Université Blida 1

Statistical inference of Step-Stress Partially Accelerated Life Tests Using the Chen Distribution With Progressive Censoring Data Type-II

Afficher la notice abrégée

dc.contributor.author Benrekia, Asma
dc.contributor.author Rassoul, Abdelaziz ( Promoteur)
dc.date.accessioned 2023-10-09T13:21:09Z
dc.date.available 2023-10-09T13:21:09Z
dc.date.issued 2023-07
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/25441
dc.description ill., Bibliogr. Cote:ma-510-150 fr_FR
dc.description.abstract This memory focuses on Step-Stress Partially Accelerated Life Tests (SS-PALT) applied to products with a two-parameter bathtub-shaped lifetime distribution, specifically the Chen distribution. The objective is to estimate the distribution parameters and acceleration factor using maximum likelihood estimation (MLE) based on progressive Type-II censoring. The thesis also provides the asymptotic variance and covariance matrix of the estimators. To establish confidence intervals (CIs) for the parameters, two approaches are employed: the normal approximation to the asymptotic distribution of the MLEs and the bootstrap method. The estimators are numerically obtained using the Mathematica Package through an iterative procedure. To demonstrate the proposed estimation method, a numerical example is presented. Furthermore, a realworld example is provided to illustrate the suggested approach. Keywords: Chen distribution; Step-stress partially accelerated life tests; Progressive Type-II censoring; Maximum likelihood estimation; Asymptotic confidence intervals fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 1 fr_FR
dc.subject Chen distribution fr_FR
dc.subject Step-stress partially accelerated life tests fr_FR
dc.subject Progressive Type-II censoring fr_FR
dc.subject Maximum likelihood estimation fr_FR
dc.subject Asymptotic confidence intervals fr_FR
dc.title Statistical inference of Step-Stress Partially Accelerated Life Tests Using the Chen Distribution With Progressive Censoring Data Type-II fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte