^{K-1}\right|,\left|T_{3}^{K}-T_{3}^{K-1}\right|\right] < \varepsilon$$

$$(4.32)$$

La variable *x* converge automatiquement avec la convergence de la condition (4.32). Pour les applications on prend $\varepsilon = 10^{-6}$, qui va prendre la moyenne de 16 itérations.

4.1.2 Point interne particulier

On rencontre ce type de point comme la montre la figure 4.4c, lorsque le point 2 se trouve sur l'axe de symétrie pour le cas axisymétrique. Le terme B_{23} dans la relation (4.19) est indéterminé pour la valeur prédictée, puisque, au point 2 on a $y_2=0$, $\theta_2=0$. Comme le segment de la ligne de Mach montante est petit, le point 3 sera proche de l'axe de symétrie et dans ce cas, on peut approximer le nominateur du terme B_{23} par $sin(\theta_{23})=sin(\theta_3)\approx\theta_3$ et le dénominateur par $sin(\theta_{23}+\mu_{23})\approx sin(\mu_{23})$. Le terme B_{23} s'approxime par :

$$B_{23} \approx \frac{\theta_3}{\gamma_3} \tag{4.33}$$

L'équation (4.16) ne reste plus valable et sera remplacée par:

$$A_{23}(T_3 - T_2) - (\theta_3 - \theta_2) = \theta_3 \tag{4.34}$$

Alors, la résolution de l'équation (4.34) par rapport à θ_3 donne:

$$\theta_3 = \frac{A_{23} T_3 - A_{23} T_2 + \theta_2}{2} \tag{4.35}$$

Remplaçant l'équation (4.35) dans la relation (4.16), ensuite faire la résolution de l'équation obtenue par rapport à T_3 on obtient:

$$T_{3} = \frac{2\left[(D_{1} + B_{13} x_{3}) + A_{23} T_{2}\right]}{2 A_{13} + A_{23}}$$
(4.36)

Comme résultat, l'équation (4.26) sera changée par l'équation (4.36). Donc pour déterminer les propriétés (x_3 , y_3 , T_3 , θ_3) de ce type de point particulier, on utilise les équations (4.24), (4.25), (4.27) et (4.36).

4.1.3. Equations pour un point sur l'axe de symétrie

D'après la figure 4.4d, le point 3 se trouve sur l'axe de symétrie de la tuyère. Comme $y_3=0$, $\theta_3=0$ en ce point, la procédure est simplifiée et une ligne de Mach ξ joignant les nœuds 1 et 3 est employée. Les équations valables sur cette ligne de Mach sont à utiliser et x_3 , T_3 sont respectivement obtenues par la résolution des équations algébriques (4.14) et (4.15). On obtient:

$$x_3 = x_1 - \frac{y_1}{C_{13}} \tag{4.37}$$

$$T_3 = T_1 + \frac{B_{13} (x_3 - x_1) + \theta_1}{A_{13}}$$
(4.38)

On peut considérer ce point comme étant un point interne si les propriétés au point 2 sont prisent par:

$$x_2 = x_1$$
 $y_2 = -y_1$ $\theta_2 = -\theta_1$ $T_2 = T_1$ (4.39)

4.1.4 Autres paramètres

Une fois qu'on détermine les propriétés (x, y, T et θ) en un point 3 quelconque, on peut déterminer le nombre de Mach M_3 , ρ_3 et P_3 en remplaçant la température $T=T_3$ respectivement dans la relation (3.10), (3.14) et (3.15) du chapitre 3.

Figure 4.4 : Différents points de calcul.

4.2. Procédure de calcul dans la tuyère

Le calcul de l'écoulement dans la tuyère est divisé en deux régions nommées respectivement par région de Kernel et de transition.

4.2.1 Région de Kernel

Le calcul de l'écoulement dans la région de Kernel commence au point A de la figure 4.2 avec plusieurs manière de conception. Une première possibilité consiste à dimensionner la tuyère sur la base de l'angle de détente θ^{*} . Le nombre N des C^{-} à calculées dans cette région sera parmi les données. Ici le nombre de Mach M_S correspond à cet angle sera déterminé juste après le calcul de l'écoulement dans la région de Kernel. On note ici que cette méthode est utilisée dans la référence [3]. Il est à noter que pour notre cas axisymétrique, il n'existe aucune relation

analytique entre le nombre de Mach M_S et l'angle de déviation initiale θ^* . Une deuxième possibilité est que la conception se considère sur la base du nombre de Mach M_S de sortie. Ici le pas $\Delta \theta$ doit être parmi les données. L'angle de détente θ^* correspondante sera déterminé juste après le calcul de la région de Kernel. Dans ce cas un problème se rencontre durant le calcul, présenté par la figure 4.6, qui sera discuté plus tard. Notons que notre présente étude traite cette deuxième possibilité.

Pour le cas bidimensionnel, l'angle de détente initiale θ^* est relié avec le nombre de Mach M_S par la relation suivante [6-7]:

$$\theta^* = \frac{v_S}{2} \tag{4.40}$$

avec [12]:

$$\nu_{S} = \int_{T_{S}}^{T_{*}} F_{\nu}(T) \ dT \tag{4.41}$$

Substituons les valeurs de T_* et T_S dans la relation (4.41) pour obtenir la valeur de v_S et par suite, on peut obtenir la valeur de l'angle de détente θ^* correspondant au nombre de Mach de sortie. La procédure d'intégration de la relation (4.41) est présentée dans le chapitre 3.

Figure 4.5 : Processus du calcul des caractéristiques dans la région de Kernel.

Il y a une infinité d'ondes de Mach qui seront issues du point *A* et qui se réfléchies sur l'axe de symétrie. Si la conception se fait sur la base de l'angle de détente θ^* , le calcul numérique nous oblige de discrétiser la zone de détente de l'écoulement $0 \le \theta \le \theta^*$ en un nombre fini *N* de point. En total, on obtient *N*+1 *C*⁻ y compris les deux extrémités. Alors, entre deux caractéristiques successives, on opte:

$$\Delta \theta = \Delta v = \frac{\theta^*}{N} \tag{4.42}$$

Si la conception se fait sur la base du nombre de Mach M_S , le calcul nous oblige de considérer un pas $\Delta \theta = \Delta v$ assez petit.

Chaque passage à une caractéristique suivante, on incrémente l'angle de déviation de l'écoulement au point *A* par un pas $\Delta\theta$. Le nombre des *C*⁻ à calculées est inconnu à priori et dépend essentiellement sur le pas $\Delta\theta$ opté et sur la valeur de M_S choisi. Le pas $\Delta\theta$ donné par cette manière donne un maillage uniforme pour les *C*⁻ de la fin de la région de Kernel et un espace large et maillage non

uniforme pour les premières C^{-} juste après le col. En conséquence, le contour de la paroi juste après le col sera mal présenté. Pour corriger ce problème, on opte dans notre étude, un raffinement du maillage par insertion des C^{-} supplémentaires entre la ligne sonique et la première caractéristique régulière descendante. La distribution des caractéristiques insérées est réalisée en introduisant la condensation suivante [8]:

$$v_i = \left(\frac{i}{N_i}\right)^{\Delta} \Delta v$$
 $i = 1, 2, 3, 4, ..., N_i$ (4.43)

La procédure de calcul dans la région de Kernel est présentée dans la figure 4.5. On premier lieu on détermine les propriétés au point 1 de la figure 4.5a. En ce point, on a $x_1=0$, $y_1=y_A=y=1$, $\theta_1=v_1$ si on opte un maillage avec condensation et est égale à $\theta_1=\Delta\theta$ si le maillage est sans procédure de condensation. La température T_1 doit être déterminée en résolvons l'équation suivante:

$$\theta_{1} = \int_{T_{1}}^{T_{*}} F_{\nu}(T) \ dT \tag{4.44}$$

La procédure de résolution de l'équation (4.44) est présentée dans le chapitre 3 [23].

On procède ensuite à la détermination des propriétés au point 3 de la figure 4.5a en utilisant la procédure d'un point sur l'axe de symétrie. On passe à la deuxième C^- et le calcul commence par la détermination les propriétés au point 1 de la figure 4.5b. En ce point en a toujours $x_1=0$ et $y_1=y_A$, mais $\theta_1=v_2$ ou $\theta_1=2 \Delta \theta$ suivant que le maillage est ou sans procédure de condensation. La détermination de la température T_1 se fait toujours par la résolution de l'équation (4.44) avec la nouvelle valeur de θ_1 . On passe par suite à la détermination des propriétés au point 3 de la figure 4.5b en utilisant la procédure d'un point interne. Finissons le calcul sur cette C^- par la détermination des propriétés au point 3 de la figure 4.5c en utilisant la procédure d'un point sur l'axe de symétrie. Une fois qu'on arrive au point de l'axe de symétrie, la caractéristique descendante concernée est calculée complètement. On passe à prochaine C^- .

Figure 4.6 : Détection de la dernière C⁻ descendante de la zone de Kernel.

Si le dimensionnement sa fait sur la base du nombre de Mach M_S de sortie, chaque fois qu'on détermine les propriétés aux points d'une C^- , on contrôle si le nombre de Mach M_3 de l'axe de symétrie est égale ou juste supérieur au nombre de Mach M_S pour arrêter le calcul. En général, c'est très rare de trouver $M_3=M_S$. A cette raison, un problème est rencontré, consiste à détecter la caractéristique $C^$ contenant le nombre de Mach M_S sur l'axe de symétrie avec une précision ε . Cette situation est présentée sur la figure 4.6. L'algorithme de dichotomie [5] sera utilisé pour insérer et éliminer des C^- entre les deux dernières C^- régulières, celle la dernière A_2B_2 et l'avant dernière A_1B_1 puisque on a trouvé la relation suivante:

$$M_{B_1} < M_S \le M_{B_2} \tag{4.45}$$

Une $C^{-}A_{3}B_{3}$ sera insérée entre les $C^{-}A_{1}B_{1}$ et $A_{2}B_{2}$, qui remplace la dernière rejetée. En premier lieu, on insère un point A₃ avec la condition suivante:

$$\theta_{A_3} = \theta_1 = \frac{\theta_{A_1} + \theta_{A_2}}{2}$$
 (4.46)

On détermine la température T_{A_3} en résolvons l'équation (4.44) après le remplacement de l'expression (4.46) ensuite calculons les propriétés aux points de la $C^-A_3B_3$ jusqu'au point B_3 et vérifions la condition (4.45). Le calcul sera répété jusqu'on détermine la valeur de M_S avec une précision ε voulue. Le nombre de C^- totale à traité sera augmenté légèrement par rapport à celui déterminé avant l'application de l'algorithme de dichotomie.

4.2.2 Région de Transition et contour de la tuyère axisymétrique

La détermination du contour de la paroi se fait au même temps avec le calcul de l'écoulement aux points d'intersections des caractéristiques dans la région de transition *ABE* de la figure 4.2.

Le contrôle de la géométrie du maillage dans la région de transition dépend de la distance Δx choisi pour les points sélectionnés sur la ligne de Mach uniforme *BE*. La figure 4.7 présente la procédure et illustre la direction de calcul dans la région de transition. Premièrement, on calcul les propriétés au point 3 de la figure 3.9a. lci les propriétés au point 2 sont connu puisque il appartient à la dernière *C*⁻ dans la région de Kernel. Les propriétés au point 1 sont donnée par:

$$x_1 = x_s + \Delta x$$
 $y_1 = \Delta x \, tg(\mu_s)$ $\theta_1 = 0.0$ $T_1 = T_s$ (4.47)

Le calcul des propriétés au point 3 se fait en utilisant la procédure d'un point interne. On passe ensuite au calcul des propriétés au point interne 3 de la figure 4.7b sur la même C^{-} . En suivre le calcul suivant la flèche indiquée sur la figure 4.7b jusqu'à aboutir le premier point de la C^{-} comme le montre la figure 4.7c. Le premier point de la caractéristique précédente est toujours un point de la paroi déjà déterminé.

Le problème qui se pose c'est de déterminer un point de la paroi de la tuyère qui coupe la C^{-} insérée. Entre les deux caractéristiques on peut détecter plusieurs points intermédiaires de la paroi. Les différents cas possible de détection de point de la paroi sont illustrés sur la figure 4.8. Sur cette figure, les segments relient les points 1 et 3 et les points 2 et 3 ainsi que le segment de la paroi sont considérés comme des lignes de droite. Les propriétés aux points 1, 2, 3 et W sont connues. L'intersection de la paroi avec la C^{-} est nommée par le point P^{-} de propriétés (x^{+} , y^{+} , θ^{+} , T^{+}).

Pour connaître l'intersection du segment de la paroi avec C^+ ou C^- , on calcul la valeur suivante avec l'approximation initiale $\theta^{\pm}=\theta_{W}$.

$$\Delta y = y_W - y_{1+}(x_1 - x_W) tg(\varphi)$$
(4.48)

Avec

$$\varphi = C_W \theta_W + (1 - C_W) \theta^+ \tag{4.49}$$

Si $\Delta y \ge 0$, on se trouve pour la situation (a) ou (c) de la figure 4.8.

Si $\Delta y < 0$, on se trouve pour la situation (b) ou (d) de la figure 4.8.

On rencontre le cas (a), si le nombre de points de l'intersection de la paroi avec les C^+ entre deux C^- est nulle. Au début de calcul de l'écoulement dans la région de transition on rencontre soient le cas (a) ou (d). Si $\Delta y \ge 0$, on trouve une intersection de la paroi avec la caractéristique calculée. Il faut sauvegarder les paramètres (x_P , y_P , T_P , θ_P) du dernier point calculé comme un nouveau point de la paroi et passer au sélection d'une nouvelle C^- comme indique la figure 4.9. Si $\Delta y < 0$, on n'a pas encore trouvé une intersection de la paroi avec la caractéristique calculée et on se trouve soient pour la configuration (b) ou (d) de la figure 4.8.

Pour déterminer les propriétés du nouveau point détecté de la paroi, on suppose une variation linéaire des paramètres T et θ sur le segment reliant les points 1 et 3 si $\Delta y \ge 0$, et sur le segment reliant les points 2 et 3 si $\Delta y < 0$.

<u>1^{er} Cas: Si ⊿y ≥0</u>

Lorsque $\xi=0$, on a $\theta_{13}(\xi)=\theta_3$ et lorsque $\xi=\Delta\xi_{13}$ (distance entre les points 1 et 3) on a $\theta_{13}(\xi)=\theta_1$. La variation linéaire de l'angle θ donne au point P⁻ le résultat suivant:

$$\theta^{-} = \theta_{3} + \left[\frac{(x^{-} - x_{3})^{2} + (y^{-} - y_{3})^{2}}{(x_{3} - x_{1})^{2} + (y_{3} - y_{1})^{2}} \right]^{1/2}$$
(4.50)

La détermination de la position du point P^+ se fait en écrivant les équations reliant les points 1 et 3 et les points W et P^- . On obtient:

$$x^{-} = \frac{y_{3} - y_{W} - x_{3}\lambda^{-} + x_{W}tg(\varphi^{-})}{tg(\varphi^{-}) - \lambda^{-}}$$
(4.51)
$$y^{-}=y_{3}+\lambda^{-}(x^{-}-x_{3})$$
 (4.52)

Avec:

$$\varphi^{-} = C_{W} \theta_{W} + (1 - C_{W}) \theta^{-}$$
(4.53)

$$\lambda^{-} = \frac{y_{3} - y_{1}}{x_{3} - x_{1}}$$
(4.54)

<u>2^{ème} Cas: Si ⊿y <0</u>

De la même manière que le premier cas et par analogie on trouve les résultats suivants :

$$\theta^{+} = \theta_{2} + \left[\frac{(x^{+} - x_{2})^{2} + (y^{+} - y_{2})^{2}}{(x_{3} - x_{2})^{2} + (y_{3} - y_{2})^{2}} \right]^{1/2} (\theta_{3} - \theta_{2})$$
(4.55)

$$x^{+} = \frac{y_{3} - y_{W} - x_{3} \lambda^{+} + x_{W} t g(\varphi^{+})}{t g(\varphi^{+}) - \lambda^{+}}$$
(4.56)

$$y^{+} = y_{3} + \lambda^{+} (x^{+} - x_{3})$$
 (4.57)

$$\varphi^{+} = C_{W} \,\theta_{W} + (1 - C_{W}) \,\theta^{+} \tag{4.58}$$

$$\lambda^{-} = \frac{y_3 - y_1}{x_3 - x_1} \tag{4.59}$$

Figure 4.7 : Processus de calcul des caractéristiques dans la région de transition.

Les équations (4.51) et (4.52) représentent un système algébrique non linéaire permettant de déterminer la position (x, y) du point *P*⁻. En premier lieu, on approxime l'angle $\theta^-=\theta_W$. Substituons cette approximation dans le système (4.51) et (4.52) pour obtenir l'approximation initiale de la position du point *P*⁻ En substituons cette valeur initiale de la position *P*⁻ dans la relation (4.52) pour corriger l'angle θ^- . La procédure sera répétée jusqu'à satisfaire le critère de convergence ε .

Pour le point P^* , l'algorithme est présenté par les équations (4.55), (4.56) et (4.57) pour obtenir la position de ce point et l'angle de déviation de la paroi.

Entre chaque deux itérations successives, il faut vérifier la condition (4.48) pour la nouvelle valeur corrigée de θ^{-} ou θ^{+} pour prendre exactement les équations nécessaires entre le point P^{+} ou P^{-} et de détecter convenablement le point de la paroi.

Une fois la position d'un point est déterminée, il sera considéré comme un nouveau point de la paroi et l'une ou deux des configurations de la figure 4.8 étaient appliquées. La procédure sera répétée pour les prochaines caractéristiques sélectionnées dans la région de transition. La forme de la paroi dépend du pas Δx .

Figure 4.8 : Différents cas possible de l'intersection de la paroi avec les caractéristiques.

Une fois la position des points P^+ et P^- est calculée, l'angle de déviation de la paroi converge au même temps avec le processus de calcul et la température en ces points peuvent être calculée en supposons une variation linéaire sur les segments reliant les points 1 et 3 et les points 2 et 3 avec la même démarche comme l'angle θ . On aura le résultat suivant respectivement pour le point P^- et P^+ :

$$T^{-} = T_{3} + \left[\frac{(x^{-} - x_{3})^{2} + (y^{-} - y_{3})^{2}}{(x_{3} - x_{1})^{2} + (y_{3} - y_{1})^{2}}\right]^{1/2} (T_{1} - T_{3})$$
(4.60)

$$T^{+} = T_{2} + \left[\frac{(x^{+} - x_{2})^{2} + (y^{+} - y_{2})^{2}}{(x_{3} - x_{2})^{2} + (y_{3} - y_{2})^{2}} \right]^{1/2} (T_{3} - T_{2})$$
(4.61)

Pour obtenir le nombre de Mach et les autres paramètres en ce point, on remplace la température obtenue dans l'équation (3.10), (3.14) et (3.15) du chapitre 3.

Figure 4.9 : Passage d'une caractéristique à l'autre dans la région de transition.

La procédure complète sera répétée pour chaque C^{-} sélectionnée dans la région de transition jusqu'à la détermination une intersection de la paroi avec la C^{+} *BE* uniforme. Chaque fois qu'on sélectionne un point sur La ligne *BE*, le nombre de points interne à calculé sur la C^{-} correspondante diminue graduellement jusqu'on obtient un point. Cette situation est obtenue veut dire qu'on a arrivé au

point *E* de la section de sortie. Par conséquent, le rayon de sortie nondimensionnnel correspondant à la discrétisation sera donné par:

$$\frac{y_s}{y_*}(calcul\acute{e}) = \frac{y_N}{y_*}$$
(4.62)

La comparaison des résultats numériques obtenus sera faite entre le rayon de la section de sortie calculé numériquement et le rapport des sections théorique normalisé (y=1.0) présenté par la formule suivante [20], [24].

$$\left(\frac{y_S}{y_*}\right)_{théorique}^2 = \frac{A_S}{A_*} = Exp\left(\int_{T_S}^{T_*} F_A(T) \ dT\right)$$
(4.63)

Le nombre de points trouvés sur la paroi de la tuyère dépend du pas Δx choisi sur la *C*⁻ uniforme *BE* et au nombre de points sur la dernière *C*⁻ *AB* de la région de Kernel. Il est supérieur ou égale au nombre de points choisi sur la *C*⁻ *BE* uniforme ce qui n'est pas le cas pour le cas plan, où le nombre de points de la paroi est égale forcement au nombre de points de la dernière *C*⁻ *AB* de la région de Kernel.

4.2.3. Contour de la paroi de la tuyère 2D

La détermination du contour de la paroi de la tuyère 2D se fait suivant le processus présenté sur la figure 4.10. Le processus de calcul à la forme d'une suite de récurrence et le calcul ne dépend pas des résultats aval du point considéré. Si on connaît les propriétés à un point, il est facile de déterminer celles du point adjacent à droite et vis vers ça jusqu'au point de la section de sortie.

La paroi de la tuyère passe par le point *A*. En ce point, on a $x_A=0.0$, $y_A=y_*$, $M_A=M^*$ et $\theta_A=\theta^*$. La valeur de M^* est égale au nombre de Mach au point A juste après la détente et correspondant au nombre de Mach au premier point sur la dernière caractéristique descendante *AB*, voir figure 4.2.

Les propriétés de l'écoulement sur chaque ligne de Mach montante dans la région de transition *ABE* sont constantes, alors les paramètres (*T*, θ , *M*, *P*, ρ) sur les points P_i (*i*=1, 2, ...,*N*) de la paroi sont connues et il nous reste qu'à déterminer les positions (*x*, *y*) de chaque point. Les lignes de Mach montante dans cette région représentent une portion des lignes isoMach.

La figure 4.11 présente un schéma général pour déterminer les équations nécessaires pour l'obtention de la position du point P_i . La pente d'un panneau numéro (*i*-1) entre les points *i*-1 et *i* est approximée par l'angle $\alpha_{(i-1)}$ illustré sur cette figure. La position du point P_i peut être déterminée par les relations suivantes:

$$x_{P_{i}} = \frac{y_{i} - y_{P_{i-1}} + x_{P_{i-1}} tg(\alpha_{(i-1)}) - x_{i} tg(\theta_{i} + \mu_{i})}{tg(\alpha_{(i-1)}) - tg(\theta_{i} + \mu_{i})} \qquad i=2, 3, \dots, N$$

$$y_{P_{i}} = y_{P_{i-1}} + (x_{P_{i}} - x_{P_{i-1}}) tg(\alpha_{(i-1)})$$
(4.64)

Pour *i*=1, on a $x_{P_1} = 0.0$, $y_{P_1} = y_*$

Lorsque i=N, On obtient la position du dernier point de la paroi qui représente le point de la section de sortie. Alors, sous forme non-dimensionnelle, on a

$$x_{S} = x_{P_{N}}$$
, $y_{S} = y_{P_{N}}$ (4.65)

La section de sortie correspondant à la discrétisation de *N* points est donnée, sous forme non-dimensionnelle, par:

$$\frac{y_{s}}{y_{*}}(calcul\hat{e}) = \frac{y_{P_{N}}}{y_{*}}$$
(4.66)

La comparaison des résultats numériques obtenus sera faite entre le rayon de la section de sortie calculé numériquement et le rapport des sections théorique normalisé (y = 1.0) présenté par la formule suivante illustré dans la référence [13].

AB: Dernière caractéristique descendante de la zone de Kernel

Figure 4.11: Présentation les paramètres de calcul du point P_i de la paroi

4.3. Courbes isoMach et isodirections

Il est très intéressant de déterminer des courbes dans le champ d'écoulement de la tuyère, possédants même propriétés physique. Les plus intéressantes sont les courbes isoMach et les isodirestions. La détermination de ces courbes se fait après le calcul de l'écoulement dans la tuyère. La recherche des points de ces courbes se fait dans chaque segment des caractéristiques que se soit montantes, descendantes, ou sur les segments de l'axe de symétrie, y compris la paroi de la tuyère.

4.4. Masse de la structure de la tuyère

Pour arriver à calculer la masse de la structure du divergent de la tuyère, on considère les deux suppositions suivantes:

- 1. La forme de la paroi entre deux points successifs est une ligne de droite. Cette supposition donne de bon résultat plus le nombre de points *N* de la paroi soit très élevé.
- 2. La structure du divergent est constituée de même matériau, d'une épaisseur t_M et masse volumique ρ_m constante.

(a) : Force de pression

(b) : Tronçon d'un tuyère bi-dimensionnelle

(c) : Tronçon d'un tuyère axisymétrique

Figure 4.12 : Présentation d'un tronçon de la tuyère.

Pour la tuyère de géométrie 2D, le calcul de la masse est lié avec le calcul de l'arc curviligne de la paroi. Alors, on aura sous la forme non-dimensionnelle le résultat suivant :

$$\frac{Masse}{\rho_M t_M y_* l} = C_{Masse} = \sum_{j=1}^{j=N-1} \left[\left(\frac{x_{j+1}}{y_*} - \frac{x_j}{y_*} \right)^2 + \left(\frac{y_{j+1}}{y_*} - \frac{y_j}{y_*} \right)^2 \right]$$
(4.68)

Pour la géométrie axisymétrique, le calcul de la masse de la structure de la tuyère est lié avec le calcul de sa surface de révolution. Comme on aura (*N*-1) segments de droite, alors, sous forme non-dimensionnelle, la masse peut être obtenue par:

$$\frac{Masse}{\rho_M t_M A_*} = C_{Mass} = \sum_{j=1}^{j=N-1} \left(\frac{y_i}{y_*} + \frac{y_{i+1}}{y_*} \right) \left[\left(\frac{x_{j+1}}{y_*} - \frac{x_j}{y_*} \right)^2 + \left(\frac{y_{j+1}}{y_*} - \frac{y_j}{y_*} \right)^2 \right]$$
(4.69)

Le deuxième membre de la relation (4.69) représente la surface de révolution de la couronne circulaire limitée entre les points j et j+1 comme indique la figure 4.12 pour le cas axisymétrique. Il est calculé en utilisant le théorème de Guldin [58-59].

4.5. Force de pression exercée sur la paroi du divergent

Pour calculer la force de pression exercée sur la paroi de la tuyère, on suppose encore que la pression exercée sur le tronçon (*j*) de la figure 3.13, nommée par $P_{(j)}$, est approximée par:

$$P_{(j)} = \alpha P_{j} + (1-\alpha) P_{j+1}$$
 (4.70)

Pour la géométrie 2D, la force de pression axiale exercée sur la paroi, est calculée comme étant la somme de toutes les forces de pression exercées sur tous les tronçons. Sous forme non-dimensionnelle, on obtient:

$$\frac{F_x}{P_0 \ y_* l} = C_F = 2 \sum_{j=1}^{j=N-1} \left(\frac{P}{P_0} \right)_{(j)} \left[\frac{y_{j+1}}{y_*} \frac{y_j}{y_*} \right]$$
(4.71)

Pour la géométrie axisymétrique, la force de pression exercée sur le panneau (j), en tenant compte de sa révolution autour de l'axe de symétrie est donnée comme la projection de la force $F_{(j)}$ sur l'axe de symétrie. Alors, la force de pression totale horizontale exercée sur la paroi, est calculée comme la somme de toutes les forces de pression exercées sur tous les tronçons. Sous forme non-dimensionnelle, on obtient:

$$\frac{F_x}{P_0 A_*} = C_F = \sum_{j=1}^{j=N-1} \left(\frac{P_{(j)}}{P_0}\right) \left(\frac{y_i}{y_*} + \frac{y_{i+1}}{y_*}\right) \left[\left(\frac{x_{j+1}}{y_*} - \frac{x_j}{y_*}\right)^2 + \left(\frac{y_{j+1}}{y_*} - \frac{y_j}{y_*}\right)^2 \right] \sin(\theta_{(j)})$$
(4.72)

Le rapport des pressions dans l'expression (4.71) et (4.72) est donné par la relation (3.15) du chapitre 3 et l'angle $\theta_{(j)}$ peut être obtenu par la relation suivante:

$$\theta_{(j)} = \operatorname{arctg}\left(\frac{y_{j+1} - y_j}{x_{j+1} - x_j}\right)$$
(4.73)

4.6. Choix de gaz donnant meilleurs performances par rapport à l'air

On rencontre généralement deux problèmes différents suivant l'utilisation de la tuyère supersonique. Le premier problème à utiliser la tuyère pour les applications aérospatiales conçue pour la propulsion des engins telles les missiles, avions supersoniques. Le deuxième problème c'est l'utilisation pour la fabrication des souffleries supersoniques.

Pour le premier problème on s'intéresse généralement à deux paramètres fondamentaux qui sont la masse de la tuyère et le coefficient de poussé délivrée par la tuyère obtenus lors de la conception. Alors il est mieux de choisir un gaz de propulsion donnant une masse de la tuyère la plus petite possible en parallèle un coefficient C_F le plus grand possible. Généralement on calcule la finesse de ce type d'application comme étant le rapport de masse/poussée, ou précisément C_F/C_{Masse} . Lorsque ce rapport sera grand, le rendement de la tuyère sera plus grand et on aura une très bonne application de ce cas de tuyère. Dans ce cas, C_F sera plus grand et C_{Masse} sera très petit ce qui est le cas pour notre besoin. La géométrie axisymétrique répond très bien au besoin en ces deux paramètres pour ce type de problème.

Pour le deuxième problème, on s'intéresse à deux paramètres aussi qui sont le rapport des sections critiques y_S/y_* et le rapport des températures T_S/T_0 . Dans ce cas et contrairement à la première application, il est mieux de choisir un gaz de

propulsion donnant un rapport y_S/y_* le plus grand possible pour permettre de placer le prototype de l'avion dans la zone triangulaire uniforme avec une bonne approximation de l'effet des conditions aux limites et de respecter encore la condition d'avoir un rapport T_S/T_0 le plus petit possible pour ne pas détériorer les instruments de mesures de la température, pressions, vitesse, ect... Généralement on calcule un paramètre très important défini par le rapport $(y_S/y_*)/(T_S/T_0)$. Si ce rapport sera le plus grand possible, il s'interprète par le rapport y_S/y_* qui sera plus grand et en parallèle le rapport T_S/T_0 qui sera très petit, qui se tombe en concordance avec notre besoin en application de la tuyère. La géométrie 2D réponde très besoin au besoin en ces deux paramètres pour ce type de problème, précisément au rapport des sections qui sera très grand par rapport à la géométrie axisymétrique.

Le but de ce paragraphe c'est de présenter la manière de faire le choix d'un tel gaz pour les applications aéronautiques. On va faire une comparaison avec l'air. On suppose que les résultats pour l'air sont connus dans la littérature [96, 101].

Pour permettre de résoudre les trois problèmes d'amélioration des performances discutés auparavant, il est nécessaire en plus lieu de trouver pour n'importe quel gaz, nombre de Mach de sortie et température génératrice, les performances de la tuyère qui sont récapitulées par L/y_* , L_d/y_* , θ^* , C_{Masse} , C_F , y_S/y_* , T_S/T_0 et la forme de la tuyère dans chaque section qui sera déterminée point par point. On ne peut pas trouver une forme de tuyère et par conséquent un gaz, qui va voir tous ces paramètres meilleurs au même temps. Pour cela on fixe un paramètre commun entre l'air et le gaz sélectionné et on va voir les autres performances obtenus avec une comparaison.

Pour arriver à obtenir ces paramètres, le premier résultat à trouvé c'est le nombre de Mach de sortie $M_S(Gaz)$ de la tuyère pour ce type de gaz qui va supporter le même paramètre commun entre ce gaz et l'air. Trois solutions peuvent êtres trouvés. Soit $M_S(Gaz)=M_S(Air)$, $C_{Masse}(Gaz)=C_{Masse}(Air)$ ou $C_F(Gaz)=C_F(Air)$.

Pour la première possibilité, on souhaite de trouver un gaz donnant le même nombre de Mach de sortie que le cas de l'air mais donnant en parallèle un C_F grand et un C_{Masse} petit par rapport à l'air.

Pour la deuxième possibilité, on cherche un gaz donnant un $M_S(Gaz)$ et $C_F(Gaz)$. On souhaite d'avoir un C_F et $M_S(Gaz)$ grands au même temps par rapport à l'air si c'est possible.

Pour la troisième possibilité, on cherche un gaz donnant un $M_S(Gaz)$ grand et un $C_{Masse}(Gaz)$ petit par rapport à l'air.

Alors il est difficile de trouver un gaz qui va nous donner tous les paramètres $M_{\rm S}({\rm Gaz})$, $C_{Masse}({\rm Gaz})$ et $C_F({\rm Gaz})$ aux même temps meilleurs par rapport à l'air.

Pour ces trois situations et autres, le premier problème lorsque on fixe un paramètres commun avec l'air, on cherche le nombre de Mach M_S (Gaz) qui va supporter ce paramètre. Lorsqu'on trouve ce nombre de Mach, il est facile par suite de trouver tous les paramètres possibles de conception de cette tuyère en exécutons le programme numérique développé.

Pour trouver la solution, on a utilisé l'algorithme de dichotomie. Le principe c'est de localiser la solution dans un intervalle bien défini.

Pour la première situation, le nombre de Mach de sortie de gaz est connu $M_S(\text{Gaz})=M_S(\text{air})$, dans ce cas on exécute le programme élaboré directement puisque le nombre de Mach est connu. Cette situation ne pose aucun calcul supplémentaire.

Pour la deuxième situation, lorsque $C_{Masse}(Gaz)=C_{Masse}(Air)$, la recherche de nombre de Mach $M_S(Gaz)$ correspondant et les paramètres de conception équivalents se fait en utilisant l'algorithme de tableau 3.1 en changeant les sept instructions en gras et soulignées respectivement par les sept instructions suivantes présentées dans le tableau 4.1 suivant :

Tableau 4.1 : Instructions à modifiées de l'organigramme de tableau 3.1 conçues pour de calcul de $M_{\rm S}({\rm Gaz})$ donnant même $C_{\rm Masse}$ que de l'air.

- On calcul de $L/y_{*}(Air)$, $L_{d}/y_{*}(Air)$, $\theta^{*}(Air)$, $M^{*}(Air)$, $\theta_{Max}(Air)$, $C_{Masse}(Air)$, $C_{F}(Air)$, $y_{S}/y_{*}(Air)$ de l'air correspondant à $M_{S}(Air)$.
- On fixe C_{Masse}(Gaz)=C_{Masse}(Air).
- <u>On calcul de $L/y_{*}(Gaz)$, $L_{d}/y_{*}(Gaz)$, $\theta^{*}(Gaz)$, $M^{*}(Gaz)$, $\theta_{Max}(Gaz)$, <u> $C_{Masse}(Gaz)$, $C_{F}(Gaz)$, $y_{S}/y_{*}(Gaz)$ de gaz correspondant à $M_{S}(Gaz)$.</u></u>
- <u>Calcul de F _{Droite}=C_{Masse}(M_S) C_{Masse}(Air)</u>
- <u>On calcul de $L/y_{*}(Gaz)$, $L_{d}/y_{*}(Gaz)$, $\theta^{*}(Gaz)$, $M^{*}(Gaz)$, $\theta_{Max}(Gaz)$, <u> $C_{Masse}(Gaz)$, $C_{F}(Gaz)$, $y_{S}/y_{*}(Gaz)$ de gaz correspondant à $M_{S}(Gaz)$.</u></u>
- <u>F Milieu = CMasse(MS) CMasse(Air)</u>
- Calcul de $L/y_*(Gaz)$, $L_d/y_*(Gaz)$, $\theta^*(Gaz)$, $M^*(Gaz)$, $\theta_{Max}(Gaz)$, $C_{Masse}(Gaz)$, $C_F(Gaz)$, $y_S/y_*(Gaz)$ correspondents à $M_S(Gaz)$ du gaz choisi.

Pour la troisième situation, lorsque $C_F(\text{Gaz})=C_F(\text{Air})$, la recherche de nombre de Mach $M_S(\text{Gaz})$ correspondant et les paramètres de conception équivalents se fait en utilisant l'algorithme présenté dans le tableau 3.1 du chapitre 3 avec les modifications présentées dans le tableau 4.1 sauf ici on change les trois instructions présentées en gras et soulignées dans le tableau 4.1 respectivement par les trois instructions présentées dans le tableau 4.2 suivant:

Tableau 4.2 : Instructions à modifiées de l'organigramme de tableau 3.1 conçues pour de calcul de $M_{\rm S}$ (Gaz) donnant même C_F que de l'air.

- On fixe $C_F(Gaz) = C_F(Air)$.
- Calcul de $F_{Droite} = C_F(M_S) C_F(Air)$
- $\underline{F}_{\text{Milieu}} = \underline{C}_F(\underline{M}_S) \underline{C}_F(\underline{Air})$

A titre informations, si on veut déterminer un gaz sachant que la section de sortie de la tuyère correspondante est la même que le cas de l'air, on cherche le nombre de Mach correspondant $M_S(Gaz)$ en utilisant l'algorithme présenté dans le tableau 3.1 du chapitre 3 avec les modifications présentées dans le tableau 4.1 sauf ici on change les trois instructions présentées en gras et soulignées dans le tableau 4.1 respectivement par les trois instructions présentées dans le tableau 4.3 suivant:

Tableau 4.3 : Instructions à modifiées de l'organigramme de tableau 3.1 conçues pour de calcul de M_S (Gaz) donnant même rapport des rayons y_S/y_* que de l'air.

- On fixe $y_{S}/y_{*}(Gaz)=y_{S}/y_{*}(Air)$.
- Calcul de $F_{Droite} = y_S / y_* (M_S) y_S / y_* (Air)$
- $\underline{F}_{\text{Milieu}} = \underline{y}_{S} / \underline{y}_{*} (M_{S}) \underline{y}_{S} / \underline{y}_{*} (Air)$

Maintenant si on veut déterminer un gaz sachant que la longueur de la tuyère correspondante est la même que le cas de l'air, on cherche le nombre de Mach correspondant M_S (Gaz) en utilisant l'algorithme présenté dans le tableau 3.1 du chapitre 3 avec les modifications présentées dans le tableau 4.1 sauf ici on change les trois instructions présentées en gras et soulignées dans le tableau 4.1 respectivement par les trois instructions présentées dans le tableau 4.4 suivant:

Tableau 4.4 : Instructions à modifiées de l'organigramme de tableau 3.1 conçues pour de calcul de $M_{\rm S}({\rm Gaz})$ donnant même longueur de la tuyère L/y_* que de l'air.

- <u>On fixe *L*/*y*_{*}(Gaz)=*L*/*y*_{*}(Air).</u>
- Calcul de $F_{\underline{Droite}} = L/y_*(M_S) L_S/y_*(Air)$
- $\underline{F}_{\text{Milieu}} = L/\underline{y}_*(\underline{M}_S) \underline{L}_S/\underline{y}_*(Air)$

Pour les autres paramètres de conception tels que $L_d/y_*(Air)$, $\theta^*(Air)$, $M^*(Air)$, $\theta_{Max}(Air)$, on peut déterminer le nombre de Mach du gaz sélectionné en suivant la même démarche que les paramètres présentés auparavant.

Le calcul des paramètres de conception de la tuyère correspondant a nombre de Mach M_S se fait par le programme numérique dont l'organigramme est présenté dans l'appendice C.

A titre information, on s'intéresse à calculer le nombre de Mach de sortie des gaz $M_{\rm S}({\rm Gaz})$ par l'algorithme précédent avec une précision de 10⁻⁵. Le nombre iter des itérations présenté dans cet algorithme sera égal à 17.

4.7. Erreur du modèle du gaz parfait

Le modèle mathématique d'un gaz parfait est développé sur la base de considérer la chaleur spécifique C_P et le rapport γ constants, qui donne des résultats acceptables avec une certaine erreur pour des faibles températures génératrices. D'après cette étude, une différence entre les résultats donnés entre le modèle du gaz parfait et notre modèle sera présentée. L'erreur donnée par le modèle du gaz parfait par rapport à notre modèle peut être calculée pour chaque paramètre de conception. Alors pour chaque couple (T_0 , M_S), l'erreur ε peut être évaluée par la relation suivante:

$$\varepsilon_{paramètre}\% = \left| 1 - \frac{Paramètre_{GP}}{Paramètre_{HT}} \right| \times 100$$
 (4.74)

Le mot paramètre dans la relation (4.74) peut représenter tous les paramètres de conception, spécialement la longueur de la tuyère, la masse de la structure, la force de pression exercée sur la paroi et le rapport des sections.

4.8. Comparaison avec l'air

L'air généralement est utilisé comme un gaz de propulsion dans la plus part des applications aéronautiques vu qu'il existe avec quantité dans la nature. De même les études présentées dans les références [93-102] sur les paramètres de conception et de dimensionnement des tuyères supersoniques sont faites uniquement pour l'air.

Pour présenter l'intérêt d'un tel gaz, on détermine l'erreur commise entre les paramètres de l'air et les paramètres des autre gaz par la relation suivante :

$$\varepsilon_{Paramètre}(\%) = \left| 1 - \frac{Paramètre_{Gaz}}{Paramètre_{Air}} \right| \times 100$$
(4.75)

4.9. Effet du gaz sur la zone uniforme de la tuyère

La conception de la tuyère est faite sur la base d'avoir un écoulement uniforme et parallèle à la section de sortie. Dans ce cas le champ d'écoulement dans la tuyère sera devisé selon la figure 4.2. Alors il existe toute une partie uniforme triangulaire *BSE* ayant une frontière avec la section de sortie et uniquement un point avec la paroi de la tuyère. L'intérêt de cette zone est relié avec le domaine d'utilisation de la tuyère. Pour les engins aérospatiaux, la présence de cette zone représente généralement un inconvénient major surtout sur le bilan de C_{Masse} et C_{F} . Entre deux tuyères, généralement on choisie celle qui accélère le gaz aux valeurs souhaitées dans un espace réduit. Cette tuyère par conséquent possède des meilleures performances par rapport à l'autre.

Pour les applications des tuyères pour la fabrication des souffleries, le besoin est en contraire au premier cas. Dans ce cas la présence de la zone uniforme avec espace grand est favorable pour raison techniques par exemple la modélisation de l'écoulement sans effet de paroi.

Concernant le dimensionnement de la tuyère, la présence de la zone est uniforme est non négligeable et elle est aussi importante. Dans le chapitre des résultats on va présenter dans les paragraphes 5.3.14 et 5.4.14 les différents résultats obtenus dans ce contexte.

Remarque

Dans l'appendice E on a présenté l'effet de gaz sur la conception et le dimensionnement de la tuyère à corps central 2D type à bouchon (*PN*) et à détente déflexion (*EDN*) et les résultats obtenus dans ce contexte.

CHAPITRE 5

RESULTATS ET COMMENTAIRES

Dans ce chapitre, on présente les divers résultats obtenus par les programmes de calcul numériques élaborés pour la tuyère de géométries plane et axisymétrique. Ce chapitre est divisé en quatre parties. La première partie 5.1 comporte les résultats obtenus sur l'effet du gaz de propulsion sur les divers paramètres de l'écoulement supersonique et de faire une application dans une tuyère supersonique unidimensionnelle à haute température. La deuxième partie 5.2 comporte les résultats obtenus sur l'effet du gaz de propulsion à haute température sur la fonction de Prandtl Meyer ainsi qu'à basse température et la présentation de l'imperfection calorique pour différents gaz sélectionné. Les résultats de ces deux parties sont obtenus par le premier programme numérique réalisé, dont son organigramme est présenté dans l'appendice B. La troisième partie 5.3 comporte les résultats obtenus sur l'effet du gaz de propulsion sur le design et la conception de la tuyère à détente centrée MLN bidimensionnelle avec la présentation des résultats de choix de gaz donnant meilleurs performances par rapport à l'air. La quatrième partie 5.4 comporte les résultats obtenus sur l'effet du gaz de propulsion sur le design et la conception de la tuyère à détente centrée MLN axisymétrique avec la présentation des résultats de choix de gaz donnant meilleurs performances par rapport à l'air. Les résultats de ces deux dernières parties sont obtenus par le deuxième programme numérique réalisé, dont son organigramme est présenté dans l'appendice C.

La présentation des formes des tuyères de dimensionnement est reportée dans un repère orthonormé à des axes non-dimensionnels.

Les résultats numériques présentés sont déterminés avec une précision de 10⁻⁵. Les résultats de conception, comme la longueur de la tuyère, la masse de la structure, la force de pression, et les autres paramètres sont présentés sous une forme non-dimensionnelle.

Pour certains paramètres, la présentation graphique est reportée à une échelle Logarithmique pour raison que les valeurs trouvées sont de grande valeurs et de petite valeurs dans un même graphe, mais pour les résultats numériques on a donné les valeurs à échelle réel.

Le domaine d'application pour le nombre de Mach c'est entre M_S =1.00 jusqu'à M_S =5.00 (extrême supersonique). Les programmes numériques peuvent donnés des résultats pour M_S >5.00 mais ils tombent à défaut plus M_S augmente pour raison que la marge supersonique est défini jusqu'à M_S =5.00. Certains auteurs peuvent aller à M_S =6.00.

Le domaine d'application pour la température génératrice c'est entre 400 K et 3500 K, puisque notre travail est limité pour le cas à haute température et pour faire une comparaison avec l'air on est limité jusqu'à 3500 K à cause de début de dissociation pour l'air à cette température, malgré que la dissociation pour les autres gaz est supérieure à 3500 K. La limite inférieure 400 K est choisie pour donner un seuil au modèle à haute température. Pour certains auteurs, le seuil c'est 1000 K.

Dans la discussion, on a introduit l'abréviation GP pour le gaz calorifiquement parfait et par *HT* pour le modèle à Haute Température.

Les résultats concernant le modèle GP pour l'air à γ =1.402 obtenus par notre calcul numérique peuvent être trouvés dans les références indiquées dans chaque chapitre. Ils sont représentés pour raison de comparaison.

5.1. Résultats de l'effet du gaz sur les paramètres supersoniques

Dans cette première partie, les figures (5.1) à (5.15) contiennent chacune 9 courbes pour 9 gaz choisis selon les numéros de tableau (2.1) du chapitre 2. La courbe 1 représente la variation des paramètres pour le gaz H₂. Courbe 2 pour O₂. Courbe 3 pour N₂. Courbe 4 pour CO. Courbe 5 pour CO₂. Courbe 6 pour H₂O. Courbe 7 pour NH₃. Courbe 8 pour CH₄ et la courbe 9 pour l'air. Tandis que la figure (5.16) contient 8 courbes pour les mêmes numéros des gaz, sauf l'air.

Les résultats pour l'air (courbe 9) peuvent être trouvés dans les références [97-98]. Ils sont présentés pour but de comparaison avec les autres gaz.

La figure (5.1) représente la variation du rapport γ en fonction de la température pour différents gaz choisis. On remarque que le CH₄ et le NH₃ ensuite H₂O et CO₂ possèdent un rapport γ petit par rapport à l'air, H₂, CO, O₂ qui va influe nécessairement sur les paramètres de conception. Dans les références par exemple [70, 86-87], un gaz possédant un rapport γ petit est nommée par gaz chaud tandis qu'un gaz possédant un rapport γ grand est nommé par gaz froid. Chaque gaz possède son pouvoir calorifique propre au gaz lui-même qui caractérise la différence entre un gaz et l'autre.

5.1.1. Paramètres critiques

Les figures (5.2) à (5.6) représentent la variation des rapports critiques, lorsque M=1.00, en fonction de la température génératrice T_0 pour les 9 gaz choisis. Ces résultats représentent le comportement physique de gaz au col de la tuyère. Le calcul des paramètres critiques est nécessaire vu qu'ils interviennent au calcul du rapport A/A_* et le coefficient de poussée C_F ainsi que sur le débit massique critique. On remarque que le gaz influe essentiellement sur les paramètres critiques représentent les résultats au col de la tuyère qui va influent essentiellement sur l'écoulement à travers la partie divergent de la

tuyère ainsi que sur les paramètres de conception. Les valeurs numériques des paramètres critiques T_*/T_0 , ρ_*/ρ_0 , Débit massique critique, P_*/P_0 et a_*/a_0 en quelques valeurs de T_0 , à titre information, sont représentées respectivement dans les tableaux (5.1), (5.2), (5.3), (5.4) et (5.5). Les rapports critiques sont toujours inférieure à l'unité quelques soit le gaz utilisé, vu que T_* , ρ_* , P_* , a_* sont toujours inférieure respectivement aux valeurs génératrices T_0 , ρ_0 , P_0 et a_0 de la chambre de combustion.

Entre les gaz choisis, pour les souffleries on s'intéresse aux gaz donnants un rapport critique T_*/T_0 le plus petit possible, ce qui est le cas pour H₂, air, O₂ et CO. Alors ces gaz sont recommandés pour la propulsion en soulerie et les gaz CH₄, NH₃ et H₂O et CO₂ ne sont pas recommandé sur la base de distribution de température, puisque à travers la température, les paramètres diminuent encore.

Pour la construction Aérospatiale, on ne sait pas à ce niveau le bon gaz puisque on n'a pas arrivé à calculer le poids et la poussée délivrée par la tuyère.

Figure 5.1 : Variation de γ en fonction de T_0 pour différents gaz de propulsion.

Figure 5.2 : Variation de T_*/T_0 en fonction de T_0 pour différents gaz de propulsion.

Tableau 5.1 : Rapport T_*/T_0 des gaz pour différente valeurs de T_0 .

T_{0} (K)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄	Air
400	0.831	0.840	0.836	0.836	0.888	0.862	0.876	0.884	0.833
500	0.832	0.845	0.839	0.839	0.896	0.866	0.886	0.898	0.836
600	0.834	0.848	0.841	0.842	0.901	0.870	0.894	0.909	0.839
700	0.835	0.851	0.844	0.844	0.905	0.874	0.900	0.918	0.842

800	0.837	0.854	0.846	0.846	0.908	0.877	0.906	0.925	0.846
900	0.839	0.856	0.848	0.848	0.910	0.881	0.911	0.931	0.850
1000	0.840	0.858	0.850	0.851	0.912	0.884	0.915	0.936	0.853
1100	0.842	0.860	0.852	0.853	0.914	0.887	0.919	0.940	0.855
1200	0.844	0.862	0.854	0.855	0.915	0.890	0.923	0.944	0.858
1300	0.845	0.864	0.855	0.857	0.917	0.893	0.926	0.947	0.860
1400	0.847	0.866	0.857	0.858	0.919	0.895	0.929	0.950	0.861
1500	0.849	0.867	0.859	0.860	0.920	0.898	0.932	0.953	0.863
1600	0.850	0.869	0.860	0.862	0.921	0.900	0.935	0.955	0.864
1700	0.852	0.871	0.862	0.864	0.923	0.903	0.937	0.958	0.865
1800	0.854	0.872	0.864	0.865	0.924	0.905	0.939	0.959	0.866
1900	0.855	0.874	0.865	0.867	0.925	0.907	0.942	0.961	0.867
2000	0.857	0.875	0.867	0.869	0.926	0.909	0.944	0.963	0.868
2100	0.858	0.877	0.868	0.870	0.927	0.911	0.945	0.964	0.869
2200	0.859	0.878	0.870	0.872	0.928	0.913	0.947	0.966	0.870
2300	0.861	0.880	0.871	0.873	0.929	0.915	0.949	0.967	0.870
2400	0.862	0.881	0.873	0.875	0.930	0.916	0.950	0.968	0.871
2500	0.864	0.882	0.874	0.876	0.931	0.918	0.952	0.969	0.872
2600	0.865	0.884	0.875	0.878	0.932	0.919	0.953	0.970	0.872
2700	0.866	0.885	0.877	0.879	0.933	0.921	0.954	0.971	0.872
2800	0.868	0.886	0.878	0.880	0.934	0.922	0.955	0.972	0.873
2900	0.869	0.887	0.879	0.882	0.935	0.924	0.957	0.973	0.873
3000	0.870	0.889	0.880	0.883	0.936	0.925	0.958	0.974	0.874
3100	0.871	0.890	0.882	0.884	0.937	0.927	0.959	0.974	0.874
3200	0.873	0.891	0.883	0.886	0.938	0.928	0.960	0.975	0.874
3300	0.874	0.892	0.884	0.887	0.938	0.929	0.961	0.976	0.875
3400	0.875	0.893	0.885	0.888	0.939	0.930	0.961	0.976	0.875
3500	0.876	0.894	0.886	0.889	0.940	0.931	0.962	0.977	0.875

Figure 5.3 : Variation de ρ_*/ρ_0 en fonction de T_0 pour différents gaz de propulsion.

Tableau 3.2. Rapport p^*/p_0 des gaz pour unterente valeurs de T_0 .												
T_0 (K)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄	Air			
400	0.634	0.631	0.632	0.632	0.622	0.628	0.624	0.622	0.633			
500	0.633	0.630	0.632	0.632	0.622	0.627	0.623	0.620	0.632			
600	0.633	0.630	0.631	0.631	0.621	0.626	0.622	0.619	0.631			
700	0.633	0.629	0.631	0.631	0.621	0.625	0.621	0.618	0.631			
800	0.632	0.629	0.630	0.630	0.620	0.625	0.620	0.617	0.630			
900	0.632	0.629	0.630	0.630	0.620	0.624	0.619	0.616	0.629			
1000	0.631	0.628	0.630	0.629	0.619	0.624	0.618	0.615	0.629			
1100	0.631	0.628	0.629	0.629	0.619	0.623	0.618	0.615	0.625			
1200	0.631	0.627	0.629	0.629	0.619	0.623	0.617	0.614	0.628			
1300	0.630 0.627		0.629	0.628	0.619	0.622	0.617	0.614	0.628			

	_					_
Tableau 5.2 :	Rapport	p∗/p₀ des	daz pour	différente	valeurs de	T_0 .

1400	0.630	0.627	0.628	0.628	0.618	0.622	0.616	0.613	0.628
1500	0.630	0.626	0.628	0.628	0.618	0.621	0.616	0.613	0.627
1600	0.629	0.626	0.628	0.627	0.618	0.621	0.615	0.612	0.627
1700	0.629	0.626	0.627	0.627	0.618	0.620	0.615	0.612	0.627
1800	0.629	0.626	0.627	0.627	0.618	0.620	0.615	0.612	0.627
1900	0.628	0.625	0.627	0.626	0.617	0.620	0.614	0.612	0.627
2000	0.628	0.625	0.626	0.626	0.617	0.619	0.614	0.611	0.627
2100	0.628	0.625	0.626	0.626	0.617	0.619	0.614	0.611	0.627
2200	0.628	0.624	0.626	0.625	0.617	0.619	0.614	0.611	0.626
2300	0.627	0.624	0.626	0.625	0.617	0.619	0.613	0.611	0.626
2400	0.627	0.624	0.625	0.625	0.616	0.618	0.613	0.611	0.626
2500	0.627	0.624	0.625	0.625	0.616	0.618	0.613	0.611	0.626
2600	0.627	0.624	0.625	0.624	0.616	0.618	0.613	0.610	0.626
2700	0.626	0.623	0.625	0.624	0.616	0.618	0.613	0.610	0.626
2800	0.626	0.623	0.624	0.624	0.616	0.617	0.613	0.610	0.626
2900	0.626	0.623	0.624	0.624	0.616	0.617	0.612	0.610	0.626
3000	0.626	0.623	0.624	0.623	0.616	0.617	0.612	0.610	0.626
3100	0.625	0.622	0.624	0.623	0.615	0.617	0.612	0.610	0.626
3200	0.625	0.622	0.624	0.623	0.615	0.617	0.612	0.610	0.626
3300	0.625	0.622	0.623	0.623	0.615	0.616	0.612	0.610	0.626
3400	0.625	0.622	0.623	0.623	0.615	0.616	0.612	0.609	0.626
3500	0.625	0.622	0.623	0.622	0.615	0.616	0.612	0.609	0.626

Figure 5.4 : Variation de débit critique en fonction de T_0 pour différents gaz.

Iabi	cau J.		massiyu	c chuqu	c ucs ye	iz pour ur		valcuis	uc 10.
T_0 (K)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
400	0.578	0.581	0.580	0.580	0.590	0.584	0.588	0.590	0.579
500	0.579	0.582	0.580	0.580	0.591	0.585	0.589	0.592	0.580
600	0.579	0.582	0.581	0.581	0.591	0.586	0.591	0.593	0.581
700	0.579	0.583	0.581	0.581	0.592	0.587	0.592	0.595	0.582
800	0.580	0.583	0.582	0.582	0.592	0.587	0.592	0.596	0.582
900	0.580	0.584	0.582	0.582	0.592	0.588	0.593	0.596	0.583
1000	0.581	0.584	0.582	0.583	0.593	0.589	0.594	0.597	0.583
1100	0.581	0.584	0.583	0.583	0.593	0.589	0.594	0.598	0.584
1200	0.581	0.585	0.583	0.583	0.593	0.590	0.595	0.598	0.584
1300	0.582	0.585	0.584	0.584	0.594	0.590	0.596	0.599	0.584
1400	0.582	0.585	0.584	0.584	0.594	0.591	0.596	0.599	0.584
1500	0.583	0.586	0.584	0.585	0.594	0.591	0.596	0.600	0.585
1600	0.583	0.586	0.585	0.585	0.594	0.591	0.597	0.600	0.585
1700	0.583	0.586	0.585	0.585	0.594	0.592	0.597	0.600	0.585
1800	0.584	0.587	0.585	0.586	0.595	0.592	0.597	0.600	0.585

Tableau 5.3 : Débit n	nassique critic	que des daz pou	r différente valeur	s de T_0 .
				0-

1900	0.584	0.587	0.586	0.586	0.595	0.593	0.598	0.601	0.585
2000	0.584	0.587	0.586	0.586	0.595	0.593	0.598	0.601	0.585
2100	0.584	0.587	0.586	0.587	0.595	0.593	0.598	0.601	0.585
2200	0.585	0.588	0.586	0.587	0.595	0.593	0.599	0.601	0.586
2300	0.585	0.588	0.587	0.587	0.596	0.594	0.599	0.601	0.586
2400	0.585	0.588	0.587	0.587	0.596	0.594	0.599	0.602	0.586
2500	0.585	0.588	0.587	0.588	0.596	0.594	0.599	0.602	0.586
2600	0.586	0.589	0.587	0.588	0.596	0.594	0.599	0.602	0.586
2700	0.586	0.589	0.588	0.588	0.596	0.595	0.600	0.602	0.586
2800	0.586	0.589	0.588	0.588	0.596	0.595	0.600	0.602	0.586
2900	0.586	0.589	0.588	0.589	0.597	0.595	0.600	0.602	0.586
3000	0.587	0.590	0.588	0.589	0.597	0.595	0.600	0.602	0.586
3100	0.587	0.590	0.589	0.589	0.597	0.596	0.600	0.602	0.586
3200	0.587	0.590	0.589	0.589	0.597	0.596	0.600	0.603	0.586
3300	0.587	0.590	0.589	0.589	0.597	0.596	0.600	0.603	0.586
3400	0.588	0.590	0.589	0.590	0.597	0.596	0.601	0.603	0.586
3500	0.588	0.591	0.589	0.590	0.597	0.596	0.601	0.603	0.586

Figure 5.5 : Variation de P_*/P_0 en fonction de T_0 pour différents gaz de propulsion.

		upport /	1 0 400	guz po				J.	
<i>T</i> ₀ (K)	H ₂	O ₂	N_2	CO	CO_2	H ₂ O	NH ₃	CH_4	Air
400	0.527	0.530	0.529	0.529	0.553	0.541	0.547	0.550	0.528
500	0.527	0.533	0.530	0.530	0.557	0.543	0.552	0.558	0.529
600	0.528	0.535	0.531	0.531	0.560	0.545	0.556	0.563	0.530
700	0.528	0.536	0.532	0.533	0.562	0.547	0.559	0.567	0.531
800	0.529	0.537	0.533	0.534	0.563	0.548	0.562	0.572	0.533
900	0.530	0.538	0.534	0.535	0.564	0.550	0.564	0.574	0.535
1000	0.531	0.539	0.535	0.536	0.565	0.551	0.566	0.576	0.536
1100	0.532	0.540	0.536	0.537	0.566	0.553	0.568	0.578	0.538
1200	0.532	0.541	0.537	0.537	0.567	0.554	0.570	0.580	0.539
1300	0.533	0.542	0.538	0.538	0.568	0.556	0.572	0.582	0.540
1400	0.534	0.543	0.539	0.539	0.568	0.557	0.573	0.583	0.541
1500	0.535	0.544	0.539	0.540	0.569	0.558	0.574	0.584	0.542
1600	0.535	0.544	0.540	0.541	0.570	0.559	0.576	0.585	0.542
1700	0.536	0.545	0.541	0.542	0.570	0.560	0.577	0.586	0.543
1800	0.537	0.546	0.542	0.543	0.571	0.561	0.578	0.587	0.543
1900	0.538	0.547	0.542	0.543	0.571	0.562	0.579	0.588	0.544
2000	0.538	0.547	0.543	0.544	0.572	0.563	0.580	0.589	0.544
2100	0.539	0.548	0.544	0.545	0.572	0.564	0.581	0.590	0.545
2200	0.540	0.549	0.545	0.546	0.573	0.565	0.581	0.590	0.545
2300	0.540	0.549	0.545	0.546	0.573	0.566	0.582	0.591	0.545

Tableau 5.4 : Rapport P_*/P_0 des gaz pour différente valeurs de T_0 .

2400	0.541	0.550	0.546	0.547	0.574	0.567	0.583	0.591	0.546
2500	0.542	0.551	0.547	0.548	0.574	0.568	0.584	0.592	0.546
2600	0.542	0.551	0.547	0.548	0.575	0.568	0.584	0.592	0.546
2700	0.543	0.552	0.548	0.549	0.575	0.569	0.585	0.593	0.547
2800	0.543	0.552	0.548	0.550	0.576	0.570	0.585	0.593	0.547
2900	0.544	0.553	0.549	0.550	0.576	0.570	0.586	0.594	0.547
3000	0.545	0.554	0.550	0.551	0.576	0.571	0.587	0.594	0.547
3100	0.545	0.554	0.550	0.551	0.577	0.572	0.587	0.594	0.547
3200	0.546	0.555	0.551	0.552	0.577	0.572	0.587	0.595	0.547
3300	0.546	0.555	0.551	0.553	0.578	0.573	0.588	0.595	0.548
3400	0.547	0.556	0.552	0.553	0.578	0.573	0.588	0.595	0.548
3500	0.547	0.556	0.552	0.554	0.578	0.574	0.589	0.596	0.548

Figure 5.6 : Variation de a_*/a_0 en fonction de T_0 pour différents gaz de propulsion.

				-	<u> </u>				
T_0 (K)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
400	0.912	0.920	0.916	0.916	0.947	0.931	0.941	0.948	0.914
500	0.913	0.922	0.918	0.918	0.950	0.933	0.946	0.954	0.916
600	0.914	0.924	0.919	0.920	0.952	0.936	0.949	0.958	0.919
700	0.916	0.925	0.921	0.921	0.953	0.938	0.953	0.962	0.922
800	0.917	0.927	0.922	0.923	0.954	0.940	0.955	0.965	0.924
900	0.918	0.928	0.923	0.924	0.955	0.942	0.958	0.968	0.926
1000	0.919	0.929	0.925	0.925	0.956	0.944	0.960	0.970	0.928
1100	0.921	0.930	0.926	0.926	0.957	0.945	0.962	0.972	0.929
1200	0.922	0.931	0.927	0.928	0.958	0.947	0.964	0.974	0.930
1300	0.923	0.933	0.928	0.929	0.959	0.948	0.965	0.975	0.930
1400	0.924	0.934	0.929	0.930	0.960	0.950	0.967	0.977	0.931
1500	0.925	0.935	0.930	0.931	0.961	0.951	0.968	0.978	0.931
1600	0.926	0.936	0.931	0.932	0.961	0.952	0.969	0.979	0.932
1700	0.927	0.936	0.932	0.933	0.962	0.953	0.970	0.980	0.932
1800	0.928	0.937	0.933	0.934	0.963	0.955	0.971	0.981	0.933
1900	0.929	0.938	0.934	0.935	0.963	0.956	0.972	0.981	0.933
2000	0.930	0.939	0.935	0.936	0.964	0.957	0.973	0.982	0.934
2100	0.930	0.940	0.936	0.937	0.964	0.958	0.974	0.983	0.934
2200	0.931	0.941	0.937	0.938	0.965	0.959	0.975	0.983	0.934
2300	0.932	0.942	0.937	0.939	0.966	0.959	0.976	0.984	0.935
2400	0.933	0.942	0.938	0.939	0.966	0.960	0.976	0.985	0.935
2500	0.934	0.943	0.939	0.940	0.967	0.961	0.977	0.985	0.935
2600	0.935	0.944	0.940	0.941	0.967	0.962	0.978	0.986	0.935
2700	0.935	0.944	0.940	0.942	0.967	0.963	0.978	0.986	0.935

_					_												rr /					_	-
	~ •	<u> </u>	~ ~ · · ·	-	-		~ ~ .	\sim	m +	\sim	<u> </u>	-	 \sim	<u> </u>	nour		++~	~~	\ / O	louro.	~ ~ ~		
		11		_	_			(11 1			-		11-		1 1/ 11 1/	(11							^
	~					1 1 0				n ×1	- 11		 110	1/	1 11 11 11				 v 🗖	EUI 3			α
	~	~.	<u> </u>	~.	~		• ~ •	~~		~ /	~	· ·	 	~ ~	pour	~			 		~~~		
																							~

2800	0.936	0.945	0.941	0.943	0.968	0.963	0.979	0.986	0.935
2900	0.937	0.946	0.942	0.943	0.968	0.964	0.979	0.987	0.936
3000	0.937	0.946	0.942	0.944	0.969	0.965	0.980	0.987	0.936
3100	0.938	0.947	0.943	0.945	0.969	0.965	0.980	0.987	0.936
3200	0.939	0.948	0.944	0.945	0.970	0.966	0.981	0.988	0.936
3300	0.939	0.948	0.944	0.946	0.970	0.966	0.981	0.988	0.936
3400	0.940	0.949	0.945	0.947	0.970	0.967	0.981	0.988	0.936
3500	0.941	0.949	0.946	0.947	0.971	0.968	0.982	0.989	0.936

Concernant le débit critique sur la figure (5.4), le gaz influe considérablement sur ce paramètre. Pour avoir un écoulement supersonique dans le divergent, il faut avoir un débit appelé débit critique. Si le débit à travers la tuyère est inférieur au débit critique on aura forcement un écoulement subsonique dans le divergent. Par exemple si on prend le CH₄ (courbe 8) comme un gaz de propulsion avec la valeur de débit de l'air (courbe 9) on aura forcément un écoulement subsonique dans le divergent. Pour cette raison il faut régler le débit critique suivant le gaz de propulsion utilisé. On calcul la section critique convenable dans ce cas. En plus le gaz influe sur le débit critique, la température T_0 influe aussi.

5.1.2. Paramètres supersoniques

Les figures (5.7) à (5.12) représentent la variation des paramètres thermodynamiques, géométriques et physiques en fonction de nombre de Mach dans une section d'un divergent d'une tuyère supersonique.

Les valeurs numériques des paramètres thermodynamiques T/T_0 , ρ/ρ_0 , P/P_0 , a/a_0 , A_s/A_* et C_F , pour quelques valeurs de nombre de Mach supersonique, lorsque T_0 =2000 K, sont représentées respectivement dans les tableaux (5.6), (5.7), (5.8), (5.9), (5.10) et (5.11).

Sur la figure (5.11) on a représenté la variation de logarithme du rapport des sections en fonction de nombre de Mach vu qu'on a trouvés des valeurs grandes avec des valeurs petites. Le dessin sera mal présenté si on choisi la variation du rapport des sections en fonction de nombre de Mach. Alors pour déterminer la valeur du rapport des sections A_S/A_* , il suffit qu'à voir les valeurs de tableau (5.10). Le rapport des sections est toujours supérieure à l'unité pour avoir un écoulement supersonique dans le divergent de la tuyère.

On remarque l'influence du gaz sur tous les paramètres. Cette influence à une relation avec le rapport γ . Les gaz ayant un rapport γ élevé possèdent un rapport T/T_0 , a/a_0 , ρ/ρ_0 , A/A_* élevés et les paramètres P/P_0 et C_F sont petits, ce qui est le cas pour les gaz CH₄, NH₃, CO₂ et H₂O. Par rapport à l'air, ces gaz possèdent un rapport des sections grand ce qui influe sur la forme de la tuyère et les paramètres de l'écoulement à travers la tuyère par rapport à l'air. Alors pour les applications Aérospatiales, on recommande d'utiliser un gaz de propulsion donnant un rapport des sections le plus petit possible. Ce qui est le cas pour H₂, N₂ et CO. Par rapport à l'air ces gaz sont mieux à utiliser. Pour la construction des

souffleries supersoniques, il est recommandé d'utiliser soit l'air ou O_2 , H_2O , NH_3 ou CH_4 par exemple. De préférence celui qui donne un rapport A_S/A_* élevé. Mais de point de vue variation du rapport des températures à la section de sortie de la tuyère, pour les souffleries il est recommandé d'utiliser un gaz donnant une distribution la plus petite possible du rapport T/T_0 pour ne pas avoir détérioration des instruments de mesures des paramètres thermodynamiques, ce qui est le cas pour le H_2 , N_2 et CO. Pour faire un compromis entre les deux conditions, on calcul la finesse de la tuyère par deux manières selon l'utilisation de la tuyère pour les engins aérospatiales où la finesse se calcul par $C_F/Masse$ et pour les souffleries, on calcul la finesse par le rapport $(A_S/A_*)/(T_S/T_0)$. Pour les deux cas si la finesse est grande on aura un bon rendement de la tuyère. Dans ce cas le dénominateur doit être le plus petit possible au même temps que le nominateur soit grand qui tombe en concordance avec notre souhait.

Sur la figure (5.7) on remarque que les gaz CH_4 , NH_3 , CO_2 et H_2O par cet ordre donnent une température élevé en comparaison avec les gaz H_2 et le O_2 et l'air par exemple. Ce qui donne qu'un chauffage de la paroi aura lieu qui peut influe sur son comportement thermique et sur le choix en construction de la tuyère. Alors le choix de matériau de construction de la tuyère influe sur le choix de gaz de propulsion.

La figure (5.9) donne encore influence de gaz sur le choix de matériau de construction de la tuyère, vu que la pression exercée sur la paroi de la tuyère donne naissance d'une contrainte appliquée sur le matériau de construction.

Figure 5.7 : Variation de T/T_0 en fonction de *M* pour différents gaz de propulsion.

Figure 5.8 : Variation de ρ/ρ_0 en fonction de *M* pour différents gaz de propulsion.

Tapl	eau 5.0	: карро	<u>n 1/1₀ ae</u>	<u>s gaz er</u>	<u>i queiqu</u>	es valeur	s de <i>N</i>	orsque	$I_0 = 2000$
М	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄	Air
1.00	0.8570	0.8758	0.8672	0.8692	0.9266	0.9094	0.9440	0.9633	0.8686
1.10	0.8314	0.8531	0.8431	0.8454	0.9124	0.8919	0.9327	0.9558	0.8450
1.20	0.8049	0.8293	0.8181	0.8205	0.8971	0.8734	0.9206	0.9476	0.8204
1.30	0.7778	0.8047	0.7923	0.7950	0.8811	0.8538	0.9076	0.9388	0.7951
1.40	0.7503	0.7796	0.7660	0.7689	0.8642	0.8335	0.8939	0.9295	0.7694
1.50	0.7226	0.7541	0.7395	0.7425	0.8468	0.8125	0.8794	0.9195	0.7435
1.60	0.6950	0.7284	0.7129	0.7160	0.8287	0.7910	0.8643	0.9090	0.7175
1.70	0.6677	0.7028	0.6864	0.6896	0.8103	0.7690	0.8486	0.8980	0.6915
1.80	0.6408	0.6773	0.6602	0.6635	0.7914	0.7468	0.8324	0.8864	0.6658
1.90	0.6145	0.6522	0.6344	0.6378	0.7723	0.7244	0.8157	0.8744	0.6405
2.00	0.5888	0.6274	0.6092	0.6125	0.7530	0.7020	0.7986	0.8620	0.6157
2.10	0.5639	0.6032	0.5846	0.5880	0.7336	0.6797	0.7811	0.8491	0.5914
2.20	0.5399	0.5796	0.5608	0.5640	0.7142	0.6575	0.7634	0.8359	0.5677
2.30	0.5167	0.5567	0.5377	0.5409	0.6948	0.6355	0.7454	0.8223	0.5447
2.40	0.4945	0.5345	0.5154	0.5185	0.6756	0.6139	0.7273	0.8084	0.5224
2.50	0.4731	0.5130	0.4939	0.4970	0.6565	0.5927	0.7091	0.7943	0.5009
2.60	0.4527	0.4924	0.4733	0.4763	0.6376	0.5719	0.6909	0.7799	0.4801
2.70	0.4333	0.4725	0.4536	0.4565	0.6190	0.5516	0.6727	0.7652	0.4602
2.80	0.4147	0.4534	0.4347	0.4375	0.6007	0.5318	0.6545	0.7504	0.4410
2.90	0.3970	0.4351	0.4167	0.4194	0.5828	0.5127	0.6365	0.7355	0.4226
3.00	0.3802	0.4176	0.3995	0.4021	0.5652	0.4941	0.6186	0.7204	0.4050
3.10	0.3642	0.4008	0.3830	0.3856	0.5481	0.4761	0.6009	0.7052	0.3881
3.20	0.3490	0.3848	0.3674	0.3698	0.5313	0.4588	0.5835	0.6900	0.3721
3.30	0.3346	0.3696	0.3525	0.3548	0.5150	0.4420	0.5663	0.6748	0.3568
3.40	0.3209	0.3550	0.3383	0.3405	0.4991	0.4259	0.5494	0.6596	0.3422
3.50	0.3079	0.3411	0.3249	0.3270	0.4836	0.4104	0.5329	0.6444	0.3284
3.60	0.2956	0.3278	0.3120	0.3141	0.4686	0.3955	0.5167	0.6293	0.3152
3.70	0.2839	0.3152	0.2998	0.3018	0.4541	0.3812	0.5009	0.6143	0.3027
3.80	0.2728	0.3032	0.2882	0.2901	0.4400	0.3675	0.4855	0.5994	0.2908
3.90	0.2623	0.2917	0.2772	0.2790	0.4264	0.3544	0.4704	0.5846	0.2795
4.00	0.2523	0.2808	0.2667	0.2684	0.4132	0.3418	0.4558	0.5700	0.2687
4.10	0.2428	0.2703	0.2567	0.2583	0.4004	0.3298	0.4416	0.5556	0.2586
4.20	0.2338	0.2604	0.2472	0.2488	0.3881	0.3182	0.4278	0.5414	0.2489
4.30	0.2252	0.2509	0.2382	0.2397	0.3761	0.3072	0.4144	0.5274	0.2397
4.40	0.2171	0.2419	0.2296	0.2310	0.3646	0.2966	0.4014	0.5136	0.2310
4.50	0.2094	0.2332	0.2214	0.2227	0.3535	0.2865	0.3889	0.5001	0.2227
4.60	0.2020	0.2250	0 2136	0.2149	0 3428	0 2768	0.3767	0.4869	0.2148

Tableau 5.6 : Rapport T/T_0 des gaz en quelques valeurs de *M* lorsque T_0 =2000 K

4.70	0.1950	0.2172	0.2061	0.2074	0.3324	0.2675	0.3650	0.4738	0.2073
4.80	0.1883	0.2096	0.1990	0.2002	0.3224	0.2587	0.3537	0.4611	0.2002
4.90	0.1820	0.2025	0.1922	0.1934	0.3129	0.2502	0.3427	0.4487	0.1934
5.00	0.1760	0.1956	0.1858	0.1869	0.3035	0.2421	0.3321	0.4365	0.1869

Tableau 5.7 : Rapport ρ/ρ_0 des gaz en quelques valeurs de *M* lorsque T_0 =2000 K

М	H_2	O ₂	N ₂	ČŎ	CO ₂	H ₂ O	NH_3	CH ₄	Air
1.00	0.6285	0.6255	0.6268	0.6265	0.6176	0.6199	0.6147	0.6119	0.6271
1.10	0.5749	0.5709	0.5727	0.5722	0.5606	0.5636	0.5568	0.5531	0.5730
1.20	0.5229	0.5179	0.5202	0.5196	0.5050	0.5089	0.5003	0.4957	0.5204
1.30	0.4733	0.4674	0.4701	0.4693	0.4518	0.4565	0.4461	0.4404	0.4703
1.40	0.4266	0.4197	0.4228	0.4220	0.4014	0.4070	0.3948	0.3881	0.4229
1.50	0.3831	0.3752	0.3788	0.3779	0.3544	0.3609	0.3470	0.3393	0.3788
1.60	0.3430	0.3343	0.3383	0.3373	0.3112	0.3185	0.3029	0.2944	0.3380
1.70	0.3064	0.2969	0.3012	0.3001	0.2717	0.2798	0.2628	0.2535	0.3008
1.80	0.2731	0.2629	0.2676	0.2665	0.2361	0.2448	0.2267	0.2168	0.2669
1.90	0.2431	0.2324	0.2373	0.2361	0.2042	0.2136	0.1946	0.1842	0.2364
2.00	0.2161	0.2051	0.2101	0.2090	0.1760	0.1857	0.1662	0.1554	0.2090
2.10	0.1920	0.1808	0.1859	0.1848	0.1511	0.1612	0.1413	0.1304	0.1846
2.20	0.1706	0.1592	0.1644	0.1633	0.1293	0.1396	0.1197	0.1088	0.1628
2.30	0.1515	0.1401	0.1453	0.1442	0.1104	0.1207	0.1010	0.0903	0.1436
2.40	0.1346	0.1234	0.1285	0.1274	0.0940	0.1043	0.0850	0.0746	0.1266
2.50	0.1197	0.1086	0.1137	0.1126	0.0799	0.0901	0.0714	0.0613	0.1117
2.60	0.1065	0.0956	0.1006	0.0996	0.0678	0.0778	0.0598	0.0502	0.0985
2.70	0.0948	0.0843	0.0891	0.0882	0.0575	0.0672	0.0500	0.0410	0.0870
2.80	0.0845	0.0743	0.0790	0.0781	0.0487	0.0580	0.0418	0.0334	0.0769
2.90	0.0755	0.0656	0.0701	0.0693	0.0412	0.0502	0.0349	0.0271	0.0680
3.00	0.0674	0.0580	0.0623	0.0615	0.0349	0.0434	0.0291	0.0219	0.0603
3.10	0.0604	0.0513	0.0554	0.0547	0.0295	0.0376	0.0243	0.0177	0.0535
3.20	0.0541	0.0455	0.0494	0.0487	0.0250	0.0326	0.0203	0.0143	0.0476
3.30	0.0486	0.0404	0.0441	0.0435	0.0212	0.0283	0.0169	0.0115	0.0423
3.40	0.0436	0.0359	0.0394	0.0388	0.0179	0.0246	0.0141	0.0093	0.0378
3.50	0.0393	0.0319	0.0353	0.0347	0.0152	0.0215	0.0118	0.0074	0.0338
3.60	0.0354	0.0285	0.0316	0.0311	0.0129	0.0188	0.0099	0.0060	0.0302
3.70	0.0320	0.0254	0.0284	0.0279	0.0110	0.0164	0.0083	0.0048	0.0271
3.80	0.0289	0.0228	0.0255	0.0251	0.0093	0.0144	0.0070	0.0039	0.0244
3.90	0.0262	0.0204	0.0230	0.0226	0.0079	0.0126	0.0059	0.0031	0.0220
4.00	0.0238	0.0183	0.0208	0.0204	0.0068	0.0111	0.0050	0.0025	0.0198
4.10	0.0216	0.0165	0.0188	0.0184	0.0058	0.0098	0.0042	0.0020	0.0179
4.20	0.0197	0.0148	0.0170	0.0167	0.0049	0.0087	0.0036	0.0017	0.0162
4.30	0.0179	0.0134	0.0154	0.0151	0.0042	0.0077	0.0030	0.0013	0.0147
4.40	0.0164	0.0121	0.0140	0.0137	0.0036	0.0068	0.0026	0.0011	0.0134
4.50	0.0149	0.0109	0.0127	0.0125	0.0031	0.0060	0.0022	0.0009	0.0122
4.60	0.0137	0.0099	0.0116	0.0114	0.0027	0.0054	0.0019	0.0007	0.0111
4.70	0.0125	0.0090	0.0106	0.0104	0.0023	0.0048	0.0016	0.0006	0.0102
4.80	0.0115	0.0082	0.0096	0.0095	0.0020	0.0043	0.0014	0.0005	0.0093
4.90	0.0106	0.0074	0.0088	0.0087	0.0017	0.0038	0.0012	0.0004	0.0085
5.00	0.0097	0.0068	0.0081	0.0079	0.0015	0.0034	0.0011	0.0003	0.0078

Pour les souffleries, parfois on s'intéresse d'avoir un rapport T/T_0 le plus petit possible à travers la tuyère et en particulier à la section de sortie pour ne pas détériorer les instruments de mesures placés dans la tuyère. De même, on s'intéresse d'avoir un volume assez large de la tuyère, justifié par un rapport des sections assez grand, pour le bon remplacement de prototype et de ne pas avoir les effets de la paroi sur la mesure des paramètres de l'écoulement sur le prototype.

Figure 5.9 : Variation de P/P_0 en fonction de *M* pour différents gaz de propulsion.

Figure 5.10 : Variation de a/a_0 en fonction de *M* pour différents gaz de propulsion.

10.01	044 010	11 (appe		lee gae .	อกา ศูตราช	acc rais		1010940	
М	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH_3	CH_4	Air
1.00	0.5387	0.5478	0.5436	0.5445	0.5723	0.5637	0.5802	0.5894	0.5447
1.10	0.4780	0.4870	0.4829	0.4837	0.5115	0.5027	0.5193	0.5287	0.4841
1.20	0.4209	0.4295	0.4256	0.4263	0.4531	0.4444	0.4606	0.4697	0.4270
1.30	0.3682	0.3761	0.3724	0.3731	0.3980	0.3898	0.4049	0.4135	0.3739
1.40	0.3201	0.3272	0.3239	0.3245	0.3469	0.3393	0.3529	0.3607	0.3254
1.50	0.2769	0.2830	0.2801	0.2806	0.3001	0.2933	0.3051	0.3120	0.2816
1.60	0.2384	0.2435	0.2411	0.2415	0.2579	0.2519	0.2618	0.2676	0.2425
1.70	0.2046	0.2086	0.2067	0.2070	0.2201	0.2152	0.2230	0.2277	0.2080
1.80	0.1750	0.1781	0.1766	0.1768	0.1868	0.1829	0.1887	0.1922	0.1777
1.90	0.1494	0.1516	0.1505	0.1506	0.1577	0.1547	0.1587	0.1610	0.1514
2.00	0.1272	0.1287	0.1280	0.1280	0.1325	0.1304	0.1327	0.1340	0.1287
2.10	0.1083	0.1090	0.1087	0.1086	0.1109	0.1095	0.1104	0.1107	0.1091
2.20	0.0921	0.0923	0.0922	0.0921	0.0924	0.0918	0.0914	0.0910	0.0924
2.30	0.0783	0.0780	0.0781	0.0780	0.0767	0.0767	0.0753	0.0743	0.0782
2.40	0.0666	0.0659	0.0662	0.0661	0.0635	0.0640	0.0618	0.0603	0.0662
2.50	0.0566	0.0557	0.0561	0.0560	0.0525	0.0534	0.0506	0.0487	0.0559
2.60	0.0482	0.0471	0.0476	0.0474	0.0433	0.0445	0.0413	0.0392	0.0473

Tableau 5.8 : Rapport P/P_0 des gaz en quelques valeurs de *M* lorsque T_0 =2000 K

2.70	0.0411	0.0398	0.0404	0.0402	0.0356	0.0370	0.0336	0.0314	0.0400
2.80	0.0351	0.0337	0.0343	0.0342	0.0293	0.0309	0.0273	0.0250	0.0339
2.90	0.0300	0.0286	0.0292	0.0291	0.0240	0.0257	0.0222	0.0199	0.0288
3.00	0.0256	0.0242	0.0249	0.0247	0.0197	0.0214	0.0180	0.0158	0.0244
3.10	0.0220	0.0206	0.0212	0.0211	0.0162	0.0179	0.0146	0.0125	0.0208
3.20	0.0189	0.0175	0.0181	0.0180	0.0133	0.0150	0.0118	0.0098	0.0177
3.30	0.0162	0.0149	0.0155	0.0154	0.0109	0.0125	0.0096	0.0078	0.0151
3.40	0.0140	0.0127	0.0133	0.0132	0.0089	0.0105	0.0078	0.0061	0.0129
3.50	0.0121	0.0109	0.0115	0.0114	0.0074	0.0088	0.0063	0.0048	0.0111
3.60	0.0105	0.0093	0.0099	0.0098	0.0060	0.0074	0.0051	0.0038	0.0095
3.70	0.0091	0.0080	0.0085	0.0084	0.0050	0.0063	0.0042	0.0030	0.0082
3.80	0.0079	0.0069	0.0074	0.0073	0.0041	0.0053	0.0034	0.0023	0.0071
3.90	0.0069	0.0059	0.0064	0.0063	0.0034	0.0045	0.0028	0.0018	0.0061
4.00	0.0060	0.0051	0.0055	0.0055	0.0028	0.0038	0.0023	0.0014	0.0053
4.10	0.0052	0.0044	0.0048	0.0048	0.0023	0.0032	0.0019	0.0011	0.0046
4.20	0.0046	0.0039	0.0042	0.0042	0.0019	0.0028	0.0015	0.0009	0.0040
4.30	0.0040	0.0034	0.0037	0.0036	0.0016	0.0024	0.0013	0.0007	0.0035
4.40	0.0036	0.0029	0.0032	0.0032	0.0013	0.0020	0.0010	0.0006	0.0031
4.50	0.0031	0.0025	0.0028	0.0028	0.0011	0.0017	0.0009	0.0004	0.0027
4.60	0.0028	0.0022	0.0025	0.0024	0.0009	0.0015	0.0007	0.0004	0.0024
4.70	0.0024	0.0020	0.0022	0.0022	0.0008	0.0013	0.0006	0.0003	0.0021
4.80	0.0022	0.0017	0.0019	0.0019	0.0006	0.0011	0.0005	0.0002	0.0019
4.90	0.0019	0.0015	0.0017	0.0017	0.0005	0.0010	0.0004	0.0002	0.0017
5.00	0.0017	0.0013	0.0015	0.0015	0.0005	0.0008	0.0004	0.0001	0.0015

Tableau 5.9 : Rapport a/a_0 des gaz pour quelques valeurs de *M* pour T_0 =2000 K

М	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH₄	Air
1.00	0.9300	0.9395	0.9353	0.9365	0.9643	0.9571	0.9736	0.9826	0.9342
1.10	0.9168	0.9279	0.9229	0.9243	0.9572	0.9486	0.9683	0.9790	0.9218
1.20	0.9029	0.9156	0.9099	0.9115	0.9495	0.9394	0.9624	0.9751	0.9088
1.30	0.8884	0.9027	0.8962	0.8980	0.9413	0.9297	0.9561	0.9708	0.8952
1.40	0.8734	0.8893	0.8821	0.8840	0.9327	0.9194	0.9494	0.9663	0.8811
1.50	0.8579	0.8754	0.8675	0.8696	0.9236	0.9086	0.9423	0.9614	0.8667
1.60	0.8422	0.8612	0.8525	0.8548	0.9141	0.8974	0.9348	0.9562	0.8520
1.70	0.8263	0.8467	0.8374	0.8398	0.9043	0.8858	0.9269	0.9508	0.8370
1.80	0.8103	0.8320	0.8220	0.8245	0.8942	0.8739	0.9187	0.9451	0.8220
1.90	0.7943	0.8171	0.8066	0.8092	0.8838	0.8616	0.9101	0.9391	0.8069
2.00	0.7782	0.8022	0.7912	0.7939	0.8732	0.8492	0.9013	0.9328	0.7918
2.10	0.7623	0.7874	0.7758	0.7786	0.8623	0.8365	0.8921	0.9263	0.7767
2.20	0.7466	0.7725	0.7605	0.7634	0.8513	0.8237	0.8827	0.9195	0.7618
2.30	0.7310	0.7578	0.7454	0.7483	0.8401	0.8108	0.8731	0.9125	0.7470
2.40	0.7157	0.7432	0.7304	0.7334	0.8289	0.7979	0.8633	0.9053	0.7324
2.50	0.7007	0.7288	0.7157	0.7187	0.8176	0.7849	0.8533	0.8979	0.7180
2.60	0.6860	0.7146	0.7012	0.7042	0.8062	0.7720	0.8431	0.8903	0.7038
2.70	0.6716	0.7006	0.6870	0.6900	0.7948	0.7591	0.8328	0.8825	0.6898
2.80	0.6575	0.6869	0.6731	0.6761	0.7835	0.7463	0.8224	0.8745	0.6762
2.90	0.6438	0.6735	0.6595	0.6625	0.7721	0.7336	0.8119	0.8664	0.6627
3.00	0.6304	0.6603	0.6463	0.6492	0.7609	0.7210	0.8014	0.8581	0.6496
3.10	0.6174	0.6475	0.6333	0.6363	0.7497	0.7086	0.7908	0.8497	0.6368
3.20	0.6047	0.6349	0.6207	0.6236	0.7386	0.6964	0.7802	0.8412	0.6243
3.30	0.5925	0.6227	0.6084	0.6113	0.7276	0.6844	0.7695	0.8326	0.6120
3.40	0.5805	0.6108	0.5965	0.5993	0.7167	0.6725	0.7589	0.8239	0.6001
3.50	0.5689	0.5991	0.5848	0.5877	0.7059	0.6609	0.7484	0.8151	0.5885
3.60	0.5577	0.5878	0.5735	0.5763	0.6953	0.6495	0.7379	0.8062	0.5772
3.70	0.5468	0.5768	0.5626	0.5653	0.6848	0.6383	0.7274	0.7973	0.5662
3.80	0.5362	0.5661	0.5519	0.5546	0.6745	0.6274	0.7171	0.7884	0.5554
3.90	0.5260	0.5557	0.5416	0.5443	0.6644	0.6167	0.7068	0.7794	0.5450

4.00	0.5160	0.5456	0.5315	0.5342	0.6544	0.6062	0.6966	0.7704	0.5349
4.10	0.5064	0.5357	0.5217	0.5244	0.6446	0.5960	0.6866	0.7614	0.5251
4.20	0.4970	0.5262	0.5123	0.5149	0.6350	0.5860	0.6767	0.7525	0.5155
4.30	0.4880	0.5169	0.5031	0.5056	0.6256	0.5763	0.6669	0.7435	0.5062
4.40	0.4792	0.5079	0.4942	0.4967	0.6163	0.5667	0.6573	0.7346	0.4972
4.50	0.4707	0.4991	0.4855	0.4880	0.6072	0.5574	0.6478	0.7257	0.4885
4.60	0.4624	0.4906	0.4771	0.4795	0.5983	0.5484	0.6384	0.7169	0.4800
4.70	0.4544	0.4823	0.4689	0.4713	0.5896	0.5396	0.6292	0.7081	0.4718
4.80	0.4467	0.4742	0.4610	0.4634	0.5810	0.5310	0.6202	0.6994	0.4637
4.90	0.4391	0.4664	0.4533	0.4556	0.5727	0.5226	0.6113	0.6908	0.4560
5.00	0.4318	0.4588	0.4459	0.4481	0.5645	0.5144	0.6026	0.6823	0.4484

Tableau 5.10 : Rapport A_{S}/A_{*} des gaz en fonction de *M* lorsque T_{0} =2000 K.

М	H_2	O ₂	N_2	CO	CO ₂	H_2O	NH ₃	CH_4	Air
1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.10	1.008	1.008	1.008	1.008	1.009	1.009	1.009	1.009	1.008
1.20	1.032	1.033	1.032	1.032	1.035	1.034	1.036	1.037	1.032
1.30	1.069	1.071	1.070	1.071	1.077	1.075	1.079	1.082	1.070
1.40	1.121	1.125	1.123	1.123	1.136	1.132	1.141	1.145	1.123
1.50	1.186	1.193	1.189	1.193	1.213	1.206	1.220	1.229	1.190
1.60	1.265	1.276	1.271	1.272	1.308	1.297	1.321	1.335	1.271
1.70	1.358	1.375	1.367	1.369	1.426	1.408	1.445	1.467	1.369
1.80	1.468	1.492	1.481	1.483	1.567	1.541	1.596	1.631	1.483
1.90	1.594	1.629	1.612	1.616	1.736	1.697	1.779	1.830	1.617
2.00	1.738	1.786	1.763	1.768	1.938	1.881	1.998	2.073	1.770
2.10	1.902	1.966	1.936	1.942	2.176	2.096	2.261	2.370	1.946
2.20	2.087	2.172	2.132	2.140	2.458	2.345	2.575	2.731	2.147
2.30	2.295	2.406	2.353	2.363	2.791	2.635	2.950	3.172	2.374
2.40	2.528	2.671	2.603	2.616	3.183	2.970	3.398	3.709	2.632
2.50	2.788	2.970	2.883	2.899	3.645	3.356	3.931	4.366	2.923
2.60	3.078	3.307	3.197	3.217	4.187	3.800	4.566	5.169	3.249
2.70	3.399	3.686	3.547	3.572	4.825	4.310	5.322	6.153	3.615
2.80	3.756	4.110	3.938	3.967	5.573	4.893	6.222	7.360	4.024
2.90	4.149	4.584	4.372	4.407	6.449	5.560	7.290	8.841	4.480
3.00	4.583	5.113	4.854	4.895	7.476	6.139	8.557	10.661	4.986
3.10	5.060	5.702	5.387	5.435	8.678	7.183	10.058	12.898	5.547
3.20	5.584	6.357	5.975	6.032	10.082	8.163	11.835	15.649	6.167
3.30	6.158	7.082	6.624	6.690	11.722	9.273	13.932	19.031	6.849
3.40	6.786	7.885	7.337	7.414	13.633	10.526	16.404	23.187	7.600
3.50	7.471	8.771	8.121	8.210	15.858	11.939	19.312	28.293	8.423
3.60	8.218	9.748	8.980	9.081	18.444	13.527	22.725	34.560	9.324
3.70	9.031	10.823	9.919	10.035	21.446	15.309	26.720	42.242	10.307
3.80	9.914	12.004	10.945	11.077	24.924	17.304	31.386	51.645	11.377
3.90	10.871	13.298	12.064	12.214	28.949	19.532	36.821	63.134	12.541
4.00	11.908	14.714	13.282	13.451	33.597	22.016	43.134	77.147	13.804
4.10	13.029	16.262	14.606	14.795	38.955	24.779	50.448	94.199	15.173
4.20	14.239	17.949	16.043	16.254	45.122	27.846	58.898	114.900	16.652
4.30	15.545	19.787	17.599	17.835	52.206	31.244	68.632	139.964	18.250
4.40	16.951	21.786	19.284	19.545	60.329	35.001	79.813	170.227	19.972
4.50	18.464	23.955	21.103	21.393	69.626	39.146	92.619	206.660	21.826
4.60	20.088	26.306	23.067	23.387	80.245	43.713	107.245	250.385	23.820
4.70	21.832	28.851	25.182	25.535	92.353	48.732	123.902	302.694	25.962
4.80	23.701	31.601	27.459	27.847	106.130	54.242	142.817	365.064	28.258
4.90	25.702	34.569	29.906	30.331	121.778	60.277	164.237	439.178	30.719
5.00	27.842	37.767	32.532	32.996	139.516	66.878	188.425	526.942	33.353

				1		0		0	
М	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
1.00	0.7209	0.7053	0.7124	0.7109	0.6639	0.6782	0.6504	0.6350	0.7108
1.10	0.7151	0.6994	0.7066	0.7050	0.6580	0.6723	0.6445	0.6291	0.7050
1.20	0.6988	0.6831	0.6902	0.6887	0.6415	0.6558	0.6279	0.6126	0.6887
1.30	0.6742	0.6583	0.6656	0.6640	0.6163	0.6306	0.6025	0.5871	0.6640
1.40	0.6434	0.6271	0.6345	0.6329	0.5843	0.5989	0.5702	0.5545	0.6330
1.50	0.6081	0.5914	0.5990	0.5973	0.5474	0.5623	0.5329	0.5168	0.5975
1.60	0.5701	0.5528	0.5607	0.5590	0.5074	0.5227	0.4923	0.4757	0.5591
1.70	0.5308	0.5129	0.5210	0.5192	0.4657	0.4816	0.4501	0.4328	0.5193
1.80	0.4912	0.4726	0.4811	0.4792	0.4236	0.4402	0.4075	0.3895	0.4792
1.90	0.4524	0.4331	0.4419	0.4400	0.3823	0.3996	0.3657	0.3470	0.4397
2.00	0.4148	0.3950	0.4040	0.4021	0.3426	0.3606	0.3255	0.3063	0.4016
2.10	0.3791	0.3588	0.3680	0.3661	0.3050	0.3236	0.2877	0.2679	0.3653
2.20	0.3455	0.3248	0.3342	0.3322	0.2700	0.2891	0.2526	0.2325	0.3311
2.30	0.3142	0.2932	0.3028	0.3008	0.2378	0.2574	0.2205	0.2002	0.2994
2.40	0.2852	0.2641	0.2737	0.2718	0.2085	0.2283	0.1914	0.1712	0.2701
2.50	0.2586	0.2375	0.2471	0.2452	0.1821	0.2021	0.1654	0.1454	0.2432
2.60	0.2342	0.2133	0.2229	0.2210	0.1585	0.1785	0.1424	0.1228	0.2188
2.70	0.2121	0.1914	0.2008	0.1990	0.1376	0.1574	0.1222	0.1032	0.1966
2.80	0.1920	0.1716	0.1809	0.1792	0.1191	0.1386	0.1045	0.0863	0.1766
2.90	0.1738	0.1539	0.1629	0.1613	0.1029	0.1220	0.0892	0.0718	0.1587
3.00	0.1573	0.1379	0.1468	0.1452	0.0888	0.1073	0.0760	0.0596	0.1426
3.10	0.1425	0.1237	0.1323	0.1308	0.0765	0.0944	0.0647	0.0492	0.1281
3.20	0.1291	0.1110	0.1192	0.1178	0.0658	0.0831	0.0550	0.0406	0.1153
3.30	0.1171	0.0996	0.1076	0.1063	0.0566	0.0731	0.0467	0.0334	0.1038
3.40	0.1062	0.095	0.0971	0.0959	0.0487	0.0644	0.0396	0.0274	0.0935
3.50	0.0965	0.0804	0.0877	0.0866	0.0419	0.0568	0.0337	0.0224	0.0844
3.60	0.0877	0.0724	0.0793	0.0783	0.0360	0.0501	0.0286	0.0184	0.0762
3.70	0.0798	0.0652	0.0718	0.0708	0.0310	0.0443	0.0243	0.0150	0.0690
3.80	0.0727	0.0588	0.0651	0.0642	0.0266	0.0392	0.0207	0.0123	0.0625
3.90	0.0663	0.0530	0.0591	0.0582	0.0229	0.0347	0.0177	0.0101	0.0567
4.00	0.0605	0.0479	0.0536	0.0529	0.0198	0.0308	0.0151	0.0082	0.0515
4.10	0.0553	0.0434	0.0488	0.0480	0.0170	0.0274	0.0129	0.0067	0.0469
4.20	0.0506	0.0393	0.0444	0.0437	0.0147	0.0244	0.0110	0.0055	0.0427
4.30	0.0464	0.0356	0.0405	0.0399	0.0127	0.0217	0.0095	0.0045	0.0390
4.40	0.0425	0.0324	0.0369	0.0364	0.0110	0.0194	0.0081	0.0037	0.0356
4.50	0.0390	0.0294	0.0338	0.0332	0.0095	0.0173	0.0070	0.0031	0.0326
4.60	0.0359	0.0268	0.0309	0.0304	0.0083	0.0155	0.0061	0.0025	0.0298
4.70	0.0330	0.0244	0.0283	0.0278	0.0072	0.0139	0.0052	0.0021	0.0274
4.80	0.0304	0.0223	0.0259	0.0255	0.0063	0.0125	0.0046	0.0017	0.0252
4.90	0.0280	0.0204	0.0238	0.0234	0.0055	0.0113	0.0040	0.0014	0.0231
5.00	0.0259	0.0187	0.0219	0.0215	0.0048	0.0101	0.0035	0.0012	0.0213

Tableau 5.11 : Effet de gaz sur C_F pour différente valeurs de *M* lorsque T_0 =2000 K

La figure (5.12) représente la variation de C_F en fonction de M pour différent gaz de propulsion lorsque T_0 =2000 K. La variation reste la meme si on change la température T_0 . Alors le gaz donnant un C_F le plus grand possible est recommandé pour l'utilisation en propulsion, ce qui est le cas pour H₂, N₂, CO, air et O₂. La variation présenté dans cette figure est une approximation pour la théorie 1D. Pour le cas réel 2D et 3D, qui nécessite des corrections à la figure (5.12) sera discutées dans les parties 3 et 4 prochaines. Le comportement physique et la discussion reste la meme entre les cas 1D, 2D et 3D.

Figure 5.11 : Variation de A/A_* en fonction de M pour différents gaz de propulsion.

Figure 5.12 : Variation de C_F en fonction de *M* pour différents gaz de propulsion.

5.1.3. Choix de gaz donnant même forme de la tuyère que l'air

La figure (5.13) représente l'effet du gaz de propulsion sur la variation de nombre de Mach à travers la tuyère supersonique. L'exemple pris d'une tuyère type *MLN* donnant M_S =3.00 pour T_0 =2000 K lorsque le gaz utilisé est l'air [96, 101]. La forme de la tuyère est présentée dans la figure (5.13a). La figure (5.13b) contient 9 courbes pour 9 gaz différents. Chaque gaz délivre une distribution de nombre de Mach selon la colonne de gaz concerné de tableau (5.12).

Figure 5.13 : Effet du gaz sur la variation de nombre de Mach à travers la tuyère.

On remarque clairement la dégradation de nombre de Mach si on change l'air par O₂, CO₂, H₂O, NH₃ et CH₄ mais une augmentation de nombre de Mach si on change l'air par H₂, N₂ et CO. Le mauvais entre les gaz sélectionné est celui le CH₄ ensuite le NH₃ et le bon entre les gaz sélectionné est celui le H₂. La correction en nombre de Mach à travers la tuyère veut dire une correction aussi sur les rapports T/T_0 , P/P_0 et ρ/ρ_0 qui influent eux-mêmes par exemple sur le choix de matériau qui résiste à ces paramètres.

La figure (5.14) représente la variation de la correction de nombre de Mach de sortie dans une tuyère supersonique des différents gaz de propulsion en fonction de nombre de Mach de sortie de l'air si l'air est utilisé comme gaz de propulsion pour but de comparaison avec ce dernier. Pour trouver le nombre de Mach de gaz considéré, il faut que le rapport des sections soit le même entre le gaz et l'air. On remarque que si M_S est inférieure à 2.00 environ, la correction en nombre de Mach de gaz de propulsion de gaz de propulsion sur le nombre de Mach de sortie et par conséquent sur le coefficient de poussée et cette influence augmente avec augmentation de M_S et T_0 .

Le tableau (5.12) représente les valeurs numériques trouvées sur la figure (5.15) donnant même section de la tuyère, c'est-à-dire même forme de la tuyère vu que la théorie est 1D.

Figure 5.14 : Effet du gaz sur la correction de M_S donnant meme forme de la tuyère que le cas de

On remarque encore qu'il est mieux faire changer l'air par les gaz donnant un nombre de Mach de sortie supérieure à celui donné par l'air surtout pour les applications des missiles, moteurs fusées et avions supersoniques. On parle de H_2 , N_2 et CO. Entre ces 3 gaz, le mieux entre eux c'est celui le H_2 vu que le nombre de Mach de sortie délivré est le plus grand. Alors les courbes 1, 3 et 4 de la figure (5.15) sont aux dessus de la courbe 9. Le mauvais entre les reste des gaz est celui le CH_4 vu qu'il délivre un nombre de Mach le plus petit possible. Le choix de NH₃ est mauvais aussi. Même chose pour le H_2O et le CO₂. Les courbes 2, 5, 6, 7 et 8 sont aux dessous de la courbe 9.

Généralement on s'intéresse au coefficient C_F . Ce dernier est en fonction de M_S et T_0 selon la relation (3.23) du chapitre 3. Les mêmes remarques présentées sur la figure (5.15) et le tableau (5.12) sur la correction de M_S sont valable pour la correction de C_F . Notons qu'on n'a pas présenté la correction sur le C_F dans cette thèse.

М	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
1.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.10	1.1006	1.0994	1.1000	1.0998	1.0964	1.0973	1.0954	1.0943	1.1000
1.20	1.2015	1.1988	1.2000	1.1997	1.1919	1.1940	1.1895	1.1872	1.2000
1.30	1.3026	1.2980	1.3001	1.2995	1.2864	1.2899	1.2825	1.2786	1.3000
1.40	1.4040	1.3971	1.4002	1.3994	1.3799	1.3851	1.3741	1.3683	1.4000
1.50	1.5058	1.4961	1.5005	1.4994	1.4723	1.4797	1.4644	1.4565	1.5000
1.60	1.6079	1.5951	1.6009	1.5995	1.5637	1.5735	1.5534	1.5430	1.6000
1.70	1.7104	1.6940	1.7014	1.6997	1.6540	1.6666	1.6410	1.6278	1.7000
1.80	1.8134	1.7929	1.8021	1.8000	1.7431	1.7590	1.7273	1.7109	1.8000
1.90	1.9168	1.8918	1.9031	1.9005	1.8311	1.8507	1.8122	1.7924	1.9000
2.00	2.0207	1.9907	2.0042	2.0013	1.9180	1.9417	1.8958	1.8722	2.0000
2.10	2.1252	2.0896	2.1056	2.1022	2.0038	2.0320	1.9779	1.9502	2.1000
2.20	2.2301	2.1885	2.2072	2.2033	2.0884	2.1217	2.0588	2.0266	2.2000
2.30	2.3355	2.2873	2.3091	2.3046	2.1719	2.2107	2.1383	2.1014	2.3000
2.40	2.4415	2.3862	2.4111	2.4062	2.2542	2.2991	2.2164	2.1745	2.4000
2.50	2.5478	2.4850	2.5133	2.5079	2.3354	2.3868	2.2933	2.2459	2.5000
2.60	2.6547	2.5837	2.6157	2.6097	2.4153	2.4738	2.3688	2.3157	2.6000
2.70	2.7618	2.6823	2.7182	2.7116	2.4941	2.5601	2.4430	2.3839	2.7000
2.80	2.8693	2.7807	2.8207	2.8136	2.5716	2.6457	2.5158	2.4505	2.8000
2.90	2.9771	2.8789	2.9233	2.9156	2.6479	2.7306	2.5874	2.5155	2.9000
3.00	3.0851	2.9769	3.0258	3.0176	2.7230	2.8148	2.6576	2.5789	3.0000
3.10	3.1932	3.0746	3.1282	3.1195	2.7968	2.8982	2.7266	2.6408	3.1000
3.20	3.3014	3.1720	3.2305	3.2212	2.8695	2.9809	2.7944	2.7012	3.2000
3.30	3.4097	3.2690	3.3327	3.3228	2.9409	3.0629	2.8609	2.7602	3.3000
3.40	3.5179	3.3657	3.4346	3.4242	3.0111	3.1441	2.9261	2.8177	3.4000
3.50	3.6260	3.4619	3.5363	3.5253	3.0801	3.2246	2.9902	2.8738	3.5000
3.60	3.7341	3.5577	3.6377	3.6263	3.1479	3.3043	3.0532	2.9286	3.6000
3.70	3.8420	3.6531	3.7388	3.7269	3.2146	3.3833	3.1150	2.9821	3.7000

Tableau 5.12 : Effet du gaz sur la correction de M_S lorsque T_0 =2000 K de la tuyère donnant même forme que le cas de l'air.

3.80	3.9498	3.7481	3.8396	3.8273	3.2802	3.4617	3.1758	3.0343	3.8000
3.90	4.0575	3.8427	3.9402	3.9273	3.3448	3.5393	3.2356	3.0854	3.9000
4.00	4.1649	3.9368	4.0404	4.0271	3.4083	3.6164	3.2944	3.1353	4.0000
4.10	4.2722	4.0306	4.1404	4.1267	3.4708	3.6927	3.3522	3.1841	4.1000
4.20	4.3794	4.1239	4.2401	4.2259	3.5323	3.7685	3.4092	3.2319	4.2000
4.30	4.4863	4.2169	4.3395	4.3250	3.5930	3.8438	3.4653	3.2787	4.3000
4.40	4.5931	4.3096	4.4387	4.4238	3.6528	3.9185	3.5206	3.3245	4.4000
4.50	4.6997	4.4020	4.5377	4.5224	3.7117	3.9927	3.5752	3.3695	4.5000
4.60	4.8062	4.4940	4.6365	4.6208	3.7698	4.0665	3.6290	3.4136	4.6000
4.70	4.9125	4.5858	4.7351	4.7190	3.8272	4.1398	3.6822	3.4569	4.7000
4.80	5.0187	4.6774	4.8335	4.8171	3.8839	4.2127	3.7347	3.4994	4.8000
4.90	5.1248	4.7688	4.9317	4.9150	3.9398	4.2852	3.7866	3.5412	4.9000
5.00	5.2308	4.8599	5.0299	5.0129	3.9951	4.3574	3.8380	3.5823	5.0000

La figure (5.15) représente la valeur de l'écart en coefficient de poussée C_F entre les différents gaz de propulsion avec celui de l'air en fonction de nombre de Mach de sortie.

Parmi tous les paramètres de conception on a choisi uniquement de présenter l'écart pour le C_F vu son importance pour la conception. Alors, on remarque que l'écart est petit respectivement pour CO, N₂, H₂ et il est grand pour le NH₃ et CH₄ même pour CO₂ et H₂O. Si M_S =2.00, 3.00, 4.00 et 5.00 pour T_0 =2000 K, l'écart en C_F entre les différents gaz de propulsion et l'air peut avoir les valeurs selon le tableau (5.13).

Alors d'après le tableau (5.13), l'écart entre CH₄ et l'air est égale à 94.34 % et 1.08 % pour CO lorsque M_S =5.00. Mais si T_0 =3000 K, cette écart est égale à 97.65 % pour CH₄ et 0.45 % pour CO lorsque M_S =5.00.

Figure 5.15 : Effet de gaz sur l'écart sur C_F par rapport à l'air en fonction de M.

	-		()	- 1	5		I V	
<i>M</i> _S ∖Gaz	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH ₃	CH_4
1.00	1.42%	0.77%	0.22%	0.00%	6.60%	4.59%	8.50%	10.66%
1.50	1.77%	1.01%	0.25%	0.02%	8.38%	5.89%	10.80%	13.50%
2.00	3.30%	1.64%	0.61%	0.12%	14.68%	10.21%	18.93%	23.72%
2.50	6.32%	2.35%	1.61%	0.82%	25.11%	16.91%	31.97%	40.19%
3.00	10.34%	3.24%	2.96%	1.86%	37.71%	24.72%	46.68%	58.21%

Tableau 5.13 : Ecart relatif en (%) de C_F entre les gaz et l'air lorsque T_0 =2000 K.

3.50	14.34%	4.71%	3.95%	2.60%	50.39%	32.68%	60.09%	73.40%
4.00	17.57%	6.91%	4.16%	2.63%	61.62%	40.18%	70.71%	84.01%
4.50	19.89%	9.59%	3.66%	2.03%	70.72%	46.80%	78.43%	90.56%
5.00	21.49%	12.37%	2.75%	1.08%	77.67%	52.42%	83.80%	94.34%

5.1.4. Choix de gaz donnant même M_S de sortie de la tuyère que l'air

La figure (5.16) représente la forme de la tuyère de propulsion que doit nécessaire supporter la même variation de nombre de Mach que le cas de l'air (courbe 9 dans la figure (5.13b). Cette figure contient 9 courbes pour 9 gaz utilisé. La courbe 9 est celle de l'air, qui est la même courbe présentée sur la figure (5.13a). Alors toutes ces tuyères délivre même nombre de Mach de sortie $M_{\rm S}$ =3.00. On remarque que le gaz CH₄ (courbe 8) nécessite un espace et un volume très large de la tuyère pour avoir le même $M_{\rm S}$ de l'air. Tandis que pour le gaz H₂ demande un volume réduit de la tuyère par rapport à celui de l'air devant tous les autres gaz. Alors le gaz H₂ est très recommandé pour l'utiliser comme un gaz de propulsion pour les applications de construction aérospatiales, missile et avions supersoniques. Tandis que le CH₄ est de même recommandé pour la fabrication de soufflerie supersonique. De même le NH₃, H₂O et CO sont aussi recommandés. La règle de choix pour les souffleries c'est d'avoir une section de sortie la grande possible pour l'emplacement de prototype d'avion et missile ainsi que les appareils de mesure. Généralement on s'intéresse à la zone uniforme existante à la sortie de la tuyère qui doit être la plus grande possible.

On remarque dans cette figure que la longueur de la tuyère est la même indépendamment du gaz choisi, ce qui n'est pas vrai en réalité. On a trouvé ce résultat puisque la théorie présentée dans cette première partie est la théorie 1D approximative qui ne donne aucune information sur deux directions au même temps. Dans la troisième et la quatrième partie, on va représenter le même problème pour but de corriger les résultats obtenus.

Figure 5.16 : Effet du gaz sur la forme de la tuyère donnants meme distribution de nombre de Mach que l'air à travers la tuyère.

5.1.5. Résultats sur le choix de gaz donnant même C_F que l'air

Concernant ce problème, il sera présenté dans la troisième partie 5.3.10 pour la géométrie 2D et la quatrième partie 5.4.10 pour la géométrie axisymétrique vu que les résultats trouvés dans les trois situations 1D, 2D et 3D possèdent la même discussion.

Remarque :

Dans cette étude, la comparaison des différents gaz est faite avec l'air. On peut élargie l'étude et de faire une comparaison entre un gaz et l'autre et on trouve l'écart ou l'erreur commise par ce gaz par rapport à l'autre.

Vu que l'écoulement dans la tuyère supersonique est réellement en 3D, l'étude présentée dans le paragraphe 5.1.3 représente une approximation grossière de l'écoulement. La correction de la paroi sera faite et présentée dans la troisième et la quatrième partie pour la géométrie 2D et l'axisymétrique.

5.2. Résultats de l'effet du gaz sur la fonction de Prandtl Meyer

Les figures (5.17) et (5.18) contiennent chacune 9 courbes pour 9 gaz choisies selon les numéros de tableau (2.1) du chapitre 2. La courbe 1 représente la variation pour le gaz H₂. Courbe 2 pour O₂. Courbe 3 pour N₂. Courbe 4 pour CO. Courbe 5 pour CO₂. Courbe 6 pour H₂O. Courbe 7 pour NH₃. Courbe 8 pour CH₄ et la courbe 9 pour l'air.

5.2.1. Variation de v en fonction de nombre de Mach

La figure (5.17) représente l'effet du gaz de propulsion sur la variation de *PM* en fonction de *M*. L'exemple choisi est pour T_0 =2000 K. Les valeurs numériques obtenues de la fonction de Prandtl Meyer, lorsque T_0 =1000 K, 2000 K et 3000 K, ainsi que pour le modèle *GP*, pour quelques valeurs de nombre de Mach, sont présentées respectivement dans les tableaux (5.14), (5.15), (5.16) et (5.17).

On remarque que plus le gaz possède un rapport γ plus petit, plus la valeur de v sera grande ce qui le cas pour le CH₄. Le gaz H₂ et O₂ donnent la plus petite valeur de v.

Les résultats pour l'air, présentés sur la courbe 9, peuvent être trouvés dans les Réfs [93, 102]. Ils sont présentés pour but de comparaison avec les autres gaz.

La fonction de *PM* influe principalement sur les paramètres de l'écoulement supersonique vu quelle intervient dans la formulation des équations de mouvement (4.1) et (4.2). Alors elle influe principalement sur les paramètres de l'écoulement et donc sur les paramètres de conception d'une tuyère supersonique.

Figure 5.17 : Effet du gaz sur la variation de v(M).

Tableau 5.14 : Effet du gaz sur la fonction v en fonction de *M* lorsque $T_0=1000$ K.

Μ	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH_3	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	1.355	1.387	1.372	1.374	1.481	1.435	1.491	1.528	1.381
1.20	3.610	3.704	3.660	3.665	3.982	3.843	4.011	4.120	3.685

1.30	6.263	6.441	6.358	6.367	6.970	6.704	7.024	7.234	6.403
1.40	9.126	9.406	9.275	9.289	10.248	9.819	10.330	10.669	9.342
1.50	10.093	12.491	12.303	12.323	13.702	13.077	13.813	14.308	12.393
1.60	15.097	15.626	15.377	15.402	17.258	16.407	17.400	18.075	15.488
1.70	18.094	18.766	18.449	18.479	20.867	19.758	21.037	21.918	18.579
1.80	21.054	21.879	21.489	21.525	24.492	23.096	24.687	25.798	21.635
1.90	23.957	24.942	24.475	24.517	28.105	26.396	28.320	29.683	24.632
2.00	26.789	27.939	27.393	27.439	31.687	29.638	31.916	33.552	27.555
2.10	29.539	30.859	30.231	30.282	35.221	32.810	35.457	37.384	30.393
2.20	32.203	33.694	32.983	33.039	38.696	35.902	38.930	41.165	33.139
2.30	34.776	36.441	35.646	35.705	42.102	38.906	42.325	44.882	35.790
2.40	37.258	39.096	38.217	38.279	45.433	41.819	45.634	48.526	38.343
2.50	39.649	41.658	40.695	40.760	48.684	44.638	48.851	52.087	40.798
2.60	41.948	44.126	43.081	43.149	51.851	47.362	51.972	55.560	43.158
2.70	44.159	46.503	45.376	45.446	54.931	49.991	54.995	58.940	45.423
2.80	46.284	48.790	47.583	47.654	57.923	52.524	57.918	62.221	47.596
2.90	48.324	50.988	49.703	49.776	60.826	54.865	60.741	65.402	49.682
3.00	50.284	53.100	51.740	51.813	63.640	57.315	63.463	68.481	51.682
3.10	52.167	55.129	53.696	53.770	66.365	59.576	66.086	71.455	53.601
3.20	53.975	57.078	55.574	55.648	69.003	61.750	68.611	74.325	55.443
3.30	55.712	58.949	57.378	57.452	71.554	63.842	71.040	77.091	57.211
3.40	57.380	60.746	59.110	59.183	74.019	65.853	73.375	79.754	58.908
3.50	58.984	62.471	60.774	60.846	76.401	67.787	75.618	82.314	60.538
3.60	60.527	64.128	62.372	62.444	78.701	69.647	77.773	84.774	62.104
3.70	62.010	65.719	63.908	63.978	80.921	71.436	79.842	87.136	63.610
3.80	63.438	67.248	65.384	65.453	83.064	73.156	81.829	89.401	65.059
3.90	64.812	68.717	66.803	66.871	85.131	74.812	83.735	91.573	66.452
4.00	66.136	70.129	68.167	68.234	87.124	76.405	85.565	93.654	67.794
4.10	67.412	71.487	69.480	69.545	89.047	77.939	87.321	95.646	69.087
4.20	68.642	72.793	70.743	70.806	90.901	79.417	89.006	97.554	70.330
4.30	69.829	74.050	71.960	72.021	92.689	80.840	90.624	99.380	71.530
4.40	70.974	75.261	73.131	73.190	94.414	82.211	92.177	101.12	72.688
4.50	72.081	76.428	74.259	74.316	96.080	83.533	93.667	102.79	73.806
4.60	73.150	77.555	75.346	75.402	97.688	84.809	95.099	104.39	74.886
4.70	74.184	78.643	76.394	76.448	99.244	86.039	96.474	105.92	75.930
4.80	75.185	79.697	77.405	77.457	100.75	87.227	97.795	107.39	76.940
4.90	76.154	80.720	78.380	78.431	102.22	88.374	99.064	108.79	77.917
5.00	77.092	81.717	79.321	79.370	103.65	89.482	100.28	110.13	78.862

Tableau 5.15 : Effet du gaz sur la fonction v en fonction de *M* lorsque T_0 =2000 K.

М	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH_3	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	1.387	1.419	1.405	1.409	1.507	1.480	1.539	1.572	1.404
1.20	3.702	3.798	3.755	3.766	4.058	3.977	4.155	4.254	3.754
1.30	6.436	6.618	6.535	6.556	7.116	6.959	7.303	7.496	6.536
1.40	9.394	9.683	9.551	9.584	10.482	10.225	10.781	11.096	9.557
1.50	12.468	12.883	12.693	12.739	14.040	13.661	14.474	14.939	12.709
1.60	15.589	16.146	15.890	15.952	17.717	17.194	18.307	18.949	15.921
1.70	18.711	19.424	19.096	19.173	21.461	20.771	22.226	23.076	19.148
1.80	21.801	22.683	22.276	22.370	25.235	24.355	26.193	27.279	22.355
1.90	24.836	25.899	25.407	25.518	29.011	27.918	30.179	31.530	25.521
2.00	27.801	29.053	28.473	28.601	32.767	31.438	34.159	35.807	28.626
2.10	30.684	32.133	31.460	31.605	36.486	34.900	38.115	40.089	31.661
2.20	33.479	35.131	34.362	34.524	40.155	38.290	42.033	44.362	34.614
2.30	36.181	38.039	37.172	37.351	43.765	41.601	45.900	48.612	37.482
2.40	38.788	40.855	39.889	40.083	47.307	44.824	49.706	52.830	40.258
2.50	41.299	43.576	42.509	42.719	50.775	47.955	53.442	57.006	42.941

2.60	43.714	46.202	45.034	45.259	54.165	50.991	57.101	61.131	45.529
2.70	46.035	48.733	47.464	47.703	57.472	53.930	60.679	65.200	48.021
2.80	48.265	51.170	49.801	50.052	60.696	56.770	64.170	69.205	50.419
2.90	50.405	53.515	52.046	52.310	63.833	59.512	67.572	73.142	52.721
3.00	52.458	55.771	54.204	54.479	66.884	62.156	70.881	77.006	54.932
3.10	54.428	57.939	56.275	56.561	69.848	64.704	74.096	80.794	57.052
3.20	56.318	60.023	58.264	58.560	72.725	67.158	77.216	84.502	59.083
3.30	58.131	62.025	60.174	60.479	75.517	69.520	80.239	88.128	61.029
3.40	59.871	63.949	62.008	62.320	78.224	71.792	83.167	91.668	62.893
3.50	61.541	65.798	63.769	64.089	80.847	73.977	85.999	95.122	64.677
3.60	63.144	67.575	65.460	65.786	83.389	76.078	88.736	98.487	66.386
3.70	64.683	69.282	67.084	67.417	85.850	78.098	91.380	101.76	68.022
3.80	66.161	70.924	68.645	68.983	88.233	80.040	93.931	104.95	69.589
3.90	67.582	72.502	70.145	70.488	90.540	81.907	96.393	108.04	71.090
4.00	68.948	74.019	71.587	71.934	92.773	83.703	98.766	111.05	72.529
4.10	70.262	75.479	72.974	73.325	94.934	85.429	101.05	113.96	73.909
4.20	71.526	76.884	74.309	74.663	97.024	87.089	103.25	116.79	75.233
4.30	72.743	78.237	75.594	75.951	99.047	88.686	105.37	119.53	76.504
4.40	73.915	79.539	76.831	77.191	101.00	90.223	107.42	122.18	77.724
4.50	75.044	80.793	78.022	78.384	102.89	91.702	109.38	124.74	78.898
4.60	76.133	82.002	79.171	79.535	104.73	93.126	111.28	127.22	80.026
4.70	77.183	83.167	80.278	80.643	106.50	94.498	113.10	129.61	81.112
4.80	78.197	84.290	81.346	81.713	108.22	95.819	114.85	131.92	82.158
4.90	79.175	85.374	82.376	82.744	109.88	97.093	116.54	134.15	83.166
5.00	80.121	86.420	83.371	83.740	111.48	98.321	118.16	136.31	84.139

Tableau 5.16 : Effet du gaz sur la fonction v en fonction de *M* lorsque T_0 =3000 K.

М	H ₂	O ₂	N ₂	CO	CO ₂	H_2O	NH ₃	CH ₄	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	1.413	1.444	1.430	1.435	1.524	1.508	1.563	1.591	1.411
1.20	3.777	3.870	3.829	3.844	4.110	4.061	4.226	4.310	3.776
1.30	6.577	6.755	6.675	6.703	7.218	7.121	7.443	7.606	6.580
1.40	9.615	9.899	9.772	9.816	10.645	10.487	11.009	11.276	9.629
1.50	12.781	13.191	13.007	13.070	14.277	14.043	14.811	15.206	12.816
1.60	16.005	16.558	16.309	16.394	18.040	17.714	18.772	19.320	16.070
1.70	19.237	19.951	19.629	19.736	21.881	21.448	22.841	23.569	19.345
1.80	22.444	23.332	22.931	23.062	25.764	25.207	26.979	27.913	22.606
1.90	25.601	26.677	26.189	26.347	29.658	28.961	31.157	32.325	25.829
2.00	28.691	29.966	29.387	29.571	33.542	32.687	35.351	36.782	28.998
2.10	31.701	33.185	32.509	32.721	37.399	36.369	39.543	41.265	32.097
2.20	34.623	36.324	35.547	35.786	41.213	39.991	43.718	45.761	35.120
2.30	37.452	39.375	38.494	38.761	44.976	43.544	47.862	50.256	38.058
2.40	40.183	42.334	41.347	41.641	48.677	47.019	51.965	54.740	40.908
2.50	42.816	45.197	44.102	44.422	52.309	50.408	56.018	59.205	43.668
2.60	45.350	47.963	46.758	47.105	55.868	53.708	60.014	63.642	46.338
2.70	47.787	50.632	49.317	49.689	59.348	56.914	63.945	68.044	48.916
2.80	50.127	53.205	51.779	52.176	62.747	60.024	67.807	72.406	51.405
2.90	52.373	55.682	54.146	54.566	66.062	63.036	71.595	76.723	53.805
3.00	54.529	58.065	56.420	56.863	69.292	65.950	75.303	80.988	56.118
3.10	56.596	60.357	58.604	59.068	72.436	68.766	78.931	85.199	58.346
3.20	58.578	62.560	60.701	61.185	75.494	71.484	82.474	89.352	60.491
3.30	60.479	64.678	62.714	63.217	78.464	74.107	85.930	93.442	62.556
3.40	62.302	66.712	64.646	65.167	81.349	76.634	89.299	97.467	64.541
3.50	64.050	68.667	66.501	67.038	84.149	79.069	92.578	101.42	66.451
3.60	65.727	70.546	68.281	68.834	86.865	81.414	95.767	105.31	68.286
3.70	67.336	72.350	69.990	70.558	89.499	83.670	98.866	109.12	70.049
3.80	68.880	74.085	71.632	72.213	92.051	85.842	101.87	112.86	71.743

									T
3.90	70.363	75.752	73.208	73.802	94.525	87.931	104.79	116.53	73.369
4.00	71.787	77.355	74.723	75.328	96.921	89.940	107.62	120.12	74.930
4.10	73.155	78.897	76.179	76.795	99.242	91.872	110.36	123.63	76.429
4.20	74.470	80.379	77.579	78.205	101.49	93.731	113.01	127.06	77.867
4.30	75.734	81.806	78.926	79.561	103.66	95.519	115.58	130.41	79.248
4 40	76 951	83 180	80 222	80 865	105 77	97 238	118.06	133 68	80 573
4 50	78 122	84 502	81 469	82 120	107.81	98 892	120.46	136.88	81 845
4.00	70.122	85 776	82 671	83 320	107.01	100.002	120.40	130.00	83.067
4.00	80 337	87.004	83.828	81 103	111 70	102.40	125.02	1/3 02	84 241
4.70	Q1 2Q/	07.004	84 044	95 615	112.55	102.01	123.02	145.02	95 269
4.00	01.004	00.107	96.020	00.010	115.00	103.49	127.10	140.97	05.500
4.90	02.394	09.329	00.020	00.090	115.35	104.91	129.27	140.04	00.402
5.00	83.309	90.430	87.058	87.739	117.08	106.27	131.29	151.03	87.495
Tabl	eau 5.17	7 : Effet	du gaz sı	ır la fono	ction v ei	n fonction	i de <i>M</i> p	our le m	odèle GF
М	H ₂	O ₂	N ₂	CO	CO_2	H ₂ O	NH ₃	CH₄	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1 10	1 333	1 340	1.337	1 337	1 408	1.381	1 398	1 398	1.335
1.10	3 549	3 568	3 559	3 560	3 769	3 688	3 737	3 738	3 555
1.20	6 153	6 188	6 172	6 173	6 567	6.414	6 507	6 500	6 164
1.00	8 061	0.100	8 000	8 001	0.007	0.414	0.507	0.009	8 077
1.40	11 060	9.010 11.04E	11 000	11 011	10 700	3.308	12 656	3.020	11 001
1.00	11.000	11.945	11.909	11.911	12.792	12.447	12.000	12.002	11.091
1.00	14.810	14.912	14.805	14.808	10.042	10.080	10.001	10.000	14.841
1.70	17.747	17.870	17.810	17.820	19.314	18.724	19.081	19.091	17.785
1.80	20.648	20.806	20.732	20.737	22.575	21.847	22.287	22.299	20.695
1.90	23.494	23.682	23.595	23.601	25.802	24.927	25.456	25.471	23.550
2.00	26.272	26.492	26.390	26.396	28.979	27.950	28.571	28.588	26.338
2.10	28.973	29.226	29.108	29.116	32.093	30.904	31.622	31.641	29.049
2.20	31.593	31.878	31.745	31.754	35.134	33.781	34.599	34.621	31.678
2.30	34.127	34.445	34.297	34.307	38.104	36.578	37.498	37.523	34.222
2.40	36.574	36.926	36.762	36.773	40.990	39.291	40.315	40.343	36.679
2.50	38.934	39.320	39.141	39.153	43.795	41.920	43.048	43.079	39.050
2.60	41.209	41.629	41.433	41.446	46.515	44.463	45.697	45.731	41.335
2.70	43.399	43.853	43.642	43.656	49.152	46.921	48.262	48.299	43.535
2.80	45.507	45.994	45,768	45,783	51,706	49.296	50.744	50,784	45.659
2 90	47 535	48 055	47 813	47 829	54 177	51 589	53 143	53 186	47 691
3.00	49 486	50 039	49 782	49 799	56 568	53 803	55 462	55 508	49 652
3 10	51 363	51 948	51 676	51 694	58 881	55 938	57 703	57 752	51 538
3 20	53 168	53 784	53 /08	53 517	61 116	57,000	50,868	50 010	53 353
3.20	54 005	55 552	55 251	55 271	62 277	50.087	61 059	62 012	55.008
3.30	54.905	53.332	55.231	55.271	03.ZTT	59.907	62.070	64.025	55.090
3.40	50.575	57.253	50.938	50.958	00.300	61.905	03.979	04.035	50.778
3.50	58.183	58.890	58.561	58.583	67.386	63.756	05.928	65.989	58.395
3.60	59.730	60.467	60.124	60.147	69.338	65.542	67.813	67.875	59.951
3.70	60.220	61.985	61.629	61.653	/1.225	67.265	69.633	69.699	61.449
3.80	62.655	63.448	63.079	63.103	73.049	68.929	71.391	71.460	62.892
3.90	64.038	64.858	64.476	64.501	74.813	70.535	73.091	73.162	64.283
4.00	65.370	66.217	65.822	65.848	76.519	72.086	74.733	74.807	65.623
4.10	66.654	67.527	67.121	67.147	78.169	73.585	76.322	76.398	66.915
4.20	67.893	68.791	68.373	68.401	79.766	75.033	77.857	77.936	68.162
4.30	69.089	70.011	69.581	69.610	81.311	76.432	79.343	79.424	69.364
4.40	70.242	71.189	70.748	70.777	82.807	77.785	80.780	80.864	70.525
4.50	71.357	72.327	71.875	71.904	84.256	79.094	82.171	82.257	71.646
4.60	72.433	73.426	72.963	72.994	85.659	80.360	83.518	83.606	72.729
4.70	73.473	74.488	74.015	74.046	87.018	81.585	84.822	84.912	73.776
4.80	74.478	75.515	75.032	75.064	89.335	82.772	86.085	86.178	74.788
4.90	75.451	76.509	76.016	76.048	89.612	83.921	87.310	87.404	75.767
5.00	76.392	77,471	76,968	77.001	90.851	85.034	88,496	88,593	76,714
0.00								23.000	
5.2.2. Variation de v en fonction de T₀

La figure (5.18) présente la variation de la fonction v en fonction de la température T_0 pour les différents gaz choisis lorsque M_S =3.00. Les résultats numériques de la fonction de PM, pour différentes valeurs de T_0 , lorsque M_S =3.00 sont présentées dans le tableau (5.18).

Figure 5.18 : Effet du gaz sur la variation de v avec T_0 .

Cette figure illustre l'effet du gaz et T_0 sur la valeur de v. Plus la valeur de la température T_0 de la chambre de combustion est élevé, plus v est élevée, ce qui influe essentiellement sur les paramètres de l'écoulement supersonique et en particulier sur les paramètres de conception d'une tuyère, notamment la longueur, la masse de la structure de la tuyère et la poussée délivrée par la tuyère. Ces résultats seront discutés dans les paragraphes 5.3 et 5.4 sur la conception des tuyères *MLN*. En conclusion le gaz, T_0 et M_S influent sur la fonction de Prandtl Meyer.

T_0 (K)	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH_3	CH_4	Air
500	49.399	51.231	50.225	50.197	61.350	54.449	57.369	59.248	49.794
600	49.515	51.649	50.579	50.570	61.283	55.041	58.828	61.605	50.045
700	49.680	52.065	50.895	50.906	62.027	55.626	60.139	63.675	50.387
800	49.870	52.440	51.189	51.220	62.653	56.201	61.335	65.481	50.786
900	50.073	52.781	51.469	51.521	63.180	56.764	62.438	67.070	51.225
1000	50.284	53.100	51.740	51.813	63.640	57.315	63.463	68.480	51.682
1100	50.499	53.401	52.003	52.098	64.052	57.853	64.421	69.741	52.138
1200	50.717	53.691	52.261	52.377	64.432	58.379	65.318	70.875	52.577
1300	50.936	53.970	52.515	52.652	64.786	58.892	66.160	71.900	52.989
1400	51.155	54.243	52.764	52.922	65.121	59.393	66.954	72.831	53.367
1500	51.374	54.508	53.011	53.189	65.441	59.882	67.702	73.680	53.709
1600	51.592	54.769	53.255	53.453	65.749	60.360	68.409	74.458	54.015
1700	51.810	55.025	53.496	53.714	66.045	60.825	69.077	75.173	54.287
1800	52.027	55.277	53.734	53.971	66.333	61.280	69.710	75.832	54.527
1900	52.243	55.526	53.970	54.226	66.612	61.723	70.311	76.441	54.741
2000	52.458	55.771	54.203	54.479	66.884	62.156	70.881	77.006	54.932
2100	52.671	56.012	54.435	54.728	67.149	62.578	71.423	77.531	55.103

Tableau 5.18 : Valeurs de v des gaz pour différents T_0 lorsque M_S =3.00.

2200	52.883	56.251	54.664	54.975	67.407	62.990	71.938	78.021	55.257
2300	53.094	56.487	54.891	55.220	67.660	63.392	72.429	78.478	55.398
2400	53.303	56.720	55.115	55.462	67.908	63.784	72.898	78.906	55.526
2500	53.511	56.950	55.338	55.701	68.150	64.167	73.344	79.307	55.645
2600	53.718	57.178	55.558	55.938	68.388	64.541	73.771	79.684	55.754
2700	53.923	57.403	55.777	56.173	68.620	64.906	74.180	80.039	55.855
2800	54.126	57.626	55.993	56.405	68.849	65.262	74.570	80.373	55.949
2900	54.328	57.847	56.208	56.635	69.072	65.610	74.944	80.689	56.036
3000	54.528	58.065	56.420	56.863	69.292	65.950	75.303	80.988	56.118
3100	54.727	58.280	56.631	57.088	69.508	66.282	75.647	81.271	56.195
3200	54.925	58.494	56.839	57.311	69.720	66.606	75.977	81.539	56.268
3300	55.120	58.705	57.046	57.531	69.928	66.923	76.295	81.794	56.339
3400	55.315	58.914	57.250	57.750	70.132	67.233	76.600	82.037	56.407
3500	55.508	59.121	57.453	57.966	70.333	67.535	76.893	82.268	56.471

5.2.3. Variation de l'imperfection en fonction de nombre de Mach

Sur les figures (5.19), (5.20), (5.21), (5.22), (5.23), (5.24), (5.25), (5.26) et 5.27), on a représenté la variation de la fonction v et l'imperfection respectivement pour tous les gaz sélectionnés (H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et air) en fonction de nombre de Mach à haute température pour T_0 =1000 K, 2000 K et 3000 K et pour le cas du gaz parfait (basse température 298,15 K, la courbe 4). Il est à noter une différence entre les valeurs trouvées. Lorsque T_0 =2,000 K et M_S = 5,00, v_{CH4}=136,31 degré et v_{H2}=80.12 degrés.

Figure 5.20 : Effet de l'imperfection calorique sur v en fonction de M pour le O₂.

Figure 5.21 : Effet de l'imperfection calorique sur v en fonction de M pour le N₂.

A propos de l'imperfection, nous remarquons qu'elle est toujours supérieure à l'unité. Cela montre que les résultats de la fonction *PM* pour hypothèse à haute température sont toujours supérieurs à ceux de modèle de gaz parfait à basse température. Ensuite, plus T_0 est plus grande, l'imperfection sera élevé, ce qui montre en outre l'influence de la température T_0 de la fonction *PM*. L'imperfection peut atteindre 1,72 pour le CH₄ lorsque T_0 =3000 K. Ce consiste à dire que l'écart peut atteindre à 72% entre les résultats de ces deux modèles. Le taux maximal de l'imperfection de H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et air peut atteindre respectivement à 10,19% 16,84% ,13,56%, 14,44%, 28,88%, 24,87%, 48,35%, 71.16% et 14.24% pour T_0 =3000 K.

Figure 5.22 : Effet de l'imperfection calorique sur v en fonction de M pour le CO.

Plus T_0 augmente, plus le taux de l'imperfection augmente également, ce qui veut dire que le gaz concerné ne convient pas pour une utilisation à cette température comme gaz propulseur pour véhicules aérospatiaux. Tel est le cas, par exemple, de CH₄, NH₃, H₂O et CO₂. Comme une solution possible pour ces gaz, d'utiliser la plus petite possible température T_0 , pour la propulsion

aéronautique et spatiale, mais pas conseillé. Alors que pour H₂, O₂, N₂ et de l'air, et puisque le taux d'imperfection est petit, nous pouvons utiliser une valeur élevée de T_0 si nécessaire.

L'imperfection calorique représente l'écart donné par le modèle *GP* par rapport au modèle *HT*. Pour certains auteurs ils préfèrent la détermination de l'imperfection sous la forme de la relation (4.74). Cette relation donne la valeur de l'écart directement. Aussi le nombre de Mach supersonique affecte le taux d'imperfection.

En comparant les résultats de la figure (5.27) obtenus pour l'air par notre programme numérique avec des résultats sur la fonction de *PM* présentés dans [93, 102], nous notons qu'il ya une erreur relative maximale qui ne dépasse pas 2,47% pour ce gaz.

Figure 5.23 : Effet de l'imperfection calorique sur v en fonction de M pour le CO₂.

Figure 5.24 : Effet de l'imperfection calorique sur v en fonction de M pour le H₂O.

Figure 5.25 : Effet de l'imperfection calorique sur v en fonction de M pour le NH₃.

Figure 5.26 : Effet de l'imperfection calorique sur v en fonction de M pour le CH₄.

Figure 5.27 : Effet de l'imperfection calorique sur v en fonction de M pour le l'air.

5.2.4. Inverse de la fonction de Prandtl Meyer

Sur les tableaux (5.19), (5.20), (5.21) et (5.22), on a présenté l'effet du gaz sur le nombre de Mach respectivement lorsque la fonction v est donnée pour T_0 =1000K, T_0 =2000 K, T_0 =3000 K y compris le cas de modèle *GP*. Le calcul

inverse de la fonction v à un intérêt pratique par exemple pour le cas d'une détente d'un dièdre supersonique, appliquée pour les écoulements externes. Le cas de la tuyère est un autre exemple pour les écoulements internes lors de calcul de nombre de Mach au centre de détente *A* de la figure 4.2. Pour arriver à obtenir la valeur M correspondant à v, il faut inverser la relation (3.33) en utilisant la quadrature de Simpson combinée avec l'algorithme de dichotomie.

Si la déviation de dièdre par rapport à l'écoulement amont est donnée par exemple par θ , le nombre de Mach M_2 juste après la détente sera calculé par rapport au nombre de Mach amont M_1 , par la résolution de l'équation suivante :

$$\theta = \nu(M_2) - \nu(M_1) \tag{5.1}$$

Les valeurs de M_1 et θ sont connues et M_2 est inconnu. Le problème devient l'inversion de la fonction *PM*, dont le but de calculer la valeur de M_2 , d'où l'intérêt des tableaux (5.19), (5.20), (5.21) et (5.22). On remarque à partir de ces tableaux l'influence des gaz sur le nombre de Mach aval, qui va influencer obligatoirement sur tous les paramètres thermodynamiques et géométriques aval *P*/*P*₀, *T*/*T*₀, ρ/ρ_0 , *A*/*A*_{*} de l'écoulement [97-98].

v (deg)	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH_3	CH_4	Air
5	1.254	1.249	1.251	1.251	1.236	1.242	1.234	1.230	1.250
10	1.430	1.419	1.424	1.424	1.393	1.406	1.390	1.381	1.422
15	1.597	1.580	1.588	1.587	1.537	1.558	1.533	1.519	1.584
20	1.764	1.739	1.751	1.750	1.676	1.707	1.672	1.650	1.746
25	1.937	1.902	1.918	1.916	1.814	1.858	1.809	1.779	1.912
30	2.117	2.070	2.092	2.090	1.953	2.011	1.947	1.908	2.086
35	2.309	2.247	2.275	2.273	2.094	2.171	2.087	2.038	2.270
40	2.515	2.435	2.472	2.469	2.238	2.337	2.231	2.169	2.467
45	2.739	2.636	2.683	2.680	2.387	2.513	2.381	2.303	2.681
50	2.985	2.855	2.914	2.911	2.541	2.700	2.536	2.441	2.916
55	3.259	3.094	3.169	3.165	2.702	2.901	2.700	2.584	3.176
60	3.565	3.358	3.453	3.449	2.871	3.119	2.873	2.732	3.467
65	3.914	3.654	3.774	3.769	3.050	3.357	3.058	2.887	3.796
70	4.315	3.991	4.141	4.136	3.239	3.619	3.257	3.051	4.173
75	4.781	4.378	4.568	4.563	3.441	3.912	3.472	3.224	4.611
80	5.331	4.829	5.074	5.069	3.658	4.241	3.708	3.409	5.125

Tableau 5.19 : Effet du gaz sur *M* lorsque v est donnée pour T_0 =1000 K

Tableau 5.20 : Effet du gaz sur *M* lorsque v est donnée pour T_0 =2000 K.

v (deg)	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH_3	CH_4	Air
5	1.249	1.244	1.246	1.246	1.232	1.236	1.228	1.224	1.246
10	1.420	1.410	1.414	1.413	1.386	1.393	1.378	1.370	1.414
15	1.581	1.565	1.572	1.570	1.526	1.538	1.514	1.502	1.571
20	1.742	1.718	1.728	1.726	1.661	1.679	1.643	1.626	1.726
25	1.905	1.872	1.887	1.883	1.794	1.818	1.770	1.746	1.883
30	2.076	2.030	2.051	2.046	1.926	1.959	1.896	1.864	2.045
35	2.256	2.196	2.222	2.217	2.060	2.103	2.021	1.981	2.213
40	2.448	2.369	2.404	2.397	2.196	2.251	2.148	2.098	2.391
45	2.655	2.554	2.599	2.590	2.335	2.406	2.277	2.215	2.579
50	2.981	2.752	2.809	2.798	2.477	2.567	2.408	2.333	2.782

55	3.130	2.965	3.038	3.025	2.625	2.737	2.542	2.452	3.003
60	3.408	3.199	3.291	3.275	2.778	2.918	2.681	2.572	3.247
65	3.721	3.456	3.572	3.553	2.938	3.112	2.824	2.695	3.519
70	4.080	3.743	3.890	3.867	3.105	3.321	2.973	2.820	3.827
75	4.496	4.067	4.253	4.226	3.281	3.548	3.129	2.948	4.182
80	4.987	4.436	4.675	4.642	3.467	3.798	3.292	3.079	4.598

Tableau 5.21 : Effet du gaz sur *M* lorsque v est donnée pour T_0 =3000 K.

v (deg)	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH_3	CH_4	Air
5	1.245	1.241	1.243	1.242	1.230	1.232	1.225	1.222	1.245
10	1.412	1.403	1.407	1.406	1.382	1.386	1.372	1.366	1.412
15	1.569	1.554	1.560	1.558	1.519	1.526	1.509	1.495	1.567
20	1.724	1.701	1.711	1.708	1.651	1.661	1.630	1.616	1.720
25	1.881	1.850	1.863	1.859	1.780	1.795	1.752	1.733	1.874
30	2.043	2.001	2.019	2.013	1.909	1.928	1.872	1.847	2.032
35	2.213	2.158	2.182	2.174	2.038	2.063	1.992	1.960	2.196
40	2.393	2.321	2.352	2.343	2.168	2.200	2.111	2.072	2.368
45	2.586	2.493	2.533	2.521	2.301	2.342	2.231	2.183	2.549
50	2.794	2.676	2.727	2.712	2.436	2.488	2.352	2.294	2.743
55	3.022	2.872	2.937	2.919	2.575	2.640	2.475	2.416	2.951
60	3.274	3.084	3.166	3.144	2.719	2.799	2.600	2.518	3.177
65	3.556	3.316	3.419	3.391	2.868	2.967	2.727	2.631	3.424
70	3.875	3.571	3.701	3.667	3.022	3.145	2.858	2.745	3.697
75	4.241	3.854	4.019	3.978	3.184	3.335	2.992	2.860	4.005
80	4.669	4.174	4.383	4.333	3.353	3.539	3.130	2.977	4.356

Tableau 5.22 : Effet du gaz sur *M* lorsque v est donnée pour le modèle Gaz parfait

	Val	eurs de	M lorsque	e la fonc	tion v es	st donnée	pour le	modèle	GP
v (deg)	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
5	1.257	1.256	1.256	1.256	1.245	1.250	1.247	1.247	1.257
10	1.436	1.434	1.435	1.435	1.412	1.421	1.416	1.415	1.435
15	1.606	1.603	1.605	1.604	1.568	1.582	1.573	1.573	1.605
20	1.778	1.772	1.775	1.775	1.721	1.741	1.729	1.728	1.776
25	1.954	1.947	1.950	1.950	1.875	1.902	1.886	1.885	1.952
30	2.139	2.129	2.133	2.133	2.033	2.069	2.047	2.046	2.136
35	2.335	2.322	2.328	2.328	2.195	2.243	2.214	2.213	2.331
40	2.546	2.529	2.537	2.537	2.365	2.427	2.389	2.388	2.541
45	2.776	2.753	2.763	2.763	2.544	2.622	2.573	2.572	2.769
50	3.027	2.998	3.011	3.010	2.733	2.830	2.770	2.768	3.018
55	3.306	3.268	3.285	3.284	2.934	3.056	2.980	2.978	3.294
60	3.618	3.570	3.592	3.590	3.150	3.301	3.206	3.204	3.603
65	3.972	3.910	3.939	3.937	3.382	3.569	3.452	3.449	3.953
70	4.379	4.299	4.335	4.333	3.635	3.866	3.721	3.717	4.354
75	4.853	4.749	4.797	4.794	3.911	4.198	4.017	4.012	4.821
80	5.416	5.280	5.342	5.338	4.215	4.572	4.345	4.342	5.374

5.2.5. Ecart en v entre les gaz et l'air

La figure (5.28) représente l'écart entre la fonction *v* des différents gaz est celui de l'air en fonction de *M*, lorsque T_0 =2000 K. Pour le H₂, l'écart peut aller à 4.77 % et pour le CH₄ à 62.00 % lorsque M_S =5.00. Cette variation dépend de M_S , T_0 et le gaz lui-même. Lorsqu'on dit le gaz on parle de $C_P(T)$ et *R*.

Compte tenu de la fonction v est égale à zéro lorsque M=1,00 ($T=T_*$) d'après l'équation (3.33). Ensuite, l'analyse d'erreur a un problème de calcul (zéro sur

zéro). Dans ce cas, l'erreur obtenue pour chaque gaz est respectivement 1.061 %, 1.209%, 0.082 %, 0.335 %, 6.573 %, 4.893 %, 6.335 % et 6.573 %

Figure 5.28 : Variation $\varepsilon_{\nu}(\%)$ de différents gaz par rapport à l'air en fonction de *M*.

5.3. Résultats sur l'effet du gaz sur la conception de la tuyère à détente centrée bidimensionnelle

Les figures (5.30) à (5.33) ainsi que les figures (5.43) à (5.74) et les figures (5.76) à (5.80) représentent chacune 9 courbes pour les 9 gaz choisis. Les courbes portants le numéro 1, 2, 3, 4, 5, 6, 7, 8 et 9 représente respectivement la variation du paramètre indiqué sur la figure pour les gaz H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air.

Les figures sont suivies par des résultats tabulés pour chaque gaz afin de visualiser les valeurs numériques trouvées dont l'extrapolation à partir du graphe est assez difficile.

Tous les résultats présentés dans cette partie sont trouvés par le programme numérique développé, dont l'organigramme principal est présenté dans l'appendice C. Pour trouver les résultats dans les figures (5.43) à (5.49) ainsi que les tableaux (5.36) à (5.43) on a ajouté une boucle de variation de nombre de Mach de sortie M_S dans l'organigramme de l'appendice C. Pour les figures (5.50) jusqu'à (5.56) ainsi que les tableaux (5.44) à (5.50) on a ajouté dans le programme numérique élaboré une boucle de variation de la température T_0 pour avoir les résultats en temps réduit.

Les résultats pour l'air (courbe 9) dans les dites figures peuvent être trouvés dans les références [95-96]. Ils sont présentés pour but de faire une comparaison avec les autres gaz.

5.3.1. Maillages en caractéristiques pour la tuyère 2D

La figure (5.29) présente un exemple de maillage en caractéristiques. On remarque bien les caractéristiques dans les régions de Kernel, et de transition. Dans cette dernière la zone est dite simple et les caractéristiques sont des lignes droites et il n'est ya pas de réflexion des caractéristiques sur la paroi. Autrement dit, il ya absorption des caractéristiques. Un maillage gros et l'autre fin sont présentés dans les figures (5.29a) et (5.29b). La convergence des résultats de conception dépend du maillage considéré pour le calcul, qui dépend lui-même de nombre des caractéristiques choisie et le nombre des caractéristiques supplémentaires insérées entre la première C- régulière et la ligne sonique. Alors un maillage fin donne des bons résultats.

La convergence des résultats de conception est assurée lorsque le rapport des sections calculé numériquement par (4.66) suivant le maillage opté converge vers la valeur du rapport des sections exacte donnée par la relation (4.67). Les autres

paramètres de conception tels que θ^* , M^* , L_d/y_* , L/y_* , C_{Masse} , C_F et surtout la forme de la tuyère convergent aussi et d'une manière automatique vers la solution exacte. Dans la présentation des résultats, on a choisi une précision de 10⁻⁵.

(a) : Maillage gros. (b) : Maillage fin.

Figure 5.29 : Maillages en caractéristiques pour la géométrie 2D.

5.3.2. Effet du gaz sur la forme de la tuyère 2D

Dans les figures (5.30), (5.31), (5.32) et (5.33) représentent l'effet du gaz de propulsion sur la forme des tuyères supersoniques type MLN 2D donnant à la section de sortie respectivement M_S =2.00, 3.00, 4.00 et 5.00 pour T_0 =2000K. Les résultats de conception sont présentés respectivement dans les tableaux (5.23), (5.24), (5.25) et (5.26). On remarque bien l'effet du gaz sur la forme de la tuyère et les par conséquent sur les paramètres de conception. Par exemple le gaz CH₄ donne une longueur et masse ainsi que le coefficient de poussée très élevés par rapport à tous les autres gaz choisis. Tandis que les gaz H₂, N₂, O₂ et CO donnent une forme de la tuyère très réduite et de même des paramètres de conception adéquats. Pour la construction aérospatiale des tuyères supersoniques appliquées pour les missiles et les avions supersoniques on recommande l'utilisation par exemple le gaz H₂, N₂ ou CO et même l'air. Par exemple, les gaz CH₄ et NH₃ sont non recommandés. Tandis que pour les souffleries supersoniques on peut utiliser des tuyères qui présentent des sections de sortie grandes. Dans ce cas le CH₄, NH₃, H₂O et CO₂ sont recommandés. L'influence de $M_{\rm S}$ et T_0 est remarquée sur la forme et les paramètres après une comparaison entre les figures (5.30) à (5.33) et les tableaux (5.23) à (5.26). Les gaz H_2 , N_2 , O2 et CO donnent des meilleures performances par rapport à l'air pour les applications de la construction aérospatiale. Les formes des tuyères pour le cas de l'air (courbe 9) peut êtres trouvés dans les références [95-96].

Figure 5.30 : Effet du gaz sur la forme des tuyères *MLN* 2D donnant M_S =2.00.

Ν	Gaz	$\theta^{(deg)}$	L _d /y∗	L/y∗	C _{Masse}	C _F	y₅⁄y∗
1	H ₂	13.900	1.953	4.964	5.035	0.168	1.738
2	O ₂	14.526	1.999	5.092	5.172	0.181	1.786
3	N ₂	14.236	1.978	5.032	5.108	0.175	1.763
4	CO	14.300	1.982	5.045	5.121	0.176	1.768
5	CO ₂	16.383	2.143	5.499	5.605	0.222	1.938
6	H ₂ O	15.719	2.089	5.347	5.442	0.206	1.881
7	NH ₃	17.079	2.198	5.658	5.775	0.238	1.998
8	CH ₄	17.903	2.267	5.858	5.988	0.258	2.073
9	Air [95, 96]	14.313	1.986	5.052	5.129	0.177	1.770

Tableau 5.23 : Résultats de dimensionnement des tuyères de la figure 5.30.

Figure 5.31 : Effet du gaz sur la forme des tuyères *MLN* 2D donnant M_S =3.00.

Tableau 5.24 : Résultats de dimensionnement des tuyères de la figure 5.31.

Ν	Gaz	θ^{*} (deg)	L _d ∕y∗	L/y∗	C_{Masse}	C _F	y₅⁄y∗
1	H ₂	26.229	5.211	18.174	18.725	0.323	4.583
2	O ₂	27.885	5.671	20.134	20.796	0.356	5.113
3	N ₂	27.102	5.447	19.175	19.783	0.340	4.854
4	CO	27.239	5.481	19.326	19.943	0.343	4.895
5	CO ₂	33.442	7.637	28.783	29.970	0.481	7.476
6	H ₂ O	31.078	6.677	24.550	25.477	0.425	6.139
7	NH ₃	35.441	8.483	32.686	34.126	0.527	8.557
8	CH ₄	38.503	10.123	40.278	42.219	0.605	10.661
9	Air [95-96]	27.466	5.569	19.672	20.307	0.348	4.986

Figure 5.32 : Effet du gaz sur la forme des tuyères *MLN* 2D donnant M_S =4.00.

Tabl	Tableau 3.23 . Resultats de dimensionmement des tayeres de la ligare 3.32										
N	Gaz	θ (deg)	L _d ∕y∗	L/y∗	C _{Masse}	Ċ _F	y _s ∕y∗				
1	H ₂	34.474	12.447	58.566	60.393	0.410	11.908				
2	O ₂	37.010	14.777	71.765	74.154	0.450	14.714				
3	N ₂	35.794	13.594	65.036	67.138	0.435	13.282				
4	CO	35.967	13.725	65.819	67.956	0.438	13.451				
5	CO ₂	46.387	29.541	159.660	165.968	0.657	33.597				
6	H ₂ O	41.851	20.548	105.817	109.714	0.557	22.016				
7	NH ₃	49.383	36.444	203.503	211.865	0.726	43.134				
8	CH ₄	55.526	60.769	359.560	375.239	0.875	77.147				
9	Air [95-96]	36.265	14.021	67.485	69.694	0.444	13.804				

Tableau 5.25 : Résultats de dimensionnement des tuvères de la figure 5.32.

Figure 5.33 : Effet du gaz sur la forme des tuyères *MLN* 2D donnant M_{S} =5.00.

Ν	Gaz	θ (deg)	L _d ∕y∗	L/y∗	C _{Masse}	C_F	y₅⁄y∗
1	H ₂	40.060	27.271	163.669	168.030	0.459	27.842
2	O ₂	43.210	35.321	220.342	226.489	0.517	37.767
3	N ₂	41.686	31.098	190.472	195.675	0.489	32.532
4	CO	41.870	31.445	193.094	198.384	0.492	32.996
5	CO ₂	55.744	112.042	795.536	820.270	0.768	139.516
6	H ₂ O	49.161	57.695	385.331	396.813	0.633	66.878
7	NH ₃	59.083	145.674	1068.773	1102.740	0.844	188.425
8	CH ₄	68.155	376.241	2957.764	3054.485	1.053	526.942
9	Air [95-96]	42.069	31.659	195.035	200.423	0.497	33.353

Tableau 5.26 : Résultats de dimensionnement des tuyères de la figure 5.33.

5.3.3. Effet de T₀ sur la forme de tuyère MLN 2D

Les figures (5.34) à (5.42) représentent l'effet de T_0 à Haute Température et le comportement thermodynamique des gaz sur la forme de la tuyère supersonique lorsque M_S =3.00. Les valeurs de T_0 choisies sont T_0 =1000 K, 2000 K et 3000 K y compris le cas du gaz parfait à basse température lorsque T_0 =298.15 K.

<i>T</i> ₀ (K)	θ^{r} (deg)	L/y∗	C _{Masse}	C _F	y _s ∕y∗
1000	25.1420	17.0834	17.5724	0.3037	4.2859
2000	26.2290	18.1739	18.7247	0.3239	4.5829
3000	27.2642	19.3177	19.9342	0.3441	4.8941
GP	24.7431	16.7679	17.2379	0.2972	4.1973

Tableau 5.27 : Résultats de dimensionnement des tuyères de la figure 5.34.

On remarque que l'augmentation de T_0 demande des longueurs, C_{Masse} et C_F importants et des formes différentes de la tuyère pour garder l'écoulement uniforme et parallèle à la section de sortie. Les résultats numériques de conception sont représentés respectivement dans les tableaux (5.27) à (5.35). Le modèle à haute température corrige le modèle *GP* lorsque la température

augmente et dépassant les 400 K environ. Le commentaire reste valable si on change M_S par d'autres valeurs. Alors en plus le M_S dépend de la forme de la tuyère, la température T_0 influe sur la forme pour donner un nombre de Mach uniforme et parallèle.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP.

Figure 5.35 : Effet de T_0 sur la forme de la tuyère *MLN* 2D pour le gaz O_2 .

				e (a) el ee ae i	a ligale elect
<i>T</i> ₀ (K)	θ (deg)	L/y∗	C_{Masse}	C _F	y₅⁄y∗
1000	26.5499	18.5913	19.1645	0.3306	4.6936
2000	27.8853	20.1340	20.7963	0.3579	5.1133
3000	29.0323	21.5867	22.3348	0.3816	5.5096
GP	25 0193	17 0512	17 5366	0 3027	4 2735

Tableau 5.28 : Résultats de dimensionnement des tuyères de la figure 5.35.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP.

Figure 5.36 : Effet de T_0 sur la forme de la tuyère *MLN* 2D pour le gaz N₂.

10	inicau J.Z.	a Nesula	is de dimensio		s luyeres de i	a ligule 5.50.
	<i>T</i> ₀ (K)	θ^{*} (deg)	L/y∗	C_{Masse}	C _F	y₅⁄y∗
	1000	25.8698	17.8421	18.3733	0.3175	4.4910
	2000	27.1020	19.1752	19.7827	0.3586	4.8537
	3000	28.2100	20.4924	21.1766	0.3640	5.2125
	GP	24.8908	16.9187	17.3970	0.3001	4.2379
	6 y	/y* (0	0)		2	1

Tableau 5.29 : Résultats de dimensionnement des tuyères de la figure 5.36.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.37 : Effet de T_0 sur la forme de la tuyère *MLN* 2D pour le gaz CO.

 $M_{S}=3.00$

x/v*

T_0 (K)	θ (deg)	L/y∗	C _{Masse}	C _F	y₅⁄y∗					
1000	25.9066	17.8736	18.4067	0.3181	4.4998					
2000	27.2393	19.3262	19.9425	0.3402	4.8950					
3000	28.4313	20.7651	21.4654	0.3684	5.2870					
GP	24.8993	16.9274	17.4062	0.3003	4.2402					
GP 24.8993 16.9274 17.4062 0.3003 4.2402 g $y/y*$ (CO ₂) 2 1										

Tableau 5.30 : Résultats de dimensionnement des tuyères de la figure 5.37.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP.

Figure 5.38	: Effet de	T_0 sur la	forme de	e la tuyère	MLN 2D	pour le	gaz CO ₂ .
0		0		,			-

Tableau 5.31	: Résultats d	le dime	ensionnen	nent des	tuyère	es de la	a figure	5.38

<i>T</i> ₀ (K)	θ^{*} (deg)	L/y*	C _{Masse}	C _F	ys∕y∗
1000	31.8199	25.9248	26.9329	0.4448	6.6906
2000	33.4418	28.7833	29.9704	0.4818	7.4763
3000	34.6460	31.1306	32.4679	0.5113	8.1239
GP	29.2840	20.8517	21.5516	0.3694	5.3009

Parmi les solutions pour avoir une masse petite de la tuyère, dans ce cas le coefficient C_F Soit petit, il faut choisir une valeur de T_0 aussi petite que possible, ce qui est le cas pour certaines applications aérospatiales. Mais si les applications ne permettent pas, dans ce cas, nous devons concevoir la forme convenable à la température T_0 . Pour la sélection du gaz, il est à noter que le gaz CH₄, NH₃, CO₂, H₂O ne sont pas d'accord pour l'utilisation comme gaz de propulsion aérospatiale. Le meilleur choix est le H₂ (figure 5.34), l'air (figure 5.42) et le N₂ (figure 5.36).

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.39 : Effet de T_0 sur la forme de la tuyère *MLN* 2D pour le gaz H₂O.

Tableau 5.32 : Résultats de dimensionnement des tuyères de la figure 5.39.

	Ψ.				
<i>T</i> ₀ (K)) <i>θ</i> (deg) <i>L/y</i> ∗		C_{Masse}	C_F	ys⁄y∗
1000	28.6573	21.1179	21.8377	0.3742	5.3809
2000	31.0780	24.5500	25.4768	0.4253	6.1392
3000	32.9750	27.7507	28.8760	0.4697	7.1971
GP	26.9012	19.1348	19.7361	0.3405	4.8355

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP.

Figure 5.40 : Effet de T_0 sur la forme de la tuyère *MLN* 2D pour le gaz NH₃.

Tableau 5.33 : Résultats de dimensionnement des tuyères de la figure 5.40.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.41 : Effet de T_0 sur la forme de la tuyère *MLN* 2D pour le gaz CH₄.

<i>T</i> ₀ (K)	θ^{*} (deg)	L/y∗	C _{Masse}	C _F	y _s ∕y∗								
1000	34.2401	30.0875	31.3622	0.4986	7.8421								
2000	38.5030	40.2773	42.2189	0.6055	10.6612								
3000	40.4941	46.2765	48.6236	0.6608	12.3329								
GP	27.7539	20.1734	20.8341	0.3583	5.1169								
4	$ \begin{array}{c} 6 \\ 4 \\ 4 \\ 4 \\ 4 \\ 3 \\ 4 \\ 3 \\ 2 \\ 1 \end{array} $												
2 -	² <i>M_S</i> =3.00												
	x/y*												
0	2 4	6 8 10	12 14 1	6 18 20	22								

Tableau 5.34 : Résultats de dimensionnement des tuyères de la figure 5.41.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP.

Figure 5.42 : Effet de T_0 sur la forme de la tuyère *MLN* 2D pour l'air.

Tableau 5.35 : Résultats de dimensionnement des tuyères de la figure 5.42.

T_0 (K)	θ (deg)	L/y∗	C _{Masse}	C _F	y₅⁄y∗
1000	25.8410	17.7220	18.2482	0.3161	4.4620
2000	27.4658	19.6718	20.3066	0.3488	4.9861
3000	28.0588	20.4559	21.1349	0.3626	5.1973
GP	24.8258	16.8522	17.3268	0.2989	4.2200

5.3.4. Effet des gaz sur la variation des paramètres de conception en fonction de <u>M_S pour T₀ fixée pour la tuyère *MLN* 2D.</u>

Les figures (5.43) à (5.49) représentent l'effet des gaz sur la variation respectivement de l'angle de déviation initiale θ^* de la paroi de la tuyère au col, le nombre de Mach M^* juste après la détente au point A de la figure (4.2), la longueur de détente de la région de Kernel, la longueur complète de la tuyère, la masse de la tuyère, le coefficient de poussée et le rapport des sections critiques en fonction de nombre de Mach de sortie M_S de la tuyère pour T_0 =2000 K. Les résultats numériques trouvés en quelques valeurs de nombre de Mach M_S , lorsque T_0 =2000K de ces paramètres sont représentés respectivement dans les tableaux (5.36) à (5.41).Concernant le rapport des sections de sortie, il représente aussi le rapport des rayons entre la section de sortie et le rayon du col. Le tableau (5.10) présenté dans la première partie du chapitre des résultats représente aussi le rapport des rayons de la tuyère 2D, vu que l'écoulement dans les deux sections du col et la section de sortie est unidirectionnel.

Sur les figures (5.45) à (5.47) et (5.49) on a préféré la présentation en l'échelle Logarithmique népériens des paramètres L_d/y_* , L/y_* , C_{Masse} et y_S/y_* respectivement vu que les valeurs trouvées sont très grandes pour quelques gaz comme le CH₄, NH_3 , CO_2 et H_2O et des valeurs très petites pour l'autres gaz comme le H_2 , O_2 , N_2 , CO et l'air sur même figure. De même pour des valeurs petites de M_S , ces paramètres sont petits et si $M_{\rm S}$ augmente légèrement, ces paramètres augmentent considérablement. La présentation sera mauvaise dans l'échelle réelle. Comme commentaire, à bas nombre de Mach $M_{\rm S}$, jusqu'à 1.8, on peut dire qu'il n'est pas une différence entre les gaz choisis, vu que les paramètres trouvées sont presque confondus. En réalité il ya une différence mais elle est très petite. La différence entre un gaz est l'autre commence à partir de $M_{\rm S}$ =2.00, où le gaz devient important pour la propulsion. La même remarque présentée auparavant sur le choix des gaz pour la propulsion aérospatiale reste valable, où le choix de CH₄, NH₃, CO₂, H₂O est mauvais, tandis que l'air, O₂, N₂, CO est bon. Pour les souffleries, on peut choisir le cas contraire vu que les rapports A_S/A_* est plus grand pour CH₄, NH₃, CO₂, H₂O.

Les tableaux (5.42) et (5.43) représentent respectivement l'erreur commise par l'utilisation d'un tel gaz de propulsion à la place de l'air sur le coefficient C_F et le coefficient C_{Masse} en fonction de M_S pour T_0 =2000 K lorsque les tuyères possèdent même nombre de Mach de sortie. Parmi tous les paramètres de conception on a choisi uniquement le C_F et le C_{Masse} parce leurs intérêts et que tous les autres paramètres possèdent même allure de variation que ces deux paramètres. On remarque l'écart important pour le CH₄, NH₃, CO₂ et le H₂O par rapport à l'air. Tandis que pour le H₂, O₂, N₂ et le CO l'erreur est très petite. Pour M_S =5.00, l'écart en C_F est $\epsilon_{CF}(CH_4)(\%)$ =111.71% et $\epsilon_{CF}(H_2)(\%)$ =7.53%, l'écart en C_{Masse}

donne $\epsilon_{CMasse}(CH_4)(\%)=1424\%$ et $\epsilon_{CMasse}(H_2)(\%)=16.16\%$, pour ce qui montre la possibilité d'utilisation le gaz H₂ au lieu de l'air, de même pour le N₂, CO et O₂ et l'impossibilité d'utilisation de CH₄, NH₃, CO₂ et H₂O au lieu de l'air.

Figure 5.43 : Effet du gaz sur θ^* du col des tuyères *MLN* 2D.

Figure 5.44 : Effet du gaz sur M^* du col des tuyères *MLN* 2D.

Table	eau 5.36	: Effet d	u gaz sur	l'angle θ	ົau col ແ	de la tuyèi	re MLN 2	2D pour	$T_0 = 2000$
М	H ₂	O ₂	N ₂	CO	CO_2	H ₂ O	NH ₃	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.693	0.710	0.702	0.704	0.753	0.740	0.770	0.786	0.702
1.20	1.851	1.899	1.877	1.883	2.029	1.988	2.077	2.127	1.877
1.30	3.218	3.309	3.267	3.278	3.558	3.479	3.651	3.748	3.268
1.40	4.697	4.842	4.775	4.792	5.241	5.112	5.391	5.548	4.779
1.50	6.234	6.441	6.346	6.370	7.020	6.831	7.237	7.469	6.354
1.60	7.795	8.073	7.945	7.976	8.858	8.597	9.153	9.475	7.961
1.70	9.355	9.712	9.548	9.587	10.731	10.386	11.113	11.538	9.574
1.80	10.900	11.342	11.138	11.185	12.618	12.177	13.097	13.640	11.178
1.90	12.418	12.949	12.704	12.759	14.505	13.959	15.089	15.765	12.760
2.00	13.900	14.526	14.236	14.300	16.383	15.719	17.079	17.903	14.313
2.10	15.342	16.067	15.730	15.803	18.243	17.450	19.058	20.044	15.830
2.20	16.740	17.565	17.181	17.262	20.078	19.145	21.017	22.181	17.307
2.30	18.091	19.020	18.586	18.675	21.883	20.800	22.950	24.306	18.741
2.40	19.394	20.428	19.944	20.042	23.654	22.412	24.853	26.415	20.129
2.50	20.649	21.788	21.255	21.360	25.388	23.978	26.721	28.503	21.471
2.60	21.857	23.101	22.517	22.629	27.082	25.496	28.551	30.566	22.764
2.70	23.018	24.367	23.732	23.851	28.736	26.965	30.339	32.600	24.011

2.80	24.132	25.585	24.900	25.026	30.348	28.385	32.085	34.602	25.209
2.90	25.202	26.758	26.023	26.155	31.917	29.756	33.786	36.571	26.361
3.00	26.229	27.885	27.102	27.239	33.442	31.078	35.441	38.503	27.466
3.10	27.214	28.970	28.138	28.281	34.924	32.352	37.048	40.397	28.526
3.20	28.159	30.011	29.132	29.280	36.363	33.579	38.608	42.251	29.542
3.30	29.066	31.013	30.087	30.239	37.759	34.760	40.120	44.064	30.515
3.40	29.936	31.975	31.004	31.160	39.112	35.896	41.583	45.834	31.446
3.50	30.770	32.899	31.884	32.044	40.424	36.989	42.999	47.561	32.339
3.60	31.572	33.787	32.730	32.893	41.694	38.039	44.368	49.244	33.193
3.70	32.341	34.641	33.542	33.708	42.925	39.049	45.690	50.882	34.011
3.80	33.081	35.462	34.322	34.491	44.117	40.020	46.966	52.475	34.795
3.90	33.791	36.251	35.072	35.244	45.270	40.954	48.196	54.023	35.545
4.00	34.474	37.010	35.794	35.967	46.387	41.851	49.383	55.526	36.265
4.10	35.131	37.740	36.487	36.663	47.467	42.714	50.526	56.984	36.955
4.20	35.763	38.442	37.154	37.332	48.512	43.544	51.628	58.397	37.616
4.30	36.371	39.118	37.797	37.975	49.524	44.343	52.689	59.765	38.252
4.40	36.957	39.769	38.415	38.595	50.502	45.111	53.710	61.090	38.862
4.50	37.522	40.397	39.011	39.192	51.449	45.851	54.693	62.371	39.449
4.60	38.067	41.001	39.585	39.767	52.365	46.563	55.640	63.610	40.013
4.70	38.592	41.583	40.139	40.322	53.252	47.249	56.551	64.807	40.556
4.80	39.098	42.145	40.673	40.856	54.110	47.910	57.427	65.963	41.079
4.90	39.588	42.687	41.188	41.372	54.940	48.547	58.271	67.079	41.583
5.00	40.060	43.210	41.686	41.870	55.744	49.161	59.083	68.155	42.069

Figure 5.45 : Effet du gaz sur la longueur de détente L_d/y_* des tuyères *MLN* 2D.

Figure 5.46 : Effet du gaz sur la longueur L/y_* de la tuyère *MLN* 2D.

Figure 5.47 : Effet du gaz sur le coefficient C_{Masse} pour la tuyère *MLN* 2D.

Table	au 5.37	: Effet du	u gaz sur∣	l'angle <i>M</i>	Í au col	de la tuyè	re <i>MLN</i> 2	2D pour	<i>T</i> ₀ =2000	K.
Μ	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH₃	CH_4	Air	
1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
1.10	1.062	1.062	1.062	1.062	1.062	1.062	1.062	1.062	1.062	
1.20	1.122	1.122	1.122	1.122	1.123	1.123	1.123	1.123	1.122	
1.30	1.181	1.181	1.181	1.181	1.182	1.182	1.183	1.183	1.181	
1.40	1.238	1.238	1.238	1.238	1.240	1.240	1.241	1.242	1.238	
1.50	1.293	1.294	1.294	1.294	1.297	1.296	1.298	1.299	1.294	
1.60	1.347	1.348	1.347	1.348	1.353	1.351	1.354	1.356	1.348	
1.70	1.399	1.401	1.400	1.400	1.407	1.405	1.409	1.412	1.401	
1.80	1.449	1.452	1.451	1.451	1.461	1.457	1.463	1.467	1.452	
1.90	1.498	1.502	1.500	1.501	1.513	1.509	1.516	1.521	1.502	
2.00	1.546	1.551	1.548	1.549	1.564	1.558	1.568	1.574	1.550	
2.10	1.592	1.598	1.595	1.595	1.614	1.607	1.619	1.627	1.597	
2.20	1.637	1.643	1.640	1.641	1.663	1.655	1.669	1.679	1.643	
2.30	1.680	1.688	1.684	1.685	1.711	1.701	1.718	1.728	1.687	
2.40	1.722	1.731	1.727	1.727	1.758	1.746	1.766	1.780	1.730	
2.50	1.763	1.772	1.768	1.768	1.804	1.789	1.813	1.829	1.772	
2.60	1.802	1.813	1.808	1.808	1.849	1.832	1.859	1.877	1.813	
2.70	1.840	1.852	1.846	1.847	1.893	1.873	1.904	1.925	1.852	
2.80	1.877	1.890	1.884	1.884	1.936	1.913	1.948	1.972	1.890	
2.90	1.912	1.927	1.920	1.920	1.977	1.952	1.991	2.018	1.927	
3.00	1.947	1.963	1.955	1.956	2.018	1.990	2.032	2.063	1.962	
3.10	1.980	1.997	1.989	1.990	2.058	2.026	2.073	2.107	1.997	
3.20	2.012	2.031	2.022	2.022	2.097	2.062	2.113	2.151	2.030	
3.30	2.044	2.063	2.054	2.054	2.135	2.096	2.151	2.193	2.062	
3.40	2.074	2.095	2.085	2.085	2.171	2.129	2.188	2.235	2.093	
3.50	2.103	2.125	2.114	2.115	2.207	2.161	2.225	2.275	2.123	
3.60	2.131	2.155	2.143	2.144	2.242	2.193	2.260	2.315	2.152	
3.70	2.157	2.183	2.171	2.172	2.277	2.223	2.295	2.354	2.179	
3.80	2.186	2.211	2.199	2.199	2.310	2.252	2.328	2.392	2.206	
3.90	2.211	2.238	2.225	2.225	2.342	2.280	2.360	2.428	2.232	
4.00	2.236	2.264	2.251	2.251	2.374	2.308	2.391	2.464	2.257	
4.10	2.261	2.290	2.275	2.275	2.405	2.334	2.422	2.499	2.281	
4.20	2.284	2.314	2.299	2.299	2.435	2.360	2.451	2.534	2.305	
4.30	2.307	2.338	2.323	2.323	2.464	2.385	2.480	2.567	2.327	
4.40	2.329	2.361	2.345	2.345	2.492	2.409	2.507	2.599	2.349	
4.50	2.351	2.383	2.367	2.367	2.520	2.432	2.534	2.630	2.371	
4.60	2.372	2.405	2.389	2.388	2.547	2.455	2.560	2.661	2.391	
4.70	2.392	2.426	2.409	2.409	2.573	2.477	2.585	2.690	2.411	1

4.80	2.412	2.447	2.430	2.429	2.598	2.499	2.609	2.719	2.430
4.90	2.431	2.467	2.449	2.448	2.623	2.519	2.632	2.747	2.449
5.00	2.450	2.486	2.468	2.467	2.647	2.539	2.655	2.774	2.467

Tableau 5.38 : Valeurs sur L_d/y_* de la tuyère *MLN* 2D pour T_0 =2000 K.

М	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.385	0.386	0.385	0.385	0.387	0.386	0.387	0.387	0.385
1.20	0.571	0.572	0.571	0.571	0.575	0.574	0.577	0.578	0.571
1.30	0.733	0.736	0.735	0.735	0.743	0.741	0.746	0.749	0.735
1.40	0.890	0.894	0.892	0.893	0.908	0.904	0.913	0.918	0.893
1.50	1.047	1.055	1.051	1.052	1.077	1.069	1.085	1.094	1.052
1.60	1.209	1.221	1.225	1.216	1.255	1.243	1.268	1.282	1.216
1.70	1.378	1.396	1.387	1.389	1.447	1.429	1.466	1.488	1.389
1.80	1.557	1.582	1.571	1.573	1.656	1.629	1.684	1.717	1.574
1.90	1.748	1.783	1.767	1.770	1.887	1.848	1.926	1.974	1.772
2.00	1.953	1.999	1.978	1.982	2.143	2.089	2.198	2.267	1.986
2.10	2.174	2.235	2.207	2.212	2.430	2.355	2.505	2.603	2.218
2.20	2.413	2.492	2.455	2.462	2.753	2.650	2.855	2.992	2.471
2.30	2.671	2.773	2.725	2.734	3.119	2.978	3.253	3.446	2.747
2.40	2.951	3.081	3.019	3.031	3.535	3.345	3.716	3.979	3.050
2.50	3.255	3.419	3.340	3.354	4.009	3.755	4.247	4.609	3.380
2.60	3.584	3.789	3.691	3.708	4.550	4.215	4.861	5.355	3.743
2.70	3.942	4.196	4.074	4.094	5.170	4.729	5.573	6.245	4.139
2.80	4.331	4.643	4.492	4.516	5.881	5.306	6.401	7.309	4.574
2.90	4.753	5.133	4.949	4.977	6.698	5.952	7.363	5.586	5.049
3.00	5.211	5.671	5.447	5.481	7.637	6.677	8.483	10.123	5.569
3.10	5.708	6.261	5.990	6.030	8.727	7.487	9.788	11.976	6.136
3.20	6.246	6.909	6.583	6.629	9.960	8.394	11.307	14.215	6.755
3.30	6.829	7.617	7.228	7.282	11.391	9.408	13.074	16.925	7.428
3.40	7.460	8.393	7.930	7.992	13.037	10.529	15.130	20.206	8.160
3.50	8.142	9.241	8.694	8.764	14.931	11.800	17.519	24.182	8.955
3.60	8.879	10.167	9.523	9.604	17.107	13.205	20.290	28.999	9.817
3.70	9.674	11.177	10.422	10.514	19.608	14.767	23.502	34.835	10.750
3.80	10.531	12.277	11.397	11.501	22.479	16.500	27.216	41.900	11.758
3.90	11.454	13.475	12.453	12.569	25.770	18.422	31.504	50.445	12.847
4.00	12.447	14.777	13.594	13.725	29.541	20.548	36.444	60.769	14.021
4.10	13.515	16.190	14.827	14.974	33.854	22.898	42.124	73.220	15.284
4.20	14.662	17.723	16.158	16.321	38.783	25.491	48.640	88.211	16.643
4.30	15.892	19.384	17.592	17.773	44.408	28.347	56.095	106.220	18.103
4.40	17.210	21.180	19.136	19.337	50.817	31.488	64.607	127.809	19.669
4.50	18.622	23.121	20.797	21.018	58.110	34.936	74.300	153.625	21.348
4.60	20.132	25.215	22.581	22.824	66.394	38.717	85.311	184.413	23.146
4.70	21.747	27.472	24.496	24.763	75.791	42.855	97.789	221.025	25.069
4.80	23.471	29.902	26.548	26.841	86.432	47.379	111.891	264.439	27.124
4.90	25.300	32.515	28.746	29.065	98.463	52.316	127.791	315.760	29.318
5.00	27.271	35.321	31.098	31.445	112.042	57.695	145.674	376.241	31.659

Tableau 5.39 : Valeurs sur L/y_* de la tuyère *MLN* 2D pour T_0 =2000 K.

М	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.847	0.848	0.847	0.848	0.849	0.849	0.849	0.850	0.847
1.20	1.255	1.257	1.256	1.256	1.262	1.260	1.264	1.266	1.256
1.30	1.621	1.626	1.624	1.624	1.638	1.634	1.643	1.648	1.614
1.40	1.988	1.996	1.992	1.993	2.021	2.013	2.030	2.040	1.993

1.50	2.372	2.388	2.381	2.382	2.433	2.418	2.450	2.468	2.382
1.60	2.788	2.814	2.802	2.805	2.889	2.864	2.918	2.950	2.804
1.70	3.245	3.286	3.267	3.272	3.407	3.365	3.453	3.505	3.271
1.80	3.754	3.816	3.787	3.793	4.001	3.935	4.073	4.157	3.794
1.90	4.323	4.414	4.371	4.381	4.692	4.590	4.799	4.930	4.384
2.00	4.964	5.092	5.032	5.045	5.499	5.347	5.658	5.858	5.052
2.10	5.686	5.866	5.781	5.799	6.449	6.224	6.680	6.979	5.812
2.20	6.502	6.748	6.632	6.655	7.571	7.246	7.901	8.345	6.678
2.30	7.424	7.756	7.599	7.629	8.901	8.436	9.366	10.016	7.666
2.40	6.466	8.908	8.697	8.737	10.480	9.825	11.129	12.072	8.792
2.50	9.643	10.224	9.946	9.997	12.360	11.445	13.254	14.613	10.077
2.60	10.971	11.726	11.363	11.428	14.600	13.335	15.820	17.762	11.541
2.70	12.468	13.440	12.971	13.052	17.270	15.538	18.922	21.671	13.207
2.80	14.153	15.391	14.791	14.892	20.455	18.103	22.672	26.558	15.099
2.90	16.048	17.612	16.850	16.974	24.254	21.086	27.207	32.654	17.244
3.00	18.174	20.134	19.175	19.326	28.783	24.550	32.686	41.278	19.672
3.10	20.556	22.994	21.796	21.979	34.181	28.564	39.302	49.823	22.413
3.20	23.221	26.232	24.746	24.966	40.608	33.208	47.281	61.784	25.500
3.30	26.196	29.890	28.059	28.322	48.254	38.569	56.889	76.773	28.969
3.40	29.512	34.015	31.774	32.086	57.339	44.745	68.438	95.557	32.858
3.50	33.202	38.660	35.932	36.301	68.120	51.844	82.294	119.081	37.208
3.60	37.300	43.879	40.577	41.010	80.893	59.986	98.881	148.518	42.061
3.70	41.844	49.732	45.757	46.263	96.005	69.302	118.688	185.314	47.465
3.80	46.875	56.283	51.524	52.111	113.854	79.937	142.279	231.234	53.469
3.90	52.433	63.603	51.930	58.610	134.897	92.051	170.304	288.439	60.123
4.00	58.566	71.765	65.036	65.819	159.660	105.817	203.503	359.560	67.485
4.10	65.320	80.850	72.903	73.801	188.749	121.425	242.716	447.775	75.614
4.20	72.748	90.944	81.599	82.625	222.847	139.083	288.898	556.920	84.572
4.30	80.903	102.138	91.195	92.361	262.744	159.014	343.122	691.569	94.426
4.40	89.844	114.530	101.764	103.087	309.321	181.463	404.594	857.214	105.247
4.50	99.631	128.224	113.388	114.882	363.594	206.692	480.667	1060.357	117.112
4.60	110.330	143.331	126.151	127.834	426.696	234.988	566.844	1308.656	130.099
4.70	122.009	159.968	140.144	142.033	499.912	266.656	666.799	1611.120	144.295
4.80	134.741	178.261	155.460	157.574	584.681	302.027	782.376	1978.322	159.789
4.90	148.600	198.338	172.201	174.559	682.620	341.459	915.617	2422.478	176.675
5.00	163.669	220.342	190.472	193.094	795.536	385.331	1068.773	2957.764	195.035

Tableau 5.40 : Valeurs sur C_{Masse} de la tuyère *MLN* 2D pour T_0 =2000 K.

Μ	H ₂	O ₂	N ₂	CO	CO_2	H ₂ O	NH_3	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.847	0.848	0.848	0.848	0.849	0.849	0.850	0.850	0.848
1.20	1.255	1.257	1.256	1.257	1.262	1.261	1.264	1.266	1.256
1.30	1.623	1.628	1.626	1.626	1.640	1.636	1.645	1.650	1.626
1.40	1.992	2.001	1.997	1.998	2.027	2.018	2.036	2.046	1.997
1.50	2.381	2.397	2.390	2.392	2.444	2.428	2.461	2.481	2.391
1.60	2.803	2.831	2.818	2.821	2.910	2.883	2.939	2.973	2.820
1.70	3.270	3.313	3.293	3.297	3.440	3.395	3.488	3.544	3.297
1.80	3.790	3.856	3.825	3.832	4.052	3.982	4.128	4.217	3.833
1.90	4.375	4.471	4.426	4.436	4.766	4.658	4.881	5.021	4.439
2.00	5.035	5.172	5.108	5.121	5.605	5.442	5.775	5.988	5.129
2.10	5.781	5.972	5.882	5.900	6.594	6.354	6.841	7.162	5.914
2.20	6.624	6.886	6.763	6.787	7.764	7.417	8.118	8.595	6.811
2.30	7.579	7.932	7.765	7.797	9.154	8.658	9.653	10.352	7.836
2.40	8.659	9.129	8.905	8.947	10.808	10.107	11.503	12.517	9.006
2.50	9.879	10.497	10.201	10.256	12.776	11.798	13.734	15.193	10.340
2.60	11.257	12.059	11.673	11.742	15.122	13.772	16.429	18.512	11.862
2.70	12.810	13.840	13.343	13.429	17.920	16.073	19.687	22.639	13.593

2.80	14.558	15.869	15.233	15.340	21.255	18.751	23.624	27.790	15.559
2.90	16.522	18.177	17.371	17.502	25.232	21.864	28.381	34.198	17.787
3.00	18.725	20.796	19.783	19.943	29.970	25.477	34.126	42.219	20.307
3.10	21.192	23.765	22.500	22.694	35.613	29.660	41.056	52.251	23.150
3.20	23.950	27.123	25.557	25.789	42.325	34.496	49.406	64.808	26.350
3.30	27.027	30.915	28.987	29.265	50.303	40.073	59.449	80.527	29.944
3.40	30.454	35.187	32.831	33.160	59.772	46.491	71.508	100.200	33.970
3.50	34.265	39.993	37.130	37.517	70.997	53.961	85.959	124.807	38.468
3.60	38.494	45.389	41.928	42.383	84.282	62.306	103.236	155.559	43.483
3.70	43.180	51.435	47.274	47.805	99.984	71.959	123.843	193.948	49.062
3.80	48.362	58.197	53.221	53.836	118.508	82.967	148.359	241.795	55.255
3.90	54.085	65.745	59.822	60.533	140.323	95.493	177.447	301.323	62.113
4.00	60.393	74.154	67.138	67.956	165.968	109.714	211.865	375.239	69.694
4.10	67.335	83.507	75.231	76.167	196.061	125.822	252.473	466.809	78.057
4.20	74.965	93.890	84.169	85.238	231.299	144.028	300.244	579.968	87.265
4.30	83.335	105.395	94.025	95.239	272.489	164.558	356.272	719.405	97.387
4.40	92.504	118.121	104.873	106.247	320.530	187.662	421.788	890.747	108.495
4.50	102.535	132.174	116.793	118.345	376.455	213.603	498.168	1100.645	121.662
4.60	113.493	147.665	129.873	131.619	441.418	242.674	586.943	1356.928	133.973
4.70	125.446	164.712	144.203	146.160	516.728	275.182	689.813	1668.797	148.511
4.80	138.468	183.443	159.878	162.066	603.845	311.464	808.653	2047.044	164.368
4.90	152.635	203.988	177.001	179.438	704.414	351.880	945.534	2504.126	181.638
5.00	168.030	226.489	195.675	198.384	820.270	396.813	1102.740	3054.485	200.423

Tableau 5.41 : Valeurs sur C_F de la tuyère *MLN* 2D pour T_0 =2000 K.

		<u> </u>		00	00		N II I		A ·
M	H_2	O_2	N ₂	CO	CO_2	H ₂ O	NH ₃	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.004
1.20	0.015	0.015	0.015	0.015	0.017	0.017	0.018	0.019	0.015
1.30	0.029	0.031	0.030	0.030	0.035	0.034	0.037	0.038	0.030
1.40	0.047	0.049	0.048	0.048	0.057	0.054	0.060	0.063	0.048
1.50	0.066	0.070	0.068	0.069	0.082	0.077	0.086	0.091	0.069
1.60	0.086	0.092	0.089	0.090	0.108	0.102	0.114	0.121	0.090
1.70	0.107	0.114	0.111	0.111	0.136	0.128	0.144	0.154	0.112
1.80	0.128	0.137	0.132	0.133	0.164	0.154	0.175	0.188	0.134
1.90	0.148	0.159	0.154	0.155	0.193	0.180	0.206	0.223	0.155
2.00	0.168	0.181	0.175	0.176	0.222	0.206	0.238	0.258	0.177
2.10	0.187	0.202	0.195	0.196	0.251	0.232	0.270	0.294	0.197
2.20	0.205	0.222	0.214	0.216	0.280	0.257	0.301	0.330	0.217
2.30	0.223	0.242	0.233	0.235	0.307	0.291	0.332	0.366	0.237
2.40	0.239	0.261	0.251	0.253	0.335	0.304	0.362	0.402	0.255
2.50	0.255	0.279	0.268	0.270	0.361	0.327	0.392	0.438	0.273
2.60	0.270	0.296	0.284	0.286	0.387	0.348	0.421	0.472	0.289
2.70	0.285	0.313	0.299	0.301	0.412	0.369	0.449	0.507	0.305
2.80	0.298	0.328	0.314	0.316	0.436	0.388	0.476	0.540	0.320
2.90	0.311	0.343	0.327	0.330	0.459	0.407	0.502	0.573	0.334
3.00	0.323	0.356	0.340	0.343	0.481	0.425	0.527	0.605	0.348
3.10	0.334	0.370	0.352	0.355	0.502	0.441	0.551	0.636	0.360
3.20	0.344	0.382	0.364	0.367	0.523	0.457	0.575	0.667	0.372
3.30	0.354	0.393	0.375	0.378	0.542	0.472	0.597	0.696	0.383
3.40	0.364	0.405	0.385	0.388	0.561	0.487	0.618	0.725	0.394
3.50	0.373	0.415	0.394	0.398	0.579	0.500	0.638	0.752	0.403
3.60	0.381	0.425	0.404	0.407	0.596	0.513	0.657	0.779	0.412
3.70	0.389	0.434	0.412	0.415	0.613	0.525	0.676	0.804	0.421
3.80	0.396	0.443	0.420	0.423	0.628	0.536	0.693	0.629	0.429
3.90	0.403	0.451	0.428	0.431	0.643	0.547	0.710	0.852	0.437
4.00	0.410	0.459	0.435	0.438	0.657	0.557	0.726	0.875	0.444

4.10	0.416	0.466	0.442	0.445	0.671	0.567	0.741	0.897	0.451
4.20	0.422	0.473	0.449	0.451	0.684	0.576	0.755	0.917	0.457
4.30	0.429	0.479	0.454	0.458	0.696	0.585	0.768	0.937	0.463
4.40	0.433	0.486	0.460	0.463	0.708	0.593	0.781	0.956	0.469
4.50	0.438	0.492	0.465	0.469	0.719	0.601	0.793	0.974	0.474
4.60	0.443	0.497	0.471	0.474	0.730	0.608	0.804	0.991	0.479
4.70	0.447	0.502	0.475	0.479	0.740	0.615	0.815	1.008	0.484
4.80	0.451	0.507	0.480	0.483	0.750	0.621	0.825	1.024	0.488
4.90	0.455	0.512	0.484	0.488	0.759	0.627	0.835	1.039	0.493
5.00	0.459	0.517	0.489	0.492	0.768	0.633	0.844	1.053	0.497

Figure 5.48 : Effet du gaz sur le coefficient C_F pour la tuyère *MLN* 2D.

Figure 5.49 : Effet du gaz sur y_S/y_* pour la tuyère *MLN* 2D.

Tableau 5.42 : Valeurs sur ε_{CF} de la tuyère *MLN* 2D pour *T*₀=2000 K.

Ms	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4
1.50	3.61%	2.07%	0.56%	0.01%	18.84%	12.86%	25.04%	32.31%
2.00	5.12%	2.27%	1.19%	0.50%	25.83%	16.68%	34.66%	46.21%
2.50	6.39%	2.35%	1.80%	1.05%	32.37%	19.73%	43.69%	60.40%
3.00	7.20%	2.52%	2.13%	1.38%	38.30%	22.11%	51.61%	74.02%
3.50	7.58%	2.86%	2.18%	1.43%	43.52%	24.01%	58.18%	86.37%
4.00	7.67%	3.28%	2.04%	1.31%	47.95%	25.50%	63.33%	96.88%
4.50	7.62%	3.66%	1.84%	1.31%	51.57%	26.62%	67.14%	105.31%
5.00	7.53%	3.97%	1.65%	0.96%	54.42%	27.43%	69.83%	111.71%

							, v	
Ms	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH_3	CH ₄
1.50	0.41%	0.27%	0.04%	0.03%	2.22%	1.57%	2.95%	3.76%
2.00	1.82%	0.84%	0.40%	0.14%	9.28%	6.11%	12.60%	16.76%
2.50	4.46%	1.51%	1.34%	0.82%	23.55%	14.10%	32.82%	46.92%
3.00	7.79%	2.41%	2.58%	1.79%	47.59%	25.46%	68.05%	107.90%
3.50	10.92%	3.96%	3.47%	2.47%	84.56%	40.01%	123.45%	224.44%
4.00	13.34%	6.40%	3.66%	2.49%	138.13%	57.42%	203.99%	438.41%
4.50	15.02%	9.54%	3.20%	1.92%	211.99%	77.02%	312.86%	812.16%
5.00	16.16%	13.00%	2.36%	1.01%	309.26%	97.98%	450.20%	1424.01%

Tableau 5.43 : Valeurs sur ε_{CMasse} de la tuyère *MLN* 2D pour *T*₀=2000 K.

<u>5.3.5. Effet des gaz sur la variation des paramètres de conception en fonction de</u> <u>*T*₀ pour *M*_S fixé pour la tuyère *MLN* 2D.</u>

Les figures (5.50) à (5.56) représentent respectivement l'effet des gaz et de T_0 sur tous les paramètres de conception θ^* , M^* , L_d/y_* , L/y_* , C_{Masse} , C_F , y_S/y_* . L'exemple choisi est pour M_S =3.00. Les résultats numériques de conception pour quelques valeurs de T_0 , lorsque M_S =3.00 sont présentés respectivement dans les tableaux (5.44) à (5.50). On remarque que T_0 influe sur ces paramètres.

Figure 5.50 : Effet du gaz sur θ^{*} des tuyères *MLN* 2D en fonction de T_{0} .

Figure 5.51 : Effet du gaz sur M^{*} des tuyères *MLN* 2D en fonction de T_{0} .

Pour toute valeur de T_0 , les gaz CH₄, NH₃, CO₂ et H₂O présentent des paramètres élevés. Les gaz H₂, O₂, N₂ et CO possèdent des performances presque équivalentes à l'air avec petites erreur. Le meilleur gaz pour la propulsion

en toute valeur de T_0 de la chambre de combustion c'est celui le H₂. Le mauvais c'est celui le CH₄. L'influence de T_0 est presque faible pour le H₂, O₂, air, N₂ et CO et assez élevée pour le H₂O, CO₂, NH₃, CH₄. Alors il est recommandé si on utilise le H₂O, CO₂, NH₃, CH₄ de choisir une température T_0 la plus petite possible.

Figure 5.52 : Effet du gaz sur la longueur L_d/y_* des tuyères MLN 2D en fonction de T_0 .

Figure 5.53 : Effet du gaz sur la longueur L/y_* des tuyères MLN 2D en fonction de T_0 .

Figure 5.54 : Effet du gaz sur le coefficient C_{Masse} des tuyères *MLN* 2D en fonction de T_0 .

Figure 5.55 : Effet du gaz sur le coefficient C_F des tuyères *MLN* 2D en fonction de T_0 .

Figure 5.56 : Effet du gaz sur y_S/y_* des tuyères *MLN* 2D en fonction de T_0 .

	-						0		0
$T_{0}(K)$	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH_3	CH_4	Air
500	24.699	25.615	25.112	25.098	30.675	27.224	28.684	29.623	24.896
600	24.757	25.824	25.289	25.284	30.641	27.520	29.414	30.802	25.022
700	24.840	26.032	25.447	25.452	31.013	27.813	30.069	31.837	25.193
800	24.935	26.220	25.594	25.610	31.326	28.100	30.667	32.740	25.392
900	25.036	26.390	25.734	25.760	31.590	28.381	31.218	33.535	25.612
1000	25.142	26.549	25.869	25.906	31.819	28.657	31.731	34.240	25.841
1100	25.249	26.700	26.001	26.048	32.026	28.926	32.210	34.870	26.069
1200	25.358	26.845	26.130	26.188	32.215	29.189	32.658	35.437	26.288
1300	25.467	26.985	26.257	26.325	32.393	29.446	33.080	35.949	26.494
1400	25.577	27.121	26.382	26.461	32.560	29.696	33.477	36.415	26.683
1500	25.686	27.254	26.505	26.594	32.720	29.941	33.851	36.840	26.854
1600	25.796	27.384	26.627	26.726	32.874	30.179	34.204	37.229	27.007
1700	25.905	27.512	26.747	26.856	33.022	30.412	34.538	37.586	27.143
1800	26.013	27.638	26.867	26.985	33.166	30.639	34.855	37.915	27.263
1900	26.121	27.762	26.985	27.113	33.306	30.861	35.155	38.220	27.370
2000	26.229	27.885	27.102	27.239	33.442	31.078	35.441	38.503	27.466
2100	26.335	28.006	27.217	27.364	33.574	31.289	35.711	38.765	27.551
2200	26.441	28.125	27.331	27.487	33.703	31.495	35.969	39.010	27.628
2300	26.547	28.243	27.445	27.610	33.830	31.696	36.214	39.238	27.698
2400	26.651	28.360	27.557	27.730	33.954	31.892	36.448	39.452	27.763
2500	26.755	28.475	27.668	27.850	34.075	32.083	36.672	39.653	27.822

Tableau 5.44 : Valeurs de θ^* de *MLN* 2D en fonction de T_0 lorsque M_s =3.00.

2600	26.858	28.589	27.779	27.969	34.193	32.270	36.885	39.842	27.877
2700	26.961	28.701	27.888	28.086	34.310	32.452	37.089	40.019	27.927
2800	27.063	28.813	27.996	28.202	34.424	32.631	37.285	40.186	27.974
2900	27.164	28.923	28.103	28.317	34.536	32.805	37.472	40.344	28.018
3000	27.264	29.032	28.210	28.431	34.646	32.975	37.651	40.494	28.058
3100	27.363	29.140	28.315	28.543	34.754	33.140	37.823	40.635	28.097
3200	27.462	29.246	28.419	28.655	34.859	33.303	37.988	40.769	28.134
3300	27.560	29.352	28.522	28.765	34.963	33.461	38.147	40.897	28.169
3400	27.657	29.456	28.625	28.874	35.066	33.616	38.300	41.018	28.203
3500	27.753	29.560	28.726	28.983	35.166	33.767	38.446	41.134	28.235
		•		•	•	•	•	•	•
Tab	oleau 5.4	45 Valeι	urs de M [*]	de MLN	2D en f	onction	de T_0 lo	rsque M	_s =3.00.
T_0 (K)	H_2	02	N_2	CO	CO ₂	H ₂ O	NH ₃	ĊH₄	Air
500	1.942	1.945	1.942	1.941	2.000	1.960	1.965	1.967	1.942
600	1.941	1.947	1.943	1.943	1.991	1.962	1.972	1.980	1.941
700	1.941	1.949	1.944	1.944	1.995	1.963	1.978	1.991	1.940
800	1.941	1.950	1.945	1.945	1.998	1.965	1.984	2.001	1.939
900	1.941	1.952	1.946	1.946	2.001	1.967	1.989	2.010	1.940
1000	1.941	1.953	1.947	1.947	2.003	1.969	1.994	2.017	1.941
1100	1.941	1.954	1.948	1.948	2.005	1.971	2.000	2.024	1.947
1200	1.942	1.955	1.949	1.948	2.007	1.973	2.004	2.030	1.944
1300	1.942	1.956	1.949	1.949	2.009	1.975	2.008	2.036	1.947
1400	1.943	1.957	1.950	1.950	2.010	1.977	2.012	2.041	1.949
1500	1.943	1.958	1.951	1.951	2.011	1.979	2.016	2.045	1.952
1600	1.944	1.959	1.952	1.952	2.013	1.981	2.019	2.049	1.954
1700	1.944	1.960	1.952	1.953	2.014	1.983	2.023	2.053	1.957
1800	1.945	1.961	1.953	1.953	2.015	1.985	2.026	2.057	1.959
1900	1.946	1.961	1.954	1.954	2.016	1.987	2.029	2.060	1.960
2000	1.946	1.962	1.955	1.955	2.018	1.989	2.032	2.063	1.962
2100	1.947	1.963	1.955	1.956	2.019	1.991	2.035	2.065	1.963
2200	1.948	1.964	1.956	1.957	2.020	1.993	2.037	2.068	1.964
2300	1.948	1.965	1.957	1.958	2.021	1.995	2.040	2.070	1.965
2400	1.949	1.966	1.958	1.959	2.022	1.997	2.042	2.072	1.966
2500	1.950	1.967	1.958	1.959	2.023	2.000	2.044	2.074	1.967
2600	1.950	1.967	1.959	1.960	2.024	2.000	2.047	2.076	1.967
2700	1.951	1.968	1.960	1.961	2.025	2.002	2.049	2.078	1.968
2800	1.952	1.969	1.961	1.962	2.026	2.004	2.051	2.079	1.968
2900	1.952	1.970	1.962	1.963	2.027	2.006	2.053	2.081	1,969
3000	1.953	1.971	1.963	1.964	2.028	2.007	2.054	2.082	1.970
3100	1.954	1.972	1.963	1.965	2.029	2.009	2.056	2.084	1.970
3200	1.955	1.973	1.964	1.966	2.030	2.011	2.058	2.085	1.971
3300	1.955	1.974	1,965	1.967	2.031	2.012	2.059	2.086	1.972
3400	1.956	1 974	1.966	1.968	2 032	2 014	2 061	2 087	1.972
3500	1 957	1 975	1.967	1.968	2.033	2.015	2.062	2.089	1.973

Tableau 5.46 : Valeurs de L_{d}/y_{*}	A de <i>MLN</i> 2D en fonction de T_0 lorsque M_S =3.00.
---	--

			u ,				0		0
T_0 (K)	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH_3	CH_4	Air
500	4.878	5.080	4.957	4.952	6.673	5.504	5.878	6.124	4.917
600	4.884	5.127	5.000	4.997	6.562	5.582	6.105	6.525	4.936
700	4.899	5.181	5.038	5.037	6.697	5.660	6.319	6.908	4.966
800	4.917	5.230	5.073	5.075	6.814	5.739	6.522	7.265	5.004
900	4.938	5.274	5.107	5.111	6.913	5.818	6.717	7.596	5.050
1000	4.960	5.135	5.139	5.146	7.000	5.898	6.904	7.906	5.101
1100	4.984	5.354	5.171	5.180	7.079	5.977	7.086	8.195	5.156
1200	5.008	5.392	5.202	5.214	7.151	6.056	7.262	8.466	5.212
1300	5.032	5.429	5.233	5.248	7.220	6.135	7.432	8.720	5.268

1400	5.057	5.464	5.264	5.281	7.285	6.214	7.596	8.958	5.322
1500	5.082	5.500	5.294	5.314	7.347	6.292	7.756	9.182	5.373
1600	5.108	5.534	5.325	5.348	7.408	6.370	7.911	9.393	5.421
1700	5.133	5.569	5.355	5.381	7.467	6.447	8.061	9.591	5.464
1800	5.159	5.603	5.386	5.414	7.524	6.524	8.206	9.778	5.503
1900	5.185	5.637	5.416	5.447	7.581	6.600	8.347	9.55	5.538
2000	5.211	5.671	5.447	5.481	7.637	6.677	8.483	10.123	5.569
2100	5.237	5.704	5.477	5.514	7.691	6.751	8.615	10.280	5.596
2200	5.263	5.738	5.507	5.547	7.745	6.825	8.743	10.430	5.620
2300	5.289	5.771	5.537	5.580	7.798	6.899	8.867	10.573	5.642
2400	5.316	5.805	5.568	5.613	7.850	6.972	8.987	10.708	5.662
2500	5.342	5.838	5.598	5.646	7.902	7.044	9.104	10.836	5.680
2600	5.368	5.871	5.628	5.679	7.953	7.115	9.217	10.958	5.697
2700	5.395	5.904	5.658	5.712	8.004	7.186	9.326	11.075	5.713
2800	5.421	5.937	5.688	5.745	8.054	7.256	9.432	11.186	5.728
2900	5.448	5.970	5.719	5.778	8.103	7.325	9.536	11.292	5.742
3000	5.474	6.003	5.749	5.811	8.152	7.394	9.636	11.393	5.755
3100	5.501	6.035	5.779	5.843	8.201	7.461	9.733	11.490	5.768
3200	5.528	6.068	5.809	5.876	8.248	7.528	9.827	11.583	5.780
3300	5.554	6.101	5.839	5.909	8.296	7.594	9.919	11.671	5.792
3400	5.581	6.133	5.869	5.942	8.343	7.659	10.008	11.757	5.803
3500	5.607	6.166	5.899	5.974	8.389	7.724	10.095	11.838	5.814
Tab	leau 5.4	7 : Valeı	urs de <i>L/v</i>	∗ de <i>MLI</i>	V 2D en	fonctior	n de <i>T</i> ₀ le	orsaue <i>I</i>	∕ls=3.00.
$T_{o}(\mathbf{K})$	Ho		No.	<u> </u>		H	NHo	CH	Δir
500	16 702	17 59/	17.064	17.046	24 271	10 201	21.067	22 200	16 979
600	16 740	17.304	17.004	17.040	24.371	10.720	21.007	22.200	16.070
700	16 909	10 010	17.240	17.200	23.333	20.074	22.000	25.801	17 116
800	16.802	18 225	17.400	17.407	24.000	20.074	22.909	27.000	17.110
900	16.032	18/11/	17.009	17.300	25.101	20.421	23.002	28.605	17.201
1000	17 083	18 501	17.842	17.873	25.000	20.703	25 573	30.087	17.700
1100	17.005	18 750	17.042	18 021	26.273	21.117	26 381	31 306	17.050
1200	17.100	18 922	18 114	18 168	26 597	21.400	27 165	32 626	18 200
1300	17.200	19.022	18 248	18 314	26.007	22.161	27.100	33 786	18 435
1400	17.507	19 235	18 381	18 4 59	27 195	22.101	28.667	34 878	18 661
1500	17.605	10.200	18 514	18 604	27.100	22.000	20.007	35 909	18 872
1600	17.015	10.530	18.647	18 7/10	27.470	22.000	30.085	36.882	10.072
1700	17.836	10,680	18 779	18 803	28.015	23.130	30.764	37 802	10 2/3
1800	17.030	10.838	18 011	10.095	28.276	23.337	31 / 2/	38.672	19.243
1000	18.061	10.000	10.011	10.007	28.531	24.214	32.06/	30.072	10.402
2000	18 17/	20 13/	10 175	10.102	28 783	24.550	32,686	40 277	10.040
2100	18 287	20.134	19.173	19.320	20.703	24.000	33 280	41.018	10 785
2200	18 400	20.201	10.007	19.470	20.001	25 212	33 876	<u>41</u> 700	10.200
2200	18 51/	20.421	10.400	10.759	20.213	25.212	34 115	42 301	10 070
2300	18 628	20.373	19.370	10 002	29.510	25.864	34.443	42.001	20.063
2400	18 7/3	20.710	10.83/	20.046	29.754	25.004	35 535	43.020	20.003
2000	10.743	20.004	10.066	20.040	29.990	20.100	36.057	43.034	20.140
2000	10.007	21.009	20 007	20.190	30.223	20.000	36 564	44.212 11 760	20.211
2800	10.9/2	21.104	20.097	20.334	30.400	20.021	37.056	44.703	20.210
2000	10.007	21.290	20.229	20.470	20.001	27.100	27 525	45.291	20.340
2900	10.202	21.442	20.301	20.021	21 420	27.443	31.000	40.793	20.399
3000	10.01/	21.000	20.492	20.700	21 252	21.100	30.000	40.270	20.400
2200	19.432	21./30	20024	20.900	21 574	20.004	20.402	40./3/	20.309
3200	19.548	21.0/3	20.755	21.051	31.5/1	20.354	30.892	47.179	20.500
3300	19.003	22.017	20.000	21.194	31./00	20.052	39.32U	47.003	20.009
3400	19.779	22.159	21.01/	21.33/	32.003	20.940	39.130	40.010	20.000
3500	19.894	ZZ.302	21.148	I Z1.480	32.216	29.237	40.141	1 48.401	20.700

T_0 (K)	H ₂	O ₂	N ₂	CO	CO_2	H ₂ O	NH ₃	CH₄	Air
500	17.169	18.101	17.552	17.533	25.277	20.010	21.785	22.989	17.355
600	17.210	18.320	17.744	17.733	24.890	20.368	22.832	24.845	17.455
700	17.282	18.560	17.915	17.914	25.515	20.733	23.822	26.630	17.607
800	17.370	18.778	18.074	18.084	26.059	21.099	24.768	28.307	17.792
900	17.468	18.977	18.225	18.247	26.523	21.468	25.680	29.882	18.009
1000	17.572	19.164	18.373	18.406	26.932	21.837	26.563	31.362	18.248
1100	17.680	19.342	18.518	18.563	27.303	22.207	27.421	32.754	18.499
1200	17.791	19.514	18.661	18.718	27.647	22.576	28.254	34.064	18.753
1300	17.904	19.681	18.802	18.872	27.972	22.944	29.063	35.298	19.002
1400	18.018	19.845	18.943	19.026	28.282	23.311	29.850	36.462	19.240
1500	18.134	20.007	19.084	19.179	28.581	23.676	30.615	37.560	19.463
1600	18.251	20.167	19.224	19.332	28.871	24.041	31.359	38.598	19.668
1700	18.368	20.326	19.363	19.485	29.154	24.403	32.081	39.578	19.854
1800	18.486	20.483	19.503	19.637	29.431	24.763	32.782	40.506	20.022
1900	18.605	20.640	19.643	19.790	29.702	25.121	33.464	41.385	20.172
2000	18.725	20.796	19.783	19.943	29.970	25.477	34.126	42.219	20.307
2100	18.844	20.951	19.922	20.095	30.234	25.829	34.768	43.008	20.426
2200	18.964	21.106	20.061	20.247	30.493	26.180	35.393	43.760	20.534
2300	19.085	21.261	20.201	20.400	30.750	26.527	36.000	44.474	20.631
2400	19.205	21.415	20.340	20.552	31.003	26.872	36.589	45.154	20.720
2500	19.326	21.569	20.480	20.704	31.254	27.214	37.161	45.801	20.801
2600	19.447	21.723	20.619	20.856	31.502	27.552	37.717	46.419	20.876
2700	19.569	21.876	20.758	21.009	31.747	27.888	38.257	47.007	20.947
2800	19.690	22.029	20.898	21.161	31.990	28.220	38.782	47.570	21.013
2900	19.812	22.182	21.037	21.313	32.230	28.550	39.293	48.108	21.075
3000	19.934	22.334	21.176	21.465	32.467	28.876	39.788	48.623	21.134
3100	20.056	22.487	21.315	21.617	32.703	29.198	40.271	49.115	21.191
3200	20.178	22.639	21.454	21.768	32.937	29.517	40.740	49.587	21.245
3300	20.300	22.790	21.593	21.920	33.168	29.834	41.197	50.041	21.296
3400	20.422	22.942	21.732	22.071	33.396	30.146	41.640	50.476	21.346
3500	20.544	23.093	21.871	22.222	33.623	30.456	42.073	50.894	21.393

Tableau 5.48 : Valeurs de C_{Masse} de *MLN* 2D en fonction de T_0 lorsque M_S =3.00.

Tableau 5.49 : Valeurs de C_F de *MLN* 2D en fonction de T_0 lorsque M_S =3.00.

100					. ==				0 0.00
T_0 (K)	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH_3	CH_4	Air
500	0.297	0.307	0.302	0.301	0.402	0.345	0.371	0.387	0.299
600	0.297	0.314	0.305	0.305	0.414	0.351	0.388	0.415	0.301
700	0.298	0.319	0.309	0.309	0.424	0.357	0.402	0.440	0.304
800	0.300	0.323	0.312	0.312	0.432	0.362	0.416	0.462	0.308
900	0.301	0.327	0.314	0.315	0.439	0.368	0.428	0.481	0.312
1000	0.303	0.330	0.317	0.318	0.444	0.374	0.440	0.498	0.316
1100	0.305	0.333	0.320	0.320	0.449	0.379	0.451	0.514	0.320
1200	0.307	0.336	0.322	0.323	0.454	0.385	0.462	0.528	0.324
1300	0.309	0.339	0.325	0.326	0.458	0.390	0.471	0.541	0.328
1400	0.311	0.342	0.327	0.328	0.462	0.396	0.481	0.553	0.332
1500	0.313	0.345	0.329	0.331	0.466	0.401	0.490	0.564	0.336
1600	0.315	0.347	0.332	0.334	0.469	0.406	0.498	0.574	0.339
1700	0.317	0.350	0.334	0.336	0.473	0.411	0.507	0.583	0.342
1800	0.319	0.352	0.337	0.339	0.476	0.416	0.514	0.592	0.344
1900	0.321	0.355	0.339	0.341	0.479	0.421	0.522	0.600	0.347
2000	0.323	0.356	0.340	0.343	0.481	0.425	0.527	0.605	0.348
2100	0.326	0.360	0.343	0.346	0.485	0.431	0.536	0.614	0.351
2200	0.328	0.362	0.346	0.349	0.489	0.435	0.542	0.620	0.352
2300	0.330	0.365	0.348	0.351	0.491	0.440	0.548	0.627	0.354
2400	0.332	0.367	0.350	0.354	0.494	0.444	0.554	0.632	0.355
2500	0.334	0.370	0.353	0.356	0.497	0.449	0.560	0.638	0.357

2600	0.336	0.372	0.355	0.359	0.500	0.453	0.565	0.643	0.358		
2700	0.338	0.374	0.357	0.361	0.503	0.457	0.571	0.648	0.359		
2800	0.340	0.377	0.359	0.363	0.506	0.461	0.576	0.652	0.360		
2900	0.342	0.379	0.361	0.366	0.508	0.465	0.580	0.656	0.361		
3000	0.344	0.381	0.364	0.368	0.511	0.469	0.585	0.660	0.362		
3100	0.346	0.384	0.366	0.370	0.514	0.473	0.589	0.664	0.363		
3200	0.348	0.386	0.368	0.373	0.516	0.477	0.594	0.668	0.364		
3300	0.350	0.388	0.370	0.375	0.519	0.481	0.598	0.671	0.365		
3400	0.352	0.390	0.372	0.377	0.521	0.484	0.602	0.675	0.365		
3500	0.354	0.392	0.374	0.380	0.524	0.488	0.606	0.678	0.366		
Tableau 5.50 : Valoure de V_{2}/V_{2} de M_{2}/V_{2} en fenetien de Tableau M_{2} = 2.00											
Tableau 5.50 : Valeurs de y_s/y_* de <i>MLI</i> V 2D en fonction de T_0 lorsque $M_s=3.00$											
T_0 (K)	H_2	O ₂	N ₂	CO	CO_2	H ₂ O	NH ₃	CH_4	Air		
500	4.180	4.421	4.280	4.275	6.257	4.909	5.370	5.683	4.228		
600	4.191	4.477	4.329	4.327	6.164	5.002	5.639	6.160	4.255		
700	4.210	4.538	4.373	4.373	6.325	5.096	5.893	6.620	4.295		
800	4.233	4.594	4.414	4.416	6.465	5.190	6.137	7.052	4.344		
900	4.259	4.645	4.453	4.458	6.585	5.285	6.372	7.459	4.400		
1000	4.285	4.693	4.491	4.499	6.690	5.380	6.600	7.842	4.462		
1100	4.313	4.739	4.528	4.540	6.786	5.476	6.821	8.202	4.526		
1200	4.342	4.783	4.565	4.580	6.875	5.571	7.036	8.541	4.591		
1300	4.371	4.826	4.601	4.619	6.959	5.666	7.246	8.862	4.655		
1400	4.401	4.868	4.637	4.659	7.039	5.760	7.449	9.164	4.716		
1500	4.430	4.910	4.673	4.698	7.116	5.855	7.647	9.449	4.772		
1600	4.461	4.951	4.709	4.738	7.191	5.948	7.839	9.719	4.824		
1700	4.491	4.992	4.745	4.777	7.264	6.042	8.026	9.974	4.871		
1800	4.521	5.032	4.781	4.816	7.336	6.135	8.208	10.215	4.914		
1900	4.552	5.073	4.817	4.855	7.407	6.227	8.385	10.444	4.952		
2000	4.583	5.113	4.854	4.895	7.476	6.139	8.557	10.661	4.986		
2100	4.613	5.153	4.889	4.934	7.544	6.410	8.723	10.867	5.016		
2200	4.644	5.193	4.925	4.973	7.611	6.500	8.885	11.063	5.043		
2300	4.675	5.233	4.961	5.012	7.678	6.590	9.043	11.249	5.068		
2400	4.706	5.272	4.997	5.052	7.744	6.679	9.1962	11.426	5.0913		
2500	4.737	5.312	5.033	5.091	7.809	6.767	9.344	11.595	5.112		
2600	4.769	5.352	5.069	5.130	7.873	6.855	9.489	11.756	5.131		
2700	4.800	5.391	5.105	5.169	7.937	6.941	9.629	11.910	5.149		
2800	4.831	5.431	5.140	5.208	8.000	7.027	9.766	12.057	5.166		
2900	4.862	5.470	5.176	5.247	8.062	7.112	8.899	12.198	5.182		
3000	4.894	5.509	5.212	5.287	8.124	7.197	10.028	12.332	5.197		
3100	4.925	5.548	5.248	5.326	8.185	7.280	10.153	12.461	5.211		
3200	4.956	5.588	5.284	5.365	8.245	7.363	10.276	12.585	5.225		
3300	4.988	5.627	5.319	5.404	8.305	7.444	10.394	12.703	5.238		
3400	5.019	5.666	5.355	5.443	8.365	7.525	10.510	12.817	5.251		
3500	5.051	5,705	5.391	5.482	8.423	7.605	10.623	12.926	5.263		

5.3.6. Effet du gaz sur la variation des paramètres thermodynamiques à travers la paroi de la tuyère MLN 2D.

Les figures (5.57) à (5.61) représentent la variation de nombre de Mach et les paramètres thermodynamiques respectivement le rapport des températures T/T_0 , rapport des pressions P/P_0 , rapport des masses volumiques ρ/ρ_0 et la déviation de l'écoulement à travers la paroi de la tuyère de la figure (5.31) pour M_s =3.00 et T_0 =2000 K. On remarque une détente de gaz d'une valeur M^* au col (juste après la détente) jusqu'à M_s à la sortie de la tuyère. La valeur de M^*

gaz à l'autre qui influe sur les paramètres critiques au col et les paramètres juste après la détente et cela conformément à la figure (5.57). Les valeurs de M^* peuvent êtres trouvées dans le tableau (5.37) pour M_S =3.00 et dans le tableau (5.45) lorsque T_0 =2000 K.

Sur la figure (5.58) on remarque que la température à travers la paroi est assez élevée pour le gaz CH₄, NH₃, H₂O et CO₂ par rapport à l'air. Tandis que pour les gaz H₂, N₂ et CO est assez froide par rapport à l'air. Donc il faut choisir un matériau de construction convenable résistant à la distribution présentée sur la figure (5.58) selon le gaz choisi. La température à travers la tuyère diminue qui donne la plus petite valeur à la section de sortie. Comme l'écoulement est unidirectionnel et uniforme à la sortie, on peut trouver les valeurs de T/T_0 à la sortie selon le tableau (5.6) de la première partie lorsque $M=M_S=3.00$

La figure (5.59) représente la distribution de rapport P/P_0 à travers la paroi de la tuyère, pour permettre de faire la contrainte appliquée sur le matériau afin de choisir le bon matériau qui résiste à cette variation. Le rapport au col lorsque $M=M^*$ et à la sortie lorsque $M=M_S=3.00$ peuvent êtres trouvées dans le tableau (5.8).

Figure 5.57 : Effet du gaz sur la variation de *M* à travers la paroi de *MLN* 2D.

Figure 5.58 : Effet du gaz sur la variation de T/T_0 à travers la paroi de MLN 2D.

La figure (5.60) représente que l'écoulement étudié est compressible vu la variation du rapport ρ/ρ_0 à travers la tuyère.

La figure (5.61) montre qu'il ya une détente de type Prandtl Meyer de l'angle θ au col jusqu'à θ =0 à la sortie. Elle montre aussi que l'écoulement est horizontal à la section de sortie. Les valeurs numériques de θ^* au col de la tuyère peuvent êtres trouvées dans le tableau (5.36) lorsque M_S =3.00 et dans le tableau (5.44) lorsque T_0 =2000 K.

Figure 5.61 : Effet du gaz sur la variation de θ à travers la paroi de *MLN* 2D.

5.3.7. Effet du gaz sur la variation de nombre de Mach à travers l'axe de la tuyère <u>MLN 2D.</u>

La figure (5.62) représente la variation de nombre de Mach à travers l'axe de symétrie de la tuyère de la figure (5.31) lorsque M_S =3.00 pour T_0 =2000 K. On remarque qu'il ya une détente de M=1 jusqu'à M_S =3.00. On remarque encore l'existence de la zone uniforme et la zone de Kernel dont cette dernière est assez petite par rapport à la zone uniforme. Pour les gaz CH₄, NH₃, CO₂ et H₂O la longueur de la zone uniforme est plus grande que le cas de l'air vu que la tuyère dans ce cas possède une longueur grande que de cas de l'air. Tandis que pour le H₂, N₂ et CO et même O₂ présentent des régions petites. Alors pour les souffleries supersoniques, on a un espace important pour placer le prototype d'avion dans la région uniforme et l'effet de la paroi n'est pas important vu quelle est assez loin par rapport au prototype conformément à la figure (5.31).

Généralement l'apparition d'une grande zone uniforme est mauvaise dans les applications aérospatiales et très bonnes pour les souffleries, vu qu'il n'est pas d'évolution de l'écoulement et qui va ne donner aucun changement des paramètres avec augmentation de la masse et sans changement de C_F pour rien. Alors il est recommandé de faire une troncature de la paroi à un endroit précis. Cette procédure sera discutée à la fin de cette partie.

5.3.8. Choix du gaz sur la forme des tuyères MLN 2D ayant même d'un seule paramètre de conception.

Les figures (5.63) à (5.66) représentent l'effet des gaz sur la forme des tuyères ayant respectivement toutes même d'un seul paramètre de conception pour chaque figure que le cas de l'air. Les paramètres retenus dans les applications sont respectivement le rayon de la section de sortie, la longueur de la tuyère, la déviation initiale de la paroi au col et la longueur de détente de la région de Kernel. Deux autres paramètres qui sont la masse de la tuyère ainsi que le coefficient de poussée sont laissés respectivement dans les paragraphes prochains vu, leurs intérêts pratiques. L'exemple pris c'est pour M_S =3.00 et T_0 =2000 K.

Figure 5.63 : Effet du gaz sur la forme des tuyères *MLN* 2D ayant même section de sortie pour M_S (Air)=3.00 lorsque T_0 =2000 K.

Tableau 5.51 : Valeurs numériques des tuyères de la figure 5.63.

					,	5	
Ν	Gaz	Ms	θ^{i} (deg)	L/y∗	C_{Masse}	C _F	ys⁄y∗
1	H ₂	3.0850	27.069	20.184	20.806	0.333	4.986
2	O ₂	2.9769	27.628	19.522	20.161	0.354	4.986
3	N ₂	3.0257	27.373	19.821	20.453	0.344	4.986
4	CO	3.0176	27.425	19.770	20.403	0.346	4.986
5	CO ₂	2.7230	29.110	17.953	18.635	0.418	4.986
6	H ₂ O	2.8148	28.590	18.516	19.183	0.392	4.986
7	NH ₃	2.6575	29.586	17.534	18.230	0.438	4.986
8	CH_4	2.5789	30.132	17.039	17.750	0.466	4.986
9	Air [95-96]	3.0000	27.466	19.672	20.307	0.348	4.986

Figure 5.64 : Effet du gaz sur la forme des tuyères *MLN* 2D ayant même longueurs que le cas de l'air pour M_S (Air)=3.00 lorsque T_0 =2000 K.

Ν	Gaz	Ms	θ^{*} (deg)	y _s /y∗	C _{Masse}	C _F	L/y∗
1	H ₂	3.0641	26.864	4.883	20.274	0.331	19.672
2	O ₂	2.9826	27.692	5.017	20.316	0.355	19.672
3	N ₂	3.0198	27.310	4.955	20.295	0.344	19.672
4	CO	3.0137	27.384	4.965	20.300	0.345	19.672
5	CO ₂	2.7769	29.979	5.389	20.432	0.431	19.672
6	H ₂ O	2.8544	29.136	5.244	20.387	0.400	19.672
7	NH ₃	2.7215	30.718	5.502	20.471	0.456	19.672
8	CH ₄	2.6515	31.616	5.651	20.524	0.491	19.672
9	Air [95-96]	3.0000	27.466	4.986	20.307	0.348	19.672

Tableau 5.52 : Valeurs numériques des tuyères de la figure 5.64.

Les résultats numériques trouvés de conception sont représentés respectivement dans les tableaux (5.51) à (5.54). Dans ce cas le rayon de la section de sortie y_S/y_* , (figure 5.63), longueur de la tuyère L/y_* (figure 5.64), l'angle θ^* du col (figure 5.65) et la longueur de détente L_d/y_* (figure 5.66) est le même pour le cas de l'air. Les valeurs de y_S/y_* , L/y_* , θ^* et L_d/y_* pour l'air sont présentés dans le tableau (5.24) et peuvent êtres trouvés encore dans les références [95-96].

Figure 5.65 : Effet du gaz sur la forme des tuyères *MLN* 2D ayant même θ comme le cas de l'air pour *M*_s(Air)=3.00 lorsque *T*₀=2000 K.

Ν	Gaz	Ms	L/y∗	y _s /y∗	C _{Masse}	C _F	θ* (degré)
1	H ₂	3.1262	21.225	5.192	21.885	0.338	27.466
2	O ₂	2.9623	19.145	4.907	19.769	0.352	27.466
3	N ₂	3.0346	20.047	5.032	20.686	0.345	27.466
4	CO	3.0213	19.865	5.005	20.501	0.346	27.466
5	CO ₂	2.6229	15.170	4.324	15.720	0.393	27.466
6	H ₂ O	2.7348	16.386	4.503	16.959	0.376	27.466
7	NH ₃	2.5404	14.232	4.174	14.762	0.405	27.466
8	CH ₄	2.4501	13.277	4.021	13.786	0.421	27.466
9	Air [95-96]	3.0000	19.672	4.986	20.307	0.348	27.466

Tableau 5.53 : Valeurs numériques des tuyères de la figure 5.65.

On remarque que si on garde un même paramètre de conception pour le dimensionnement des tuyères, le nombre de Mach de sortie, la forme de la tuyère et les autres paramètres de conception ne sont plus les mêmes pour tous les gaz conformément aux valeurs tabulées et les figures présentées.

Lorsqu'on garde un seul paramètre de conception le même pour tous les gaz, que de cas de l'air conformément aux figures, le gaz H₂ délivre un M_S le plus élevé, qui dépasse le M_S de l'air ce qui donne que la durée de vol est diminuée graduellement. Même ordre de grandeur pour les gaz N₂, O₂, CO. Tandis que pour les gaz CO₂, H₂O, NH₃ et CH₄ délivrent un M_S faible que celui de l'air. Pour le CH₄, c'est le plus faible. Alors la durée de vol devient de plus en plus importante.

La forme, la longueur, la masse, le rayon de la section de sortie et le C_F pour le H₂ sont très grands par rapport aux autres gaz et de l'air. Tandis que pour le CH₄ sont plus petits que le cas de l'air. Le nombre de Mach de sortie dans ce cas est le plus petit obtenu, ce qui donne que la durée de vol est la plus grande que le cas de l'air.

Figure 5.66 : Effet du gaz sur la forme des tuyères *MLN* 2D ayant même L_d/y_* comme le cas de l'air pour M_s (Air)=3.00 lorsque T_0 =2000 K.

Ν	Gaz	Ms	L/y∗	y _s /y∗	C _{Masse}	C _F	L _ď /y∗					
1	H ₂	3.072	19.880	4.925	20.492	0.332	5.569					
2	O ₂	2.981	19.648	5.012	20.292	0.355	5.569					
3	N ₂	3.023	19.756	4.972	20.385	0.344	5.569					
4	CO	3.016	19.745	4.981	20.377	0.346	5.569					
5	CO ₂	2.757	19.041	5.242	19.775	0.427	5.569					
6	H ₂ O	2.842	19.303	5.162	20.003	0.397	5.569					
7	NH ₃	2.699	18.902	5.317	19.666	0.450	5.569					
8	CH ₄	2.625	18.686	5.403	19.486	0.482	5.569					
9	Air [95-96]	3 000	19 672	4 986	20.307	0.348	5 569					

Tahlaau 5 5/	. 1	Valaure	numáriques	dos tur	iàrae	dЬ	la.	figure	5	66
Tapleau 5.54		valeurs	numenuues	ues iuv	veres	ue	la.	nuure	ວ.	UU.

5.3.9. Choix du gaz sur la forme des tuyères *MLN* 2D ayant même masse *C_{Masse}* de la tuyère que le cas de l'air.

Dans ce paragraphe on a présenté et élargi les résultats obtenus lorsqu'on veut faire l'étude de l'effet de gaz de propulsion sur les paramètres de conception des tuyères ayant même masse de la tuyère que le cas de l'air, vu l'intérêt pratique de ce paramètre. L'exemple pris sur la figure (5.67) est pour M_S =3.00 et T_0 =2000 K. les résultats numériques de conception sont présentés dans le tableau (5.55). Toutes les 9 tuyères possèdent même C_{Masse} et en particulier le même que le cas de l'air comme présente la dernière colonne de tableau (5.55). Les résultats de l'air peuvent êtres trouvés dans la figure (5.31) et chaque paramètres peuvent êtres trouvés séparément et respectivement dans les tableaux (5.36) à (5.41) lorsque M_S =3.00 et dans les tableaux (5.44) à (5.50) lorsque T_0 =2000 K.

Figure 5.67 : Effet du gaz sur la forme des tuyères *MLN* 2D ayant même masse de la structure que le cas de l'air pour $M_{\rm S}$ (Air)=3.00 lorsque T_0 =2000 K.
Ν	Gaz	Ms	θ [*] (deg)	y _s /y∗	L/y∗	C _F	C _{Masse}
1	H ₂	3.0653	26.876	4.889	19.698	0.331	20.307
2	O ₂	2.9822	27.687	5.014	19.661	0.355	20.307
3	N ₂	3.0202	27.314	4.957	19.679	0.344	20.307
4	CO	3.0139	27.386	4.966	19.676	0.346	20.307
5	CO ₂	2.7732	29.919	5.360	19.545	0.430	20.307
6	H ₂ O	2.8518	29.101	5.227	19.592	0.399	20.307
7	NH ₃	2.7170	30.639	5.464	19.510	0.455	20.307
8	CH ₄	2.6461	31.507	5.598	19.460	0.490	20.307
9	Air [95-96]	3.0000	27.466	4.986	19.672	0.348	20.307

Tableau 5.55 : Valeurs numériques des tuyères de la figure 5.67.

Le premier problème dans ce cas avant la détermination les paramètres de conception de gaz donnant même C_{Masse} que le cas de l'air c'est la détermination de nombre de Mach sortie et la forme de la tuyère correspondant qui va supporter ce nombre de Mach. D'où l'intérêt de la figure (5.67).

Dans la figure (5.68) on a varié le nombre de Mach de sortie de l'air dans la marge supersonique, et T_0 =2000 K, et on a déterminé le nombre de Mach de sortie correspondant de chaque gaz pour supporter la même masse (même C_{Masse}) que le cas de l'air en utilisant l'algorithme présenté dans le tableaux (4.1) du chapitre 4. La courbe 9 en pointillée illustrée dans la figure (5.68) présente le nombre de Mach de sortie de l'air. Les résultats numériques sur le nombre de Mach donné pour chaque gaz sont présentés dans le tableau (5.56). La dernière colonne à droite présente la masse de touts les gaz en fonction de M_S de l'air.

La figure (5.68) devise les résultats en deux parties. Une partie donnant un nombre de Mach de sortie supérieur au cas de l'air ce qui est le cas pour le H₂ par exemple et la deuxième partie donnant un ensemble des gaz donnants un nombre de Mach inférieure à M_S de l'air ce qui est le cas pour le CH₄ et NH₃. On remarque aussi que pour faible M_S , il n'est ya pas une différence entre un tel gaz et autre. On peut aller jusqu'à 2.00 avec une erreur donnée. Plus le nombre de Mach de sortie de l'air est grand plus on remarque l'intérêt d'un tel gaz par rapport à l'autre.

Pour raison d'intérêt, on a présenté dans les figures (5.69) et (5.70) la variation de C_F et C_{Masse} des tuyères en fonction de M_S de l'air lorsqu'ils donnent le même C_{Masse} que le cas de l'air. Les résultats numériques de C_F de la figure (5.70) sont présentés dans le tableau (5.57).

Il est très clair dans la figure (5.70) que toutes les 9 courbes sont confondues vu leurs masses est la même. Dans la figure (5.69), on remarque que lorsque le C_{Masse} des gaz est le même, le C_F et M_S des gaz diffèrent et se divise en deux parties une parties comporte un C_F grand et M_S petit par rapport à l'air ce qui est le cas pour CH₄ et le NH₃ et un C_F petit et M_S grand par rapport à l'air ce qui est le cas pour le H₂ et O₂.

Figure 5.68 : Effet du gaz sur le nombre de Mach de sortie de la tuyère *MLN* 2D ayant même masse que le cas de l'air lorsque T_0 =2000 K.

Figure 5.70 : Effet du gaz sur la valeur de C_{Masse} de la tuyère *MLN* 2D ayant même masse que le cas de l'air lorsque T_0 =2000 K.

			94010				.000 IX.		-
Ms	Ms	Ms	Ms	Ms	Ms	Ms	Ms	Ms	C _{Masse}
(Air)	(H ₂)	(O_2)	(N ₂)	(CO)	(CO_2)	(H ₂ O)	(NH_3)	(CH ₄)	(Gaz)
1.00	/	/			_//	/			· · · · · ·
1.10	1.1001	1.1000	1.1000	1.1000	1.0997	1.0999	1.0996	1.0995	0.8476
1.20	1.2003	1.1998	1.2000	1.2000	1.1985	1.1989	1.1980	1.1975	1.2564
1.30	1.3007	1.2995	1.3000	1.2999	1.2962	1.2972	1.2950	1.2937	1.6257
1.40	1.4014	1.3990	1.4001	1.3998	1.3926	1.3947	1.3903	1.3880	1.9972
1.50	1.5025	1.4984	1.5003	1.4998	1.4878	1.4912	1.4841	1.4802	2.3908
1.60	1.6038	1.5977	1.6005	1.5998	1.5817	1.5869	1.5762	1.5704	2.8201
1.70	1.7056	1.6969	1.7009	1.6999	1.6744	1.6818	1.6668	1.6587	3.2970
1.80	1.8077	1.7961	1.8014	1.8002	1.7659	1.7759	1.7558	1.7450	3.8328
1.90	1.9103	1.8951	1.9020	1.9005	1.8561	1.8692	1.8434	1.8295	4.4391
2.00	2.0132	1.9942	2.0029	2.0010	1.9452	1.9618	1.9294	1.9121	5.1285
2.10	2.1167	2.0933	2.1039	2.1017	2.0331	2.0537	2.0141	1.9930	5.9142
2.20	2.2206	2.1923	2.2052	2.2025	2.1199	2.1449	2.0974	2.0721	6.8112
2.30	2.3249	2.2913	2.3066	2.3035	2.2056	2.2355	2.1794	2.1495	7.8356
2.40	2.4297	2.3903	2.4082	2.4047	2.2901	2.3254	2.2600	2.2253	9.0056
2.50	2.5348	2.4892	2.5100	2.5061	2.3735	2.4148	2.3394	2.2994	10.3404
2.60	2.6404	2.5881	2.6119	2.6075	2.4557	2.5035	2.4174	2.3719	11.8615
2.70	2.7462	2.6868	2.7139	2.7091	2.5368	2.5915	2.4942	2.4428	13.5926
2.80	2.8524	2.7855	2.8160	2.8107	2.6168	2.6789	2.5697	2.5121	15.5584
2.90	2.9588	2.8840	2.9181	2.9123	2.6956	2.7657	2.6440	2.5799	17.7867
3.00	3.0654	2.9822	3.0202	3.0139	2.7733	2.8518	2.7171	2.6462	20.3064
3.10	3.1721	3.0803	3.1222	3.1155	2.8498	2.9373	2.7889	2.7110	23.1496
3.20	3.2789	3.1780	3.2242	3.2170	2.9252	3.0221	2.8596	2.7743	26.3500
3.30	3.3858	3.2755	3.3260	3.3183	2.9995	3.1063	2.9291	2.8362	29.9441
3.40	3.4926	3.3727	3.4276	3.4194	3.0726	3.1898	2.9975	2.8968	33.9693
3.50	3.5994	3.4695	3.5290	3.5204	3.1447	3.2726	3.0648	2.9560	38.4675
3.60	3.7061	3.5660	3.6302	3.6212	3.2156	3.3549	3.1310	3.0139	43.4835
3.70	3.8128	3.6621	3.7312	3.7217	3.2855	3.4365	3.1962	3.0706	49.0623
3.80	3.9193	3.7578	3.8319	3.8221	3.3544	3.5174	3.2605	3.1260	55.2549
3.90	4.0257	3.8533	3.9324	3.9222	3.4223	3.5979	3.3237	3.1804	62.1127
4.00	4.1319	3.9483	4.0327	4.0220	3.4892	3.6777	3.3861	3.2336	69.6942
4.10	4.2380	4.0430	4.1327	4.1217	3.5552	3.7570	3.4475	3.2857	78.0567
4.20	4.3440	4.1374	4.2325	4.2211	3.6203	3.8358	3.5082	3.3368	87.2650
4.30	4.4498	4.2315	4.3320	4.3203	3.6846	3.9141	3.5681	3.3870	97.3880
4.40	4.5555	4.3253	4.4314	4.4193	3.7480	3.9919	3.6272	3.4363	108.4945
4.50	4.6610	4.4188	4.5305	4.5181	3.8106	4.0693	3.6857	3.4846	120.6623
4.60	4.7664	4.5121	4.6295	4.6168	3.8725	4.1463	3.7434	3.5322	133.9729
4.70	4.8718	4.6052	4.7284	4.7154	3.9337	4.2229	3.8006	3.5790	148.5110
4.80	4.9769	4.6981	4.8271	4.8138	3.9942	4.2991	3.8571	3.6250	164.3679
4.90	5.0821	4.7908	4.9257	4.9121	4.0540	4.3750	3.9131	3.6703	181.6378
5.00	5.1872	4.8833	5.0241	5.0103	4.1133	4.4506	3.9686	3.7149	200.4255

Tableau 5.56 : Valeurs de *Ms* des gaz pour la tuyère *MLN* 2D ayant même masse gue le cas de l'air lorsque T_0 =2000 K.

Tableau 5.57 : Valeurs de C_F des gaz pour la tuyère *MLN* 2D ayant même masse que le cas de l'air lorsque T_0 =2000 K.

Ms	C _F	C _F	C _F	C _F	C _F	C_F	C _F	C _F	C_F	C _{Masse}
(Air)	(H ₂)	(O ₂)	(N ₂)	(CO)	(CO_2)	(H_2O)	(NH ₃)	(CH ₄)	(Air)	(Gaz)
1.00										
1.10	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.004	0.8476
1.20	0.014	0.015	0.014	0.015	0.016	0.016	0.017	0.018	0.015	1.2564
1.30	0.029	0.030	0.030	0.030	0.034	0.033	0.035	0.037	0.030	1.6257
1.40	0.047	0.049	0.048	0.048	0.055	0.053	0.057	0.059	0.048	1.9972
1.50	0.066	0.069	0.068	0.068	0.078	0.075	0.081	0.085	0.066	2.3908

1.60	0.087	0.091	0.089	0.089	0.103	0.099	0.107	0.112	0.090	2.8201
1.70	0.108	0.113	0.111	0.111	0.128	0.123	0.134	0.140	0.111	3.2970
1.80	0.129	0.136	0.133	0.133	0.155	0.148	0.161	0.169	0.133	3.8328
1.90	0.150	0.158	0.154	0.155	0.181	0.172	0.188	0.198	0.155	4.4391
2.00	0.170	0.179	0.175	0.176	0.207	0.196	0.216	0.227	0.177	5.1285
2.10	0.190	0.201	0.196	0.197	0.232	0.220	0.243	0.256	0.198	5.9142
2.20	0.209	0.221	0.215	0.217	0.257	0.243	0.269	0.285	0.218	6.8112
2.30	0.227	0.241	0.234	0.236	0.281	0.266	0.295	0.313	0.237	7.8356
2.40	0.245	0.260	0.253	0.254	0.305	0.287	0.320	0.340	0.256	9.0056
2.50	0.261	0.278	0.270	0.271	0.328	0.308	0.345	0.367	0.273	10.3404
2.60	0.277	0.295	0.286	0.288	0.350	0.328	0.368	0.393	0.290	11.8615
2.70	0.292	0.311	0.302	0.304	0.371	0.347	0.391	0.418	0.306	13.5926
2.80	0.305	0.327	0.317	0.318	0.392	0.365	0.413	0.443	0.321	15.5584
2.90	0.319	0.341	0.331	0.332	0.412	0.383	0.434	0.467	0.335	17.7867
3.00	0.331	0.355	0.344	0.346	0.430	0.399	0.455	0.490	0.349	20.3064
3.10	0.343	0.368	0.356	0.358	0.448	0.415	0.474	0.512	0.361	23.1496
3.20	0.353	0.380	0.368	0.370	0.466	0.430	0.493	0.533	0.373	26.3500
3.30	0.364	0.392	0.379	0.381	0.482	0.444	0.511	0.554	0.384	29.9441
3.40	0.373	0.403	0.389	0.391	0.498	0.457	0.528	0.574	0.395	33.9693
3.50	0.382	0.413	0.399	0.401	0.513	0.470	0.545	0.593	0.405	38.4675
3.60	0.391	0.423	0.408	0.410	0.528	0.482	0.560	0.611	0.414	43.4835
3.70	0.399	0.432	0.416	0.418	0.541	0.493	0.576	0.629	0.423	49.0623
3.80	0.406	0.441	0.424	0.427	0.554	0.504	0.590	0.646	0.431	55.2549
3.90	0.413	0.449	0.432	0.434	0.567	0.514	0.604	0.663	0.438	62.1127
4.00	0.420	0.456	0.439	0.441	0.579	0.524	0.617	0.679	0.446	69.6942
4.10	0.426	0.464	0.446	0.448	0.591	0.534	0.630	0.694	0.452	78.0567
4.20	0.432	0.470	0.452	0.454	0.602	0.542	0.642	0.709	0.459	87.2650
4.30	0.437	0.477	0.458	0.461	0.612	0.551	0.654	0.723	0.465	97.3880
4.40	0.442	0.483	0.463	0.466	0.622	0.559	0.665	0.737	0.471	108.4945
4.50	0.447	0.489	0.469	0.472	0.632	0.566	0.676	0.750	0.476	120.6623
4.60	0.452	0.494	0.474	0.477	0.641	0.573	0.686	0.763	0.481	133.9729
4.70	0.456	0.499	0.479	0.481	0.650	0.580	0.696	0.776	0.486	148.5110
4.80	0.460	0.504	0.483	0.486	0.659	0.587	0.705	0.788	0.490	164.3679
4.90	0.464	0.509	0.487	0.490	0.667	0.593	0.714	0.799	0.495	181.6378
5.00	0.468	0.513	0.492	0.494	0.675	0.599	0.723	0.811	0.499	200.4255

Dans les tableaux (5.58) et (5.59) on a représenté l'erreur relative donnée respectivement par le M_S et C_F des différents gaz par rapport à ceux de l'air en fonction de quelques nombre de Mach de sortie de l'air. Pour le C_{Masse} , l'erreur relative est nulle vu que toutes les tuyères donnent même C_{Masse} .

Tableau 5.58 : Effet de gaz sur $\epsilon(M_S)$ (%) pour la tuyère *MLN* 2D ayant même masse que le cas de l'air lorsque T_0 =2000 K.

M _S (Air)	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4
1.50	0.16%	0.10%	0.01%	0.01%	0.81%	0.58%	1.06%	1.31%
2.00	0.66%	0.28%	0.14%	0.05%	2.73%	1.91%	3.52%	4.39%
2.50	1.39%	0.43%	0.40%	0.24%	5.06%	3.40%	6.42%	8.02%
3.00	2.17%	0.59%	0.67%	0.46%	7.55%	4.93%	9.43%	11.79%
3.50	2.84%	0.87%	0.82%	0.58%	10.15%	6.49%	12.43%	15.54%
4.00	3.29%	1.29%	0.81%	0.55%	12.76%	8.05%	15.34%	19.16%
4.50	3.57%	1.80%	0.67%	0.40%	15.31%	9.57%	18.09%	22.56%
5.00	3.74%	2.33%	0.48%	0.20%	17.73%	10.98%	20.62%	25.70%

Il est clair que l'erreur relative pour M_S peut arriver à 25 % pour le CH₄ lorsque M_S (Air)=5.00 et T_0 =2000 K. Pour le C_F , l'erreur relative peut arriver à 62 % pour le CH₄. L'erreur relative de chaque paramètre varie avec M_S (Air), T_0 et le gaz choisi.

M _S (Air)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄
1.50	2.89%	1.58%	0.48%	0.03%	14.28%	9.78%	18.73%	23.91%
2.00	3.66%	1.56%	0.86%	0.39%	16.84%	11.08%	21.99%	28.47%
2.50	4.43%	1.65%	1.19%	0.68%	20.02%	12.72%	26.07%	34.20%
3.00	5.06%	1.83%	1.41%	0.87%	23.43%	14.45%	30.38%	40.38%
3.50	5.52%	2.09%	1.51%	0.96%	26.77%	16.11%	34.56%	46.49%
4.00	5.83%	2.38%	1.52%	0.96%	29.90%	17.61%	38.42%	52.27%
4.50	6.03%	2.66%	1.50%	0.92%	32.73%	18.93%	41.89%	57.58%
5.00	6.18%	2.91%	1.46%	0.88%	35.28%	20.07%	44.95%	62.42%

Tableau 5.59 : Effet de gaz sur l'écart relative en coefficient de poussée $\epsilon(C_F)$ (%) pour la tuyère *MLN* 2D ayant même masse que le cas de l'air lorsque T_0 =2000 K.

5.3.10. Choix du gaz sur la forme des tuyères *MLN* 2D ayant même coefficient de poussé *C_F* que le cas de l'air.

Dans ce paragraphe on a présenté et élargi les résultats obtenus lorsqu'on veut faire l'étude de l'effet de gaz de propulsion sur les paramètres de conception des tuyères ayant même coefficient de poussée C_F que le cas de l'air, vu l'intérêt pratique de ce paramètre. L'exemple pris sur la figure (5.71) est pour M_S =3.00 et T_0 =2000 K. les résultats numériques de conception sont présentés dans le tableau (5.60). Toutes les 9 tuyères possèdent même C_F et en particulier le même que le cas de l'air comme présente la dernière colonne à droite de tableau (5.60).

Figure 5.71 : Effet du gaz sur la forme des tuyères *MLN* 2D ayant même C_F comme le cas de l'air pour M_S =3.00 lorsque T_0 =2000 K.

N	Gaz	Ms	L/y∗	y _s /y∗	C _{Masse}	θ^* (deg)	C _F
1	H ₂	3.230	24.105	5.755	24.864	28.443	0.348
2	O ₂	2.935	18.480	4.767	19.079	27.167	0.348
3	N ₂	3.060	20.718	5.168	21.383	27.731	0.348
4	CO	3.038	20.309	5.096	20.962	27.645	0.348
5	CO ₂	2.449	11.379	3.404	11.748	24.525	0.348
6	H ₂ O	2.598	13.312	3.794	13.749	25.479	0.348
7	NH ₃	2.352	10.252	3.175	10.583	23.955	0.348
8	CH ₄	2.248	9.120	2.936	9.410	23.223	0.348
9	Air [95-96]	3.000	19.672	4.986	20.307	27.466	0.348

Tableau 5.60 : Résultats numériques des tuyères de la figure 5.71.

Les résultats de l'air peuvent êtres trouvés dans la figure (5.31) et chaque paramètres peuvent êtres trouvés séparément et respectivement dans les tableaux (5.36) à (5.41) lorsque $M_{\rm S}$ =3.00 et dans les tableaux (5.44) à (5.50) lorsque T_0 =2000 K.

Le premier problème dans ce cas avant la détermination les paramètres de conception de gaz donnant même C_F que le cas de l'air c'est la détermination de nombre de Mach sortie et la forme de la tuyère correspondant qui va supporter ce nombre de Mach. D'où l'intérêt de la figure (5.71).

Dans la figure (5.72) on a varié le nombre de Mach de sortie de l'air dans la marge supersonique, et T_0 =2000 K, et on a déterminé le nombre de Mach de sortie correspondant de chaque gaz pour supporter le même C_F que le cas de l'air en utilisant l'algorithme présenté dans le tableaux (4.2) du chapitre 4. La courbe 9 en pointillée illustrée dans la figure (5.72) présente le nombre de Mach de sortie de l'air. Les résultats numériques sur le nombre de Mach donné pour chaque gaz sont présentés dans le tableau (5.61). La dernière colonne à droite présente la valeur de C_F de touts les gaz en fonction de M_S de l'air.

La figure (5.72) devise les résultats, c'est-à-dire les gaz, en deux parties. Une partie donnant un nombre de Mach de sortie supérieur au cas de l'air ce qui est le cas pour le H₂ par exemple et la deuxième partie donnant un ensemble des gaz donnants un nombre de Mach inférieure à M_S de l'air ce qui est le cas pour le CH₄ et NH₃, CO₂ et H₂O. On remarque aussi que pour faible M_S , il n'est ya pas une différence entre un tel gaz et autre. On peut aller jusqu'à 2.00 avec une erreur donnée. Plus le nombre de Mach de sortie de l'air est grand, plus on remarque l'intérêt d'un tel gaz par rapport à l'autre.

Figure 5.72 : Effet du gaz sur le nombre de Mach de sortie de la tuyère *MLN* 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Pour raison d'intérêt, on a présenté respectivement dans les figures (5.73) et (5.74) la variation de C_{Masee} et C_F des tuyères en fonction de M_S de l'air lorsqu'ils donnent le même C_F que le cas de l'air. Les résultats numériques de C_{Masse} de la figure (5.73) sont présentés dans le tableau (5.62). On a présenté à l'échelle Logarithmique de C_{Masse} pour une bonne présentation aux valeurs petites et grandes dans même graphe.

Il est très clair dans la figure (5.74) que toutes les 9 courbes sont confondues vu leurs C_F est le même. Dans la figure (5.73), on remarque que lorsque le C_F des gaz est le même, les valeurs de C_{Masse} et M_S des gaz diffèrent et se divise en deux parties une partie comporte un C_{Masse} grand et M_S petit par rapport à l'air ce qui est le cas pour CH₄ et le NH₃ et un C_{Masse} petit et M_S grand par rapport à l'air ce qui est le cas pour le H₂ et O₂.

Figure 5.73 : Effet du gaz sur la masse de la tuyère *MLN* 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Figure 5.74 : Effet du gaz sur le coefficient de poussée C_F de la tuyère *MLN* 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Tableau 5.61 : Valeurs de *Ms* des gaz pour la tuyère *MLN* 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

M _S	Ms	Ms	Ms	Ms	Ms	Ms	Ms	Ms	C _F
(Air)	(H ₂)	(O ₂)	(N ₂)	(CO)	(CO ₂)	(H ₂ O)	(NH ₃)	(CH ₄)	(Gaz)
1.00									
1.10	1.1013	1.0991	1.1001	1.0999	1.0936	1.0953	1.0919	1.0900	0.0042
1.20	1.2031	1.1980	1.2003	1.1997	1.1854	1.1894	1.1814	1.1713	0.0150
1.30	1.3055	1.2966	1.3006	1.2997	1.2753	1.2820	1.2686	1.2618	0.0302
1.40	1.4086	1.3951	1.4011	1.3997	1.3631	1.3732	1.3533	1.3432	0.0485

1.50	1.5124	1.4933	1.5019	1.4999	1.4487	1.4629	1.4355	1.4216	0.0687
1.60	1.6171	1.5913	1.6029	1.6003	1.5321	1.5510	1.5150	1.4970	0.0900
1.70	1.7228	1.6892	1.7042	1.7009	1.6133	1.6374	1.5918	1.5693	0.1119
1.80	1.8296	1.7868	1.8058	1.8017	1.6921	1.7222	1.6659	1.6385	0.1339
1.90	1.9375	1.8842	1.9078	1.9029	1.7686	1.8054	1.7374	1.7047	0.1557
2.00	2.0468	1.9815	2.0103	2.0043	1.8427	1.8868	1.8062	1.7679	0.1772
2.10	2.1574	2.0785	2.1132	2.1062	1.9143	1.9664	1.8723	1.8281	0.1980
2.20	2.2696	2.1753	2.2167	2.2084	1.9835	2.0443	1.9358	1.8854	0.2181
2.30	2.3834	2.2718	2.3206	2.3110	2.0503	2.1203	1.9966	1.9399	0.2375
2.40	2.4989	2.3681	2.4250	2.4140	2.1146	2.1945	2.0549	1.9916	0.2560
2.50	2.6161	2.4639	2.5298	2.5173	2.1765	2.2667	2.1105	2.0407	0.2737
2.60	2.7352	2.5594	2.6352	2.6210	2.2360	2.3371	2.1637	2.0872	0.2905
2.70	2.8561	2.6544	2.7409	2.7250	2.2930	2.4055	2.2145	2.1311	0.3064
2.80	2.9790	2.7489	2.8471	2.8293	2.3477	2.4720	2.2628	2.1727	0.3215
2.90	3.1039	2.8427	2.9535	2.9338	2.4000	2.5364	2.3088	2.2119	0.3357
3.00	3.2309	2.9359	3.0603	3.0385	2.4500	2.5989	2.3526	2.2490	0.3491
3.10	3.3599	3.0283	3.1673	3.1432	2.4977	2.6594	2.3942	2.2839	0.3617
3.20	3.4911	3.1199	3.2745	3.2481	2.5433	2.7179	2.4337	2.3168	0.3736
3.30	3.6245	3.2105	3.3818	3.3529	2.5867	2.7744	2.4711	2.3478	0.3847
3.40	3.7602	3.3003	3.4892	3.4578	2.6281	2.8289	2.5067	2.3771	0.3952
3.50	3.8982	3.3891	3.5967	3.5626	2.6675	2.8816	2.5404	2.4046	0.4051
3.60	4.0387	3.4768	3.7042	3.6672	2.7050	2.9323	2.5723	2.4305	0.4143
3.70	4.1817	3.5636	3.8118	3.7718	2.7407	2.9813	2.6026	2.4549	0.4230
3.80	4.3273	3.6493	3.9193	3.8763	2.7746	3.0284	2.6313	2.4780	0.4312
3.90	4.4757	3.7339	4.0269	3.9806	2.8070	3.0739	2.6585	2.4997	0.4389
4.00	4.6270	3.8174	4.1345	4.0847	2.8377	3.1176	2.6844	2.5201	0.4461
4.10	4.7814	3.8999	4.2420	4.1887	2.8670	3.1598	2.7089	2.5395	0.4529
4.20	4.9390	3.9813	4.3496	4.2927	2.8949	3.2004	2.7322	2.5577	0.4593
4.30	5.1001	4.0616	4.4572	4.3965	2.9215	3.2396	2.7543	2.5750	0.4654
4.40	5.2647	4.1409	4.5650	4.5001	2.9468	3.2773	2.7753	2.5914	0.4710
4.50	5.4332	4.2192	4.6727	4.6038	2.9710	3.3136	2.7953	2.6068	0.4764
4.60	5.6058	4.2965	4.7807	4.7074	2.9941	3.3487	2.8143	2.6215	0.4815
4.70	5.7827	4.3728	4.8887	4.8109	3.0161	3.3824	2.8325	2.6354	0.4863
4.80	5.9641	4.4482	4.9970	4.9145	3.0371	3.4150	2.8497	2.6486	0.4909
4.90	6.1504	4.5226	5.1054	5.0181	3.0572	3.4464	2.8662	2.6611	0.4952
5.00	6.3418	4.5960	5.2142	5.1217	3.0764	3.4768	2.8819	2.6730	0.4993

Tableau 5.62 : Valeurs de C_{Masse} des gaz pour la tuyère *MLN* 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Ms	C _{Masse}	C _{Masse}	C _{Masse}	C _{Masse}	C_{Masse}	C _{Masse}	C_{Masse}	C_{Masse}	C _{Masse}	C _F
(Air)	(H ₂)	(O ₂)	(N ₂)	(CO)	(CO_2)	(H_2O)	(NH ₃)	(CH ₄)	(Air)	(Gaz)
1.00										
1.10	0.853	0.843	0.848	0.847	0.819	0.827	0.811	0.802	0.847	0.0042
1.20	1.267	1.249	1.257	1.255	1.206	1.220	1.191	1.177	1.256	0.0150
1.30	1.643	1.615	1.627	1.625	1.547	1.569	1.525	1.503	1.625	0.0302
1.40	2.024	1.982	2.001	1.996	1.881	1.913	1.850	1.818	1.997	0.0485
1.50	2.431	2.369	2.397	2.391	2.224	2.271	2.182	2.136	2.390	0.0687
1.60	2.879	2.791	2.830	2.822	2.587	2.653	2.529	2.467	2.820	0.0900
1.70	3.383	3.257	3.313	3.301	2.976	3.066	2.897	2.814	3.297	0.1119
1.80	3.956	3.780	3.858	3.841	3.395	3.519	3.292	3.182	3.832	0.1339
1.90	4.613	4.368	4.476	4.454	3.849	4.015	3.715	3.573	4.439	0.1557
2.00	5.372	5.034	5.182	5.152	4.343	4.562	4.171	3.988	5.128	0.1772
2.10	6.252	5.790	5.991	5.951	4.878	5.165	4.659	4.428	5.914	0.1980
2.20	7.276	6.648	6.920	6.867	5.457	5.828	5.183	4.894	6.811	0.2181
2.30	8.470	7.623	7.987	7.916	6.081	6.556	5.741	5.385	7.835	0.2375
2.40	9.864	8.729	9.213	9.120	6.752	7.353	6.336	5.900	9.005	0.2560

2.50	11.494	9.982	10.621	10.499	7.471	8.223	6.965	6.438	10.340	0.2737
2.60	13.400	11.400	12.236	12.079	8.237	9.169	7.628	6.998	11.861	0.2905
2.70	15.631	12.999	14.088	13.885	9.049	10.193	8.323	7.577	13.592	0.3064
2.80	18.241	14.799	16.206	15.946	9.906	11.297	9.049	8.174	15.558	0.3215
2.90	21.294	16.819	18.625	18.293	10.807	12.482	9.803	8.786	17.786	0.3357
3.00	24.864	19.078	21.382	20.962	11.748	13.749	10.583	9.410	20.306	0.3491
3.10	29.036	21.598	24.517	23.988	12.727	15.096	11.385	10.044	23.149	0.3617
3.20	33.910	24.399	28.073	27.410	13.741	16.522	12.207	10.685	26.350	0.3736
3.30	39.599	27.501	32.098	31.271	14.786	18.025	13.046	11.331	29.944	0.3847
3.40	46.238	30.926	36.643	35.618	15.858	19.604	13.898	11.979	33.969	0.3952
3.50	53.978	34.695	41.762	40.498	16.955	21.255	14.761	12.627	38.467	0.4051
3.60	63.000	38.830	47.513	45.963	18.071	22.974	15.630	13.273	43.483	0.4143
3.70	73.511	43.352	53.963	52.071	19.205	24.759	16.505	13.915	49.062	0.4230
3.80	85.755	48.282	61.179	58.879	20.353	26.604	17.383	14.553	55.254	0.4312
3.90	100.014	53.642	69.236	66.452	21.510	28.507	18.261	15.182	62.112	0.4389
4.00	116.620	59.452	78.212	74.858	22.674	30.463	19.136	15.805	69.693	0.4461
4.10	135.960	65.734	88.195	84.171	23.842	32.468	20.007	16.418	78.056	0.4529
4.20	158.489	72.510	99.277	94.470	25.013	34.517	20.872	17.021	87.264	0.4593
4.30	184.746	79.801	111.559	105.838	26.182	36.608	21.731	17.614	97.387	0.4654
4.40	215.362	87.627	125.152	118.362	27.348	38.735	22.581	18.196	108.493	0.4710
4.50	251.080	96.012	140.166	132.142	28.511	40.893	23.421	18.765	120.661	0.4764
4.60	292.785	104.973	156.736	147.281	29.666	43.083	24.252	19.323	133.973	0.4815
4.70	341.526	114.534	174.991	163.888	30.813	45.297	25.070	19.870	148.509	0.4863
4.80	398.550	124.716	195.084	182.080	31.951	47.534	25.877	20.403	164.366	0.4909
4.90	465.344	135.538	217.168	201.981	33.078	49.788	26.671	20.926	181.635	0.4952
5.00	543.669	147.020	241.419	223.731	34.193	52.058	27.452	21.435	200.423	0.4993

Dans les tableaux (5.63) et (5.64) on a représenté l'erreur relative donnée respectivement par le M_S et C_{Masse} des différents gaz par rapport à ceux de l'air en fonction de quelques nombre de Mach de sortie de l'air. Pour le C_F l'erreur relative est nulle vu que toutes les tuyères donnent même C_F .

Tableau 5.63 : Effet de gaz sur l'écart relative en nombre de Mach de sortie $\epsilon(M_S)$ (%) pour la tuyère *MLN* 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

M _S (Air)	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH ₃	CH_4
1.50	0.82%	0.44%	0.12%	0.00%	3.41%	2.47%	4.30%	5.22%
2.00	2.33%	0.92%	0.51%	0.21%	7.86%	5.66%	9.69%	11.60%
2.50	4.64%	1.44%	1.19%	0.69%	12.93%	9.33%	15.57%	18.37%
3.00	7.69%	2.13%	2.00%	1.28%	18.33%	13.36%	21.57%	25.03%
3.50	11.37%	3.16%	2.76%	1.78%	23.78%	17.66%	27.41%	31.29%
4.00	15.67%	4.56%	3.36%	2.11%	29.05%	22.05%	32.89%	36.99%
4.50	20.73%	6.23%	3.83%	2.30%	33.97%	26.36%	37.88%	42.07%
5.00	26.83%	8.07%	4.28%	2.43%	38.47%	30.46%	42.36%	46.53%

Il est clair que l'erreur relative pour M_S peut arriver à 46 % pour le CH₄ lorsque M_S (Air)=5.00 et T_0 =2000 K. Pour le C_{Masse} , l'erreur relative peut arriver à 89 % pour le CH₄. L'erreur relative de chaque paramètre varie avec M_S (Air), T_0 et le gaz choisi.

-		-		-				
M _S (Air)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4
1.50	1.69%	0.87%	0.27%	0.01%	6.93%	4.97 %	8.72%	10.63%
2.00	4.75%	1.82%	1.05%	0.47%	15.31%	11.02%	18.66%	22.23%
2.50	11.16%	3.46%	2.71%	1.54%	27.74%	20.47%	32.64%	37.73%
3.00	22.44%	6.04%	5.29%	3.22%	42.14%	32.29%	47.88%	53.65%
3.50	40.32%	9.80%	8.56%	5.27%	55.92%	44.74%	61.62%	67.17%
4.00	67.33%	14.69%	12.22%	7.41%	67.46%	56.28%	72.54%	77.32%
4.50	108.08%	20.42%	16.16%	9.51%	76.37%	66.10%	80.58%	84.44%
5.00	171.26%	26.64%	20.45%	11.62%	82.93%	74.02%	86.30%	89.30%

Tableau 5.64 : Effet de gaz sur l'écart relative $\epsilon(C_{Masse})$ (%) en C_{Masse} pour la tuyère *MLN* 2D ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

5.3.11. Effet du gaz sur l'écoulement à travers la tuyère MLN 2D ayant même forme que le cas de l'air.

On a remarqué que si on garde un même paramètre pour tous les gaz, les autres paramètres seront différents notamment <u>la forme de la tuyère</u>. Maintenant si on garde la même forme de la tuyère que le cas de l'air délivrant un nombre de Mach M_S pour T_0 donnée et on change l'air par d'autres gaz, la première remarque mentionnée c'est que l'écoulement à travers la section de sortie ne reste plus uniforme et parallèle. On estime qu'on va voir une dégradation de M_S pour les CO₂, H₂O, NH₃ et CH₄ par rapport à celui de l'air et une augmentation de M_S pour les gaz H₂, O₂, N₂ et CO. La répartition des zones d'écoulement selon la figure (4.2a) de chapitre 4 ne sera pas respectée et on trouve uniquement une seule zone d'écoulement de type non simple à travers toute la tuyère et la zone uniforme *BSE* se disparaitre [77].

5.3.12. Courbes isoMach et isodirection pou la tuyère MLN 2D

La figure (5.75a) représente les courbes isoMach déterminées par la méthode des caractéristiques. Cette figure s'interprète que l'écoulement est 2D. On remarque que les courbes isoMach dans la zone de transition sont des lignes de droites. L'écoulement commence par une entré 1D au col et se termine par une sortie 1D, mais à travers la tuyère l'écoulement est 2D. On peut bien remarquer la détente brusque au coin supérieure ou les courbes se passent par ce point dans la région de Kernel jusqu'à un nombre de Mach précis qui est égal à M^* . Alors si le nombre de Mach de la courbe isoMach est inférieure à M^* elle commence par le point A de la figure (4.2a) du chapitre 4. On remarque clairement la zone uniforme

La figure (5.75b) représente les courbes iso directions. Les points qui possèdent une direction nulle sont les points du col, l'axe horizontal et la partie uniforme triangulaire. Cette figure démontre aussi que l'écoulement est bidimensionnel.

Notons que l'allure des isoMach et les isodirections présentées dans cette figure est la même indépendamment du gaz utilisé.

(a) : Courbes iso-Mach. (b) : Courbes iso-direction.Figure 5.75 : Courbes iso-valeurs de la tuyère *MLN* 2D.

5.3.13. Troncature de la tuyère

D'après les résultats obtenus, on remarque que la dimension de la tuyère augmente avec $M_{\rm S}$ et T_0 donnant une masse importante et des performances bien déterminées. Le gaz aussi influe sur la dimension de la tuyère donnant un écoulement uniforme et parallèle à la sortie. Si on regarde la variation de nombre de Mach conformément aux figures (5.57), (5.62) et la variation de la paroi à travers l'axe de la tuyère on remarque qu'au voisinage de la section de sortie la paroi est presque horizontale avec une très petite légère variation de nombre de Mach sur une distance très grande de la tuyère. Alors, comme une technique pour gagner une portion très importante de la masse sans changement important des autres paramètres comme le C_F , on peut couper la tuyère à une section bien déterminée sur l'axe horizontal et de voir exactement le changement en C_F et C_{Masse} . Pour cette raison on a fait la variation de C_{Masse} et C_F à travers l'axe de la tuyère conformément aux figures (5.76) et (5.77) c'est comme on a coupé la tuyère dans l'endroit voulu et de voir le gain en C_{Masse} et en parallèle une perte en C_{F} . La variation de gain relative en % en C_{Masse} et la perte relative en % en termes de C_F est représentée sur la figure (5.78). L'exemple présenté sur ces trois figures est pour $M_{\rm S}$ =3.00 et T_0 =2000 K.

Sur la figure (5.76) on remarque que l'augmentation de la masse est presque linéaire avec l'axe de la tuyère pour tous les gaz. Alors il est important. Alors à une section donné, c'est-à-dire x/y_* donné, le C_{Masse} présenté sur cette figure représente la masse de la tuyère entre le col et la section considérée.

La figure (5.77) représente la variation de C_F avec l'axe de la tuyère entre le col et la section considérée. On remarque que la contribution de la moitié de C_F est donnée par 25 % environ de la tuyère complète, vu le changement important dans cette région. Dans les 75 % dernière de la tuyère contribue avec 50 % de C_F .

Sur la figure (5.78) on a illustré le gain obtenu en C_{Masse} et la perte obtenue en C_F lorsqu'on fait une coupure dans n'importe quel endroit de la tuyère entre le col et la section de sortie. Alors les deux extrémités présentent respectivement la coupure au col et à la section de sortie. La coupure au col veut à dire la coupure est faite à 0%. Dans ce cas elle donne un gain de 100 % de C_{Masse} et une perte de 100 % en C_F . Dans ce cas la tuyère est complètement enlevée. A la section de

sortie, la coupure est faite à 100%. Dans ce cas on aura une perte en C_{Masse} égale à 0% et un gain en C_F égale à 100%. C'est-à-dire pas de coupure et la tuyère est complètement utilisée dans la propulsion. Ces deux cas ne posent aucuns intérêts pratiques. Alors on peut dire que ces trois figures s'interprètent au même temps pour une bonne illustration.

Réellement la coupure est faite dans un endroit bien précis entre le col et la section de sortie suivant le besoin utilisé en performances. Les tableaux (5.65) et (5.66) présentent respectivement le gain relatif en C_{Masse} et la perte relative en C_F selon la position de coupure en % par rapport au col de la tuyère pour l'exemple de M_S =300 et T_0 =2000 K selon la figure (5.78). Dans ce cas la longueur de la tuyère et le rapport des sections changent aussi. Mais on n'a pas intéressé à ces paramètres. Par exemple si on fait une coupure à 70 % du col de la tuyère, on aura dans ce cas un gain en $\varepsilon(C_{Masse})$ =30% environ et en parallèle une perte relative en C_F égale à 2%, ce qui montre l'intérêt de la troncature.

Figure 5.76 : Effet du gaz sur la variation de C_{Masse} à travers la paroi de *MLN* 2D.

Figure 5.77 : Effet du gaz sur la variation de C_F à travers la paroi de *MLN* 2D.

D'après les valeurs présentées dans les tableaux (5.65) et (5.66), on remarque que le gaz n'influe pas presque sur le gain en masse et la perte en poussée.

Position de coupure (%)	H_2	O ₂	N ₂	СО	CO ₂	H ₂ O	NH ₃	CH ₄	Air
0	100	100	100	100	100	100	100	100	100
10	89.13	89.11	89.13	89.11	88.64	88.78	88.47	88.20	89.14
20	78.66	78.52	78.58	78.56	78.07	78.26	77.87	71.58	78.54
30	68.56	68.39	68.36	68.39	67.82	68.12	67.65	67.71	68.42
40	58.48	58.44	58.41	58.47	57.91	58.15	57.77	57.57	58.40
50	48.65	47.98	48.52	48.60	48.15	48.37	47.98	47.79	48.56
60	38.95	38.77	38.70	38.83	38.34	38.58	38.31	38.30	38.82
70	29.06	29.08	29.16	29.05	28.68	28.96	28.79	28.10	29.09
80	19.36	19.31	19.29	19.19	19.17	19.25	19.18	19.11	19.28
90	8.61	9.48	9.69	9.59	9.61	9.44	9.47	9.63	9.73
100	0	0	0	0	0	0	0	0	0

Tableau 5.65 : Gain relative en C_{Masse} pour différent gaz en fonction de la position de coupure en % par rapport au col de *MLN* 2D lorsque M_S =3.00 et T_0 =2000 K.

Tableau 5.66 : Perte relative en C_F pour différent gaz en fonction de la position de coupure en % par rapport au col de *MLN* 2D lorsque M_S =3.00 et T_0 =2000 K.

Position de	Ш.	0	NI.	<u> </u>	<u> </u>			CLL.	Air
coupure (%)	Π2	O_2	112		CO_2	$\Pi_2 O$			All
0	100	100	100	100	100	100	100	100	100
10	62.40	60.72	61.51	61.30	54.25	56.68	51.94	48.79	61.22
20	36.29	34.79	35.47	35.32	30.49	32.10	29.01	27.16	35.14
30	21.65	20.69	21.01	21.96	18.02	19.03	17.15	9.74	20.90
40	12.83	12.35	12.54	12.53	10.82	11.35	10.30	5.71	12.43
50	7.47	6.58	7.27	7.28	6.34	6.63	6.03	3.20	7.23
60	4.12	3.93	3.97	4.01	3.48	3.64	3.33	3.15	3.97
70	2.01	1.93	1.97	1.95	1.71	1.80	1.66	1.56	1.95
80	0.78	0.75	0.76	0.75	0.68	0.70	0.65	0.63	0.75
90	0.13	0.16	0.17	0.16	0.15	0.15	0.14	0.14	0.17
100	0	0	0	0	0	0	0	0	0

Figure 5.78 : Effet du gaz sur la variation de gain en C_{Masse} et en perte de C_F à travers la troncature en (%) par rapport au col de la tuyère *MLN* 2D.

5.3.14. Effet du gaz sur la zone uniforme de la tuyère

La figure 5.79 représente le volume occupé par la zone uniforme en fonction de M_S et le gaz pour T_0 =2000 K. Vu les valeurs important obtenu, on a préféré la

présentation en échelle Logarithmique. On remarque que le volume de cette zone devient très important pour les tuyères délivrant un M_S grand et petit pour les M_S petit. Le CH₄, NH₃, CO₂ et H₂O sont recommandés pour les souffleries et à déconseillés pour les engins aérospatiaux vu que le volume de la zone uniforme est important. Le choix d'un tel gaz pour cette considération tombe en concordance avec le choix de gaz sur la considération de C_{Masse} , M_S et C_F .

Sur la figure 5.80 on a représenté le pourcentage d'apparition des trois zones de la figure 4.2 en fonction de nombre de Mach de sortie et le gaz lui-même lorsque T_0 =2000 K. On remarque que la zone de Kernel a un volume très réduit ce qui un avantage très intéressant pour la conception des tuyères supersonique.

Concernant la zone uniforme, pour faible M_S , elle commence par une taille de 30 % et qui augmente à 60 % de la taille totale de la tuyère. Elle possède plus de 50 % de la taille totale de la tuyère lorsque M_S dépasse 3.00 ce qui est un inconvénient pour les applications aérospatiale. D'où l'intérêt de la troncature de la tuyère déjà discutée. Entre les 9 gaz choisis, la contribution est presque varie de 5% entre le meilleur et le mauvais gaz pour les applications.

Figure 5.79 : Effet du gaz sur la variation de volume de la zone uniforme dans la tuyère *MLN* 2D.

Figure 5.80 : Effet du gaz sur la variation en pourcentage d'apparition des trois zones dans la tuyère *MLN* 2D.

5.4. Résultats sur l'effet du gaz sur la conception de la tuyère MLN axisymétrique

Les figures (5.82) à (5.85) ainsi que les figures (5.95) à (5.129) et les figures (5.131 à (5.135) représentent chacune 9 courbes pour les 9 gaz choisis. Les courbes portant le numéro 1, 2, 3, 4, 5, 6, 7, 8 et 9 représente respectivement la variation du paramètre indiqué sur la figure pour les gaz H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air.

Les figures sont suivies par des résultats tabulés pour chaque gaz afin de visualiser les valeurs numériques trouvées dont l'extrapolation à partir du graphe est assez difficile.

Tous les résultats présentés dans cette partie sont trouvés par le programme numérique développé, dont l'organigramme principal est présenté dans l'annexe C. Pour trouver les résultats dans les figures (5.95) à (5.102) ainsi que les tableaux (5.80) à (5.87) on a ajouté une boucle de variation de nombre de Mach de sortie M_S dans l'organigramme de l'annexe C. Pour les figures (5.103) jusqu'à (5.110) ainsi que les tableaux (5.90) à (5.97) on a ajouté dans le programme numérique élaboré une boucle de variation de la température T_0 pour avoir les résultats en temps réduit.

Les résultats pour l'air (courbe 9) dans les dites figures peuvent être trouvés dans les références [101]. Ils sont présentés pour but de faire une comparaison avec les autres gaz.

5.4.1. Maillages en caractéristiques de la tuyère axisymétrique

La figure (5.81) présente un exemple de maillage en caractéristiques dans une tuyère axisymétrique. On remarque bien les caractéristiques dans les régions de Kernel, et de transition. Dans cette dernière la zone est dite non simple et les caractéristiques sont des lignes courbes, contrairement au cas 2D. Un maillage gros et l'autre fin sont présentés dans les figures (5.81a) et (5.82b). La convergence des résultats de conception dépend du maillage considéré pour le calcul, qui dépend lui-même de nombre des caractéristiques choisie et le nombre des caractéristiques supplémentaires insérées entre la première C- régulière et la ligne sonique ainsi que le pas considéré sur la ligne uniforme BS. Alors un maillage fin donne des bons résultats.

La convergence des résultats de conception est assurée lorsque le rapport des sections calculé numériquement par (4.62) suivant le maillage opté converge vers la valeur du rapport des sections exacte donnée par la relation (4.63). Les autres paramètres de conception tels que θ^* , M^* , θ_{Max} , L_d/y_* , L/y_* , C_{Masse} , C_F et surtout la forme de la tuyère convergent aussi et d'une manière automatique vers la solution exacte. Dans la présentation des résultats, on a choisi une précision de 10⁻⁵.

(a) : Maillage gros. (b) : Maillage fin.

Figure 5.81 : Maillages en caractéristiques pour la tuyère axisymétrique.

5.4.2. Effet du gaz sur la forme de la tuyère axisymétrique

Dans les figures (5.82), (5.83), (5.84) et (5.85) représentent l'effet du gaz de propulsion sur la forme des tuyères supersoniques type *MLN* axisymétrique donnant à la section de sortie respectivement M_S =2.00, 3.00, 4.00 et 5.00 pour T_0 =2000K. Les résultats de conception sont présentés respectivement dans les tableaux (5.67), (5.68), (5.69) et (5.70). On remarque bien l'effet du gaz sur la forme de la tuyère et par conséquent sur les paramètres de conception. Les mêmes commentaires présentés pour la géométrie 2D sont valables pour la géométrie axisymétrique.

Figure 5.82 : Effet du gaz sur la forme des tuyères axisymétriques donnant $M_{\rm S}$ =2.00.

	Tab	10au 0.07	. Itcsuitats	numenque	s ucs iuy		a nyure e	.02.
Ν	Gaz	θ (deg)	θ_{Max} (deg)	L _d ∕y∗	L/y∗	C _{Masse}	C _F	y _s ∕y∗
1	H ₂	6.089	8.739	1.346	3.628	9.851	0.167	1.318
2	O ₂	6.383	9.131	1.368	3.679	9.081	0.180	1.336
3	N_2	6.247	8.949	1.358	3.656	8.972	0.174	1.328
4	CO	6.277	8.989	1.360	3.663	8.989	0.175	1.330
5	CO ₂	7.263	10.289	1.434	3.842	9.789	0.222	1.392
6	H ₂ O	6.947	9.875	1.479	3.781	9.524	0.206	1.372
7	NH ₃	7.597	10.723	1.459	3.905	10.063	0.237	1.414
8	CH_4	7.993	11.236	1.489	3.983	10.408	0.258	1.440
9	Air [101]	6.282	8.998	1.362	3.662	9.012	0.176	1.331

Tableau 5.67 : Résultats numériques des tuyères de la figure 5.82

Le gaz CH₄ donne une longueur et masse ainsi que le coefficient de poussée très élevés par rapport à tous les autres gaz choisis. Tandis que les gaz H₂, N₂, O₂ et CO donnent une forme de la tuyère très réduite et de même des paramètres de

conception adéquats. aérospatiale Pour la construction des tuyères supersoniques appliquées pour les missiles et les avions supersoniques on recommande l'utilisation par exemple le gaz H₂, N₂ ou CO et même l'air. Par exemple, les gaz CH4 et NH3 sont non recommandés. Tandis que pour les souffleries supersoniques on peut utiliser des tuyères qui présentent des sections de sortie grandes. Dans ce cas le CH₄, NH₃, H₂O et CO₂ sont recommandés. L'influence de M_S et T_0 est remarquée sur la forme et les paramètres après une comparaison entre les figures (5.82) à (5.85) et les tableaux (5.67) à (5.70). Les gaz H₂, N₂, O2 et CO donnent des meilleures performances par rapport à l'air pour les applications de la construction aérospatiale. Les formes des tuyères pour le cas de l'air (courbe 9) peuvent êtres trouvés dans la référence [101].

Figure 5.83 : Effet du gaz sur la forme des tuyères axisymétriques donnant $M_{\rm S}$ =3.00.

Ν	Gaz	θ^{*} (deg)	θ_{Max} (deg)	L _d /y∗	L/y∗	C _{Masse}	C _F	y₅∕y∗
1	H ₂	12.428	16.324	2.625	8.677	31.869	0.322	2.141
2	O ₂	13.284	17.339	2.753	9.147	35.271	0.356	2.261
3	N ₂	12.878	16.859	2.692	8.923	33.596	0.340	2.203
4	CO	12.949	16.943	2.701	8.958	33.862	0.342	2.213
5	CO ₂	16.201	20.726	3.242	10.973	50.303	0.480	2.734
6	H ₂ O	14.950	19.287	3.011	10.118	42.956	0.424	2.514
7	NH ₃	17.264	21.935	3.426	11.698	57.096	0.527	2.925
8	CH ₄	18.911	23.782	3.760	12.994	70.300	0.605	3.266
9	Air [101]	13.065	17.083	2.727	9.043	34.457	0.347	2.233

Tableau 5.68 : Résultats numériques des tuyères de la figure 5.83.

Figure 5.84 : Effet du gaz sur la forme des tuyères axisymétriques donnant $M_{\rm S}$ =4.00.

					-	, ,		-
Ν	Gaz	θ (deg)	θ_{Max} (deg)	L _d /y∗	L/y∗	C _{Masse}	C _F	y₅⁄y∗
1	H ₂	16.984	21.278	4.336	17.698	101.226	0.409	3.451
2	O ₂	18.353	22.906	4.728	19.582	123.820	0.458	3.836
3	N_2	17.695	22.074	4.533	18.648	112.295	0.434	3.645
4	CO	17.787	22.178	4.554	18.758	113.638	0.438	3.668
5	CO ₂	23.515	28.394	6.649	29.096	273.905	0.657	5.797
6	H ₂ O	20.992	25.702	5.560	23.732	182.095	0.557	4.692
7	NH_3	25.181	30.159	7.341	32.775	348.878	0.725	6.568
8	CH_4	28.661	33.745	9.373	43.389	614.621	0.874	8.784
9	Air [101]	17.943	22.358	4.605	18.993	116.531	0.444	3.716

Tableau 5.69 : Résultats numériques des tuyères de la figure 5.84.

Figure 5.85 : Effet du gaz sur la forme des tuyères axisymétriques donnant $M_{\rm S}$ =5.00.

Ν	Gaz	θ^{*} (deg)	θ_{Max} (deg)	L _d /y∗	L/y∗	C _{Masse}	C _F	ys⁄y∗
1	H ₂	20.189	24.566	6.565	32.413	279.582	0.459	5.277
2	O ₂	21.929	26.438	7.432	37.538	375.500	0.516	6.146
3	N ₂	21.084	25.533	6.992	34.934	324.961	0.488	5.704
4	CO	21.184	25.642	7.027	35.168	329.447	0.491	5.744
5	CO ₂	29.009	33.776	12.843	70.708	1344.392	0.767	11.812
6	H ₂ O	25.246	29.944	9.362	49.426	654.431	0.633	8.178
7	NH ₃	30.899	35.702	14.473	81.719	1805.494	0.844	13.728
8	CH_4	36.178	40.869	22.626	135.083	4974.344	1.052	22.957
9	Air [101]	21.281	25.759	7.046	35.338	332.918	0.496	5.775

Tableau 5.70 : Résultats numériques des tuyères de la figure 5.85.

5.4.3. Effet de *T*₀ sur la forme de tuyère axisymétrique

Les figures (5.86) à (5.94) représentent l'effet de T_0 et le gaz sur la forme de la tuyère supersonique lorsque M_S =3.00. Les valeurs de T_0 choisies sont T_0 =1000 K, 2000 K et 3000 K y compris le cas du gaz parfait à basse température γ =1.402. Les gaz choisis sont respectivement le H₂, O₂, N₂, CO, CO₂, H₂O, NH₃, CH₄ et l'air. Donc l'augmentation de T_0 demande des longueurs et masse importantes et des formes différentes de la tuyère pour garder l'écoulement uniforme et parallèle à la section de sortie. Les résultats numériques de conception sont représentés respectivement dans les tableaux (5.71) à (5.79). Pour l'air (figure (5.94) et tableau (5.79)), les résultats peuvent êtres trouvés dans la référence [101]. Ils sont présentés pour but de comparaison avec les autres gaz.

On remarque que l'augmentation de T_0 demande des longueurs, C_{Masse} et C_F importants et des formes différentes de la tuyère pour garder l'écoulement uniforme et parallèle à la section de sortie. Le modèle à haute température corrige le modèle *GP* lorsque la température augmente et dépassant les 400 K environ.

Le commentaire reste valable si on change M_S par d'autres valeurs. Alors en plus le M_S dépend de la forme de la tuyère, la température T_0 influe sur la forme pour donner un nombre de Mach uniforme et parallèle.

Parmi les solutions pour avoir une masse petite de la tuyère, dans ce cas le coefficient C_F Soit petit, il faut choisir une valeur de T_0 aussi petite que possible, ce qui est le cas pour certaines applications aérospatiales. Mais si les applications ne permettent pas, dans ce cas, nous devons concevoir la forme convenable à la température T_0 . Pour la sélection du gaz, il est à noter que le gaz CH₄, NH₃, CO₂, H₂O ne sont pas d'accord pour l'utilisation comme gaz de propulsion aérospatiale. Le meilleur choix est le H₂ figure 5.86), l'air (figure 5.94) et le N₂ (figure 5.88).

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.86 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz H₂.

	Tableau 5.71 : Résultats numériques des tuyères de la figure 5.86.									
T_0 (K)	$\theta^{}$ (deg)	θ_{Max} (deg)	L/y∗	C _{Masse}	C _F	y _s ∕y∗				
1000	11.870	15.658	8.407	29.973	0.302	2.070				
2000	12.428	16.324	8.677	31.869	0.322	2.140				
3000	12.961	16.958	8.954	33.851	0.342	2.212				
GP	11.667	15.414	8.332	29.410	0.296	2.048				

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP.

Figure 5.87 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz O_2 .

Tableau 5.72. Resultats numeriques des tuyeres de la ligure 5.67.									
$T_{0}(K)$	θ^{*} (deg)	θ_{Max} (deg)	L/y∗	C _{Masse}	C _F	y₅⁄y∗			
1000	12.593	16.522	8.784	32.578	0.329	2.166			
2000	13.284	17.339	9.147	35.271	0.356	2.261			
3000	13.880	18.040	9.477	37.802	0.380	2.347			
GP	11.808	15.584	8.403	29.909	0.301	2.067			

Tableau 5.72 : Résultats numériques des tuyères de la figure 5.87

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.88 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz N₂.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.89 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz CO.

		. I toountato i	lannongaoo	400 (ayor 00 c	io ia ngar	0.00.
<i>T</i> ₀ (K)	θ^{*} (deg)	θ_{Max} (deg)	L/y∗	C_{Masse}	C _F	У _Ѕ ∕У∗
1000	12.262	16.127	8.606	31.341	0.316	2.121
2000	12.949	16.943	8.954	33.862	0.342	2.212
3000	13.566	17.672	9.292	36.364	0.366	2.299
GP	11.747	15.510	8.374	29.685	.299	2.059
	3 2 2 3 <i>y/y</i> *					1
			<i>M_s</i> =3.00			
	0	(CO ₂)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, x	:/y*
	0 1	2 3 4	5 6	7 8 9	10 11	12

Tableau 5.74 : Résultats numériques des tuyères de la figure 5.89.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.90 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz CO₂.

T_{0} (K)	θ (deg)	θ_{Max} (deg)	L/y∗	C _{Masse}	C _F	y _s ∕y∗
1000	15.343	19.740	10.410	45.317	0.443	2.586
2000	16.201	20.726	10.973	50.303	0.480	2.734
3000	16.841	21.455	11.415	54.392	0.509	2.850
GP	13.493	17.585	9.320	36.496	0.367	2.302

Tableau 5.75 : Résultats numériques des tuyères de la figure 5.90.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.91 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz H₂O.

			•	5	0	
T_0 (K)	θ^{i} (deg)	θ_{Max} (deg)	L/y∗	C _{Masse}	C _F	y₅⁄y∗
1000	13.685	17.811	9.375	36.971	0.372	2.319
2000	14.950	19.287	10.118	42.956	0.424	2.513
3000	15.951	20.441	10.770	48.508	0.467	2.682
GP	12.776	16.739	8.919	33.516	0.339	2.198
	y/y*			3	1	
		(NH ₃)	<i>M_s</i> =3.00		x/y*	
	0 1	2 3 4	5 6 7	8 9 10	11 12 13	п 6

Tableau 5.76 : Résultats numériques des tuyères de la figure 5.91.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.92 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz NH₃.

		. I toountato i	lamenques	aco layoroo c	ic iu ngui	0.02.			
T_0 (K)	θ^{*} (deg)	θ_{Max} (deg)	L/y∗	C _{Masse}	C _F	Уs⁄У∗			
1000	15.294	19.685	10.332	44.726	0.438	2.569			
2000	17.264	21.935	11.698	57.096	0.527	2.925			
3000	18.452	23.270	12.618	66.351	0.583	3.166			
GP	13.206	17.247	9.154	35.280	0.356	2.260			
	$3 = \frac{y/y}{4} = \frac{2}{4} = \frac{1}{2}$								
	0 1	2 3 4	5 6 7	8 9 10 11	12 13 1	ጣ .4			

Tableau 5.77 : Résultats numériques des tuyères de la figure 5.92.

Figure 5.93 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour le gaz CH₄.

				•	-	
T_{0} (K)	$\theta^{}$ (deg)	θ_{Max} (deg)	L/y∗	C _{Masse}	C _F	y _s ∕y∗
1000	16.622	21.209	11.218	52.593	0.496	2.800
2000	18.911	23.782	12.994	70.300	0.605	3.265
3000	19.991	24.978	13.929	80.734	0.658	3.511
GP	13.218	17.261	9.163	35.321	0.356	2.262

Tableau 5.78 : Résultats numériques des tuyères de la figure 5.93.

Courbe 1 : T_0 =3000 K. Courbe 2 : T_0 =2000 K. Courbe 3 : T_0 =1000 K. Courbe 4 : Modèle GP. Figure 5.94 : Effet de T_0 sur la forme de la tuyère *MLN* axisymétrique pour l'air.

T_0 (K)	θ^{t} (deg)	θ_{Max} (deg)	L/y∗	C _{Masse}	C _F	y _s ∕y∗
1000	12.227	16.086	8.566	31.078	0.314	2.112
2000	13.063	17.083	9.043	34.457	0.347	2.233
3000	13.373	17.446	9.227	35.813	0.361	2.279
GP	11.709	15.465	8.353	29.562	0.297	2.054

Tableau 5.79 : Résultats numériques des tuyères de la figure 5.94.

5.4.4. Effet des gaz sur la variation des paramètres de conception en fonction de <u>M_S pour T₀ fixée pour la tuyère axisymétrique</u>

Les figures (5.95) à (5.102) représentent l'effet des gaz sur la variation respectivement de l'angle de déviation initiale θ^* de la paroi de la tuyère au col, la variation de l'angle de déviation θ_{Max} , le nombre de Mach M^* juste après la détente au point *A* de la figure (4.2), la longueur de détente de la région de Kernel, la longueur complète de la tuyère, la masse de la tuyère, le coefficient de poussée et le rapport des sections critiques en fonction de nombre de Mach de sortie M_S de la tuyère pour T_0 =2000 K. Les résultats numériques trouvés en quelques valeurs de nombre de Mach M_S , lorsque T_0 =2000K de ces paramètres sont représentés respectivement dans les tableaux (5.80) à (5.87).

Sur les figures (5.98) à (5.100) et (5.102) on a préféré la présentation en l'échelle Logarithmique népériens des paramètres L_d/y_* , L/y_* , C_{Masse} et y_S/y_* respectivement vu que les valeurs trouvées sont très grandes pour quelques gaz comme le CH₄, NH₃, CO₂ et H₂O et des valeurs très petites pour l'autres gaz comme le H₂, O₂, N₂, CO et l'air sur même figure. De même pour des valeurs petites de M_S , ces paramètres sont petits et si M_S augmente légèrement, ces paramètres augmentent considérablement. La présentation sera mauvaise dans l'échelle réelle. Comme commentaire, à bas nombre de Mach M_S , jusqu'à 1.8, on peut dire qu'il n'est pas une différence entre les gaz choisis, vu que les paramètres trouvées sont presque confondus. En réalité il ya une différence mais elle est très petite. La différence d'un gaz est l'autre commence à partir de M_S =2.00, où le gaz devient important pour la propulsion. La même remarque présentée auparavant sur le choix des gaz pour la propulsion aérospatiale reste valable, où le choix de CH₄, NH₃, CO₂, H₂O est mauvais, tandis que l'air, O₂, N₂,

CO est bon. Pour les souffleries, on peut choisir le cas contraire vu que les rapports A_S/A_* est plus grand pour CH₄, NH₃, CO₂, H₂O.

Les tableaux (5.88) et (5.89) représentent respectivement l'erreur commise par l'utilisation d'un tel gaz de propulsion à la place de l'air sur le coefficient C_F et le coefficient C_{Masse} en fonction de M_S pour T_0 =2000 K lorsque les tuyères possèdent même nombre de Mach de sortie. Parmi tous les paramètres de conception on a choisi uniquement le C_F et le C_{Masse} parce leurs intérêts et que tous les autres paramètres possèdent même allure de variation que ces deux paramètres. On remarque l'écart important pour le CH₄, NH₃, CO₂ et le H₂O par rapport à l'air. Tandis que pour le H₂, O₂, N₂ et le CO l'erreur est très petite. Pour M_S =5.00, l'écart en C_F est ε_{CF} (CH₄)(%)=111.71% et ε_{CF} (H₂)(%)=7.53%, l'écart en C_{Masse} donne ε_{CMasse} (CH₄)(%)=1394.16% et ε_{CMasse} (H₂)(%)=16.02%, pour ce qui montre la possibilité d'utilisation le gaz H₂ au lieu de l'air, de même pour le N₂, CO et O₂ et l'impossibilité d'utilisation de CH₄, NH₃, CO₂ et H₂O au lieu de l'air.

Figure 5.95 : Effet du gaz sur θ^{*} du col des tuyères axisymétriques.

			9						0 2000 .
Μ	H_2	O ₂	N_2	CO	CO_2	H_2O	NH_3	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.259	0.265	0.262	0.263	0.281	0.276	0.287	0.293	0.262
1.20	0.706	0.725	0.717	0.719	0.776	0.760	0.795	0.814	0.716
1.30	1.257	1.294	1.277	1.282	1.395	1.363	1.433	1.472	1.277
1.40	1.875	1.935	1.908	1.915	2.102	2.048	2.165	2.231	1.909
1.50	2.538	2.627	2.586	2.596	2.875	2.793	2.968	3.069	2.589
1.60	3.230	3.352	3.296	3.309	3.697	3.582	3.827	3.970	3.302
1.70	3.942	4.099	4.025	4.043	4.556	4.401	4.729	4.927	4.037
1.80	4.657	4.858	4.765	4.786	5.442	5.240	5.664	5.915	4.783
1.90	5.376	5.622	5.508	5.534	6.347	6.092	6.622	6.942	5.534
2.00	6.091	6.385	6.248	6.278	7.265	6.949	7.598	7.994	6.284
2.10	6.797	7.142	6.981	7.016	8.189	7.805	8.585	9.067	7.028
2.20	7.491	7.889	7.703	7.743	9.114	8.657	9.577	10.154	7.764
2.30	8.171	8.624	8.412	8.456	10.037	9.500	10.570	11.252	8.487
2.40	8.834	9.344	9.105	9.153	10.954	10.331	11.560	12.355	9.196
2.50	9.481	10.047	9.781	9.834	11.863	11.147	12.543	13.460	9.888
2.60	10.108	10.733	10.439	10.496	12.760	11.947	13.517	14.564	10.563

Tableau 5.80 : Effet du gaz sur l'angle θ^* au col de la tuyère axisymétrique pour T_0 =2000 K.

2.70	10.717	11.400	11.078	11.139	13.644	12.729	14.478	15.664	11.219
2.80	11.307	12.048	11.699	11.762	14.513	13.490	15.424	16.757	11.855
2.90	11.877	12.676	12.298	12.366	15.367	14.231	16.354	17.841	12.471
3.00	12.429	13.295	12.879	12.950	16.202	14.951	17.265	18.913	13.066
3.10	12.961	13.874	13.440	13.515	17.020	15.650	18.157	19.971	13.641
3.20	13.475	14.443	13.983	14.060	17.820	16.327	19.028	21.014	14.196
3.30	13.971	14.994	14.507	14.586	18.600	16.983	19.877	22.041	14.730
3.40	14.450	15.526	15.012	15.094	19.360	17.617	20.704	23.049	15.244
3.50	14.911	16.040	15.500	15.585	20.101	18.230	21.508	24.039	15.739
3.60	15.356	16.536	15.971	16.058	20.823	18.822	22.290	25.006	16.215
3.70	15.786	17.014	16.426	16.514	21.525	19.394	23.047	25.954	16.673
3.80	16.200	17.477	16.864	16.954	22.208	19.946	23.782	26.879	17.113
3.90	16.599	17.923	17.287	17.379	22.871	20.479	24.494	27.782	17.537
4.00	16.985	18.354	17.695	17.788	23.516	20.993	25.182	28.662	17.944
4.10	17.357	18.769	18.090	18.184	24.142	21.489	25.848	29.519	18.336
4.20	17.716	19.171	18.470	18.565	24.750	21.968	26.492	30.352	18.713
4.30	18.063	19.559	18.837	18.934	25.341	22.430	27.113	31.162	19.077
4.40	18.399	19.933	19.192	19.289	25.914	22.876	27.714	31.948	19.427
4.50	18.723	20.295	19.535	19.633	26.469	23.307	28.293	32.711	19.764
4.60	19.036	20.644	19.866	19.965	27.009	23.722	28.853	33.450	20.089
4.70	19.339	20.982	20.186	20.285	27.532	24.123	29.392	34.166	20.403
4.80	19.632	21.308	20.496	20.595	28.040	24.511	29.913	34.860	20.706
4.90	19.915	21.624	20.795	20.895	28.532	24.885	30.415	35.531	20.999
5.00	20,190	21,929	21.085	21,185	29.010	25.247	30.900	36,179	21,282

Figure 5.96 : Effet du gaz sur θ_{Max} du col des tuyères axisymétriques.

Tableau 5.81 : Effet du ga	az sur l'angle θ _{Max} de la	a tuyère axisymétri	que pour T_0 =2000 K.
----------------------------	---------------------------------------	---------------------	-------------------------

)		
М	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.441	0.451	0.446	0.447	0.479	0.470	0.489	0.499	0.446
1.20	1.174	1.205	1.191	1.195	1.287	1.261	1.318	1.349	1.191
1.30	2.039	2.097	2.070	2.077	2.255	2.205	2.314	2.374	2.070
1.40	2.979	3.064	3.023	3.033	3.317	3.236	3.411	3.511	3.025
1.50	3.942	4.072	4.013	4.027	4.437	4.318	4.574	4.721	4.018
1.60	4.923	5.098	5.018	5.037	5.593	5.428	5.778	5.980	5.028
1.70	5.902	6.126	6.023	6.047	6.766	6.549	7.006	7.273	6.040
1.80	6.869	7.146	7.019	7.048	7.946	7.670	8.246	8.586	7.044
1.90	7.817	8.150	7.996	8.031	9.123	8.781	9.488	9.910	8.032
2.00	8.740	9.132	8.951	8.991	10.291	9.876	10.725	11.237	8.999
2.10	9.637	10.088	9.879	9.924	11.444	10.950	11.950	12.563	9.941
2.20	10.503	11.017	10.778	10.828	12.578	11.999	13.160	13.881	10.857
2.30	11.339	11.916	11.647	11.702	13.691	13.020	14.350	15.187	11.743

2.40	12.143	12.784	12.484	12.545	14.779	14.012	15.518	16.479	12.600
2.50	12.916	13.620	13.290	13.355	15.841	14.972	16.660	17.753	13.424
2.60	13.657	14.425	14.065	14.134	16.876	15.900	17.775	19.007	14.218
2.70	14.368	15.199	14.808	14.882	17.882	16.796	18.861	20.238	14.981
2.80	15.049	15.943	15.521	15.599	18.860	17.659	19.917	21.444	15.712
2.90	15.701	16.656	16.206	16.286	19.808	18.490	20.942	22.628	16.414
3.00	16.326	17.341	16.860	16.944	20.727	19.289	21.936	23.784	17.084
3.10	16.923	17.997	17.488	17.575	21.617	20.056	22.898	24.912	17.726
3.20	17.495	18.626	18.089	18.179	22.478	20.794	23.829	26.012	18.340
3.30	18.042	19.228	18.665	18.757	23.311	21.501	24.727	27.082	18.926
3.40	18.566	19.807	19.217	19.311	24.116	22.179	25.594	28.123	19.496
3.50	19.068	20.360	19.745	19.841	24.893	22.830	26.430	29.135	20.021
3.60	19.549	20.891	20.251	20.350	25.644	23.454	27.235	30.117	20.532
3.70	20.009	21.401	20.736	20.836	26.369	24.052	28.009	31.069	21.020
3.80	20.450	21.889	21.201	21.303	27.069	24.626	28.755	31.991	21.486
3.90	20.873	22.357	21.647	21.750	27.744	25.176	29.471	32.883	21.932
4.00	21.279	22.807	22.075	22.179	28.395	25.703	30.160	33.746	22.359
4.10	21.669	23.238	22.486	22.591	29.024	26.209	30.821	34.580	22.766
4.20	22.044	23.653	22.880	22.986	29.631	26.694	31.456	35.386	23.157
4.30	22.403	24.050	23.259	23.366	30.216	27.160	32.066	36.163	23.531
4.40	22.749	24.433	23.623	23.730	30.780	27.607	32.652	36.913	23.889
4.50	23.081	24.800	23.972	24.080	31.325	28.036	33.214	37.636	24.233
4.60	23.400	25.153	24.309	24.417	31.851	28.448	33.753	38.333	24.563
4.70	23.708	25.493	24.633	24.741	32.358	28.845	34.271	39.004	24.880
4.80	24.005	25.820	24.944	25.053	32.848	29.226	34.767	39.650	25.185
4.90	24.291	26.136	25.245	25.354	33.321	29.592	35.245	40.272	25.478
5.00	24.566	26.439	25.534	25.643	33.777	29.945	35.703	40.870	25.760

Figure 5.97 : Effet du gaz sur M^{*} du col des tuyères axisymétriques.

Figure 5.98 : Effet du gaz sur la longueur de détente L_d/y_* des tuyères *MLN* axisymétrique

Figure 5.99 : Effet du gaz sur la longueur L/y_* pour la tuyère axisymétrique.

.

Table	Tableau 5.82 : Effet du gaz sur l'angle M^{\dagger} au col de la tuyère <i>MLN</i> axisymétrique pour T_0 =2000 K.										
Μ	H_2	O ₂	N ₂	CO	CO_2	H ₂ O	NH ₃	CH ₄	Air		
1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
1.10	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032		
1.20	1.063	1.063	1.063	1.063	1.063	1.063	1.064	1.064	1.063		
1.30	1.093	1.094	1.094	1.094	1.095	1.094	1.095	1.096	1.094		
1.40	1.123	1.124	1.124	1.124	1.126	1.125	1.127	1.127	1.127		
1.50	1.153	1.154	1.153	1.153	1.157	1.156	1.158	1.159	1.153		
1.60	1.181	1.183	1.182	1.182	1.187	1.186	1.189	1.190	1.182		
1.70	1.209	1.211	1.210	1.210	1.217	1.215	1.219	1.222	1.211		
1.80	1.236	1.239	1.238	1.238	1.247	1.244	1.250	1.253	1.238		
1.90	1.262	1.266	1.264	1.265	1.276	1.272	1.279	1.284	1.265		
2.00	1.288	1.292	1.290	1.290	1.305	1.300	1.309	1.314	1.291		
2.10	1.313	1.318	1.315	1.316	1.333	1.327	1.338	1.345	1.317		
2.20	1.336	1.342	1.339	1.340	1.360	1.353	1.366	1.375	1.341		
2.30	1.359	1.366	1.363	1.363	1.387	1.378	1.394	1.404	1.365		
2.40	1.381	1.389	1.386	1.386	1.414	1.403	1.422	1.433	1.388		
2.50	1.403	1.412	1.407	1.408	1.439	1.427	1.448	1.462	1.411		
2.60	1.424	1.433	1.429	1.429	1.465	1.451	1.475	1.490	1.432		
2.70	1.443	1.454	1.449	1.450	1.489	1.473	1.500	1.518	1.453		
2.80	1.463	1.474	1.469	1.469	1.513	1.495	1.525	1.546	1.473		
2.90	1.481	1.494	1.488	1.488	1.536	1.516	1.549	1.573	1.493		
3.00	1.499	1.512	1.506	1.507	1.559	1.537	1.573	1.599	1.511		
3.10	1.516	1.531	1.523	1.524	1.581	1.557	1.596	1.625	1.529		
3.20	1.532	1.548	1.540	1.541	1.603	1.576	1.619	1.650	1.546		
3.30	1.548	1.565	1.557	1.558	1.624	1.594	1.640	1.675	1.563		
3.40	1.564	1.581	1.573	1.573	1.644	1.612	1.661	1.699	1.579		
3.50	1.579	1.597	1.588	1.589	1.664	1.629	1.682	1.723	1.594		
3.60	1.593	1.612	1.603	1.603	1.683	1.646	1.702	1.746	1.609		
3.70	1.606	1.627	1.617	1.617	1.702	1.662	1.721	1.769	1.623		
3.80	1.620	1.641	1.630	1.631	1.720	1.677	1.739	1.791	1.637		
3.90	1.632	1.654	1.644	1.644	1.737	1.692	1.757	1.812	1.650		
4.00	1.645	1.667	1.656	1.657	1.755	1.706	1.775	1.833	1.663		
4.10	1.657	1.680	1.669	1.669	1.771	1.720	1.791	1.851	1.673		
4.20	1.668	1.692	1.680	1.681	1.787	1.733	1.808	1.872	1.687		
4.30	1.679	1.704	1.692	1.693	1.803	1.746	1.823	1.891	1.698		
4.40	1.690	1.716	1.703	1.704	1.818	1.759	1.838	1.910	1.709		
4.50	1.700	1.727	1.714	1.714	1.833	1.771	1.853	1.928	1.719		
4.60	1.710	1.737	1.724	1.725	1.847	1.782	1.867	1.945	1.729		
4.70	1.720	1.748	1.734	1.735	1.861	1.794	1.880	1.962	1.739		

4.80	1.730	1.758	1.744	1.744	1.874	1.804	1.893	1.978	1.748
4.90	1.739	1.767	1.753	1.754	1.887	1.815	1.906	1.994	1.758
5.00	2.748	1.777	1.762	1.763	1.900	1.825	1.918	2.009	1.766

Tableau 5.83 : Valeurs de L_d/y_* pour la tuyère *MLN* axisymétrique pour $T_0=2000$ K.

М	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.320	0.320	0.320	0.320	0.321	0.320	0.321	0.321	0.220
1.20	0.466	0.467	0.466	0.466	0.469	0.468	0.470	0.471	0.466
1.30	0.588	0.590	0.589	0.590	0.595	0.594	0.597	0.599	0.590
1.40	0.701	0.704	0.703	0.703	0.713	0.710	0.716	0.719	0.703
1.50	0.810	0.814	0.812	0.813	0.828	0.823	0.833	0.838	0.813
1.60	0.916	0.923	0.920	0.921	0.943	0.936	0.950	0.958	0.921
1.70	1.022	1.032	1.027	1.029	1.060	1.050	1.070	1.082	1.029
1.80	1.129	1.142	1.136	1.137	1.180	1.166	1.194	1.210	1.138
1.90	1.237	1.254	1.246	1.248	1.305	1.286	1.323	1.346	1.249
2.00	1.347	1.369	1.359	1.361	1.435	1.410	1.459	1.490	1.363
2.10	1.460	1.487	1.474	1.477	1.572	1.539	1.603	1.644	1.480
2.20	1.575	1.609	1.593	1.596	1.716	1.674	1.756	1.809	1.600
2.30	1.693	1.735	1.715	1.719	1.868	1.814	1.918	1.987	1.725
2.40	1.815	1.865	1.841	1.846	2.030	1.962	2.092	2.179	1.854
2.50	1.940	2.000	1.972	1.977	2.202	2.117	2.277	2.389	1.987
2.60	2.070	2.140	2.107	2.112	2.384	2.279	2.476	2.617	2.125
2.70	2.203	2.285	2.246	2.252	2.579	2.449	2.689	2.865	2.268
2.80	2.339	2.436	2.390	2.397	2.786	2.628	2.918	3.137	2.416
2.90	2.481	2.592	2.538	2.547	3.007	2.815	3.163	3.435	2.570
3.00	2.626	2.754	2.692	2.701	3.242	3.012	3.427	3.761	2.728
3.10	2.776	2.922	2.851	2.861	3.494	3.218	3.710	4.119	2.892
3.20	2.930	3.096	3.016	3.027	3.762	3.435	4.013	4.511	3.060
3.30	3.089	3.277	3.185	3.198	4.048	3.661	4.339	4.942	3.235
3.40	3.253	3.464	3.361	3.374	4.353	3.899	4.688	5.415	3.414
3.50	3.421	3.657	3.542	3.556	4.679	4.147	5.061	5.933	3.599
3.60	3.594	3.857	3.728	3.744	5.025	4.406	5.460	6.502	3.790
3.70	3.772	4.065	3.921	3.938	5.394	4.677	5.887	7.126	3.986
3.80	3.955	4.279	4.119	4.137	5.787	4.959	6.342	7.809	4.187
3.90	4.143	4.500	4.324	4.343	6.205	5.254	6.826	8.557	4.394
4.00	4.337	4.729	4.534	4.555	6.650	5.561	7.342	9.374	4.606
4.10	4.535	4.964	4.751	4.773	7.122	5.881	7.891	10.266	4.824
4.20	4.739	5.208	4.974	4.997	7.623	6.123	8.473	11.239	5.048
4.30	4.948	5.459	5.203	5.228	8.154	6.559	9.090	12.298	5.277
4.40	5.162	5.717	5.439	5.465	8.718	6.917	9.742	13.449	5.512
4.50	5.382	5.983	5.682	5.709	9.314	7.290	10.432	14.698	5.753
4.60	5.608	6.257	5.930	5.959	9.945	7.676	11.160	16.051	6.000
4.70	5.839	6.539	6.186	6.126	10.612	8.076	11.927	17.515	6.252
4.80	6.075	6.829	6.448	6.480	11.327	8.491	12.735	19.094	6.511
4.90	6.318	7.127	6.717	6.750	12.060	8.920	13.583	20.797	6.776
5.00	6.566	7.433	6.993	7.027	12.844	9.363	14.474	22.628	7.047

Table	au 5.84	: Valeu	rs sur <i>L</i> /	y∗ po	our la t	tuyère <i>l</i>	MLN axisy	/métriqu	ie pour [·]	$T_0 = 2000$	K.

М	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH_3	CH ₄	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.779	0.779	0.779	0.779	0.780	0.780	0.780	0.780	0.779
1.20	1.139	1.141	1.140	1.140	1.140	1.139	1.142	1.143	1.140
1.30	1.445	1.448	1.447	1.447	1.457	1.454	1.456	1.459	1.447
1.40	1.735	1.741	1.738	1.739	1.754	1.753	1.760	1.767	1.739
1.50	2.024	2.035	2.030	2.031	2.055	2.050	2.067	2.074	2.031

1.60	2.320	2.333	2.325	2.327	2.367	2.355	2.385	2.401	2.326
1.70	2.620	2.641	2.634	2.637	2.696	2.680	2.719	2.747	2.637
1.80	2.937	2.970	2.952	2.956	3.050	3.021	3.082	3.121	2.957
1.90	3.276	3.313	3.294	3.299	3.430	3.388	3.475	3.527	3.301
2.00	3.629	3.680	3.657	3.664	3.843	3.782	3.906	3.979	3.663
2.10	4.004	4.074	4.040	4.049	4.295	4.208	4.379	4.483	4.056
2.20	4.405	4.493	4.450	4.462	4.789	4.675	4.896	5.046	4.469
2.30	4.828	4.946	4.892	4.901	5.326	5.174	5.472	5.674	4.914
2.40	5.282	5.427	5.358	5.371	5.920	5.720	6.111	6.379	5.391
2.50	5.764	5.949	5.860	5.877	6.574	6.310	6.819	7.174	5.902
2.60	6.277	6.504	6.398	6.414	7.292	6.957	7.604	8.071	6.451
2.70	6.826	7.098	6.968	6.989	9.084	7.654	8.476	9.087	7.035
2.80	7.407	7.737	7.579	7.605	8.956	8.411	9.440	10.232	7.662
2.90	8.025	8.421	8.229	8.261	9.919	9.234	10.510	11.528	8.331
3.00	8.679	9.148	8.924	9.959	10.975	10.120	11.700	12.996	9.044
3.10	9.375	9.927	9.660	9.702	12.136	11.083	13.014	14.656	9.800
3.20	10.111	10.760	10.444	10.489	13.412	12.118	14.472	16.534	10.608
3.30	10.894	11.644	11.278	11.331	14.816	13.239	16.078	18.662	11.465
3.40	11.718	12.588	12.160	12.223	16.351	14.440	17.849	21.063	12.371
3.50	12.589	13.590	13.099	13.167	18.036	15.735	19.800	23.776	13.334
3.60	13.506	14.653	14.092	14.166	19.876	17.124	21.946	26.835	14.348
3.70	14.478	15.783	15.139	15.221	21.892	18.615	24.302	30.279	15.423
3.80	15.497	16.980	16.246	16.339	24.090	20.210	26.879	34.156	16.553
3.90	16.573	18.245	17.417	17.515	26.488	21.915	29.702	38.511	17.742
4.00	17.700	19.585	18.650	18.757	29.100	23.732	32.780	43.396	19.995
4.10	18.885	20.998	19.945	20.066	31.939	25.673	36.134	48.862	20.311
4.20	20.133	22.490	21.312	21.443	35.026	27.739	39.781	54.969	21.692
4.30	21.436	24.063	22.747	22.889	38.373	29.936	43.739	61.780	23.141
4.40	22.804	25.718	24.255	24.709	42.002	32.268	48.024	69.359	24.661
4.50	24.235	27.458	25.837	26.003	45.926	34.743	52.659	77.778	26.251
4.60	25.733	29.287	27.495	27.674	50.168	37.363	57.661	87.107	27.913
4.70	27.296	31.207	29.232	29.422	54.747	40.136	63.049	97.421	29.653
4.80	28.932	33.221	31.049	31.253	59.684	43.068	68.844	108.804	31.468
4.90	30.636	35.330	32.951	33.169	65.000	46.164	75.062	121.335	33.362
5.00	32.416	37.541	34.934	35.169	70.713	49.428	81.726	135.099	35.341

Figure 5.100 : Effet du gaz sur le coefficient C_{Masse} pour la tuyère *MLN* axisymétrique.

Figure 5.101 : Effet du gaz sur le coefficient C_F pour la tuyère *MLN* axisymétrique.

Figure 5.102 : Effet du gaz sur y_S/y_* des tuyères *MLN* axisymétriques.

l al	pleau p.	ob . vale	eurs de C	Masse por	ui <i>ivili</i> va	axisymeti	ique iors	sque T ₀ -	2000 N.
М	H_2	O ₂	N_2	CO	CO ₂	H_2O	NH ₃	CH ₄	Air
1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	1.567	1.568	1.568	1.568	1.570	1.569	1.570	1.571	1.568
1.20	2.303	2.305	2.304	2.304	2.320	2.318	2.322	2.325	2.304
1.30	2.963	2.969	2.966	2.967	2.986	2.980	3.001	3.008	2.967
1.40	3.617	3.629	3.623	3.625	3.673	3.651	3.685	3.699	3.629
1.50	4.297	4.318	4.308	4.311	4.401	4.369	4.423	4.459	4.310
1.60	5.024	5.071	5.054	5.058	5.208	5.161	5.246	5.301	5.058
1.70	5.839	5.907	5.869	5.875	6.119	6.037	6.194	6.277	5.875
1.80	6.734	6.831	6.792	6.801	7.160	7.044	7.283	7.424	6.802
1.90	7.725	7.887	7.817	7.829	8.373	8.193	8.560	8.794	7.834
2.00	8.852	9.082	8.973	8.990	9.790	9.525	11.065	10.425	9.014
2.10	10.120	10.436	10.292	10.316	11.451	11.070	11.857	12.390	10.335
2.20	11.547	11.986	11.783	11.815	13.415	12.846	14.010	14.781	11.861
2.30	13.167	13.742	13.466	13.523	15.755	14.939	16.576	17.710	13.589
2.40	14.986	15.764	15.397	15.467	18.518	17.363	19.654	21.316	15.559
2.50	17.043	18.052	17.572	17.658	21.799	20.203	23.362	25.754	17.801
2.60	19.364	20.671	20.037	20.159	25.709	23.483	27.839	31.253	20.349
2.70	21.959	23.661	22.840	22.986	30.356	27.324	33.233	38.059	23.253
2.80	24.892	27.048	26.003	26.178	35.891	31.784	39.760	46.544	26.536
2.90	28.179	30.896	29.581	29.789	42.467	36.951	47.633	57.123	30.256
3.00	31.873	35.275	33.599	33.866	50.310	42.961	57.104	70.312	34.461
3.10	35.993	40.223	38.142	38.456	59.635	49.886	68.542	86.803	39.216
3.20	40.600	45.803	43.242	43.629	70.718	57.911	82.280	107.427	44.538
3.30	45.720	52.121	48.954	49.406	83.855	67.132	98.813	133.181	50.520
3.40	51.437	59.213	55.358	55.883	99.468	77.769	118.664	165.421	57.224

Tableau 5.85 : Valeurs de <i>C_{Masse}</i> pour <i>MLN</i> axisymétrique	\Rightarrow lorsque T_0 =2000 K.
--	--------------------------------------

3.50	57.785	67.198	62.499	63.129	117.936	89.950	142.412	205.686	64.694
3.60	64.838	76.166	70.466	71.213	139.811	103.911	170.786	256.002	73.039
3.70	72.616	86.190	79.357	80.235	165.611	119.835	204.595	318.775	82.293
3.80	81.243	97.393	89.232	90.234	196.053	138.005	244.835	396.938	92.574
3.90	90.744	109.908	100.177	101.362	231.864	158.672	292.507	494.136	103.969
4.00	101.235	123.833	112.306	113.671	273.944	182.143	348.929	614.735	116.543
4.10	112.771	139.316	125.743	127.284	323.316	208.693	415.450	764.092	130.413
4 20	125 411	156 496	140 548	142 307	381 077	238 678	493 667	949 583	145 680
4.30	139,308	175.517	156.881	158,880	448.581	272.487	585.381	1175.820	162.451
4.40	154.510	196.562	174.836	177.100	527.245	310.539	692.611	1454.967	180.839
4.50	171.138	219.797	194.568	197.120	618.833	353.226	817.568	1796.741	200.990
4.60	189.293	245.398	216.210	219.078	725.164	401.066	962.754	2213.962	223.032
4.70	209.111	273.554	239.907	243.145	848.371	454.554	1131.954	2721.586	247.074
4.80	230.657	304.490	265.836	269.449	990.841	514.218	1325.180	3336.950	273.313
4.90	254.129	338.420	294.131	298.150	1155.246	580.662	1548.925	4080.356	301.902
5.00	279.605	375.534	325.016	329.476	1344.620	654.536	1805.792	4975.301	332.946
т	ableau	5 86 · \//	aloure do		MINOV	visymétria		up T2	000 K
		0.00. Va							Δir
1 00	0.000	0.000	0.000	0.000	0.000	0.000		0.000	
1 10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.10	0.004	0.004	0.004	0.004	0.005	0.000	0.000	0.000	0.004
1.20	0.010	0.013	0.010	0.010	0.017	0.017	0.010	0.019	0.010
1.30	0.029	0.031	0.030	0.030	0.055	0.054	0.007	0.000	0.030
1.40	0.047	0.049	0.040	0.040	0.007	0.034	0.000	0.003	0.040
1.50	0.000	0.070	0.000	0.009	0.002	0.077	0.000	0.091	0.009
1.00	0.000	0.092	0.009	0.090	0.100	0.102	0.114	0.121	0.090
1.70	0.107	0.114	0.111	0.111	0.130	0.120	0.144	0.104	0.112
1.00	0.120	0.137	0.152	0.133	0.104	0.154	0.175	0.100	0.134
1.90	0.140	0.109	0.154	0.155	0.193	0.160	0.200	0.223	0.100
2.00	0.168	0.181	0.175	0.176	0.222	0.206	0.238	0.258	0.177
2.10	0.187	0.202	0.195	0.196	0.251	0.232	0.270	0.294	0.197
2.20	0.205	0.222	0.214	0.210	0.280	0.257	0.301	0.330	0.217
2.30	0.223	0.242	0.233	0.235	0.307	0.291	0.332	0.366	0.237
2.40	0.239	0.261	0.251	0.253	0.335	0.304	0.362	0.402	0.255
2.50	0.255	0.279	0.268	0.270	0.361	0.327	0.392	0.438	0.273
2.60	0.270	0.296	0.284	0.286	0.387	0.348	0.421	0.472	0.289
2.70	0.285	0.313	0.299	0.301	0.412	0.369	0.449	0.507	0.305
2.80	0.298	0.328	0.314	0.316	0.436	0.388	0.476	0.540	0.320
2.90	0.311	0.343	0.327	0.330	0.459	0.407	0.502	0.573	0.334
3.00	0.323	0.356	0.340	0.343	0.481	0.425	0.527	0.605	0.348
3.10	0.334	0.370	0.352	0.355	0.502	0.441	0.551	0.636	0.360
3.20	0.344	0.382	0.364	0.367	0.523	0.457	0.575	0.667	0.372
3.30	0.354	0.393	0.375	0.378	0.542	0.472	0.597	0.696	0.383
3.40	0.364	0.405	0.385	0.388	0.561	0.487	0.618	0.725	0.394
3.50	0.373	0.415	0.394	0.398	0.579	0.500	0.638	0.752	0.403
3.60	0.381	0.425	0.404	0.407	0.596	0.513	0.657	0.779	0.412
3.70	0.389	0.434	0.412	0.415	0.613	0.525	0.676	0.804	0.421
3.80	0.396	0.443	0.420	0.423	0.628	0.536	0.693	0.629	0.429
3.90	0.403	0.451	0.428	0.431	0.643	0.547	0.710	0.852	0.437
4.00	0.410	0.459	0.435	0.438	0.657	0.557	0.726	0.875	0.444
4.10	0.416	0.466	0.442	0.445	U.b/1	0.567	0.741	0.897	0.451
4.20	0.422	0.4/3	0.449	0.451	0.684	0.5/6	0.755	0.91/	0.457
4.30	0.429	0.479	0.454	0.458	0.696	0.585	0.768	0.937	0.463
4.40	0.433	0.486	0.460	0.463	0.708	0.593	0.781	0.956	0.469
4.50	0.438	0.492	0.465	0.469	0./19	0.601	0.793	0.974	0.4/4
4.60	0.443	0.497	0.471	0.474	0.730	0.608	0.804	0.991	0.479
4.70	0.447	0.502	0.475	0.479	0.740	0.615	0.815	1.008	0.484
4.80	0.451	0.507	0.480	0.483	0.750	0.621	0.825	1.024	0.488

4.90	0.455	0.512	0.484	0.488	0.759	0.627	0.835	1.039	0.493
5.00	0.459	0.517	0.489	0.492	0.768	0.633	0.844	1.053	0.497

Tableau 5 87 · Valeurs de	/₅/v₊ pour <i>MLN</i> axisymétriqu	e lorsque <i>T</i> ₀=2000 K

М	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.10	1.004	1.004	1.004	1.004	1.004	1.004	1.005	1.005	1.004
1.20	1.016	1.016	1.016	1.016	1.017	1.017	1.018	1.018	1.016
1.30	1.034	1.035	1.035	1.035	1.038	1.037	1.039	1.040	1.035
1.40	1.059	1.061	1.060	1.060	1.066	1.064	1.068	1.070	1.060
1.50	1.089	1.092	1.091	1.091	1.101	1.098	1.105	1.108	1.091
1.60	1.125	1.130	1.127	1.128	1.144	1.139	1.149	1.155	1.128
1.70	1.165	1.173	1.169	1.170	1.194	1.187	1.202	1.211	1.170
1.80	1.211	1.222	1.217	1.218	1.252	1.241	1.263	1.277	1.218
1.90	1.262	1.276	1.270	1.271	1.318	1.303	1.334	1.353	1.272
2.00	1.318	1.336	1.328	1.330	1.392	1.372	1.414	1.440	1.331
2.10	1.379	1.402	1.391	1.394	1.475	1.445	1.504	1.541	1.395
2.20	1.445	1.474	1.460	1.463	1.568	1.532	1.605	1.653	1.465
2.30	1.515	1.551	1.534	1.537	1.671	1.623	1.718	1.781	1.541
2.40	1.590	1.634	1.613	1.617	1.784	1.723	1.843	1.926	1.622
2.50	1.670	1.723	1.698	1.703	1.909	1.832	1.983	2.090	1.710
2.60	1.754	1.819	1.788	1.794	2.046	1.949	2.137	2.274	1.803
2.70	1.844	1.920	1.884	1.890	2.197	2.076	2.307	2.481	1.902
2.80	1.938	2.027	1.985	1.992	2.361	2.212	2.495	2.713	2.006
2.90	2.037	2.141	2.091	2.099	2.540	2.358	2.700	2.974	2.117
3.00	2.141	2.261	2.203	2.213	2.734	2.514	2.925	3.265	2.233
3.10	2.250	2.388	2.321	2.332	2.946	2.680	3.172	3.592	2.355
3.20	2.363	2.521	2.445	2.456	3.176	2.857	3.440	3.956	2.483
3.30	2.482	2.661	2.574	2.587	3.424	3.045	3.733	4.363	2.617
3.40	2.605	2.808	2.709	2.723	3.693	3.245	4.051	4.816	2.757
3.50	2.733	2.962	2.850	2.865	3.982	3.455	4.395	5.320	2.902
3.60	2.867	3.122	2.997	3.014	4.295	3.679	4.767	5.879	3.054
3.70	3.005	3.290	3.150	3.168	4.631	3.913	5.170	6.500	3.211
3.80	3.149	3.465	3.309	3.328	4.993	4.160	5.603	7.187	3.373
3.90	3.297	3.647	3.474	3.495	5.381	4.420	6.068	7.947	3.542
4.00	3.451	3.836	3.645	3.668	5.797	4.692	6.568	8.784	3.716
4.10	3.610	4.033	3.822	3.847	6.242	4.978	7.103	9.707	3.895
4.20	3.774	4.237	4.006	4.032	6.718	5.277	7.675	10.720	4.081
4.30	3.943	4.449	4.195	4.223	7.226	5.590	8.285	11.832	4.272
4.40	4.117	4.668	4.392	4.421	7.768	5.916	8.934	13.048	4.469
4.50	4.297	4.895	4.594	4.626	8.345	6.257	9.625	14.377	4.672
4.60	4.482	5.129	4.803	4.836	8.959	6.612	10.357	15.825	4.881
4.70	4.673	5.372	5.018	5.053	9.611	6.981	11.132	17.400	5.095
4.80	4.869	5.622	5.240	5.277	10.303	7.365	11.951	19.108	5.316
4.90	5.070	5.880	5.469	5.508	11.036	7.764	12.816	20.959	5.543
5.00	5.277	6.146	5.704	5.744	11.812	8.178	13.728	22.957	5.775

Tableau 5.88 : Valeurs sur ε_{CF} de la tuyère *MLN* axisymétrique pour *T*₀=2000 K.

Ms	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄
1.50	3.62%	2.07%	0.56%	0.01%	18.85%	12.86%	25.04%	32.33%
2.00	5.12%	2.26%	1.19%	0.50%	25.83%	16.68%	34.66%	46.21%
2.50	6.39%	2.35%	1.80%	1.05%	32.37%	19.73%	43.69%	60.40%
3.00	7.20%	2.52%	2.13%	1.38%	38.30%	22.11%	51.61%	74.02%
3.50	7.58%	2.86%	2.18%	1.43%	43.52%	24.01%	58.18%	86.37%
4.00	7.67%	3.28%	2.04%	1.31%	47.95%	25.50%	63.33%	96.88%
4.50	7.62%	3.66%	1.84%	1.31%	51.57%	26.62%	67.14%	105.31%
5.00	7.53%	3.97%	1.65%	0.96%	54.42%	27.43%	69.83%	111.71%

Ms	H ₂	O ₂	N_2	CO	CO ₂	H ₂ O	NH ₃	CH ₄
1.50	0.30%	0.19%	0.03%	0.01%	2.10%	1.38%	2.63%	3.47%
2.00	1.78%	0.75%	0.45%	0.26%	8.61%	5.67%	11.65%	15.49%
2.50	4.25%	1.40%	1.28%	0.80%	22.45%	13.39%	31.23%	44.66%
3.00	7.51%	2.36%	2.49%	1.72%	45.98%	24.66%	65.70%	104.02%
3.50	10.67%	3.87%	3.39%	2.41%	82.29%	39.03%	120.12%	217.91%
4.00	13.13%	6.25%	3.63%	2.48%	135.04%	56.26%	199.38%	427.42%
4.50	14.85%	9.35%	3.19%	1.92%	207.85%	75.73%	306.72%	793.86%
5.00	16.02%	12.79%	2.39%	1.04%	303.82%	96.57%	442.32%	1394.16%

Tableau 5.89 : Valeurs sur ε_{CMasse} de la tuyère *MLN* axisymétrique pour T_0 =2000 K.

5.4.5. Effet des gaz sur la variation des paramètres de conception en fonction de T_0 pour M_S fixé pour la tuyère axisymétrique

Les figures (5.103) à (5.110) représentent respectivement l'effet des gaz et de T_0 sur tous les paramètres de conception θ^* , θ_{Max} , M^* , L_d/y_* , L/y_* , C_{Masse} , C_F , y_S/y_* . L'exemple choisi est pour M_S =3.00. Les résultats numériques de conception pour quelques valeurs de T_0 , lorsque M_S =3.00 sont présentés respectivement dans les tableaux (5.90) à (5.97). On remarque que T_0 influe sur ces paramètres.

On remarque que T_0 influe sur ces paramètres. Pour toute valeur de T_0 , les gaz CH₄, NH₃, CO₂ et H₂O présentent des paramètres élevés. Les gaz H₂, O₂, N₂ et CO possèdent des performances presque équivalentes à l'air avec petites erreur. Le meilleur gaz pour la propulsion en toute valeur de T_0 de la chambre de combustion c'est celui le H₂. Le mauvais c'est celui le CH₄. L'influence de T_0 est presque faible pour le H₂, O₂, air, N₂ et CO et assez élevée pour le H₂O, CO₂, NH₃, CH₄. Alors il est recommandé si on utilise le H₂O, CO₂, NH₃, CH₄ de choisir une température T_0 la plus petite possible.

Figure 5.103 : Effet du gaz sur θ^* des tuyères *MLN* axisymétriques en fonction de T_0 .

Figure 5.104 : Effet du gaz sur θ_{Max} des tuyères *MLN* axisymétriques en fonction de T_0 .

Figure 5.105 : Effet du gaz sur M^* des tuyères *MLN* axisymétriques en fonction de T_0 .

T_0 (K)	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH ₃	CH_4	Air
500	11.645	12.113	11.854	11.848	14.750	12.942	13.697	14.184	11.747
600	11.675	12.219	11.945	11.943	14.722	13.096	14.077	14.802	11.811
700	11.716	12.327	12.027	12.029	14.917	13.247	14.420	15.347	11.898
800	11.765	12.423	12.102	12.110	15.083	13.396	14.734	15.825	12.000
900	11.817	12.511	12.174	12.187	15.222	13.542	15.024	16.247	12.111
1000	11.870	12.593	12.244	12.262	15.343	13.685	15.294	16.622	12.227
1100	11.926	12.671	12.311	12.336	15.452	13.825	15.546	16.958	12.343
1200	11.981	12.746	12.378	12.407	15.552	13.962	15.784	17.262	12.455
1300	12.037	12.818	12.443	12.478	15.646	14.096	16.007	17.536	12.561
1400	12.093	12.888	12.507	12.548	15.734	14.226	16.217	17.786	12.658
1500	12.149	12.957	12.571	12.616	15.829	14.354	16.416	18.014	12.747
1600	12.206	13.025	12.633	12.684	15.900	14.479	16.604	18.224	12.826
1700	12.261	13.091	12.695	12.752	15.979	14.601	16.782	18.416	12.897
1800	12.317	13.156	12.757	12.818	16.055	14.720	16.951	18.594	12.960
1900	12.373	13.220	12.818	12.884	16.129	14.837	17.112	18.759	13.016
2000	12.428	13.284	12.878	12.949	16.201	14.950	17.264	18.911	13.065
2100	12.483	13.346	12.938	13.013	16.272	15.061	17.409	19.053	13.110
2200	12.537	13.408	12.997	13.077	16.340	15.170	17.547	19.186	13.151
2300	12.591	13.469	13.055	13.140	16.407	15.275	17.679	19.310	13.187
2400	12.645	13.530	13.114	13.203	16.473	15.379	17.805	19.426	13.221
2500	12.699	13.590	13.171	13.265	16.538	15.480	17.925	19.534	13.251

Tableau 5.90) :Valeurs de θ	de MLN axis	/métrique en [·]	fonction de	T_0 pour $M_{\rm S}$ =3.00
--------------	------------------------	-------------	---------------------------	-------------	------------------------------

2600	12.752	13.649	13.228	13.327	16.601	15.579	18.039	19.637	13.279
2700	12.805	13.708	13.285	13.387	16.663	15.675	18.149	19.733	13.305
2800	12.857	13.766	13.341	13.448	16.723	15.769	18.254	19.824	13.329
2900	12.909	13.823	13.396	13.507	16.783	15.861	18.355	19.910	13.351
3000	12.961	13.880	13.452	13.566	16.842	15.951	18.452	19.991	13.373
3100	13.013	13.936	13.506	13.625	16.899	16.039	18.544	20.068	13.393
3200	13.064	13.991	13.560	13.683	16.956	16.125	18.634	20.141	13.413
3300	13.114	14.046	13.614	13.740	17.011	16.209	18.719	20.211	13.432
3400	13.164	14.101	13.667	13.797	17.066	16.292	18.802	20.277	13.450
3500	13.214	14.155	13.720	13.853	17.119	16.372	18.881	20.340	13.467
Tableau 5.91 : Valeurs de θ_{Max} de <i>MLN</i> axisymétrique en fonction de T_0 pour M_S =3.00									
T_0 (K)	H_2	O ₂	N_2	CO	CO_2	H ₂ O	NH_3	CH_4	Air
500	15.387	15.948	15.640	15.631	19.043	16.935	17.827	18.399	15.508
600	15.422	16.076	15.749	15.746	19.022	17.116	18.272	19.118	15.585
700	15.473	16.204	15.846	15.849	19.249	17.295	18.672	19.748	15.689
800	15.531	16.319	15.935	15.945	19.440	17.471	19.037	20.297	15.911
900	15.593	16.424	16.021	16.037	19.600	17.643	19.373	20.780	15.946
1000	15.658	16.521	16.104	16.126	19.740	17.811	19.684	21.207	16.085
1100	15.724	16.614	16.185	16.214	19.865	17.975	19.975	21.589	16.225
1200	15.791	16.702	16.264	16.299	19.980	18.135	20.248	21.933	16.359
1300	15.858	16.788	16.341	16.383	20.088	18.292	20.505	22.243	16.486
1400	15.925	16.871	16.418	16.466	20.190	18.445	20.746	22.523	16.602
1500	15.991	16.953	16.494	16.548	20.288	18.594	20.972	22.780	16.707
1600	16.058	17.032	16.568	16.629	20.381	18.747	21.186	23.014	16.801
1700	16.125	17.111	16.642	16.709	20.471	18.882	21.389	23.230	16.884
1800	16.191	17.188	16.715	16.788	20.558	19.020	21.580	23.429	16.958
1900	16.258	17.264	16.787	16.866	20.643	19.155	21.762	23.612	17.024
2000	16.323	17.339	16.859	16.943	20.725	19.287	21.935	23.781	17.082
2100	16.389	17.413	16.929	17.019	20.806	19.416	22.099	23.939	17.135
2200	16.454	17.486	17.000	17.095	20.884	19.541	22.254	24.086	17.182
2300	16.519	17.558	17.069	17.170	20.960	19.663	22.402	24.224	17.226
2400	16.583	17.629	17.138	17.243	21.035	19.782	22.543	24.353	17.265
2500	16.646	17.700	17.206	17.317	21.108	19.899	22.679	24.473	17.302
2600	16.709	17.769	17.274	17.390	21.180	20.012	22.807	24.587	17.335
2700	16.772	17.837	17.341	17.462	21.251	20.123	22.931	24.693	17.366
2800	16.834	17.905	17.407	17.533	21.320	20.232	23.048	24.793	17.394
2900	16.896	17.973	17.472	17.603	21.388	20.337	23.161	14.887	17.421
3000	16.958	18.039	17.537	17.672	21.454	20.441	23.269	24.977	17.446
3100	17.018	18.105	17.602	17.741	21.520	20.541	23.373	25.062	17.469
3200	17.079	18.170	17.665	17.809	21.584	20.640	23.473	25.142	17.492
3300	17.139	18.235	17.728	17.876	21.647	20.736	23.568	25.219	17.513
3400	17.198	18.299	17.790	17.943	21.708	20.830	23.660	25.291	17.534
3500	17.257	18.362	17.852	18.009	21.770	20.922	23.748	25.361	17.554

Tableau 5.92 ·	Valeurs de M^*	nour MI Navis	vmétrique en	fonction de	$T_{\rm o}$ lorsque $M_{\rm o}=2$	3 00
1001000 0.02 .		pour men ano	ymeanque en	Torrotion de	10 lorsque mg-c	5.00

T_0 (K)	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
500	1.491	1.496	1.493	1.492	1.539	1.509	1.516	1.520	1.492
600	1.491	1.497	1.494	1.494	1.536	1.510	1.522	1.531	1.491
700	1.491	1.499	1.495	1.495	1.539	1.512	1.527	1.540	1.491
800	1.491	1.500	1.496	1.496	1.542	1.514	1.532	1.548	1.492
900	1.492	1.502	1.497	1.497	1.544	1.516	1.537	1.555	1.493
1000	1.492	1.503	1.498	1.498	1.546	1.518	1.541	1.561	1.494
1100	1.493	1.504	1.498	1.498	1.548	1.520	1.545	1.567	1.496
1200	1.493	1.505	1.499	1.499	1.549	1.522	1.549	1.572	1.498
1300	1.494	1.506	1.500	1.500	1.551	1.524	1.552	1.576	1.500

1400	1.494	1.507	1.501	1.501	1.552	1.526	1.556	1.581	1.502
1500	1.495	1.508	1.502	1.502	1.553	1.527	1.559	1.584	1.504
1600	1.496	1.509	1.502	1.503	1.554	1.529	1.562	1.588	1.506
1700	1.496	1.509	1.503	1.504	1.555	1.531	1.565	1.591	1.507
1800	1.497	1.510	1.504	1.504	1.557	1.533	1.568	1.594	1.509
1900	1.498	1.511	1.505	1.505	1.558	1.535	1.570	1.596	1.510
2000	1.498	1.512	1.505	1.506	1.559	1.536	1.573	1.599	1.511
2100	1.499	1.513	1.506	1.507	1.560	1.538	1.575	1.601	1.512
2200	1.500	1.514	1.507	1.508	1.561	1.540	1.577	1.603	1.512
2300	1.500	1.514	1.508	1.509	1.562	1.541	1.579	1.605	1.513
2400	1.501	1.515	1.508	1.510	1.563	1.543	1.581	1.607	1.514
2500	1.502	1.516	1.509	1.510	1.564	1.544	1.583	1.608	1.514
2600	1.502	1.517	1.510	1.511	1.564	1.546	1.585	1.610	1.515
2700	1.503	1.518	1.511	1.512	1.565	1.547	1.587	1.612	1.515
2800	1.504	1.519	1.512	1.513	1.566	1.549	1.588	1.613	1.516
2900	1.504	1.519	1.512	1.514	1.567	1.550	1.590	1.614	1.516
3000	1.505	1.520	1.513	1.515	1.568	1.552	1.592	1.616	1.517
3100	1.506	1.521	1.514	1.515	1.569	1.553	1.593	1.617	1.517
3200	1.507	1.522	1.515	1.516	1.570	1.555	1.594	1.618	1.518
3300	1.507	1.523	1.515	1.517	1.571	1.556	1.596	1.619	1.518
3400	1.508	1.523	1.516	1.518	1.571	1.557	1.597	1.620	1.518
3500	1 509	1 524	1 517	1 5 1 9	1 572	1 559	1 598	1 621	1 519

Figure 5.106 : Effet du gaz sur L_d/y_* de *MLN* axisymétriques en fonction de T_0 .

Figure 5.107 : Effet du gaz sur L/y_* de *MLN* axisymétriques en fonction de T_0 .

Figure 5.108 : Effet du gaz sur C_{Masse} de *MLN* axisymétriques en fonction de T_0 .

T_0 (K)	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH ₃	CH ₄	Air
500	2.533	2.590	2.555	2.553	3.018	2.710	2.807	2.868	2.544
600	2.535	2.603	2.567	2.566	2.986	2.730	2.866	2.971	2.548
700	2.538	2.619	2.578	2.578	3.020	2.751	2.921	3.065	2.556
800	2.543	2.633	2.588	2.589	3.048	2.772	2.973	3.151	2.566
900	2.549	2.645	2.598	2.599	3.073	2.793	3.021	3.228	2.579
1000	2.555	2.657	2.607	2.608	3.094	2.814	3.067	3.299	2.593
1100	2.562	2.668	2.616	2.618	3.113	2.835	3.110	3.363	2.609
1200	2.569	2.678	2.624	2.628	3.130	2.855	3.152	3.422	2.625
1300	2.575	2.688	2.633	2.637	3.145	2.876	3.192	3.476	2.641
1400	2.582	2.698	2.642	2.646	3.161	2.896	3.230	3.526	2.657
1500	2.589	2.707	2.650	2.655	3.175	2.916	3.266	3.573	2.671
1600	2.597	2.717	2.658	2.665	3.190	2.935	3.301	3.616	2.685
1700	2.604	2.726	2.667	2.674	3.203	2.955	3.334	3.656	2.697
1800	2.611	2.735	2.675	2.683	3.216	2.974	3.366	3.693	2.709
1900	2.618	2.744	2.683	2.692	3.229	2.993	3.397	3.728	2.719
2000	2.625	2.753	2.692	2.701	3.242	3.011	3.426	3.760	2.727
2100	2.633	2.762	2.700	2.710	3.254	3.030	3.455	3.791	2.735
2200	2.640	2.771	2.708	2.719	3.266	3.048	3.482	3.820	2.742
2300	2.647	2.780	2.716	2.728	3.278	3.066	3.508	3.847	2.748
2400	2.655	2.789	2.725	2.737	3.290	3.083	3.533	3.872	2.753
2500	2.662	2.798	2.733	2.746	3.301	3.101	3.557	3.896	2.758
2600	2.669	2.806	2.741	2.754	3.313	3.118	3.580	3.919	2.763
2700	2.676	2.815	2.749	2.763	3.324	3.314	3.603	3.940	2.767
2800	2.684	2.824	2.757	2.772	3.335	3.151	3.624	3.960	2.771
2900	2.691	2.832	2.765	2.781	3.346	3.167	3.645	3.980	2.775
3000	2.698	2.841	2.773	2.789	3.357	3.183	3.665	3.998	2.779
3100	2.705	2.849	2.781	2.798	3.367	3.199	3.684	4.016	2.783
3200	2.713	2.858	2.789	2.807	3.377	3.214	3.703	4.032	2.786
3300	2.720	2.866	2.797	2.815	3.388	3.229	3.721	4.048	2.789
3400	2.727	2.875	2.805	2.824	3.398	3.244	3.738	4.063	2.793
3500	2.734	2.883	2.813	2.833	3.408	3.259	3.755	4.078	2.795

Tableau 5.93 :	Valeurs de L_{d}/y_{*} de <i>MLN</i> a	disymétrique en fonction d	e T_0 lorsque M_S =3.0.
----------------	--	----------------------------	-----------------------------

Tableau 5.94 : Valeurs de *L/y*^{*} de *MLN* axisymétrique en fonction de T_0 lorsque M_S =3.00.

T_0 (K)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4	Air
500	8.310	5.520	8.389	8.383	10.075	8.976	9.342	9.592	8.348
600	8.322	8.588	8.449	8.446	10.008	9.040	9.573	9.990	8.378
700	8.324	8.641	8.482	8.482	10.131	9.125	9.781	10.331	8.405
800	8.352	8.687	8.511	8.514	10.232	9.210	9.973	10.649	8.442
------	-------	-------	-------	-------	--------	--------	--------	--------	-------
900	8.383	8.728	8.558	8.565	10.330	9.295	10.150	10.951	8.509
1000	8.395	8.784	8.583	8.593	10.394	9.358	10.316	11.200	8.562
1100	8.429	8.817	8.628	8.641	10.467	9.442	10.492	11.460	8.619
1200	8.443	8.848	8.651	8.668	10.532	9.524	10.638	11.676	8.677
1300	8.478	8.898	8.694	9.715	10.593	9.605	10.795	11.889	8.732
1400	8.513	8.926	8.717	8.741	10.649	9.664	10.945	12.081	8.784
1500	8.529	8.974	8.759	8.767	10.702	9.743	11.086	12.256	8.832
1600	8.565	9.000	8.781	8.813	10.773	9.821	11.220	12.415	8.893
1700	8.581	9.027	8.823	8.838	10.821	9.897	11.347	12.578	8.929
1800	8.617	9.072	8.844	8.884	10.868	9.972	11.468	12.729	8.959
1900	8.633	9.098	8.885	8.908	10.913	10.046	11.582	12.867	9.003
2000	8.669	9.143	8.906	8.953	10.957	10.118	11.690	12.994	9.043
2100	8.705	9.167	8.948	8.978	11.019	10.189	11.793	13.111	9.057
2200	8.721	9.211	8.968	9.023	11.061	10.259	10.910	13.219	9.089
2300	8.758	9.235	9.009	9.047	11.101	10.308	12.002	13.318	9.097
2400	8.774	9.279	9.030	9.091	11.160	10.375	12.109	13.429	9.123
2500	8.810	9.303	9.070	9.115	11.199	10.441	12.192	13.514	9.146
2600	8.826	9.346	9.090	9.159	11.236	10.505	12.290	13.612	9.168
2700	8.862	9.369	9.131	9.182	11.273	10.568	12.364	13.684	9.168
2800	8.898	9.412	9.151	9.226	11.329	10.630	12.454	13.769	9.187
2900	8.914	9.434	9.191	9.249	11.364	10.691	12.539	13.850	9.206
3000	9.950	9.477	9.230	9.292	11.399	10.770	12.603	13.925	9.223
3100	8.966	9.499	9.250	9.315	11.452	10.828	12.681	13.996	9.239
3200	9.001	9.541	9.289	9.358	11.485	10.885	12.757	14.063	9.234
3300	9.017	9.562	9.308	9.380	11.537	10.941	12.829	14.126	9.249
3400	9.052	9.604	9.348	9.422	11.569	10.995	12.899	14.186	9.263
3500	9.088	9.625	9.366	9.444	11.600	11.049	12.965	14.241	9.277

Tableau 5.95 : Valeurs de	C _{Masse} de MLN	axisymétrique en	fonction de T	$_0^{\prime}$ lorsque $M_{\rm S}$ =3.00.
---------------------------	---------------------------	------------------	---------------	--

T_0 (K)	H_2	O ₂	N_2	CO	CO ₂	H ₂ O	NH_3	CH_4	Air
500	29.317	30.898	29.997	29.972	42.661	33.969	36.976	38.959	29.649
600	29.371	31.192	30.253	30.239	41.975	34.627	38.654	41.918	29.782
700	29.551	31.597	30.566	30.565	43.005	35.203	40.261	44.896	30.068
800	29.669	31.975	30.867	30.876	43.930	35.784	41.814	47.647	30.401
900	29.800	32.328	31.065	31.094	44.649	36.367	43.327	50.167	30.690
1000	30.023	32.577	31.348	31.392	45.398	37.044	44.806	52.679	31.094
1100	30.167	32.902	31.541	31.601	45.994	37.630	46.153	54.864	31.516
1200	30.400	33.219	31.818	31.895	46.555	38.216	47.574	57.059	31.941
1300	30.550	33.442	32.007	32.100	47.092	38.801	48.863	59.045	32.362
1400	30.703	33.750	32.282	32.393	47.609	39.482	50.123	60.943	32.767
1500	30.943	33.966	32.469	32.684	48.112	40.066	51.357	62.759	33.153
1600	31.098	34.269	32.744	32.888	48.498	40.648	52.564	64.498	33.427
1700	31.341	34.570	32.930	33.180	48.981	41.228	53.745	66.045	33.765
1800	31.499	34.780	33.205	33.384	49.456	41.806	54.901	67.525	34.078
1900	31.744	35.080	33.391	33.676	49.924	42.382	56.032	68.941	34.278
2000	31.903	35.289	33.666	33.879	50.387	42.955	57.140	70.298	34.456
2100	32.063	35.586	33.852	34.172	50.738	43.525	58.224	71.602	34.706
2200	32.310	35.793	34.128	34.375	51.192	44.092	59.171	72.855	34.849
2300	32.471	36.091	34.314	34.669	51.642	44.757	60.210	74.060	35.069
2400	32.719	36.297	34.590	34.872	51.979	45.319	61.111	75.094	35.187
2500	32.881	36.594	34.776	35.166	52.422	45.877	62.108	76.214	35.295
2600	33.130	36.799	35.052	35.369	52.862	46.431	62.967	77.166	35.395
2700	33.293	37.096	35.238	35.663	53.298	46.982	63.924	78.211	35.580
2800	33.454	37.300	35.515	35.866	53.621	47.529	64.743	79.093	35.668
2900	33.706	37.598	35.701	36.160	54.052	48.072	65.543	79.941	35.752
3000	33.868	37.801	35.886	36.363	54.480	48.506	66.447	80.759	35.831

3100	34.120	38.098	36.164	36.658	54.794	49.042	67.211	81.549	35.906
3200	34.283	38.300	36.349	36.860	55.216	49.573	67.959	82.312	36.070
3300	34.536	38.597	36.627	37.155	55.523	50.101	68.690	83.049	36.139
3400	34.699	38.799	36.812	37.357	55.941	50.625	69.405	83.763	36.205
3500	34.862	39.096	37.090	37.652	56.355	51.145	70.105	84.455	36.268

Figure 5.109 : Effet du gaz sur C_F de *MLN* axisymétriques en fonction de T_0 .

Figure 5.110 : Effet du gaz sur y_S/y_* de *MLN* axisymétriques en fonction de T_0 .

T_0 (K)	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH_3	CH_4	Air
500	0.297	0.307	0.302	0.301	0.402	0.345	0.371	0.387	0.299
600	0.297	0.314	0.305	0.305	0.414	0.351	0.388	0.415	0.301
700	0.298	0.319	0.309	0.309	0.424	0.357	0.402	0.440	0.304
800	0.300	0.323	0.312	0.312	0.432	0.362	0.416	0.462	0.308
900	0.301	0.327	0.314	0.315	0.439	0.368	0.428	0.481	0.312
1000	0.303	0.330	0.317	0.318	0.444	0.374	0.440	0.498	0.316
1100	0.305	0.333	0.320	0.320	0.449	0.379	0.451	0.514	0.320
1200	0.307	0.336	0.322	0.323	0.454	0.385	0.462	0.528	0.324
1300	0.309	0.339	0.325	0.326	0.458	0.390	0.471	0.541	0.328
1400	0.311	0.342	0.327	0.328	0.462	0.396	0.481	0.553	0.332
1500	0.313	0.345	0.329	0.331	0.466	0.401	0.490	0.564	0.336
1600	0.315	0.347	0.332	0.334	0.469	0.406	0.498	0.574	0.339
1700	0.317	0.350	0.334	0.336	0.473	0.411	0.507	0.583	0.342
1800	0.319	0.352	0.337	0.339	0.476	0.416	0.514	0.592	0.344
1900	0.321	0.355	0.339	0.341	0.479	0.421	0.522	0.600	0.347

Tableau 5.96 : Valeurs de C_F de *MLN* axisymétrique en fonction de T_0 lorsque M_S =3.00.

2000	0.323	0.357	0.341	0.344	0.482	0.426	0.529	0.607	0.349
2100	0.326	0.360	0.343	0.346	0.485	0.431	0.536	0.614	0.351
2200	0.328	0.362	0.346	0.349	0.489	0.435	0.542	0.620	0.352
2300	0.330	0.365	0.348	0.351	0.491	0.440	0.548	0.627	0.354
2400	0.332	0.367	0.350	0.354	0.494	0.444	0.554	0.632	0.355
2500	0.334	0.370	0.353	0.356	0.497	0.449	0.560	0.638	0.357
2600	0.336	0.372	0.355	0.359	0.500	0.453	0.565	0.643	0.358
2700	0.338	0.374	0.357	0.361	0.503	0.457	0.571	0.648	0.359
2800	0.340	0.377	0.359	0.363	0.506	0.461	0.576	0.652	0.360
2900	0.342	0.379	0.361	0.366	0.508	0.465	0.580	0.656	0.361
3000	0.344	0.381	0.364	0.368	0.511	0.469	0.585	0.660	0.362
3100	0.346	0.384	0.366	0.370	0.514	0.473	0.589	0.664	0.363
3200	0.348	0.386	0.368	0.373	0.516	0.477	0.594	0.668	0.364
3300	0.350	0.388	0.370	0.375	0.519	0.481	0.598	0.671	0.365
3400	0.352	0.390	0.372	0.377	0.521	0.484	0.602	0.675	0.365
3500	0.354	0.392	0.374	0.380	0.524	0.488	0.606	0.678	0.366

Tableau 5.97 : Valeurs de y_S/y_* de *MLN* axisymétrique en fonction de T_0 lorsque M_S =3.00.

T_0 (K)	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH_3	CH_4	Air
500	2.044	2.102	2.068	2.067	2.501	2.215	2.317	2.384	2.056
600	2.047	2.116	2.080	2.080	2.482	2.236	2.374	2.482	2.062
700	2.052	2.130	2.091	2.091	2.515	2.257	2.427	2.573	2.072
800	2.057	2.143	2.101	2.101	2.542	2.278	2.477	2.655	2.084
900	2.063	2.155	2.110	2.111	2.566	2.299	2.524	2.731	2.097
1000	2.070	2.166	2.119	2.121	2.586	2.319	2.569	2.800	2.112
1100	2.077	2.177	2.128	2.130	2.605	2.340	2.611	2.864	2.127
1200	2.083	2.187	2.136	2.140	2.622	2.360	2.652	2.922	2.142
1300	2.090	2.196	2.145	2.149	2.638	2.380	2.691	2.976	2.157
1400	2.097	2.206	2.153	2.158	2.653	2.400	2.729	3.027	2.171
1500	2.105	2.215	2.161	2.167	2.667	2.419	2.765	3.074	2.184
1600	2.112	2.225	2.170	2.176	2.681	2.439	2.800	3.117	2.196
1700	2.119	2.234	2.178	2.185	2.695	2.458	2.833	3.158	2.207
1800	2.126	2.243	2.186	2.194	2.708	2.476	2.865	3.196	2.216
1900	2.133	2.252	2.195	2.203	2.721	2.495	2.895	3.231	2.225
2000	2.140	2.261	2.203	2.212	2.734	2.513	2.925	3.265	2.233
2100	2.148	2.270	2.211	2.221	2.746	2.531	2.953	3.296	2.239
2200	2.155	2.278	2.219	2.230	2.759	2.549	2.980	3.326	2.245
2300	2.162	2.287	2.227	2.238	2.771	2.567	3.007	3.354	2.251
2400	2.169	2.296	2.235	2.247	2.782	2.584	3.032	3.380	2.256
2500	2.176	2.304	2.243	2.256	2.794	2.601	3.056	3.405	2.261
2600	2.183	2.313	2.251	2.265	2.806	2.618	3.080	3.428	2.265
2700	2.190	2.322	2.259	2.273	2.817	2.634	3.103	3.451	2.269
2800	2.198	2.330	2.267	2.282	2.828	2.651	3.125	3.472	2.272
2900	2.205	2.338	2.275	2.290	2.839	2.667	3.146	3.492	2.276
3000	2.212	2.347	2.283	2.299	2.850	2.682	3.166	3.511	2.279
3100	2.219	2.355	2.290	2.307	2.861	2.698	3.186	3.530	2.282
3200	2.226	2.363	2.298	2.316	2.871	2.713	3.205	3.547	2.285
3300	2.233	2.372	2.306	2.324	2.881	2.728	3.224	3.564	2.288
3400	2.240	2.380	2.314	2.333	2.892	2.743	3.242	3.580	2.291
3500	2.247	2.388	2.321	2.341	2.902	2.757	3.259	3.595	2.294

5.4.6. Effet du gaz sur la variation des paramètres thermodynamiques à travers la

paroi de la tuyère MLN axisymétrique.

Les figures (5.111) à (5.115) représentent la variation de nombre de Mach et les paramètres thermodynamiques respectivement le rapport des températures T/T_0 , rapport des pressions P/P_0 , rapport des masses volumiques ρ/ρ_0 et la déviation de l'écoulement à travers la paroi de la tuyère de la figure (5.83) pour M_S =3.00 et T_0 =2000 K. On remarque une détente de gaz d'une valeur M^* au col (juste après la détente) jusqu'à M_S à la sortie de la tuyère. La valeur de M^* est différent de gaz à l'autre qui influe sur les paramètres critiques au col et les paramètres juste après la détente et cela conformément à la figure (5.111). Les valeurs de M^* peuvent êtres trouvées dans le tableau (5.82) pour M_S =3.00 et dans le tableau (5.92) lorsque T_0 =2000 K.

Sur la figure (5.112) on remarque que la température à travers la paroi est assez élevée pour le gaz CH₄, NH₃, H₂O et CO₂ par rapport à l'air. Tandis que pour les gaz H₂, N₂ et CO est assez froide par rapport à l'air. Donc il faut choisir un matériau de construction convenable résistant à la distribution présentée sur la figure (5.112) selon le gaz choisi. La température à travers la tuyère diminue qui donne la plus petite valeur à la section de sortie. Comme l'écoulement est unidirectionnel et uniforme à la sortie, on peut trouver les valeurs de T/T_0 à la sortie selon le tableau (5.6) de la première partie lorsque $M=M_S=3.00$

La figure (5.113) représente la distribution de rapport P/P_0 à travers la paroi de la tuyère, pour permettre de faire la contrainte appliquée sur le matériau afin de choisir le bon matériau qui résiste à cette variation. Le rapport au col lorsque $M=M^*$ et à la sortie lorsque $M=M_S=3.00$ peuvent êtres trouvées dans le tableau (5.8).

La figure (5.114) représente que l'écoulement étudié est compressible vu la variation du rapport ρ/ρ_0 à travers la tuyère.

La figure (5.115) montre qu'il ya une détente de type Prandtl Meyer de l'angle θ^* au col jusqu'à θ =0 à la sortie. Elle montre aussi que l'écoulement est horizontal à la section de sortie. Les valeurs numériques de θ^* au col de la tuyère peuvent êtres trouvées dans le tableau (5.80) lorsque M_S =3.00 et dans le tableau (5.90) lorsque T_0 =2000 K.

Figure 5.111 : Effet du gaz sur la variation de M à travers la paroi de MLN axisymétrique.

Figure 5.112 : Effet du gaz sur la variation de T/T_0 à travers la paroi de *MLN* axisymétrique.

Figure 5.113 : Effet du gaz sur la variation de P/P_0 à travers la paroi de MLN axisymétrique

Figure 5.114 : Effet du gaz sur la variation de ρ/ρ_0 à travers la paroi de *MLN* axisymétrique.

Figure 5.115 : Effet du gaz sur la variation de θ à travers la paroi de *MLN* axisymétrique.

5.4.7. Effet du gaz sur la variation de nombre de Mach à travers l'axe de la tuyère *MLN* axisymétrique.

La figure (5.116) représente la variation de nombre de Mach à travers l'axe de symétrie de la tuyère de la figure (5.83) lorsque M_S =3.00 pour T_0 =2000 K. On remarque qu'il ya une détente de M=1 jusqu'à M_S =3.00. On remarque encore l'existence de la zone uniforme et la zone de Kernel dont cette dernière est assez petite par rapport à la zone uniforme. Pour les gaz CH₄, NH₃, CO₂ et H₂O la longueur de la zone uniforme est plus grande que le cas de l'air vu que la tuyère dans ce cas possède une longueur grande que de cas de l'air. Tandis que pour le H₂, N₂ et CO et même O₂ présentent des régions petites. Alors pour les souffleries supersoniques, on a un espace important pour placer le prototype d'avion dans la région uniforme et l'effet de la paroi n'est pas important vu quelle est assez loin par rapport au prototype conformément à la figure (5.83).

Figure 5.116 : Effet du gaz sur la variation de *M* le long l'axe de symétrie de *MLN* axisymétrique.

Généralement l'apparition d'une grande zone uniforme est mauvaise dans les applications aérospatiales et très bonnes pour les souffleries, vu qu'il n'est pas d'évolution de l'écoulement et qui va ne donner aucun changement des paramètres avec augmentation de la masse et sans changement de C_F pour rien. Alors il est recommandé de faire une troncature de la paroi à un endroit précis. Cette procédure sera discutée à la fin de cette partie.

5.4.8. Effet du gaz sur la forme des tuyères *MLN* axisymétrique ayant même d'un seule paramètre de conception.

Les figures (5.117) à (5.121) représentent l'effet des gaz sur la forme des tuyères ayant respectivement toutes même d'un seul paramètre de conception pour chaque figure que le cas de l'air. Les paramètres retenus dans les applications sont respectivement le rayon de la section de sortie, la longueur de la tuyère, la déviation initiale de la paroi au col, la longueur de détente de la région de Kernel et l'angle de déviation maximale de la paroi. Deux autres paramètres qui sont la masse de la tuyère ainsi que le coefficient de poussée sont laissés respectivement dans les paragraphes prochains vu, leurs intérêts pratiques. L'exemple pris c'est pour M_s =3.00 et T_0 =2000 K.

Les résultats numériques trouvés de conception sont représentés respectivement dans les tableaux (5.98) à (5.102). Dans ce cas le rayon de la section de sortie y_S/y_* (figure 5.117), longueur de la tuyère L/y_* (figure 5.118), l'angle θ^* du col (figure 5.119), la longueur de détente L_d/y_* (figure 5.120) et la déviation maximale θ_{Max} (figure 5.121) est le même pour le cas de l'air. Les valeurs de y_S/y_* , L/y_* , θ^* , L_d/y_* et θ_{Max} pour l'air sont présentés dans le tableau (5.83) et peuvent êtres trouvés encore dans les références [101].

On remarque que si on garde un même paramètre de conception pour le dimensionnement des tuyères, le nombre de Mach de sortie, la forme de la tuyère et les autres paramètres de conception ne sont plus les mêmes pour tous les gaz conformément aux valeurs tabulées et les figures présentées.

Lorsqu'on garde un seul paramètre de conception le même pour tous les gaz, que de cas de l'air conformément aux figures, le gaz H₂ délivre un M_S le plus élevé, qui dépasse le M_S de l'air ce qui donne que la durée de vol est diminuée graduellement. Même ordre de grandeur pour les gaz N₂, O₂, CO. Tandis que pour les gaz CO₂, H₂O, NH₃ et CH₄ délivrent un M_S faible que celui de l'air. Pour le CH₄, c'est le plus faible. Alors la durée de vol devient de plus en plus importante. La forme, la longueur, la masse, le rayon de la section de sortie et le C_F pour le H₂ sont très grands par rapport aux autres gaz et de l'air. Tandis que pour le CH₄

sont plus petits que le cas de l'air. Le nombre de Mach de sortie dans ce cas est le plus petit obtenu, ce qui donne que la durée de vol est la plus grande que le cas de l'air.

Figure 5.117 : Effet du gaz sur la forme des tuyères *MLN* axisymétriques ayant même section de sortie lorsque T_0 =2000 K.

Ν	Gaz	Ms	θ^{t} (deg)	θ_{Max} (deg)	L _d ∕y∗	L/y∗	C_{Masse}	C _F	y s⁄ y ∗			
1	H ₂	3.0850	12.8821	16.8348	2.7530	9.2695	35.3360	0.3328	2.2329			
2	O ₂	2.9769	13.1452	17.1847	2.7159	8.9759	34.2075	0.3540	2.2329			
3	N ₂	3.0258	13.0249	17.0248	2.7326	9.1081	34.7209	0.3441	2.2329			
4	CO	3.0175	13.0498	17.0569	2.7290	9.0857	34.6299	0.3457	2.2329			
5	CO ₂	2.7229	13.8442	18.1084	2.6249	8.2762	31.5401	0.4179	2.2329			
6	H ₂ O	2.8147	13.5999	17.7830	2.6547	8.5280	32.4948	0.3917	2.2329			
7	NH ₃	2.6576	14.0714	18.4036	2.5967	8.0926	30.8267	0.4378	2.2329			
8	CH_4	2.5789	14.3304	18.7432	2.5667	7.8741	29.9750	0.4659	2.2329			
9	Air [101]	3.0000	13.0656	17.0837	2.7277	9.0429	34.4570	0.3483	2.2329			

Tableau 5.98 : Résultats numériques des tuyères de la figure 5.117.

Figure 5.118 : Effet du gaz sur la forme des tuyères *MLN* axisymétrique ayant même longueurs que le cas de l'air lorsque T_0 =2000 K.

Ν	Gaz	Ms	$\theta^{(deg)}$	θ_{Max} (deg)	L _ď /y∗	L/y∗	C_{Masse}	C _F	y _s ∕y∗			
1	H ₂	3.0532	12.7139	16.6466	2.7051	9.0430	34.0109	0.3293	2.1981			
2	O ₂	2.9862	13.2013	17.2475	2.7311	9.0430	34.6396	0.3553	2.2443			
3	N ₂	3.0169	12.9744	16.9678	2.7186	9.0430	34.3326	0.3430	2.2226			
4	CO	3.0118	13.0171	17.0203	2.7199	9.0430	34.3836	0.3450	2.2262			
5	CO ₂	2.8092	14.5920	18.9479	2.8055	9.0430	36.4358	0.4386	2.3765			
6	H ₂ O	2.8779	14.0686	18.3090	2.7729	9.0430	35.7528	0.4036	2.3248			
7	NH ₃	2.7603	15.0495	19.5009	2.8248	9.0430	37.0214	0.4661	2.4178			
8	CH_4	2.6961	15.6207	20.1904	2.8551	9.0430	37.7674	0.5063	2.4721			
9	Air [101]	3.0000	13.0657	17.0838	2.7277	9.0430	34.4576	0.3483	2.2329			

Tableau 5.99 : Résultats numériques des tuyères de la figure 5.118.

Figure 5.119 : Effet du gaz sur la forme des tuyères *MLN* axisymétrique ayant même θ^* comme le cas de l'air lorsque T_0 =2000 K.

Ν	Gaz	Ms	$\boldsymbol{\theta}^{*}$ (deg)	θ_{Max} (deg)	L _d ∕y∗	L/y∗	C_{Masse}	C _F	y _S ∕y∗
1	H ₂	3.1202	13.0659	17.0401	2.8065	9.5218	36.8707	0.3367	2.2720
2	O ₂	2.9638	13.0659	17.0958	2.6945	8.8762	33.6320	0.3522	2.2170
3	N_2	3.0330	13.0659	17.0702	2.7441	9.1616	35.0380	0.3450	2.2414
4	CO	3.0204	13.0659	17.0753	2.7334	9.1047	34.7611	0.3461	2.2362
5	CO_2	2.6345	13.0659	17.2255	2.4498	7.5575	27.2137	0.3961	2.0966
6	H ₂ O	2.7441	13.0659	17.1800	2.5266	7.9812	29.1997	0.3780	2.1348
7	NH₃	2.5536	13.0659	17.2605	2.3818	7.2303	25.6505	0.4082	2.0635
8	CH_4	2.4644	13.0659	17.3013	2.3120	6.8782	24.0687	0.4256	2.0291
9	Air [101]	3.0000	13.0659	17.0837	2.7277	9.0429	34.4572	0.3483	2.2329

Tableau 5.100 : Résultats numériques des tuyères de la figure 5.119.

Figure 5.120 : Effet du gaz sur la forme des tuyères *MLN* axisymétrique ayant même L_d/y_* comme le cas de l'air lorsque $T_0=2000$ K.

Tableau 5.101	: Résultats	numériques	des tuv	yères	de la	figure	5.120.

_

Ν	Gaz	Ms	θ [°] (deg)	θ_{Max} (deg)	L _ď /y∗	L/y∗	C_{Masse}	C_F	y₅⁄y∗
1	H ₂	3.0683	12.7937	16.7358	2.7277	9.1496	34.6319	0.3310	2.2145
2	O ₂	2.9841	13.1888	17.2335	2.7277	9.0307	34.5307	0.3550	2.2417
3	N ₂	3.0326	13.0072	17.0045	2.7277	9.0863	34.5798	0.3437	2.2293
4	CO	3.0167	13.0453	17.0518	2.7277	9.0781	34.6032	0.3456	2.2320
5	CO ₂	2.7726	14.2764	18.5944	2.7277	8.7115	34.2635	0.4299	2.1343
6	H ₂ O	2.8540	13.8919	18.1113	2.7277	8.8455	34.4781	0.3991	2.2895
7	NH ₃	2.7175	14.6435	19.0474	2.7277	8.6347	34.2907	0.4544	2.3385
8	CH_4	2.6458	15.0679	19.5730	2.7277	8.5216	34.1755	0.4891	2.3655
9	Air [101]	3.0000	13.0659	17.0837	2.7277	9.0429	34.4572	0.3483	2.2329

Figure 5.121 : Effet du gaz sur la forme des tuyères *MLN* axisymétrique ayant même θ_{Max} comme le cas de l'air lorsque T_0 =2000 K.

-									
Ν	Gaz	Ms	θ^{*} (deg)	θ_{Max} (deg)	L _d ∕y∗	L/y∗	C_{Masse}	C _F	y₅⁄y∗
1	H ₂	3.1277	13.1046	17.0835	2.8179	9.5733	37.2169	0.3375	2.2804
2	O ₂	2.9620	13.0550	17.0835	2.6915	8.8628	33.5528	0.3520	2.2148
3	N ₂	3.0351	13.0777	17.0835	2.7474	9.1739	35.1460	0.3452	2.2438
4	CO	3.0216	13.0732	17.0835	2.7355	9.1130	34.8228	0.3462	2.2377
5	CO ₂	2.6205	12.9415	17.0835	2.4230	7.4474	26.5948	0.3926	2.0760
6	H ₂ O	2.7329	12.9807	17.0836	2.5068	7.8955	28.7209	0.3758	2.1197
7	NH ₃	2.5377	12.9114	17.0835	2.3504	7.1044	24.9559	0.4035	2.0391
8	CH ₄	2.4473	12.8766	17.0835	2.2760	6.7441	23.2891	0.4196	2.0009
9	Air [101]	3.0000	13.0659	17.0835	2.7277	9.0429	34.4572	0.3483	2.2329

Tableau 5.102 : Résultats numériques des tuyères de la figure 5.121.

5.4.9. Choix du gaz sur la forme des tuyères *MLN* axisymétrique ayant même masse *C_{Masse}* de la tuyère que le cas de l'air.

Dans ce paragraphe on a présenté et élargi les résultats obtenus lorsqu'on veut faire l'étude de l'effet de gaz de propulsion sur les paramètres de conception des tuyères ayant même masse de la tuyère que le cas de l'air, vu l'intérêt pratique de ce paramètre. L'exemple pris sur la figure (5.122) est pour M_S =3.00 et T_0 =2000 K. les résultats numériques de conception sont présentés dans le tableau (5.103). Toutes les 9 tuyères possèdent même C_{Masse} et en particulier le même que le cas de l'air comme présente la dernière colonne de tableau (5.103).

Les résultats de l'air peuvent êtres trouvés dans la figure (5.83) et chaque paramètres peuvent êtres trouvés séparément et respectivement dans les tableaux (5.80) à (5.87) lorsque $M_{\rm S}$ =3.00 et dans les tableaux (5.90) à (5.97) lorsque T_0 =2000 K.

Le premier problème dans ce cas avant la détermination des paramètres de conception de gaz donnant même C_{Masse} que le cas de l'air c'est la détermination de nombre de Mach sortie et la forme de la tuyère correspondant qui va supporter ce nombre de Mach. D'où l'intérêt de la figure (5.122).

Dans la figure (5.123) on a varié le nombre de Mach de sortie de l'air dans la marge supersonique, et T_0 =2000 K, et on a déterminé le nombre de Mach de sortie correspondant de chaque gaz pour supporter la même masse (même C_{Masse}) que le cas de l'air en utilisant l'algorithme présenté dans le tableaux (4.1) du chapitre 4. La courbe 9 en pointillée illustrée dans la figure (5.123) présente le

nombre de Mach de sortie de l'air. Les résultats numériques sur le nombre de Mach donné pour chaque gaz sont présentés dans le tableau (5.104). La dernière colonne à droite présente la masse de touts les gaz en fonction de M_s de l'air.

La figure (5.123) devise les résultats en deux parties. Une partie donnant un nombre de Mach de sortie supérieur au cas de l'air ce qui est le cas pour le H₂ par exemple et la deuxième partie donnant un ensemble des gaz donnants un nombre de Mach inférieure à M_S de l'air ce qui est le cas pour le CH₄ et NH₃. On remarque aussi que pour faible M_S , il n'est ya pas une différence entre un tel gaz et autre. On peut aller jusqu'à 2.00 avec une erreur donnée. Plus le nombre de Mach de sortie de l'air est grand plus on remarque l'intérêt d'un tel gaz par rapport à l'autre.

Pour raison d'intérêt, on a présenté dans les figures (5.124) et (5.125) la variation de C_F et C_{Masse} des tuyères en fonction de M_S de l'air lorsqu'ils donnent le même C_{Masse} que le cas de l'air. Les résultats numériques de C_F de la figure (5.124) sont présentés dans le tableau (5.105).

Il est très clair dans la figure (5.125) que toutes les 9 courbes sont confondues vu leurs masses est la même. Dans la figure (5.124), on remarque que lorsque le C_{Masse} des gaz est le même, le C_F et M_S des gaz sont diffèrents et se divise en deux parties une parties comporte un C_F grand et M_S petit par rapport à l'air ce qui est le cas pour CH₄ et le NH₃ et un C_F petit et M_S grand par rapport à l'air ce qui est le cas pour le H₂ et O₂.

Dans les tableaux (5.106) et (5.107) on a représenté l'erreur relative donnée respectivement par le M_S et C_F des différents gaz par rapport à ceux de l'air en fonction de quelques nombre de Mach de sortie de l'air. Pour le C_{Masse} , l'erreur relative est nulle vu que toutes les tuyères donnent même C_{Masse} .

Il est clair que l'erreur relative pour M_S peut arriver à 25 % pour le CH₄ lorsque M_S (Air)=5.00 et T_0 =2000 K. Pour le C_F , l'erreur relative peut arriver à 62 % pour le CH₄. L'erreur relative de chaque paramètre varie avec M_S (Air), T_0 et le gaz choisi.

Figure 5.122 : Effet du gaz sur la forme des tuyères *MLN* axisymétrique ayant même masse de la structure que le cas de l'air lorsque T_0 =2000 K.

_								<u> </u>	
Ν	Gaz	Ms	θ^{*} (deg)	θ_{Max} (deg)	L _ď /y∗	L/y∗	y _s ∕y∗	C _F	C _{Masse}
1	H ₂	3.0639	12.7707	16.7102	2.7212	9.1174	2.2097	0.3305	34.4572
2	O ₂	2.9824	13.1787	17.2223	2.7250	9.0143	2.2397	0.3547	34.4572
3	N_2	3.0195	12.9894	16.9847	2.7228	9.0604	2.2257	0.3433	34.4572
4	CO	3.0135	13.0266	17.0309	2.7225	9.0549	2.2282	0.3452	34.4572
5	CO ₂	2.7759	14.3050	18.6264	2.7347	8.7381	2.3199	0.4307	34.4572
6	H ₂ O	2.8534	13.8880	18.1069	2.7267	8.8397	2.2887	0.3990	34.4572
7	NH_3	2.7202	14.6693	19.0762	2.7337	8.6600	2.3434	0.4552	34.4572
8	CH ₄	2.6498	15.1117	19.6220	2.7376	8.5624	2.3737	0.4904	34.4572
9	Air [101]	3.0000	13.0656	17.0837	2.7277	9.0429	2.2329	0.3483	34.4572

Tableau 5.103 : Résultats numériques des tuyères de la figure 5.122.

Figure 5.123 : Effet du gaz sur le nombre de Mach de sortie de la tuyère *MLN* axisymétrique ayant même masse que le cas de l'air lorsque T_0 =2000 K.

Figure 5.124 : Effet du gaz sur le coefficient de poussée C_F de la tuyère *MLN* axisymétrique ayant même masse que le cas de l'air lorsque T_0 =2000 K.

Figure 5.125 : Effet du gaz sur la masse de la tuyère *MLN* axisymétrique ayant même masse que le cas de l'air lorsque T_0 =2000 K.

Tableau 5.104 : Valeurs de *Ms* pour *MLN* axisymétrique ayant même masse que le cas de l'air lorsque T_0 =2000 K.

Ms	Ms	Ms	Ms	Ms	Ms	Ms	Ms	Ms	C _{Masse}
(Air)	(H ₂)	(O ₂)	(N ₂)	(CO)	(CO_2)	(H ₂ O)	(NH_3)	(CH ₄)	(Gaz)
1.00		/							
1.10	1.1000	1.1000	1.1000	1.1000	1.0998	1.0998	1.0997	1.0996	1.5891
1.20	1.2002	1.1998	1.2000	1.2000	1.1986	1.1990	1.1982	1.1978	2.3261
1.30	1.3007	1.2995	1.3000	1.2999	1.2965	1.2974	1.2953	1.2942	2.9659
1.40	1.4014	1.3991	1.4001	1.3999	1.3929	1.3949	1.3907	1.3885	3.6332
1.50	1.5025	1.4985	1.5003	1.4998	1.4880	1.4914	1.4843	1.4805	4.3198
1.60	1.6039	1.5977	1.6005	1.5999	1.5838	1.5878	1.5796	1.5751	5.1014
1.70	1.7058	1.6969	1.7009	1.7000	1.6739	1.6814	1.6661	1.6579	5.8856
1.80	1.8080	1.7960	1.8015	1.8002	1.7648	1.7751	1.7545	1.7434	6.8011
1.90	1.9108	1.8950	1.9022	1.9006	1.8600	1.8700	1.8484	1.8338	7.8715
2.00	2.0140	1.9940	2.0031	2.0011	1.9495	1.9665	1.9330	1.9148	9.0523
2.10	2.1176	2.0930	2.1042	2.1018	2.0362	2.0542	2.0163	1.9941	10.3611
2.20	2.2217	2.1919	2.2055	2.2027	2.1216	2.1480	2.0981	2.0766	11.8877
2.30	2.3206	2.2909	2.3066	2.3038	2.2061	2.2371	2.1795	2.1521	13.5861
2.40	2.4262	2.3898	2.4079	2.4050	2.2997	2.3265	2.2622	2.2261	15.5563
2.50	2.5333	2.4887	2.5106	2.5064	2.3755	2.4151	2.3435	2.3016	17.8301
2.60	2.6383	2.5875	2.6122	2.6080	2.4563	2.5044	2.4196	2.3752	20.3621
2.70	2.7449	2.6863	2.7142	2.7096	2.5391	2.5932	2.4976	2.4467	23.2662
2.80	2.8516	2.7850	2.8068	2.8113	2.6202	2.6811	2.5737	2.5161	26.5838
2.90	2.9577	2.8833	2.9163	2.9117	2.6974	2.7680	2.6460	2.5838	30.2701
3.00	3.0629	2.9815	3.0185	3.0119	2.7758	2.8530	2.7294	2.6497	34.4559
3.10	3.1729	3.0818	3.1233	3.1162	2.8530	2.9395	2.7929	2.7155	39.2850
3.20	3.2778	3.1772	3.2230	3.2155	2.9281	3.0232	2.8623	2.7781	44.5321
3.30	3.3844	3.2752	3.3251	3.3171	3.0022	3.1080	2.9323	2.8404	50.5338
3.40	3.4909	3.3735	3.4269	3.4189	3.0760	3.1920	3.0014	2.9010	57.2570
3.50	3.5982	3.4701	3.5286	3.5213	3.1479	3.2750	3.0691	2.9601	64.7686
3.60	3.7040	3.5664	3.6299	3.6206	3.2184	3.3571	3.1345	3.0178	73.0310
3.70	3.8113	3.6623	3.7311	3.7213	3.2887	3.4390	3.1997	3.0749	82.3259
3.80	3.9184	3.7589	3.8319	3.8217	3.3578	3.5199	3.2647	3.1305	92.6304
3.90	4.0253	3.8542	3.9325	3.9219	3.4260	3.6008	3.3276	3.1847	104.0246
4.00	4.1309	3.9490	4.0329	4.0219	3.4933	3.6806	3.3902	3.2384	116.5998
4.10	4.2369	4.0435	4.1330	4.1216	3.5590	3.7595	3.4519	3.2902	130.4459
4.20	4.3430	4.1377	4.2319	4.2211	3.6241	3.8387	3.5125	3.3414	145.6660

4.30	4.4485	4.2323	4.3324	4.3203	3.6887	3.9172	3.5723	3.3918	162.4837
4.40	4.5547	4.3266	4.4318	4.4194	3.7521	3.9951	3.6316	3.4409	180.8954
4.50	4.6600	4.4198	4.5306	4.5182	3.8146	4.0725	3.6901	3.4893	201.0222
4.60	4.7659	4.5135	4.6301	4.6172	3.8768	4.1494	3.7483	3.5372	223.1140
4.70	4.8705	4.6062	4.7283	4.7155	3.9381	4.2259	3.8049	3.5837	247.0520
4.80	4.9760	4.6994	4.8276	4.8139	3.9985	4.3024	3.8619	3.6300	273.3688
4.90	5.0816	4.7923	4.9262	4.9126	4.0586	4.3785	3.9178	3.6752	301.9595
5.00	5.1865	4.8845	5.0244	5.0105	4.1180	4.4538	3.9732	3.7198	332.9733

Tableau 5.105 : Valeurs de C_F pour la tuyère *MLN* axisymétrique ayant même masse que le cas de l'air lorsque T_0 =2000 K.

				-			-			
Ms	CF	CF	CF	CF	CF	CF	CF	CF	CF	C _{Masse}
(Air)	(H_2)	(O_2)	(N_2)	(CO)	(CO_2)	(H ₂ O)	(NH ₃)	(CH₄)	(Air)	(Gaz)
1.00	<u> </u>	(02)	((00)	(002)	(((0::4/	(*)	(= /
1.10	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.004	1.5891
1.20	0.014	0.015	0.014	0.015	0.016	0.016	0.017	0.018	0.015	2.3261
1.30	0.029	0.030	0.030	0.030	0.034	0.033	0.035	0.037	0.030	2.9659
1.40	0.047	0.049	0.048	0.048	0.055	0.053	0.057	0.059	0.048	3.6332
1.50	0.066	0.069	0.068	0.068	0.078	0.075	0.081	0.085	0.068	4.3198
1.60	0.087	0.091	0.089	0.089	0.103	0.099	0.108	0.113	0.089	5.1014
1.70	0.108	0.113	0.110	0.111	0.128	0.122	0.133	0.139	0.111	5.8856
1.80	0.129	0.135	0.132	0.133	0.154	0.147	0.160	0.168	0.133	6.8011
1.90	0.149	0.157	0.154	0.154	0.181	0.172	0.189	0.199	0.155	7.8715
2.00	0.170	0.179	0.175	0.175	0.207	0.197	0.216	0.227	0.176	9.0523
2.10	0.189	0.200	0.195	0.196	0.232	0.219	0.243	0.256	0.197	10.3611
2.20	0.208	0.220	0.215	0.216	0.257	0.243	0.268	0.285	0.217	11.8877
2.30	0.225	0.240	0.233	0.235	0.280	0.265	0.294	0.313	0.236	13.5861
2.40	0.243	0.259	0.252	0.253	0.304	0.287	0.320	0.339	0.255	15.5563
2.50	0.260	0.277	0.269	0.270	0.327	0.307	0.345	0.367	0.272	17.8301
2.60	0.275	0.293	0.285	0.287	0.349	0.327	0.367	0.393	0.289	20.3621
2.70	0.290	0.310	0.301	0.302	0.370	0.346	0.391	0.418	0.305	23.2662
2.80	0.304	0.325	0.315	0.317	0.391	0.364	0.413	0.443	0.320	26.5838
2.90	0.317	0.340	0.329	0.331	0.410	0.381	0.433	0.466	0.334	30.2701
3.00	0.329	0.353	0.342	0.344	0.429	0.398	0.453	0.489	0.347	34.4559
3.10	0.341	0.366	0.355	0.356	0.447	0.413	0.473	0.511	0.360	39.2850
3.20	0.352	0.378	0.366	0.368	0.464	0.428	0.492	0.532	0.371	44.5321
3.30	0.362	0.390	0.377	0.379	0.481	0.442	0.510	0.553	0.382	50.5338
3.40	0.371	0.401	0.387	0.389	0.497	0.455	0.527	0.573	0.393	57.2570
3.50	0.380	0.411	0.396	0.399	0.511	0.468	0.543	0.592	0.403	64.7686
3.60	0.389	0.421	0.405	0.408	0.526	0.480	0.559	0.610	0.412	73.0310
3.70	0.396	0.430	0.414	0.416	0.539	0.492	0.574	0.628	0.420	82.3259
3.80	0.404	0.438	0.422	0.424	0.552	0.502	0.588	0.645	0.429	92.6304
3.90	0.411	0.446	0.429	0.432	0.565	0.512	0.602	0.661	0.436	104.0246
4.00	0.417	0.454	0.437	0.439	0.577	0.522	0.615	0.677	0.443	116.5998
4.10	0.423	0.461	0.443	0.446	0.589	0.531	0.628	0.693	0.450	130.4459
4.20	0.429	0.468	0.449	0.452	0.600	0.540	0.640	0.707	0.456	145.6660
4.30	0.435	0.474	0.455	0.458	0.610	0.548	0.651	0.722	0.462	162.4837
4.40	0.440	0.480	0.461	0.464	0.620	0.556	0.663	0.735	0.468	180.8954
4.50	0.445	0.486	0.466	0.469	0.629	0.564	0.673	0.748	0.473	201.0222
4.60	0.449	0.491	0.471	0.474	0.639	0.571	0.684	0.761	0.478	223.1140
4.70	0.454	0.497	0.476	0.479	0.648	0.578	0.693	0.773	0.483	247.0520
4.80	0.458	0.502	0.480	0.483	0.656	0.584	0.703	0.786	0.488	273.3688
4.90	0.462	0.506	0.485	0.488	0.664	0.590	0.712	0.797	0.492	301.9595
5.00	0.465	0.511	0.489	0.492	0.672	0.596	0.721	0.808	0.496	332.9733

				•				
M _S (Air)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄
1.50	0.16%	0.10%	0.01%	0.01%	0.80%	0.57%	1.04%	1.30%
2.00	0.69%	0.29%	0.15%	0.05%	2.52%	1.67%	3.35%	4.26%
2.50	1.33%	0.45%	0.42%	0.25%	4.98%	3.39%	6.25%	7.93%
3.00	2.09%	0.61%	0.61%	0.39%	7.47%	4.89%	9.35%	11.67%
3.50	2.80%	0.85%	0.81%	0.60%	10.05%	6.42%	12.31%	15.42%
4.00	3.27%	1.27%	0.82%	0.54%	12.66%	7.98%	15.24%	19.03%
4.50	3.55%	1.78%	0.68%	0.40%	15.23%	9.49%	17.99%	22.45%
5.00	3.72%	2.31%	0.48%	0.20%	17.64%	10.92%	20.53%	25.60%

Tableau 5.106 : Effet de gaz sur $\epsilon(M_S)$ (%) pour la tuyère *MLN* axisymétrique ayant même masse que le cas de l'air lorsque T_0 =2000 K.

Tableau 5.107 : Effet de gaz sur $\varepsilon(C_F)$ (%) pour la tuyère *MLN* axisymétrique ayant même masse que le cas de l'air lorsque T_0 =2000 K.

M _S (Air)	H_2	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH_4
1.50	2.91%	1.59%	0.47%	0.04%	14.23%	9.79%	18.74%	23.98%
2.00	3.60%	1.56%	0.83%	0.37%	17.51%	11.73%	22.61%	29.06%
2.50	4.59%	1.63%	1.18%	0.67%	20.29%	12.84%	26.58%	34.65%
3.00	5.13%	1.81%	1.39%	0.89%	23.73%	14.62%	30.66%	40.87%
3.50	5.52%	2.13%	1.56%	0.94%	27.00%	16.27%	34.91%	46.96%
4.00	5.88%	2.40%	1.50%	0.96%	30.12%	17.76%	38.78%	52.77%
4.50	6.05%	2.67%	1.50%	0.92%	32.93%	19.06%	42.19%	58.03%
5.00	6.19%	2.94%	1.44%	0.88%	35.54%	20.16%	45.28%	62.89%

5.4.10. Choix du gaz sur la forme des tuyères *MLN* axisymétrique ayant même coefficient de poussé C_F que le cas de l'air.

Dans ce paragraphe on a présenté et élargi les résultats obtenus lorsqu'on veut faire l'étude de l'effet de gaz de propulsion sur les paramètres de conception des tuyères ayant même coefficient de poussée C_F que le cas de l'air, vu l'intérêt pratique de ce paramètre. L'exemple pris sur la figure (5.126) est pour M_S =3.00 et T_0 =2000 K. les résultats numériques de conception sont présentés dans le tableau (5.108). Toutes les 9 tuyères possèdent même C_F et en particulier le même que le Les résultats de l'air peuvent êtres trouvés dans la figure (5.83) et chaque paramètres peuvent êtres trouvés séparément et respectivement dans les tableaux (5.80) à (5.87) lorsque M_S =3.00 et dans les tableaux (5.90) à (5.97) lorsque T_0 =2000 K.

Les résultats de l'air peuvent êtres trouvés dans la figure (5.83) et chaque paramètres peuvent êtres trouvés séparément et respectivement dans les tableaux (5.80) à (5.87) lorsque $M_{\rm S}$ =3.00 et dans les tableaux (5.90) à (5.97) lorsque T_0 =2000 K.

Le premier problème dans ce cas avant la détermination les paramètres de conception de gaz donnant même C_F que le cas de l'air c'est la détermination de nombre de Mach sortie et la forme de la tuyère correspondant qui va supporter ce nombre de Mach. D'où l'intérêt de la figure (5.126).

Dans la figure (5.127) on a varié le nombre de Mach de sortie de l'air dans la marge supersonique, et T_0 =2000 K, et on a déterminé le nombre de Mach de

sortie correspondant de chaque gaz pour supporter le même C_F que le cas de l'air en utilisant l'algorithme présenté dans le tableaux (4.2) du chapitre 4. La courbe 9 en pointillée illustrée dans la figure (5.127) présente le nombre de Mach de sortie de l'air. Les résultats numériques sur le nombre de Mach donné pour chaque gaz sont présentés dans le tableau (5.109). La dernière colonne à droite présente la valeur de C_F de touts les gaz en fonction de M_S de l'air.

La figure (5.127) devise les résultats en deux parties. Une partie donnant un nombre de Mach de sortie supérieur au cas de l'air ce qui est le cas pour le H₂ par exemple et la deuxième partie donnant un ensemble des gaz donnants un nombre de Mach inférieure à M_S de l'air ce qui est le cas pour le CH₄ et NH₃, CO₂ et H₂O. On remarque aussi que pour faible M_S , il n'est ya pas une différence entre un tel gaz et autre. On peut aller jusqu'à 2.00 avec une erreur donnée. Plus le nombre de Mach de sortie de l'air est grand, plus on remarque l'intérêt d'un tel gaz par rapport à l'autre.

Pour raison d'intérêt, on a présenté respectivement dans les figures (5.128) et (5.129) la variation de C_{Masee} et C_F des tuyères en fonction de M_S de l'air lorsqu'ils donnent le même C_F que le cas de l'air. Les résultats numériques de C_{Masse} de la figure (5.109) sont présentés dans le tableau (5.110). On a présenté à l'échelle Logarithmique de C_{Masse} pour une bonne présentation aux valeurs petites et grandes dans même graphe.

Figure 5.126 : Effet du gaz sur la forme des tuyères *MLN* axisymétrique ayant même C_F comme le cas de l'air.

		-						J	-
Ζ	Gaz	Ms	θ^{*} (deg)	θ_{Max} (deg)	L _d /y∗	L/y∗	C_{Masse}	C _F	y _s ∕y∗
1	H ₂	3.2384	13.6670	17.7073	2.9904	10.4067	42.4915	0.3490	2.4080
2	O ₂	2.9409	12.9271	16.9392	2.6574	8.7129	32.6166	0.3490	2.1895
3	N ₂	3.0664	13.2531	17.2799	2.7971	9.4058	36.5578	0.3490	2.2807
4	CO	3.0442	13.2016	17.2270	2.7714	9.2800	35.8361	0.3490	2.2644
5	CO ₂	2.4521	11.4279	15.3351	2.1180	6.2513	20.1576	0.3490	1.8478
6	H ₂ O	2.6019	11.9614	15.9172	2.2918	6.9634	23.5503	0.3490	1.9517
7	NH ₃	2.3545	11.1091	14.9888	2.0110	5.8107	18.1824	0.3490	1.7844
8	CH_4	2.2505	10.7062	14.5413	1.8965	5.3508	16.1927	0.3490	1.7155
9	Air [101]	3.0000	13.0659	17.0837	2.7277	9.0429	34.4572	0.3483	2.2329

Tableau 5.108 : Résultats numériques des tuyères de la figure 5.126.

Il est très clair dans la figure (5.129) que toutes les 9 courbes sont confondues vu leurs C_F est le même. Dans la figure (5.128), on remarque que lorsque le C_F

des gaz est le même, les valeurs de C_{Masse} et M_S des gaz diffèrent et se divise en deux parties une partie comporte un C_{Masse} grand et M_S petit par rapport à l'air ce qui est le cas pour CH₄ et le NH₃ et un C_{Masse} petit et M_S grand par rapport à l'air ce qui est le cas pour le H₂ et O₂.

Dans les tableaux (5.111) et (5.112) on a représenté l'erreur relative donnée respectivement par le M_S et C_{Masse} des différents gaz par rapport à ceux de l'air en fonction de quelques nombre de Mach de sortie de l'air. Pour le C_F l'erreur relative est nulle vu que toutes les tuyères donnent même C_F .

Il est clair que l'erreur relative pour M_S peut arriver à 46 % pour le CH₄ lorsque M_S (Air)=5.00 et T_0 =2000 K. Pour le C_{Masse} , l'erreur relative peut arriver à 89 % pour le CH₄. L'erreur relative de chaque paramètre varie avec M_S (Air), T_0 et le gaz choisi.

Figure 5.127 : Effet du gaz sur le nombre de Mach de sortie de la tuyère *MLN* axisymétrique ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Figure 5.128 : Effet du gaz sur la masse de la tuyère *MLN* axisymétrique ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Figure 5.129 : Effet du gaz sur le coefficient C_F de la tuyère *MLN* axisymétrique ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Tableau 5.109 : Valeurs de *Ms* des gaz pour la tuyère *MLN* axisymétrique ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Ms	Ms	Ms	Ms	Ms	Ms	Ms	Ms	Ms	C _F
(Air)	(H ₂)	(O ₂)	(N ₂)	(CO)	(CO_2)	(H_2O)	(NH_3)	(CH ₄)	(Gaz)
1.00					/	/			
1.10	1.1013	1.0991	1.1001	1.0999	1.0936	1.0954	1.0919	1.0900	0.0042
1.20	1.2031	1.1980	1.2003	1.1997	1.1854	1.1894	1.1814	1.1773	0.0150
1.30	1.3055	1.2967	1.3006	1.2997	1.2753	1.2821	1.2686	1.2618	0.0302
1.40	1.4086	1.3952	1.4012	1.3998	1.3630	1.3732	1.3533	1.3431	0.0485
1.50	1.5125	1.4935	1.5019	1.5000	1.4488	1.4632	1.4355	1.4217	0.0687
1.60	1.6173	1.5913	1.6029	1.6003	1.5320	1.5508	1.5150	1.4970	0.0900
1.70	1.7231	1.6894	1.7042	1.7011	1.6134	1.6377	1.5918	1.5693	0.1119
1.80	1.8292	1.7864	1.8056	1.8017	1.6917	1.7215	1.6654	1.6379	0.1339
1.90	1.9377	1.8839	1.9081	1.9029	1.7681	1.8053	1.7370	1.7045	0.1557
2.00	2.0469	1.9821	2.0104	2.0043	1.8426	1.8864	1.8060	1.7674	0.1772
2.10	2.1571	2.0786	2.1129	2.1063	1.9138	1.9664	1.8720	1.8277	0.1980
2.20	2.2694	2.1748	2.2172	2.2088	1.9832	2.0437	1.9354	1.8850	0.2181
2.30	2.3835	2.2710	2.3206	2.3105	2.0494	2.1190	1.9958	1.9391	0.2375
2.40	2.4996	2.3686	2.4254	2.4145	2.1145	2.1950	2.0546	1.9913	0.2560
2.50	2.6172	2.4638	2.5301	2.5181	2.1759	2.2662	2.1099	2.0399	0.2737
2.60	2.7344	2.5585	2.6345	2.6195	2.2345	2.3352	2.1625	2.0861	0.2905
2.70	2.8581	2.6546	2.7403	2.7243	2.2928	2.4049	2.2135	2.1304	0.3064
2.80	2.9791	2.7494	2.8484	2.8298	2.3472	2.4717	2.2623	2.1720	0.3215
2.90	3.1047	2.8435	2.9534	2.9336	2.3983	2.5355	2.3070	2.2106	0.3357
3.00	3.2306	2.9345	3.0597	3.0371	2.4484	2.5972	2.3515	2.2476	0.3491
3.10	3.3628	3.0284	3.1677	3.1447	2.4965	2.6582	2.3927	2.2827	0.3617
3.20	3.4942	3.1199	3.2749	3.2474	2.5428	2.7175	2.4323	2.3153	0.3736
3.30	3.6254	3.2093	3.3828	3.3519	2.5850	2.7741	2.4700	2.3464	0.3847
3.40	3.7613	3.3008	3.4897	3.4594	2.6265	2.8271	2.5053	2.3752	0.3952
3.50	3.8997	3.3890	3.5951	3.5619	2.6658	2.8801	2.5383	2.4032	0.4051
3.60	4.0393	3.4755	3.7028	3.6664	2.7027	2.9311	2.5699	2.4285	0.4143
3.70	4.1846	3.5616	3.8129	3.7717	2.7399	2.9792	2.6006	2.4531	0.4230
3.80	4.3310	3.6494	3.9222	3.8751	2.7722	3.0263	2.6297	2.4762	0.4312
3.90	4.4788	3.7310	4.0269	3.9788	2.8050	3.0716	2.6565	2.4982	0.4389
4.00	4.6290	3.8179	4.1359	4.0827	2.8357	3.1146	2.6822	2.5175	0.4461
4.10	4.7849	3.8990	4.2447	4.1888	2.8649	3.1575	2.7062	2.5371	0.4529

4.20	4.9403	3.9777	4.3472	4.2926	2.8913	3.1970	2.7304	2.5553	0.4593
4.30	5.1029	4.0607	4.4551	4.3982	2.9197	3.2356	2.7515	2.5726	0.4654
4.40	5.2776	4.1417	4.5695	4.5003	2.9447	3.2754	2.7734	2.5896	0.4710
4.50	5.4418	4.2161	4.6739	4.6057	2.9684	3.3106	2.7928	2.6045	0.4764
4.60	5.6117	4.2943	4.7787	4.7068	2.9913	3.3449	2.8114	2.6189	0.4815
4.70	5.7869	4.3715	4.8900	4.8115	3.0128	3.3804	2.8303	2.6335	0.4863
4.80	5.9727	4.4490	4.9975	4.9108	3.0347	3.4116	2.8477	2.6461	0.4909
4.90	6.1573	4.5190	5.1030	5.0143	3.0526	3.4414	2.8626	2.6578	0.4952
5.00	6.3510	4.5921	5.2109	5.1195	3.0732	3.4725	2.8785	2.6700	0.4993

Tableau 5.110 : Valeurs de C_{Masse} des gaz pour la tuyère *MLN* axisymétrique ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

		,								
Ms	C _{Masse}	C _{Masse}	C_{Masse}	C_{Masse}	C_{Masse}	C_{Masse}	C _{Masse}	C_{Masse}	C_{Masse}	C_F
(Air)	(H ₂)	(O_2)	(N ₂)	(CO)	(CO_2)	(H ₂ O)	(NH_3)	(CH₄)	(Air)	(Gaz)
1.00	/	/	/	/		/	v 0/		/	
1.10	1.599	1.582	1.589	1.588	1.513	1.526	1.499	1.485	1.589	0.0042
1.20	2.343	2.315	2.327	2.324	2.244	2.267	2.185	2.162	2.326	0.0150
1.30	3.035	2.951	2.969	2.965	2.848	2.882	2.816	2.782	2.965	0.0302
1.40	3.670	3.612	3.638	3.632	3.421	3.515	3.377	3.330	3.633	0.0485
1.50	4.426	4.292	4.328	4.320	4.044	4.108	3.985	3.871	4.319	0.0687
1.60	5.179	5.008	5.115	5.103	4.686	4.772	4.555	4.472	5.101	0.0900
1.70	6.054	5.837	5.906	5.892	5.362	5.478	5.203	5.038	5.885	0.1119
1.80	7.012	6.732	6.892	6.811	6.071	6.284	5.880	5.681	6.801	0.1339
1.90	8.148	7.718	7.918	7.889	6.826	7.096	6.599	6.361	7.871	0.1557
2.00	9.481	8.877	9.118	9.081	7.701	8.031	7.359	7.068	9.052	0.1772
2.10	10.971	10.143	10.519	10.406	8.558	9.045	8.228	7.813	10.361	0.1980
2.20	12.659	11.614	12.096	11.959	9.547	10.202	9.078	8.591	11.887	0.2181
2.30	14.722	13.244	13.842	13.749	10.591	11.446	10.041	9.399	13.586	0.2375
2.40	17.064	15.153	15.965	15.777	11.716	12.818	11.067	10.325	15.5563	0.2560
2.50	19.804	17.235	18.330	18.113	12.967	14.254	12.058	11.200	17.830	0.2737
2.60	22.959	19.536	20.964	20.674	14.201	15.785	13.167	12.109	20.362	0.2905
2.70	26.827	22.291	24.107	23.771	15.618	17.552	14.336	13.055	23.266	0.3064
2.80	31.116	25.314	27.674	27.243	16.994	19.337	15.558	14.104	26.583	0.3215
2.90	36.180	28.734	31.655	31.152	18.494	21.299	16.785	15.083	30.270	0.3357
3.00	42.094	32.420	36.321	35.582	20.081	23.457	18.096	16.096	34.455	0.3491
3.10	49.318	36.683	41.576	40.762	21.737	25.681	19.418	17.213	39.285	0.3617
3.20	57.437	41.300	47.496	46.315	23.460	28.126	20.782	18.252	44.532	0.3736
3.30	66.780	46.381	54.213	52.750	25.085	30.573	22.182	19.310	50.533	0.3847
3.40	77.821	52.177	61.722	60.159	26.886	33.163	23.592	20.360	57.258	0.3952
3.50	90.791	58.454	70.046	68.061	28.719	35.935	25.008	21.443	64.767	0.4051
3.60	105.632	65.223	79.641	77.132	30.472	38.711	26.451	22.496	73.031	0.4143
3.70	123.410	72.584	90.570	87.319	32.439	41.638	27.931	23.573	82.324	0.4230
3.80	143.946	80.961	102.812	98.496	34.298	44.695	29.330	24.645	92.631	0.4312
3.90	167.529	89.565	115.846	110.933	36.173	47.837	30.797	25.719	104.044	0.4389
4.00	194.964	99.507	130.906	124.857	38.145	51.023	32.278	26.640	116.577	0.4461
4.10	227.379	109.831	147.711	140.515	40.024	54.382	33.648	27.699	130.448	0.4529
4.20	264.215	120.602	165.130	157.639	41.841	57.701	35.080	28.644	145.542	0.4593
4.30	308.063	133.102	185.548	176.774	43.945	61.117	36.513	29.678	162.498	0.4654
4.40	362.141	146.357	209.474	197.237	45.832	64.791	37.940	30.631	181.163	0.4710
4.50	420.231	159.520	233.504	220.404	47.706	68.179	39.275	31.515	201.589	0.4764
4.60	488.328	174.354	260.180	244.937	49.599	71.747	40.616	32.504	222.937	0.4815
4.70	568.379	190.389	291.224	272.659	51.463	75.583	42.011	33.428	246.925	0.4863
4.80	665.376	207.750	324.216	301.451	53.416	79.064	43.360	34.268	273.995	0.4909
4.90	775.061	224.530	359.681	334.194	55.033	82.672	44.591	35.087	301.950	0.4952
5.00	906.600	243.341	399.344	370.625	57.004	86.416	45.804	35.948	334.132	0.4993

M _S (Air)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄
1.50	0.83%	0.43%	0.12%	0.00%	3.41%	2.45%	4.29%	5.22%
2.00	2.34%	0.89%	0.51%	0.21%	7.86%	5.68%	9.70%	11.63%
2.50	4.68%	1.44%	1.20%	0.72%	12.96%	9.35%	15.60%	18.40%
3.00	7.68%	2.18%	1.99%	1.23%	18.38%	13.42%	21.61%	25.07%
3.50	11.41%	3.17%	2.71%	1.76%	23.83%	17.71%	27.47%	31.33%
4.00	15.72%	4.55%	3.39%	2.06%	29.10%	22.13%	32.94%	37.06%
4.50	20.92%	6.30%	3.86%	2.34%	34.03%	26.43%	37.93%	42.12%
5.00	27.02%	8.15%	4.21%	2.38%	38.53%	30.55%	42.43%	46.59%

Tableau 5.111 : Effet de gaz sur $\epsilon(M_S)$ (%) pour la tuyère *MLN* axisymétrique ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

Tableau 5.112 : Effet de gaz sur l'écart relative en C_{Masse} pour la tuyère *MLN* axisymétrique ayant même C_F que le cas de l'air lorsque T_0 =2000 K.

M _S (Air)	H ₂	O ₂	N ₂	CO	CO ₂	H ₂ O	NH ₃	CH ₄
1.50	2.47%	0.63%	0.20%	0.01%	6.37%	4.88%	7.74%	10.37%
2.00	4.73%	1.93%	0.72%	0.31%	14.92%	11.28%	18.70%	21.91%
2.50	11.07%	3.33%	2.80%	1.59%	27.27%	20.05%	32.37%	37.18%
3.00	22.16%	5.90%	5.41%	3.26%	41.71%	31.92%	47.48%	53.28%
3.50	40.17%	9.74%	8.14%	5.08%	55.65%	44.51%	61.38%	66.89%
4.00	67.20%	14.65%	12.27%	7.08%	67.28%	56.24%	72.31%	77.15%
4.50	109.04%	20.64%	16.15%	9.64%	76.26%	66.08%	80.46%	84.32%
5.00	172.27%	26.91%	19.93%	11.30%	82.88%	74.04%	86.24%	89.20%

5.4.11. Effet du gaz sur l'écoulement à travers la tuyère *MLN* axisymétrique dans une même forme de tuyère avec l'air.

On a remarqué que si on garde un même paramètres pour tous les gaz, les autres paramètres seront différents notamment la forme de la tuyère. Maintenant si on garde la même forme de la tuyère de l'air délivrant un nombre de Mach M_S pour T_0 donnée et on change l'air par d'autres gaz, la première remarque mentionnée c'est que l'écoulement à travers la section de sortie ne reste plus uniforme et parallèle. On estime qu'on va voir une dégradation de M_S pour les CO₂, H₂O, NH₃ et CH₄ par rapport à celui de l'air et une augmentation de M_S pour les gaz H₂, O₂, N₂ et CO. La répartition des zones d'écoulement une seule zone d'écoulement de type non simple à travers toute la tuyère et la zone uniforme *BSE* se disparaitre. Alors pour changer l'air par d'autres gaz, il faut concevoir une autre forme de la tuyère pour garder la condition d'écoulement uniforme et parallèle à la sortie de la tuyère conformément aux résultats présentés dans ce travail.

5.4.12. Courbes isoMach et isodirection de la tuyère MLN axisymétrique

La figure (5.130a) représente les courbes isoMach déterminées par la méthode des caractéristiques. Cette figure s'interprète que l'écoulement est axisymétrique. On remarque que les courbes isoMach dans la zone de transition sont des lignes courbes vu que cette zone est de type non simple. L'écoulement commence par une entré 1D et se termine par une sortie 1D, mais à travers la tuyère

l'écoulement est 3D. On peut bien remarquer la détente brusque au coin supérieure ou les courbes se passent par ce point dans la région de Kernel jusqu'à un nombre de Mach précis qui est égal à M^{*} . Alors si le nombre de Mach de la courbe isoMach est inférieure à M^{*} elle commence par le point *A* de la figure (4.2b) du chapitre 4. On remarque clairement la zone uniforme

La figure (5.130b) représente les courbes iso directions. Les points qui possèdent une direction nulle sont les points du col, l'axe horizontal et la partie uniforme triangulaire. Cette figure démontre aussi que l'écoulement est axisymétrique. On remarque clairement que l'angle de déviation de l'écoulement qui représente aussi l'angle de déviation de la paroi augmente légèrement de $\theta=\theta^*$ à $\theta=\theta_{Max}$ ensuite il ya redressement de la paroi de $\theta=\theta_{Max}$ à $\theta=0.0$ à la sortie de la tuyère.

Notons que l'allure des isoMach et les isodirections présentées dans cette figure est la même indépendamment du gaz utilisé.

(a) : Courbes iso-Mach. (b) : Courbes iso-directions. Figure 5.130 : Courbes iso-valeurs de la tuyère *MLN* axisymétrique.

5.4.13. Troncature de la tuyère

D'après les résultats obtenus, on remarque que la dimension de la tuyère augmente avec M_S et T_0 donnant une masse importante et des performances bien déterminées. Le gaz aussi influe sur la dimension de la tuyère donnant un écoulement uniforme et parallèle à la sortie. Si on regarde la variation de nombre de Mach conformément aux figures (5.111), (5.116) et la variation de la paroi à travers l'axe de la tuyère on remarque qu'au voisinage de la section de sortie la paroi est presque horizontale avec une très petite légère variation de nombre de Mach sur une distance très grande de la tuyère. Alors, comme une technique pour gagner une portion très importante de la masse sans changement important des autres paramètres comme le C_F , on peut couper la tuyère à une section bien déterminée sur l'axe horizontal et de voir exactement le changement en C_F et C_{Masse} . Pour cette raison on a fait la variation de C_{Masse} et C_F à travers l'axe de la tuyère dans l'endroit voulu et de voir le gain en C_{Masse} et en parallèle une perte en C_F . La variation de gain relative en % en C_{Masse} et la perte relative en % en termes

de C_F est représentée sur la figure (5.133). L'exemple présenté sur ces trois figures est pour M_S =3.00 et T_0 =2000 K.

Sur la figure (5.131) on remarque que l'augmentation de la masse est presque linéaire avec l'axe de la tuyère pour tous les gaz. Alors il est important. Alors à une section donné, c'est-à-dire x/y_* donné, le C_{Masse} présenté sur cette figure représente la masse de la tuyère entre le col et la section considérée.

La figure (5.132) représente la variation de C_F avec l'axe de la tuyère entre le col et la section considérée. On remarque que la contribution de la moitié de C_F est donnée par 25 % environ de la tuyère complète, vu le changement important dans cette région. Dans les 75 % dernière de la tuyère contribue avec 50 % de C_F .

Figure 5.131 : Effet du gaz sur la variation de C_{Masse} à travers la paroi de MLN axisymétrique.

Figure 5.132 : Effet du gaz sur la variation de C_F à travers la paroi de *MLN* axisymétrique.

Sur la figure (5.133) on a illustré le gain obtenu en C_{Masse} et la perte obtenue en C_F lorsqu'on fait une coupure dans n'importe quel endroit de la tuyère entre le col et la section de sortie. Alors les deux extrémités présentent respectivement la coupure au col et à la section de sortie. La coupure au col veut à dire la coupure est faite à 0%. Dans ce cas elle donne un gain de 100 % de C_{Masse} et une perte de 100 % en C_F . Dans ce cas la tuyère est complètement enlevée. A la section de sortie, la coupure est faite à 100%. Dans ce cas on aura une perte en C_{Masse}

égale à 0% et un gain en C_F égale à 100%. C'est-à-dire pas de coupure et la tuyère est complètement utilisée dans la propulsion. Ces deux cas ne posent aucuns intérêts pratiques. Alors on peut dire que ces trois figures s'interprètent au même temps pour une bonne illustration.

Réellement la coupure est faite dans un endroit bien précis entre le col et la section de sortie suivant le besoin utilisé en performances. Les tableaux (5.113) et (5.114) présentent respectivement le gain relatif en C_{Masse} et la perte relative en C_F selon la position de coupure en % par rapport au col de la tuyère pour l'exemple de M_S =300 et T_0 =2000 K selon la figure (5.133). Dans ce cas la longueur de la tuyère et le rapport des sections changent aussi. Mais on n'a pas intéressé à ces paramètres. Par exemple si on fait une coupure à 70 % du col de la tuyère, on aura dans ce cas un gain en $\varepsilon(C_{Masse})$ =35% environ et en parallèle une perte relative en C_F égale à 2%, ce qui montre l'intérêt de la troncature.

D'après les valeurs présentées dans les tableaux (5.113) et (5.114), on remarque que le gaz n'influe pas presque sur le gain en masse et la perte en poussée.

Figure 5.133 : Effet du gaz sur la variation de gain en C_{Masse} et en perte de C_F en fonction de la position de la troncature en (%) par rapport au col pour *MLN* axisymétrique.

· ·				,		•	0	Ŭ	
Position de coupure (%)	H_2	O ₂	N ₂	СО	CO ₂	H ₂ O	NH ₃	CH_4	Air
0	100	100	100	100	100	100	100	100	100
10	93.67	93.82	93.77	93.79	94.47	94.19	94.59	94.89	93.80
20	85.97	86.25	86.14	86.10	87.08	86.69	87.31	87.71	86.19
30	77.08	77.41	77.28	77.30	78.37	77.94	78.67	79.01	77.34
40	67.34	67.68	67.51	67.54	68.68	68.16	68.87	69.27	67.57
50	56.96	57.21	57.04	57.13	58.12	57.81	58.29	58.74	57.21
60	46.13	46.29	46.08	46.11	47.01	46.70	47.21	47.50	46.20
70	34.77	35.05	34.78	34.85	35.56	35.34	35.66	35.94	34.98
80	23.35	23.43	23.18	23.30	23.90	23.60	23.89	24.05	23.37
90	11.65	11.86	11.74	11.67	11.90	11.88	12.00	12.09	11.61
100	0	0	0	0	0	0	0	0	0

Tableau 5.113 : Gain relative en C_{Masse} pour différent gaz en fonction de la position de coupure en % par rapport au col de *MLN* axisymétriquelorsque M_s =3.00 et T_0 =2000 K.

Position de coupure (%)	H_2	O ₂	N ₂	СО	CO ₂	H ₂ O	NH ₃	CH ₄	Air
0	100	100	100	100	100	100	100	100	100
10	67.51	66.81	67.24	67.18	65.19	65.74	64.09	63.12	67.05
20	42.75	42.09	42.44	42.22	39.98	40.61	39.02	38.00	42.29
30	26.03	25.55	25.81	25.74	24.11	24.52	23.48	22.71	25.69
40	15.39	15.10	15.23	15.19	14.26	14.41	13.78	13.38	15.15
50	8.71	8.51	8.58	8.58	8.04	8.19	7.76	7.58	8.59
60	4.58	4.46	4.48	4.47	4.21	4.26	4.07	3.96	4.47
70	2.08	2.05	2.05	2.05	1.93	1.96	1.86	1.82	2.06
80	0.74	0.72	0.72	0.72	0.69	0.69	0.66	0.64	0.72
90	0.13	0.13	0.13	0.13	0.12	0.12	0.12	0.12	0.13
100	0	0	0	0	0	0	0	0	0

Tableau 5.114 : Perte relative en C_F pour différent gaz en fonction de la position de coupure en % par rapport au col de *MLN* axisymétrique lorsque M_S =3.00 et T_0 =2000 K.

5.3.14. Effet de gaz sur la zone uniforme de la tuyère

La figure 5.134 représente le volume occupé par la zone uniforme en fonction de M_S et le gaz pour T_0 =2000 K. Vu les valeurs important obtenu, on a préféré la présentation en échelle Logarithmique. On remarque que le volume de cette zone devient très important pour les tuyères délivrant un M_S grand et petit pour les M_S petit. Le CH₄, NH₃, CO₂ et H₂O sont recommandés pour les souffleries et à déconseillés pour les engins aérospatiaux vu que le volume de la zone uniforme est important. Le choix d'un tel gaz pour cette considération tombe en concordance avec le choix de gaz sur la considération de C_{Masse} , M_S et C_F .

Sur la figure 5.135 on a représenté le pourcentage d'apparition des trois zones de la figure 4.2 en fonction de nombre de Mach de sortie et le gaz lui-même lorsque T_0 =2000 K. On remarque que la zone de Kernel a un volume très réduit ce qui un avantage très intéressant pour la conception des tuyères supersonique.

Concernant la zone uniforme, pour faible M_S , elle commence par une taille de 20 % et qui augmente à 40 % de la taille totale de la tuyère. Elle possède plus de 50 % de la taille totale de la tuyère lorsque M_S dépasse 3.00 ce qui est un inconvénient pour les applications aérospatiale. D'où l'intérêt de la troncature de la tuyère déjà discutée. Entre les 9 gaz choisis, la contribution est presque varie de 5% entre le meilleur et le mauvais gaz pour les applications.

Figure 5.134 : Effet du gaz sur la variation de volume de la zone uniforme dans la tuyère *MLN* axisymétrique.

Figure 5.135 : Effet du gaz sur la variation en pourcentage d'apparition des trois zones dans la tuyère *MLN* axisymétrique.

CONCLUSION

Le présent travail nous a permet de faire étudier l'effet d'utilisation des gaz de propulsion sur l'écoulement à travers une tuyère supersonique à haute température et application dans la tuyère type détente centrée. On peut tirer à partir de ce travail les conclusions suivantes :

- 1. Le programme numérique peut faire n'importe quel gaz trouvé dans la nature. Il faut ajouter dans ce cas la variation de la chaleur spécifique $C_P(T)$ en fonction de la température et la constante *R* du gaz sans oublier le calcul de la fonction *H*(*T*).
- 2. La fonction $C_P(T)$, R et le rapport $\gamma(T)$ caractérisent le pouvoir calorifique des gaz et influe principalement sur tous les paramètres thermodynamiques, physique de conception.
- Pour les applications des moteurs fusés, missiles et avions supersoniques, il est recommandé d'utiliser des gaz de propulsion ayant un rapport γ le plus petit possible pour avoir une masse petite et C_F grand. Parmi les gaz choisis, le CH₄ est un mauvais choix et le H₂ est un bon choix.
- 4. Pour les applications de construction des souffleries supersoniques, il est recommandé d'utiliser les gaz de propulsion ayant un rapport γ grand pour avoir une tuyère volumineuse et un rapport A_S/A_{*} grand. Parmi les gaz choisis, le CH₄ est un bon choix et le H₂ est un mauvais choix.
- 5. La température génératrice et le nombre de Mach influent aussi sur tous les paramètres de l'écoulement.
- 6. Plus le rapport γ du gaz est grand, plus les paramètres *m*, *M*, *P*/*P*₀ et ρ/ρ_0 sont grands. Alors que le paramètre T/T_0 devient très petit. Ce type de gaz s'appelle gaz froid, c'est le cas pour H₂, O₂, N₂, CO et air.
- 7. Plus le rapport des calculs spécifiques $\gamma(T)$ des gaz est élevé, plus les paramètres de conception L/y_* , y_E/y_* , C_{Masse} et C_F sont plus petits. Ce type de gaz s'appelle gaz froid, c'est le cas pour H₂, O₂, N₂, CO et air.
- 8. Il faut ajuster le débit critique selon le gaz choisi pour la propulsion pour avoir un écoulement supersonique dans le divergent de la tuyère. Un mauvais ajustement du débit critique cause de voir un écoulement subsonique dans le divergent.
- 9. Les rapports T/T_0 et P/P_0 influent sur le choix de matériaux de construction de la tuyère. En plus T_0 et M_S , le gaz choisi pour la propulsion va diminuer ou augmenter ces rapports à travers la tuyère.
- 10. En plus de T_0 et M_S qui influent sur l'ouverture de la tuyère au col (qui influe sur le volume et la forme de la tuyère), le gaz lui-même influe aussi.
- 11. Le gaz de propulsion influe sur les tous les paramètres thermodynamiques et de conception.

- 12. Si on garde la forme de la tuyère donnée pour l'air, l'utilisation d'un autre gaz à la place de l'air va perdre la condition d'écoulement uniforme et parallèle à la section de sortie. Parmi les gaz choisis, l'utilisation de H₂, N₂, CO par augmenter le nombre de Mach de sortie et l'utilisation des gaz CH₄, NH₃, CO₂ et H₂O va dégrader le nombre de Mach de sortie.
- 13. La convergence des résultats numériques est contrôlée par la convergence du rapport des sections, calculé numériquement, vers celui donné par la théorie. Les autres paramètres de conception convergent automatiquement vers la solution désirée.
- 14. Une infinité de forme de tuyères peuvent être trouvée en jouant sur trois paramètres qui sont M_S , T_0 et le gaz ($C_P(T)$, R).
- 15. Pour même gaz, si on trouve une autre interpolation $C_P(T)$ donnant des proches résultats par rapport aux valeurs expérimentaux, on peut incorporer cette fonction dans le programme pour améliorer encore les résultats numériques sur les paramètres de conception.
- 16. Le gaz de propulsion influent sur la grandeur des rapports thermodynamiques P/P_0 , T/T_0 , ρ/ρ_0 et géométriques y_S/y_* de l'écoulement.
- 17. Le modèle d'un gaz parfait à basse température considéré pour C_P constante devient un cas particulier de notre étude. Il suffit qu'à calculer la valeur de C_P à la température *T*=298.15 K.
- 18. La précision de calcul dépend essentiellement des résultats amont, indépendamment des résultats aval. Une mauvaise disposition des points au col peut ne pas converger les calculs rapidement vers la solution désirée.
- 19. A faible température et nombre de Mach, l'écart en résultats entre les différents gaz peut être négligé, ce qui montre la possibilité d'utilisation n'importe quel gaz au lieu de l'air. On peut aller jusqu'à M_E =1.50 indépendamment de T0 ou T_0 <300 K indépendamment de M_E .
- 20. L'utilisation des gaz comme le CH₄, NH₃, H₂O et CO₂ dégrade le nombre de Mach de sortie par rapport à celui de l'air. Tandis que le H₂, N₂ et CO augmente le nombre de Mach par rapport à l'air, surtout lorsque T₀ est élevée.
- La conservation de M_E pour un tel gaz nécessite un changement de la forme de la tuyère qui supporte ces paramètres.
- 22. L'utilisation d'un gaz possédant un rapport des chaleurs spécifiques inférieure à celui de l'air va diminuer le *M_E*, ce qui est le cas pour le CH₄, NH₃, CO₂, H₂O et O₂, tandis qu'un gaz possédant un rapport des chaleurs spécifiques supérieure à celui de l'air va augmenter le ME, ce qui est le cas pour H₂, N₂ et CO.
- 23. Un gaz possédant un rapport des chaleurs spécifiques petit demande un espace large de la tuyère pour donner un écoulement uniforme et parallèle ce qui est le cas pour CH₄, NH₃, CO₂ et H₂O.

- 24. Le cas de la dissociation peut être étudié. Dans ce cas il faut calculer la chaleur spécifique à pression constante des atomes constituant le gaz dissocié selon la relation de la dissociation et d'injecter la formule résultante dans le programme sans oublier d'ajouter un terme de correction dans les deux relations de compatibilités et en aura les résultats.
- 25. L'écoulement à travers la tuyère et en particulier à travers à la section de sortie ne reste ni uniforme et ni parallèle si un gaz est utilisé à la place de l'autre.
- 26. Une onde de choc oblique est développée sur la paroi au voisinage de la section de sortie de la tuyère pour CH_4 , NH_3 , H_2O et CO_2 . Cette onde de choc se dépasse vers le col si T_0 augmente et diminution du rapport des chaleurs spécifiques.
- 27. Le champ de l'écoulement dans la tuyère ne reste plus divisé en trois zones comme le cas de l'air. Il sera constitué uniquement d'une seule zone d'écoulement de type non simple. Alors absence de la région uniforme.
- 28. La détente sera incomplète pour les gaz ayant un rapport γ plus grand que celui de l'air, ce qui est le cas pour le CH₄, NH₃, H₂O, O₂ et CO₂ et une sur détente pour les gaz ayant un γ plus grand que celui de l'air, ce qui est le cas pour le H₂, N₂ et CO.
- 29. Dans certain cas il est très intéressant de faire une troncature de la tuyère au niveau de la section de sortie, pour but de gagner un pourcentage de la masse de la tuyère et par conséquent on aura une petite diminution légère du coefficient de poussée.
- 30. Pour chaque couple de (γ , M_E et C_P), on aura une correction aux paramètres suivant la valeur de la température T_0 .
- 31. Une correction à la forme de la tuyère du gaz choisi est nécessaire si on garde les mêmes paramètres de l'écoulement de l'air et cela suivant la valeur de T_0 et M_E .
- 32. Les résultats de cette étude sont valables pour n'importe quelles type de tuyère, par exemple à corps central, double galbe, annulaire, zone d'expansion de géométries plane ou axisymétrique.
- 33. Cette étude sur l'effet de gaz de propulsion est valable pour n'importe quel type de tuyère supersonique.
- 34. Pour les applications de la propulsion aérospatiale il est recommandé d'utiliser la géométrie axisymétrique. Tandis que pour les souffleries il est recommandé d'utiliser la géométrie 2D, vu les performances données pour chaque géométrie.
- 35. La détente dans une tuyère axisymétrique est plus rapide que la détente dans une tuyère bidimensionnelle.
- 36. La tuyère axisymétrique possède un point d'inflexion.

- 37. Le coefficient de poussée C_F ne dépend pas de la géométrie de la tuyère. Alors il est le même entre le cas 2D et axisymétrique. Il dépend uniquement de T_0 , M_S et la thermodynamique de gaz (C_P , R).
- 38. Le comportement de gaz envers de l'écoulement ne dépend pas de type de la géométrie de la tuyère. Il est le même pour les géométries 2D et axisymétrique.
- 39. Trois grands problèmes d'amélioration des performances selon l'utilisation d'autres gaz au lieu de l'air peuvent êtres étudiés dans la conception des tuyères supersoniques. Notamment la possibilité d'amélioration M_S , C_F et C_{Masse} . L'amélioration de M_S et C_F veut dire la possibilité d'augmentation de ces paramètres par rapport au cas de l'air. Tandis que l'amélioration de C_{Masse} c'est la possibilité de diminution de cette valeur par rapport au cas de l'air.
- 40. Pour le premier problème de choix de gaz donnant même nombre de Mach de sortie M_S de la tuyère que le cas de l'air, pour H₂, perte en C_F et gain en C_{Masse} peut arriver respectivement à 8 % et 25 % environ. Tandis que pour le CH₄, on peut avoir une amélioration en C_F et perte en C_{Mass} respectivement jusqu'à 130 % et 1500 % environ pour M_S =5.00 et T_0 =3000 K.
- 41. Pour le deuxième problème de choix de gaz donnant même masse de la tuyère que le cas de l'air, pour H₂, l'amélioration en M_S et perte en C_F peut arriver respectivement à 8 % et 10 % environ. Tandis que pour le CH₄, on peut avoir une perte en M_S et amélioration en C_F respectivement jusqu'à 30 % et 75 % environ pour M_S =5.00 et T_0 =3000 K.
- 42. Pour le troisième problème de choix de gaz donnant même C_F de la tuyère que le cas de l'air, pour H₂, l'amélioration en M_S et perte en C_{Masse} peut arriver respectivement à 35 % et 185 % environ. Tandis que pour le CH₄, on peut avoir une perte en M_S et gain en C_{Masse} respectivement jusqu'à 55 % et 95 % environ pour M_S =5.00 et T_0 =3000 K.
- 43. On ne peut pas améliorer au même temps les trois paramètres M_S , C_F et C_{Masse} dans un seul problème. Toujours il ya fixation d'un paramètre, amélioration de l'autre et perte de troisième paramètre
- 44. A la fin de la conception, la troncature de la tuyère est parfois utile pour gagner une portion importante de la masse de la tuyère et en parallèle on va perdre un petit pourcentage du coefficient de poussée et de nombre de Mach.

Comme perspectives et dans le même axe de recherche, on suggère quelques axes de recherches qui seront considérés comme une continuité de notre travail.

 On peut utiliser ce présent travail pour étudier l'effet de gaz propulsion à HT sur la conception et le dimensionnement des tuyères supersoniques des diverses formes comme la double galbe (Dual bell nozzle) de géométries 2D, axisymétrique et 3D par la méthode des caractéristiques.

- Corriger l'écoulement dans la tuyère *MLN* dimensionnée par le modèle GP en utilisant la méthode des caractéristiques à haute température.
- Calculer l'écoulement à travers la tuyère en utilisant la CFD avec une nouvelle forme de l'équation d'énergie en tenant compte de la variation de la chaleur spécifique C_P avec la température pour but de faire comparaison avec les présents résultats.
- On peut par suite étudier l'effet de la viscosité pour calculer la force de frottement causée par la naissance de la couche limite qui sera développée à l'intérieure de la tuyère.
- On peut étudier le dimensionnement de la tuyère dans le cas de la dissociation des molécules dans la chambre de combustion. Dans ce cas il faut déterminer la température génératrice et la pression génératrice ainsi que les fractions molaires de toutes les substances qui peuvent êtres existées à la sortie de la chambre de combustion et qui se trouve dans la tuyère supersonique. Dans ce cas il faut dimensionner la tuyère sur la base de gaz obtenu à partir d'un mélange des dites substances. Donc il faut déterminer la chaleur spécifique $C_P(T)$ du mélange sur la base des fractions molaires des substances obtenus après la combustion en utilisant le calcul du barycentre de toutes les $C_P(T)$ des substances pondérées par les fractions molaires des substances et calculer ensuite l'enthalpie de mélange et utiliser le programme numérique élaboré dans ce contexte pour déterminer les résultats de dimensionnement et les divers paramètres de conception.

APPENDICE A

LISTE DES SYMBOLES

М	Nombre de Mach.
δ	Type de géométrie. δ=0 le cas plan. δ=1 le cas axisymétrique.
x	Abscisse d'un point du champ d'écoulement [m].
У	Ordonnée d'un point du champ d'écoulement [m].
а	Vitesse du son [m/s].
Ρ	Pression [Pascal].
Т	Température [K].
R	Constante thermodynamique du gaz [J/(kg K)].
Н	Enthalpie [J/kg].
A	Aire d'une section [m ²].
т	Débit massique critique[kg/s].
Y	Rapport des chaleurs spécifiques.
ρ	Densité [kg/m ³].
3	Erreur de calcul.
a', b', c'	Coefficients de la fonction $C_P(T)$ respectivement en [J/(kg K)], [J/kg], [J
	K/kg].
v	Fonction de Prandtl Meyer [rad].
C_F	Coefficient de la force de poussée délivrée par la tuyère.
C _{Masse}	Masse de la tuyère sous la forme adimensionnelle.
μ	Angle de Mach [rad].
θ	Angle de déviation de l'écoulement [rad].
Ν	Nombre des caractéristiques descendantes.
C_P	Chaleur spécifique à pression constante.
L	Longueur [m].
V	Vitesse de l'écoulement [m/s].
NC	Nombre des caractéristiques régulières.
NJ	Nombre des caractéristiques insérées.
Δ	Nombre réel supérieur à l'unité.
C_T	Interpolation de T entre deux points. Il appartient à [0.1].
C_y	Interpolation de <i>y</i> entre deux points. Il appartient à [0.1].
$C_{ heta}$	Interpolation de T entre deux points. Il appartient à [0.1].
C_W	Interpolation de $ heta$ entre deux points sur la paroi. Il appartient à [0.1].
α	Interpolation de <i>P</i> sur la paroi de la tuyère. Il appartient à [0.1].
HT	Haute Température.
PM	Prandtl Meyer.
GP	Gaz parfait.

MLN	Minimum Length Nozzle.
мос	Method Of Characteristics.
PN	Tuyère à corps central à bouchon (Plug Nozzle).
EDN	Tuyère à Détente déflexion (Expansion Deflexion Nozzle)

Indices

0	Condition d'arrêt (Chambre de combustion).
*	Condition critique.
S	Section supersonique.
1	Valeur au point 1.
2	Valeur au point 2.
3	Valeur au point 3.
E	Section de sortie.
i	Point.
A	Col de la tuyère.
d	Région de Kernel.

Exposant

* Juste après la détente.

APPENDICE B

ORGANIGRAMME DE PROGRAMME SUR L'EFFET DE GAZ SUR LES RAPPORTS THERMODYNAMIQUES ET LA FONCTION DE PRANDTL MEYER

Calcul les paramètres Thermodynamiques supersoniques correspondants à T_0 et M_S .

- Rapport des masses volumiques $\rho_{\rm S}/\rho_0$. Le calcul de l'intégrale (3.3) se fait par la quadrature de Simpson à pas variable.
- Rapport des pressions $P_{\rm S}/P_0$ par la relation (3.9).
- Rapport de a_S/a_0 par la relation (3.10).
- Débit massique critique par la relation (3.26) juste pour vérification.
- Coefficient de poussée C_F par la relation (3.25).

Calcul le rapport critique des sections A_S/A_* correspondant à T_0 et M_S . Le calcul de l'intégrale (3.69) se fait dans l'intervalle [T_S , T_*] par la quadrature de Simpson à pas variable

Calcul de la valeur de la fonction de Prandtl Meyer v_S correspondant à T_0 et M_S . Le calcul de l'intégrale (3.26) se fait par la quadrature de Gauss Legendre d'ordre 12 pour une fonction singulière.

APPENDICE C

ORGANIGRAMME DE PROGRAMME SUR L'EFFET DE GAZ SUR LE DIMENSIONNEMENT DE LA TUYERE A DETENTE CENTREE 2D ET

AXISYMETRIQUE

Initialisation de la masse de la tuyère et la force de poussée à zéro

MASSE=0.0 : FORCE=0.0

Calcul les paramètres critiques au col de la tuyère T_*/T_0 , ρ_*/ρ_0 et P_*/P_0

Calcul les paramètres de l'écoulement suivant la première caractéristique descendante à partir du col (Ligne sonique) I=1 $X_1=0.0$, $Y_1=YC$, $TH_1=0.0$, $M_1=1.0$, $T_1=T_*$, $RR_1=\rho_*/\rho_0$, $RP_1=P_*/P_0$ $X(1)=X_1$, $Y(1)=Y_1$, $TH(1)=TH_1$, $M(1)=M_1$, $T(1)=T_1$, $RP(1)=RP_1$, $RR(1)=RR_1$ $X_A(1)=X_1$, $Y_A(1)=Y_1$, $TH_A(1)=TH_1$, $M_A(1)=M_1$ $T_A(1)=T_1$, $RP_A(1)=RP_1$, $RR_A(1)=RR_1$

Calcul de la température T_S à la section de sortie de la tuyère correspondant à T_0 et nombre de Mach M_S par la résolution de l'équation non linéaire (3.6) par la méthode de dichotomie. $T_S \varepsilon$] T_* , T_0 [et déduire le rapport T_S/T_0 .

Calcul les rapports thermodynamiques à la section de sortie de la tuyère.

- Rapport des masses volumiques ρ_S/ρ₀. Le calcul de l'intégrale (3.3) se fait par la quadrature de Simpson à pas variable.
- Rapport des pressions *P*_S/*P*₀ par la relation (3.9).

D

 $P_{MOY}=P_0 \times (RP(J-1) + RP(J))/2$

- FORCE = FORCE + 2 × P_{MOY} × (Y_{P2} - Y_{P1}) pour la tuyère 2D
- FORCE=FORCE+P_{MOY}*(Y_{P2}-Y_{P1})*(Y_{P2}+Y_{P1})*L_{SEGMENT}*3.14159 pour la tuyère axisymétrique

APPENDICE D

METHODE DES CARACTERISTIQUES

La théorie des petites perturbations nous permet de linéariser les équations de base de l'écoulement d'un fluide compressible dans un régime subsonique et supersonique. La solution de ces équations est une approximation de la solution exacte. Si la précision désirée est insuffisante, il est nécessaire de trouver la solution améliorée en gardant les termes d'ordre de grandeur plus élevés, ou on utilise les équations exactes non linéaires. Les solutions de ces dernières sont généralement rares on a plus souvent recours à l'approche numérique.

La résolution du problème de l'écoulement dans les tuyères supersoniques consiste à résoudre simultanément les équations de conservation de la masse, de quantité de mouvement axiale et radiale et de l'énergie. Notons que ces équations sont des équations différentielles aux dérivées partielles dont la résolution n'est pas connue a priori, vu le manque des conditions aux limites pour l'unicité de la solution, étant donné encore que le profil de la tuyère est lui-même inconnu et recherché. A ce titre, on considère les hypothèses suivantes:

D.1. Hypothèses

- L'écoulement est entièrement établi (stationnaire).
- Les forces à distances comme l'effet de la pesanteur, les interactions entre les particules de fluide et les forces extérieures de source électrique et magnétique sont absentes.
- Le gaz est parfait. Cependant, le volume occupé par les molécules est supposé nul, ce qui implique que l'effet de la viscosité est négligé.
- Le gaz est thermiquement parfait. L'augmentation de la température ne permet pas la dissociation des molécules.
- Le gaz est calorifiquement imparfait. La chaleur spécifique C_p est une fonction de la température.
- L'écoulement est isentropique. Cette propriété explique l'absence de dissipation causée par l'onde de choc.
- L'écoulement est idéal. Le transfert de chaleur par conduction entre les différentes particules de gaz est négligé.
- L'écoulement est irrotationnel. Cette hypothèse est vérifiée tant que l'entropie est invariable.
- Le transfert de chaleur forcé par convection ou rayonnement avec la paroi de la tuyère est absent.

D.2. Equations de l'écoulement

Dans un système de coordonnées cartésiennes, les équations de base de l'écoulement sont les suivantes:

• Equation de continuité:

$$\frac{\partial(\rho u)}{\partial x} + \frac{1}{y^{\delta}} \frac{\partial(y^{\delta} \rho v)}{\partial y} = 0$$
 (D.1)

• Equations de conservation de la quantité de mouvement:

$$\frac{\partial(\rho u^2 + P)}{\partial x} + \frac{\partial(\rho u v)}{\partial y} = 0$$
 (D.2)

$$\frac{\partial(\rho uv)}{\partial x} + \frac{\partial(\rho v^2 + P)}{\partial y} = 0$$
 (D.3)

<u>Equation de conservation de l'énergie</u>

$$V^2 = 2 H(T)$$
 (D.4)

Avec :

$$H(T) = \int_{T}^{T_0} C_P(T) dT$$
 (D.5)

et

$$V^{2} = u^{2} + v^{2}$$

 $a^{2}(T) = \gamma(T) R T$ (D.6)

• Equation d'état du gaz parfait:

$$P = \rho r T \tag{D.7}$$

Le système (D.1), (D.2), (D.3), (D.4) et (D.7) constitue cinq équations avec cinq inconnues (ρ , u, v, P, T). Après faire des transformations mathématiques, on obtient une équation unique reliant les composantes du vecteur vitesse, présentée par la relation suivante. Pour l'écoulement axisymétrique, la symétrie est suivant l'axe x. La direction y dans les équations est celle de la direction radiale.

$$(a^{2}-u^{2})\frac{\partial u}{\partial x}+(a^{2}-v^{2})\frac{\partial v}{\partial y}-uv\left[\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right]+\delta a^{2}\frac{v}{y}=0$$
(D.8)

On obtient ainsi l'équation générale de la dynamique des gaz. La vitesse du son est fonction de la température selon l'équation d'énergie (D.6). Comme l'écoulement est isentropique, alors *rot* $\vec{V} = \vec{0}$, s'écrit par:

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0 \tag{D.9}$$

Cette équation constitue une équation auxiliaire, dont son utilisation remplace l'une des cinq équations de base. Il existe un potentiel des vitesses φ défini par:

$$u = \frac{\partial \varphi}{\partial x}$$
 , $v = \frac{\partial \varphi}{\partial y}$ (D.10)

L'équation (D.8) s'exprime alors de la façon suivante:

$$\left[a^{2} - \left(\frac{\partial \varphi}{\partial x}\right)^{2}\right] \frac{\partial^{2} \varphi}{\partial x^{2}} + \left[a^{2} - \left(\frac{\partial \varphi}{\partial y}\right)^{2}\right] \frac{\partial^{2} \varphi}{\partial y^{2}} - 2 \frac{\partial \varphi}{\partial x} \frac{\partial \varphi}{\partial y} - \frac{\partial^{2} \varphi}{\partial x \partial y} + \frac{a^{2}}{y} \frac{\partial \varphi}{\partial y} = 0$$
(D.11)

L'équation (D.11) représente une équation différentielle non linéaire aux dérivées partielles de deuxième ordre. Les coefficients des termes de deuxième ordre contiennent les dérivées de premier ordre de la fonction φ . Cette équation est de type hyperbolique, si le discriminant est supérieur à zéro pour tout point du domaine d'écoulement:

$$B^2 - 4 A C > 0 (D.12)$$

Avec:

$$B = -2 \frac{\partial \varphi}{\partial x} \frac{\partial \varphi}{\partial y} = -2 u v \quad , \quad A = a^2 - \left(\frac{\partial \varphi}{\partial x}\right)^2 = a^2 - u^2 \quad , \quad C = a^2 - \left(\frac{\partial \varphi}{\partial y}\right)^2 = a^2 - v^2 \quad \text{D.13}$$

La condition (D.12) se réduit à:

$$\frac{u^2 + v^2}{a^2} > 1 \quad \rightarrow \quad M > 1 \tag{D.14}$$

Les coordonnées cartésiennes x et y sont généralement mal adaptées à une description de l'écoulement supersonique et les équations présentées précédemment ne peuvent donc être utilisées directement. Dans le plan (*xoy*), il y a certaines directions pour les quelles les dérivées des variables de l'écoulement telles que $\partial P/\partial x$, $\partial u/\partial x$, ... etc sont indéterminées ou discontinues [1]. Ces directions sont appelées les caractéristiques. Si on choisit ces directions comme de nouvelles coordonnées, l'équation (D.9) sera considérablement simplifiée.

D.3. Propriétés des équations Hyperboliques

On peut mentionner les propriétés suivantes:

- Une équation est de type hyperbolique, si une certaine relation est satisfaite par les coefficients des dérivées de plus grand ordre. Dans notre cas, cette condition est la relation (D.12).
- La solution en un point ne dépend que de l'état en amont de ce point.
- Les équations hyperboliques se distinguent par des directions privilégiées dans le plan (*xoy*), appelées les caractéristiques. Dans notre cas les caractéristiques sont les lignes de Mach qui sont définies en chaque point ayant un nombre de Mach, tracées l'une vers le haut et l'autre vers le bas faisant un angle μ avec le vecteur vitesse *V*.

Dans le cas général, il y a une différence entre les lignes de Mach et les lignes caractéristiques, voir figure D.1. Ces dernières sont courbes et tangentes aux premières. Les variables d'état dépendantes obéissent à des relations dites

relations de compatibilité à travers les caractéristiques Ces relations sont la base de la méthode numérique.

D.4. Equations des caractéristiques

Les équations des caractéristiques sont obtenues dans la première étape par la multiplication des équations (D.8) et (D.9) par des inconnues σ_1 et σ_2 . Après la sommation on obtient:

$$\sigma_1\left(a^2-u^2\right)\left[\frac{\partial u}{\partial x}+\frac{\sigma_1\left(-2\ u\ v\right)-\sigma_2}{\sigma_1\left(a^2-u^2\right)}\ \frac{\partial u}{\partial y}\right]+\sigma_2\left[\frac{\partial v}{\partial x}+\frac{\sigma_1\left(a^2-v^2\right)}{\sigma_2}\ \frac{\partial v}{\partial y}\right]+\sigma_1\left(\frac{\delta\ a\ v^2}{y}=0 \quad (D.15)$$

Supposons que u(x,y) et v(x,y) soient des fonctions continues. On peut écrire donc:

$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \lambda \frac{\partial u}{\partial y} \qquad , \qquad \frac{dv}{dx} = \frac{\partial v}{\partial x} + \lambda \frac{\partial u}{\partial y} \qquad (D.16)$$

Où $\lambda = dy/dx$ est la pente des caractéristiques, et sont égales aux coefficients de $\partial u/\partial y$ et $\partial v/\partial y$ dans (D.15). Alors:

$$\lambda = \frac{\sigma_1 (-2 u v) - \sigma_2}{\sigma_1 (a^2 - u^2)} , \qquad \lambda = \frac{\sigma_1 (a^2 - v^2)}{\sigma_2}$$
(D.17)

A partir des équations précédentes, on obtient un système d'équations en σ_1 et σ_2 par:

$$\begin{cases} \sigma_1 \Big[(a^2 - u^2) \,\lambda + 2 \, u \, v \Big] + \sigma_2 \, \Big[1 \Big] = 0 \\ \sigma_1 \Big[(a^2 - v^2) \Big] + \sigma_2 \, \Big[-\lambda \Big] = 0 \end{cases}$$
(D.18)

Le système (D.18) possède des solutions pour σ_1 et σ_2 si le déterminant de ce système est égal à zéro. Alors:

$$(a^2 - u^2)\lambda^2 + 2 u v \lambda u + (a^2 - v^2) = 0$$
 (D.19)

L'équation (D.19) donne deux solutions par:

$$\lambda^{\pm} = \left[\frac{dy}{dx}\right]^{\pm} = \frac{u \, v \, \pm \, a^2 \sqrt{M^2 - 1}}{u^2 - a^2} \tag{D.20}$$

Ces deux solutions représentent deux courbes dans le plan (*xoy*) qui sont appelées les caractéristiques. Une forme très simplifiée de (D.20) est obtenue par introduction de u et v en termes de V et θ et par M en terme de μ . Alors:

$$u=V\cos(\theta)$$
, $v=V\sin(\theta)$, $\theta=arctg(v/u)$ (D.21)

D'autre part on a:

$$M = \frac{1}{\sin(\mu)}$$
 , $\sqrt{M^2 - 1} = \cot g(\mu)$ (D.22)

Substituons les équations (D.21) et (D.22) dans (D.20) et après quelques transformations trigonométriques on aboutit à:

$$\lambda^{\pm} = \left[\frac{dy}{dx}\right]^{\pm} = tg(\ \theta \pm \mu) \tag{D.23}$$

Cette équation est illustrée dans la figure D.2.

D.5. Relations de compatibilité

Les équations (D.23) découlent de la localisation géométrique de lignes privilégiées dans le champ d'écoulement supersonique, qui sont en général des lignes courbes puisque μ et θ ont des valeurs locales dans le champ d'écoulement. Ces lignes ne sont pas connues à priori. Par conséquent, en introduisant les lignes ξ et η constantes comme nouvelles coordonnées dans les équations (D.6) et (D.7). On peut s'attendre à ce que ce système soit considérablement simplifié. Dans le plan (*xoy*), nous obtenons par cette transformation, deux familles de courbes $\xi(x,y)$ =cte et $\eta(x,y)$ =cte qui prennent ainsi la fonction d'un nouveau système de coordonnées. Cette transformation se révélera très utile pour la description d'un écoulement supersonique. Lors de la mise en forme des équations de base pour cette transformation, on constate qu'il est avantageux de travailler à partir de (D.11) avec V et θ comme variables dépendantes. D'après [1], les dérivées partielles sont données par:

$$\frac{\partial u}{\partial x} = \frac{\partial V}{\partial x} \cos(\theta) - V \frac{\partial \theta}{\partial x} \sin(\theta) \quad , \quad \frac{\partial u}{\partial y} = \frac{\partial V}{\partial y} \cos(\theta) - V \frac{\partial \theta}{\partial y} \sin(\theta)$$
(D.24)

$$\frac{\partial v}{\partial x} = \frac{\partial V}{\partial x}\sin(\theta) + V\frac{\partial \theta}{\partial x}\cos(\theta) \quad , \quad \frac{\partial v}{\partial y} = \frac{\partial V}{\partial y}\sin(\theta) + V\frac{\partial \theta}{\partial y}\cos(\theta) \quad (D.25)$$

Par substitution des relations (D.27) et (D.25) dans (D.8) et (D.9) on obtient, à l'aide de la définition de μ selon (D.22) et après quelques manipulation mathématiques et réarrangement, le résultat suivant:

$$\sin(\mu) \left[\frac{\partial \theta}{\partial x} \sin(\theta) - \frac{\partial v}{\partial y} \cos(\theta) \right] + \frac{\cot g(\mu)}{V} \left[\frac{\partial V}{\partial x} \cos(\theta) + \frac{\partial V}{\partial y} \sin(\theta) \right] \cos(\mu) - \delta \frac{\sin(\mu) \sin(\theta)}{y} = 0 \quad (D.26)$$

$$\frac{\partial\theta}{\partial x}\cos(\theta) + \frac{\partial\theta}{\partial y}\sin(\theta) + \frac{1}{V} \left[\frac{\partial V}{\partial x}\sin(\theta) - \frac{\partial V}{\partial y}\sin(\theta) \right] = 0$$
(D.27)

Par multiplication de (D.27) par *cos* (μ) et ensuite, soit par l'addition, soit par la soustraction de la relation (D.26) on obtient, après quelques transformations trigonométriques, le résultat suivant:

$$\left[\frac{\partial\theta}{\partial x}\cos(\theta-\mu) + \frac{\partial\theta}{\partial y}\sin(\theta-\mu)\right] + \frac{\cot g(\mu)}{V} \left[\frac{\partial V}{\partial x}\cos(\theta-\mu) + \frac{\partial V}{\partial y}\sin(\theta-\mu)\right] - \delta \frac{\sin(\mu)\sin(\theta)}{y} = 0$$
(D.28)

$$\left[\frac{\partial\theta}{\partial x}\cos(\theta+\mu) + \frac{\partial\theta}{\partial y}\sin(\theta+\mu)\right] - \frac{\cot g(\mu)}{V} \left[\frac{\partial V}{\partial x}\cos(\theta+\mu) + \frac{\partial V}{\partial y}\sin(\theta+\mu)\right] + \delta \frac{\sin(\mu)\sin(\theta)}{y} = 0 \quad (D.29)$$

On introduit à cette étape, les coordonnées $\xi(x,y)$ et $\eta(x,y)$. On peut écrire pour une fonction *f* arbitraire, en allons du point *P* au point *P*' de la figure D.2, la relation suivante

$$\Delta f = \frac{\partial f}{\partial \eta} \Delta \eta \tag{D.30}$$

Suivant x, puis suivant y, on a:

$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$$
 (D.31)

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\Delta y}{\Delta x} = \frac{\partial f}{\partial \eta} \frac{\Delta \eta}{\Delta y}$$
(D.32)

Cependant, d'après la même figure D.2, on a:

$$\frac{\Delta y}{\Delta x} = tg(\theta + \mu) \tag{D.33}$$

et

$$\frac{\Delta \eta}{\Delta x} = \frac{1}{\cos(\theta + \mu)} \tag{D.34}$$

Remplaçons (D.33) et (D.34) dans (D.32), puis multiplions par $cos(\theta+\mu)$, on obtient alors:

$$\cos(\theta + \mu) \quad \frac{\partial f}{\partial x} + \sin(\theta + \mu) \frac{\partial f}{\partial y} = \frac{\partial f}{\partial \eta}$$
(D.35)

De même, une relation entre la direction ξ et *x*,*y* (coordonnées cartésiennes), en allant de *P* à *P*" sur ξ est donnée par:

$$\cos(\theta - \mu) \frac{\partial f}{\partial x} + \sin(\theta - \mu) \frac{\partial f}{\partial y} = \frac{\partial f}{\partial \xi}$$
(D.36)

Par identification de (D.36) et (D.28) on peut écrire, le long de la ligne η =constante, la relation suivante :

$$\frac{\partial\theta}{\partial\xi} + \left[\frac{\cot g(\mu)}{V}\right] \frac{\partial V}{\partial\xi} = \delta \sin(\mu) \frac{\sin(\theta)}{y}$$
(D.37)

De même, par identification de (D.35) et (D.26) on peut écrire, le long de la ligne ξ =constante, la relation suivante :

$$\frac{\partial\theta}{\partial\eta} + \left[\frac{\cot g(\mu)}{V}\right] \frac{\partial V}{\partial\eta} = \delta \sin(\mu) \frac{\sin(\theta)}{y}$$
(D.38)

Ce résultat est particulièrement intéressant, puisque dans l'équation applicable le long de la ligne η =constante n'interviennent que les dérivées dans la direction η et vice-versa. Les lignes à ξ et η constantes sont les lignes caractéristiques du système d'équations (D.37) et (D.38).

L'utilité de cette propriété est évidente, puisque les deux équations peuvent être intégrées immédiatement le long des deux lignes de Mach. Selon la définition de la fonction de Prandtl Meyer v, voir équation (3.39) du chapitre 3, les équations (D.37) et (D.38) deviennent:

$$\frac{\partial(\nu+\theta)}{\partial\xi} = \delta \sin(\mu) \frac{\sin(\theta)}{y} \qquad \text{Suivant } \xi \qquad (D.39)$$

$$\frac{\partial(v-\theta)}{\partial\eta} = \delta \sin(\mu) \frac{\sin(\theta)}{y} \qquad \text{Suivant } \eta \qquad (D.40)$$

On peut conclure à partir des relations (D.39) et (D.40) que le modèle mathématique de la formulation des caractéristiques reste valable sous cette forme différentielle pour l'application directe pour la résolution des problèmes supersoniques à Haute Température. Ici on a le droit maintenant de remplacer directement la fonction de Prandtl Meyer obtenue pour le modèle à Haute température dans ces deux équations pour obtenir notre modèle mathématique.

APPENDICE E

EFFET DE GAZ A HAUTE TEMPERATURE SUR LA CONCEPTION DE LA TUYERE A CORPS CENTRAL TYPES A BOUCHON ET A DETENTE DEFLEXION

Le but de cette appendice est de développer un nouveau programme informatique pour étudier l'effet de l'utilisation de gaz de propulsion à HT sur la conception et le dimensionnement de la tuyère supersonique à corps central 2D type à bouchon (*PN*) et de la tuyère à détente déflexion (*EDN*) donnant un écoulement uniforme et parallèle à la section de sortie. Cette étude doit ensuite permettre un choix approprié de gaz en fonction de paramètres tels que le coefficient de poussée C_F , le nombre de Mach de sortie. Les substances sélectionnées sont limitées à 9 gaz indiqués par le tableau (3.1) [94, 99].

La figure suivante (E.1) montre le champ d'écoulement dans la tuyère à bouchon 2D (Figure E.1a) et la figure à détente déflexion (Figure E.1b). La *PN* a un corps central, et l'*EDN* a une paroi externe qui doit être déterminée pour avoir un écoulement uniforme et parallèle à la section de sortie. La méthode de conception est une méthode précise basée sur la détente de Prandtl-Meyer.

Figure E.1 : Champ d'écoulement dans la tuyère à corps central.

E.1. Méthode de conception

La différence entre la tuyère à corps central (*PN* ou *EDN*) et les autres modèles comme la tuyère *MLN* [95-96] est que le débit au col est incliné d'un angle θ^* par rapport à l'horizontale, ce qui n'est pas le cas pour la tuyère *MLN*, où l'écoulement est horizontal au niveau du col [95-96]. Par conséquent, la carène doit être inclinée d'un angle Ψ par rapport à la verticale.

Afin d'obtenir la forme de contour de la géométrie du corps central, les lignes de courant déterminées par le calcul seront remplacées par une surface rigide limitant la surface de l'écoulement. Par conséquent, la forme du corps central sera obtenue. Les ondes de Mach divergentes sont issues du coin du col.

L'écoulement au niveau du col et à la section de sortie est unidirectionnel. Le rapport des sections critiques reste valide et est pris en compte pour comparer les calculs numériques trouvés par notre modèle et la théorie. Le calcul de l'écoulement à l'intérieur de la tuyère est plutôt délicat, car la forme de la tuyère est inconnue a priori. La forme désirée du corps central accélère l'écoulement du nombre de Mach M=1,00 au niveau du col vers le nombre de Mach M= M_S au niveau de la section de sortie. Comme la déviation de l'écoulement au niveau du col n'est pas nulle, l'écoulement à travers le corps central se redresse seulement de l'angle θ = θ * au niveau du col à l'angle θ =0 à la sortie.

Le calcul de l'écoulement et la détermination du contour du corps central à *HT* sont basés sur la détente de Prandtl-Meyer [93, 102].

L'angle *v* est mesuré par rapport au vecteur vitesse du col. Dans la figure (E.2), les droites *AB* et *AS* sont inclinées par les angles μ_B et μ_S donnés respectivement par $\mu_B = \pi/2$ et $\mu_S = \arccos [1/M_S] < \pi/2$.

Figure E.2 : Angles de Mach au col et à la sortie.

Entre ces deux lignes de Mach, il y a une infinité d'ondes de Mach centrales divergentes provenant du point *A* de la carène. Chaque ligne donne un nombre de Mach, qu'on peut facilement déduit de ce nombre un point du contour du corps central. Comme le gaz est parfait, le vecteur de vitesse est tangent à la ligne de courant, qui sera considérée comme le contour de la paroi du corps central à rechercher.

Les propriétés de l'écoulement *M*, P/P_0 , T/T_0 et ρ/ρ_0 sont constantes le long de chaque ligne de Mach à partir du point *A*. Cette propriété nous donne l'avantage de déterminer rapidement et explicitement la position de point de la paroi.

Chaque ligne de Mach provenant du point *A* sera absorbée par la paroi du corps central car l'écoulement est de type 2D. La figure suivante (E.3) montre les paramètres d'une ligne de Mach intermédiaire reliant les points *A* et es points de la paroi. L'angle θ_S n'est pas connu a priori. Afin d'avoir un écoulement uniforme parallèle à la sortie, l'angle θ_B peut être calculé par la relation suivante.

$$\theta_{B} = v_{E}$$
(E.1)
Axis of symmetry i $i+1$ S
 ψ_{θ} λ_{i} μ_{i} φ_{i}
 y_{E}
 y_{E}
 μ_{i} $\mu_$

Figure E.3 : Paramètres d'une ligne de Mach intermédiaire reliant les points A et i.

L'inclinaison de la carène par rapport à la verticale peut être calculée selon la figure (E.3) par:

$$\Psi = \frac{\pi}{2} - v_E \tag{E.2}$$

Divisons la zone de détente entre *AB* et *AS* de la figure (E.3) en *N* ondes Mach incluant les extrémités, et numérotons ces ondes de gauche à droite. La référence de calcul est placée au point *A*.

Il est préférable dans notre étude de commencer le calcul du point *B* du col vers le point *S* de la sortie. La détermination des points de la paroi est faite explicitement. Notons ici que les ondes de Mach sont des lignes de droites. Le diagramme du modèle sous la présence d'une ligne de Mach est illustré sur la figure (E.3). La température T_i au point *i* est connue. Ensuite, nous pouvons écrire:

$$\mu_i = \arcsin\left(\frac{1}{M_i}\right) \tag{E.3}$$

$$v_i = \int_{T_i}^{T_*} F_v(T) dT$$
 (E.4)

$$\varphi_i = \pi/2 - \Psi - \nu_i + \mu_i \tag{E.5}$$

$$\theta_i = \varphi_i - \mu_i \tag{E.6}$$

Dans la figure (E.3), toutes les propriétés au point *i* sont connues, c'est-à-dire M_i , φ_i , θ_i , v_i , T_i , x_i , y_i , et le problème devient la détermination des propriétés au point *i*+1 adjacent à la droite. Considérons le triangle reliant les points *A*, *i* et *i*+1. Ici les points *i* et *i*+1 sont reliés par une droite au point *A*. Le rayon polaire du point *i*+1 est donné par:

$$\lambda_{i+1} = \lambda_i \frac{\sin(\pi - \varphi_i + v_E - v_i)}{\sin(\varphi_{i+1} - v_E + v_i)}$$
(E.7)

Par analogie avec les équations (E.3), (E.4), (E.5) et (E.6), on peut déduire les relations pour le point *i*+1 en changeant l'indice *i* par *i*+1. Au point *i*+1, la température T_{i+1} est connue. Les coordonnées du point *i*+1 peuvent être calculées par:

$$\frac{x_{i+1}}{\lambda_B} = \left(\frac{\lambda_{i+1}}{\lambda_B}\right) \cos(\varphi_{i+1})$$
(E.8)

$$\frac{y_{i+1}}{\lambda_B} = \left(\frac{\lambda_{i+1}}{\lambda_B}\right) \sin(\varphi_{i+1})$$
(E.9)

Pour arriver à concevoir la tuyère, la discrétisation de la zone de variation de la température en *N* valeurs incluant les valeurs des extrémités a été choisie et recommandée pour que le calcul soit rapide.

E.2. Procédure de calcul

Pour le gaz parfait *HT*, les expressions analytiques du calcul des rapports thermodynamiques T_*/T_0 , ρ_*/ρ_0 et P_*/P_0 et T_S/T_0 , ρ_S/ρ_0 et P_S/P_0 sont présentées dans [97-98].

Le rapport des sections critiques est donné par la relation (3.5) [97-98]. Ce ratio servira comme une source de comparaison pour la validation des calculs numériques.

La déviation Ψ de la carène par rapport à la verticale sera calculée en utilisant l'équation (E.2)

Puisque la méthode de calcul est basée sur les deux points successifs, les résultats doivent être donnés au point de départ. Le point de départ est le point *B*. On a M_B =1,00, μ_B = $\pi/2$, v_B =0,0, φ_B = $\pi/2$ - Ψ - v_B + μ_B et λ_B =1,00.

La position du premier point (point *B*) du mur est donnée par:

$$\frac{x_B}{\lambda_B} = \cos(\varphi_B) \tag{E.10}$$

$$\frac{y_B}{\lambda_B} = \sin(\varphi_B) \tag{E.11}$$

L'angle de déviation de l'écoulement θ * par rapport à l'horizontal au niveau du col est donné par:

$$\theta^* = \theta_B = \varphi_B - \mu_B \tag{E.12}$$

La deuxième étape consiste à affecter les résultats obtenus au point *B* en tant que premier point de calcul numérique pour *i*=1. lci, la température au point *B* est égale à T_* .

Pour chaque ligne de Mach, il est nécessaire de connaître la température au centre de détente *A*.

Puisque le nombre de points choisis est égal à *N*, on obtient des *N*-1 segmebnts, donc la température au point *i* est donnée par:

$$T_i = T_* - \frac{i-1}{N-1}(T_* - T_E)$$
 i=1, 2, ..., *N* (E.13)

En incrémentant le compteur de *i*=2 à *N*, on peut déterminer les propriétés thermodynamiques et physiques le long de toutes les lignes de Mach sélectionnées au départ et ainsi la forme du corps central sera obtenue.

A partir des résultats du dernier point où *i*=*N*, on peut fixer les résultats suivants.

La position du point S de la section de sortie est donnée sous forme non dimensionnelle par:

$$\frac{x_S}{\lambda_B} = \frac{x_N}{\lambda_B}$$
(E.14)

$$\frac{y_S}{\lambda_B} = \frac{y_N}{\lambda_B}$$
(E.15)

La longueur totale calculée du corps central, et le rapport des sections critiques sont données, sous forme non dimensionnelle, par:

$$\frac{L}{\lambda_B} = \frac{x_S}{\lambda_B} - \frac{x_B}{\lambda_B}$$
(E.16)

$$\frac{A_S}{A_*}(Computed) = \frac{y_S}{\lambda_B} = \frac{y_N}{\lambda_B}$$
(E.17)

E.3. Masse de la tuyère à corps central

Le calcul de la masse de la tuyère est lié avec le calcul de la longueur curviligne de la paroi du corps central. Ensuite, par unité de profondeur et sous forme non-dimensionnelle, on obtient:

$$C_{Mass} = \sum_{i=1}^{i=N-1} \sqrt{\left(\frac{x_{i+1}}{\lambda_B} - \frac{x_i}{\lambda_B}\right)^2 + \left(\frac{y_{i+1}}{\lambda_B} - \frac{y_i}{\lambda_B}\right)^2}$$
(E.18)

E.4. Force de poussée de la tuyère à corps central

La force de pression axiale totale exercée sur le corps central par unité de profondeur est calculée comme la somme de toutes les forces de pression axiale exercées sur toutes les sections. Le corps central est constitué de deux parties en raison de la symétrie. Sous forme non-dimensionnelle, nous obtenons:

$$C_F = \sum_{i=1}^{i=N-1} \left(\frac{P}{P_0}\right)_{(i)} \left[\frac{y_{i+1}}{\lambda_B} - \frac{y_i}{\lambda_B}\right]$$
(E.19)

En faisant varier les propriétés thermodynamiques des différents gaz utilisés en considérant la chaleur spécifique $C_P(T)$ selon le tableau (E.1), On peut déterminer la forme du corps central de la tuyère à bouchon *PN* ou la paroi externe de la tuyère *EDN* et la conception correspondante.

E.5. Résultats et commentaries

Les figures (E.4), (E.5), (E.6) et (E.7) illustrent l'effet du gaz de propulsion sur la forme de la tuyère, en donnant M_S à la section de sortie, respectivement pour M_S =2.00, 3.00, 4.00 et 5.00 lorsque T_0 =2000 K. Les paramètres de conception sont représentés respectivement dans les tableaux (E.2), (E.3), (E.4) et (E.5).

Figure E.4 : Effet du gaz à *HT* sur le corps central *PN 2D* et sur la forme externe de la paroi *EDN* donnant M_S =2.00.

Ν	Gaz	θ (deg)	L/λ_B	C _{Mass}	C _F	y _E /λ _B	χ_{Plug}/λ_B
1	H_2	27.800	3.477	3.626	0.313	1.737	3.011
2	O ₂	29.052	3.579	3.745	0.338	1.785	3.094
3	N_2	28.472	3.531	3.689	0.326	1.763	3.055
4	CO	28.600	3.542	3.701	0.329	1.768	3.063
5	CO_2	32.766	3.898	4.121	0.419	1.937	3.357
6	H_2O	31.437	3.780	3.981	0.388	1.880	3.259
7	NH_3	34.158	4.023	4.269	0.450	1.997	3.462
8	CH_4	35.806	4.177	4.454	0.490	2.073	3.592
9	Air	28.646	3.547	3.708	0.330	1.770	3.068

Tableau E.1 : Valeurs de calcul numériques pour la figure E.4.

Figure E.5 : Effet du gaz à *HT* sur le corps central *PN* 2*D* et sur la forme externe de la paroi *EDN* donnant M_s =3.00.

Ν	Gaz	θ (deg)	L/λ_B	C _{Mass}	C _F	y _E /λ _B	x _{Plug} /λ _B
1	H_2	52.457	13.775	14.813	0.815	4.582	12.982
2	O ₂	55.770	15.313	16.554	0.905	5.113	14.487
3	N_2	54.203	14.561	15.703	0.862	4.853	13.750
4	CO	54.478	14.681	15.839	0.869	4.895	13.867
5	CO_2	66.883	22.113	24.279	1.233	7.476	21.194
6	H ₂ O	62.155	18.793	20.506	1.087	6.319	17.908
7	NH_3	70.880	25.207	27.808	1.356	8.556	24.262
8	CH_4	77.006	31.216	34.655	1.555	10.661	30.241
9	Air	54.989	14.972	16.167	0.884	4.995	14.153

Tableau E.2 : Valeurs de calcul numériques pour la figure E.5.

Figure E.6 : Effet du gaz à *HT* sur le corps central *PN 2D* et sur la forme externe de la paroi *EDN* donnant M_S =4.00.

Ν	Gaz	θ (deg)	L/λ_B	C _{Mass}	C _F	y _E /λ _B	χ_{Plug}/λ_B
1	H_2	68.947	47.212	50.271	1.218	11.907	46.278
2	O ₂	74.019	58.170	62.101	1.368	14.714	57.209
3	N_2	71.586	52.580	56.067	1.296	13.282	51.631
4	CO	71.934	53.237	56.779	1.306	13.450	52.286
5	CO_2	92.772	131.862	141.548	1.956	33.596	130.863
6	H ₂ O	83.702	86.661	92.865	1.665	22.016	85.667
7	NH_3	98.765	169.092	181.696	2.147	43.133	168.104
8	CH_4	111.051	302.085	324.718	2.543	77.147	301.152
9	Air	72.624	54.840	58.513	1.327	13.861	53.886

Tableau E.3 : Valeurs de calcul numériques pour la figure E.6.

Figure E.7 : Effet du gaz à *HT* sur le corps central *PN 2D* et sur la forme externe de la paroi *EDN* donnant M_s =5.00.

Ν	Gaz	θ (deg)	L/λ_B	C _{Mass}	C _F	y_E / λ_B	x_{Plug}/λ_B
1	H_2	80.120	138.216	144.841	1.505	27.842	137.231
2	O ₂	86.419	187.275	196.399	1.694	37.766	186.277
3	N_2	83.371	161.394	169.205	1.602	32.531	160.401
4	CO	83.739	163.688	171.622	1.613	32.996	162.694
5	CO_2	111.487	691.605	725.237	2.462	139.516	690.675
6	H ₂ O	98.321	331.298	347.666	2.058	66.878	330.309
7	NH_3	118.165	934.287	979.783	2.662	188.424	933.405
8	CH_4	136.310	2620.78	2744.66	3.174	526.941	2620.09
9	Air	84.262	166.491	174.598	1.630	33.565	165.496

Tableau E.4 : Valeurs de calcul numériques pour la figure E.7.

Il est clair l'effet du gaz de propulsion sur la forme de la tuyère, et donc sur tous les paramètres de conception. Par exemple, le gaz CH₄ fournit une grande longueur et masse ainsi que le très haut C_F . Alors que les gaz H₂, N₂, O₂ et CO donnent de petits paramètres. Pour les tuyères supersoniques, la construction appliquée aux missiles et aux avions est recommandée pour l'utilisation par exemple du gaz H₂, N₂ ou CO au lieu de CH₄, NH₃ même l'air. L'influence de M_S et T_0 est notée sur la forme et les paramètres. Les gaz H₂, N₂, O₂ et CO donnent de meilleures performances que l'air pour des applications dans la fabrication aérospatiale. Les formes des tuyères dans le cas de l'air (courbe 9) peuvent être des êtres trouvés dans la référence [94, 99].

Les figures (E.8), (E.9), (E.10), (E.11), (E.12) et (E.13) montrent l'effet du gaz sur la variation de divers paramètres de conception en tant que fonction de la sortie Mach nombre M_S de la tuyère 2D, pour T_0 =2000 K. À faible M_S jusqu'à environ 2,00, il n'est pas influencé par une remarque de choix tel gaz sur les paramètres de conception. Alors que la plupart des M_S deviennent grosses et commencent à dépasser les 2,00 environ, le choix d'un tel gaz est essentiel pour la propulsion.

Dans les figures (E.9), (E.10), (E.12) et (E.13), la représentation est préférée sous la forme de l'échelle logarithmique, étant donné les grandes valeurs de ces paramètres accompagnées de petites valeurs pour certains gaz.

Figure E.8 : Effet du gaz à HT sur θ^* du col de la tuyère à corps central.

Figure E.9 : Effet du gaz à *HT* sur la longueur L/λ_B de la tuyère à corps central.

Figure E.10 : Effet du gaz à HT sur C_{Mass} de la tuyère à corps central.

Figure E.11 : Effet du gaz à HT sur C_F de la tuyère à corps central.

Figure E.12 : Effet du gaz à *HT* sur y_S/λ_B de la tuyère à corps central.

Figure E.13 : Effet du gaz à *HT* sur x_{Plug}/λ_B de la tuyère à corps central

Les figures (E.14), (E.15), (E.16), (E.17) et (E.18) représentent la variation des paramètres thermodynamiques et du nombre de Mach à travers la paroi de la tuyère à corps central de la figure (E.5) pour $T_0=2000$ K et $M_S=3,00$. On note une détente du gaz de M=1,00 au niveau du col à $M=M_S$ à la sortie de la tuyère. En parallèle, on note un redressement de l'écoulement de $\theta=\theta^*$ au niveau du col à $\theta=0,0$ à la sortie selon la figure (E.15). Il montre également que l'écoulement est horizontal à la section de sortie.

Figure E.14 : Effet du gaz à *HT* sur la variation du nombre de Mach à travers la paroi de la tuyère à corps central.

Figure E.15 : Effet du gaz à HT sur la variation de θ à travers la paroi de la tuyère à corps central.

Sur la figure (E.16), nous voyons que la température à travers la paroi est suffisamment élevée pour le gaz CH_4 , NH_3 , CO_2 et H_2O par rapport à l'air. Alors que pour le gaz H_2 , N_2 et CO sont suffisamment froids par rapport à l'air. Nous devons donc choisir un matériau de construction approprié résistant à la distribution indiquée sur la figure (E.17) en fonction du gaz sélectionné.

Figure E.16 : Effet du gaz à *HT* sur la variation de T/T_0 à travers la paroi de la tuyère à corps central.

Figure E.17 : Effet du gaz à *HT* sur la variation de ρ/ρ_0 à travers la paroi de la tuyère à corps central.

Figure E.18 : Effet du gaz à *HT* sur la variation de P/P_0 à travers la paroi de la tuyère à corps central.

REFERENCES

- Abada O., Zebbiche T. and Abdallah El-Hirtsi A., "Three-dimensional supersonic minimum length nozzle design at high temperature for arbitrary exit cross section," Arabian Journal for Science and Engineering (Springer), Vol. 39, N° 11, PP. 8233-8245, November 2014.
- Allan R. D., "Advanced Supersonic Technology Propulsion System Study," Phase II, Final Report, NASA CR-134913, December 1975.
- 3. Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow," NACA Report 1135, 1953.
- Anderson J. D. Jr., "Fundamentals of Aerodynamics," 2nd Edition, McGraw-Hill Book Company, New York, USA, 1988.
- 5. Anderson, J. D. Jr., "Hypersonic and High-Temperature Gas Dynamics," AIAA, 2006.
- Anderson J. D. Jr., "Modern Compressible Flow With Historical Perspective," 2nd edition, McGraw-Hill Book Company, New York, USA, 1982.
- 7. Argrow B. M. and Emanuel G., "Comparison of Minimum Length Nozzles," Journal of Fluid Engineering, Vol. 110, PP. 283–288, 1988.
- Argrow B. M. and Emanuel G., "Computational Analysis of the Transonic Flow field of Two-Dimensional Minimum Length Nozzles," AIAA 1822-1989, 20th Fluid Dynamics Plasma Dynamics and Lasers Conference, Buffalo, New York, 12-14 June, 1989.
- Arrington L. A., Brian D. R. and Rivera A., "Performance Comparison of Two Small Rocket Nozzles," 32nd Joint Propulsion Conference, NASA, Lake Buena Vista, Florida, 1996.
- 10. Armstrong W. C., "Fundamentals of Aerodynamics," McGraw-Hill Book company, New York, 1988.
- Assad A., "Cold Gas Propulsion System An Ideal Choice for Remote Sensing Small Satellites," chapter 20, *Remote Sensing - Advanced Techniques and Platforms*, Boris Escalante (Ed.), 2012.
- 12. Barin I. and Knacke O., "Thermochemical Properties of Inorganic Substances," Vol. I, Springer-Verlag, New York, 1973.
- Barin I., Sauer F., Schultze-Rhonhof E. and Sheng W. S., "Thermochemical Data on Pure Substances," Pt. 1, VCH Publishers, Wiesbaden, Germany, 1989.
- 14. Beckwith I. E. and Moore J. A., "An Accurate and Rapid Method for the Design of Supersonic Nozzles," NACA TN 3322, 1955.
- Behera B. and Srinivasan K., "Design Methods for Axisymmetric Supersonic Nozzle Contours," International Journal of Turbo and Jet Engines, Vol. 24, N° 02, PP. 115-118, 2007.

- Bingbing S., Junwei L., Wanxing S. and Ning-fei W., "Study on the effects of gas temperature on cold flow test of nozzle damping," 51st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2015-3790, 2015.
- Burcat A., "Thermochemical Data for Combustion Calculations, Combustion Chemistry," Chapt. 8, W.C. Gardiner, Jr., ed., Springer-Verlag, New York, 1984.
- Burcat A. and McBride B., "Ideal Gas Thermodynamic Data for Compounds Used in Combustion and Air-Pollution," TAE 675, Technion Israel Institute of Technology, Haifa, Israel, 1992.
- 19. Burcher M. A., "Compressible Flow Table for Air," NACA TN 1592, 1948.
- Chao J., Wilhoit R. C. and Zwolinski B. J., "Ideal Gas Thermodynamic Properties of Ethane and Propane," Journal of Physical and Chemical Reference Data, Vol. 2, No. 2, pp. 427-437, 1973.
- Chao J. and Zwolinski B. J., "Deal Gas Thermodynamic Properties of Ethylene and Propylene," Journal of Physical and Chemical Reference Data, Vol. 4, No. I, pp. 251-261, 1975.
- Chushkin P. I., "Numerical Method of Characteristics for Three-Dimensional Supersonic Flows," Progress in Aerospace Sciences, Vol. 9, PP. 41-122, 1968.
- 23. Chase M. W. Jr. "JANAF Thermo chemical Tables," 3rd edition, Pts. 1 & 2, Journal of Physical and Chemical Reference Data, Vol. 14, Suppl. 1, 1985.
- 24. Cross A. and Weiland A., "Numerical Simulation of Separated Cold Gas Nozzle Flows," Journal of Propulsion and Power, Vol. 20, PP. 509-519, 2004.
- Coburn N. and Dolph C. L. T., "Method of Characteristics for Three-Dimensional Supersonic Flows," Proceedings of Symposia in Applied Mathematics, New York, American Mathematical Society, 55-66, 1949.
- 26. Comolet R., "Mécanique Expérimentale des Fluides. Statique et Dynamique des Fluides Non Visqueux," Tome 1, 3^{ème} Edition, Masson, 1979.
- Connors J. F., Cubbison R. W. and Mitchell G. A, "Annular Internal External Expansion Rocket Nozzles for Large Booster Applications," NASA TN D-1049, 1961.
- De Laeter J. R., and Heumann K. G., "Atomic Weights of the Elements 1989," Journal of Physical and Chemical Reference Data, Vol. 20, No. 6, pp. 1313-1325, 1991.
- 29. Démidovitch B. and Maron I., "Eléments de calcul numérique," Editions MIR, Moscow, Russia, 1987.
- 30. Dumitrescu L. Z., "Minimum Length Axisymmetric Laval Nozzles," AIAA Journal, Vol. 13, PP. 520–532, 1975.

- Edwards T., "Liquid fuels and propellants for Aerospace propulsion: 1903-2003," Journal of Propulsion and Power, Vol. 19, No. 6, PP. 1089-1105, 2003.
- 32. Emanuel G., "Gasdynamic: Theory and Application," AIAA Educational Series, New York, 1986.
- Ferlauto M. and Marsilio R., "Inverse Problems for Advanced Nozzle Design," 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004, AIAA 3924-2004, 2004.
- Fletcher C. A. J., "Computational Techniques for Fluid Dynamics: Specific Techniques for Different Flow Categories," Vol. II, Springer-Verlag, Berlin, Heidelberg, 1988.
- Frederick L. S., "Contour Design Techniques for Super/Hypersonic Wind Tunnel Nozzles," 24th Applied Aerodynamics Conference, 5-8 June 2006, San Francisco, California, 2006.
- Geoing M., "Nozzle Design Optimization by Method-of-Characteristics," AIAA-1990-2024, 26th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Orlando, Florida, July 16-18, 1990.
- 37. Gerald H., Hans L., Thong V. N. and Gennady E. D., "Advanced Rocket Nozzle," Journal of Propulsion and Power, Vol. 14, N° 3, PP. 316-326, 1998.
- Gurvich L. V. et al., "Thermodynamic Properties of Individual Substances," Vol. 1, Pts. 1 & 2, Nauka, Moscow, U.S.S.R., 1978.
- 39. Gurvich L.V. et al., "Thermodynamic: Properties of Individual Substances," Vol. 2, Pts. 1 & 2, Nauka, Moscow, U.S.S.R., 1979.
- 40. Gurvich L.V. et al., "Thermodynamic Properties of Individual Substances," Vol. 3, Pts. I & 2, Nauka, Moscow, U.S.S.R., 1982.
- Gurvich L. V., Veyts I. V., and Alcock C. B., "Thermodynamic Properties of Individual Substances," 4th edition., Vol. 1, Pts. 1 & 2, Hemisphere Publishing Corp., Washington, DC., 1989.
- Gurvich L. V., Veyts I. V. and Alcock C. B., "Thermodynamic Properties of Individual Substances," 4th edition, Vol. 2, Pts. 1 & 2, Hemisphere Publishing Corp., Washington, D.C., 1991.
- Hagemann G., Immich H. and Terhardt M., "Flow Phenomena in advanced rocket nozzles-The plug nozzle," AIAA-1998-3522, 34th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, July 13-15, 1998.
- Hagemann G., Immich H., Van Nguyen T. and Dumnov G. E., "Advanced Rocket Nozzles," Journal of Propulsion and Power, Vol. 14, N° 5, PP. 620-634, 1998.
- 45. Haynes W. M., "CRC Handbook of Chemistry and Physics," 93^{ème} edition, CRC Press/Taylor and Francis, Boca Raton, 2012.

- 46. Hartfield R. J. and Ahuja V., "The closing boundary condition for the axissymmetric Method of Characteristics," Joint Propulsion Conference, AIAA, San Diego, CA., 2011.
- Hernandez M. I., Cabrera L. A., Vidana O., Chaidez M. and Love N. D., " Design of a Supersonic Oxy-Methane Combustor for Direct Power Extraction," 54th AIAA Aerospace Sciences Meeting, San diego, California, USA, AIAA 2016-0243, 2016.
- 48. Hunsaker J. C., "Equations, Tables and Charts for Compressible Flow," NACA TR 1135, 1953.
- Johnson C. B. and Boney L. R., "A Method for Calculating a Real-Gas Two-Dimensional Nozzle Contour Including the Effects of Gamma," NASA TM X-3243, Sep. 1975.
- Khine T. Naung N. S., "Numerical Approach for Determination of Supersonic Nozzle Flow Pattern," GMSARN International Conference on Sustainable Development: Issues and Prospects for the GMS, pp.12-14, 2008.
- Korte J. J., "Inviscid design of hypersonic wind tunnel nozzles for real gas," 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, pages 1-8, Reston, VA, AIAA, Jan. 10-13, 2000.
- Kuahai Y., Xi Y. and Zhan M., "Profile Design and Multifidelity Optimization of Solid Rocket Motor Nozzle," Journal of Fluid Engineering, Vol. 136, N° 03, PP. 341-346, 2013.
- Lax P. D. and Wendroff B., "Difference Schemes with High Order of Accurary for Solving Hyperbolic Equations," CIMS Report NY0-9759, July 1962, New York Univ., New York.
- 54. Lemmon E. W., McLinden M. O., and Friend D. G., "Thermophysical Properties of Fluid Systems," NIST Chemistry WebBook, Linstrom, P. J. and Mallard, W. G. (eds.), NIST Standard Reference Database No. 69, National Institute of Standards and Technology, 2011.
- 55. Majdalani J. and Maicke B. "Modeling Mach Number and Temperature Distributions in Supersonic Nozzle Flow," 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 201-6844, 25-28 July, 2010, Nashville TN, 2010.
- 56. Malina F. J., "Characteristics of the rocket motor based on the theory of perfect gases," J. Franklin Inst., Vol. 230, PP. 433-450, 1940.
- 57. Mark J. E., "Physical Properties of Polymer Handbook," Springer, 2nd Edition, 2007.
- 58. Merzbach U. C. and Boyer C. B., "A history of mathematics," John Wiley and sons., 3rd edition, 2011.
- 59. Mouris K., "Mathematical thought from ancient to modern times," Vol. 1, Oxford university press, 1972.

- McBride B. J., Gordon S. and Reno M. A., "Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species," NASA TM 4513, 1993.
- McBride B. J., Gordon S., and Reno M. A., "Thermodynamic Data for Fifty Reference Elements," NASA TP-3287, 1993.
- 62. McLain D. H., "Drawing contours from arbitrary data points," Computer Journal, Vol. 17, PP. 318–324, 1974.
- 63. Morinigo J. A. and Salva J. J., "Robust non-reflecting boundary conditions for the simulation of rocket nozzle flow," Journal of Aerospace Science and Technology 14, PP. 429–441, 2010.
- 64. Neice M. M., "Table and Charts of Flow Parameters Across Oblique Shocks," NACA TN 1673, 1948.
- 65. Newton L. G. and Randall M., "Thermodynamics," 2nd Edition, McGraw-Hill Book Company, New York, 1961.
- 66. Oosthuisen P. H. and Carscallen W. E., "Compressible Fluid Flow," Mc Graw Hill, New York, 1997.
- 67. Ortega J. and Rheinboldt W., "Iterative Solution of Nonlinear Equations in Several Variables," New York, Academic Press, 1970.
- 68. Parker V. B., Wagman, D. D., and Evans, W. H., "Selected Values of Chemical Thermodynamic Properties," NBS TN 270-6, 1971.
- Pasquale D., Harinck J., Guardone A. and Rebay S., "Geometry Optimization for Quasi-Uniform Flows from Supersonic Nozzles," 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD, Lisbon, Portugal,14-17 June, 2010.
- Peterson C. R. and Hill P. G., "Mechanics and Thermodynamics of Propulsion," Addition-Wesley Publishing Company Inc., New York, USA, 1965.
- Powell M. J. D., "On the Maximum Error of Polynomial Approximation Defined by Interpolation and by Least Squares Criteria," Comput. J., Vol. 9, PP. 404-407, 1978.
- 72. Rakich J. V., "Three Dimensional Flow Calculation by the Method of Characteristics," AIAA Journal, Vol. 5, N0 10, PP. 1906-1908, 1967.
- 73. Raltson A. and Rabinowitz A., "A First Course in Numerical Analysis," McGraw Hill Book Company, 1985.
- Ranson V. H., Thompson H. D. and Hoffman J. D., "Three-Dimensional Supersonic Nozzle Flowfield Calculation," J. of Spacecraft, Vol. 7, N° 4, PP. 458-462, 1970.
- 75. Raviart P. A. et Thomas J. M., "Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles," Masson, 1983.

- Rizkalla O., "Inviscid Design and Analysis of Square Supersonic Nozzles," GASL TL 304, 1988.
- 77. Roudane M., Zebbiche T. and Boun-jad M. "Stagnation temperature effect on the flow in the supersonic axisymmetric minimum length nozzle with application for air," Journal of the Chinese Society of Mechanical Engineers, Vol. 38, N° 04, PP. 2536-2543, 2016. DOI:
- 78. Ryhming I. L., "Dynamique des Fluides," Presses Polytechnique romandes, Lausanne, Suisse, 1984.
- 79. Rylov A. I., "Design of Supersonic Asymmetric Nozzles," Physics and Astronomy, Vol. 12, N° 03, PP. 414-420, 1977.
- 80. Sauer R., "General characteristics of the flow through nozzles at near critical speeds," National Advisory Committee for Aeronautics, June 1947.
- 81. Sauer R., "Method of Characteriscs for Three Dimensional Axially Symmetrical Supersonic Flows," NACA TM 1133, 1947.
- 82. Shapiro H. and Moran M., "Fundamentals of Engineering Thermodynamics," John Wiley and Sons Ltd, England, 2006.
- Sivells J. C., "Aerodynamic Design of Axisymmetric Hypersonic Wind Tunnel Nozzles," AIAA Journal of Spacecraft and Rockets, Vol. 7, No. 11, PP.1292-1299, 1970.
- 84. Stoer J. and Burlisch B., "Introduction to Numerical Analysis," text in Applied Mathematics, 12, Springer, 3rd Edition 2002.
- Strom C. R., "The Method of Characteristics for Three Dimensional Real Gas Flows," Final Report A., April 1967, Air Force Systems Command, AFFDL-TR-67-47, 1967.
- Sutton G. P. and O. Biblarz O., "Rocket Propulsion Elements," John & Sons, Inc., 2001.
- 87. Sutton G. P. and Biblarz O., "Rocket Propulsion Elements," 8ème edition, *John Wiley and Sons.*, 2010.
- 88. Thompson A. P., "Compressible Fluid Dynamics," McGraw-Hill Company, 1995.
- 89. Van Wylen G. J. and Sonntag R. E., "Fundamentals of classical thermodynamics," 2^{ème} edition, John Willey and sons, inc., 1976.
- 90. Van Wylen G. J., "Fundamentals of classical thermodynamics," John Wiley and Sons,Inc, 1973.
- Wasko R. A., "Performance of annular plug and expansion-defletion nozzles including external flow effects at transonic Mach numbers," NASA TN D-4462, 1968.
- 92. William B. W. and Mossmann A. L., "Matheson gas data book," 6th edition, Matheson division Searle medical Products USA Inc. 1979.

- 93. Zebbiche T. and Boun-jad M., "Numerical quadrature for the Prandtl—Meyer function at high temperature with application for air," Thermophysics and Aeromechanics, Vol. 19, No. 3, PP. 381-384, 2012.
- 94. Zebbiche T. and Youbi Z., "Supersonic Plug Nozzle Design at High Temperature. Application for Air," AIAA-2006-0592, 44th Aerospace Sciences Meeting and Exhibit, 9-12 Jan. 2006, Reno Nevada, Reno Hilton, USA.
- Zebbiche T. and Youbi Z., "Supersonic Two-Dimernsional Minimum Length Nozzle Design at High Temperature. Application for Air," AIAA-2006-4599, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, July 09-12, 2006.
- Zebbiche T. and Youbi, Z., "Supersonic two-dimensional minimum length nozzle design at high temperature. Application for air," Chinese Journal of Aeronautics, Vol. 20, N° 1, PP. 29–39, 2007.
- Zebbiche T. and Youbi Z., "Supersonic Flow Parameters at High Temperature. Application for Air in nozzles," German Aerospace Congress 2005, DGLR-2005-0256, 26-29 Sep. 2005, Friendrichshafen, Germany.
- Zebbiche T. and Youbi Z., "Effect of stagnation temperature on the supersonic flow parameters with application for air in nozzles," The Aeronautical Journal, Vol. 111, N° 1115, PP. 31–40, 2007.
- Zebbiche T. and Youbi Z., "Supersonic plug nozzle design at high temperature. Application for air," Chinese Journal of Aeronautics, Vol. 20, N° 1, PP. 15-28, 2007.
- 100. Zebbiche T. and Youbi Z., "Design of Two-Dimensional Supersonic Minimum Length Nozzle at High Temperature. Application for Air," German Aerospace Congress, Friendrichshafen, Germany, 26-29 September 2005. DGLR 2005-257.
- 101. Zebbiche T., "Stagnation temperature effect on the supersonic axisymmetric minimum length nozzle design with application for air," Advances in Space Research, Vol. 48, PP. 1656–1675, 2011.
- 102. Zebbiche T., "Stagnation temperature effect on the Prandtl Meyer function," AIAA Journal. Vol. 45, N° 4, PP. 952–954, 2007.
- 103. Zucker R. D. and Bilbarz O., "Fundamentals of Gas Dynamics," John Wiley & Sons, New Jersey, 2002.
- 104. Zucro M. J. and Hoffman J. D., "Gas Dynamics," Vol. 1 and 2, Wiley, New York, 1976.

Les travaux publiés dans le cadre de cette thèse

1. <u>Boun-jad M.</u>, Zebbiche T. and Allali A., "High temperature gas effect on the Prandtl-Meyer function with application for supersonic nozzle design,"

Mechanics & Industry (Thomson Reuters), Vol. 18, N° 02, Article N° 219, Nombre de pages 9, 2017, <u>http://dx.doi.org/10.1051/meca/2016031</u>

 <u>Boun-jad M.</u>, Zebbiche T. and Allali A., "Gas effect at high temperature on the supersonic nozzle conception," International Journal of Aeronautical and Space Sciences (Thomson Reuters), Vol. 18, N° 01, PP. 82-90, 2017. DOI: <u>https://doi.org/10.5139/IJASS.2017.18.1.82</u>

Fiches Techniques des Journaux de nos publications

1	Titre de Journal : Mechanics & Industry
	ISSN : 2257-7777 (version imprimée) et 2257-7750 (version électronique).
	Impact Factor: 0.659 (2017 Journal citation reports, Thomson Reuters).
	Indexation : Web Of Science (Thomson Reuters) Catégorie A.
	Organisme de publication: Association Française de Mécanique (France).
	URL: https://www.mechanics-industry.org/
	Titre de Journal : International Journal of Aeronautical and Space Sciences
	ISSN : 2093-274X (version imprimée) et 2093-2480 (version électronique).
	Impact Factor: 0.483 (2017 Journal citation reports, Thomson Reuters).
2	Indexation : Web Of Science (Thomson Reuters) Catégorie A.
	Organisme de publication: the Korean Society for Aeronautical & Space Sciences
	(South Korea) and Springer.
	URL: <u>http://ijass.org</u>