Afficher la notice abrégée
dc.contributor.author |
Abbaci, Safaa |
|
dc.contributor.author |
Saidi, Manel |
|
dc.contributor.author |
Rassoul, Abdelaziz (Promoteur) |
|
dc.date.accessioned |
2022-09-29T12:16:50Z |
|
dc.date.available |
2022-09-29T12:16:50Z |
|
dc.date.issued |
2022-07 |
|
dc.identifier.uri |
https://di.univ-blida.dz/jspui/handle/123456789/19532 |
|
dc.description |
ill., Bibliogr. Cote: ma-510-135 |
fr_FR |
dc.description.abstract |
Missing data is a major issue in many applied problems. in our work we examine
data that are missing and . the aims of multiple imputation in comparison to single
imputation, we also studying the statistical inference by likelihood Maximum method
for sample with missing data with Maximization-Expectation algorithm. Finally, we
present the mains packages for imputation of missing data, and we applied the EM
algorithm for Mixture Gaussian model
Keywords: expectation maximization algorithm, missing data, imputation, maximum likelihood Method |
fr_FR |
dc.language.iso |
en |
fr_FR |
dc.publisher |
Université Blida 1 |
fr_FR |
dc.subject |
expectation maximization algorithm |
fr_FR |
dc.subject |
missing data |
fr_FR |
dc.subject |
imputation |
fr_FR |
dc.subject |
maximum likelihood Method |
fr_FR |
dc.title |
Imputation of missing data and Inference by EM algorithm |
fr_FR |
dc.type |
Thesis |
fr_FR |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée