Université Blida 1

Image Fusiom using a joint-variational osmosis model

Afficher la notice abrégée

dc.contributor.author Lakraa, Redouane
dc.contributor.author Hachama, Mohammed ( Promoteur)
dc.date.accessioned 2022-11-15T11:00:55Z
dc.date.available 2022-11-15T11:00:55Z
dc.date.issued 2022-07-20
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/20116
dc.description ill., Bibliogr. Cote: ma-510-144 fr_FR
dc.description.abstract The main purpose of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We focus the approach within a variational framework. First, we present the most basic variational model which is the Poisson editing and follow it up by Osmosis. Osmosis is a transport phenomenon that is omnipresent in nature. It differs f rom d iffusion by th e fa ct th at it al lows nonconstant steady states. Then we study a proposed modification t o t his model t hat i s c alled jointvariational Osmosis that makes the overall term non-convex. The minimization of this new non-convex model gives plausible image data fusion. We minimize it using the inertial Porixmal algorithm for non convex optimization algorithm (iPiano), we apply the resulting minimization scheme to solve multi-modal face fusion, color transfer and cultural heritage conservation problems. Comparing this result with famous models visualy or quantitatively using error mesures shows the superiority and flexibility of this method. Keywords: Image fusion, Variational image fusion, Osmosis model, drfit-diffusion, non-convex optimization, gradient descent algorithms, proximal algorithms fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 1 fr_FR
dc.subject Image fusion fr_FR
dc.subject Variational image fusion fr_FR
dc.subject Osmosis model fr_FR
dc.subject drfit-diffusion fr_FR
dc.subject non-convex optimization fr_FR
dc.subject gradient descent algorithms fr_FR
dc.subject proximal algorithms fr_FR
dc.title Image Fusiom using a joint-variational osmosis model fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte